File: BSplCLib.cpp

package info (click to toggle)
python-ocp 7.8.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 64,720 kB
  • sloc: cpp: 362,337; pascal: 33; python: 23; makefile: 4
file content (1166 lines) | stat: -rw-r--r-- 151,985 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166

// std lib related includes
#include <tuple>

// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

namespace py = pybind11;

// Standard Handle
#include <Standard_Handle.hxx>


// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <math_Matrix.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>

// module includes
#include <BSplCLib.hxx>
#include <BSplCLib_Cache.hxx>
#include <BSplCLib_CacheParams.hxx>
#include <BSplCLib_EvaluatorFunction.hxx>
#include <BSplCLib_KnotDistribution.hxx>
#include <BSplCLib_MultDistribution.hxx>

// template related includes


// user-defined pre
#include "OCP_specific.inc"

// user-defined inclusion per module

// Module definiiton
void register_BSplCLib(py::module &main_module) {


py::module m = static_cast<py::module>(main_module.attr("BSplCLib"));
py::object klass;

//Python trampoline classes
    class Py_BSplCLib_EvaluatorFunction : public BSplCLib_EvaluatorFunction{
    public:
        using BSplCLib_EvaluatorFunction::BSplCLib_EvaluatorFunction;


        // public pure virtual
        void Evaluate(const Standard_Integer theDerivativeRequest,const Standard_Real * theStartEnd,const Standard_Real theParameter,Standard_Real & theResult,Standard_Integer & theErrorCode) const  override { PYBIND11_OVERLOAD_PURE(void,BSplCLib_EvaluatorFunction,Evaluate,theDerivativeRequest,theStartEnd,theParameter,theResult,theErrorCode) };


        // protected pure virtual


        // private pure virtual

    };

// classes

    // Class BSplCLib from ./opencascade/BSplCLib.hxx
    klass = m.attr("BSplCLib");

    // default constructor
    register_default_constructor<BSplCLib , shared_ptr<BSplCLib>>(m,"BSplCLib");

