File: BRepAdaptor.cpp

package info (click to toggle)
python-ocp 7.8.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 64,720 kB
  • sloc: cpp: 362,337; pascal: 33; python: 23; makefile: 4
file content (809 lines) | stat: -rw-r--r-- 51,371 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

// std lib related includes
#include <tuple>

// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

namespace py = pybind11;

// Standard Handle
#include <Standard_Handle.hxx>


// includes to resolve forward declarations
#include <Geom_BezierCurve.hxx>
#include <Geom_BSplineCurve.hxx>
#include <TopoDS_Face.hxx>
#include <Geom_BezierCurve.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_OffsetCurve.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Geom_BezierSurface.hxx>
#include <Geom_BSplineSurface.hxx>

// module includes
#include <BRepAdaptor_Array1OfCurve.hxx>
#include <BRepAdaptor_CompCurve.hxx>
#include <BRepAdaptor_Curve.hxx>
#include <BRepAdaptor_Curve2d.hxx>
#include <BRepAdaptor_HArray1OfCurve.hxx>
#include <BRepAdaptor_Surface.hxx>

// template related includes

// ./opencascade/BRepAdaptor_Array1OfCurve.hxx
#include "NCollection_tmpl.hxx"


// user-defined pre
#include "OCP_specific.inc"

// user-defined inclusion per module

// Module definiiton
void register_BRepAdaptor(py::module &main_module) {


py::module m = static_cast<py::module>(main_module.attr("BRepAdaptor"));
py::object klass;

//Python trampoline classes

// classes

    // Class BRepAdaptor_CompCurve from ./opencascade/BRepAdaptor_CompCurve.hxx
    klass = m.attr("BRepAdaptor_CompCurve");


