1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
|
// std lib related includes
#include <tuple>
// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybind11;
// Standard Handle
#include <Standard_Handle.hxx>
// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <math_Matrix.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
// module includes
#include <BSplCLib.hxx>
#include <BSplCLib_Cache.hxx>
#include <BSplCLib_CacheParams.hxx>
#include <BSplCLib_EvaluatorFunction.hxx>
#include <BSplCLib_KnotDistribution.hxx>
#include <BSplCLib_MultDistribution.hxx>
// template related includes
// user-defined pre
#include "OCP_specific.inc"
// user-defined inclusion per module
// Module definiiton
void register_BSplCLib(py::module &main_module) {
py::module m = static_cast<py::module>(main_module.attr("BSplCLib"));
py::object klass;
//Python trampoline classes
class Py_BSplCLib_EvaluatorFunction : public BSplCLib_EvaluatorFunction{
public:
using BSplCLib_EvaluatorFunction::BSplCLib_EvaluatorFunction;
// public pure virtual
void Evaluate(const Standard_Integer theDerivativeRequest,const Standard_Real * theStartEnd,const Standard_Real theParameter,Standard_Real & theResult,Standard_Integer & theErrorCode) const override { PYBIND11_OVERLOAD_PURE(void,BSplCLib_EvaluatorFunction,Evaluate,theDerivativeRequest,theStartEnd,theParameter,theResult,theErrorCode) };
// protected pure virtual
// private pure virtual
};
// classes
// Class BSplCLib from ./opencascade/BSplCLib.hxx
klass = m.attr("BSplCLib");
// default constructor
register_default_constructor<BSplCLib , shared_ptr<BSplCLib>>(m,"BSplCLib");
// nested enums
static_cast<py::class_<BSplCLib , shared_ptr<BSplCLib> >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("FirstUKnotIndex_s",
(Standard_Integer (*)( const Standard_Integer , const NCollection_Array1<Standard_Integer> & ) ) static_cast<Standard_Integer (*)( const Standard_Integer , const NCollection_Array1<Standard_Integer> & ) >(&BSplCLib::FirstUKnotIndex),
R"#(Computes the index of the knots value which gives the start point of the curve.)#" , py::arg("Degree"), py::arg("Mults")
)
.def_static("LastUKnotIndex_s",
(Standard_Integer (*)( const Standard_Integer , const NCollection_Array1<Standard_Integer> & ) ) static_cast<Standard_Integer (*)( const Standard_Integer , const NCollection_Array1<Standard_Integer> & ) >(&BSplCLib::LastUKnotIndex),
R"#(Computes the index of the knots value which gives the end point of the curve.)#" , py::arg("Degree"), py::arg("Mults")
)
.def_static("FlatIndex_s",
(Standard_Integer (*)( const Standard_Integer , const Standard_Integer , const NCollection_Array1<Standard_Integer> & , const Standard_Boolean ) ) static_cast<Standard_Integer (*)( const Standard_Integer , const Standard_Integer , const NCollection_Array1<Standard_Integer> & , const Standard_Boolean ) >(&BSplCLib::FlatIndex),
R"#(Computes the index of the flats knots sequence corresponding to <Index> in the knots sequence which multiplicities are <Mults>.)#" , py::arg("Degree"), py::arg("Index"), py::arg("Mults"), py::arg("Periodic")
)
.def_static("MaxKnotMult_s",
(Standard_Integer (*)( const NCollection_Array1<Standard_Integer> & , const Standard_Integer , const Standard_Integer ) ) static_cast<Standard_Integer (*)( const NCollection_Array1<Standard_Integer> & , const Standard_Integer , const Standard_Integer ) >(&BSplCLib::MaxKnotMult),
R"#(Finds the greatest multiplicity in a set of knots between K1 and K2. Mults is the multiplicity associated with each knot value.)#" , py::arg("Mults"), py::arg("K1"), py::arg("K2")
)
.def_static("MinKnotMult_s",
(Standard_Integer (*)( const NCollection_Array1<Standard_Integer> & , const Standard_Integer , const Standard_Integer ) ) static_cast<Standard_Integer (*)( const NCollection_Array1<Standard_Integer> & , const Standard_Integer , const Standard_Integer ) >(&BSplCLib::MinKnotMult),
R"#(Finds the lowest multiplicity in a set of knots between K1 and K2. Mults is the multiplicity associated with each knot value.)#" , py::arg("Mults"), py::arg("K1"), py::arg("K2")
)
.def_static("NbPoles_s",
(Standard_Integer (*)( const Standard_Integer , const Standard_Boolean , const NCollection_Array1<Standard_Integer> & ) ) static_cast<Standard_Integer (*)( const Standard_Integer , const Standard_Boolean , const NCollection_Array1<Standard_Integer> & ) >(&BSplCLib::NbPoles),
R"#(Returns the number of poles of the curve. Returns 0 if one of the multiplicities is incorrect.)#" , py::arg("Degree"), py::arg("Periodic"), py::arg("Mults")
)
.def_static("KnotSequenceLength_s",
(Standard_Integer (*)( const NCollection_Array1<Standard_Integer> & , const Standard_Integer , const Standard_Boolean ) ) static_cast<Standard_Integer (*)( const NCollection_Array1<Standard_Integer> & , const Standard_Integer , const Standard_Boolean ) >(&BSplCLib::KnotSequenceLength),
R"#(Returns the length of the sequence of knots with repetition.)#" , py::arg("Mults"), py::arg("Degree"), py::arg("Periodic")
)
.def_static("KnotSequence_s",
(void (*)( const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , NCollection_Array1<Standard_Real> & , const Standard_Boolean ) ) static_cast<void (*)( const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , NCollection_Array1<Standard_Real> & , const Standard_Boolean ) >(&BSplCLib::KnotSequence),
R"#(None)#" , py::arg("Knots"), py::arg("Mults"), py::arg("KnotSeq"), py::arg("Periodic")=static_cast<const Standard_Boolean>(Standard_False)
)
.def_static("KnotSequence_s",
(void (*)( const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const Standard_Integer , const Standard_Boolean , NCollection_Array1<Standard_Real> & ) ) static_cast<void (*)( const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const Standard_Integer , const Standard_Boolean , NCollection_Array1<Standard_Real> & ) >(&BSplCLib::KnotSequence),
R"#(Computes the sequence of knots KnotSeq with repetition of the knots of multiplicity greater than 1.)#" , py::arg("Knots"), py::arg("Mults"), py::arg("Degree"), py::arg("Periodic"), py::arg("KnotSeq")
)
.def_static("KnotsLength_s",
(Standard_Integer (*)( const NCollection_Array1<Standard_Real> & , const Standard_Boolean ) ) static_cast<Standard_Integer (*)( const NCollection_Array1<Standard_Real> & , const Standard_Boolean ) >(&BSplCLib::KnotsLength),
R"#(Returns the length of the sequence of knots (and Mults) without repetition.)#" , py::arg("KnotSeq"), py::arg("Periodic")=static_cast<const Standard_Boolean>(Standard_False)
)
.def_static("Knots_s",
(void (*)( const NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & , const Standard_Boolean ) ) static_cast<void (*)( const NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & , const Standard_Boolean ) >(&BSplCLib::Knots),
R"#(Computes the sequence of knots Knots without repetition of the knots of multiplicity greater than 1.)#" , py::arg("KnotSeq"), py::arg("Knots"), py::arg("Mults"), py::arg("Periodic")=static_cast<const Standard_Boolean>(Standard_False)
)
.def_static("KnotForm_s",
(BSplCLib_KnotDistribution (*)( const NCollection_Array1<Standard_Real> & , const Standard_Integer , const Standard_Integer ) ) static_cast<BSplCLib_KnotDistribution (*)( const NCollection_Array1<Standard_Real> & , const Standard_Integer , const Standard_Integer ) >(&BSplCLib::KnotForm),
R"#(Analyses if the knots distribution is "Uniform" or "NonUniform" between the knot FromK1 and the knot ToK2. There is no repetition of knot in the knots'sequence <Knots>.)#" , py::arg("Knots"), py::arg("FromK1"), py::arg("ToK2")
)
.def_static("MultForm_s",
(BSplCLib_MultDistribution (*)( const NCollection_Array1<Standard_Integer> & , const Standard_Integer , const Standard_Integer ) ) static_cast<BSplCLib_MultDistribution (*)( const NCollection_Array1<Standard_Integer> & , const Standard_Integer , const Standard_Integer ) >(&BSplCLib::MultForm),
R"#(Analyses the distribution of multiplicities between the knot FromK1 and the Knot ToK2.)#" , py::arg("Mults"), py::arg("FromK1"), py::arg("ToK2")
)
.def_static("Reparametrize_s",
(void (*)( const Standard_Real , const Standard_Real , NCollection_Array1<Standard_Real> & ) ) static_cast<void (*)( const Standard_Real , const Standard_Real , NCollection_Array1<Standard_Real> & ) >(&BSplCLib::Reparametrize),
R"#(Reparametrizes a B-spline curve to [U1, U2]. The knot values are recomputed such that Knots (Lower) = U1 and Knots (Upper) = U2 but the knot form is not modified. Warnings : In the array Knots the values must be in ascending order. U1 must not be equal to U2 to avoid division by zero.)#" , py::arg("U1"), py::arg("U2"), py::arg("Knots")
)
.def_static("Reverse_s",
(void (*)( NCollection_Array1<Standard_Real> & ) ) static_cast<void (*)( NCollection_Array1<Standard_Real> & ) >(&BSplCLib::Reverse),
R"#(Reverses the array knots to become the knots sequence of the reversed curve.)#" , py::arg("Knots")
)
.def_static("Reverse_s",
(void (*)( NCollection_Array1<Standard_Integer> & ) ) static_cast<void (*)( NCollection_Array1<Standard_Integer> & ) >(&BSplCLib::Reverse),
R"#(Reverses the array of multiplicities.)#" , py::arg("Mults")
)
.def_static("Reverse_s",
(void (*)( NCollection_Array1<gp_Pnt> & , const Standard_Integer ) ) static_cast<void (*)( NCollection_Array1<gp_Pnt> & , const Standard_Integer ) >(&BSplCLib::Reverse),
R"#(Reverses the array of poles. Last is the index of the new first pole. On a non periodic curve last is Poles.Upper(). On a periodic curve last is)#" , py::arg("Poles"), py::arg("Last")
)
.def_static("Reverse_s",
(void (*)( NCollection_Array1<gp_Pnt2d> & , const Standard_Integer ) ) static_cast<void (*)( NCollection_Array1<gp_Pnt2d> & , const Standard_Integer ) >(&BSplCLib::Reverse),
R"#(Reverses the array of poles.)#" , py::arg("Poles"), py::arg("Last")
)
.def_static("Reverse_s",
(void (*)( NCollection_Array1<Standard_Real> & , const Standard_Integer ) ) static_cast<void (*)( NCollection_Array1<Standard_Real> & , const Standard_Integer ) >(&BSplCLib::Reverse),
R"#(Reverses the array of poles.)#" , py::arg("Weights"), py::arg("Last")
)
.def_static("IsRational_s",
(Standard_Boolean (*)( const NCollection_Array1<Standard_Real> & , const Standard_Integer , const Standard_Integer , const Standard_Real ) ) static_cast<Standard_Boolean (*)( const NCollection_Array1<Standard_Real> & , const Standard_Integer , const Standard_Integer , const Standard_Real ) >(&BSplCLib::IsRational),
R"#(Returns False if all the weights of the array <Weights> between I1 an I2 are identic. Epsilon is used for comparing weights. If Epsilon is 0. the Epsilon of the first weight is used.)#" , py::arg("Weights"), py::arg("I1"), py::arg("I2"), py::arg("Epsilon")=static_cast<const Standard_Real>(0.0)
)
.def_static("MaxDegree_s",
(Standard_Integer (*)() ) static_cast<Standard_Integer (*)() >(&BSplCLib::MaxDegree),
R"#(returns the degree maxima for a BSplineCurve.)#"
)
.def_static("AntiBoorScheme_s",
(Standard_Boolean (*)( const Standard_Real , const Standard_Integer , Standard_Real & , const Standard_Integer , Standard_Real & , const Standard_Integer , const Standard_Integer , const Standard_Real ) ) static_cast<Standard_Boolean (*)( const Standard_Real , const Standard_Integer , Standard_Real & , const Standard_Integer , Standard_Real & , const Standard_Integer , const Standard_Integer , const Standard_Real ) >(&BSplCLib::AntiBoorScheme),
R"#(Compute the content of Pole before the BoorScheme. This method is used to remove poles.)#" , py::arg("U"), py::arg("Degree"), py::arg("Knots"), py::arg("Dimension"), py::arg("Poles"), py::arg("Depth"), py::arg("Length"), py::arg("Tolerance")
)
.def_static("NoWeights_s",
(TColStd_Array1OfReal * (*)() ) static_cast<TColStd_Array1OfReal * (*)() >(&BSplCLib::NoWeights),
R"#(Used as argument for a non rational curve.)#"
)
.def_static("NoMults_s",
(TColStd_Array1OfInteger * (*)() ) static_cast<TColStd_Array1OfInteger * (*)() >(&BSplCLib::NoMults),
R"#(Used as argument for a flatknots evaluation.)#"
)
.def_static("PoleIndex_s",
(Standard_Integer (*)( const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<Standard_Integer> & ) ) static_cast<Standard_Integer (*)( const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<Standard_Integer> & ) >(&BSplCLib::PoleIndex),
R"#(Return the index of the first Pole to use on the span Mults(Index) - Mults(Index+1). This index must be added to Poles.Lower().)#" , py::arg("Degree"), py::arg("Index"), py::arg("Periodic"), py::arg("Mults")
)
.def_static("BoorIndex_s",
(Standard_Integer (*)( const Standard_Integer , const Standard_Integer , const Standard_Integer ) ) static_cast<Standard_Integer (*)( const Standard_Integer , const Standard_Integer , const Standard_Integer ) >(&BSplCLib::BoorIndex),
R"#(Returns the index in the Boor result array of the poles <Index>. If the Boor algorithm was perform with <Length> and <Depth>.)#" , py::arg("Index"), py::arg("Length"), py::arg("Depth")
)
.def_static("PrepareInsertKnots_s",
(Standard_Boolean (*)( const Standard_Integer , const Standard_Boolean , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> * , Standard_Integer & , Standard_Integer & , const Standard_Real , const Standard_Boolean ) ) static_cast<Standard_Boolean (*)( const Standard_Integer , const Standard_Boolean , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> * , Standard_Integer & , Standard_Integer & , const Standard_Real , const Standard_Boolean ) >(&BSplCLib::PrepareInsertKnots),
R"#(Returns in <NbPoles, NbKnots> the new number of poles and knots if the sequence of knots <AddKnots, AddMults> is inserted in the sequence <Knots, Mults>.)#" , py::arg("Degree"), py::arg("Periodic"), py::arg("Knots"), py::arg("Mults"), py::arg("AddKnots"), py::arg("AddMults"), py::arg("NbPoles"), py::arg("NbKnots"), py::arg("Epsilon"), py::arg("Add")=static_cast<const Standard_Boolean>(Standard_True)
)
.def_static("InsertKnots_s",
(void (*)( const Standard_Integer , const Standard_Boolean , const Standard_Integer , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> * , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & , const Standard_Real , const Standard_Boolean ) ) static_cast<void (*)( const Standard_Integer , const Standard_Boolean , const Standard_Integer , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> * , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & , const Standard_Real , const Standard_Boolean ) >(&BSplCLib::InsertKnots),
R"#(None)#" , py::arg("Degree"), py::arg("Periodic"), py::arg("Dimension"), py::arg("Poles"), py::arg("Knots"), py::arg("Mults"), py::arg("AddKnots"), py::arg("AddMults"), py::arg("NewPoles"), py::arg("NewKnots"), py::arg("NewMults"), py::arg("Epsilon"), py::arg("Add")=static_cast<const Standard_Boolean>(Standard_True)