    // nested enums

    static_cast<py::class_<BSplCLib , shared_ptr<BSplCLib>  >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("FirstUKnotIndex_s",
                    (Standard_Integer (*)( const Standard_Integer ,   const NCollection_Array1<Standard_Integer> &  ) ) static_cast<Standard_Integer (*)( const Standard_Integer ,   const NCollection_Array1<Standard_Integer> &  ) >(&BSplCLib::FirstUKnotIndex),
                    R"#(Computes the index of the knots value which gives the start point of the curve.)#"  , py::arg("Degree"),  py::arg("Mults")
          )
        .def_static("LastUKnotIndex_s",
                    (Standard_Integer (*)( const Standard_Integer ,   const NCollection_Array1<Standard_Integer> &  ) ) static_cast<Standard_Integer (*)( const Standard_Integer ,   const NCollection_Array1<Standard_Integer> &  ) >(&BSplCLib::LastUKnotIndex),
                    R"#(Computes the index of the knots value which gives the end point of the curve.)#"  , py::arg("Degree"),  py::arg("Mults")
          )
        .def_static("FlatIndex_s",
                    (Standard_Integer (*)( const Standard_Integer ,  const Standard_Integer ,   const NCollection_Array1<Standard_Integer> & ,  const Standard_Boolean  ) ) static_cast<Standard_Integer (*)( const Standard_Integer ,  const Standard_Integer ,   const NCollection_Array1<Standard_Integer> & ,  const Standard_Boolean  ) >(&BSplCLib::FlatIndex),
                    R"#(Computes the index of the flats knots sequence corresponding to <Index> in the knots sequence which multiplicities are <Mults>.)#"  , py::arg("Degree"),  py::arg("Index"),  py::arg("Mults"),  py::arg("Periodic")
          )
        .def_static("MaxKnotMult_s",
                    (Standard_Integer (*)(  const NCollection_Array1<Standard_Integer> & ,  const Standard_Integer ,  const Standard_Integer  ) ) static_cast<Standard_Integer (*)(  const NCollection_Array1<Standard_Integer> & ,  const Standard_Integer ,  const Standard_Integer  ) >(&BSplCLib::MaxKnotMult),
                    R"#(Finds the greatest multiplicity in a set of knots between K1 and K2. Mults is the multiplicity associated with each knot value.)#"  , py::arg("Mults"),  py::arg("K1"),  py::arg("K2")
          )
        .def_static("MinKnotMult_s",
                    (Standard_Integer (*)(  const NCollection_Array1<Standard_Integer> & ,  const Standard_Integer ,  const Standard_Integer  ) ) static_cast<Standard_Integer (*)(  const NCollection_Array1<Standard_Integer> & ,  const Standard_Integer ,  const Standard_Integer  ) >(&BSplCLib::MinKnotMult),
                    R"#(Finds the lowest multiplicity in a set of knots between K1 and K2. Mults is the multiplicity associated with each knot value.)#"  , py::arg("Mults"),  py::arg("K1"),  py::arg("K2")
          )
        .def_static("NbPoles_s",
                    (Standard_Integer (*)( const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<Standard_Integer> &  ) ) static_cast<Standard_Integer (*)( const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<Standard_Integer> &  ) >(&BSplCLib::NbPoles),
                    R"#(Returns the number of poles of the curve. Returns 0 if one of the multiplicities is incorrect.)#"  , py::arg("Degree"),  py::arg("Periodic"),  py::arg("Mults")
          )
        .def_static("KnotSequenceLength_s",
                    (Standard_Integer (*)(  const NCollection_Array1<Standard_Integer> & ,  const Standard_Integer ,  const Standard_Boolean  ) ) static_cast<Standard_Integer (*)(  const NCollection_Array1<Standard_Integer> & ,  const Standard_Integer ,  const Standard_Boolean  ) >(&BSplCLib::KnotSequenceLength),
                    R"#(Returns the length of the sequence of knots with repetition.)#"  , py::arg("Mults"),  py::arg("Degree"),  py::arg("Periodic")
          )
        .def_static("KnotSequence_s",
                    (void (*)(  const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<Standard_Real> & ,  const Standard_Boolean  ) ) static_cast<void (*)(  const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<Standard_Real> & ,  const Standard_Boolean  ) >(&BSplCLib::KnotSequence),
                    R"#(None)#"  , py::arg("Knots"),  py::arg("Mults"),  py::arg("KnotSeq"),  py::arg("Periodic")=static_cast<const Standard_Boolean>(Standard_False)
          )
        .def_static("KnotSequence_s",
                    (void (*)(  const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  const Standard_Integer ,  const Standard_Boolean ,  NCollection_Array1<Standard_Real> &  ) ) static_cast<void (*)(  const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  const Standard_Integer ,  const Standard_Boolean ,  NCollection_Array1<Standard_Real> &  ) >(&BSplCLib::KnotSequence),
                    R"#(Computes the sequence of knots KnotSeq with repetition of the knots of multiplicity greater than 1.)#"  , py::arg("Knots"),  py::arg("Mults"),  py::arg("Degree"),  py::arg("Periodic"),  py::arg("KnotSeq")
          )
        .def_static("KnotsLength_s",
                    (Standard_Integer (*)(  const NCollection_Array1<Standard_Real> & ,  const Standard_Boolean  ) ) static_cast<Standard_Integer (*)(  const NCollection_Array1<Standard_Real> & ,  const Standard_Boolean  ) >(&BSplCLib::KnotsLength),
                    R"#(Returns the length of the sequence of knots (and Mults) without repetition.)#"  , py::arg("KnotSeq"),  py::arg("Periodic")=static_cast<const Standard_Boolean>(Standard_False)
          )
        .def_static("Knots_s",
                    (void (*)(  const NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> & ,  const Standard_Boolean  ) ) static_cast<void (*)(  const NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> & ,  const Standard_Boolean  ) >(&BSplCLib::Knots),
                    R"#(Computes the sequence of knots Knots without repetition of the knots of multiplicity greater than 1.)#"  , py::arg("KnotSeq"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("Periodic")=static_cast<const Standard_Boolean>(Standard_False)
          )
        .def_static("KnotForm_s",
                    (BSplCLib_KnotDistribution (*)(  const NCollection_Array1<Standard_Real> & ,  const Standard_Integer ,  const Standard_Integer  ) ) static_cast<BSplCLib_KnotDistribution (*)(  const NCollection_Array1<Standard_Real> & ,  const Standard_Integer ,  const Standard_Integer  ) >(&BSplCLib::KnotForm),
                    R"#(Analyses if the knots distribution is "Uniform" or "NonUniform" between the knot FromK1 and the knot ToK2. There is no repetition of knot in the knots'sequence <Knots>.)#"  , py::arg("Knots"),  py::arg("FromK1"),  py::arg("ToK2")
          )
        .def_static("MultForm_s",
                    (BSplCLib_MultDistribution (*)(  const NCollection_Array1<Standard_Integer> & ,  const Standard_Integer ,  const Standard_Integer  ) ) static_cast<BSplCLib_MultDistribution (*)(  const NCollection_Array1<Standard_Integer> & ,  const Standard_Integer ,  const Standard_Integer  ) >(&BSplCLib::MultForm),
                    R"#(Analyses the distribution of multiplicities between the knot FromK1 and the Knot ToK2.)#"  , py::arg("Mults"),  py::arg("FromK1"),  py::arg("ToK2")
          )
        .def_static("Reparametrize_s",
                    (void (*)( const Standard_Real ,  const Standard_Real ,  NCollection_Array1<Standard_Real> &  ) ) static_cast<void (*)( const Standard_Real ,  const Standard_Real ,  NCollection_Array1<Standard_Real> &  ) >(&BSplCLib::Reparametrize),
                    R"#(Reparametrizes a B-spline curve to [U1, U2]. The knot values are recomputed such that Knots (Lower) = U1 and Knots (Upper) = U2 but the knot form is not modified. Warnings : In the array Knots the values must be in ascending order. U1 must not be equal to U2 to avoid division by zero.)#"  , py::arg("U1"),  py::arg("U2"),  py::arg("Knots")
          )
        .def_static("Reverse_s",
                    (void (*)( NCollection_Array1<Standard_Real> &  ) ) static_cast<void (*)( NCollection_Array1<Standard_Real> &  ) >(&BSplCLib::Reverse),
                    R"#(Reverses the array knots to become the knots sequence of the reversed curve.)#"  , py::arg("Knots")
          )
        .def_static("Reverse_s",
                    (void (*)( NCollection_Array1<Standard_Integer> &  ) ) static_cast<void (*)( NCollection_Array1<Standard_Integer> &  ) >(&BSplCLib::Reverse),
                    R"#(Reverses the array of multiplicities.)#"  , py::arg("Mults")
          )
        .def_static("Reverse_s",
                    (void (*)( NCollection_Array1<gp_Pnt> & ,  const Standard_Integer  ) ) static_cast<void (*)( NCollection_Array1<gp_Pnt> & ,  const Standard_Integer  ) >(&BSplCLib::Reverse),
                    R"#(Reverses the array of poles. Last is the index of the new first pole. On a non periodic curve last is Poles.Upper(). On a periodic curve last is)#"  , py::arg("Poles"),  py::arg("Last")
          )
        .def_static("Reverse_s",
                    (void (*)( NCollection_Array1<gp_Pnt2d> & ,  const Standard_Integer  ) ) static_cast<void (*)( NCollection_Array1<gp_Pnt2d> & ,  const Standard_Integer  ) >(&BSplCLib::Reverse),
                    R"#(Reverses the array of poles.)#"  , py::arg("Poles"),  py::arg("Last")
          )
        .def_static("Reverse_s",
                    (void (*)( NCollection_Array1<Standard_Real> & ,  const Standard_Integer  ) ) static_cast<void (*)( NCollection_Array1<Standard_Real> & ,  const Standard_Integer  ) >(&BSplCLib::Reverse),
                    R"#(Reverses the array of poles.)#"  , py::arg("Weights"),  py::arg("Last")
          )
        .def_static("IsRational_s",
                    (Standard_Boolean (*)(  const NCollection_Array1<Standard_Real> & ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Real  ) ) static_cast<Standard_Boolean (*)(  const NCollection_Array1<Standard_Real> & ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Real  ) >(&BSplCLib::IsRational),
                    R"#(Returns False if all the weights of the array <Weights> between I1 an I2 are identic. Epsilon is used for comparing weights. If Epsilon is 0. the Epsilon of the first weight is used.)#"  , py::arg("Weights"),  py::arg("I1"),  py::arg("I2"),  py::arg("Epsilon")=static_cast<const Standard_Real>(0.0)
          )
        .def_static("MaxDegree_s",
                    (Standard_Integer (*)() ) static_cast<Standard_Integer (*)() >(&BSplCLib::MaxDegree),
                    R"#(returns the degree maxima for a BSplineCurve.)#" 
          )
        .def_static("AntiBoorScheme_s",
                    (Standard_Boolean (*)( const Standard_Real ,  const Standard_Integer ,  Standard_Real & ,  const Standard_Integer ,  Standard_Real & ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Real  ) ) static_cast<Standard_Boolean (*)( const Standard_Real ,  const Standard_Integer ,  Standard_Real & ,  const Standard_Integer ,  Standard_Real & ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Real  ) >(&BSplCLib::AntiBoorScheme),
                    R"#(Compute the content of Pole before the BoorScheme. This method is used to remove poles.)#"  , py::arg("U"),  py::arg("Degree"),  py::arg("Knots"),  py::arg("Dimension"),  py::arg("Poles"),  py::arg("Depth"),  py::arg("Length"),  py::arg("Tolerance")
          )
        .def_static("NoWeights_s",
                    (TColStd_Array1OfReal * (*)() ) static_cast<TColStd_Array1OfReal * (*)() >(&BSplCLib::NoWeights),
                    R"#(Used as argument for a non rational curve.)#" 
          )
        .def_static("NoMults_s",
                    (TColStd_Array1OfInteger * (*)() ) static_cast<TColStd_Array1OfInteger * (*)() >(&BSplCLib::NoMults),
                    R"#(Used as argument for a flatknots evaluation.)#" 
          )
        .def_static("PoleIndex_s",
                    (Standard_Integer (*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<Standard_Integer> &  ) ) static_cast<Standard_Integer (*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<Standard_Integer> &  ) >(&BSplCLib::PoleIndex),
                    R"#(Return the index of the first Pole to use on the span Mults(Index) - Mults(Index+1). This index must be added to Poles.Lower().)#"  , py::arg("Degree"),  py::arg("Index"),  py::arg("Periodic"),  py::arg("Mults")
          )
        .def_static("BoorIndex_s",
                    (Standard_Integer (*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) ) static_cast<Standard_Integer (*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) >(&BSplCLib::BoorIndex),
                    R"#(Returns the index in the Boor result array of the poles <Index>. If the Boor algorithm was perform with <Length> and <Depth>.)#"  , py::arg("Index"),  py::arg("Length"),  py::arg("Depth")
          )
        .def_static("PrepareInsertKnots_s",
                    (Standard_Boolean (*)( const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> * ,  Standard_Integer & ,  Standard_Integer & ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<Standard_Boolean (*)( const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> * ,  Standard_Integer & ,  Standard_Integer & ,  const Standard_Real ,  const Standard_Boolean  ) >(&BSplCLib::PrepareInsertKnots),
                    R"#(Returns in <NbPoles, NbKnots> the new number of poles and knots if the sequence of knots <AddKnots, AddMults> is inserted in the sequence <Knots, Mults>.)#"  , py::arg("Degree"),  py::arg("Periodic"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("AddKnots"),  py::arg("AddMults"),  py::arg("NbPoles"),  py::arg("NbKnots"),  py::arg("Epsilon"),  py::arg("Add")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def_static("InsertKnots_s",
                    (void (*)( const Standard_Integer ,  const Standard_Boolean ,  const Standard_Integer ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> * ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> & ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<void (*)( const Standard_Integer ,  const Standard_Boolean ,  const Standard_Integer ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> * ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> & ,  const Standard_Real ,  const Standard_Boolean  ) >(&BSplCLib::InsertKnots),
                    R"#(None)#"  , py::arg("Degree"),  py::arg("Periodic"),  py::arg("Dimension"),  py::arg("Poles"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("AddKnots"),  py::arg("AddMults"),  py::arg("NewPoles"),  py::arg("NewKnots"),  py::arg("NewMults"),  py::arg("Epsilon"),  py::arg("Add")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def_static("InsertKnots_s",
                    (void (*)( const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> * ,  NCollection_Array1<gp_Pnt> & ,  NCollection_Array1<Standard_Real> * ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> & ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<void (*)( const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> * ,  NCollection_Array1<gp_Pnt> & ,  NCollection_Array1<Standard_Real> * ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> & ,  const Standard_Real ,  const Standard_Boolean  ) >(&BSplCLib::InsertKnots),
                    R"#(None)#"  , py::arg("Degree"),  py::arg("Periodic"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("AddKnots"),  py::arg("AddMults"),  py::arg("NewPoles"),  py::arg("NewWeights"),  py::arg("NewKnots"),  py::arg("NewMults"),  py::arg("Epsilon"),  py::arg("Add")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def_static("InsertKnots_s",
                    (void (*)( const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> * ,  NCollection_Array1<gp_Pnt2d> & ,  NCollection_Array1<Standard_Real> * ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> & ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<void (*)( const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> * ,  NCollection_Array1<gp_Pnt2d> & ,  NCollection_Array1<Standard_Real> * ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> & ,  const Standard_Real ,  const Standard_Boolean  ) >(&BSplCLib::InsertKnots),
                    R"#(Insert a sequence of knots <AddKnots> with multiplicities <AddMults>. <AddKnots> must be a non decreasing sequence and verifies :)#"  , py::arg("Degree"),  py::arg("Periodic"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("AddKnots"),  py::arg("AddMults"),  py::arg("NewPoles"),  py::arg("NewWeights"),  py::arg("NewKnots"),  py::arg("NewMults"),  py::arg("Epsilon"),  py::arg("Add")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def_static("InsertKnot_s",
                    (void (*)( const Standard_Integer ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<gp_Pnt> & ,  NCollection_Array1<Standard_Real> *  ) ) static_cast<void (*)( const Standard_Integer ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<gp_Pnt> & ,  NCollection_Array1<Standard_Real> *  ) >(&BSplCLib::InsertKnot),
                    R"#(None)#"  , py::arg("UIndex"),  py::arg("U"),  py::arg("UMult"),  py::arg("Degree"),  py::arg("Periodic"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("NewPoles"),  py::arg("NewWeights")
          )
        .def_static("InsertKnot_s",
                    (void (*)( const Standard_Integer ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<gp_Pnt2d> & ,  NCollection_Array1<Standard_Real> *  ) ) static_cast<void (*)( const Standard_Integer ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<gp_Pnt2d> & ,  NCollection_Array1<Standard_Real> *  ) >(&BSplCLib::InsertKnot),
                    R"#(Insert a new knot U of multiplicity UMult in the knot sequence.)#"  , py::arg("UIndex"),  py::arg("U"),  py::arg("UMult"),  py::arg("Degree"),  py::arg("Periodic"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("NewPoles"),  py::arg("NewWeights")
          )
        .def_static("RaiseMultiplicity_s",
                    (void (*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<gp_Pnt> & ,  NCollection_Array1<Standard_Real> *  ) ) static_cast<void (*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<gp_Pnt> & ,  NCollection_Array1<Standard_Real> *  ) >(&BSplCLib::RaiseMultiplicity),
                    R"#(None)#"  , py::arg("KnotIndex"),  py::arg("Mult"),  py::arg("Degree"),  py::arg("Periodic"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("NewPoles"),  py::arg("NewWeights")
          )
        .def_static("RaiseMultiplicity_s",
                    (void (*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<gp_Pnt2d> & ,  NCollection_Array1<Standard_Real> *  ) ) static_cast<void (*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<gp_Pnt2d> & ,  NCollection_Array1<Standard_Real> *  ) >(&BSplCLib::RaiseMultiplicity),
                    R"#(Raise the multiplicity of knot to <UMult>.)#"  , py::arg("KnotIndex"),  py::arg("Mult"),  py::arg("Degree"),  py::arg("Periodic"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("NewPoles"),  py::arg("NewWeights")
          )
        .def_static("RemoveKnot_s",
                    (Standard_Boolean (*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,  const Standard_Integer ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> & ,  const Standard_Real  ) ) static_cast<Standard_Boolean (*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,  const Standard_Integer ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> & ,  const Standard_Real  ) >(&BSplCLib::RemoveKnot),
                    R"#(None)#"  , py::arg("Index"),  py::arg("Mult"),  py::arg("Degree"),  py::arg("Periodic"),  py::arg("Dimension"),  py::arg("Poles"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("NewPoles"),  py::arg("NewKnots"),  py::arg("NewMults"),  py::arg("Tolerance")
          )
        .def_static("RemoveKnot_s",
                    (Standard_Boolean (*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<gp_Pnt> & ,  NCollection_Array1<Standard_Real> * ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> & ,  const Standard_Real  ) ) static_cast<Standard_Boolean (*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<gp_Pnt> & ,  NCollection_Array1<Standard_Real> * ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> & ,  const Standard_Real  ) >(&BSplCLib::RemoveKnot),
                    R"#(None)#"  , py::arg("Index"),  py::arg("Mult"),  py::arg("Degree"),  py::arg("Periodic"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("NewPoles"),  py::arg("NewWeights"),  py::arg("NewKnots"),  py::arg("NewMults"),  py::arg("Tolerance")
          )
        .def_static("RemoveKnot_s",
                    (Standard_Boolean (*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<gp_Pnt2d> & ,  NCollection_Array1<Standard_Real> * ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> & ,  const Standard_Real  ) ) static_cast<Standard_Boolean (*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<gp_Pnt2d> & ,  NCollection_Array1<Standard_Real> * ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> & ,  const Standard_Real  ) >(&BSplCLib::RemoveKnot),
                    R"#(Decrement the multiplicity of <Knots(Index)> to <Mult>. If <Mult> is null the knot is removed.)#"  , py::arg("Index"),  py::arg("Mult"),  py::arg("Degree"),  py::arg("Periodic"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("NewPoles"),  py::arg("NewWeights"),  py::arg("NewKnots"),  py::arg("NewMults"),  py::arg("Tolerance")
          )
        .def_static("IncreaseDegreeCountKnots_s",
                    (Standard_Integer (*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<Standard_Integer> &  ) ) static_cast<Standard_Integer (*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<Standard_Integer> &  ) >(&BSplCLib::IncreaseDegreeCountKnots),
                    R"#(Returns the number of knots of a curve with multiplicities <Mults> after elevating the degree from <Degree> to <NewDegree>. See the IncreaseDegree method for more comments.)#"  , py::arg("Degree"),  py::arg("NewDegree"),  py::arg("Periodic"),  py::arg("Mults")
          )
        .def_static("IncreaseDegree_s",
                    (void (*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,  const Standard_Integer ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> &  ) ) static_cast<void (*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,  const Standard_Integer ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> &  ) >(&BSplCLib::IncreaseDegree),
                    R"#(None)#"  , py::arg("Degree"),  py::arg("NewDegree"),  py::arg("Periodic"),  py::arg("Dimension"),  py::arg("Poles"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("NewPoles"),  py::arg("NewKnots"),  py::arg("NewMults")
          )
        .def_static("IncreaseDegree_s",
                    (void (*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<gp_Pnt> & ,  NCollection_Array1<Standard_Real> * ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> &  ) ) static_cast<void (*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<gp_Pnt> & ,  NCollection_Array1<Standard_Real> * ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> &  ) >(&BSplCLib::IncreaseDegree),
                    R"#(None)#"  , py::arg("Degree"),  py::arg("NewDegree"),  py::arg("Periodic"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("NewPoles"),  py::arg("NewWeights"),  py::arg("NewKnots"),  py::arg("NewMults")
          )
        .def_static("IncreaseDegree_s",
                    (void (*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<gp_Pnt2d> & ,  NCollection_Array1<Standard_Real> * ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> &  ) ) static_cast<void (*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<gp_Pnt2d> & ,  NCollection_Array1<Standard_Real> * ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> &  ) >(&BSplCLib::IncreaseDegree),
                    R"#(None)#"  , py::arg("Degree"),  py::arg("NewDegree"),  py::arg("Periodic"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("NewPoles"),  py::arg("NewWeights"),  py::arg("NewKnots"),  py::arg("NewMults")
          )
        .def_static("IncreaseDegree_s",
                    (void (*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  NCollection_Array1<gp_Pnt> & ,  NCollection_Array1<Standard_Real> *  ) ) static_cast<void (*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  NCollection_Array1<gp_Pnt> & ,  NCollection_Array1<Standard_Real> *  ) >(&BSplCLib::IncreaseDegree),
                    R"#(None)#"  , py::arg("NewDegree"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("NewPoles"),  py::arg("NewWeights")
          )
        .def_static("IncreaseDegree_s",
                    (void (*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  NCollection_Array1<gp_Pnt2d> & ,  NCollection_Array1<Standard_Real> *  ) ) static_cast<void (*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  NCollection_Array1<gp_Pnt2d> & ,  NCollection_Array1<Standard_Real> *  ) >(&BSplCLib::IncreaseDegree),
                    R"#(Increase the degree of a bspline (or bezier) curve of dimension theDimension form theDegree to theNewDegree.)#"  , py::arg("theNewDegree"),  py::arg("thePoles"),  py::arg("theWeights"),  py::arg("theNewPoles"),  py::arg("theNewWeights")
          )
        .def_static("Unperiodize_s",
                    (void (*)( const Standard_Integer ,  const Standard_Integer ,   const NCollection_Array1<Standard_Integer> & ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Real> &  ) ) static_cast<void (*)( const Standard_Integer ,  const Standard_Integer ,   const NCollection_Array1<Standard_Integer> & ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Real> &  ) >(&BSplCLib::Unperiodize),
                    R"#(None)#"  , py::arg("Degree"),  py::arg("Dimension"),  py::arg("Mults"),  py::arg("Knots"),  py::arg("Poles"),  py::arg("NewMults"),  py::arg("NewKnots"),  py::arg("NewPoles")
          )
        .def_static("Unperiodize_s",
                    (void (*)( const Standard_Integer ,   const NCollection_Array1<Standard_Integer> & ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<gp_Pnt> & ,  NCollection_Array1<Standard_Real> *  ) ) static_cast<void (*)( const Standard_Integer ,   const NCollection_Array1<Standard_Integer> & ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<gp_Pnt> & ,  NCollection_Array1<Standard_Real> *  ) >(&BSplCLib::Unperiodize),
                    R"#(None)#"  , py::arg("Degree"),  py::arg("Mults"),  py::arg("Knots"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("NewMults"),  py::arg("NewKnots"),  py::arg("NewPoles"),  py::arg("NewWeights")
          )
        .def_static("Unperiodize_s",
                    (void (*)( const Standard_Integer ,   const NCollection_Array1<Standard_Integer> & ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<gp_Pnt2d> & ,  NCollection_Array1<Standard_Real> *  ) ) static_cast<void (*)( const Standard_Integer ,   const NCollection_Array1<Standard_Integer> & ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<gp_Pnt2d> & ,  NCollection_Array1<Standard_Real> *  ) >(&BSplCLib::Unperiodize),
                    R"#(None)#"  , py::arg("Degree"),  py::arg("Mults"),  py::arg("Knots"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("NewMults"),  py::arg("NewKnots"),  py::arg("NewPoles"),  py::arg("NewWeights")
          )
        .def_static("Trimming_s",
                    (void (*)( const Standard_Integer ,  const Standard_Boolean ,  const Standard_Integer ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,   const NCollection_Array1<Standard_Real> & ,  const Standard_Real ,  const Standard_Real ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<Standard_Real> &  ) ) static_cast<void (*)( const Standard_Integer ,  const Standard_Boolean ,  const Standard_Integer ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,   const NCollection_Array1<Standard_Real> & ,  const Standard_Real ,  const Standard_Real ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<Standard_Real> &  ) >(&BSplCLib::Trimming),
                    R"#(None)#"  , py::arg("Degree"),  py::arg("Periodic"),  py::arg("Dimension"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("Poles"),  py::arg("U1"),  py::arg("U2"),  py::arg("NewKnots"),  py::arg("NewMults"),  py::arg("NewPoles")
          )
        .def_static("Trimming_s",
                    (void (*)( const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  const Standard_Real ,  const Standard_Real ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<gp_Pnt> & ,  NCollection_Array1<Standard_Real> *  ) ) static_cast<void (*)( const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  const Standard_Real ,  const Standard_Real ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<gp_Pnt> & ,  NCollection_Array1<Standard_Real> *  ) >(&BSplCLib::Trimming),
                    R"#(None)#"  , py::arg("Degree"),  py::arg("Periodic"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("U1"),  py::arg("U2"),  py::arg("NewKnots"),  py::arg("NewMults"),  py::arg("NewPoles"),  py::arg("NewWeights")
          )
        .def_static("Trimming_s",
                    (void (*)( const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  const Standard_Real ,  const Standard_Real ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<gp_Pnt2d> & ,  NCollection_Array1<Standard_Real> *  ) ) static_cast<void (*)( const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  const Standard_Real ,  const Standard_Real ,  NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<gp_Pnt2d> & ,  NCollection_Array1<Standard_Real> *  ) >(&BSplCLib::Trimming),
                    R"#(None)#"  , py::arg("Degree"),  py::arg("Periodic"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("U1"),  py::arg("U2"),  py::arg("NewKnots"),  py::arg("NewMults"),  py::arg("NewPoles"),  py::arg("NewWeights")
          )
        .def_static("D0_s",
                    (void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> * ,  gp_Pnt &  ) ) static_cast<void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> * ,  gp_Pnt &  ) >(&BSplCLib::D0),
                    R"#(None)#"  , py::arg("U"),  py::arg("Index"),  py::arg("Degree"),  py::arg("Periodic"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("P")
          )
        .def_static("D0_s",
                    (void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> * ,  gp_Pnt2d &  ) ) static_cast<void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> * ,  gp_Pnt2d &  ) >(&BSplCLib::D0),
                    R"#(None)#"  , py::arg("U"),  py::arg("UIndex"),  py::arg("Degree"),  py::arg("Periodic"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("P")
          )
        .def_static("D0_s",
                    (void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt &  ) ) static_cast<void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt &  ) >(&BSplCLib::D0),