    // nested enums

    static_cast<py::class_<BRepAdaptor_CompCurve ,opencascade::handle<BRepAdaptor_CompCurve>  , Adaptor3d_Curve >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const TopoDS_Wire &,const Standard_Boolean >()  , py::arg("W"),  py::arg("KnotByCurvilinearAbcissa")=static_cast<const Standard_Boolean>(Standard_False) )
        .def(py::init< const TopoDS_Wire &,const Standard_Boolean,const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("W"),  py::arg("KnotByCurvilinearAbcissa"),  py::arg("First"),  py::arg("Last"),  py::arg("Tol") )
    // custom constructors
    // methods
        .def("ShallowCopy",
             (opencascade::handle<Adaptor3d_Curve> (BRepAdaptor_CompCurve::*)() const) static_cast<opencascade::handle<Adaptor3d_Curve> (BRepAdaptor_CompCurve::*)() const>(&BRepAdaptor_CompCurve::ShallowCopy),
             R"#(Shallow copy of adaptor)#" 
          )
        .def("Initialize",
             (void (BRepAdaptor_CompCurve::*)( const TopoDS_Wire & ,  const Standard_Boolean  ) ) static_cast<void (BRepAdaptor_CompCurve::*)( const TopoDS_Wire & ,  const Standard_Boolean  ) >(&BRepAdaptor_CompCurve::Initialize),
             R"#(Sets the wire <W>.)#"  , py::arg("W"),  py::arg("KnotByCurvilinearAbcissa")
          )
        .def("Initialize",
             (void (BRepAdaptor_CompCurve::*)( const TopoDS_Wire & ,  const Standard_Boolean ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (BRepAdaptor_CompCurve::*)( const TopoDS_Wire & ,  const Standard_Boolean ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&BRepAdaptor_CompCurve::Initialize),
             R"#(Sets wire <W> and trimmed parameter.)#"  , py::arg("W"),  py::arg("KnotByCurvilinearAbcissa"),  py::arg("First"),  py::arg("Last"),  py::arg("Tol")
          )
        .def("FirstParameter",
             (Standard_Real (BRepAdaptor_CompCurve::*)() const) static_cast<Standard_Real (BRepAdaptor_CompCurve::*)() const>(&BRepAdaptor_CompCurve::FirstParameter),
             R"#(None)#" 
          )
        .def("LastParameter",
             (Standard_Real (BRepAdaptor_CompCurve::*)() const) static_cast<Standard_Real (BRepAdaptor_CompCurve::*)() const>(&BRepAdaptor_CompCurve::LastParameter),
             R"#(None)#" 
          )
        .def("Continuity",
             (GeomAbs_Shape (BRepAdaptor_CompCurve::*)() const) static_cast<GeomAbs_Shape (BRepAdaptor_CompCurve::*)() const>(&BRepAdaptor_CompCurve::Continuity),
             R"#(None)#" 
          )
        .def("NbIntervals",
             (Standard_Integer (BRepAdaptor_CompCurve::*)( const GeomAbs_Shape  ) const) static_cast<Standard_Integer (BRepAdaptor_CompCurve::*)( const GeomAbs_Shape  ) const>(&BRepAdaptor_CompCurve::NbIntervals),
             R"#(Returns the number of intervals for continuity <S>. May be one if Continuity(me) >= <S>)#"  , py::arg("S")
          )
        .def("Intervals",
             (void (BRepAdaptor_CompCurve::*)( NCollection_Array1<Standard_Real> & ,  const GeomAbs_Shape  ) const) static_cast<void (BRepAdaptor_CompCurve::*)( NCollection_Array1<Standard_Real> & ,  const GeomAbs_Shape  ) const>(&BRepAdaptor_CompCurve::Intervals),
             R"#(Stores in <T> the parameters bounding the intervals of continuity <S>.)#"  , py::arg("T"),  py::arg("S")
          )
        .def("Trim",
             (opencascade::handle<Adaptor3d_Curve> (BRepAdaptor_CompCurve::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) const) static_cast<opencascade::handle<Adaptor3d_Curve> (BRepAdaptor_CompCurve::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) const>(&BRepAdaptor_CompCurve::Trim),
             R"#(Returns a curve equivalent of <me> between parameters <First> and <Last>. <Tol> is used to test for 3d points confusion. If <First> >= <Last>)#"  , py::arg("First"),  py::arg("Last"),  py::arg("Tol")
          )
        .def("IsClosed",
             (Standard_Boolean (BRepAdaptor_CompCurve::*)() const) static_cast<Standard_Boolean (BRepAdaptor_CompCurve::*)() const>(&BRepAdaptor_CompCurve::IsClosed),
             R"#(None)#" 
          )
        .def("IsPeriodic",
             (Standard_Boolean (BRepAdaptor_CompCurve::*)() const) static_cast<Standard_Boolean (BRepAdaptor_CompCurve::*)() const>(&BRepAdaptor_CompCurve::IsPeriodic),
             R"#(None)#" 
          )
        .def("Period",
             (Standard_Real (BRepAdaptor_CompCurve::*)() const) static_cast<Standard_Real (BRepAdaptor_CompCurve::*)() const>(&BRepAdaptor_CompCurve::Period),
             R"#(None)#" 
          )
        .def("Value",
             (gp_Pnt (BRepAdaptor_CompCurve::*)( const Standard_Real  ) const) static_cast<gp_Pnt (BRepAdaptor_CompCurve::*)( const Standard_Real  ) const>(&BRepAdaptor_CompCurve::Value),
             R"#(Computes the point of parameter U on the curve)#"  , py::arg("U")
          )
        .def("D0",
             (void (BRepAdaptor_CompCurve::*)( const Standard_Real ,  gp_Pnt &  ) const) static_cast<void (BRepAdaptor_CompCurve::*)( const Standard_Real ,  gp_Pnt &  ) const>(&BRepAdaptor_CompCurve::D0),
             R"#(Computes the point of parameter U.)#"  , py::arg("U"),  py::arg("P")
          )
        .def("D1",
             (void (BRepAdaptor_CompCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec &  ) const) static_cast<void (BRepAdaptor_CompCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec &  ) const>(&BRepAdaptor_CompCurve::D1),
             R"#(Computes the point of parameter U on the curve with its first derivative. Raised if the continuity of the current interval is not C1.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V")
          )
        .def("D2",
             (void (BRepAdaptor_CompCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (BRepAdaptor_CompCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&BRepAdaptor_CompCurve::D2),
             R"#(Returns the point P of parameter U, the first and second derivatives V1 and V2. Raised if the continuity of the current interval is not C2.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def("D3",
             (void (BRepAdaptor_CompCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (BRepAdaptor_CompCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&BRepAdaptor_CompCurve::D3),
             R"#(Returns the point P of parameter U, the first, the second and the third derivative. Raised if the continuity of the current interval is not C3.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3")
          )
        .def("DN",
             (gp_Vec (BRepAdaptor_CompCurve::*)( const Standard_Real ,  const Standard_Integer  ) const) static_cast<gp_Vec (BRepAdaptor_CompCurve::*)( const Standard_Real ,  const Standard_Integer  ) const>(&BRepAdaptor_CompCurve::DN),
             R"#(The returned vector gives the value of the derivative for the order of derivation N. Raised if the continuity of the current interval is not CN. Raised if N < 1.)#"  , py::arg("U"),  py::arg("N")
          )
        .def("Resolution",
             (Standard_Real (BRepAdaptor_CompCurve::*)( const Standard_Real  ) const) static_cast<Standard_Real (BRepAdaptor_CompCurve::*)( const Standard_Real  ) const>(&BRepAdaptor_CompCurve::Resolution),
             R"#(returns the parametric resolution)#"  , py::arg("R3d")
          )
        .def("GetType",
             (GeomAbs_CurveType (BRepAdaptor_CompCurve::*)() const) static_cast<GeomAbs_CurveType (BRepAdaptor_CompCurve::*)() const>(&BRepAdaptor_CompCurve::GetType),
             R"#(None)#" 
          )
        .def("Line",
             (gp_Lin (BRepAdaptor_CompCurve::*)() const) static_cast<gp_Lin (BRepAdaptor_CompCurve::*)() const>(&BRepAdaptor_CompCurve::Line),
             R"#(None)#" 
          )
        .def("Circle",
             (gp_Circ (BRepAdaptor_CompCurve::*)() const) static_cast<gp_Circ (BRepAdaptor_CompCurve::*)() const>(&BRepAdaptor_CompCurve::Circle),
             R"#(None)#" 
          )
        .def("Ellipse",
             (gp_Elips (BRepAdaptor_CompCurve::*)() const) static_cast<gp_Elips (BRepAdaptor_CompCurve::*)() const>(&BRepAdaptor_CompCurve::Ellipse),
             R"#(None)#" 
          )
        .def("Hyperbola",
             (gp_Hypr (BRepAdaptor_CompCurve::*)() const) static_cast<gp_Hypr (BRepAdaptor_CompCurve::*)() const>(&BRepAdaptor_CompCurve::Hyperbola),
             R"#(None)#" 
          )
        .def("Parabola",
             (gp_Parab (BRepAdaptor_CompCurve::*)() const) static_cast<gp_Parab (BRepAdaptor_CompCurve::*)() const>(&BRepAdaptor_CompCurve::Parabola),
             R"#(None)#" 
          )
        .def("Degree",
             (Standard_Integer (BRepAdaptor_CompCurve::*)() const) static_cast<Standard_Integer (BRepAdaptor_CompCurve::*)() const>(&BRepAdaptor_CompCurve::Degree),
             R"#(None)#" 
          )
        .def("IsRational",
             (Standard_Boolean (BRepAdaptor_CompCurve::*)() const) static_cast<Standard_Boolean (BRepAdaptor_CompCurve::*)() const>(&BRepAdaptor_CompCurve::IsRational),
             R"#(None)#" 
          )
        .def("NbPoles",
             (Standard_Integer (BRepAdaptor_CompCurve::*)() const) static_cast<Standard_Integer (BRepAdaptor_CompCurve::*)() const>(&BRepAdaptor_CompCurve::NbPoles),
             R"#(None)#" 
          )
        .def("NbKnots",
             (Standard_Integer (BRepAdaptor_CompCurve::*)() const) static_cast<Standard_Integer (BRepAdaptor_CompCurve::*)() const>(&BRepAdaptor_CompCurve::NbKnots),
             R"#(None)#" 
          )
        .def("Bezier",
             (opencascade::handle<Geom_BezierCurve> (BRepAdaptor_CompCurve::*)() const) static_cast<opencascade::handle<Geom_BezierCurve> (BRepAdaptor_CompCurve::*)() const>(&BRepAdaptor_CompCurve::Bezier),
             R"#(None)#" 
          )
        .def("BSpline",
             (opencascade::handle<Geom_BSplineCurve> (BRepAdaptor_CompCurve::*)() const) static_cast<opencascade::handle<Geom_BSplineCurve> (BRepAdaptor_CompCurve::*)() const>(&BRepAdaptor_CompCurve::BSpline),
             R"#(None)#" 
          )
    // methods using call by reference i.s.o. return
        .def("Edge",
             []( BRepAdaptor_CompCurve &self , const Standard_Real U,TopoDS_Edge & E ){
                 Standard_Real  UonE;