)
.def_static("InsertKnots_s",
(void (*)( const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> * , NCollection_Array1<gp_Pnt> & , NCollection_Array1<Standard_Real> * , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & , const Standard_Real , const Standard_Boolean ) ) static_cast<void (*)( const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> * , NCollection_Array1<gp_Pnt> & , NCollection_Array1<Standard_Real> * , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & , const Standard_Real , const Standard_Boolean ) >(&BSplCLib::InsertKnots),
R"#(None)#" , py::arg("Degree"), py::arg("Periodic"), py::arg("Poles"), py::arg("Weights"), py::arg("Knots"), py::arg("Mults"), py::arg("AddKnots"), py::arg("AddMults"), py::arg("NewPoles"), py::arg("NewWeights"), py::arg("NewKnots"), py::arg("NewMults"), py::arg("Epsilon"), py::arg("Add")=static_cast<const Standard_Boolean>(Standard_True)
)
.def_static("InsertKnots_s",
(void (*)( const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> * , NCollection_Array1<gp_Pnt2d> & , NCollection_Array1<Standard_Real> * , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & , const Standard_Real , const Standard_Boolean ) ) static_cast<void (*)( const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> * , NCollection_Array1<gp_Pnt2d> & , NCollection_Array1<Standard_Real> * , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & , const Standard_Real , const Standard_Boolean ) >(&BSplCLib::InsertKnots),
R"#(Insert a sequence of knots <AddKnots> with multiplicities <AddMults>. <AddKnots> must be a non decreasing sequence and verifies :)#" , py::arg("Degree"), py::arg("Periodic"), py::arg("Poles"), py::arg("Weights"), py::arg("Knots"), py::arg("Mults"), py::arg("AddKnots"), py::arg("AddMults"), py::arg("NewPoles"), py::arg("NewWeights"), py::arg("NewKnots"), py::arg("NewMults"), py::arg("Epsilon"), py::arg("Add")=static_cast<const Standard_Boolean>(Standard_True)
)
.def_static("InsertKnot_s",
(void (*)( const Standard_Integer , const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , NCollection_Array1<gp_Pnt> & , NCollection_Array1<Standard_Real> * ) ) static_cast<void (*)( const Standard_Integer , const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , NCollection_Array1<gp_Pnt> & , NCollection_Array1<Standard_Real> * ) >(&BSplCLib::InsertKnot),
R"#(None)#" , py::arg("UIndex"), py::arg("U"), py::arg("UMult"), py::arg("Degree"), py::arg("Periodic"), py::arg("Poles"), py::arg("Weights"), py::arg("Knots"), py::arg("Mults"), py::arg("NewPoles"), py::arg("NewWeights")
)
.def_static("InsertKnot_s",
(void (*)( const Standard_Integer , const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , NCollection_Array1<gp_Pnt2d> & , NCollection_Array1<Standard_Real> * ) ) static_cast<void (*)( const Standard_Integer , const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , NCollection_Array1<gp_Pnt2d> & , NCollection_Array1<Standard_Real> * ) >(&BSplCLib::InsertKnot),
R"#(Insert a new knot U of multiplicity UMult in the knot sequence.)#" , py::arg("UIndex"), py::arg("U"), py::arg("UMult"), py::arg("Degree"), py::arg("Periodic"), py::arg("Poles"), py::arg("Weights"), py::arg("Knots"), py::arg("Mults"), py::arg("NewPoles"), py::arg("NewWeights")
)
.def_static("RaiseMultiplicity_s",
(void (*)( const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , NCollection_Array1<gp_Pnt> & , NCollection_Array1<Standard_Real> * ) ) static_cast<void (*)( const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , NCollection_Array1<gp_Pnt> & , NCollection_Array1<Standard_Real> * ) >(&BSplCLib::RaiseMultiplicity),
R"#(None)#" , py::arg("KnotIndex"), py::arg("Mult"), py::arg("Degree"), py::arg("Periodic"), py::arg("Poles"), py::arg("Weights"), py::arg("Knots"), py::arg("Mults"), py::arg("NewPoles"), py::arg("NewWeights")
)
.def_static("RaiseMultiplicity_s",
(void (*)( const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , NCollection_Array1<gp_Pnt2d> & , NCollection_Array1<Standard_Real> * ) ) static_cast<void (*)( const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , NCollection_Array1<gp_Pnt2d> & , NCollection_Array1<Standard_Real> * ) >(&BSplCLib::RaiseMultiplicity),
R"#(Raise the multiplicity of knot to <UMult>.)#" , py::arg("KnotIndex"), py::arg("Mult"), py::arg("Degree"), py::arg("Periodic"), py::arg("Poles"), py::arg("Weights"), py::arg("Knots"), py::arg("Mults"), py::arg("NewPoles"), py::arg("NewWeights")
)
.def_static("RemoveKnot_s",
(Standard_Boolean (*)( const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const Standard_Integer , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & , const Standard_Real ) ) static_cast<Standard_Boolean (*)( const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const Standard_Integer , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & , const Standard_Real ) >(&BSplCLib::RemoveKnot),
R"#(None)#" , py::arg("Index"), py::arg("Mult"), py::arg("Degree"), py::arg("Periodic"), py::arg("Dimension"), py::arg("Poles"), py::arg("Knots"), py::arg("Mults"), py::arg("NewPoles"), py::arg("NewKnots"), py::arg("NewMults"), py::arg("Tolerance")
)
.def_static("RemoveKnot_s",
(Standard_Boolean (*)( const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , NCollection_Array1<gp_Pnt> & , NCollection_Array1<Standard_Real> * , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & , const Standard_Real ) ) static_cast<Standard_Boolean (*)( const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , NCollection_Array1<gp_Pnt> & , NCollection_Array1<Standard_Real> * , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & , const Standard_Real ) >(&BSplCLib::RemoveKnot),
R"#(None)#" , py::arg("Index"), py::arg("Mult"), py::arg("Degree"), py::arg("Periodic"), py::arg("Poles"), py::arg("Weights"), py::arg("Knots"), py::arg("Mults"), py::arg("NewPoles"), py::arg("NewWeights"), py::arg("NewKnots"), py::arg("NewMults"), py::arg("Tolerance")
)
.def_static("RemoveKnot_s",
(Standard_Boolean (*)( const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , NCollection_Array1<gp_Pnt2d> & , NCollection_Array1<Standard_Real> * , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & , const Standard_Real ) ) static_cast<Standard_Boolean (*)( const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , NCollection_Array1<gp_Pnt2d> & , NCollection_Array1<Standard_Real> * , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & , const Standard_Real ) >(&BSplCLib::RemoveKnot),
R"#(Decrement the multiplicity of <Knots(Index)> to <Mult>. If <Mult> is null the knot is removed.)#" , py::arg("Index"), py::arg("Mult"), py::arg("Degree"), py::arg("Periodic"), py::arg("Poles"), py::arg("Weights"), py::arg("Knots"), py::arg("Mults"), py::arg("NewPoles"), py::arg("NewWeights"), py::arg("NewKnots"), py::arg("NewMults"), py::arg("Tolerance")
)
.def_static("IncreaseDegreeCountKnots_s",
(Standard_Integer (*)( const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<Standard_Integer> & ) ) static_cast<Standard_Integer (*)( const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<Standard_Integer> & ) >(&BSplCLib::IncreaseDegreeCountKnots),
R"#(Returns the number of knots of a curve with multiplicities <Mults> after elevating the degree from <Degree> to <NewDegree>. See the IncreaseDegree method for more comments.)#" , py::arg("Degree"), py::arg("NewDegree"), py::arg("Periodic"), py::arg("Mults")
)
.def_static("IncreaseDegree_s",
(void (*)( const Standard_Integer , const Standard_Integer , const Standard_Boolean , const Standard_Integer , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & ) ) static_cast<void (*)( const Standard_Integer , const Standard_Integer , const Standard_Boolean , const Standard_Integer , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & ) >(&BSplCLib::IncreaseDegree),
R"#(None)#" , py::arg("Degree"), py::arg("NewDegree"), py::arg("Periodic"), py::arg("Dimension"), py::arg("Poles"), py::arg("Knots"), py::arg("Mults"), py::arg("NewPoles"), py::arg("NewKnots"), py::arg("NewMults")
)
.def_static("IncreaseDegree_s",
(void (*)( const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , NCollection_Array1<gp_Pnt> & , NCollection_Array1<Standard_Real> * , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & ) ) static_cast<void (*)( const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , NCollection_Array1<gp_Pnt> & , NCollection_Array1<Standard_Real> * , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & ) >(&BSplCLib::IncreaseDegree),
R"#(None)#" , py::arg("Degree"), py::arg("NewDegree"), py::arg("Periodic"), py::arg("Poles"), py::arg("Weights"), py::arg("Knots"), py::arg("Mults"), py::arg("NewPoles"), py::arg("NewWeights"), py::arg("NewKnots"), py::arg("NewMults")
)
.def_static("IncreaseDegree_s",
(void (*)( const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , NCollection_Array1<gp_Pnt2d> & , NCollection_Array1<Standard_Real> * , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & ) ) static_cast<void (*)( const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , NCollection_Array1<gp_Pnt2d> & , NCollection_Array1<Standard_Real> * , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & ) >(&BSplCLib::IncreaseDegree),
R"#(None)#" , py::arg("Degree"), py::arg("NewDegree"), py::arg("Periodic"), py::arg("Poles"), py::arg("Weights"), py::arg("Knots"), py::arg("Mults"), py::arg("NewPoles"), py::arg("NewWeights"), py::arg("NewKnots"), py::arg("NewMults")
)
.def_static("IncreaseDegree_s",
(void (*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , NCollection_Array1<gp_Pnt> & , NCollection_Array1<Standard_Real> * ) ) static_cast<void (*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , NCollection_Array1<gp_Pnt> & , NCollection_Array1<Standard_Real> * ) >(&BSplCLib::IncreaseDegree),
R"#(None)#" , py::arg("NewDegree"), py::arg("Poles"), py::arg("Weights"), py::arg("NewPoles"), py::arg("NewWeights")
)
.def_static("IncreaseDegree_s",
(void (*)( const Standard_Integer , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , NCollection_Array1<gp_Pnt2d> & , NCollection_Array1<Standard_Real> * ) ) static_cast<void (*)( const Standard_Integer , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , NCollection_Array1<gp_Pnt2d> & , NCollection_Array1<Standard_Real> * ) >(&BSplCLib::IncreaseDegree),
R"#(Increase the degree of a bspline (or bezier) curve of dimension theDimension form theDegree to theNewDegree.)#" , py::arg("theNewDegree"), py::arg("thePoles"), py::arg("theWeights"), py::arg("theNewPoles"), py::arg("theNewWeights")
)
.def_static("Unperiodize_s",
(void (*)( const Standard_Integer , const Standard_Integer , const NCollection_Array1<Standard_Integer> & , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Real> & ) ) static_cast<void (*)( const Standard_Integer , const Standard_Integer , const NCollection_Array1<Standard_Integer> & , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Real> & ) >(&BSplCLib::Unperiodize),
R"#(None)#" , py::arg("Degree"), py::arg("Dimension"), py::arg("Mults"), py::arg("Knots"), py::arg("Poles"), py::arg("NewMults"), py::arg("NewKnots"), py::arg("NewPoles")
)
.def_static("Unperiodize_s",
(void (*)( const Standard_Integer , const NCollection_Array1<Standard_Integer> & , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , NCollection_Array1<Standard_Integer> & , NCollection_Array1<Standard_Real> & , NCollection_Array1<gp_Pnt> & , NCollection_Array1<Standard_Real> * ) ) static_cast<void (*)( const Standard_Integer , const NCollection_Array1<Standard_Integer> & , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , NCollection_Array1<Standard_Integer> & , NCollection_Array1<Standard_Real> & , NCollection_Array1<gp_Pnt> & , NCollection_Array1<Standard_Real> * ) >(&BSplCLib::Unperiodize),
R"#(None)#" , py::arg("Degree"), py::arg("Mults"), py::arg("Knots"), py::arg("Poles"), py::arg("Weights"), py::arg("NewMults"), py::arg("NewKnots"), py::arg("NewPoles"), py::arg("NewWeights")
)
.def_static("Unperiodize_s",
(void (*)( const Standard_Integer , const NCollection_Array1<Standard_Integer> & , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , NCollection_Array1<Standard_Integer> & , NCollection_Array1<Standard_Real> & , NCollection_Array1<gp_Pnt2d> & , NCollection_Array1<Standard_Real> * ) ) static_cast<void (*)( const Standard_Integer , const NCollection_Array1<Standard_Integer> & , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , NCollection_Array1<Standard_Integer> & , NCollection_Array1<Standard_Real> & , NCollection_Array1<gp_Pnt2d> & , NCollection_Array1<Standard_Real> * ) >(&BSplCLib::Unperiodize),
R"#(None)#" , py::arg("Degree"), py::arg("Mults"), py::arg("Knots"), py::arg("Poles"), py::arg("Weights"), py::arg("NewMults"), py::arg("NewKnots"), py::arg("NewPoles"), py::arg("NewWeights")
)
.def_static("Trimming_s",
(void (*)( const Standard_Integer , const Standard_Boolean , const Standard_Integer , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const NCollection_Array1<Standard_Real> & , const Standard_Real , const Standard_Real , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & , NCollection_Array1<Standard_Real> & ) ) static_cast<void (*)( const Standard_Integer , const Standard_Boolean , const Standard_Integer , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const NCollection_Array1<Standard_Real> & , const Standard_Real , const Standard_Real , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & , NCollection_Array1<Standard_Real> & ) >(&BSplCLib::Trimming),
R"#(None)#" , py::arg("Degree"), py::arg("Periodic"), py::arg("Dimension"), py::arg("Knots"), py::arg("Mults"), py::arg("Poles"), py::arg("U1"), py::arg("U2"), py::arg("NewKnots"), py::arg("NewMults"), py::arg("NewPoles")
)
.def_static("Trimming_s",
(void (*)( const Standard_Integer , const Standard_Boolean , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , const Standard_Real , const Standard_Real , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & , NCollection_Array1<gp_Pnt> & , NCollection_Array1<Standard_Real> * ) ) static_cast<void (*)( const Standard_Integer , const Standard_Boolean , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , const Standard_Real , const Standard_Real , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & , NCollection_Array1<gp_Pnt> & , NCollection_Array1<Standard_Real> * ) >(&BSplCLib::Trimming),
R"#(None)#" , py::arg("Degree"), py::arg("Periodic"), py::arg("Knots"), py::arg("Mults"), py::arg("Poles"), py::arg("Weights"), py::arg("U1"), py::arg("U2"), py::arg("NewKnots"), py::arg("NewMults"), py::arg("NewPoles"), py::arg("NewWeights")