                    R"#(None)#"  , py::arg("U"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("P")
          )
        .def_static("D0_s",
                    (void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt2d &  ) ) static_cast<void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt2d &  ) >(&BSplCLib::D0),
                    R"#(None)#"  , py::arg("U"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("P")
          )
        .def_static("D1_s",
                    (void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> * ,  gp_Pnt & ,  gp_Vec &  ) ) static_cast<void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> * ,  gp_Pnt & ,  gp_Vec &  ) >(&BSplCLib::D1),
                    R"#(None)#"  , py::arg("U"),  py::arg("Index"),  py::arg("Degree"),  py::arg("Periodic"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("P"),  py::arg("V")
          )
        .def_static("D1_s",
                    (void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> * ,  gp_Pnt2d & ,  gp_Vec2d &  ) ) static_cast<void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> * ,  gp_Pnt2d & ,  gp_Vec2d &  ) >(&BSplCLib::D1),
                    R"#(None)#"  , py::arg("U"),  py::arg("UIndex"),  py::arg("Degree"),  py::arg("Periodic"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("P"),  py::arg("V")
          )
        .def_static("D1_s",
                    (void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt & ,  gp_Vec &  ) ) static_cast<void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt & ,  gp_Vec &  ) >(&BSplCLib::D1),
                    R"#(None)#"  , py::arg("U"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("P"),  py::arg("V")
          )
        .def_static("D1_s",
                    (void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt2d & ,  gp_Vec2d &  ) ) static_cast<void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt2d & ,  gp_Vec2d &  ) >(&BSplCLib::D1),
                    R"#(None)#"  , py::arg("U"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("P"),  py::arg("V")
          )
        .def_static("D2_s",
                    (void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> * ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) ) static_cast<void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> * ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) >(&BSplCLib::D2),
                    R"#(None)#"  , py::arg("U"),  py::arg("Index"),  py::arg("Degree"),  py::arg("Periodic"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def_static("D2_s",
                    (void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> * ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) ) static_cast<void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> * ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) >(&BSplCLib::D2),
                    R"#(None)#"  , py::arg("U"),  py::arg("UIndex"),  py::arg("Degree"),  py::arg("Periodic"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def_static("D2_s",
                    (void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) ) static_cast<void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) >(&BSplCLib::D2),
                    R"#(None)#"  , py::arg("U"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def_static("D2_s",
                    (void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) ) static_cast<void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) >(&BSplCLib::D2),
                    R"#(None)#"  , py::arg("U"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def_static("D3_s",
                    (void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> * ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) ) static_cast<void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> * ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) >(&BSplCLib::D3),
                    R"#(None)#"  , py::arg("U"),  py::arg("Index"),  py::arg("Degree"),  py::arg("Periodic"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3")
          )
        .def_static("D3_s",
                    (void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> * ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) ) static_cast<void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> * ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) >(&BSplCLib::D3),
                    R"#(None)#"  , py::arg("U"),  py::arg("UIndex"),  py::arg("Degree"),  py::arg("Periodic"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3")
          )
        .def_static("D3_s",
                    (void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) ) static_cast<void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) >(&BSplCLib::D3),
                    R"#(None)#"  , py::arg("U"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3")
          )
        .def_static("D3_s",
                    (void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) ) static_cast<void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) >(&BSplCLib::D3),
                    R"#(None)#"  , py::arg("U"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3")
          )
        .def_static("EvalBsplineBasis_s",
                    (Standard_Integer (*)( const Standard_Integer ,  const Standard_Integer ,   const NCollection_Array1<Standard_Real> & ,  const Standard_Real ,  Standard_Integer & ,  math_Matrix & ,  const Standard_Boolean  ) ) static_cast<Standard_Integer (*)( const Standard_Integer ,  const Standard_Integer ,   const NCollection_Array1<Standard_Real> & ,  const Standard_Real ,  Standard_Integer & ,  math_Matrix & ,  const Standard_Boolean  ) >(&BSplCLib::EvalBsplineBasis),
                    R"#(This evaluates the Bspline Basis at a given parameter Parameter up to the requested DerivativeOrder and store the result in the array BsplineBasis in the following fashion BSplineBasis(1,1) = value of first non vanishing Bspline function which has Index FirstNonZeroBsplineIndex BsplineBasis(1,2) = value of second non vanishing Bspline function which has Index FirstNonZeroBsplineIndex + 1 BsplineBasis(1,n) = value of second non vanishing non vanishing Bspline function which has Index FirstNonZeroBsplineIndex + n (n <= Order) BSplineBasis(2,1) = value of derivative of first non vanishing Bspline function which has Index FirstNonZeroBsplineIndex BSplineBasis(N,1) = value of Nth derivative of first non vanishing Bspline function which has Index FirstNonZeroBsplineIndex if N <= DerivativeOrder + 1)#"  , py::arg("DerivativeOrder"),  py::arg("Order"),  py::arg("FlatKnots"),  py::arg("Parameter"),  py::arg("FirstNonZeroBsplineIndex"),  py::arg("BsplineBasis"),  py::arg("isPeriodic")=static_cast<const Standard_Boolean>(Standard_False)
          )
        .def_static("BuildBSpMatrix_s",
                    (Standard_Integer (*)(  const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,   const NCollection_Array1<Standard_Real> & ,  const Standard_Integer ,  math_Matrix & ,  Standard_Integer & ,  Standard_Integer &  ) ) static_cast<Standard_Integer (*)(  const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,   const NCollection_Array1<Standard_Real> & ,  const Standard_Integer ,  math_Matrix & ,  Standard_Integer & ,  Standard_Integer &  ) >(&BSplCLib::BuildBSpMatrix),
                    R"#(This Builds a fully blown Matrix of (ni) Bi (tj))#"  , py::arg("Parameters"),  py::arg("OrderArray"),  py::arg("FlatKnots"),  py::arg("Degree"),  py::arg("Matrix"),  py::arg("UpperBandWidth"),  py::arg("LowerBandWidth")
          )
        .def_static("FactorBandedMatrix_s",
                    (Standard_Integer (*)( math_Matrix & ,  const Standard_Integer ,  const Standard_Integer ,  Standard_Integer &  ) ) static_cast<Standard_Integer (*)( math_Matrix & ,  const Standard_Integer ,  const Standard_Integer ,  Standard_Integer &  ) >(&BSplCLib::FactorBandedMatrix),
                    R"#(this factors the Banded Matrix in the LU form with a Banded storage of components of the L matrix WARNING : do not use if the Matrix is totally positive (It is the case for Bspline matrices build as above with parameters being the Schoenberg points)#"  , py::arg("Matrix"),  py::arg("UpperBandWidth"),  py::arg("LowerBandWidth"),  py::arg("PivotIndexProblem")
          )
        .def_static("SolveBandedSystem_s",
                    (Standard_Integer (*)( const math_Matrix & ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  Standard_Real &  ) ) static_cast<Standard_Integer (*)( const math_Matrix & ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  Standard_Real &  ) >(&BSplCLib::SolveBandedSystem),
                    R"#(This solves the system Matrix.X = B with when Matrix is factored in LU form The Array is an seen as an Array[1..N][1..ArrayDimension] with N = the rank of the matrix Matrix. The result is stored in Array when each coordinate is solved that is B is the array whose values are B[i] = Array[i][p] for each p in 1..ArrayDimension)#"  , py::arg("Matrix"),  py::arg("UpperBandWidth"),  py::arg("LowerBandWidth"),  py::arg("ArrayDimension"),  py::arg("Array")
          )
        .def_static("SolveBandedSystem_s",
                    (Standard_Integer (*)( const math_Matrix & ,  const Standard_Integer ,  const Standard_Integer ,  NCollection_Array1<gp_Pnt2d> &  ) ) static_cast<Standard_Integer (*)( const math_Matrix & ,  const Standard_Integer ,  const Standard_Integer ,  NCollection_Array1<gp_Pnt2d> &  ) >(&BSplCLib::SolveBandedSystem),
                    R"#(This solves the system Matrix.X = B with when Matrix is factored in LU form The Array has the length of the rank of the matrix Matrix. The result is stored in Array when each coordinate is solved that is B is the array whose values are B[i] = Array[i][p] for each p in 1..ArrayDimension)#"  , py::arg("Matrix"),  py::arg("UpperBandWidth"),  py::arg("LowerBandWidth"),  py::arg("Array")
          )
        .def_static("SolveBandedSystem_s",
                    (Standard_Integer (*)( const math_Matrix & ,  const Standard_Integer ,  const Standard_Integer ,  NCollection_Array1<gp_Pnt> &  ) ) static_cast<Standard_Integer (*)( const math_Matrix & ,  const Standard_Integer ,  const Standard_Integer ,  NCollection_Array1<gp_Pnt> &  ) >(&BSplCLib::SolveBandedSystem),
                    R"#(This solves the system Matrix.X = B with when Matrix is factored in LU form The Array has the length of the rank of the matrix Matrix. The result is stored in Array when each coordinate is solved that is B is the array whose values are B[i] = Array[i][p] for each p in 1..ArrayDimension)#"  , py::arg("Matrix"),  py::arg("UpperBandWidth"),  py::arg("LowerBandWidth"),  py::arg("Array")
          )
        .def_static("SolveBandedSystem_s",
                    (Standard_Integer (*)( const math_Matrix & ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,  const Standard_Integer ,  Standard_Real & ,  Standard_Real &  ) ) static_cast<Standard_Integer (*)( const math_Matrix & ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,  const Standard_Integer ,  Standard_Real & ,  Standard_Real &  ) >(&BSplCLib::SolveBandedSystem),
                    R"#(None)#"  , py::arg("Matrix"),  py::arg("UpperBandWidth"),  py::arg("LowerBandWidth"),  py::arg("HomogenousFlag"),  py::arg("ArrayDimension"),  py::arg("Array"),  py::arg("Weights")
          )
        .def_static("SolveBandedSystem_s",
                    (Standard_Integer (*)( const math_Matrix & ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,  NCollection_Array1<gp_Pnt2d> & ,  NCollection_Array1<Standard_Real> &  ) ) static_cast<Standard_Integer (*)( const math_Matrix & ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,  NCollection_Array1<gp_Pnt2d> & ,  NCollection_Array1<Standard_Real> &  ) >(&BSplCLib::SolveBandedSystem),
                    R"#(This solves the system Matrix.X = B with when Matrix is factored in LU form The Array is an seen as an Array[1..N][1..ArrayDimension] with N = the rank of the matrix Matrix. The result is stored in Array when each coordinate is solved that is B is the array whose values are B[i] = Array[i][p] for each p in 1..ArrayDimension. If HomogeneousFlag == 0 the Poles are multiplied by the Weights upon Entry and once interpolation is carried over the result of the poles are divided by the result of the interpolation of the weights. Otherwise if HomogenousFlag == 1 the Poles and Weigths are treated homogeneously that is that those are interpolated as they are and result is returned without division by the interpolated weigths.)#"  , py::arg("Matrix"),  py::arg("UpperBandWidth"),  py::arg("LowerBandWidth"),  py::arg("HomogenousFlag"),  py::arg("Array"),  py::arg("Weights")
          )
        .def_static("SolveBandedSystem_s",
                    (Standard_Integer (*)( const math_Matrix & ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,  NCollection_Array1<gp_Pnt> & ,  NCollection_Array1<Standard_Real> &  ) ) static_cast<Standard_Integer (*)( const math_Matrix & ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,  NCollection_Array1<gp_Pnt> & ,  NCollection_Array1<Standard_Real> &  ) >(&BSplCLib::SolveBandedSystem),
                    R"#(This solves the system Matrix.X = B with when Matrix is factored in LU form The Array is an seen as an Array[1..N][1..ArrayDimension] with N = the rank of the matrix Matrix. The result is stored in Array when each coordinate is solved that is B is the array whose values are B[i] = Array[i][p] for each p in 1..ArrayDimension If HomogeneousFlag == 0 the Poles are multiplied by the Weights upon Entry and once interpolation is carried over the result of the poles are divided by the result of the interpolation of the weights. Otherwise if HomogenousFlag == 1 the Poles and Weigths are treated homogeneously that is that those are interpolated as they are and result is returned without division by the interpolated weigths.)#"  , py::arg("Matrix"),  py::arg("UpperBandWidth"),  py::arg("LowerBandWidth"),  py::arg("HomogeneousFlag"),  py::arg("Array"),  py::arg("Weights")
          )
        .def_static("CacheD0_s",
                    (void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt &  ) ) static_cast<void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt &  ) >(&BSplCLib::CacheD0),
                    R"#(Perform the evaluation of the of the cache the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights this just evaluates the current point the CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effects)#"  , py::arg("U"),  py::arg("Degree"),  py::arg("CacheParameter"),  py::arg("SpanLenght"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Point")
          )
        .def_static("CacheD0_s",
                    (void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt2d &  ) ) static_cast<void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt2d &  ) >(&BSplCLib::CacheD0),
                    R"#(Perform the evaluation of the Bspline Basis and then multiplies by the weights this just evaluates the current point the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights ththe CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effectsis just evaluates the current point)#"  , py::arg("U"),  py::arg("Degree"),  py::arg("CacheParameter"),  py::arg("SpanLenght"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Point")
          )
        .def_static("CoefsD0_s",
                    (void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt &  ) ) static_cast<void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt &  ) >(&BSplCLib::CoefsD0),
                    R"#(Calls CacheD0 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!)#"  , py::arg("U"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Point")
          )
        .def_static("CoefsD0_s",
                    (void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt2d &  ) ) static_cast<void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt2d &  ) >(&BSplCLib::CoefsD0),
                    R"#(Calls CacheD0 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!)#"  , py::arg("U"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Point")
          )
        .def_static("CacheD1_s",
                    (void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt & ,  gp_Vec &  ) ) static_cast<void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt & ,  gp_Vec &  ) >(&BSplCLib::CacheD1),
                    R"#(Perform the evaluation of the of the cache the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights this just evaluates the current point the CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effects)#"  , py::arg("U"),  py::arg("Degree"),  py::arg("CacheParameter"),  py::arg("SpanLenght"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Point"),  py::arg("Vec")
          )
        .def_static("CacheD1_s",
                    (void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt2d & ,  gp_Vec2d &  ) ) static_cast<void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt2d & ,  gp_Vec2d &  ) >(&BSplCLib::CacheD1),
                    R"#(Perform the evaluation of the Bspline Basis and then multiplies by the weights this just evaluates the current point the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights ththe CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effectsis just evaluates the current point)#"  , py::arg("U"),  py::arg("Degree"),  py::arg("CacheParameter"),  py::arg("SpanLenght"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Point"),  py::arg("Vec")
          )
        .def_static("CoefsD1_s",
                    (void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt & ,  gp_Vec &  ) ) static_cast<void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt & ,  gp_Vec &  ) >(&BSplCLib::CoefsD1),
                    R"#(Calls CacheD1 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!)#"  , py::arg("U"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Point"),  py::arg("Vec")
          )
        .def_static("CoefsD1_s",
                    (void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt2d & ,  gp_Vec2d &  ) ) static_cast<void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt2d & ,  gp_Vec2d &  ) >(&BSplCLib::CoefsD1),
                    R"#(Calls CacheD1 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!)#"  , py::arg("U"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Point"),  py::arg("Vec")
          )
        .def_static("CacheD2_s",
                    (void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) ) static_cast<void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) >(&BSplCLib::CacheD2),
                    R"#(Perform the evaluation of the of the cache the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights this just evaluates the current point the CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effects)#"  , py::arg("U"),  py::arg("Degree"),  py::arg("CacheParameter"),  py::arg("SpanLenght"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Point"),  py::arg("Vec1"),  py::arg("Vec2")
          )
        .def_static("CacheD2_s",
                    (void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) ) static_cast<void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) >(&BSplCLib::CacheD2),
                    R"#(Perform the evaluation of the Bspline Basis and then multiplies by the weights this just evaluates the current point the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights ththe CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effectsis just evaluates the current point)#"  , py::arg("U"),  py::arg("Degree"),  py::arg("CacheParameter"),  py::arg("SpanLenght"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Point"),  py::arg("Vec1"),  py::arg("Vec2")
          )
        .def_static("CoefsD2_s",
                    (void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) ) static_cast<void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) >(&BSplCLib::CoefsD2),
                    R"#(Calls CacheD1 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!)#"  , py::arg("U"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Point"),  py::arg("Vec1"),  py::arg("Vec2")
          )
        .def_static("CoefsD2_s",
                    (void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) ) static_cast<void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) >(&BSplCLib::CoefsD2),
                    R"#(Calls CacheD1 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!)#"  , py::arg("U"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Point"),  py::arg("Vec1"),  py::arg("Vec2")
          )
        .def_static("CacheD3_s",
                    (void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) ) static_cast<void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) >(&BSplCLib::CacheD3),
                    R"#(Perform the evaluation of the of the cache the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights this just evaluates the current point the CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effects)#"  , py::arg("U"),  py::arg("Degree"),  py::arg("CacheParameter"),  py::arg("SpanLenght"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Point"),  py::arg("Vec1"),  py::arg("Vec2"),  py::arg("Vec3")
          )
        .def_static("CacheD3_s",
                    (void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) ) static_cast<void (*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) >(&BSplCLib::CacheD3),
                    R"#(Perform the evaluation of the Bspline Basis and then multiplies by the weights this just evaluates the current point the parameter must be normalized between the 0 and 1 for the span. The Cache must be valid when calling this routine. Geom Package will insure that. and then multiplies by the weights ththe CacheParameter is where the Cache was constructed the SpanLength is to normalize the polynomial in the cache to avoid bad conditioning effectsis just evaluates the current point)#"  , py::arg("U"),  py::arg("Degree"),  py::arg("CacheParameter"),  py::arg("SpanLenght"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Point"),  py::arg("Vec1"),  py::arg("Vec2"),  py::arg("Vec3")
          )
        .def_static("CoefsD3_s",
                    (void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) ) static_cast<void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) >(&BSplCLib::CoefsD3),
                    R"#(Calls CacheD1 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!)#"  , py::arg("U"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Point"),  py::arg("Vec1"),  py::arg("Vec2"),  py::arg("Vec3")
          )
        .def_static("CoefsD3_s",
                    (void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) ) static_cast<void (*)( const Standard_Real ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) >(&BSplCLib::CoefsD3),
                    R"#(Calls CacheD1 for Bezier Curves Arrays computed with the method PolesCoefficients. Warning: To be used for Beziercurves ONLY!!!)#"  , py::arg("U"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Point"),  py::arg("Vec1"),  py::arg("Vec2"),  py::arg("Vec3")
          )
        .def_static("BuildCache_s",
                    (void (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Integer ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  NCollection_Array1<gp_Pnt> & ,  NCollection_Array1<Standard_Real> *  ) ) static_cast<void (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Integer ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  NCollection_Array1<gp_Pnt> & ,  NCollection_Array1<Standard_Real> *  ) >(&BSplCLib::BuildCache),
                    R"#(Perform the evaluation of the Taylor expansion of the Bspline normalized between 0 and 1. If rational computes the homogeneous Taylor expension for the numerator and stores it in CachePoles)#"  , py::arg("U"),  py::arg("InverseOfSpanDomain"),  py::arg("PeriodicFlag"),  py::arg("Degree"),  py::arg("FlatKnots"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("CachePoles"),  py::arg("CacheWeights")
          )
        .def_static("BuildCache_s",
                    (void (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Integer ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  NCollection_Array1<gp_Pnt2d> & ,  NCollection_Array1<Standard_Real> *  ) ) static_cast<void (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Integer ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  NCollection_Array1<gp_Pnt2d> & ,  NCollection_Array1<Standard_Real> *  ) >(&BSplCLib::BuildCache),
                    R"#(Perform the evaluation of the Taylor expansion of the Bspline normalized between 0 and 1. If rational computes the homogeneous Taylor expension for the numerator and stores it in CachePoles)#"  , py::arg("U"),  py::arg("InverseOfSpanDomain"),  py::arg("PeriodicFlag"),  py::arg("Degree"),  py::arg("FlatKnots"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("CachePoles"),  py::arg("CacheWeights")
          )
        .def_static("BuildCache_s",
                    (void (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Integer ,  const Standard_Integer ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  NCollection_Array2<Standard_Real> &  ) ) static_cast<void (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Integer ,  const Standard_Integer ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  NCollection_Array2<Standard_Real> &  ) >(&BSplCLib::BuildCache),
                    R"#(Perform the evaluation of the Taylor expansion of the Bspline normalized between 0 and 1. Structure of result optimized for BSplCLib_Cache.)#"  , py::arg("theParameter"),  py::arg("theSpanDomain"),  py::arg("thePeriodicFlag"),  py::arg("theDegree"),  py::arg("theSpanIndex"),  py::arg("theFlatKnots"),  py::arg("thePoles"),  py::arg("theWeights"),  py::arg("theCacheArray")
          )
        .def_static("BuildCache_s",
                    (void (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Integer ,  const Standard_Integer ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  NCollection_Array2<Standard_Real> &  ) ) static_cast<void (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Integer ,  const Standard_Integer ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  NCollection_Array2<Standard_Real> &  ) >(&BSplCLib::BuildCache),
                    R"#(Perform the evaluation of the Taylor expansion of the Bspline normalized between 0 and 1. Structure of result optimized for BSplCLib_Cache.)#"  , py::arg("theParameter"),  py::arg("theSpanDomain"),  py::arg("thePeriodicFlag"),  py::arg("theDegree"),  py::arg("theSpanIndex"),  py::arg("theFlatKnots"),  py::arg("thePoles"),  py::arg("theWeights"),  py::arg("theCacheArray")
          )
        .def_static("PolesCoefficients_s",
                    (void (*)(  const NCollection_Array1<gp_Pnt2d> & ,  NCollection_Array1<gp_Pnt2d> &  ) ) static_cast<void (*)(  const NCollection_Array1<gp_Pnt2d> & ,  NCollection_Array1<gp_Pnt2d> &  ) >(&BSplCLib::PolesCoefficients),
                    R"#(None)#"  , py::arg("Poles"),  py::arg("CachePoles")
          )
        .def_static("PolesCoefficients_s",
                    (void (*)(  const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  NCollection_Array1<gp_Pnt2d> & ,  NCollection_Array1<Standard_Real> *  ) ) static_cast<void (*)(  const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> * ,  NCollection_Array1<gp_Pnt2d> & ,  NCollection_Array1<Standard_Real> *  ) >(&BSplCLib::PolesCoefficients),
                    R"#(None)#"  , py::arg("Poles"),  py::arg("Weights"),  py::arg("CachePoles"),  py::arg("CacheWeights")
          )
        .def_static("PolesCoefficients_s",
                    (void (*)(  const NCollection_Array1<gp_Pnt> & ,  NCollection_Array1<gp_Pnt> &  ) ) static_cast<void (*)(  const NCollection_Array1<gp_Pnt> & ,  NCollection_Array1<gp_Pnt> &  ) >(&BSplCLib::PolesCoefficients),
                    R"#(None)#"  , py::arg("Poles"),  py::arg("CachePoles")
          )
        .def_static("PolesCoefficients_s",
                    (void (*)(  const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  NCollection_Array1<gp_Pnt> & ,  NCollection_Array1<Standard_Real> *  ) ) static_cast<void (*)(  const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> * ,  NCollection_Array1<gp_Pnt> & ,  NCollection_Array1<Standard_Real> *  ) >(&BSplCLib::PolesCoefficients),
                    R"#(Encapsulation of BuildCache to perform the evaluation of the Taylor expansion for beziercurves at parameter 0. Warning: To be used for Beziercurves ONLY!!!)#"  , py::arg("Poles"),  py::arg("Weights"),  py::arg("CachePoles"),  py::arg("CacheWeights")
          )
        .def_static("FlatBezierKnots_s",
                    (const Standard_Real & (*)( const Standard_Integer  ) ) static_cast<const Standard_Real & (*)( const Standard_Integer  ) >(&BSplCLib::FlatBezierKnots),
                    R"#(Returns pointer to statically allocated array representing flat knots for bezier curve of the specified degree. Raises OutOfRange if Degree > MaxDegree())#"  , py::arg("Degree")
          )
        .def_static("BuildSchoenbergPoints_s",
                    (void (*)( const Standard_Integer ,   const NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Real> &  ) ) static_cast<void (*)( const Standard_Integer ,   const NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Real> &  ) >(&BSplCLib::BuildSchoenbergPoints),
                    R"#(builds the Schoenberg points from the flat knot used to interpolate a BSpline since the BSpline matrix is invertible.)#"  , py::arg("Degree"),  py::arg("FlatKnots"),  py::arg("Parameters")
          )
        .def_static("Intervals_s",
                    (Standard_Integer (*)(  const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  Standard_Integer ,  Standard_Boolean ,  Standard_Integer ,  Standard_Real ,  Standard_Real ,  Standard_Real ,  NCollection_Array1<Standard_Real> *  ) ) static_cast<Standard_Integer (*)(  const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  Standard_Integer ,  Standard_Boolean ,  Standard_Integer ,  Standard_Real ,  Standard_Real ,  Standard_Real ,  NCollection_Array1<Standard_Real> *  ) >(&BSplCLib::Intervals),
                    R"#(Splits the given range to BSpline intervals of given continuity)#"  , py::arg("theKnots"),  py::arg("theMults"),  py::arg("theDegree"),  py::arg("isPeriodic"),  py::arg("theContinuity"),  py::arg("theFirst"),  py::arg("theLast"),  py::arg("theTolerance"),  py::arg("theIntervals")
          )
    // static methods using call by reference i.s.o. return
        .def_static("Hunt_s",
            []( const NCollection_Array1<Standard_Real> & theArray,const Standard_Real theX ){
                Standard_Integer  theXPos;