                 self.Edge(U,E,UonE);
                 
                 return std::make_tuple(UonE); },
             R"#(returns an edge and one parameter on them corresponding to the parameter U.)#"  , py::arg("U"),  py::arg("E")
          )
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&BRepAdaptor_CompCurve::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&BRepAdaptor_CompCurve::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (BRepAdaptor_CompCurve::*)() const) static_cast<const opencascade::handle<Standard_Type> & (BRepAdaptor_CompCurve::*)() const>(&BRepAdaptor_CompCurve::DynamicType),
             R"#(None)#"
             
         )
       .def("Wire",
             (const TopoDS_Wire & (BRepAdaptor_CompCurve::*)() const) static_cast<const TopoDS_Wire & (BRepAdaptor_CompCurve::*)() const>(&BRepAdaptor_CompCurve::Wire),
             R"#(Returns the wire.)#"
             
         )
;

    // Class BRepAdaptor_Curve from ./opencascade/BRepAdaptor_Curve.hxx
    klass = m.attr("BRepAdaptor_Curve");


    // nested enums

    static_cast<py::class_<BRepAdaptor_Curve ,opencascade::handle<BRepAdaptor_Curve>  , Adaptor3d_Curve >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const TopoDS_Edge & >()  , py::arg("E") )
        .def(py::init< const TopoDS_Edge &,const TopoDS_Face & >()  , py::arg("E"),  py::arg("F") )
    // custom constructors
    // methods
        .def("ShallowCopy",
             (opencascade::handle<Adaptor3d_Curve> (BRepAdaptor_Curve::*)() const) static_cast<opencascade::handle<Adaptor3d_Curve> (BRepAdaptor_Curve::*)() const>(&BRepAdaptor_Curve::ShallowCopy),
             R"#(Shallow copy of adaptor)#" 
          )
        .def("Reset",
             (void (BRepAdaptor_Curve::*)() ) static_cast<void (BRepAdaptor_Curve::*)() >(&BRepAdaptor_Curve::Reset),
             R"#(Reset currently loaded curve (undone Load()).)#" 
          )
        .def("Initialize",
             (void (BRepAdaptor_Curve::*)( const TopoDS_Edge &  ) ) static_cast<void (BRepAdaptor_Curve::*)( const TopoDS_Edge &  ) >(&BRepAdaptor_Curve::Initialize),
             R"#(Sets the Curve <me> to access the geometry of edge <E>.)#"  , py::arg("E")
          )
        .def("Initialize",
             (void (BRepAdaptor_Curve::*)( const TopoDS_Edge & ,  const TopoDS_Face &  ) ) static_cast<void (BRepAdaptor_Curve::*)( const TopoDS_Edge & ,  const TopoDS_Face &  ) >(&BRepAdaptor_Curve::Initialize),
             R"#(Sets the Curve <me> to access the geometry of edge <E>. The geometry will be computed using the parametric curve of <E> on the face <F>. An Error is raised if the edge does not have a pcurve on the face.)#"  , py::arg("E"),  py::arg("F")
          )
        .def("Is3DCurve",
             (Standard_Boolean (BRepAdaptor_Curve::*)() const) static_cast<Standard_Boolean (BRepAdaptor_Curve::*)() const>(&BRepAdaptor_Curve::Is3DCurve),
             R"#(Returns True if the edge geometry is computed from a 3D curve.)#" 
          )
        .def("IsCurveOnSurface",
             (Standard_Boolean (BRepAdaptor_Curve::*)() const) static_cast<Standard_Boolean (BRepAdaptor_Curve::*)() const>(&BRepAdaptor_Curve::IsCurveOnSurface),
             R"#(Returns True if the edge geometry is computed from a pcurve on a surface.)#" 
          )
        .def("Tolerance",
             (Standard_Real (BRepAdaptor_Curve::*)() const) static_cast<Standard_Real (BRepAdaptor_Curve::*)() const>(&BRepAdaptor_Curve::Tolerance),
             R"#(Returns the edge tolerance.)#" 
          )
        .def("FirstParameter",
             (Standard_Real (BRepAdaptor_Curve::*)() const) static_cast<Standard_Real (BRepAdaptor_Curve::*)() const>(&BRepAdaptor_Curve::FirstParameter),
             R"#(None)#" 
          )
        .def("LastParameter",
             (Standard_Real (BRepAdaptor_Curve::*)() const) static_cast<Standard_Real (BRepAdaptor_Curve::*)() const>(&BRepAdaptor_Curve::LastParameter),
             R"#(None)#" 
          )
        .def("Continuity",
             (GeomAbs_Shape (BRepAdaptor_Curve::*)() const) static_cast<GeomAbs_Shape (BRepAdaptor_Curve::*)() const>(&BRepAdaptor_Curve::Continuity),
             R"#(None)#" 
          )
        .def("NbIntervals",
             (Standard_Integer (BRepAdaptor_Curve::*)( const GeomAbs_Shape  ) const) static_cast<Standard_Integer (BRepAdaptor_Curve::*)( const GeomAbs_Shape  ) const>(&BRepAdaptor_Curve::NbIntervals),
             R"#(Returns the number of intervals for continuity <S>. May be one if Continuity(me) >= <S>)#"  , py::arg("S")
          )
        .def("Intervals",
             (void (BRepAdaptor_Curve::*)( NCollection_Array1<Standard_Real> & ,  const GeomAbs_Shape  ) const) static_cast<void (BRepAdaptor_Curve::*)( NCollection_Array1<Standard_Real> & ,  const GeomAbs_Shape  ) const>(&BRepAdaptor_Curve::Intervals),
             R"#(Stores in <T> the parameters bounding the intervals of continuity <S>.)#"  , py::arg("T"),  py::arg("S")
          )
        .def("Trim",
             (opencascade::handle<Adaptor3d_Curve> (BRepAdaptor_Curve::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) const) static_cast<opencascade::handle<Adaptor3d_Curve> (BRepAdaptor_Curve::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) const>(&BRepAdaptor_Curve::Trim),
             R"#(Returns a curve equivalent of <me> between parameters <First> and <Last>. <Tol> is used to test for 3d points confusion. If <First> >= <Last>)#"  , py::arg("First"),  py::arg("Last"),  py::arg("Tol")
          )
        .def("IsClosed",
             (Standard_Boolean (BRepAdaptor_Curve::*)() const) static_cast<Standard_Boolean (BRepAdaptor_Curve::*)() const>(&BRepAdaptor_Curve::IsClosed),
             R"#(None)#" 
          )
        .def("IsPeriodic",
             (Standard_Boolean (BRepAdaptor_Curve::*)() const) static_cast<Standard_Boolean (BRepAdaptor_Curve::*)() const>(&BRepAdaptor_Curve::IsPeriodic),
             R"#(None)#" 
          )
        .def("Period",
             (Standard_Real (BRepAdaptor_Curve::*)() const) static_cast<Standard_Real (BRepAdaptor_Curve::*)() const>(&BRepAdaptor_Curve::Period),
             R"#(None)#" 
          )
        .def("Value",
             (gp_Pnt (BRepAdaptor_Curve::*)( const Standard_Real  ) const) static_cast<gp_Pnt (BRepAdaptor_Curve::*)( const Standard_Real  ) const>(&BRepAdaptor_Curve::Value),
             R"#(Computes the point of parameter U on the curve)#"  , py::arg("U")
          )
        .def("D0",
             (void (BRepAdaptor_Curve::*)( const Standard_Real ,  gp_Pnt &  ) const) static_cast<void (BRepAdaptor_Curve::*)( const Standard_Real ,  gp_Pnt &  ) const>(&BRepAdaptor_Curve::D0),
             R"#(Computes the point of parameter U.)#"  , py::arg("U"),  py::arg("P")
          )
        .def("D1",
             (void (BRepAdaptor_Curve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec &  ) const) static_cast<void (BRepAdaptor_Curve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec &  ) const>(&BRepAdaptor_Curve::D1),
             R"#(Computes the point of parameter U on the curve with its first derivative. Raised if the continuity of the current interval is not C1.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V")
          )
        .def("D2",
             (void (BRepAdaptor_Curve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (BRepAdaptor_Curve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&BRepAdaptor_Curve::D2),
             R"#(Returns the point P of parameter U, the first and second derivatives V1 and V2. Raised if the continuity of the current interval is not C2.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def("D3",
             (void (BRepAdaptor_Curve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (BRepAdaptor_Curve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&BRepAdaptor_Curve::D3),
             R"#(Returns the point P of parameter U, the first, the second and the third derivative. Raised if the continuity of the current interval is not C3.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3")
          )
        .def("DN",
             (gp_Vec (BRepAdaptor_Curve::*)( const Standard_Real ,  const Standard_Integer  ) const) static_cast<gp_Vec (BRepAdaptor_Curve::*)( const Standard_Real ,  const Standard_Integer  ) const>(&BRepAdaptor_Curve::DN),
             R"#(The returned vector gives the value of the derivative for the order of derivation N. Raised if the continuity of the current interval is not CN. Raised if N < 1.)#"  , py::arg("U"),  py::arg("N")
          )
        .def("Resolution",
             (Standard_Real (BRepAdaptor_Curve::*)( const Standard_Real  ) const) static_cast<Standard_Real (BRepAdaptor_Curve::*)( const Standard_Real  ) const>(&BRepAdaptor_Curve::Resolution),
             R"#(returns the parametric resolution)#"  , py::arg("R3d")
          )
        .def("GetType",
             (GeomAbs_CurveType (BRepAdaptor_Curve::*)() const) static_cast<GeomAbs_CurveType (BRepAdaptor_Curve::*)() const>(&BRepAdaptor_Curve::GetType),
             R"#(None)#" 
          )
        .def("Line",
             (gp_Lin (BRepAdaptor_Curve::*)() const) static_cast<gp_Lin (BRepAdaptor_Curve::*)() const>(&BRepAdaptor_Curve::Line),
             R"#(None)#" 
          )
        .def("Circle",
             (gp_Circ (BRepAdaptor_Curve::*)() const) static_cast<gp_Circ (BRepAdaptor_Curve::*)() const>(&BRepAdaptor_Curve::Circle),
             R"#(None)#" 
          )
        .def("Ellipse",
             (gp_Elips (BRepAdaptor_Curve::*)() const) static_cast<gp_Elips (BRepAdaptor_Curve::*)() const>(&BRepAdaptor_Curve::Ellipse),
             R"#(None)#" 
          )
        .def("Hyperbola",
             (gp_Hypr (BRepAdaptor_Curve::*)() const) static_cast<gp_Hypr (BRepAdaptor_Curve::*)() const>(&BRepAdaptor_Curve::Hyperbola),
             R"#(None)#" 
          )
        .def("Parabola",
             (gp_Parab (BRepAdaptor_Curve::*)() const) static_cast<gp_Parab (BRepAdaptor_Curve::*)() const>(&BRepAdaptor_Curve::Parabola),
             R"#(None)#" 
          )
        .def("Degree",
             (Standard_Integer (BRepAdaptor_Curve::*)() const) static_cast<Standard_Integer (BRepAdaptor_Curve::*)() const>(&BRepAdaptor_Curve::Degree),
             R"#(None)#" 
          )
        .def("IsRational",
             (Standard_Boolean (BRepAdaptor_Curve::*)() const) static_cast<Standard_Boolean (BRepAdaptor_Curve::*)() const>(&BRepAdaptor_Curve::IsRational),
             R"#(None)#" 
          )
        .def("NbPoles",
             (Standard_Integer (BRepAdaptor_Curve::*)() const) static_cast<Standard_Integer (BRepAdaptor_Curve::*)() const>(&BRepAdaptor_Curve::NbPoles),
             R"#(None)#" 
          )
        .def("NbKnots",
             (Standard_Integer (BRepAdaptor_Curve::*)() const) static_cast<Standard_Integer (BRepAdaptor_Curve::*)() const>(&BRepAdaptor_Curve::NbKnots),
             R"#(None)#" 
          )
        .def("Bezier",
             (opencascade::handle<Geom_BezierCurve> (BRepAdaptor_Curve::*)() const) static_cast<opencascade::handle<Geom_BezierCurve> (BRepAdaptor_Curve::*)() const>(&BRepAdaptor_Curve::Bezier),
             R"#(Warning: This will make a copy of the Bezier Curve since it applies to it myTsrf. Be careful when using this method.)#" 
          )
        .def("BSpline",
             (opencascade::handle<Geom_BSplineCurve> (BRepAdaptor_Curve::*)() const) static_cast<opencascade::handle<Geom_BSplineCurve> (BRepAdaptor_Curve::*)() const>(&BRepAdaptor_Curve::BSpline),
             R"#(Warning: This will make a copy of the BSpline Curve since it applies to it myTsrf. Be careful when using this method.)#" 
          )
        .def("OffsetCurve",
             (opencascade::handle<Geom_OffsetCurve> (BRepAdaptor_Curve::*)() const) static_cast<opencascade::handle<Geom_OffsetCurve> (BRepAdaptor_Curve::*)() const>(&BRepAdaptor_Curve::OffsetCurve),
             R"#(None)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&BRepAdaptor_Curve::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&BRepAdaptor_Curve::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (BRepAdaptor_Curve::*)() const) static_cast<const opencascade::handle<Standard_Type> & (BRepAdaptor_Curve::*)() const>(&BRepAdaptor_Curve::DynamicType),
             R"#(None)#"
             