)
.def_static("Trimming_s",
(void (*)( const Standard_Integer , const Standard_Boolean , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , const Standard_Real , const Standard_Real , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & , NCollection_Array1<gp_Pnt2d> & , NCollection_Array1<Standard_Real> * ) ) static_cast<void (*)( const Standard_Integer , const Standard_Boolean , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , const Standard_Real , const Standard_Real , NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & , NCollection_Array1<gp_Pnt2d> & , NCollection_Array1<Standard_Real> * ) >(&BSplCLib::Trimming),
R"#(None)#" , py::arg("Degree"), py::arg("Periodic"), py::arg("Knots"), py::arg("Mults"), py::arg("Poles"), py::arg("Weights"), py::arg("U1"), py::arg("U2"), py::arg("NewKnots"), py::arg("NewMults"), py::arg("NewPoles"), py::arg("NewWeights")
)
.def_static("D0_s",
(void (*)( const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> * , gp_Pnt & ) ) static_cast<void (*)( const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> * , gp_Pnt & ) >(&BSplCLib::D0),
R"#(None)#" , py::arg("U"), py::arg("Index"), py::arg("Degree"), py::arg("Periodic"), py::arg("Poles"), py::arg("Weights"), py::arg("Knots"), py::arg("Mults"), py::arg("P")
)
.def_static("D0_s",
(void (*)( const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> * , gp_Pnt2d & ) ) static_cast<void (*)( const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> * , gp_Pnt2d & ) >(&BSplCLib::D0),
R"#(None)#" , py::arg("U"), py::arg("UIndex"), py::arg("Degree"), py::arg("Periodic"), py::arg("Poles"), py::arg("Weights"), py::arg("Knots"), py::arg("Mults"), py::arg("P")
)
.def_static("D0_s",
(void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , gp_Pnt & ) ) static_cast<void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , gp_Pnt & ) >(&BSplCLib::D0),
R"#(None)#" , py::arg("U"), py::arg("Poles"), py::arg("Weights"), py::arg("P")
)
.def_static("D0_s",
(void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , gp_Pnt2d & ) ) static_cast<void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , gp_Pnt2d & ) >(&BSplCLib::D0),
R"#(None)#" , py::arg("U"), py::arg("Poles"), py::arg("Weights"), py::arg("P")
)
.def_static("D1_s",
(void (*)( const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> * , gp_Pnt & , gp_Vec & ) ) static_cast<void (*)( const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> * , gp_Pnt & , gp_Vec & ) >(&BSplCLib::D1),
R"#(None)#" , py::arg("U"), py::arg("Index"), py::arg("Degree"), py::arg("Periodic"), py::arg("Poles"), py::arg("Weights"), py::arg("Knots"), py::arg("Mults"), py::arg("P"), py::arg("V")
)
.def_static("D1_s",
(void (*)( const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> * , gp_Pnt2d & , gp_Vec2d & ) ) static_cast<void (*)( const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> * , gp_Pnt2d & , gp_Vec2d & ) >(&BSplCLib::D1),
R"#(None)#" , py::arg("U"), py::arg("UIndex"), py::arg("Degree"), py::arg("Periodic"), py::arg("Poles"), py::arg("Weights"), py::arg("Knots"), py::arg("Mults"), py::arg("P"), py::arg("V")
)
.def_static("D1_s",
(void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , gp_Pnt & , gp_Vec & ) ) static_cast<void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , gp_Pnt & , gp_Vec & ) >(&BSplCLib::D1),
R"#(None)#" , py::arg("U"), py::arg("Poles"), py::arg("Weights"), py::arg("P"), py::arg("V")
)
.def_static("D1_s",
(void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , gp_Pnt2d & , gp_Vec2d & ) ) static_cast<void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , gp_Pnt2d & , gp_Vec2d & ) >(&BSplCLib::D1),
R"#(None)#" , py::arg("U"), py::arg("Poles"), py::arg("Weights"), py::arg("P"), py::arg("V")
)
.def_static("D2_s",
(void (*)( const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> * , gp_Pnt & , gp_Vec & , gp_Vec & ) ) static_cast<void (*)( const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> * , gp_Pnt & , gp_Vec & , gp_Vec & ) >(&BSplCLib::D2),
R"#(None)#" , py::arg("U"), py::arg("Index"), py::arg("Degree"), py::arg("Periodic"), py::arg("Poles"), py::arg("Weights"), py::arg("Knots"), py::arg("Mults"), py::arg("P"), py::arg("V1"), py::arg("V2")
)
.def_static("D2_s",
(void (*)( const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> * , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) ) static_cast<void (*)( const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> * , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) >(&BSplCLib::D2),
R"#(None)#" , py::arg("U"), py::arg("UIndex"), py::arg("Degree"), py::arg("Periodic"), py::arg("Poles"), py::arg("Weights"), py::arg("Knots"), py::arg("Mults"), py::arg("P"), py::arg("V1"), py::arg("V2")
)
.def_static("D2_s",
(void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , gp_Pnt & , gp_Vec & , gp_Vec & ) ) static_cast<void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , gp_Pnt & , gp_Vec & , gp_Vec & ) >(&BSplCLib::D2),
R"#(None)#" , py::arg("U"), py::arg("Poles"), py::arg("Weights"), py::arg("P"), py::arg("V1"), py::arg("V2")
)
.def_static("D2_s",
(void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) ) static_cast<void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) >(&BSplCLib::D2),
R"#(None)#" , py::arg("U"), py::arg("Poles"), py::arg("Weights"), py::arg("P"), py::arg("V1"), py::arg("V2")
)
.def_static("D3_s",
(void (*)( const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> * , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) ) static_cast<void (*)( const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> * , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) >(&BSplCLib::D3),
R"#(None)#" , py::arg("U"), py::arg("Index"), py::arg("Degree"), py::arg("Periodic"), py::arg("Poles"), py::arg("Weights"), py::arg("Knots"), py::arg("Mults"), py::arg("P"), py::arg("V1"), py::arg("V2"), py::arg("V3")
)
.def_static("D3_s",
(void (*)( const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> * , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) ) static_cast<void (*)( const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> * , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) >(&BSplCLib::D3),
R"#(None)#" , py::arg("U"), py::arg("UIndex"), py::arg("Degree"), py::arg("Periodic"), py::arg("Poles"), py::arg("Weights"), py::arg("Knots"), py::arg("Mults"), py::arg("P"), py::arg("V1"), py::arg("V2"), py::arg("V3")
)
.def_static("D3_s",
(void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) ) static_cast<void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) >(&BSplCLib::D3),
R"#(None)#" , py::arg("U"), py::arg("Poles"), py::arg("Weights"), py::arg("P"), py::arg("V1"), py::arg("V2"), py::arg("V3")
)
.def_static("D3_s",
(void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) ) static_cast<void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) >(&BSplCLib::D3),
R"#(None)#" , py::arg("U"), py::arg("Poles"), py::arg("Weights"), py::arg("P"), py::arg("V1"), py::arg("V2"), py::arg("V3")
)
.def_static("EvalBsplineBasis_s",
(Standard_Integer (*)( const Standard_Integer , const Standard_Integer , const NCollection_Array1<Standard_Real> & , const Standard_Real , Standard_Integer & , math_Matrix & , const Standard_Boolean ) ) static_cast<Standard_Integer (*)( const Standard_Integer , const Standard_Integer , const NCollection_Array1<Standard_Real> & , const Standard_Real , Standard_Integer & , math_Matrix & , const Standard_Boolean ) >(&BSplCLib::EvalBsplineBasis),
R"#(This evaluates the Bspline Basis at a given parameter Parameter up to the requested DerivativeOrder and store the result in the array BsplineBasis in the following fashion BSplineBasis(1,1) = value of first non vanishing Bspline function which has Index FirstNonZeroBsplineIndex BsplineBasis(1,2) = value of second non vanishing Bspline function which has Index FirstNonZeroBsplineIndex + 1 BsplineBasis(1,n) = value of second non vanishing non vanishing Bspline function which has Index FirstNonZeroBsplineIndex + n (n <= Order) BSplineBasis(2,1) = value of derivative of first non vanishing Bspline function which has Index FirstNonZeroBsplineIndex BSplineBasis(N,1) = value of Nth derivative of first non vanishing Bspline function which has Index FirstNonZeroBsplineIndex if N <= DerivativeOrder + 1)#" , py::arg("DerivativeOrder"), py::arg("Order"), py::arg("FlatKnots"), py::arg("Parameter"), py::arg("FirstNonZeroBsplineIndex"), py::arg("BsplineBasis"), py::arg("isPeriodic")=static_cast<const Standard_Boolean>(Standard_False)
)
.def_static("BuildBSpMatrix_s",
(Standard_Integer (*)( const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const NCollection_Array1<Standard_Real> & , const Standard_Integer , math_Matrix & , Standard_Integer & , Standard_Integer & ) ) static_cast<Standard_Integer (*)( const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const NCollection_Array1<Standard_Real> & , const Standard_Integer , math_Matrix & , Standard_Integer & , Standard_Integer & ) >(&BSplCLib::BuildBSpMatrix),
R"#(This Builds a fully blown Matrix of (ni) Bi (tj))#" , py::arg("Parameters"), py::arg("OrderArray"), py::arg("FlatKnots"), py::arg("Degree"), py::arg("Matrix"), py::arg("UpperBandWidth"), py::arg("LowerBandWidth")
)
.def_static("FactorBandedMatrix_s",
(Standard_Integer (*)( math_Matrix & , const Standard_Integer , const Standard_Integer , Standard_Integer & ) ) static_cast<Standard_Integer (*)( math_Matrix & , const Standard_Integer , const Standard_Integer , Standard_Integer & ) >(&BSplCLib::FactorBandedMatrix),
R"#(this factors the Banded Matrix in the LU form with a Banded storage of components of the L matrix WARNING : do not use if the Matrix is totally positive (It is the case for Bspline matrices build as above with parameters being the Schoenberg points)#" , py::arg("Matrix"), py::arg("UpperBandWidth"), py::arg("LowerBandWidth"), py::arg("PivotIndexProblem")
)
.def_static("SolveBandedSystem_s",
(Standard_Integer (*)( const math_Matrix & , const Standard_Integer , const Standard_Integer , const Standard_Integer , Standard_Real & ) ) static_cast<Standard_Integer (*)( const math_Matrix & , const Standard_Integer , const Standard_Integer , const Standard_Integer , Standard_Real & ) >(&BSplCLib::SolveBandedSystem),
R"#(This solves the system Matrix.X = B with when Matrix is factored in LU form The Array is an seen as an Array[1..N][1..ArrayDimension] with N = the rank of the matrix Matrix. The result is stored in Array when each coordinate is solved that is B is the array whose values are B[i] = Array[i][p] for each p in 1..ArrayDimension)#" , py::arg("Matrix"), py::arg("UpperBandWidth"), py::arg("LowerBandWidth"), py::arg("ArrayDimension"), py::arg("Array")
)
.def_static("SolveBandedSystem_s",
(Standard_Integer (*)( const math_Matrix & , const Standard_Integer , const Standard_Integer , NCollection_Array1<gp_Pnt2d> & ) ) static_cast<Standard_Integer (*)( const math_Matrix & , const Standard_Integer , const Standard_Integer , NCollection_Array1<gp_Pnt2d> & ) >(&BSplCLib::SolveBandedSystem),
R"#(This solves the system Matrix.X = B with when Matrix is factored in LU form The Array has the length of the rank of the matrix Matrix. The result is stored in Array when each coordinate is solved that is B is the array whose values are B[i] = Array[i][p] for each p in 1..ArrayDimension)#" , py::arg("Matrix"), py::arg("UpperBandWidth"), py::arg("LowerBandWidth"), py::arg("Array")
)
.def_static("SolveBandedSystem_s",
(Standard_Integer (*)( const math_Matrix & , const Standard_Integer , const Standard_Integer , NCollection_Array1<gp_Pnt> & ) ) static_cast<Standard_Integer (*)( const math_Matrix & , const Standard_Integer , const Standard_Integer , NCollection_Array1<gp_Pnt> & ) >(&BSplCLib::SolveBandedSystem),
R"#(This solves the system Matrix.X = B with when Matrix is factored in LU form The Array has the length of the rank of the matrix Matrix. The result is stored in Array when each coordinate is solved that is B is the array whose values are B[i] = Array[i][p] for each p in 1..ArrayDimension)#" , py::arg("Matrix"), py::arg("UpperBandWidth"), py::arg("LowerBandWidth"), py::arg("Array")
)
.def_static("SolveBandedSystem_s",
(Standard_Integer (*)( const math_Matrix & , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const Standard_Integer , Standard_Real & , Standard_Real & ) ) static_cast<Standard_Integer (*)( const math_Matrix & , const Standard_Integer , const Standard_Integer , const Standard_Boolean , const Standard_Integer , Standard_Real & , Standard_Real & ) >(&BSplCLib::SolveBandedSystem),
R"#(None)#" , py::arg("Matrix"), py::arg("UpperBandWidth"), py::arg("LowerBandWidth"), py::arg("HomogenousFlag"), py::arg("ArrayDimension"), py::arg("Array"), py::arg("Weights")
)
.def_static("SolveBandedSystem_s",
(Standard_Integer (*)( const math_Matrix & , const Standard_Integer , const Standard_Integer , const Standard_Boolean , NCollection_Array1<gp_Pnt2d> & , NCollection_Array1<Standard_Real> & ) ) static_cast<Standard_Integer (*)( const math_Matrix & , const Standard_Integer , const Standard_Integer , const Standard_Boolean , NCollection_Array1<gp_Pnt2d> & , NCollection_Array1<Standard_Real> & ) >(&BSplCLib::SolveBandedSystem),
R"#(This solves the system Matrix.X = B with when Matrix is factored in LU form The Array is an seen as an Array[1..N][1..ArrayDimension] with N = the rank of the matrix Matrix. The result is stored in Array when each coordinate is solved that is B is the array whose values are B[i] = Array[i][p] for each p in 1..ArrayDimension. If HomogeneousFlag == 0 the Poles are multiplied by the Weights upon Entry and once interpolation is carried over the result of the poles are divided by the result of the interpolation of the weights. Otherwise if HomogenousFlag == 1 the Poles and Weigths are treated homogeneously that is that those are interpolated as they are and result is returned without division by the interpolated weigths.)#" , py::arg("Matrix"), py::arg("UpperBandWidth"), py::arg("LowerBandWidth"), py::arg("HomogenousFlag"), py::arg("Array"), py::arg("Weights")
)
.def_static("SolveBandedSystem_s",
(Standard_Integer (*)( const math_Matrix & , const Standard_Integer , const Standard_Integer , const Standard_Boolean , NCollection_Array1<gp_Pnt> & , NCollection_Array1<Standard_Real> & ) ) static_cast<Standard_Integer (*)( const math_Matrix & , const Standard_Integer , const Standard_Integer , const Standard_Boolean , NCollection_Array1<gp_Pnt> & , NCollection_Array1<Standard_Real> & ) >(&BSplCLib::SolveBandedSystem),