                BSplCLib::Hunt(theArray,theX,theXPos);
                
return std::make_tuple(theXPos); },
            R"#(This routine searches the position of the real value theX in the monotonically increasing set of real values theArray using bisection algorithm.)#"  , py::arg("theArray"),  py::arg("theX")
          )
        .def_static("LocateParameter_s",
            [](const Standard_Integer Degree, const NCollection_Array1<Standard_Real> & Knots, const NCollection_Array1<Standard_Integer> & Mults,const Standard_Real U,const Standard_Boolean IsPeriodic,const Standard_Integer FromK1,const Standard_Integer ToK2 ){
                Standard_Integer  KnotIndex;
                Standard_Real  NewU;

                BSplCLib::LocateParameter(Degree,Knots,Mults,U,IsPeriodic,FromK1,ToK2,KnotIndex,NewU);
                
return std::make_tuple(KnotIndex,NewU); },
            R"#(Locates the parametric value U in the knots sequence between the knot K1 and the knot K2. The value return in Index verifies.)#"  , py::arg("Degree"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("U"),  py::arg("IsPeriodic"),  py::arg("FromK1"),  py::arg("ToK2")
          )
        .def_static("LocateParameter_s",
            [](const Standard_Integer Degree, const NCollection_Array1<Standard_Real> & Knots,const Standard_Real U,const Standard_Boolean IsPeriodic,const Standard_Integer FromK1,const Standard_Integer ToK2 ){
                Standard_Integer  KnotIndex;
                Standard_Real  NewU;

                BSplCLib::LocateParameter(Degree,Knots,U,IsPeriodic,FromK1,ToK2,KnotIndex,NewU);
                
return std::make_tuple(KnotIndex,NewU); },
            R"#(Locates the parametric value U in the knots sequence between the knot K1 and the knot K2. The value return in Index verifies.)#"  , py::arg("Degree"),  py::arg("Knots"),  py::arg("U"),  py::arg("IsPeriodic"),  py::arg("FromK1"),  py::arg("ToK2")
          )
        .def_static("LocateParameter_s",
            [](const Standard_Integer Degree, const NCollection_Array1<Standard_Real> & Knots, const NCollection_Array1<Standard_Integer> * Mults,const Standard_Real U,const Standard_Boolean Periodic ){
                Standard_Integer  Index;
                Standard_Real  NewU;

                BSplCLib::LocateParameter(Degree,Knots,Mults,U,Periodic,Index,NewU);
                
return std::make_tuple(Index,NewU); },
            R"#(None)#"  , py::arg("Degree"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("U"),  py::arg("Periodic")
          )
        .def_static("KnotAnalysis_s",
            [](const Standard_Integer Degree,const Standard_Boolean Periodic, const NCollection_Array1<Standard_Real> & CKnots, const NCollection_Array1<Standard_Integer> & CMults,GeomAbs_BSplKnotDistribution & KnotForm ){
                Standard_Integer  MaxKnotMult;

                BSplCLib::KnotAnalysis(Degree,Periodic,CKnots,CMults,KnotForm,MaxKnotMult);
                
return std::make_tuple(MaxKnotMult); },
            R"#(Analyzes the array of knots. Returns the form and the maximum knot multiplicity.)#"  , py::arg("Degree"),  py::arg("Periodic"),  py::arg("CKnots"),  py::arg("CMults"),  py::arg("KnotForm")
          )
        .def_static("Eval_s",
            [](const Standard_Real U,const Standard_Integer Degree,const Standard_Integer Dimension ){
                Standard_Real  Knots;
                Standard_Real  Poles;