         )
       .def("Trsf",
             (const gp_Trsf & (BRepAdaptor_Curve::*)() const) static_cast<const gp_Trsf & (BRepAdaptor_Curve::*)() const>(&BRepAdaptor_Curve::Trsf),
             R"#(Returns the coordinate system of the curve.)#"
             
         )
       .def("Curve",
             (const GeomAdaptor_Curve & (BRepAdaptor_Curve::*)() const) static_cast<const GeomAdaptor_Curve & (BRepAdaptor_Curve::*)() const>(&BRepAdaptor_Curve::Curve),
             R"#(Returns the Curve of the edge.)#"
             
         )
       .def("CurveOnSurface",
             (const Adaptor3d_CurveOnSurface & (BRepAdaptor_Curve::*)() const) static_cast<const Adaptor3d_CurveOnSurface & (BRepAdaptor_Curve::*)() const>(&BRepAdaptor_Curve::CurveOnSurface),
             R"#(Returns the CurveOnSurface of the edge.)#"
             
         )
       .def("Edge",
             (const TopoDS_Edge & (BRepAdaptor_Curve::*)() const) static_cast<const TopoDS_Edge & (BRepAdaptor_Curve::*)() const>(&BRepAdaptor_Curve::Edge),
             R"#(Returns the edge.)#"
             
         )
;

    // Class BRepAdaptor_Curve2d from ./opencascade/BRepAdaptor_Curve2d.hxx
    klass = m.attr("BRepAdaptor_Curve2d");


    // nested enums

    static_cast<py::class_<BRepAdaptor_Curve2d ,opencascade::handle<BRepAdaptor_Curve2d>  , Geom2dAdaptor_Curve >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const TopoDS_Edge &,const TopoDS_Face & >()  , py::arg("E"),  py::arg("F") )
    // custom constructors
    // methods
        .def("ShallowCopy",
             (opencascade::handle<Adaptor2d_Curve2d> (BRepAdaptor_Curve2d::*)() const) static_cast<opencascade::handle<Adaptor2d_Curve2d> (BRepAdaptor_Curve2d::*)() const>(&BRepAdaptor_Curve2d::ShallowCopy),
             R"#(Shallow copy of adaptor)#" 
          )
        .def("Initialize",
             (void (BRepAdaptor_Curve2d::*)( const TopoDS_Edge & ,  const TopoDS_Face &  ) ) static_cast<void (BRepAdaptor_Curve2d::*)( const TopoDS_Edge & ,  const TopoDS_Face &  ) >(&BRepAdaptor_Curve2d::Initialize),
             R"#(Initialize with the pcurve of <E> on <F>.)#"  , py::arg("E"),  py::arg("F")
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&BRepAdaptor_Curve2d::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&BRepAdaptor_Curve2d::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (BRepAdaptor_Curve2d::*)() const) static_cast<const opencascade::handle<Standard_Type> & (BRepAdaptor_Curve2d::*)() const>(&BRepAdaptor_Curve2d::DynamicType),
             R"#(None)#"
             
         )
       .def("Edge",
             (const TopoDS_Edge & (BRepAdaptor_Curve2d::*)() const) static_cast<const TopoDS_Edge & (BRepAdaptor_Curve2d::*)() const>(&BRepAdaptor_Curve2d::Edge),
             R"#(Returns the Edge.)#"
             
         )
       .def("Face",
             (const TopoDS_Face & (BRepAdaptor_Curve2d::*)() const) static_cast<const TopoDS_Face & (BRepAdaptor_Curve2d::*)() const>(&BRepAdaptor_Curve2d::Face),
             R"#(Returns the Face.)#"
             
         )
;

    // Class BRepAdaptor_HArray1OfCurve from ./opencascade/BRepAdaptor_HArray1OfCurve.hxx
    klass = m.attr("BRepAdaptor_HArray1OfCurve");


