File: BVH_tmpl.hxx

package info (click to toggle)
python-ocp 7.8.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 64,720 kB
  • sloc: cpp: 362,337; pascal: 33; python: 23; makefile: 4
file content (884 lines) | stat: -rw-r--r-- 60,344 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
#pragma once

// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

namespace py = pybind11;

// Standard Handle
#include <Standard_Handle.hxx>

// user-defined inclusion per module before includes

// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>

// module includes
#include <BVH_BinaryTree.hxx>
#include <BVH_BinnedBuilder.hxx>
#include <BVH_Box.hxx>
#include <BVH_BoxSet.hxx>
#include <BVH_BuildQueue.hxx>
#include <BVH_BuildThread.hxx>
#include <BVH_Builder.hxx>
#include <BVH_Constants.hxx>
#include <BVH_Distance.hxx>
#include <BVH_DistanceField.hxx>
#include <BVH_Geometry.hxx>
#include <BVH_LinearBuilder.hxx>
#include <BVH_Object.hxx>
#include <BVH_ObjectSet.hxx>
#include <BVH_PairDistance.hxx>
#include <BVH_PrimitiveSet.hxx>
#include <BVH_PrimitiveSet3d.hxx>
#include <BVH_Properties.hxx>
#include <BVH_QuadTree.hxx>
#include <BVH_QueueBuilder.hxx>
#include <BVH_QuickSorter.hxx>
#include <BVH_Ray.hxx>
#include <BVH_Set.hxx>
#include <BVH_Sorter.hxx>
#include <BVH_SpatialMedianBuilder.hxx>
#include <BVH_SweepPlaneBuilder.hxx>
#include <BVH_Tools.hxx>
#include <BVH_Traverse.hxx>
#include <BVH_Tree.hxx>
#include <BVH_Triangulation.hxx>

// user-defined pre
#include "OCP_specific.inc"

// Class template handling functions

template <typename T,int N>
void preregister_template_BVH_Transform(py::object &m, const char *name){
    py::class_<BVH_Transform<T,N> , opencascade::handle<BVH_Transform<T,N>> , BVH_Properties >(m,name,R"#(Stores transform properties of geometric object.)#");
}

template <typename T,int N>
void register_template_BVH_Transform(py::object &m, const char *name){
    static_cast<py::class_<BVH_Transform<T,N> , opencascade::handle<BVH_Transform<T,N>> , BVH_Properties >>(m.attr(name))
        .def(py::init<  >()  )
        .def(py::init<  const typename BVH::MatrixType<T, N>::Type & >() ,py::arg("theTransform") )
        .def("SetTransform",
             (void (BVH_Transform<T,N>::*)(  const typename BVH::MatrixType<T, N>::Type &  ) ) &BVH_Transform<T,N>::SetTransform,
             R"#(Sets new transformation matrix.)#" ,py::arg("theTransform"))
        .def("Apply",
             (BVH_Box<T, N> (BVH_Transform<T,N>::*)( const BVH_Box<T, N> &  ) const) &BVH_Transform<T,N>::Apply,
             R"#(Applies transformation matrix to bounding box.)#" ,py::arg("theBox"))
    ;
};

template <typename T,int N>
void preregister_template_BVH_Set(py::object &m, const char *name){
    py::class_<BVH_Set<T,N> , shared_ptr<BVH_Set<T,N>> >(m,name,R"#(Set of abstract entities (bounded by BVH boxes). This is the minimal geometry interface needed to construct BVH.)#");
}