                BSplCLib::Eval(U,Degree,Knots,Dimension,Poles);
                
return std::make_tuple(Knots,Poles); },
            R"#(Perform the Boor algorithm to evaluate a point at parameter <U>, with <Degree> and <Dimension>.)#"  , py::arg("U"),  py::arg("Degree"),  py::arg("Dimension")
          )
        .def_static("BoorScheme_s",
            [](const Standard_Real U,const Standard_Integer Degree,const Standard_Integer Dimension,const Standard_Integer Depth,const Standard_Integer Length ){
                Standard_Real  Knots;
                Standard_Real  Poles;

                BSplCLib::BoorScheme(U,Degree,Knots,Dimension,Poles,Depth,Length);
                
return std::make_tuple(Knots,Poles); },
            R"#(Performs the Boor Algorithm at parameter <U> with the given <Degree> and the array of <Knots> on the poles <Poles> of dimension <Dimension>. The schema is computed until level <Depth> on a basis of <Length+1> poles.)#"  , py::arg("U"),  py::arg("Degree"),  py::arg("Dimension"),  py::arg("Depth"),  py::arg("Length")
          )
        .def_static("Derivative_s",
            [](const Standard_Integer Degree,const Standard_Integer Dimension,const Standard_Integer Length,const Standard_Integer Order ){
                Standard_Real  Knots;
                Standard_Real  Poles;

                BSplCLib::Derivative(Degree,Knots,Dimension,Length,Order,Poles);
                
return std::make_tuple(Knots,Poles); },
            R"#(Computes the poles of the BSpline giving the derivatives of order <Order>.)#"  , py::arg("Degree"),  py::arg("Dimension"),  py::arg("Length"),  py::arg("Order")
          )
        .def_static("Bohm_s",
            [](const Standard_Real U,const Standard_Integer Degree,const Standard_Integer N,const Standard_Integer Dimension ){
                Standard_Real  Knots;
                Standard_Real  Poles;

                BSplCLib::Bohm(U,Degree,N,Knots,Dimension,Poles);
                
return std::make_tuple(Knots,Poles); },
            R"#(Performs the Bohm Algorithm at parameter <U>. This algorithm computes the value and all the derivatives up to order N (N <= Degree).)#"  , py::arg("U"),  py::arg("Degree"),  py::arg("N"),  py::arg("Dimension")
          )
        .def_static("BuildKnots_s",
            [](const Standard_Integer Degree,const Standard_Integer Index,const Standard_Boolean Periodic, const NCollection_Array1<Standard_Real> & Knots, const NCollection_Array1<Standard_Integer> * Mults ){
                Standard_Real  LK;

                BSplCLib::BuildKnots(Degree,Index,Periodic,Knots,Mults,LK);
                
return std::make_tuple(LK); },
            R"#(Stores in LK the useful knots for the BoorSchem on the span Knots(Index) - Knots(Index+1))#"  , py::arg("Degree"),  py::arg("Index"),  py::arg("Periodic"),  py::arg("Knots"),  py::arg("Mults")
          )
        .def_static("BuildEval_s",
            [](const Standard_Integer Degree,const Standard_Integer Index, const NCollection_Array1<Standard_Real> & Poles, const NCollection_Array1<Standard_Real> * Weights ){
                Standard_Real  LP;

                BSplCLib::BuildEval(Degree,Index,Poles,Weights,LP);
                
return std::make_tuple(LP); },
            R"#(None)#"  , py::arg("Degree"),  py::arg("Index"),  py::arg("Poles"),  py::arg("Weights")
          )
        .def_static("BuildEval_s",
            [](const Standard_Integer Degree,const Standard_Integer Index, const NCollection_Array1<gp_Pnt> & Poles, const NCollection_Array1<Standard_Real> * Weights ){
                Standard_Real  LP;

                BSplCLib::BuildEval(Degree,Index,Poles,Weights,LP);
                
return std::make_tuple(LP); },
            R"#(None)#"  , py::arg("Degree"),  py::arg("Index"),  py::arg("Poles"),  py::arg("Weights")
          )
        .def_static("BuildEval_s",
            [](const Standard_Integer Degree,const Standard_Integer Index, const NCollection_Array1<gp_Pnt2d> & Poles, const NCollection_Array1<Standard_Real> * Weights ){
                Standard_Real  LP;

                BSplCLib::BuildEval(Degree,Index,Poles,Weights,LP);
                
return std::make_tuple(LP); },
            R"#(Copy in <LP> the poles and weights for the Eval scheme. starting from Poles(Poles.Lower()+Index))#"  , py::arg("Degree"),  py::arg("Index"),  py::arg("Poles"),  py::arg("Weights")
          )
        .def_static("BuildBoor_s",
            [](const Standard_Integer Index,const Standard_Integer Length,const Standard_Integer Dimension, const NCollection_Array1<Standard_Real> & Poles ){
                Standard_Real  LP;

                BSplCLib::BuildBoor(Index,Length,Dimension,Poles,LP);
                
return std::make_tuple(LP); },
            R"#(Copy in <LP> poles for <Dimension> Boor scheme. Starting from <Index> * <Dimension>, copy <Length+1> poles.)#"  , py::arg("Index"),  py::arg("Length"),  py::arg("Dimension"),  py::arg("Poles")
          )
        .def_static("GetPole_s",
            [](const Standard_Integer Index,const Standard_Integer Length,const Standard_Integer Depth,const Standard_Integer Dimension,NCollection_Array1<Standard_Real> & Pole ){
                Standard_Real  LocPoles;
                Standard_Integer  Position;

                BSplCLib::GetPole(Index,Length,Depth,Dimension,LocPoles,Position,Pole);
                
return std::make_tuple(LocPoles,Position); },
            R"#(Copy the pole at position <Index> in the Boor scheme of dimension <Dimension> to <Position> in the array <Pole>. <Position> is updated.)#"  , py::arg("Index"),  py::arg("Length"),  py::arg("Depth"),  py::arg("Dimension"),  py::arg("Pole")
          )
        .def_static("PrepareUnperiodize_s",
            [](const Standard_Integer Degree, const NCollection_Array1<Standard_Integer> & Mults ){
                Standard_Integer  NbKnots;
                Standard_Integer  NbPoles;

                BSplCLib::PrepareUnperiodize(Degree,Mults,NbKnots,NbPoles);
                
return std::make_tuple(NbKnots,NbPoles); },
            R"#(Set in <NbKnots> and <NbPolesToAdd> the number of Knots and Poles of the NotPeriodic Curve identical at the periodic curve with a degree <Degree> , a knots-distribution with Multiplicities <Mults>.)#"  , py::arg("Degree"),  py::arg("Mults")
          )
        .def_static("PrepareTrimming_s",
            [](const Standard_Integer Degree,const Standard_Boolean Periodic, const NCollection_Array1<Standard_Real> & Knots, const NCollection_Array1<Standard_Integer> & Mults,const Standard_Real U1,const Standard_Real U2 ){
                Standard_Integer  NbKnots;
                Standard_Integer  NbPoles;

                BSplCLib::PrepareTrimming(Degree,Periodic,Knots,Mults,U1,U2,NbKnots,NbPoles);
                
return std::make_tuple(NbKnots,NbPoles); },
            R"#(Set in <NbKnots> and <NbPoles> the number of Knots and Poles of the curve resulting from the trimming of the BSplinecurve defined with <degree>, <knots>, <mults>)#"  , py::arg("Degree"),  py::arg("Periodic"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("U1"),  py::arg("U2")
          )
        .def_static("D0_s",
            [](const Standard_Real U,const Standard_Integer Index,const Standard_Integer Degree,const Standard_Boolean Periodic, const NCollection_Array1<Standard_Real> & Poles, const NCollection_Array1<Standard_Real> * Weights, const NCollection_Array1<Standard_Real> & Knots, const NCollection_Array1<Standard_Integer> * Mults ){
                Standard_Real  P;

                BSplCLib::D0(U,Index,Degree,Periodic,Poles,Weights,Knots,Mults,P);
                
return std::make_tuple(P); },
            R"#(None)#"  , py::arg("U"),  py::arg("Index"),  py::arg("Degree"),  py::arg("Periodic"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Knots"),  py::arg("Mults")
          )
        .def_static("D1_s",
            [](const Standard_Real U,const Standard_Integer Index,const Standard_Integer Degree,const Standard_Boolean Periodic, const NCollection_Array1<Standard_Real> & Poles, const NCollection_Array1<Standard_Real> * Weights, const NCollection_Array1<Standard_Real> & Knots, const NCollection_Array1<Standard_Integer> * Mults ){
                Standard_Real  P;
                Standard_Real  V;

                BSplCLib::D1(U,Index,Degree,Periodic,Poles,Weights,Knots,Mults,P,V);
                
return std::make_tuple(P,V); },
            R"#(None)#"  , py::arg("U"),  py::arg("Index"),  py::arg("Degree"),  py::arg("Periodic"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Knots"),  py::arg("Mults")
          )
        .def_static("D2_s",
            [](const Standard_Real U,const Standard_Integer Index,const Standard_Integer Degree,const Standard_Boolean Periodic, const NCollection_Array1<Standard_Real> & Poles, const NCollection_Array1<Standard_Real> * Weights, const NCollection_Array1<Standard_Real> & Knots, const NCollection_Array1<Standard_Integer> * Mults ){
                Standard_Real  P;
                Standard_Real  V1;
                Standard_Real  V2;

                BSplCLib::D2(U,Index,Degree,Periodic,Poles,Weights,Knots,Mults,P,V1,V2);
                
return std::make_tuple(P,V1,V2); },
            R"#(None)#"  , py::arg("U"),  py::arg("Index"),  py::arg("Degree"),  py::arg("Periodic"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Knots"),  py::arg("Mults")
          )
        .def_static("D3_s",
            [](const Standard_Real U,const Standard_Integer Index,const Standard_Integer Degree,const Standard_Boolean Periodic, const NCollection_Array1<Standard_Real> & Poles, const NCollection_Array1<Standard_Real> * Weights, const NCollection_Array1<Standard_Real> & Knots, const NCollection_Array1<Standard_Integer> * Mults ){
                Standard_Real  P;
                Standard_Real  V1;
                Standard_Real  V2;
                Standard_Real  V3;

                BSplCLib::D3(U,Index,Degree,Periodic,Poles,Weights,Knots,Mults,P,V1,V2,V3);
                
return std::make_tuple(P,V1,V2,V3); },
            R"#(None)#"  , py::arg("U"),  py::arg("Index"),  py::arg("Degree"),  py::arg("Periodic"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Knots"),  py::arg("Mults")
          )
        .def_static("MergeBSplineKnots_s",
            [](const Standard_Real Tolerance,const Standard_Real StartValue,const Standard_Real EndValue,const Standard_Integer Degree1, const NCollection_Array1<Standard_Real> & Knots1, const NCollection_Array1<Standard_Integer> & Mults1,const Standard_Integer Degree2, const NCollection_Array1<Standard_Real> & Knots2, const NCollection_Array1<Standard_Integer> & Mults2,TColStd_HArray1OfReal& NewKnots,TColStd_HArray1OfInteger& NewMults ){
                Standard_Integer  NumPoles;
                opencascade::handle<TColStd_HArray1OfReal>  NewKnots_ptr; NewKnots_ptr = &NewKnots;
                opencascade::handle<TColStd_HArray1OfInteger>  NewMults_ptr; NewMults_ptr = &NewMults;

                BSplCLib::MergeBSplineKnots(Tolerance,StartValue,EndValue,Degree1,Knots1,Mults1,Degree2,Knots2,Mults2,NumPoles,NewKnots_ptr,NewMults_ptr);
                if ( NewKnots_ptr.get() != &NewKnots ) copy_if_copy_constructible(NewKnots, *NewKnots_ptr);
                if ( NewMults_ptr.get() != &NewMults ) copy_if_copy_constructible(NewMults, *NewMults_ptr);

return std::make_tuple(NumPoles); },
            R"#(Merges two knot vector by setting the starting and ending values to StartValue and EndValue)#"  , py::arg("Tolerance"),  py::arg("StartValue"),  py::arg("EndValue"),  py::arg("Degree1"),  py::arg("Knots1"),  py::arg("Mults1"),  py::arg("Degree2"),  py::arg("Knots2"),  py::arg("Mults2"),  py::arg("NewKnots"),  py::arg("NewMults")
          )
        .def_static("FunctionReparameterise_s",
            [](const BSplCLib_EvaluatorFunction & Function,const Standard_Integer BSplineDegree, const NCollection_Array1<Standard_Real> & BSplineFlatKnots,const Standard_Integer PolesDimension, const NCollection_Array1<Standard_Real> & FlatKnots,const Standard_Integer NewDegree ){
                Standard_Real  Poles;
                Standard_Real  NewPoles;
                Standard_Integer  theStatus;

                BSplCLib::FunctionReparameterise(Function,BSplineDegree,BSplineFlatKnots,PolesDimension,Poles,FlatKnots,NewDegree,NewPoles,theStatus);
                
return std::make_tuple(Poles,NewPoles,theStatus); },
            R"#(This function will compose a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] with a function a(t) which is assumed to satisfy the following:)#"  , py::arg("Function"),  py::arg("BSplineDegree"),  py::arg("BSplineFlatKnots"),  py::arg("PolesDimension"),  py::arg("FlatKnots"),  py::arg("NewDegree")
          )
        .def_static("FunctionReparameterise_s",
            [](const BSplCLib_EvaluatorFunction & Function,const Standard_Integer BSplineDegree, const NCollection_Array1<Standard_Real> & BSplineFlatKnots, const NCollection_Array1<Standard_Real> & Poles, const NCollection_Array1<Standard_Real> & FlatKnots,const Standard_Integer NewDegree,NCollection_Array1<Standard_Real> & NewPoles ){
                Standard_Integer  theStatus;

                BSplCLib::FunctionReparameterise(Function,BSplineDegree,BSplineFlatKnots,Poles,FlatKnots,NewDegree,NewPoles,theStatus);
                
return std::make_tuple(theStatus); },
            R"#(This function will compose a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] with a function a(t) which is assumed to satisfy the following:)#"  , py::arg("Function"),  py::arg("BSplineDegree"),  py::arg("BSplineFlatKnots"),  py::arg("Poles"),  py::arg("FlatKnots"),  py::arg("NewDegree"),  py::arg("NewPoles")
          )
        .def_static("FunctionReparameterise_s",
            [](const BSplCLib_EvaluatorFunction & Function,const Standard_Integer BSplineDegree, const NCollection_Array1<Standard_Real> & BSplineFlatKnots, const NCollection_Array1<gp_Pnt> & Poles, const NCollection_Array1<Standard_Real> & FlatKnots,const Standard_Integer NewDegree,NCollection_Array1<gp_Pnt> & NewPoles ){
                Standard_Integer  theStatus;