R"#(This solves the system Matrix.X = B with when Matrix is factored in LU form The Array is an seen as an Array[1..N][1..ArrayDimension] with N = the rank of the matrix Matrix. The result is stored in Array when each coordinate is solved that is B is the array whose values are B[i] = Array[i][p] for each p in 1..ArrayDimension If HomogeneousFlag == 0 the Poles are multiplied by the Weights upon Entry and once interpolation is carried over the result of the poles are divided by the result of the interpolation of the weights. Otherwise if HomogenousFlag == 1 the Poles and Weigths are treated homogeneously that is that those are interpolated as they are and result is returned without division by the interpolated weigths.)#" , py::arg("Matrix"), py::arg("UpperBandWidth"), py::arg("LowerBandWidth"), py::arg("HomogeneousFlag"), py::arg("Array"), py::arg("Weights")
)
.def_static("CacheD0_s",
(void (*)( const Standard_Real , const Standard_Integer , const Standard_Real , const Standard_Real , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , gp_Pnt & ) ) static_cast<void (*)( const Standard_Real , const Standard_Integer , const Standard_Real , const Standard_Real , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , gp_Pnt & ) >(&BSplCLib::CacheD0),
R"#(Perform the evaluation of the of the cache the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights this just evaluates the current point the CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effects)#" , py::arg("U"), py::arg("Degree"), py::arg("CacheParameter"), py::arg("SpanLenght"), py::arg("Poles"), py::arg("Weights"), py::arg("Point")
)
.def_static("CacheD0_s",
(void (*)( const Standard_Real , const Standard_Integer , const Standard_Real , const Standard_Real , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , gp_Pnt2d & ) ) static_cast<void (*)( const Standard_Real , const Standard_Integer , const Standard_Real , const Standard_Real , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , gp_Pnt2d & ) >(&BSplCLib::CacheD0),
R"#(Perform the evaluation of the Bspline Basis and then multiplies by the weights this just evaluates the current point the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights ththe CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effectsis just evaluates the current point)#" , py::arg("U"), py::arg("Degree"), py::arg("CacheParameter"), py::arg("SpanLenght"), py::arg("Poles"), py::arg("Weights"), py::arg("Point")
)
.def_static("CoefsD0_s",
(void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , gp_Pnt & ) ) static_cast<void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , gp_Pnt & ) >(&BSplCLib::CoefsD0),
R"#(Calls CacheD0 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!)#" , py::arg("U"), py::arg("Poles"), py::arg("Weights"), py::arg("Point")
)
.def_static("CoefsD0_s",
(void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , gp_Pnt2d & ) ) static_cast<void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , gp_Pnt2d & ) >(&BSplCLib::CoefsD0),
R"#(Calls CacheD0 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!)#" , py::arg("U"), py::arg("Poles"), py::arg("Weights"), py::arg("Point")
)
.def_static("CacheD1_s",
(void (*)( const Standard_Real , const Standard_Integer , const Standard_Real , const Standard_Real , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , gp_Pnt & , gp_Vec & ) ) static_cast<void (*)( const Standard_Real , const Standard_Integer , const Standard_Real , const Standard_Real , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , gp_Pnt & , gp_Vec & ) >(&BSplCLib::CacheD1),
R"#(Perform the evaluation of the of the cache the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights this just evaluates the current point the CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effects)#" , py::arg("U"), py::arg("Degree"), py::arg("CacheParameter"), py::arg("SpanLenght"), py::arg("Poles"), py::arg("Weights"), py::arg("Point"), py::arg("Vec")
)
.def_static("CacheD1_s",
(void (*)( const Standard_Real , const Standard_Integer , const Standard_Real , const Standard_Real , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , gp_Pnt2d & , gp_Vec2d & ) ) static_cast<void (*)( const Standard_Real , const Standard_Integer , const Standard_Real , const Standard_Real , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , gp_Pnt2d & , gp_Vec2d & ) >(&BSplCLib::CacheD1),
R"#(Perform the evaluation of the Bspline Basis and then multiplies by the weights this just evaluates the current point the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights ththe CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effectsis just evaluates the current point)#" , py::arg("U"), py::arg("Degree"), py::arg("CacheParameter"), py::arg("SpanLenght"), py::arg("Poles"), py::arg("Weights"), py::arg("Point"), py::arg("Vec")
)
.def_static("CoefsD1_s",
(void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , gp_Pnt & , gp_Vec & ) ) static_cast<void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , gp_Pnt & , gp_Vec & ) >(&BSplCLib::CoefsD1),
R"#(Calls CacheD1 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!)#" , py::arg("U"), py::arg("Poles"), py::arg("Weights"), py::arg("Point"), py::arg("Vec")
)
.def_static("CoefsD1_s",
(void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , gp_Pnt2d & , gp_Vec2d & ) ) static_cast<void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , gp_Pnt2d & , gp_Vec2d & ) >(&BSplCLib::CoefsD1),
R"#(Calls CacheD1 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!)#" , py::arg("U"), py::arg("Poles"), py::arg("Weights"), py::arg("Point"), py::arg("Vec")
)
.def_static("CacheD2_s",
(void (*)( const Standard_Real , const Standard_Integer , const Standard_Real , const Standard_Real , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , gp_Pnt & , gp_Vec & , gp_Vec & ) ) static_cast<void (*)( const Standard_Real , const Standard_Integer , const Standard_Real , const Standard_Real , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , gp_Pnt & , gp_Vec & , gp_Vec & ) >(&BSplCLib::CacheD2),
R"#(Perform the evaluation of the of the cache the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights this just evaluates the current point the CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effects)#" , py::arg("U"), py::arg("Degree"), py::arg("CacheParameter"), py::arg("SpanLenght"), py::arg("Poles"), py::arg("Weights"), py::arg("Point"), py::arg("Vec1"), py::arg("Vec2")
)
.def_static("CacheD2_s",
(void (*)( const Standard_Real , const Standard_Integer , const Standard_Real , const Standard_Real , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) ) static_cast<void (*)( const Standard_Real , const Standard_Integer , const Standard_Real , const Standard_Real , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) >(&BSplCLib::CacheD2),
R"#(Perform the evaluation of the Bspline Basis and then multiplies by the weights this just evaluates the current point the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights ththe CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effectsis just evaluates the current point)#" , py::arg("U"), py::arg("Degree"), py::arg("CacheParameter"), py::arg("SpanLenght"), py::arg("Poles"), py::arg("Weights"), py::arg("Point"), py::arg("Vec1"), py::arg("Vec2")
)
.def_static("CoefsD2_s",
(void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , gp_Pnt & , gp_Vec & , gp_Vec & ) ) static_cast<void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , gp_Pnt & , gp_Vec & , gp_Vec & ) >(&BSplCLib::CoefsD2),
R"#(Calls CacheD1 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!)#" , py::arg("U"), py::arg("Poles"), py::arg("Weights"), py::arg("Point"), py::arg("Vec1"), py::arg("Vec2")
)
.def_static("CoefsD2_s",
(void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) ) static_cast<void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) >(&BSplCLib::CoefsD2),
R"#(Calls CacheD1 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!)#" , py::arg("U"), py::arg("Poles"), py::arg("Weights"), py::arg("Point"), py::arg("Vec1"), py::arg("Vec2")
)
.def_static("CacheD3_s",
(void (*)( const Standard_Real , const Standard_Integer , const Standard_Real , const Standard_Real , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) ) static_cast<void (*)( const Standard_Real , const Standard_Integer , const Standard_Real , const Standard_Real , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) >(&BSplCLib::CacheD3),
R"#(Perform the evaluation of the of the cache the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights this just evaluates the current point the CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effects)#" , py::arg("U"), py::arg("Degree"), py::arg("CacheParameter"), py::arg("SpanLenght"), py::arg("Poles"), py::arg("Weights"), py::arg("Point"), py::arg("Vec1"), py::arg("Vec2"), py::arg("Vec3")
)
.def_static("CacheD3_s",
(void (*)( const Standard_Real , const Standard_Integer , const Standard_Real , const Standard_Real , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) ) static_cast<void (*)( const Standard_Real , const Standard_Integer , const Standard_Real , const Standard_Real , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) >(&BSplCLib::CacheD3),
R"#(Perform the evaluation of the Bspline Basis and then multiplies by the weights this just evaluates the current point the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights ththe CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effectsis just evaluates the current point)#" , py::arg("U"), py::arg("Degree"), py::arg("CacheParameter"), py::arg("SpanLenght"), py::arg("Poles"), py::arg("Weights"), py::arg("Point"), py::arg("Vec1"), py::arg("Vec2"), py::arg("Vec3")
)
.def_static("CoefsD3_s",
(void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) ) static_cast<void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) >(&BSplCLib::CoefsD3),
R"#(Calls CacheD1 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!)#" , py::arg("U"), py::arg("Poles"), py::arg("Weights"), py::arg("Point"), py::arg("Vec1"), py::arg("Vec2"), py::arg("Vec3")
)
.def_static("CoefsD3_s",
(void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) ) static_cast<void (*)( const Standard_Real , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) >(&BSplCLib::CoefsD3),
R"#(Calls CacheD1 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!)#" , py::arg("U"), py::arg("Poles"), py::arg("Weights"), py::arg("Point"), py::arg("Vec1"), py::arg("Vec2"), py::arg("Vec3")
)
.def_static("BuildCache_s",
(void (*)( const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Integer , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , NCollection_Array1<gp_Pnt> & , NCollection_Array1<Standard_Real> * ) ) static_cast<void (*)( const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Integer , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , NCollection_Array1<gp_Pnt> & , NCollection_Array1<Standard_Real> * ) >(&BSplCLib::BuildCache),
R"#(Perform the evaluation of the Taylor expansion of the Bspline normalized between 0 and 1. If rational computes the homogeneous Taylor expension for the numerator and stores it in CachePoles)#" , py::arg("U"), py::arg("InverseOfSpanDomain"), py::arg("PeriodicFlag"), py::arg("Degree"), py::arg("FlatKnots"), py::arg("Poles"), py::arg("Weights"), py::arg("CachePoles"), py::arg("CacheWeights")
)
.def_static("BuildCache_s",
(void (*)( const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Integer , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , NCollection_Array1<gp_Pnt2d> & , NCollection_Array1<Standard_Real> * ) ) static_cast<void (*)( const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Integer , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , NCollection_Array1<gp_Pnt2d> & , NCollection_Array1<Standard_Real> * ) >(&BSplCLib::BuildCache),
R"#(Perform the evaluation of the Taylor expansion of the Bspline normalized between 0 and 1. If rational computes the homogeneous Taylor expension for the numerator and stores it in CachePoles)#" , py::arg("U"), py::arg("InverseOfSpanDomain"), py::arg("PeriodicFlag"), py::arg("Degree"), py::arg("FlatKnots"), py::arg("Poles"), py::arg("Weights"), py::arg("CachePoles"), py::arg("CacheWeights")
)
.def_static("BuildCache_s",
(void (*)( const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Integer , const Standard_Integer , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , NCollection_Array2<Standard_Real> & ) ) static_cast<void (*)( const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Integer , const Standard_Integer , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , NCollection_Array2<Standard_Real> & ) >(&BSplCLib::BuildCache),
R"#(Perform the evaluation of the Taylor expansion of the Bspline normalized between 0 and 1. Structure of result optimized for BSplCLib_Cache.)#" , py::arg("theParameter"), py::arg("theSpanDomain"), py::arg("thePeriodicFlag"), py::arg("theDegree"), py::arg("theSpanIndex"), py::arg("theFlatKnots"), py::arg("thePoles"), py::arg("theWeights"), py::arg("theCacheArray")
)
.def_static("BuildCache_s",
(void (*)( const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Integer , const Standard_Integer , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , NCollection_Array2<Standard_Real> & ) ) static_cast<void (*)( const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Integer , const Standard_Integer , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , NCollection_Array2<Standard_Real> & ) >(&BSplCLib::BuildCache),
R"#(Perform the evaluation of the Taylor expansion of the Bspline normalized between 0 and 1. Structure of result optimized for BSplCLib_Cache.)#" , py::arg("theParameter"), py::arg("theSpanDomain"), py::arg("thePeriodicFlag"), py::arg("theDegree"), py::arg("theSpanIndex"), py::arg("theFlatKnots"), py::arg("thePoles"), py::arg("theWeights"), py::arg("theCacheArray")
)
.def_static("PolesCoefficients_s",
(void (*)( const NCollection_Array1<gp_Pnt2d> & , NCollection_Array1<gp_Pnt2d> & ) ) static_cast<void (*)( const NCollection_Array1<gp_Pnt2d> & , NCollection_Array1<gp_Pnt2d> & ) >(&BSplCLib::PolesCoefficients),
R"#(None)#" , py::arg("Poles"), py::arg("CachePoles")
)
.def_static("PolesCoefficients_s",
(void (*)( const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , NCollection_Array1<gp_Pnt2d> & , NCollection_Array1<Standard_Real> * ) ) static_cast<void (*)( const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * , NCollection_Array1<gp_Pnt2d> & , NCollection_Array1<Standard_Real> * ) >(&BSplCLib::PolesCoefficients),