template <typename T,int N>
void register_template_BVH_Set(py::object &m, const char *name){
    static_cast<py::class_<BVH_Set<T,N> , shared_ptr<BVH_Set<T,N>> >>(m.attr(name))
        .def(py::init<  >()  )
        .def("Box",
             (BVH_Box<T, N> (BVH_Set<T,N>::*)() const) &BVH_Set<T,N>::Box,
             R"#(Returns AABB of the entire set of objects.)#" )
        .def("Size",
             (Standard_Integer (BVH_Set<T,N>::*)() const) &BVH_Set<T,N>::Size,
             R"#(Returns total number of objects.)#" )
        .def("Box",
             (BVH_Box<T, N> (BVH_Set<T,N>::*)( const Standard_Integer  ) const) &BVH_Set<T,N>::Box,
             R"#(Returns AABB of the given object.)#" ,py::arg("theIndex"))
        .def("Center",
             (T (BVH_Set<T,N>::*)( const Standard_Integer ,  const Standard_Integer  ) const) &BVH_Set<T,N>::Center,
             R"#(Returns centroid position along the given axis.)#" ,py::arg("theIndex"), py::arg("theAxis"))
        .def("Swap",
             (void (BVH_Set<T,N>::*)( const Standard_Integer ,  const Standard_Integer  ) ) &BVH_Set<T,N>::Swap,
             R"#(Performs transposing the two given objects in the set.)#" ,py::arg("theIndex1"), py::arg("theIndex2"))
        .def("__len__",[](const BVH_Set<T,N> &self)
             { return self.Size(); }
             )
    ;
};

template <typename T,int N>
void preregister_template_BVH_Geometry(py::object &m, const char *name){
    py::class_<BVH_Geometry<T,N> , shared_ptr<BVH_Geometry<T,N>> >(m,name,R"#(BVH geometry as a set of abstract geometric objects organized with bounding volume hierarchy (BVH).)#");
}

template <typename T,int N>
void register_template_BVH_Geometry(py::object &m, const char *name){
    static_cast<py::class_<BVH_Geometry<T,N> , shared_ptr<BVH_Geometry<T,N>> >>(m.attr(name))
        .def(py::init<  >()  )
        .def(py::init< const opencascade::handle<BVH_Builder<T, N>> & >() ,py::arg("theBuilder") )
        .def("IsDirty",
             (Standard_Boolean (BVH_Geometry<T,N>::*)() const) &BVH_Geometry<T,N>::IsDirty,
             R"#(Returns TRUE if geometry state should be updated.)#" )
        .def("MarkDirty",
             (void (BVH_Geometry<T,N>::*)() ) &BVH_Geometry<T,N>::MarkDirty,
             R"#(Marks geometry as outdated.)#" )
        .def("Box",
             (BVH_Box<T, N> (BVH_Geometry<T,N>::*)() const) &BVH_Geometry<T,N>::Box,
             R"#(Returns AABB of the whole geometry.)#" )
        .def("BVH",
             (const opencascade::handle<BVH_Tree<T, N>> & (BVH_Geometry<T,N>::*)() ) &BVH_Geometry<T,N>::BVH,
             R"#(Returns BVH tree (and builds it if necessary).)#" )
        .def("Builder",
             (const opencascade::handle<BVH_Builder<T, N>> & (BVH_Geometry<T,N>::*)() const) &BVH_Geometry<T,N>::Builder,
             R"#(Returns the method (builder) used to construct BVH.)#" )
        .def("SetBuilder",
             (void (BVH_Geometry<T,N>::*)( const opencascade::handle<BVH_Builder<T, N>> &  ) ) &BVH_Geometry<T,N>::SetBuilder,
             R"#(Sets the method (builder) used to construct BVH.)#" ,py::arg("theBuilder"))
    ;
};

template <typename T,int N>
void preregister_template_BVH_Ray(py::object &m, const char *name){
    py::class_<BVH_Ray<T,N> , shared_ptr<BVH_Ray<T,N>> >(m,name,R"#(Describes a ray based on BVH vectors.)#");
}

template <typename T,int N>
void register_template_BVH_Ray(py::object &m, const char *name){
    static_cast<py::class_<BVH_Ray<T,N> , shared_ptr<BVH_Ray<T,N>> >>(m.attr(name))
        .def(py::init<  const typename BVH::VectorType<T, N>::Type &, const typename BVH::VectorType<T, N>::Type & >() ,py::arg("theOrigin"), py::arg("theDirect") )
    ;
};