                BSplCLib::FunctionReparameterise(Function,BSplineDegree,BSplineFlatKnots,Poles,FlatKnots,NewDegree,NewPoles,theStatus);
                
return std::make_tuple(theStatus); },
            R"#(this will compose a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] with a function a(t) which is assumed to satisfy the following : 1. F(a(t)) is a polynomial BSpline that can be expressed exactly as a BSpline of degree NewDegree on the knots FlatKnots 2. a(t) defines a differentiable isomorphism between the range of FlatKnots to the range of BSplineFlatKnots which is the same as the range of F(t) Warning: it is the caller's responsibility to insure that conditions 1. and 2. above are satisfied : no check whatsoever is made in this method theStatus will return 0 if OK else it will return the pivot index of the matrix that was inverted to compute the multiplied BSpline : the method used is interpolation at Schoenenberg points of F(a(t)))#"  , py::arg("Function"),  py::arg("BSplineDegree"),  py::arg("BSplineFlatKnots"),  py::arg("Poles"),  py::arg("FlatKnots"),  py::arg("NewDegree"),  py::arg("NewPoles")
          )
        .def_static("FunctionReparameterise_s",
            [](const BSplCLib_EvaluatorFunction & Function,const Standard_Integer BSplineDegree, const NCollection_Array1<Standard_Real> & BSplineFlatKnots, const NCollection_Array1<gp_Pnt2d> & Poles, const NCollection_Array1<Standard_Real> & FlatKnots,const Standard_Integer NewDegree,NCollection_Array1<gp_Pnt2d> & NewPoles ){
                Standard_Integer  theStatus;

                BSplCLib::FunctionReparameterise(Function,BSplineDegree,BSplineFlatKnots,Poles,FlatKnots,NewDegree,NewPoles,theStatus);
                
return std::make_tuple(theStatus); },
            R"#(this will compose a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] with a function a(t) which is assumed to satisfy the following : 1. F(a(t)) is a polynomial BSpline that can be expressed exactly as a BSpline of degree NewDegree on the knots FlatKnots 2. a(t) defines a differentiable isomorphism between the range of FlatKnots to the range of BSplineFlatKnots which is the same as the range of F(t) Warning: it is the caller's responsibility to insure that conditions 1. and 2. above are satisfied : no check whatsoever is made in this method theStatus will return 0 if OK else it will return the pivot index of the matrix that was inverted to compute the multiplied BSpline : the method used is interpolation at Schoenenberg points of F(a(t)))#"  , py::arg("Function"),  py::arg("BSplineDegree"),  py::arg("BSplineFlatKnots"),  py::arg("Poles"),  py::arg("FlatKnots"),  py::arg("NewDegree"),  py::arg("NewPoles")
          )
        .def_static("FunctionMultiply_s",
            [](const BSplCLib_EvaluatorFunction & Function,const Standard_Integer BSplineDegree, const NCollection_Array1<Standard_Real> & BSplineFlatKnots,const Standard_Integer PolesDimension, const NCollection_Array1<Standard_Real> & FlatKnots,const Standard_Integer NewDegree ){
                Standard_Real  Poles;
                Standard_Real  NewPoles;
                Standard_Integer  theStatus;

                BSplCLib::FunctionMultiply(Function,BSplineDegree,BSplineFlatKnots,PolesDimension,Poles,FlatKnots,NewDegree,NewPoles,theStatus);
                
return std::make_tuple(Poles,NewPoles,theStatus); },
            R"#(this will multiply a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] by a function a(t) which is assumed to satisfy the following : 1. a(t) * F(t) is a polynomial BSpline that can be expressed exactly as a BSpline of degree NewDegree on the knots FlatKnots 2. the range of a(t) is the same as the range of F(t) Warning: it is the caller's responsibility to insure that conditions 1. and 2. above are satisfied : no check whatsoever is made in this method theStatus will return 0 if OK else it will return the pivot index of the matrix that was inverted to compute the multiplied BSpline : the method used is interpolation at Schoenenberg points of a(t)*F(t))#"  , py::arg("Function"),  py::arg("BSplineDegree"),  py::arg("BSplineFlatKnots"),  py::arg("PolesDimension"),  py::arg("FlatKnots"),  py::arg("NewDegree")
          )
        .def_static("FunctionMultiply_s",
            [](const BSplCLib_EvaluatorFunction & Function,const Standard_Integer BSplineDegree, const NCollection_Array1<Standard_Real> & BSplineFlatKnots, const NCollection_Array1<Standard_Real> & Poles, const NCollection_Array1<Standard_Real> & FlatKnots,const Standard_Integer NewDegree,NCollection_Array1<Standard_Real> & NewPoles ){
                Standard_Integer  theStatus;

                BSplCLib::FunctionMultiply(Function,BSplineDegree,BSplineFlatKnots,Poles,FlatKnots,NewDegree,NewPoles,theStatus);
                
return std::make_tuple(theStatus); },
            R"#(this will multiply a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] by a function a(t) which is assumed to satisfy the following : 1. a(t) * F(t) is a polynomial BSpline that can be expressed exactly as a BSpline of degree NewDegree on the knots FlatKnots 2. the range of a(t) is the same as the range of F(t) Warning: it is the caller's responsibility to insure that conditions 1. and 2. above are satisfied : no check whatsoever is made in this method theStatus will return 0 if OK else it will return the pivot index of the matrix that was inverted to compute the multiplied BSpline : the method used is interpolation at Schoenenberg points of a(t)*F(t))#"  , py::arg("Function"),  py::arg("BSplineDegree"),  py::arg("BSplineFlatKnots"),  py::arg("Poles"),  py::arg("FlatKnots"),  py::arg("NewDegree"),  py::arg("NewPoles")
          )
        .def_static("FunctionMultiply_s",
            [](const BSplCLib_EvaluatorFunction & Function,const Standard_Integer BSplineDegree, const NCollection_Array1<Standard_Real> & BSplineFlatKnots, const NCollection_Array1<gp_Pnt2d> & Poles, const NCollection_Array1<Standard_Real> & FlatKnots,const Standard_Integer NewDegree,NCollection_Array1<gp_Pnt2d> & NewPoles ){
                Standard_Integer  theStatus;

                BSplCLib::FunctionMultiply(Function,BSplineDegree,BSplineFlatKnots,Poles,FlatKnots,NewDegree,NewPoles,theStatus);
                
return std::make_tuple(theStatus); },
            R"#(this will multiply a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] by a function a(t) which is assumed to satisfy the following : 1. a(t) * F(t) is a polynomial BSpline that can be expressed exactly as a BSpline of degree NewDegree on the knots FlatKnots 2. the range of a(t) is the same as the range of F(t) Warning: it is the caller's responsibility to insure that conditions 1. and 2. above are satisfied : no check whatsoever is made in this method theStatus will return 0 if OK else it will return the pivot index of the matrix that was inverted to compute the multiplied BSpline : the method used is interpolation at Schoenenberg points of a(t)*F(t))#"  , py::arg("Function"),  py::arg("BSplineDegree"),  py::arg("BSplineFlatKnots"),  py::arg("Poles"),  py::arg("FlatKnots"),  py::arg("NewDegree"),  py::arg("NewPoles")
          )
        .def_static("FunctionMultiply_s",
            [](const BSplCLib_EvaluatorFunction & Function,const Standard_Integer BSplineDegree, const NCollection_Array1<Standard_Real> & BSplineFlatKnots, const NCollection_Array1<gp_Pnt> & Poles, const NCollection_Array1<Standard_Real> & FlatKnots,const Standard_Integer NewDegree,NCollection_Array1<gp_Pnt> & NewPoles ){
                Standard_Integer  theStatus;

                BSplCLib::FunctionMultiply(Function,BSplineDegree,BSplineFlatKnots,Poles,FlatKnots,NewDegree,NewPoles,theStatus);
                
return std::make_tuple(theStatus); },
            R"#(this will multiply a given Vectorial BSpline F(t) defined by its BSplineDegree and BSplineFlatKnotsl, its Poles array which are coded as an array of Real of the form [1..NumPoles][1..PolesDimension] by a function a(t) which is assumed to satisfy the following : 1. a(t) * F(t) is a polynomial BSpline that can be expressed exactly as a BSpline of degree NewDegree on the knots FlatKnots 2. the range of a(t) is the same as the range of F(t) Warning: it is the caller's responsibility to insure that conditions 1. and 2. above are satisfied : no check whatsoever is made in this method theStatus will return 0 if OK else it will return the pivot index of the matrix that was inverted to compute the multiplied BSpline : the method used is interpolation at Schoenenberg points of a(t)*F(t))#"  , py::arg("Function"),  py::arg("BSplineDegree"),  py::arg("BSplineFlatKnots"),  py::arg("Poles"),  py::arg("FlatKnots"),  py::arg("NewDegree"),  py::arg("NewPoles")
          )
        .def_static("Eval_s",
            [](const Standard_Real U,const Standard_Boolean PeriodicFlag,const Standard_Integer DerivativeRequest,const Standard_Integer Degree, const NCollection_Array1<Standard_Real> & FlatKnots,const Standard_Integer ArrayDimension ){
                Standard_Integer  ExtrapMode;
                Standard_Real  Poles;
                Standard_Real  Result;

                BSplCLib::Eval(U,PeriodicFlag,DerivativeRequest,ExtrapMode,Degree,FlatKnots,ArrayDimension,Poles,Result);
                
return std::make_tuple(ExtrapMode,Poles,Result); },
            R"#(Perform the De Boor algorithm to evaluate a point at parameter <U>, with <Degree> and <Dimension>.)#"  , py::arg("U"),  py::arg("PeriodicFlag"),  py::arg("DerivativeRequest"),  py::arg("Degree"),  py::arg("FlatKnots"),  py::arg("ArrayDimension")
          )
        .def_static("Eval_s",
            [](const Standard_Real U,const Standard_Boolean PeriodicFlag,const Standard_Integer DerivativeRequest,const Standard_Integer Degree, const NCollection_Array1<Standard_Real> & FlatKnots,const Standard_Integer ArrayDimension ){
                Standard_Integer  ExtrapMode;
                Standard_Real  Poles;
                Standard_Real  Weights;
                Standard_Real  PolesResult;
                Standard_Real  WeightsResult;

                BSplCLib::Eval(U,PeriodicFlag,DerivativeRequest,ExtrapMode,Degree,FlatKnots,ArrayDimension,Poles,Weights,PolesResult,WeightsResult);
                
return std::make_tuple(ExtrapMode,Poles,Weights,PolesResult,WeightsResult); },
            R"#(Perform the De Boor algorithm to evaluate a point at parameter <U>, with <Degree> and <Dimension>. Evaluates by multiplying the Poles by the Weights and gives the homogeneous result in PolesResult that is the results of the evaluation of the numerator once it has been multiplied by the weights and in WeightsResult one has the result of the evaluation of the denominator)#"  , py::arg("U"),  py::arg("PeriodicFlag"),  py::arg("DerivativeRequest"),  py::arg("Degree"),  py::arg("FlatKnots"),  py::arg("ArrayDimension")
          )
        .def_static("Eval_s",
            [](const Standard_Real U,const Standard_Boolean PeriodicFlag,const Standard_Boolean HomogeneousFlag,const Standard_Integer Degree, const NCollection_Array1<Standard_Real> & FlatKnots, const NCollection_Array1<gp_Pnt> & Poles, const NCollection_Array1<Standard_Real> & Weights,gp_Pnt & Point ){
                Standard_Integer  ExtrapMode;
                Standard_Real  Weight;

                BSplCLib::Eval(U,PeriodicFlag,HomogeneousFlag,ExtrapMode,Degree,FlatKnots,Poles,Weights,Point,Weight);
                
return std::make_tuple(ExtrapMode,Weight); },
            R"#(Perform the evaluation of the Bspline Basis and then multiplies by the weights this just evaluates the current point)#"  , py::arg("U"),  py::arg("PeriodicFlag"),  py::arg("HomogeneousFlag"),  py::arg("Degree"),  py::arg("FlatKnots"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Point")
          )
        .def_static("Eval_s",
            [](const Standard_Real U,const Standard_Boolean PeriodicFlag,const Standard_Boolean HomogeneousFlag,const Standard_Integer Degree, const NCollection_Array1<Standard_Real> & FlatKnots, const NCollection_Array1<gp_Pnt2d> & Poles, const NCollection_Array1<Standard_Real> & Weights,gp_Pnt2d & Point ){
                Standard_Integer  ExtrapMode;
                Standard_Real  Weight;

                BSplCLib::Eval(U,PeriodicFlag,HomogeneousFlag,ExtrapMode,Degree,FlatKnots,Poles,Weights,Point,Weight);
                
return std::make_tuple(ExtrapMode,Weight); },
            R"#(Perform the evaluation of the Bspline Basis and then multiplies by the weights this just evaluates the current point)#"  , py::arg("U"),  py::arg("PeriodicFlag"),  py::arg("HomogeneousFlag"),  py::arg("Degree"),  py::arg("FlatKnots"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("Point")
          )
        .def_static("TangExtendToConstraint_s",
            []( const NCollection_Array1<Standard_Real> & FlatKnots,const Standard_Real C1Coefficient,const Standard_Integer NumPoles,const Standard_Integer Dimension,const Standard_Integer Degree, const NCollection_Array1<Standard_Real> & ConstraintPoint,const Standard_Integer Continuity,const Standard_Boolean After ){
                Standard_Real  Poles;
                Standard_Integer  NbPolesResult;
                Standard_Integer  NbKnotsRsult;
                Standard_Real  KnotsResult;
                Standard_Real  PolesResult;

                BSplCLib::TangExtendToConstraint(FlatKnots,C1Coefficient,NumPoles,Poles,Dimension,Degree,ConstraintPoint,Continuity,After,NbPolesResult,NbKnotsRsult,KnotsResult,PolesResult);
                
return std::make_tuple(Poles,NbPolesResult,NbKnotsRsult,KnotsResult,PolesResult); },
            R"#(Extend a BSpline nD using the tangency map <C1Coefficient> is the coefficient of reparametrisation <Continuity> must be equal to 1, 2 or 3. <Degree> must be greater or equal than <Continuity> + 1.)#"  , py::arg("FlatKnots"),  py::arg("C1Coefficient"),  py::arg("NumPoles"),  py::arg("Dimension"),  py::arg("Degree"),  py::arg("ConstraintPoint"),  py::arg("Continuity"),  py::arg("After")
          )
        .def_static("Interpolate_s",
            [](const Standard_Integer Degree, const NCollection_Array1<Standard_Real> & FlatKnots, const NCollection_Array1<Standard_Real> & Parameters, const NCollection_Array1<Standard_Integer> & ContactOrderArray,NCollection_Array1<gp_Pnt> & Poles ){
                Standard_Integer  InversionProblem;