R"#(None)#" , py::arg("Poles"), py::arg("Weights"), py::arg("CachePoles"), py::arg("CacheWeights")
)
.def_static("PolesCoefficients_s",
(void (*)( const NCollection_Array1<gp_Pnt> & , NCollection_Array1<gp_Pnt> & ) ) static_cast<void (*)( const NCollection_Array1<gp_Pnt> & , NCollection_Array1<gp_Pnt> & ) >(&BSplCLib::PolesCoefficients),
R"#(None)#" , py::arg("Poles"), py::arg("CachePoles")
)
.def_static("PolesCoefficients_s",
(void (*)( const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , NCollection_Array1<gp_Pnt> & , NCollection_Array1<Standard_Real> * ) ) static_cast<void (*)( const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * , NCollection_Array1<gp_Pnt> & , NCollection_Array1<Standard_Real> * ) >(&BSplCLib::PolesCoefficients),
R"#(Encapsulation of BuildCache to perform the evaluation of the Taylor expansion for beziercurves at parameter 0. Warning: To be used for Beziercurves ONLY!!!)#" , py::arg("Poles"), py::arg("Weights"), py::arg("CachePoles"), py::arg("CacheWeights")
)
.def_static("FlatBezierKnots_s",
(const Standard_Real & (*)( const Standard_Integer ) ) static_cast<const Standard_Real & (*)( const Standard_Integer ) >(&BSplCLib::FlatBezierKnots),
R"#(Returns pointer to statically allocated array representing flat knots for bezier curve of the specified degree. Raises OutOfRange if Degree > MaxDegree())#" , py::arg("Degree")
)
.def_static("BuildSchoenbergPoints_s",
(void (*)( const Standard_Integer , const NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Real> & ) ) static_cast<void (*)( const Standard_Integer , const NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Real> & ) >(&BSplCLib::BuildSchoenbergPoints),
R"#(builds the Schoenberg points from the flat knot used to interpolate a BSpline since the BSpline matrix is invertible.)#" , py::arg("Degree"), py::arg("FlatKnots"), py::arg("Parameters")
)
.def_static("Intervals_s",
(Standard_Integer (*)( const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , Standard_Integer , Standard_Boolean , Standard_Integer , Standard_Real , Standard_Real , Standard_Real , NCollection_Array1<Standard_Real> * ) ) static_cast<Standard_Integer (*)( const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , Standard_Integer , Standard_Boolean , Standard_Integer , Standard_Real , Standard_Real , Standard_Real , NCollection_Array1<Standard_Real> * ) >(&BSplCLib::Intervals),
R"#(Splits the given range to BSpline intervals of given continuity)#" , py::arg("theKnots"), py::arg("theMults"), py::arg("theDegree"), py::arg("isPeriodic"), py::arg("theContinuity"), py::arg("theFirst"), py::arg("theLast"), py::arg("theTolerance"), py::arg("theIntervals")
)
// static methods using call by reference i.s.o. return
.def_static("Hunt_s",
[]( const NCollection_Array1<Standard_Real> & theArray,const Standard_Real theX ){
Standard_Integer theXPos;
BSplCLib::Hunt(theArray,theX,theXPos);
return std::make_tuple(theXPos); },
R"#(This routine searches the position of the real value theX in the monotonically increasing set of real values theArray using bisection algorithm.)#" , py::arg("theArray"), py::arg("theX")
)
.def_static("LocateParameter_s",
[](const Standard_Integer Degree, const NCollection_Array1<Standard_Real> & Knots, const NCollection_Array1<Standard_Integer> & Mults,const Standard_Real U,const Standard_Boolean IsPeriodic,const Standard_Integer FromK1,const Standard_Integer ToK2 ){
Standard_Integer KnotIndex;
Standard_Real NewU;
BSplCLib::LocateParameter(Degree,Knots,Mults,U,IsPeriodic,FromK1,ToK2,KnotIndex,NewU);
return std::make_tuple(KnotIndex,NewU); },
R"#(Locates the parametric value U in the knots sequence between the knot K1 and the knot K2. The value return in Index verifies.)#" , py::arg("Degree"), py::arg("Knots"), py::arg("Mults"), py::arg("U"), py::arg("IsPeriodic"), py::arg("FromK1"), py::arg("ToK2")
)
.def_static("LocateParameter_s",
[](const Standard_Integer Degree, const NCollection_Array1<Standard_Real> & Knots,const Standard_Real U,const Standard_Boolean IsPeriodic,const Standard_Integer FromK1,const Standard_Integer ToK2 ){
Standard_Integer KnotIndex;
Standard_Real NewU;
BSplCLib::LocateParameter(Degree,Knots,U,IsPeriodic,FromK1,ToK2,KnotIndex,NewU);
return std::make_tuple(KnotIndex,NewU); },
R"#(Locates the parametric value U in the knots sequence between the knot K1 and the knot K2. The value return in Index verifies.)#" , py::arg("Degree"), py::arg("Knots"), py::arg("U"), py::arg("IsPeriodic"), py::arg("FromK1"), py::arg("ToK2")
)
.def_static("LocateParameter_s",
[](const Standard_Integer Degree, const NCollection_Array1<Standard_Real> & Knots, const NCollection_Array1<Standard_Integer> * Mults,const Standard_Real U,const Standard_Boolean Periodic ){
Standard_Integer Index;
Standard_Real NewU;
BSplCLib::LocateParameter(Degree,Knots,Mults,U,Periodic,Index,NewU);
return std::make_tuple(Index,NewU); },
R"#(None)#" , py::arg("Degree"), py::arg("Knots"), py::arg("Mults"), py::arg("U"), py::arg("Periodic")
)
.def_static("KnotAnalysis_s",
[](const Standard_Integer Degree,const Standard_Boolean Periodic, const NCollection_Array1<Standard_Real> & CKnots, const NCollection_Array1<Standard_Integer> & CMults,GeomAbs_BSplKnotDistribution & KnotForm ){
Standard_Integer MaxKnotMult;
BSplCLib::KnotAnalysis(Degree,Periodic,CKnots,CMults,KnotForm,MaxKnotMult);
return std::make_tuple(MaxKnotMult); },
R"#(Analyzes the array of knots. Returns the form and the maximum knot multiplicity.)#" , py::arg("Degree"), py::arg("Periodic"), py::arg("CKnots"), py::arg("CMults"), py::arg("KnotForm")
)
.def_static("Eval_s",
[](const Standard_Real U,const Standard_Integer Degree,const Standard_Integer Dimension ){
Standard_Real Knots;
Standard_Real Poles;
BSplCLib::Eval(U,Degree,Knots,Dimension,Poles);
return std::make_tuple(Knots,Poles); },
R"#(Perform the Boor algorithm to evaluate a point at parameter <U>, with <Degree> and <Dimension>.)#" , py::arg("U"), py::arg("Degree"), py::arg("Dimension")
)
.def_static("BoorScheme_s",
[](const Standard_Real U,const Standard_Integer Degree,const Standard_Integer Dimension,const Standard_Integer Depth,const Standard_Integer Length ){
Standard_Real Knots;
Standard_Real Poles;
BSplCLib::BoorScheme(U,Degree,Knots,Dimension,Poles,Depth,Length);
return std::make_tuple(Knots,Poles); },
R"#(Performs the Boor Algorithm at parameter <U> with the given <Degree> and the array of <Knots> on the poles <Poles> of dimension <Dimension>. The schema is computed until level <Depth> on a basis of <Length+1> poles.)#" , py::arg("U"), py::arg("Degree"), py::arg("Dimension"), py::arg("Depth"), py::arg("Length")
)
.def_static("Derivative_s",
[](const Standard_Integer Degree,const Standard_Integer Dimension,const Standard_Integer Length,const Standard_Integer Order ){
Standard_Real Knots;
Standard_Real Poles;
BSplCLib::Derivative(Degree,Knots,Dimension,Length,Order,Poles);
return std::make_tuple(Knots,Poles); },
R"#(Computes the poles of the BSpline giving the derivatives of order <Order>.)#" , py::arg("Degree"), py::arg("Dimension"), py::arg("Length"), py::arg("Order")
)
.def_static("Bohm_s",
[](const Standard_Real U,const Standard_Integer Degree,const Standard_Integer N,const Standard_Integer Dimension ){
Standard_Real Knots;
Standard_Real Poles;
BSplCLib::Bohm(U,Degree,N,Knots,Dimension,Poles);
return std::make_tuple(Knots,Poles); },
R"#(Performs the Bohm Algorithm at parameter <U>. This algorithm computes the value and all the derivatives up to order N (N <= Degree).)#" , py::arg("U"), py::arg("Degree"), py::arg("N"), py::arg("Dimension")
)
.def_static("BuildKnots_s",
[](const Standard_Integer Degree,const Standard_Integer Index,const Standard_Boolean Periodic, const NCollection_Array1<Standard_Real> & Knots, const NCollection_Array1<Standard_Integer> * Mults ){
Standard_Real LK;
BSplCLib::BuildKnots(Degree,Index,Periodic,Knots,Mults,LK);
return std::make_tuple(LK); },
R"#(Stores in LK the useful knots for the BoorSchem on the span Knots(Index) - Knots(Index+1))#" , py::arg("Degree"), py::arg("Index"), py::arg("Periodic"), py::arg("Knots"), py::arg("Mults")
)
.def_static("BuildEval_s",
[](const Standard_Integer Degree,const Standard_Integer Index, const NCollection_Array1<Standard_Real> & Poles, const NCollection_Array1<Standard_Real> * Weights ){
Standard_Real LP;
BSplCLib::BuildEval(Degree,Index,Poles,Weights,LP);
return std::make_tuple(LP); },
R"#(None)#" , py::arg("Degree"), py::arg("Index"), py::arg("Poles"), py::arg("Weights")
)
.def_static("BuildEval_s",
[](const Standard_Integer Degree,const Standard_Integer Index, const NCollection_Array1<gp_Pnt> & Poles, const NCollection_Array1<Standard_Real> * Weights ){
Standard_Real LP;
BSplCLib::BuildEval(Degree,Index,Poles,Weights,LP);
return std::make_tuple(LP); },
R"#(None)#" , py::arg("Degree"), py::arg("Index"), py::arg("Poles"), py::arg("Weights")
)
.def_static("BuildEval_s",
[](const Standard_Integer Degree,const Standard_Integer Index, const NCollection_Array1<gp_Pnt2d> & Poles, const NCollection_Array1<Standard_Real> * Weights ){
Standard_Real LP;
BSplCLib::BuildEval(Degree,Index,Poles,Weights,LP);
return std::make_tuple(LP); },
R"#(Copy in <LP> the poles and weights for the Eval scheme. starting from Poles(Poles.Lower()+Index))#" , py::arg("Degree"), py::arg("Index"), py::arg("Poles"), py::arg("Weights")
)
.def_static("BuildBoor_s",
[](const Standard_Integer Index,const Standard_Integer Length,const Standard_Integer Dimension, const NCollection_Array1<Standard_Real> & Poles ){
Standard_Real LP;
BSplCLib::BuildBoor(Index,Length,Dimension,Poles,LP);
return std::make_tuple(LP); },
R"#(Copy in <LP> poles for <Dimension> Boor scheme. Starting from <Index> * <Dimension>, copy <Length+1> poles.)#" , py::arg("Index"), py::arg("Length"), py::arg("Dimension"), py::arg("Poles")
)
.def_static("GetPole_s",
[](const Standard_Integer Index,const Standard_Integer Length,const Standard_Integer Depth,const Standard_Integer Dimension,NCollection_Array1<Standard_Real> & Pole ){
Standard_Real LocPoles;
Standard_Integer Position;
BSplCLib::GetPole(Index,Length,Depth,Dimension,LocPoles,Position,Pole);
return std::make_tuple(LocPoles,Position); },
R"#(Copy the pole at position <Index> in the Boor scheme of dimension <Dimension> to <Position> in the array <Pole>. <Position> is updated.)#" , py::arg("Index"), py::arg("Length"), py::arg("Depth"), py::arg("Dimension"), py::arg("Pole")
)
.def_static("PrepareUnperiodize_s",
[](const Standard_Integer Degree, const NCollection_Array1<Standard_Integer> & Mults ){
Standard_Integer NbKnots;
Standard_Integer NbPoles;
BSplCLib::PrepareUnperiodize(Degree,Mults,NbKnots,NbPoles);
return std::make_tuple(NbKnots,NbPoles); },
R"#(Set in <NbKnots> and <NbPolesToAdd> the number of Knots and Poles of the NotPeriodic Curve identical at the periodic curve with a degree <Degree> , a knots-distribution with Multiplicities <Mults>.)#" , py::arg("Degree"), py::arg("Mults")
)
.def_static("PrepareTrimming_s",
[](const Standard_Integer Degree,const Standard_Boolean Periodic, const NCollection_Array1<Standard_Real> & Knots, const NCollection_Array1<Standard_Integer> & Mults,const Standard_Real U1,const Standard_Real U2 ){
Standard_Integer NbKnots;
Standard_Integer NbPoles;
BSplCLib::PrepareTrimming(Degree,Periodic,Knots,Mults,U1,U2,NbKnots,NbPoles);
return std::make_tuple(NbKnots,NbPoles); },
R"#(Set in <NbKnots> and <NbPoles> the number of Knots and Poles of the curve resulting from the trimming of the BSplinecurve defined with <degree>, <knots>, <mults>)#" , py::arg("Degree"), py::arg("Periodic"), py::arg("Knots"), py::arg("Mults"), py::arg("U1"), py::arg("U2")
)
.def_static("D0_s",
[](const Standard_Real U,const Standard_Integer Index,const Standard_Integer Degree,const Standard_Boolean Periodic, const NCollection_Array1<Standard_Real> & Poles, const NCollection_Array1<Standard_Real> * Weights, const NCollection_Array1<Standard_Real> & Knots, const NCollection_Array1<Standard_Integer> * Mults ){
Standard_Real P;
BSplCLib::D0(U,Index,Degree,Periodic,Poles,Weights,Knots,Mults,P);
return std::make_tuple(P); },
R"#(None)#" , py::arg("U"), py::arg("Index"), py::arg("Degree"), py::arg("Periodic"), py::arg("Poles"), py::arg("Weights"), py::arg("Knots"), py::arg("Mults")
)
.def_static("D1_s",
[](const Standard_Real U,const Standard_Integer Index,const Standard_Integer Degree,const Standard_Boolean Periodic, const NCollection_Array1<Standard_Real> & Poles, const NCollection_Array1<Standard_Real> * Weights, const NCollection_Array1<Standard_Real> & Knots, const NCollection_Array1<Standard_Integer> * Mults ){
Standard_Real P;
Standard_Real V;
BSplCLib::D1(U,Index,Degree,Periodic,Poles,Weights,Knots,Mults,P,V);
return std::make_tuple(P,V); },
R"#(None)#" , py::arg("U"), py::arg("Index"), py::arg("Degree"), py::arg("Periodic"), py::arg("Poles"), py::arg("Weights"), py::arg("Knots"), py::arg("Mults")
)
.def_static("D2_s",
[](const Standard_Real U,const Standard_Integer Index,const Standard_Integer Degree,const Standard_Boolean Periodic, const NCollection_Array1<Standard_Real> & Poles, const NCollection_Array1<Standard_Real> * Weights, const NCollection_Array1<Standard_Real> & Knots, const NCollection_Array1<Standard_Integer> * Mults ){
Standard_Real P;
Standard_Real V1;
Standard_Real V2;
BSplCLib::D2(U,Index,Degree,Periodic,Poles,Weights,Knots,Mults,P,V1,V2);
return std::make_tuple(P,V1,V2); },
R"#(None)#" , py::arg("U"), py::arg("Index"), py::arg("Degree"), py::arg("Periodic"), py::arg("Poles"), py::arg("Weights"), py::arg("Knots"), py::arg("Mults")
)
.def_static("D3_s",
[](const Standard_Real U,const Standard_Integer Index,const Standard_Integer Degree,const Standard_Boolean Periodic, const NCollection_Array1<Standard_Real> & Poles, const NCollection_Array1<Standard_Real> * Weights, const NCollection_Array1<Standard_Real> & Knots, const NCollection_Array1<Standard_Integer> * Mults ){
Standard_Real P;
Standard_Real V1;
Standard_Real V2;
Standard_Real V3;
BSplCLib::D3(U,Index,Degree,Periodic,Poles,Weights,Knots,Mults,P,V1,V2,V3);
return std::make_tuple(P,V1,V2,V3); },
R"#(None)#" , py::arg("U"), py::arg("Index"), py::arg("Degree"), py::arg("Periodic"), py::arg("Poles"), py::arg("Weights"), py::arg("Knots"), py::arg("Mults")
)
.def_static("MergeBSplineKnots_s",
[](const Standard_Real Tolerance,const Standard_Real StartValue,const Standard_Real EndValue,const Standard_Integer Degree1, const NCollection_Array1<Standard_Real> & Knots1, const NCollection_Array1<Standard_Integer> & Mults1,const Standard_Integer Degree2, const NCollection_Array1<Standard_Real> & Knots2, const NCollection_Array1<Standard_Integer> & Mults2,TColStd_HArray1OfReal& NewKnots,TColStd_HArray1OfInteger& NewMults ){