    // nested enums

    static_cast<py::class_<BRepAdaptor_HArray1OfCurve ,opencascade::handle<BRepAdaptor_HArray1OfCurve>  , BRepAdaptor_Array1OfCurve , Standard_Transient >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const Standard_Integer,const Standard_Integer >()  , py::arg("theLower"),  py::arg("theUpper") )
        .def(py::init< const Standard_Integer,const Standard_Integer, const BRepAdaptor_Curve & >()  , py::arg("theLower"),  py::arg("theUpper"),  py::arg("theValue") )
        .def(py::init<  const BRepAdaptor_Curve &,const Standard_Integer,const Standard_Integer,const bool >()  , py::arg("theBegin"),  py::arg("theLower"),  py::arg("theUpper"),  py::arg("arg") )
        .def(py::init<  const NCollection_Array1<BRepAdaptor_Curve> & >()  , py::arg("theOther") )
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&BRepAdaptor_HArray1OfCurve::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&BRepAdaptor_HArray1OfCurve::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Array1",
             (const BRepAdaptor_Array1OfCurve & (BRepAdaptor_HArray1OfCurve::*)() const) static_cast<const BRepAdaptor_Array1OfCurve & (BRepAdaptor_HArray1OfCurve::*)() const>(&BRepAdaptor_HArray1OfCurve::Array1),
             R"#(None)#"
             
         )
       .def("ChangeArray1",
             (BRepAdaptor_Array1OfCurve & (BRepAdaptor_HArray1OfCurve::*)() ) static_cast<BRepAdaptor_Array1OfCurve & (BRepAdaptor_HArray1OfCurve::*)() >(&BRepAdaptor_HArray1OfCurve::ChangeArray1),
             R"#(None)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (BRepAdaptor_HArray1OfCurve::*)() const) static_cast<const opencascade::handle<Standard_Type> & (BRepAdaptor_HArray1OfCurve::*)() const>(&BRepAdaptor_HArray1OfCurve::DynamicType),
             R"#(None)#"
             
         )
;

    // Class BRepAdaptor_Surface from ./opencascade/BRepAdaptor_Surface.hxx
    klass = m.attr("BRepAdaptor_Surface");