                BSplCLib::Interpolate(Degree,FlatKnots,Parameters,ContactOrderArray,Poles,InversionProblem);
                
return std::make_tuple(InversionProblem); },
            R"#(Performs the interpolation of the data given in the Poles array according to the requests in ContactOrderArray that is : if ContactOrderArray(i) has value d it means that Poles(i) contains the dth derivative of the function to be interpolated. The length L of the following arrays must be the same : Parameters, ContactOrderArray, Poles, The length of FlatKnots is Degree + L + 1 Warning: the method used to do that interpolation is gauss elimination WITHOUT pivoting. Thus if the diagonal is not dominant there is no guarantee that the algorithm will work. Nevertheless for Cubic interpolation or interpolation at Scheonberg points the method will work The InversionProblem will report 0 if there was no problem else it will give the index of the faulty pivot)#"  , py::arg("Degree"),  py::arg("FlatKnots"),  py::arg("Parameters"),  py::arg("ContactOrderArray"),  py::arg("Poles")
          )
        .def_static("Interpolate_s",
            [](const Standard_Integer Degree, const NCollection_Array1<Standard_Real> & FlatKnots, const NCollection_Array1<Standard_Real> & Parameters, const NCollection_Array1<Standard_Integer> & ContactOrderArray,NCollection_Array1<gp_Pnt2d> & Poles ){
                Standard_Integer  InversionProblem;

                BSplCLib::Interpolate(Degree,FlatKnots,Parameters,ContactOrderArray,Poles,InversionProblem);
                
return std::make_tuple(InversionProblem); },
            R"#(Performs the interpolation of the data given in the Poles array according to the requests in ContactOrderArray that is : if ContactOrderArray(i) has value d it means that Poles(i) contains the dth derivative of the function to be interpolated. The length L of the following arrays must be the same : Parameters, ContactOrderArray, Poles, The length of FlatKnots is Degree + L + 1 Warning: the method used to do that interpolation is gauss elimination WITHOUT pivoting. Thus if the diagonal is not dominant there is no guarantee that the algorithm will work. Nevertheless for Cubic interpolation at knots or interpolation at Scheonberg points the method will work. The InversionProblem w ll report 0 if there was no problem else it will give the index of the faulty pivot)#"  , py::arg("Degree"),  py::arg("FlatKnots"),  py::arg("Parameters"),  py::arg("ContactOrderArray"),  py::arg("Poles")
          )
        .def_static("Interpolate_s",
            [](const Standard_Integer Degree, const NCollection_Array1<Standard_Real> & FlatKnots, const NCollection_Array1<Standard_Real> & Parameters, const NCollection_Array1<Standard_Integer> & ContactOrderArray,NCollection_Array1<gp_Pnt> & Poles,NCollection_Array1<Standard_Real> & Weights ){
                Standard_Integer  InversionProblem;

                BSplCLib::Interpolate(Degree,FlatKnots,Parameters,ContactOrderArray,Poles,Weights,InversionProblem);
                
return std::make_tuple(InversionProblem); },
            R"#(Performs the interpolation of the data given in the Poles array according to the requests in ContactOrderArray that is : if ContactOrderArray(i) has value d it means that Poles(i) contains the dth derivative of the function to be interpolated. The length L of the following arrays must be the same : Parameters, ContactOrderArray, Poles, The length of FlatKnots is Degree + L + 1 Warning: the method used to do that interpolation is gauss elimination WITHOUT pivoting. Thus if the diagonal is not dominant there is no guarantee that the algorithm will work. Nevertheless for Cubic interpolation at knots or interpolation at Scheonberg points the method will work. The InversionProblem will report 0 if there was no problem else it will give the index of the faulty pivot)#"  , py::arg("Degree"),  py::arg("FlatKnots"),  py::arg("Parameters"),  py::arg("ContactOrderArray"),  py::arg("Poles"),  py::arg("Weights")
          )
        .def_static("Interpolate_s",
            [](const Standard_Integer Degree, const NCollection_Array1<Standard_Real> & FlatKnots, const NCollection_Array1<Standard_Real> & Parameters, const NCollection_Array1<Standard_Integer> & ContactOrderArray,NCollection_Array1<gp_Pnt2d> & Poles,NCollection_Array1<Standard_Real> & Weights ){
                Standard_Integer  InversionProblem;

                BSplCLib::Interpolate(Degree,FlatKnots,Parameters,ContactOrderArray,Poles,Weights,InversionProblem);
                
return std::make_tuple(InversionProblem); },
            R"#(Performs the interpolation of the data given in the Poles array according to the requests in ContactOrderArray that is : if ContactOrderArray(i) has value d it means that Poles(i) contains the dth derivative of the function to be interpolated. The length L of the following arrays must be the same : Parameters, ContactOrderArray, Poles, The length of FlatKnots is Degree + L + 1 Warning: the method used to do that interpolation is gauss elimination WITHOUT pivoting. Thus if the diagonal is not dominant there is no guarantee that the algorithm will work. Nevertheless for Cubic interpolation at knots or interpolation at Scheonberg points the method will work. The InversionProblem w ll report 0 if there was no problem else it will give the i)#"  , py::arg("Degree"),  py::arg("FlatKnots"),  py::arg("Parameters"),  py::arg("ContactOrderArray"),  py::arg("Poles"),  py::arg("Weights")
          )
        .def_static("Interpolate_s",
            [](const Standard_Integer Degree, const NCollection_Array1<Standard_Real> & FlatKnots, const NCollection_Array1<Standard_Real> & Parameters, const NCollection_Array1<Standard_Integer> & ContactOrderArray,const Standard_Integer ArrayDimension ){
                Standard_Real  Poles;
                Standard_Integer  InversionProblem;

                BSplCLib::Interpolate(Degree,FlatKnots,Parameters,ContactOrderArray,ArrayDimension,Poles,InversionProblem);
                
return std::make_tuple(Poles,InversionProblem); },
            R"#(Performs the interpolation of the data given in the Poles array according to the requests in ContactOrderArray that is : if ContactOrderArray(i) has value d it means that Poles(i) contains the dth derivative of the function to be interpolated. The length L of the following arrays must be the same : Parameters, ContactOrderArray The length of FlatKnots is Degree + L + 1 The PolesArray is an seen as an Array[1..N][1..ArrayDimension] with N = tge length of the parameters array Warning: the method used to do that interpolation is gauss elimination WITHOUT pivoting. Thus if the diagonal is not dominant there is no guarantee that the algorithm will work. Nevertheless for Cubic interpolation or interpolation at Scheonberg points the method will work The InversionProblem will report 0 if there was no problem else it will give the index of the faulty pivot)#"  , py::arg("Degree"),  py::arg("FlatKnots"),  py::arg("Parameters"),  py::arg("ContactOrderArray"),  py::arg("ArrayDimension")
          )
        .def_static("Interpolate_s",
            [](const Standard_Integer Degree, const NCollection_Array1<Standard_Real> & FlatKnots, const NCollection_Array1<Standard_Real> & Parameters, const NCollection_Array1<Standard_Integer> & ContactOrderArray,const Standard_Integer ArrayDimension ){
                Standard_Real  Poles;
                Standard_Real  Weights;
                Standard_Integer  InversionProblem;

                BSplCLib::Interpolate(Degree,FlatKnots,Parameters,ContactOrderArray,ArrayDimension,Poles,Weights,InversionProblem);
                
return std::make_tuple(Poles,Weights,InversionProblem); },
            R"#(None)#"  , py::arg("Degree"),  py::arg("FlatKnots"),  py::arg("Parameters"),  py::arg("ContactOrderArray"),  py::arg("ArrayDimension")
          )
        .def_static("MovePoint_s",
            [](const Standard_Real U,const gp_Vec2d & Displ,const Standard_Integer Index1,const Standard_Integer Index2,const Standard_Integer Degree, const NCollection_Array1<gp_Pnt2d> & Poles, const NCollection_Array1<Standard_Real> * Weights, const NCollection_Array1<Standard_Real> & FlatKnots,NCollection_Array1<gp_Pnt2d> & NewPoles ){
                Standard_Integer  FirstIndex;
                Standard_Integer  LastIndex;

                BSplCLib::MovePoint(U,Displ,Index1,Index2,Degree,Poles,Weights,FlatKnots,FirstIndex,LastIndex,NewPoles);
                
return std::make_tuple(FirstIndex,LastIndex); },
            R"#(Find the new poles which allows an old point (with a given u as parameter) to reach a new position Index1 and Index2 indicate the range of poles we can move (1, NbPoles-1) or (2, NbPoles) -> no constraint for one side don't enter (1,NbPoles) -> error: rigid move (2, NbPoles-1) -> the ends are enforced (3, NbPoles-2) -> the ends and the tangency are enforced if Problem in BSplineBasis calculation, no change for the curve and FirstIndex, LastIndex = 0)#"  , py::arg("U"),  py::arg("Displ"),  py::arg("Index1"),  py::arg("Index2"),  py::arg("Degree"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("FlatKnots"),  py::arg("NewPoles")
          )
        .def_static("MovePoint_s",
            [](const Standard_Real U,const gp_Vec & Displ,const Standard_Integer Index1,const Standard_Integer Index2,const Standard_Integer Degree, const NCollection_Array1<gp_Pnt> & Poles, const NCollection_Array1<Standard_Real> * Weights, const NCollection_Array1<Standard_Real> & FlatKnots,NCollection_Array1<gp_Pnt> & NewPoles ){
                Standard_Integer  FirstIndex;
                Standard_Integer  LastIndex;

                BSplCLib::MovePoint(U,Displ,Index1,Index2,Degree,Poles,Weights,FlatKnots,FirstIndex,LastIndex,NewPoles);
                
return std::make_tuple(FirstIndex,LastIndex); },
            R"#(Find the new poles which allows an old point (with a given u as parameter) to reach a new position Index1 and Index2 indicate the range of poles we can move (1, NbPoles-1) or (2, NbPoles) -> no constraint for one side don't enter (1,NbPoles) -> error: rigid move (2, NbPoles-1) -> the ends are enforced (3, NbPoles-2) -> the ends and the tangency are enforced if Problem in BSplineBasis calculation, no change for the curve and FirstIndex, LastIndex = 0)#"  , py::arg("U"),  py::arg("Displ"),  py::arg("Index1"),  py::arg("Index2"),  py::arg("Degree"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("FlatKnots"),  py::arg("NewPoles")
          )
        .def_static("MovePointAndTangent_s",
            [](const Standard_Real U,const Standard_Integer ArrayDimension,const Standard_Real Tolerance,const Standard_Integer Degree,const Standard_Integer StartingCondition,const Standard_Integer EndingCondition, const NCollection_Array1<Standard_Real> * Weights, const NCollection_Array1<Standard_Real> & FlatKnots ){
                Standard_Real  Delta;
                Standard_Real  DeltaDerivative;
                Standard_Real  Poles;
                Standard_Real  NewPoles;
                Standard_Integer  ErrorStatus;

                BSplCLib::MovePointAndTangent(U,ArrayDimension,Delta,DeltaDerivative,Tolerance,Degree,StartingCondition,EndingCondition,Poles,Weights,FlatKnots,NewPoles,ErrorStatus);
                
return std::make_tuple(Delta,DeltaDerivative,Poles,NewPoles,ErrorStatus); },
            R"#(This is the dimension free version of the utility U is the parameter must be within the first FlatKnots and the last FlatKnots Delta is the amount the curve has to be moved DeltaDerivative is the amount the derivative has to be moved. Delta and DeltaDerivative must be array of dimension ArrayDimension Degree is the degree of the BSpline and the FlatKnots are the knots of the BSpline Starting Condition if = -1 means the starting point of the curve can move = 0 means the starting point of the curve cannot move but tangent starting point of the curve cannot move = 1 means the starting point and tangents cannot move = 2 means the starting point tangent and curvature cannot move = ... Same holds for EndingCondition Poles are the poles of the curve Weights are the weights of the curve if not NULL NewPoles are the poles of the deformed curve ErrorStatus will be 0 if no error happened 1 if there are not enough knots/poles the imposed conditions The way to solve this problem is to add knots to the BSpline If StartCondition = 1 and EndCondition = 1 then you need at least 4 + 2 = 6 poles so for example to have a C1 cubic you will need have at least 2 internal knots.)#"  , py::arg("U"),  py::arg("ArrayDimension"),  py::arg("Tolerance"),  py::arg("Degree"),  py::arg("StartingCondition"),  py::arg("EndingCondition"),  py::arg("Weights"),  py::arg("FlatKnots")
          )
        .def_static("MovePointAndTangent_s",
            [](const Standard_Real U,const gp_Vec & Delta,const gp_Vec & DeltaDerivative,const Standard_Real Tolerance,const Standard_Integer Degree,const Standard_Integer StartingCondition,const Standard_Integer EndingCondition, const NCollection_Array1<gp_Pnt> & Poles, const NCollection_Array1<Standard_Real> * Weights, const NCollection_Array1<Standard_Real> & FlatKnots,NCollection_Array1<gp_Pnt> & NewPoles ){
                Standard_Integer  ErrorStatus;

                BSplCLib::MovePointAndTangent(U,Delta,DeltaDerivative,Tolerance,Degree,StartingCondition,EndingCondition,Poles,Weights,FlatKnots,NewPoles,ErrorStatus);
                
return std::make_tuple(ErrorStatus); },
            R"#(This is the dimension free version of the utility U is the parameter must be within the first FlatKnots and the last FlatKnots Delta is the amount the curve has to be moved DeltaDerivative is the amount the derivative has to be moved. Delta and DeltaDerivative must be array of dimension ArrayDimension Degree is the degree of the BSpline and the FlatKnots are the knots of the BSpline Starting Condition if = -1 means the starting point of the curve can move = 0 means the starting point of the curve cannot move but tangent starting point of the curve cannot move = 1 means the starting point and tangents cannot move = 2 means the starting point tangent and curvature cannot move = ... Same holds for EndingCondition Poles are the poles of the curve Weights are the weights of the curve if not NULL NewPoles are the poles of the deformed curve ErrorStatus will be 0 if no error happened 1 if there are not enough knots/poles the imposed conditions The way to solve this problem is to add knots to the BSpline If StartCondition = 1 and EndCondition = 1 then you need at least 4 + 2 = 6 poles so for example to have a C1 cubic you will need have at least 2 internal knots.)#"  , py::arg("U"),  py::arg("Delta"),  py::arg("DeltaDerivative"),  py::arg("Tolerance"),  py::arg("Degree"),  py::arg("StartingCondition"),  py::arg("EndingCondition"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("FlatKnots"),  py::arg("NewPoles")
          )
        .def_static("MovePointAndTangent_s",
            [](const Standard_Real U,const gp_Vec2d & Delta,const gp_Vec2d & DeltaDerivative,const Standard_Real Tolerance,const Standard_Integer Degree,const Standard_Integer StartingCondition,const Standard_Integer EndingCondition, const NCollection_Array1<gp_Pnt2d> & Poles, const NCollection_Array1<Standard_Real> * Weights, const NCollection_Array1<Standard_Real> & FlatKnots,NCollection_Array1<gp_Pnt2d> & NewPoles ){
                Standard_Integer  ErrorStatus;