Standard_Integer NumPoles;
opencascade::handle<TColStd_HArray1OfReal> NewKnots_ptr; NewKnots_ptr = &NewKnots;
opencascade::handle<TColStd_HArray1OfInteger> NewMults_ptr; NewMults_ptr = &NewMults;
BSplCLib::MergeBSplineKnots(Tolerance,StartValue,EndValue,Degree1,Knots1,Mults1,Degree2,Knots2,Mults2,NumPoles,NewKnots_ptr,NewMults_ptr);
if ( NewKnots_ptr.get() != &NewKnots ) copy_if_copy_constructible(NewKnots, *NewKnots_ptr);
if ( NewMults_ptr.get() != &NewMults ) copy_if_copy_constructible(NewMults, *NewMults_ptr);
return std::make_tuple(NumPoles); },
R"#(Merges two knot vector by setting the starting and ending values to StartValue and EndValue)#" , py::arg("Tolerance"), py::arg("StartValue"), py::arg("EndValue"), py::arg("Degree1"), py::arg("Knots1"), py::arg("Mults1"), py::arg("Degree2"), py::arg("Knots2"), py::arg("Mults2"), py::arg("NewKnots"), py::arg("NewMults")
)
.def_static("FunctionReparameterise_s",
[](const BSplCLib_EvaluatorFunction & Function,const Standard_Integer BSplineDegree, const NCollection_Array1<Standard_Real> & BSplineFlatKnots,const Standard_Integer PolesDimension, const NCollection_Array1<Standard_Real> & FlatKnots,const Standard_Integer NewDegree ){
Standard_Real Poles;
Standard_Real NewPoles;
Standard_Integer theStatus;
BSplCLib::FunctionReparameterise(Function,BSplineDegree,BSplineFlatKnots,PolesDimension,Poles,FlatKnots,NewDegree,NewPoles,theStatus);
return std::make_tuple(Poles,NewPoles,theStatus); },
R"#(This function will compose a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] with a function a(t) which is assumed to satisfy the following:)#" , py::arg("Function"), py::arg("BSplineDegree"), py::arg("BSplineFlatKnots"), py::arg("PolesDimension"), py::arg("FlatKnots"), py::arg("NewDegree")
)
.def_static("FunctionReparameterise_s",
[](const BSplCLib_EvaluatorFunction & Function,const Standard_Integer BSplineDegree, const NCollection_Array1<Standard_Real> & BSplineFlatKnots, const NCollection_Array1<Standard_Real> & Poles, const NCollection_Array1<Standard_Real> & FlatKnots,const Standard_Integer NewDegree,NCollection_Array1<Standard_Real> & NewPoles ){
Standard_Integer theStatus;
BSplCLib::FunctionReparameterise(Function,BSplineDegree,BSplineFlatKnots,Poles,FlatKnots,NewDegree,NewPoles,theStatus);
return std::make_tuple(theStatus); },
R"#(This function will compose a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] with a function a(t) which is assumed to satisfy the following:)#" , py::arg("Function"), py::arg("BSplineDegree"), py::arg("BSplineFlatKnots"), py::arg("Poles"), py::arg("FlatKnots"), py::arg("NewDegree"), py::arg("NewPoles")
)
.def_static("FunctionReparameterise_s",
[](const BSplCLib_EvaluatorFunction & Function,const Standard_Integer BSplineDegree, const NCollection_Array1<Standard_Real> & BSplineFlatKnots, const NCollection_Array1<gp_Pnt> & Poles, const NCollection_Array1<Standard_Real> & FlatKnots,const Standard_Integer NewDegree,NCollection_Array1<gp_Pnt> & NewPoles ){
Standard_Integer theStatus;
BSplCLib::FunctionReparameterise(Function,BSplineDegree,BSplineFlatKnots,Poles,FlatKnots,NewDegree,NewPoles,theStatus);
return std::make_tuple(theStatus); },
R"#(this will compose a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] with a function a(t) which is assumed to satisfy the following : 1. F(a(t)) is a polynomial BSpline that can be expressed exactly as a BSpline of degree NewDegree on the knots FlatKnots 2. a(t) defines a differentiable isomorphism between the range of FlatKnots to the range of BSplineFlatKnots which is the same as the range of F(t) Warning: it is the caller's responsibility to insure that conditions 1. and 2. above are satisfied : no check whatsoever is made in this method theStatus will return 0 if OK else it will return the pivot index of the matrix that was inverted to compute the multiplied BSpline : the method used is interpolation at Schoenenberg points of F(a(t)))#" , py::arg("Function"), py::arg("BSplineDegree"), py::arg("BSplineFlatKnots"), py::arg("Poles"), py::arg("FlatKnots"), py::arg("NewDegree"), py::arg("NewPoles")
)
.def_static("FunctionReparameterise_s",
[](const BSplCLib_EvaluatorFunction & Function,const Standard_Integer BSplineDegree, const NCollection_Array1<Standard_Real> & BSplineFlatKnots, const NCollection_Array1<gp_Pnt2d> & Poles, const NCollection_Array1<Standard_Real> & FlatKnots,const Standard_Integer NewDegree,NCollection_Array1<gp_Pnt2d> & NewPoles ){
Standard_Integer theStatus;
BSplCLib::FunctionReparameterise(Function,BSplineDegree,BSplineFlatKnots,Poles,FlatKnots,NewDegree,NewPoles,theStatus);
return std::make_tuple(theStatus); },
R"#(this will compose a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] with a function a(t) which is assumed to satisfy the following : 1. F(a(t)) is a polynomial BSpline that can be expressed exactly as a BSpline of degree NewDegree on the knots FlatKnots 2. a(t) defines a differentiable isomorphism between the range of FlatKnots to the range of BSplineFlatKnots which is the same as the range of F(t) Warning: it is the caller's responsibility to insure that conditions 1. and 2. above are satisfied : no check whatsoever is made in this method theStatus will return 0 if OK else it will return the pivot index of the matrix that was inverted to compute the multiplied BSpline : the method used is interpolation at Schoenenberg points of F(a(t)))#" , py::arg("Function"), py::arg("BSplineDegree"), py::arg("BSplineFlatKnots"), py::arg("Poles"), py::arg("FlatKnots"), py::arg("NewDegree"), py::arg("NewPoles")
)
.def_static("FunctionMultiply_s",
[](const BSplCLib_EvaluatorFunction & Function,const Standard_Integer BSplineDegree, const NCollection_Array1<Standard_Real> & BSplineFlatKnots,const Standard_Integer PolesDimension, const NCollection_Array1<Standard_Real> & FlatKnots,const Standard_Integer NewDegree ){
Standard_Real Poles;
Standard_Real NewPoles;
Standard_Integer theStatus;
BSplCLib::FunctionMultiply(Function,BSplineDegree,BSplineFlatKnots,PolesDimension,Poles,FlatKnots,NewDegree,NewPoles,theStatus);
return std::make_tuple(Poles,NewPoles,theStatus); },
R"#(this will multiply a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] by a function a(t) which is assumed to satisfy the following : 1. a(t) * F(t) is a polynomial BSpline that can be expressed exactly as a BSpline of degree NewDegree on the knots FlatKnots 2. the range of a(t) is the same as the range of F(t) Warning: it is the caller's responsibility to insure that conditions 1. and 2. above are satisfied : no check whatsoever is made in this method theStatus will return 0 if OK else it will return the pivot index of the matrix that was inverted to compute the multiplied BSpline : the method used is interpolation at Schoenenberg points of a(t)*F(t))#" , py::arg("Function"), py::arg("BSplineDegree"), py::arg("BSplineFlatKnots"), py::arg("PolesDimension"), py::arg("FlatKnots"), py::arg("NewDegree")
)
.def_static("FunctionMultiply_s",
[](const BSplCLib_EvaluatorFunction & Function,const Standard_Integer BSplineDegree, const NCollection_Array1<Standard_Real> & BSplineFlatKnots, const NCollection_Array1<Standard_Real> & Poles, const NCollection_Array1<Standard_Real> & FlatKnots,const Standard_Integer NewDegree,NCollection_Array1<Standard_Real> & NewPoles ){
Standard_Integer theStatus;
BSplCLib::FunctionMultiply(Function,BSplineDegree,BSplineFlatKnots,Poles,FlatKnots,NewDegree,NewPoles,theStatus);
return std::make_tuple(theStatus); },
R"#(this will multiply a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] by a function a(t) which is assumed to satisfy the following : 1. a(t) * F(t) is a polynomial BSpline that can be expressed exactly as a BSpline of degree NewDegree on the knots FlatKnots 2. the range of a(t) is the same as the range of F(t) Warning: it is the caller's responsibility to insure that conditions 1. and 2. above are satisfied : no check whatsoever is made in this method theStatus will return 0 if OK else it will return the pivot index of the matrix that was inverted to compute the multiplied BSpline : the method used is interpolation at Schoenenberg points of a(t)*F(t))#" , py::arg("Function"), py::arg("BSplineDegree"), py::arg("BSplineFlatKnots"), py::arg("Poles"), py::arg("FlatKnots"), py::arg("NewDegree"), py::arg("NewPoles")
)
.def_static("FunctionMultiply_s",
[](const BSplCLib_EvaluatorFunction & Function,const Standard_Integer BSplineDegree, const NCollection_Array1<Standard_Real> & BSplineFlatKnots, const NCollection_Array1<gp_Pnt2d> & Poles, const NCollection_Array1<Standard_Real> & FlatKnots,const Standard_Integer NewDegree,NCollection_Array1<gp_Pnt2d> & NewPoles ){
Standard_Integer theStatus;
BSplCLib::FunctionMultiply(Function,BSplineDegree,BSplineFlatKnots,Poles,FlatKnots,NewDegree,NewPoles,theStatus);
return std::make_tuple(theStatus); },
R"#(this will multiply a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] by a function a(t) which is assumed to satisfy the following : 1. a(t) * F(t) is a polynomial BSpline that can be expressed exactly as a BSpline of degree NewDegree on the knots FlatKnots 2. the range of a(t) is the same as the range of F(t) Warning: it is the caller's responsibility to insure that conditions 1. and 2. above are satisfied : no check whatsoever is made in this method theStatus will return 0 if OK else it will return the pivot index of the matrix that was inverted to compute the multiplied BSpline : the method used is interpolation at Schoenenberg points of a(t)*F(t))#" , py::arg("Function"), py::arg("BSplineDegree"), py::arg("BSplineFlatKnots"), py::arg("Poles"), py::arg("FlatKnots"), py::arg("NewDegree"), py::arg("NewPoles")
)
.def_static("FunctionMultiply_s",
[](const BSplCLib_EvaluatorFunction & Function,const Standard_Integer BSplineDegree, const NCollection_Array1<Standard_Real> & BSplineFlatKnots, const NCollection_Array1<gp_Pnt> & Poles, const NCollection_Array1<Standard_Real> & FlatKnots,const Standard_Integer NewDegree,NCollection_Array1<gp_Pnt> & NewPoles ){
Standard_Integer theStatus;
BSplCLib::FunctionMultiply(Function,BSplineDegree,BSplineFlatKnots,Poles,FlatKnots,NewDegree,NewPoles,theStatus);
return std::make_tuple(theStatus); },
R"#(this will multiply a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] by a function a(t) which is assumed to satisfy the following : 1. a(t) * F(t) is a polynomial BSpline that can be expressed exactly as a BSpline of degree NewDegree on the knots FlatKnots 2. the range of a(t) is the same as the range of F(t) Warning: it is the caller's responsibility to insure that conditions 1. and 2. above are satisfied : no check whatsoever is made in this method theStatus will return 0 if OK else it will return the pivot index of the matrix that was inverted to compute the multiplied BSpline : the method used is interpolation at Schoenenberg points of a(t)*F(t))#" , py::arg("Function"), py::arg("BSplineDegree"), py::arg("BSplineFlatKnots"), py::arg("Poles"), py::arg("FlatKnots"), py::arg("NewDegree"), py::arg("NewPoles")
)
.def_static("Eval_s",
[](const Standard_Real U,const Standard_Boolean PeriodicFlag,const Standard_Integer DerivativeRequest,const Standard_Integer Degree, const NCollection_Array1<Standard_Real> & FlatKnots,const Standard_Integer ArrayDimension ){
Standard_Integer ExtrapMode;
Standard_Real Poles;
Standard_Real Result;
BSplCLib::Eval(U,PeriodicFlag,DerivativeRequest,ExtrapMode,Degree,FlatKnots,ArrayDimension,Poles,Result);
return std::make_tuple(ExtrapMode,Poles,Result); },
R"#(Perform the De Boor algorithm to evaluate a point at parameter <U>, with <Degree> and <Dimension>.)#" , py::arg("U"), py::arg("PeriodicFlag"), py::arg("DerivativeRequest"), py::arg("Degree"), py::arg("FlatKnots"), py::arg("ArrayDimension")
)
.def_static("Eval_s",
[](const Standard_Real U,const Standard_Boolean PeriodicFlag,const Standard_Integer DerivativeRequest,const Standard_Integer Degree, const NCollection_Array1<Standard_Real> & FlatKnots,const Standard_Integer ArrayDimension ){
Standard_Integer ExtrapMode;
Standard_Real Poles;
Standard_Real Weights;
Standard_Real PolesResult;
Standard_Real WeightsResult;
BSplCLib::Eval(U,PeriodicFlag,DerivativeRequest,ExtrapMode,Degree,FlatKnots,ArrayDimension,Poles,Weights,PolesResult,WeightsResult);
return std::make_tuple(ExtrapMode,Poles,Weights,PolesResult,WeightsResult); },
R"#(Perform the De Boor algorithm to evaluate a point at parameter <U>, with <Degree> and <Dimension>. Evaluates by multiplying the Poles by the Weights and gives the homogeneous result in PolesResult that is the results of the evaluation of the numerator once it has been multiplied by the weights and in WeightsResult one has the result of the evaluation of the denominator)#" , py::arg("U"), py::arg("PeriodicFlag"), py::arg("DerivativeRequest"), py::arg("Degree"), py::arg("FlatKnots"), py::arg("ArrayDimension")
)
.def_static("Eval_s",
[](const Standard_Real U,const Standard_Boolean PeriodicFlag,const Standard_Boolean HomogeneousFlag,const Standard_Integer Degree, const NCollection_Array1<Standard_Real> & FlatKnots, const NCollection_Array1<gp_Pnt> & Poles, const NCollection_Array1<Standard_Real> & Weights,gp_Pnt & Point ){
Standard_Integer ExtrapMode;
Standard_Real Weight;
BSplCLib::Eval(U,PeriodicFlag,HomogeneousFlag,ExtrapMode,Degree,FlatKnots,Poles,Weights,Point,Weight);
return std::make_tuple(ExtrapMode,Weight); },
R"#(Perform the evaluation of the Bspline Basis and then multiplies by the weights this just evaluates the current point)#" , py::arg("U"), py::arg("PeriodicFlag"), py::arg("HomogeneousFlag"), py::arg("Degree"), py::arg("FlatKnots"), py::arg("Poles"), py::arg("Weights"), py::arg("Point")
)
.def_static("Eval_s",
[](const Standard_Real U,const Standard_Boolean PeriodicFlag,const Standard_Boolean HomogeneousFlag,const Standard_Integer Degree, const NCollection_Array1<Standard_Real> & FlatKnots, const NCollection_Array1<gp_Pnt2d> & Poles, const NCollection_Array1<Standard_Real> & Weights,gp_Pnt2d & Point ){
Standard_Integer ExtrapMode;
Standard_Real Weight;
BSplCLib::Eval(U,PeriodicFlag,HomogeneousFlag,ExtrapMode,Degree,FlatKnots,Poles,Weights,Point,Weight);
return std::make_tuple(ExtrapMode,Weight); },
R"#(Perform the evaluation of the Bspline Basis and then multiplies by the weights this just evaluates the current point)#" , py::arg("U"), py::arg("PeriodicFlag"), py::arg("HomogeneousFlag"), py::arg("Degree"), py::arg("FlatKnots"), py::arg("Poles"), py::arg("Weights"), py::arg("Point")