    // nested enums

    static_cast<py::class_<BRepAdaptor_Surface ,opencascade::handle<BRepAdaptor_Surface>  , Adaptor3d_Surface >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const TopoDS_Face &,const Standard_Boolean >()  , py::arg("F"),  py::arg("R")=static_cast<const Standard_Boolean>(Standard_True) )
    // custom constructors
    // methods
        .def("ShallowCopy",
             (opencascade::handle<Adaptor3d_Surface> (BRepAdaptor_Surface::*)() const) static_cast<opencascade::handle<Adaptor3d_Surface> (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::ShallowCopy),
             R"#(Shallow copy of adaptor)#" 
          )
        .def("Initialize",
             (void (BRepAdaptor_Surface::*)( const TopoDS_Face & ,  const Standard_Boolean  ) ) static_cast<void (BRepAdaptor_Surface::*)( const TopoDS_Face & ,  const Standard_Boolean  ) >(&BRepAdaptor_Surface::Initialize),
             R"#(Sets the surface to the geometry of <F>.)#"  , py::arg("F"),  py::arg("Restriction")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def("Tolerance",
             (Standard_Real (BRepAdaptor_Surface::*)() const) static_cast<Standard_Real (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::Tolerance),
             R"#(Returns the face tolerance.)#" 
          )
        .def("FirstUParameter",
             (Standard_Real (BRepAdaptor_Surface::*)() const) static_cast<Standard_Real (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::FirstUParameter),
             R"#(None)#" 
          )
        .def("LastUParameter",
             (Standard_Real (BRepAdaptor_Surface::*)() const) static_cast<Standard_Real (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::LastUParameter),
             R"#(None)#" 
          )
        .def("FirstVParameter",
             (Standard_Real (BRepAdaptor_Surface::*)() const) static_cast<Standard_Real (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::FirstVParameter),
             R"#(None)#" 
          )
        .def("LastVParameter",
             (Standard_Real (BRepAdaptor_Surface::*)() const) static_cast<Standard_Real (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::LastVParameter),
             R"#(None)#" 
          )
        .def("UContinuity",
             (GeomAbs_Shape (BRepAdaptor_Surface::*)() const) static_cast<GeomAbs_Shape (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::UContinuity),
             R"#(None)#" 
          )
        .def("VContinuity",
             (GeomAbs_Shape (BRepAdaptor_Surface::*)() const) static_cast<GeomAbs_Shape (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::VContinuity),
             R"#(None)#" 
          )
        .def("NbUIntervals",
             (Standard_Integer (BRepAdaptor_Surface::*)( const GeomAbs_Shape  ) const) static_cast<Standard_Integer (BRepAdaptor_Surface::*)( const GeomAbs_Shape  ) const>(&BRepAdaptor_Surface::NbUIntervals),
             R"#(If necessary, breaks the surface in U intervals of continuity <S>. And returns the number of intervals.)#"  , py::arg("theSh")
          )
        .def("NbVIntervals",
             (Standard_Integer (BRepAdaptor_Surface::*)( const GeomAbs_Shape  ) const) static_cast<Standard_Integer (BRepAdaptor_Surface::*)( const GeomAbs_Shape  ) const>(&BRepAdaptor_Surface::NbVIntervals),
             R"#(If necessary, breaks the surface in V intervals of continuity <S>. And returns the number of intervals.)#"  , py::arg("theSh")
          )
        .def("UIntervals",
             (void (BRepAdaptor_Surface::*)( NCollection_Array1<Standard_Real> & ,  const GeomAbs_Shape  ) const) static_cast<void (BRepAdaptor_Surface::*)( NCollection_Array1<Standard_Real> & ,  const GeomAbs_Shape  ) const>(&BRepAdaptor_Surface::UIntervals),
             R"#(Returns the intervals with the requested continuity in the U direction.)#"  , py::arg("T"),  py::arg("S")
          )
        .def("VIntervals",
             (void (BRepAdaptor_Surface::*)( NCollection_Array1<Standard_Real> & ,  const GeomAbs_Shape  ) const) static_cast<void (BRepAdaptor_Surface::*)( NCollection_Array1<Standard_Real> & ,  const GeomAbs_Shape  ) const>(&BRepAdaptor_Surface::VIntervals),
             R"#(Returns the intervals with the requested continuity in the V direction.)#"  , py::arg("T"),  py::arg("S")
          )
        .def("UTrim",
             (opencascade::handle<Adaptor3d_Surface> (BRepAdaptor_Surface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) const) static_cast<opencascade::handle<Adaptor3d_Surface> (BRepAdaptor_Surface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) const>(&BRepAdaptor_Surface::UTrim),
             R"#(Returns a surface trimmed in the U direction equivalent of <me> between parameters <First> and <Last>. <Tol> is used to test for 3d points confusion. If <First> >= <Last>)#"  , py::arg("First"),  py::arg("Last"),  py::arg("Tol")
          )
        .def("VTrim",
             (opencascade::handle<Adaptor3d_Surface> (BRepAdaptor_Surface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) const) static_cast<opencascade::handle<Adaptor3d_Surface> (BRepAdaptor_Surface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) const>(&BRepAdaptor_Surface::VTrim),
             R"#(Returns a surface trimmed in the V direction between parameters <First> and <Last>. <Tol> is used to test for 3d points confusion. If <First> >= <Last>)#"  , py::arg("First"),  py::arg("Last"),  py::arg("Tol")
          )
        .def("IsUClosed",
             (Standard_Boolean (BRepAdaptor_Surface::*)() const) static_cast<Standard_Boolean (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::IsUClosed),
             R"#(None)#" 
          )
        .def("IsVClosed",
             (Standard_Boolean (BRepAdaptor_Surface::*)() const) static_cast<Standard_Boolean (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::IsVClosed),
             R"#(None)#" 
          )
        .def("IsUPeriodic",
             (Standard_Boolean (BRepAdaptor_Surface::*)() const) static_cast<Standard_Boolean (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::IsUPeriodic),
             R"#(None)#" 
          )
        .def("UPeriod",
             (Standard_Real (BRepAdaptor_Surface::*)() const) static_cast<Standard_Real (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::UPeriod),
             R"#(None)#" 
          )
        .def("IsVPeriodic",
             (Standard_Boolean (BRepAdaptor_Surface::*)() const) static_cast<Standard_Boolean (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::IsVPeriodic),
             R"#(None)#" 
          )
        .def("VPeriod",
             (Standard_Real (BRepAdaptor_Surface::*)() const) static_cast<Standard_Real (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::VPeriod),
             R"#(None)#" 
          )
        .def("Value",
             (gp_Pnt (BRepAdaptor_Surface::*)( const Standard_Real ,  const Standard_Real  ) const) static_cast<gp_Pnt (BRepAdaptor_Surface::*)( const Standard_Real ,  const Standard_Real  ) const>(&BRepAdaptor_Surface::Value),
             R"#(Computes the point of parameters U,V on the surface. Tip: use GeomLib::NormEstim() to calculate surface normal at specified (U, V) point.)#"  , py::arg("U"),  py::arg("V")
          )
        .def("D0",
             (void (BRepAdaptor_Surface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt &  ) const) static_cast<void (BRepAdaptor_Surface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt &  ) const>(&BRepAdaptor_Surface::D0),
             R"#(Computes the point of parameters U,V on the surface.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P")
          )
        .def("D1",
             (void (BRepAdaptor_Surface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (BRepAdaptor_Surface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&BRepAdaptor_Surface::D1),