template <typename T,int N>
void preregister_template_BVH_SweepPlaneBuilder(py::object &m, const char *name){
    py::class_<BVH_SweepPlaneBuilder<T,N> , shared_ptr<BVH_SweepPlaneBuilder<T,N>> >(m,name,R"#(Performs building of BVH tree using sweep plane SAH algorithm.)#");
}

template <typename T,int N>
void register_template_BVH_SweepPlaneBuilder(py::object &m, const char *name){
    static_cast<py::class_<BVH_SweepPlaneBuilder<T,N> , shared_ptr<BVH_SweepPlaneBuilder<T,N>> >>(m.attr(name))
        .def(py::init< const Standard_Integer,const Standard_Integer,const Standard_Integer >() ,py::arg("theLeafNodeSize")=static_cast<const Standard_Integer>(BVH_Constants_LeafNodeSizeDefault), py::arg("theMaxTreeDepth")=static_cast<const Standard_Integer>(BVH_Constants_MaxTreeDepth), py::arg("theNumOfThreads")=static_cast<const Standard_Integer>(1) )
    ;
};

template <typename NumType,int Dimension,typename DataType=Standard_Integer>
void preregister_template_BVH_BoxSet(py::object &m, const char *name){
    py::class_<BVH_BoxSet<NumType,Dimension,DataType> , shared_ptr<BVH_BoxSet<NumType,Dimension,DataType>> >(m,name,R"#(Implements easy to use interfaces for adding the elements into BVH tree and its following construction. To make it more effective it is better to set the number of elements that are going to be added into BVH tree. For better efficiency on heavy data types it is recommended to use either BHV_IndexedBoxSet which uses indirect indexing for accessing the elements and their boxes or set the element to be an index of the real element in the application's internal data structures.)#");
}

template <typename NumType,int Dimension,typename DataType=Standard_Integer>
void register_template_BVH_BoxSet(py::object &m, const char *name){
    static_cast<py::class_<BVH_BoxSet<NumType,Dimension,DataType> , shared_ptr<BVH_BoxSet<NumType,Dimension,DataType>> >>(m.attr(name))
        .def(py::init<  >()  )
        .def(py::init< const opencascade::handle<BVH_Builder<NumType, Dimension>> & >() ,py::arg("theBuilder") )
        .def("SetSize",
             (void (BVH_BoxSet<NumType,Dimension,DataType>::*)( const Standard_Size  ) ) &BVH_BoxSet<NumType,Dimension,DataType>::SetSize,
             R"#(Sets the expected size of BVH tree)#" ,py::arg("theSize"))
        .def("Add",
             (void (BVH_BoxSet<NumType,Dimension,DataType>::*)( const DataType & ,  const BVH_Box<NumType, Dimension> &  ) ) &BVH_BoxSet<NumType,Dimension,DataType>::Add,
             R"#(Adds the element into BVH)#" ,py::arg("theElement"), py::arg("theBox"))
        .def("Build",
             (void (BVH_BoxSet<NumType,Dimension,DataType>::*)() ) &BVH_BoxSet<NumType,Dimension,DataType>::Build,
             R"#(BVH construction)#" )
        .def("Clear",
             (void (BVH_BoxSet<NumType,Dimension,DataType>::*)() ) &BVH_BoxSet<NumType,Dimension,DataType>::Clear,
             R"#(Clears the vectors of elements and boxes)#" )
        .def("Box",
             (BVH_Box<NumType, Dimension> (BVH_BoxSet<NumType,Dimension,DataType>::*)( const Standard_Integer  ) const) &BVH_BoxSet<NumType,Dimension,DataType>::Box,
             R"#(Returns the bounding box with the given index.)#" ,py::arg("theIndex"))
        .def("Center",
             (Standard_Real (BVH_BoxSet<NumType,Dimension,DataType>::*)( const Standard_Integer ,  const Standard_Integer  ) const) &BVH_BoxSet<NumType,Dimension,DataType>::Center,
             R"#(Returns centroid position along specified axis.)#" ,py::arg("theIndex"), py::arg("theAxis"))
        .def("Size",
             (Standard_Integer (BVH_BoxSet<NumType,Dimension,DataType>::*)() const) &BVH_BoxSet<NumType,Dimension,DataType>::Size,
             R"#(Returns the number of boxes.)#" )
        .def("Swap",
             (void (BVH_BoxSet<NumType,Dimension,DataType>::*)( const Standard_Integer ,  const Standard_Integer  ) ) &BVH_BoxSet<NumType,Dimension,DataType>::Swap,
             R"#(Swaps indices of two specified boxes.)#" ,py::arg("theIndex1"), py::arg("theIndex2"))
        .def("Element",
             (DataType (BVH_BoxSet<NumType,Dimension,DataType>::*)( const Standard_Integer  ) const) &BVH_BoxSet<NumType,Dimension,DataType>::Element,
             R"#(Returns the Element with the index theIndex.)#" ,py::arg("theIndex"))
        .def("__len__",[](const BVH_BoxSet<NumType,Dimension,DataType> &self)
             { return self.Size(); }
             )
    ;
};