)
.def_static("TangExtendToConstraint_s",
[]( const NCollection_Array1<Standard_Real> & FlatKnots,const Standard_Real C1Coefficient,const Standard_Integer NumPoles,const Standard_Integer Dimension,const Standard_Integer Degree, const NCollection_Array1<Standard_Real> & ConstraintPoint,const Standard_Integer Continuity,const Standard_Boolean After ){
Standard_Real Poles;
Standard_Integer NbPolesResult;
Standard_Integer NbKnotsRsult;
Standard_Real KnotsResult;
Standard_Real PolesResult;
BSplCLib::TangExtendToConstraint(FlatKnots,C1Coefficient,NumPoles,Poles,Dimension,Degree,ConstraintPoint,Continuity,After,NbPolesResult,NbKnotsRsult,KnotsResult,PolesResult);
return std::make_tuple(Poles,NbPolesResult,NbKnotsRsult,KnotsResult,PolesResult); },
R"#(Extend a BSpline nD using the tangency map <C1Coefficient> is the coefficient of reparametrisation <Continuity> must be equal to 1, 2 or 3. <Degree> must be greater or equal than <Continuity> + 1.)#" , py::arg("FlatKnots"), py::arg("C1Coefficient"), py::arg("NumPoles"), py::arg("Dimension"), py::arg("Degree"), py::arg("ConstraintPoint"), py::arg("Continuity"), py::arg("After")
)
.def_static("Interpolate_s",
[](const Standard_Integer Degree, const NCollection_Array1<Standard_Real> & FlatKnots, const NCollection_Array1<Standard_Real> & Parameters, const NCollection_Array1<Standard_Integer> & ContactOrderArray,NCollection_Array1<gp_Pnt> & Poles ){
Standard_Integer InversionProblem;
BSplCLib::Interpolate(Degree,FlatKnots,Parameters,ContactOrderArray,Poles,InversionProblem);
return std::make_tuple(InversionProblem); },
R"#(Performs the interpolation of the data given in the Poles array according to the requests in ContactOrderArray that is : if ContactOrderArray(i) has value d it means that Poles(i) contains the dth derivative of the function to be interpolated. The length L of the following arrays must be the same : Parameters, ContactOrderArray, Poles, The length of FlatKnots is Degree + L + 1 Warning: the method used to do that interpolation is gauss elimination WITHOUT pivoting. Thus if the diagonal is not dominant there is no guarantee that the algorithm will work. Nevertheless for Cubic interpolation or interpolation at Scheonberg points the method will work The InversionProblem will report 0 if there was no problem else it will give the index of the faulty pivot)#" , py::arg("Degree"), py::arg("FlatKnots"), py::arg("Parameters"), py::arg("ContactOrderArray"), py::arg("Poles")
)
.def_static("Interpolate_s",
[](const Standard_Integer Degree, const NCollection_Array1<Standard_Real> & FlatKnots, const NCollection_Array1<Standard_Real> & Parameters, const NCollection_Array1<Standard_Integer> & ContactOrderArray,NCollection_Array1<gp_Pnt2d> & Poles ){
Standard_Integer InversionProblem;
BSplCLib::Interpolate(Degree,FlatKnots,Parameters,ContactOrderArray,Poles,InversionProblem);
return std::make_tuple(InversionProblem); },
R"#(Performs the interpolation of the data given in the Poles array according to the requests in ContactOrderArray that is : if ContactOrderArray(i) has value d it means that Poles(i) contains the dth derivative of the function to be interpolated. The length L of the following arrays must be the same : Parameters, ContactOrderArray, Poles, The length of FlatKnots is Degree + L + 1 Warning: the method used to do that interpolation is gauss elimination WITHOUT pivoting. Thus if the diagonal is not dominant there is no guarantee that the algorithm will work. Nevertheless for Cubic interpolation at knots or interpolation at Scheonberg points the method will work. The InversionProblem w ll report 0 if there was no problem else it will give the index of the faulty pivot)#" , py::arg("Degree"), py::arg("FlatKnots"), py::arg("Parameters"), py::arg("ContactOrderArray"), py::arg("Poles")
)
.def_static("Interpolate_s",
[](const Standard_Integer Degree, const NCollection_Array1<Standard_Real> & FlatKnots, const NCollection_Array1<Standard_Real> & Parameters, const NCollection_Array1<Standard_Integer> & ContactOrderArray,NCollection_Array1<gp_Pnt> & Poles,NCollection_Array1<Standard_Real> & Weights ){
Standard_Integer InversionProblem;
BSplCLib::Interpolate(Degree,FlatKnots,Parameters,ContactOrderArray,Poles,Weights,InversionProblem);
return std::make_tuple(InversionProblem); },
R"#(Performs the interpolation of the data given in the Poles array according to the requests in ContactOrderArray that is : if ContactOrderArray(i) has value d it means that Poles(i) contains the dth derivative of the function to be interpolated. The length L of the following arrays must be the same : Parameters, ContactOrderArray, Poles, The length of FlatKnots is Degree + L + 1 Warning: the method used to do that interpolation is gauss elimination WITHOUT pivoting. Thus if the diagonal is not dominant there is no guarantee that the algorithm will work. Nevertheless for Cubic interpolation at knots or interpolation at Scheonberg points the method will work. The InversionProblem will report 0 if there was no problem else it will give the index of the faulty pivot)#" , py::arg("Degree"), py::arg("FlatKnots"), py::arg("Parameters"), py::arg("ContactOrderArray"), py::arg("Poles"), py::arg("Weights")
)
.def_static("Interpolate_s",
[](const Standard_Integer Degree, const NCollection_Array1<Standard_Real> & FlatKnots, const NCollection_Array1<Standard_Real> & Parameters, const NCollection_Array1<Standard_Integer> & ContactOrderArray,NCollection_Array1<gp_Pnt2d> & Poles,NCollection_Array1<Standard_Real> & Weights ){
Standard_Integer InversionProblem;
BSplCLib::Interpolate(Degree,FlatKnots,Parameters,ContactOrderArray,Poles,Weights,InversionProblem);
return std::make_tuple(InversionProblem); },
R"#(Performs the interpolation of the data given in the Poles array according to the requests in ContactOrderArray that is : if ContactOrderArray(i) has value d it means that Poles(i) contains the dth derivative of the function to be interpolated. The length L of the following arrays must be the same : Parameters, ContactOrderArray, Poles, The length of FlatKnots is Degree + L + 1 Warning: the method used to do that interpolation is gauss elimination WITHOUT pivoting. Thus if the diagonal is not dominant there is no guarantee that the algorithm will work. Nevertheless for Cubic interpolation at knots or interpolation at Scheonberg points the method will work. The InversionProblem w ll report 0 if there was no problem else it will give the i)#" , py::arg("Degree"), py::arg("FlatKnots"), py::arg("Parameters"), py::arg("ContactOrderArray"), py::arg("Poles"), py::arg("Weights")
)
.def_static("Interpolate_s",
[](const Standard_Integer Degree, const NCollection_Array1<Standard_Real> & FlatKnots, const NCollection_Array1<Standard_Real> & Parameters, const NCollection_Array1<Standard_Integer> & ContactOrderArray,const Standard_Integer ArrayDimension ){
Standard_Real Poles;
Standard_Integer InversionProblem;
BSplCLib::Interpolate(Degree,FlatKnots,Parameters,ContactOrderArray,ArrayDimension,Poles,InversionProblem);
return std::make_tuple(Poles,InversionProblem); },
R"#(Performs the interpolation of the data given in the Poles array according to the requests in ContactOrderArray that is : if ContactOrderArray(i) has value d it means that Poles(i) contains the dth derivative of the function to be interpolated. The length L of the following arrays must be the same : Parameters, ContactOrderArray The length of FlatKnots is Degree + L + 1 The PolesArray is an seen as an Array[1..N][1..ArrayDimension] with N = tge length of the parameters array Warning: the method used to do that interpolation is gauss elimination WITHOUT pivoting. Thus if the diagonal is not dominant there is no guarantee that the algorithm will work. Nevertheless for Cubic interpolation or interpolation at Scheonberg points the method will work The InversionProblem will report 0 if there was no problem else it will give the index of the faulty pivot)#" , py::arg("Degree"), py::arg("FlatKnots"), py::arg("Parameters"), py::arg("ContactOrderArray"), py::arg("ArrayDimension")
)
.def_static("Interpolate_s",
[](const Standard_Integer Degree, const NCollection_Array1<Standard_Real> & FlatKnots, const NCollection_Array1<Standard_Real> & Parameters, const NCollection_Array1<Standard_Integer> & ContactOrderArray,const Standard_Integer ArrayDimension ){
Standard_Real Poles;
Standard_Real Weights;
Standard_Integer InversionProblem;
BSplCLib::Interpolate(Degree,FlatKnots,Parameters,ContactOrderArray,ArrayDimension,Poles,Weights,InversionProblem);
return std::make_tuple(Poles,Weights,InversionProblem); },
R"#(None)#" , py::arg("Degree"), py::arg("FlatKnots"), py::arg("Parameters"), py::arg("ContactOrderArray"), py::arg("ArrayDimension")
)
.def_static("MovePoint_s",
[](const Standard_Real U,const gp_Vec2d & Displ,const Standard_Integer Index1,const Standard_Integer Index2,const Standard_Integer Degree, const NCollection_Array1<gp_Pnt2d> & Poles, const NCollection_Array1<Standard_Real> * Weights, const NCollection_Array1<Standard_Real> & FlatKnots,NCollection_Array1<gp_Pnt2d> & NewPoles ){
Standard_Integer FirstIndex;
Standard_Integer LastIndex;
BSplCLib::MovePoint(U,Displ,Index1,Index2,Degree,Poles,Weights,FlatKnots,FirstIndex,LastIndex,NewPoles);
return std::make_tuple(FirstIndex,LastIndex); },
R"#(Find the new poles which allows an old point (with a given u as parameter) to reach a new position Index1 and Index2 indicate the range of poles we can move (1, NbPoles-1) or (2, NbPoles) -> no constraint for one side don't enter (1,NbPoles) -> error: rigid move (2, NbPoles-1) -> the ends are enforced (3, NbPoles-2) -> the ends and the tangency are enforced if Problem in BSplineBasis calculation, no change for the curve and FirstIndex, LastIndex = 0)#" , py::arg("U"), py::arg("Displ"), py::arg("Index1"), py::arg("Index2"), py::arg("Degree"), py::arg("Poles"), py::arg("Weights"), py::arg("FlatKnots"), py::arg("NewPoles")
)
.def_static("MovePoint_s",
[](const Standard_Real U,const gp_Vec & Displ,const Standard_Integer Index1,const Standard_Integer Index2,const Standard_Integer Degree, const NCollection_Array1<gp_Pnt> & Poles, const NCollection_Array1<Standard_Real> * Weights, const NCollection_Array1<Standard_Real> & FlatKnots,NCollection_Array1<gp_Pnt> & NewPoles ){
Standard_Integer FirstIndex;
Standard_Integer LastIndex;
BSplCLib::MovePoint(U,Displ,Index1,Index2,Degree,Poles,Weights,FlatKnots,FirstIndex,LastIndex,NewPoles);
return std::make_tuple(FirstIndex,LastIndex); },
R"#(Find the new poles which allows an old point (with a given u as parameter) to reach a new position Index1 and Index2 indicate the range of poles we can move (1, NbPoles-1) or (2, NbPoles) -> no constraint for one side don't enter (1,NbPoles) -> error: rigid move (2, NbPoles-1) -> the ends are enforced (3, NbPoles-2) -> the ends and the tangency are enforced if Problem in BSplineBasis calculation, no change for the curve and FirstIndex, LastIndex = 0)#" , py::arg("U"), py::arg("Displ"), py::arg("Index1"), py::arg("Index2"), py::arg("Degree"), py::arg("Poles"), py::arg("Weights"), py::arg("FlatKnots"), py::arg("NewPoles")
)
.def_static("MovePointAndTangent_s",
[](const Standard_Real U,const Standard_Integer ArrayDimension,const Standard_Real Tolerance,const Standard_Integer Degree,const Standard_Integer StartingCondition,const Standard_Integer EndingCondition, const NCollection_Array1<Standard_Real> * Weights, const NCollection_Array1<Standard_Real> & FlatKnots ){
Standard_Real Delta;
Standard_Real DeltaDerivative;
Standard_Real Poles;
Standard_Real NewPoles;
Standard_Integer ErrorStatus;
BSplCLib::MovePointAndTangent(U,ArrayDimension,Delta,DeltaDerivative,Tolerance,Degree,StartingCondition,EndingCondition,Poles,Weights,FlatKnots,NewPoles,ErrorStatus);
return std::make_tuple(Delta,DeltaDerivative,Poles,NewPoles,ErrorStatus); },
R"#(This is the dimension free version of the utility U is the parameter must be within the first FlatKnots and the last FlatKnots Delta is the amount the curve has to be moved DeltaDerivative is the amount the derivative has to be moved. Delta and DeltaDerivative must be array of dimension ArrayDimension Degree is the degree of the BSpline and the FlatKnots are the knots of the BSpline Starting Condition if = -1 means the starting point of the curve can move = 0 means the starting point of the curve cannot move but tangent starting point of the curve cannot move = 1 means the starting point and tangents cannot move = 2 means the starting point tangent and curvature cannot move = ... Same holds for EndingCondition Poles are the poles of the curve Weights are the weights of the curve if not NULL NewPoles are the poles of the deformed curve ErrorStatus will be 0 if no error happened 1 if there are not enough knots/poles the imposed conditions The way to solve this problem is to add knots to the BSpline If StartCondition = 1 and EndCondition = 1 then you need at least 4 + 2 = 6 poles so for example to have a C1 cubic you will need have at least 2 internal knots.)#" , py::arg("U"), py::arg("ArrayDimension"), py::arg("Tolerance"), py::arg("Degree"), py::arg("StartingCondition"), py::arg("EndingCondition"), py::arg("Weights"), py::arg("FlatKnots")
)
.def_static("MovePointAndTangent_s",
[](const Standard_Real U,const gp_Vec & Delta,const gp_Vec & DeltaDerivative,const Standard_Real Tolerance,const Standard_Integer Degree,const Standard_Integer StartingCondition,const Standard_Integer EndingCondition, const NCollection_Array1<gp_Pnt> & Poles, const NCollection_Array1<Standard_Real> * Weights, const NCollection_Array1<Standard_Real> & FlatKnots,NCollection_Array1<gp_Pnt> & NewPoles ){
Standard_Integer ErrorStatus;
BSplCLib::MovePointAndTangent(U,Delta,DeltaDerivative,Tolerance,Degree,StartingCondition,EndingCondition,Poles,Weights,FlatKnots,NewPoles,ErrorStatus);
return std::make_tuple(ErrorStatus); },