             R"#(Computes the point and the first derivatives on the surface. Raised if the continuity of the current intervals is not C1.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V")
          )
        .def("D2",
             (void (BRepAdaptor_Surface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (BRepAdaptor_Surface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&BRepAdaptor_Surface::D2),
             R"#(Computes the point, the first and second derivatives on the surface. Raised if the continuity of the current intervals is not C2.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV")
          )
        .def("D3",
             (void (BRepAdaptor_Surface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (BRepAdaptor_Surface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&BRepAdaptor_Surface::D3),
             R"#(Computes the point, the first, second and third derivatives on the surface. Raised if the continuity of the current intervals is not C3.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV"),  py::arg("D3U"),  py::arg("D3V"),  py::arg("D3UUV"),  py::arg("D3UVV")
          )
        .def("DN",
             (gp_Vec (BRepAdaptor_Surface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const) static_cast<gp_Vec (BRepAdaptor_Surface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const>(&BRepAdaptor_Surface::DN),
             R"#(Computes the derivative of order Nu in the direction U and Nv in the direction V at the point P(U, V). Raised if the current U interval is not not CNu and the current V interval is not CNv. Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.)#"  , py::arg("U"),  py::arg("V"),  py::arg("Nu"),  py::arg("Nv")
          )
        .def("UResolution",
             (Standard_Real (BRepAdaptor_Surface::*)( const Standard_Real  ) const) static_cast<Standard_Real (BRepAdaptor_Surface::*)( const Standard_Real  ) const>(&BRepAdaptor_Surface::UResolution),
             R"#(Returns the parametric U resolution corresponding to the real space resolution <R3d>.)#"  , py::arg("theR3d")
          )
        .def("VResolution",
             (Standard_Real (BRepAdaptor_Surface::*)( const Standard_Real  ) const) static_cast<Standard_Real (BRepAdaptor_Surface::*)( const Standard_Real  ) const>(&BRepAdaptor_Surface::VResolution),
             R"#(Returns the parametric V resolution corresponding to the real space resolution <R3d>.)#"  , py::arg("theR3d")
          )
        .def("GetType",
             (GeomAbs_SurfaceType (BRepAdaptor_Surface::*)() const) static_cast<GeomAbs_SurfaceType (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::GetType),
             R"#(Returns the type of the surface : Plane, Cylinder, Cone, Sphere, Torus, BezierSurface, BSplineSurface, SurfaceOfRevolution, SurfaceOfExtrusion, OtherSurface)#" 
          )
        .def("Plane",
             (gp_Pln (BRepAdaptor_Surface::*)() const) static_cast<gp_Pln (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::Plane),
             R"#(None)#" 
          )
        .def("Cylinder",
             (gp_Cylinder (BRepAdaptor_Surface::*)() const) static_cast<gp_Cylinder (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::Cylinder),
             R"#(None)#" 
          )
        .def("Cone",
             (gp_Cone (BRepAdaptor_Surface::*)() const) static_cast<gp_Cone (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::Cone),
             R"#(None)#" 
          )
        .def("Sphere",
             (gp_Sphere (BRepAdaptor_Surface::*)() const) static_cast<gp_Sphere (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::Sphere),
             R"#(None)#" 
          )
        .def("Torus",
             (gp_Torus (BRepAdaptor_Surface::*)() const) static_cast<gp_Torus (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::Torus),
             R"#(None)#" 
          )
        .def("UDegree",
             (Standard_Integer (BRepAdaptor_Surface::*)() const) static_cast<Standard_Integer (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::UDegree),
             R"#(None)#" 
          )
        .def("NbUPoles",
             (Standard_Integer (BRepAdaptor_Surface::*)() const) static_cast<Standard_Integer (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::NbUPoles),
             R"#(None)#" 
          )
        .def("VDegree",
             (Standard_Integer (BRepAdaptor_Surface::*)() const) static_cast<Standard_Integer (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::VDegree),
             R"#(None)#" 
          )
        .def("NbVPoles",
             (Standard_Integer (BRepAdaptor_Surface::*)() const) static_cast<Standard_Integer (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::NbVPoles),
             R"#(None)#" 
          )
        .def("NbUKnots",
             (Standard_Integer (BRepAdaptor_Surface::*)() const) static_cast<Standard_Integer (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::NbUKnots),
             R"#(None)#" 
          )
        .def("NbVKnots",
             (Standard_Integer (BRepAdaptor_Surface::*)() const) static_cast<Standard_Integer (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::NbVKnots),
             R"#(None)#" 
          )
        .def("IsURational",
             (Standard_Boolean (BRepAdaptor_Surface::*)() const) static_cast<Standard_Boolean (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::IsURational),
             R"#(None)#" 
          )
        .def("IsVRational",
             (Standard_Boolean (BRepAdaptor_Surface::*)() const) static_cast<Standard_Boolean (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::IsVRational),
             R"#(None)#" 
          )
        .def("Bezier",
             (opencascade::handle<Geom_BezierSurface> (BRepAdaptor_Surface::*)() const) static_cast<opencascade::handle<Geom_BezierSurface> (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::Bezier),
             R"#(None)#" 
          )
        .def("BSpline",
             (opencascade::handle<Geom_BSplineSurface> (BRepAdaptor_Surface::*)() const) static_cast<opencascade::handle<Geom_BSplineSurface> (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::BSpline),
             R"#(Warning : this will make a copy of the BSpline Surface since it applies to it the myTsrf transformation Be Careful when using this method)#" 
          )
        .def("AxeOfRevolution",
             (gp_Ax1 (BRepAdaptor_Surface::*)() const) static_cast<gp_Ax1 (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::AxeOfRevolution),
             R"#(None)#" 
          )
        .def("Direction",
             (gp_Dir (BRepAdaptor_Surface::*)() const) static_cast<gp_Dir (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::Direction),
             R"#(None)#" 
          )
        .def("BasisCurve",
             (opencascade::handle<Adaptor3d_Curve> (BRepAdaptor_Surface::*)() const) static_cast<opencascade::handle<Adaptor3d_Curve> (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::BasisCurve),
             R"#(only for SurfaceOfExtrusion and SurfaceOfRevolution Warning: this will make a copy of the underlying curve since it applies to it the transformation myTrsf. Be careful when using this method.)#" 
          )
        .def("BasisSurface",
             (opencascade::handle<Adaptor3d_Surface> (BRepAdaptor_Surface::*)() const) static_cast<opencascade::handle<Adaptor3d_Surface> (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::BasisSurface),
             R"#(None)#" 
          )
        .def("OffsetValue",
             (Standard_Real (BRepAdaptor_Surface::*)() const) static_cast<Standard_Real (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::OffsetValue),
             R"#(None)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&BRepAdaptor_Surface::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&BRepAdaptor_Surface::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (BRepAdaptor_Surface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::DynamicType),
             R"#(None)#"
             