                BSplCLib::MovePointAndTangent(U,Delta,DeltaDerivative,Tolerance,Degree,StartingCondition,EndingCondition,Poles,Weights,FlatKnots,NewPoles,ErrorStatus);
                
return std::make_tuple(ErrorStatus); },
            R"#(This is the dimension free version of the utility U is the parameter must be within the first FlatKnots and the last FlatKnots Delta is the amount the curve has to be moved DeltaDerivative is the amount the derivative has to be moved. Delta and DeltaDerivative must be array of dimension ArrayDimension Degree is the degree of the BSpline and the FlatKnots are the knots of the BSpline Starting Condition if = -1 means the starting point of the curve can move = 0 means the starting point of the curve cannot move but tangent starting point of the curve cannot move = 1 means the starting point and tangents cannot move = 2 means the starting point tangent and curvature cannot move = ... Same holds for EndingCondition Poles are the poles of the curve Weights are the weights of the curve if not NULL NewPoles are the poles of the deformed curve ErrorStatus will be 0 if no error happened 1 if there are not enough knots/poles the imposed conditions The way to solve this problem is to add knots to the BSpline If StartCondition = 1 and EndCondition = 1 then you need at least 4 + 2 = 6 poles so for example to have a C1 cubic you will need have at least 2 internal knots.)#"  , py::arg("U"),  py::arg("Delta"),  py::arg("DeltaDerivative"),  py::arg("Tolerance"),  py::arg("Degree"),  py::arg("StartingCondition"),  py::arg("EndingCondition"),  py::arg("Poles"),  py::arg("Weights"),  py::arg("FlatKnots"),  py::arg("NewPoles")
          )
        .def_static("Resolution_s",
            [](const Standard_Integer ArrayDimension,const Standard_Integer NumPoles, const NCollection_Array1<Standard_Real> * Weights, const NCollection_Array1<Standard_Real> & FlatKnots,const Standard_Integer Degree,const Standard_Real Tolerance3D ){
                Standard_Real  PolesArray;
                Standard_Real  UTolerance;

                BSplCLib::Resolution(PolesArray,ArrayDimension,NumPoles,Weights,FlatKnots,Degree,Tolerance3D,UTolerance);
                
return std::make_tuple(PolesArray,UTolerance); },
            R"#(given a tolerance in 3D space returns a tolerance in U parameter space such that all u1 and u0 in the domain of the curve f(u) | u1 - u0 | < UTolerance and we have |f (u1) - f (u0)| < Tolerance3D)#"  , py::arg("ArrayDimension"),  py::arg("NumPoles"),  py::arg("Weights"),  py::arg("FlatKnots"),  py::arg("Degree"),  py::arg("Tolerance3D")
          )
        .def_static("Resolution_s",
            []( const NCollection_Array1<gp_Pnt> & Poles, const NCollection_Array1<Standard_Real> * Weights,const Standard_Integer NumPoles, const NCollection_Array1<Standard_Real> & FlatKnots,const Standard_Integer Degree,const Standard_Real Tolerance3D ){
                Standard_Real  UTolerance;

                BSplCLib::Resolution(Poles,Weights,NumPoles,FlatKnots,Degree,Tolerance3D,UTolerance);
                
return std::make_tuple(UTolerance); },
            R"#(given a tolerance in 3D space returns a tolerance in U parameter space such that all u1 and u0 in the domain of the curve f(u) | u1 - u0 | < UTolerance and we have |f (u1) - f (u0)| < Tolerance3D)#"  , py::arg("Poles"),  py::arg("Weights"),  py::arg("NumPoles"),  py::arg("FlatKnots"),  py::arg("Degree"),  py::arg("Tolerance3D")
          )
        .def_static("Resolution_s",
            []( const NCollection_Array1<gp_Pnt2d> & Poles, const NCollection_Array1<Standard_Real> * Weights,const Standard_Integer NumPoles, const NCollection_Array1<Standard_Real> & FlatKnots,const Standard_Integer Degree,const Standard_Real Tolerance3D ){
                Standard_Real  UTolerance;

                BSplCLib::Resolution(Poles,Weights,NumPoles,FlatKnots,Degree,Tolerance3D,UTolerance);
                
return std::make_tuple(UTolerance); },
            R"#(given a tolerance in 3D space returns a tolerance in U parameter space such that all u1 and u0 in the domain of the curve f(u) | u1 - u0 | < UTolerance and we have |f (u1) - f (u0)| < Tolerance3D)#"  , py::arg("Poles"),  py::arg("Weights"),  py::arg("NumPoles"),  py::arg("FlatKnots"),  py::arg("Degree"),  py::arg("Tolerance3D")
          )
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class BSplCLib_Cache from ./opencascade/BSplCLib_Cache.hxx
    klass = m.attr("BSplCLib_Cache");


    // nested enums

    static_cast<py::class_<BSplCLib_Cache ,opencascade::handle<BSplCLib_Cache>  , Standard_Transient >>(klass)
    // constructors
        .def(py::init< const Standard_Integer &,const Standard_Boolean &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<gp_Pnt2d> &, const NCollection_Array1<Standard_Real> * >()  , py::arg("theDegree"),  py::arg("thePeriodic"),  py::arg("theFlatKnots"),  py::arg("thePoles2d"),  py::arg("theWeights")=static_cast< const NCollection_Array1<Standard_Real> *>(NULL) )
        .def(py::init< const Standard_Integer &,const Standard_Boolean &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<gp_Pnt> &, const NCollection_Array1<Standard_Real> * >()  , py::arg("theDegree"),  py::arg("thePeriodic"),  py::arg("theFlatKnots"),  py::arg("thePoles"),  py::arg("theWeights")=static_cast< const NCollection_Array1<Standard_Real> *>(NULL) )
    // custom constructors
    // methods
        .def("IsCacheValid",
             (Standard_Boolean (BSplCLib_Cache::*)( Standard_Real  ) const) static_cast<Standard_Boolean (BSplCLib_Cache::*)( Standard_Real  ) const>(&BSplCLib_Cache::IsCacheValid),
             R"#(Verifies validity of the cache using flat parameter of the point)#"  , py::arg("theParameter")
          )
        .def("BuildCache",
             (void (BSplCLib_Cache::*)( const Standard_Real & ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> *  ) ) static_cast<void (BSplCLib_Cache::*)( const Standard_Real & ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<gp_Pnt2d> & ,   const NCollection_Array1<Standard_Real> *  ) >(&BSplCLib_Cache::BuildCache),
             R"#(Recomputes the cache data for 2D curves. Does not verify validity of the cache)#"  , py::arg("theParameter"),  py::arg("theFlatKnots"),  py::arg("thePoles2d"),  py::arg("theWeights")
          )
        .def("BuildCache",
             (void (BSplCLib_Cache::*)( const Standard_Real & ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> *  ) ) static_cast<void (BSplCLib_Cache::*)( const Standard_Real & ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> *  ) >(&BSplCLib_Cache::BuildCache),
             R"#(Recomputes the cache data for 3D curves. Does not verify validity of the cache)#"  , py::arg("theParameter"),  py::arg("theFlatKnots"),  py::arg("thePoles"),  py::arg("theWeights")=static_cast< const NCollection_Array1<Standard_Real> *>(NULL)
          )
        .def("D0",
             (void (BSplCLib_Cache::*)( const Standard_Real & ,  gp_Pnt2d &  ) const) static_cast<void (BSplCLib_Cache::*)( const Standard_Real & ,  gp_Pnt2d &  ) const>(&BSplCLib_Cache::D0),
             R"#(Calculates the point on the curve in the specified parameter)#"  , py::arg("theParameter"),  py::arg("thePoint")
          )
        .def("D0",
             (void (BSplCLib_Cache::*)( const Standard_Real & ,  gp_Pnt &  ) const) static_cast<void (BSplCLib_Cache::*)( const Standard_Real & ,  gp_Pnt &  ) const>(&BSplCLib_Cache::D0),
             R"#(None)#"  , py::arg("theParameter"),  py::arg("thePoint")
          )
        .def("D1",
             (void (BSplCLib_Cache::*)( const Standard_Real & ,  gp_Pnt2d & ,  gp_Vec2d &  ) const) static_cast<void (BSplCLib_Cache::*)( const Standard_Real & ,  gp_Pnt2d & ,  gp_Vec2d &  ) const>(&BSplCLib_Cache::D1),
             R"#(Calculates the point on the curve and its first derivative in the specified parameter)#"  , py::arg("theParameter"),  py::arg("thePoint"),  py::arg("theTangent")
          )
        .def("D1",
             (void (BSplCLib_Cache::*)( const Standard_Real & ,  gp_Pnt & ,  gp_Vec &  ) const) static_cast<void (BSplCLib_Cache::*)( const Standard_Real & ,  gp_Pnt & ,  gp_Vec &  ) const>(&BSplCLib_Cache::D1),
             R"#(None)#"  , py::arg("theParameter"),  py::arg("thePoint"),  py::arg("theTangent")
          )
        .def("D2",
             (void (BSplCLib_Cache::*)( const Standard_Real & ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const) static_cast<void (BSplCLib_Cache::*)( const Standard_Real & ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const>(&BSplCLib_Cache::D2),
             R"#(Calculates the point on the curve and two derivatives in the specified parameter)#"  , py::arg("theParameter"),  py::arg("thePoint"),  py::arg("theTangent"),  py::arg("theCurvature")
          )
        .def("D2",
             (void (BSplCLib_Cache::*)( const Standard_Real & ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (BSplCLib_Cache::*)( const Standard_Real & ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&BSplCLib_Cache::D2),
             R"#(None)#"  , py::arg("theParameter"),  py::arg("thePoint"),  py::arg("theTangent"),  py::arg("theCurvature")
          )
        .def("D3",
             (void (BSplCLib_Cache::*)( const Standard_Real & ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const) static_cast<void (BSplCLib_Cache::*)( const Standard_Real & ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const>(&BSplCLib_Cache::D3),
             R"#(Calculates the point on the curve and three derivatives in the specified parameter)#"  , py::arg("theParameter"),  py::arg("thePoint"),  py::arg("theTangent"),  py::arg("theCurvature"),  py::arg("theTorsion")
          )
        .def("D3",
             (void (BSplCLib_Cache::*)( const Standard_Real & ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (BSplCLib_Cache::*)( const Standard_Real & ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&BSplCLib_Cache::D3),
             R"#(None)#"  , py::arg("theParameter"),  py::arg("thePoint"),  py::arg("theTangent"),  py::arg("theCurvature"),  py::arg("theTorsion")
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&BSplCLib_Cache::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&BSplCLib_Cache::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (BSplCLib_Cache::*)() const) static_cast<const opencascade::handle<Standard_Type> & (BSplCLib_Cache::*)() const>(&BSplCLib_Cache::DynamicType),
             R"#(None)#"
             
         )
;

    // Class BSplCLib_CacheParams from ./opencascade/BSplCLib_CacheParams.hxx
    klass = m.attr("BSplCLib_CacheParams");


    // nested enums

    static_cast<py::class_<BSplCLib_CacheParams , shared_ptr<BSplCLib_CacheParams>  >>(klass)
    // constructors
        .def(py::init< Standard_Integer,Standard_Boolean, const NCollection_Array1<Standard_Real> & >()  , py::arg("theDegree"),  py::arg("thePeriodic"),  py::arg("theFlatKnots") )
    // custom constructors
    // methods
        .def("PeriodicNormalization",
             (Standard_Real (BSplCLib_CacheParams::*)( Standard_Real  ) const) static_cast<Standard_Real (BSplCLib_CacheParams::*)( Standard_Real  ) const>(&BSplCLib_CacheParams::PeriodicNormalization),
             R"#(Normalizes the parameter for periodic B-splines)#"  , py::arg("theParameter")
          )
        .def("IsCacheValid",
             (Standard_Boolean (BSplCLib_CacheParams::*)( Standard_Real  ) const) static_cast<Standard_Boolean (BSplCLib_CacheParams::*)( Standard_Real  ) const>(&BSplCLib_CacheParams::IsCacheValid),
             R"#(Verifies validity of the cache using flat parameter of the point)#"  , py::arg("theParameter")
          )
    // methods using call by reference i.s.o. return
        .def("LocateParameter",
             []( BSplCLib_CacheParams &self ,  const NCollection_Array1<Standard_Real> & theFlatKnots ){
                 Standard_Real  theParameter;

                 self.LocateParameter(theParameter,theFlatKnots);
                 
                 return std::make_tuple(theParameter); },
             R"#(Computes span for the specified parameter)#"  , py::arg("theFlatKnots")
          )
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
        .def_readwrite("SpanStart", &BSplCLib_CacheParams::SpanStart)
        .def_readwrite("SpanLength", &BSplCLib_CacheParams::SpanLength)
        .def_readwrite("SpanIndex", &BSplCLib_CacheParams::SpanIndex)
    // methods returning by ref wrapped as properties
;

    // Class BSplCLib_EvaluatorFunction from ./opencascade/BSplCLib_EvaluatorFunction.hxx
    klass = m.attr("BSplCLib_EvaluatorFunction");


    // nested enums

    static_cast<py::class_<BSplCLib_EvaluatorFunction , shared_ptr<BSplCLib_EvaluatorFunction> ,Py_BSplCLib_EvaluatorFunction >>(klass)
    // constructors
        .def(py::init<  >()  )
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
        .def("Evaluate",
             []( BSplCLib_EvaluatorFunction &self , const Standard_Integer theDerivativeRequest,const Standard_Real * theStartEnd,const Standard_Real theParameter ){
                 Standard_Real  theResult;
                Standard_Integer  theErrorCode;

                 self.Evaluate(theDerivativeRequest,theStartEnd,theParameter,theResult,theErrorCode);
                 
                 return std::make_tuple(theResult,theErrorCode); },
             R"#(Function evaluation method to be defined by descendant)#"  , py::arg("theDerivativeRequest"),  py::arg("theStartEnd"),  py::arg("theParameter")
          )
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
        .def("__call__",
             (void (BSplCLib_EvaluatorFunction::*)( const Standard_Integer ,  const Standard_Real * ,  const Standard_Real ,  Standard_Real & ,  Standard_Integer &  ) const) static_cast<void (BSplCLib_EvaluatorFunction::*)( const Standard_Integer ,  const Standard_Real * ,  const Standard_Real ,  Standard_Real & ,  Standard_Integer &  ) const>(&BSplCLib_EvaluatorFunction::operator()),
             py::is_operator(),
             R"#(Shortcut for function-call style usage)#"  , py::arg("theDerivativeRequest"),  py::arg("theStartEnd"),  py::arg("theParameter"),  py::arg("theResult"),  py::arg("theErrorCode")
          )
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

// functions
// ./opencascade/BSplCLib.hxx
// ./opencascade/BSplCLib_Cache.hxx
// ./opencascade/BSplCLib_CacheParams.hxx
// ./opencascade/BSplCLib_EvaluatorFunction.hxx
// ./opencascade/BSplCLib_KnotDistribution.hxx
// ./opencascade/BSplCLib_MultDistribution.hxx

// Additional functions

// operators

// register typdefs


// exceptions

// user-defined post-inclusion per module in the body

};

// user-defined post-inclusion per module

// user-defined post