R"#(This is the dimension free version of the utility U is the parameter must be within the first FlatKnots and the last FlatKnots Delta is the amount the curve has to be moved DeltaDerivative is the amount the derivative has to be moved. Delta and DeltaDerivative must be array of dimension ArrayDimension Degree is the degree of the BSpline and the FlatKnots are the knots of the BSpline Starting Condition if = -1 means the starting point of the curve can move = 0 means the starting point of the curve cannot move but tangent starting point of the curve cannot move = 1 means the starting point and tangents cannot move = 2 means the starting point tangent and curvature cannot move = ... Same holds for EndingCondition Poles are the poles of the curve Weights are the weights of the curve if not NULL NewPoles are the poles of the deformed curve ErrorStatus will be 0 if no error happened 1 if there are not enough knots/poles the imposed conditions The way to solve this problem is to add knots to the BSpline If StartCondition = 1 and EndCondition = 1 then you need at least 4 + 2 = 6 poles so for example to have a C1 cubic you will need have at least 2 internal knots.)#" , py::arg("U"), py::arg("Delta"), py::arg("DeltaDerivative"), py::arg("Tolerance"), py::arg("Degree"), py::arg("StartingCondition"), py::arg("EndingCondition"), py::arg("Poles"), py::arg("Weights"), py::arg("FlatKnots"), py::arg("NewPoles")
)
.def_static("MovePointAndTangent_s",
[](const Standard_Real U,const gp_Vec2d & Delta,const gp_Vec2d & DeltaDerivative,const Standard_Real Tolerance,const Standard_Integer Degree,const Standard_Integer StartingCondition,const Standard_Integer EndingCondition, const NCollection_Array1<gp_Pnt2d> & Poles, const NCollection_Array1<Standard_Real> * Weights, const NCollection_Array1<Standard_Real> & FlatKnots,NCollection_Array1<gp_Pnt2d> & NewPoles ){
Standard_Integer ErrorStatus;
BSplCLib::MovePointAndTangent(U,Delta,DeltaDerivative,Tolerance,Degree,StartingCondition,EndingCondition,Poles,Weights,FlatKnots,NewPoles,ErrorStatus);
return std::make_tuple(ErrorStatus); },
R"#(This is the dimension free version of the utility U is the parameter must be within the first FlatKnots and the last FlatKnots Delta is the amount the curve has to be moved DeltaDerivative is the amount the derivative has to be moved. Delta and DeltaDerivative must be array of dimension ArrayDimension Degree is the degree of the BSpline and the FlatKnots are the knots of the BSpline Starting Condition if = -1 means the starting point of the curve can move = 0 means the starting point of the curve cannot move but tangent starting point of the curve cannot move = 1 means the starting point and tangents cannot move = 2 means the starting point tangent and curvature cannot move = ... Same holds for EndingCondition Poles are the poles of the curve Weights are the weights of the curve if not NULL NewPoles are the poles of the deformed curve ErrorStatus will be 0 if no error happened 1 if there are not enough knots/poles the imposed conditions The way to solve this problem is to add knots to the BSpline If StartCondition = 1 and EndCondition = 1 then you need at least 4 + 2 = 6 poles so for example to have a C1 cubic you will need have at least 2 internal knots.)#" , py::arg("U"), py::arg("Delta"), py::arg("DeltaDerivative"), py::arg("Tolerance"), py::arg("Degree"), py::arg("StartingCondition"), py::arg("EndingCondition"), py::arg("Poles"), py::arg("Weights"), py::arg("FlatKnots"), py::arg("NewPoles")
)
.def_static("Resolution_s",
[](const Standard_Integer ArrayDimension,const Standard_Integer NumPoles, const NCollection_Array1<Standard_Real> * Weights, const NCollection_Array1<Standard_Real> & FlatKnots,const Standard_Integer Degree,const Standard_Real Tolerance3D ){
Standard_Real PolesArray;
Standard_Real UTolerance;
BSplCLib::Resolution(PolesArray,ArrayDimension,NumPoles,Weights,FlatKnots,Degree,Tolerance3D,UTolerance);
return std::make_tuple(PolesArray,UTolerance); },
R"#(given a tolerance in 3D space returns a tolerance in U parameter space such that all u1 and u0 in the domain of the curve f(u) | u1 - u0 | < UTolerance and we have |f (u1) - f (u0)| < Tolerance3D)#" , py::arg("ArrayDimension"), py::arg("NumPoles"), py::arg("Weights"), py::arg("FlatKnots"), py::arg("Degree"), py::arg("Tolerance3D")
)
.def_static("Resolution_s",
[]( const NCollection_Array1<gp_Pnt> & Poles, const NCollection_Array1<Standard_Real> * Weights,const Standard_Integer NumPoles, const NCollection_Array1<Standard_Real> & FlatKnots,const Standard_Integer Degree,const Standard_Real Tolerance3D ){
Standard_Real UTolerance;
BSplCLib::Resolution(Poles,Weights,NumPoles,FlatKnots,Degree,Tolerance3D,UTolerance);
return std::make_tuple(UTolerance); },
R"#(given a tolerance in 3D space returns a tolerance in U parameter space such that all u1 and u0 in the domain of the curve f(u) | u1 - u0 | < UTolerance and we have |f (u1) - f (u0)| < Tolerance3D)#" , py::arg("Poles"), py::arg("Weights"), py::arg("NumPoles"), py::arg("FlatKnots"), py::arg("Degree"), py::arg("Tolerance3D")
)
.def_static("Resolution_s",
[]( const NCollection_Array1<gp_Pnt2d> & Poles, const NCollection_Array1<Standard_Real> * Weights,const Standard_Integer NumPoles, const NCollection_Array1<Standard_Real> & FlatKnots,const Standard_Integer Degree,const Standard_Real Tolerance3D ){
Standard_Real UTolerance;
BSplCLib::Resolution(Poles,Weights,NumPoles,FlatKnots,Degree,Tolerance3D,UTolerance);
return std::make_tuple(UTolerance); },
R"#(given a tolerance in 3D space returns a tolerance in U parameter space such that all u1 and u0 in the domain of the curve f(u) | u1 - u0 | < UTolerance and we have |f (u1) - f (u0)| < Tolerance3D)#" , py::arg("Poles"), py::arg("Weights"), py::arg("NumPoles"), py::arg("FlatKnots"), py::arg("Degree"), py::arg("Tolerance3D")
)
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class BSplCLib_Cache from ./opencascade/BSplCLib_Cache.hxx
klass = m.attr("BSplCLib_Cache");
// nested enums
static_cast<py::class_<BSplCLib_Cache ,opencascade::handle<BSplCLib_Cache> , Standard_Transient >>(klass)
// constructors
.def(py::init< const Standard_Integer &,const Standard_Boolean &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<gp_Pnt2d> &, const NCollection_Array1<Standard_Real> * >() , py::arg("theDegree"), py::arg("thePeriodic"), py::arg("theFlatKnots"), py::arg("thePoles2d"), py::arg("theWeights")=static_cast< const NCollection_Array1<Standard_Real> *>(NULL) )
.def(py::init< const Standard_Integer &,const Standard_Boolean &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<gp_Pnt> &, const NCollection_Array1<Standard_Real> * >() , py::arg("theDegree"), py::arg("thePeriodic"), py::arg("theFlatKnots"), py::arg("thePoles"), py::arg("theWeights")=static_cast< const NCollection_Array1<Standard_Real> *>(NULL) )
// custom constructors
// methods
.def("IsCacheValid",
(Standard_Boolean (BSplCLib_Cache::*)( Standard_Real ) const) static_cast<Standard_Boolean (BSplCLib_Cache::*)( Standard_Real ) const>(&BSplCLib_Cache::IsCacheValid),
R"#(Verifies validity of the cache using flat parameter of the point)#" , py::arg("theParameter")
)
.def("BuildCache",
(void (BSplCLib_Cache::*)( const Standard_Real & , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * ) ) static_cast<void (BSplCLib_Cache::*)( const Standard_Real & , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<gp_Pnt2d> & , const NCollection_Array1<Standard_Real> * ) >(&BSplCLib_Cache::BuildCache),
R"#(Recomputes the cache data for 2D curves. Does not verify validity of the cache)#" , py::arg("theParameter"), py::arg("theFlatKnots"), py::arg("thePoles2d"), py::arg("theWeights")
)
.def("BuildCache",
(void (BSplCLib_Cache::*)( const Standard_Real & , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * ) ) static_cast<void (BSplCLib_Cache::*)( const Standard_Real & , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> * ) >(&BSplCLib_Cache::BuildCache),
R"#(Recomputes the cache data for 3D curves. Does not verify validity of the cache)#" , py::arg("theParameter"), py::arg("theFlatKnots"), py::arg("thePoles"), py::arg("theWeights")=static_cast< const NCollection_Array1<Standard_Real> *>(NULL)
)
.def("D0",
(void (BSplCLib_Cache::*)( const Standard_Real & , gp_Pnt2d & ) const) static_cast<void (BSplCLib_Cache::*)( const Standard_Real & , gp_Pnt2d & ) const>(&BSplCLib_Cache::D0),
R"#(Calculates the point on the curve in the specified parameter)#" , py::arg("theParameter"), py::arg("thePoint")
)
.def("D0",
(void (BSplCLib_Cache::*)( const Standard_Real & , gp_Pnt & ) const) static_cast<void (BSplCLib_Cache::*)( const Standard_Real & , gp_Pnt & ) const>(&BSplCLib_Cache::D0),
R"#(None)#" , py::arg("theParameter"), py::arg("thePoint")
)
.def("D1",
(void (BSplCLib_Cache::*)( const Standard_Real & , gp_Pnt2d & , gp_Vec2d & ) const) static_cast<void (BSplCLib_Cache::*)( const Standard_Real & , gp_Pnt2d & , gp_Vec2d & ) const>(&BSplCLib_Cache::D1),
R"#(Calculates the point on the curve and its first derivative in the specified parameter)#" , py::arg("theParameter"), py::arg("thePoint"), py::arg("theTangent")
)
.def("D1",
(void (BSplCLib_Cache::*)( const Standard_Real & , gp_Pnt & , gp_Vec & ) const) static_cast<void (BSplCLib_Cache::*)( const Standard_Real & , gp_Pnt & , gp_Vec & ) const>(&BSplCLib_Cache::D1),
R"#(None)#" , py::arg("theParameter"), py::arg("thePoint"), py::arg("theTangent")
)
.def("D2",
(void (BSplCLib_Cache::*)( const Standard_Real & , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) const) static_cast<void (BSplCLib_Cache::*)( const Standard_Real & , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) const>(&BSplCLib_Cache::D2),
R"#(Calculates the point on the curve and two derivatives in the specified parameter)#" , py::arg("theParameter"), py::arg("thePoint"), py::arg("theTangent"), py::arg("theCurvature")
)
.def("D2",
(void (BSplCLib_Cache::*)( const Standard_Real & , gp_Pnt & , gp_Vec & , gp_Vec & ) const) static_cast<void (BSplCLib_Cache::*)( const Standard_Real & , gp_Pnt & , gp_Vec & , gp_Vec & ) const>(&BSplCLib_Cache::D2),
R"#(None)#" , py::arg("theParameter"), py::arg("thePoint"), py::arg("theTangent"), py::arg("theCurvature")
)
.def("D3",
(void (BSplCLib_Cache::*)( const Standard_Real & , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) const) static_cast<void (BSplCLib_Cache::*)( const Standard_Real & , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) const>(&BSplCLib_Cache::D3),
R"#(Calculates the point on the curve and three derivatives in the specified parameter)#" , py::arg("theParameter"), py::arg("thePoint"), py::arg("theTangent"), py::arg("theCurvature"), py::arg("theTorsion")
)
.def("D3",
(void (BSplCLib_Cache::*)( const Standard_Real & , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (BSplCLib_Cache::*)( const Standard_Real & , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&BSplCLib_Cache::D3),
R"#(None)#" , py::arg("theParameter"), py::arg("thePoint"), py::arg("theTangent"), py::arg("theCurvature"), py::arg("theTorsion")
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&BSplCLib_Cache::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&BSplCLib_Cache::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (BSplCLib_Cache::*)() const) static_cast<const opencascade::handle<Standard_Type> & (BSplCLib_Cache::*)() const>(&BSplCLib_Cache::DynamicType),
R"#(None)#"
)
;
// Class BSplCLib_CacheParams from ./opencascade/BSplCLib_CacheParams.hxx
klass = m.attr("BSplCLib_CacheParams");
// nested enums
static_cast<py::class_<BSplCLib_CacheParams , shared_ptr<BSplCLib_CacheParams> >>(klass)
// constructors
.def(py::init< Standard_Integer,Standard_Boolean, const NCollection_Array1<Standard_Real> & >() , py::arg("theDegree"), py::arg("thePeriodic"), py::arg("theFlatKnots") )
// custom constructors
// methods
.def("PeriodicNormalization",
(Standard_Real (BSplCLib_CacheParams::*)( Standard_Real ) const) static_cast<Standard_Real (BSplCLib_CacheParams::*)( Standard_Real ) const>(&BSplCLib_CacheParams::PeriodicNormalization),
R"#(Normalizes the parameter for periodic B-splines)#" , py::arg("theParameter")
)
.def("IsCacheValid",
(Standard_Boolean (BSplCLib_CacheParams::*)( Standard_Real ) const) static_cast<Standard_Boolean (BSplCLib_CacheParams::*)( Standard_Real ) const>(&BSplCLib_CacheParams::IsCacheValid),
R"#(Verifies validity of the cache using flat parameter of the point)#" , py::arg("theParameter")
)
// methods using call by reference i.s.o. return
.def("LocateParameter",
[]( BSplCLib_CacheParams &self , const NCollection_Array1<Standard_Real> & theFlatKnots ){
Standard_Real theParameter;
self.LocateParameter(theParameter,theFlatKnots);
return std::make_tuple(theParameter); },
R"#(Computes span for the specified parameter)#" , py::arg("theFlatKnots")
)
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
.def_readwrite("SpanStart", &BSplCLib_CacheParams::SpanStart)
.def_readwrite("SpanLength", &BSplCLib_CacheParams::SpanLength)
.def_readwrite("SpanIndex", &BSplCLib_CacheParams::SpanIndex)
// methods returning by ref wrapped as properties
;
// Class BSplCLib_EvaluatorFunction from ./opencascade/BSplCLib_EvaluatorFunction.hxx
klass = m.attr("BSplCLib_EvaluatorFunction");
// nested enums
static_cast<py::class_<BSplCLib_EvaluatorFunction , shared_ptr<BSplCLib_EvaluatorFunction> ,Py_BSplCLib_EvaluatorFunction >>(klass)
// constructors
.def(py::init< >() )
// custom constructors
// methods
// methods using call by reference i.s.o. return
.def("Evaluate",
[]( BSplCLib_EvaluatorFunction &self , const Standard_Integer theDerivativeRequest,const Standard_Real * theStartEnd,const Standard_Real theParameter ){
Standard_Real theResult;
Standard_Integer theErrorCode;
self.Evaluate(theDerivativeRequest,theStartEnd,theParameter,theResult,theErrorCode);
return std::make_tuple(theResult,theErrorCode); },
R"#(Function evaluation method to be defined by descendant)#" , py::arg("theDerivativeRequest"), py::arg("theStartEnd"), py::arg("theParameter")
)
// static methods
// static methods using call by reference i.s.o. return
// operators
.def("__call__",
(void (BSplCLib_EvaluatorFunction::*)( const Standard_Integer , const Standard_Real * , const Standard_Real , Standard_Real & , Standard_Integer & ) const) static_cast<void (BSplCLib_EvaluatorFunction::*)( const Standard_Integer , const Standard_Real * , const Standard_Real , Standard_Real & , Standard_Integer & ) const>(&BSplCLib_EvaluatorFunction::operator()),
py::is_operator(),
R"#(Shortcut for function-call style usage)#" , py::arg("theDerivativeRequest"), py::arg("theStartEnd"), py::arg("theParameter"), py::arg("theResult"), py::arg("theErrorCode")
)
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// functions
// ./opencascade/BSplCLib.hxx
// ./opencascade/BSplCLib_Cache.hxx
// ./opencascade/BSplCLib_CacheParams.hxx
// ./opencascade/BSplCLib_EvaluatorFunction.hxx
// ./opencascade/BSplCLib_KnotDistribution.hxx
// ./opencascade/BSplCLib_MultDistribution.hxx
// Additional functions
// operators
// register typdefs
// exceptions
// user-defined post-inclusion per module in the body
};
// user-defined post-inclusion per module
// user-defined post
|