         )
       .def("Surface",
             (const GeomAdaptor_Surface & (BRepAdaptor_Surface::*)() const) static_cast<const GeomAdaptor_Surface & (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::Surface),
             R"#(Returns the surface.)#"
             
         )
       .def("ChangeSurface",
             (GeomAdaptor_Surface & (BRepAdaptor_Surface::*)() ) static_cast<GeomAdaptor_Surface & (BRepAdaptor_Surface::*)() >(&BRepAdaptor_Surface::ChangeSurface),
             R"#(Returns the surface.)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("Trsf",
             (const gp_Trsf & (BRepAdaptor_Surface::*)() const) static_cast<const gp_Trsf & (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::Trsf),
             R"#(Returns the surface coordinate system.)#"
             
         )
       .def("Face",
             (const TopoDS_Face & (BRepAdaptor_Surface::*)() const) static_cast<const TopoDS_Face & (BRepAdaptor_Surface::*)() const>(&BRepAdaptor_Surface::Face),
             R"#(Returns the face.)#"
             
         )
;

// functions
// ./opencascade/BRepAdaptor_Array1OfCurve.hxx
// ./opencascade/BRepAdaptor_CompCurve.hxx
// ./opencascade/BRepAdaptor_Curve.hxx
// ./opencascade/BRepAdaptor_Curve2d.hxx
// ./opencascade/BRepAdaptor_HArray1OfCurve.hxx
// ./opencascade/BRepAdaptor_Surface.hxx

// Additional functions

// operators

// register typdefs
    register_template_NCollection_Array1<BRepAdaptor_Curve>(m,"BRepAdaptor_Array1OfCurve");


// exceptions

// user-defined post-inclusion per module in the body

};

// user-defined post-inclusion per module

// user-defined post