template <typename T,int N>
void preregister_template_BVH_QueueBuilder(py::object &m, const char *name){
    py::class_<BVH_QueueBuilder<T,N> , shared_ptr<BVH_QueueBuilder<T,N>> >(m,name,R"#(Abstract BVH builder based on the concept of work queue. Queue based BVH builders support parallelization with a fixed number of threads (maximum efficiency is achieved by setting the number of threads equal to the number of CPU cores plus one). Note that to support parallel mode, a corresponding BVH primitive set should provide thread safe implementations of interface functions (e.g., Swap, Box, Center). Otherwise, the results will be undefined.)#");
}

template <typename T,int N>
void register_template_BVH_QueueBuilder(py::object &m, const char *name){
    static_cast<py::class_<BVH_QueueBuilder<T,N> , shared_ptr<BVH_QueueBuilder<T,N>> >>(m.attr(name))
        .def(py::init< const Standard_Integer,const Standard_Integer,const Standard_Integer >() ,py::arg("theLeafNodeSize"), py::arg("theMaxTreeDepth"), py::arg("theNumOfThreads")=static_cast<const Standard_Integer>(1) )
        .def("Build",
             (void (BVH_QueueBuilder<T,N>::*)( BVH_Set<T, N> * ,  BVH_Tree<T, N> * ,  const BVH_Box<T, N> &  ) const) &BVH_QueueBuilder<T,N>::Build,
             R"#(Builds BVH using specific algorithm.)#" ,py::arg("theSet"), py::arg("theBVH"), py::arg("theBox"))
    ;
};

template <typename T,int N>
void preregister_template_BVH_QuickSorter(py::object &m, const char *name){
    py::class_<BVH_QuickSorter<T,N> , shared_ptr<BVH_QuickSorter<T,N>> >(m,name,R"#(Performs centroid-based sorting of abstract set along the given axis (X - 0, Y - 1, Z - 2) using quick sort.)#");
}

template <typename T,int N>
void register_template_BVH_QuickSorter(py::object &m, const char *name){
    static_cast<py::class_<BVH_QuickSorter<T,N> , shared_ptr<BVH_QuickSorter<T,N>> >>(m.attr(name))
        .def(py::init< const Standard_Integer >() ,py::arg("theAxis")=static_cast<const Standard_Integer>(0) )
        .def("Perform",
             (void (BVH_QuickSorter<T,N>::*)( BVH_Set<T, N> *  ) ) &BVH_QuickSorter<T,N>::Perform,
             R"#(Sorts the set.)#" ,py::arg("theSet"))
        .def("Perform",
             (void (BVH_QuickSorter<T,N>::*)( BVH_Set<T, N> * ,  const Standard_Integer ,  const Standard_Integer  ) ) &BVH_QuickSorter<T,N>::Perform,
             R"#(Sorts the given (inclusive) range in the set.)#" ,py::arg("theSet"), py::arg("theStart"), py::arg("theFinal"))
    ;
};

template <typename T,int N>
void preregister_template_BVH_Sorter(py::object &m, const char *name){
    py::class_<BVH_Sorter<T,N> , shared_ptr<BVH_Sorter<T,N>> >(m,name,R"#(Tool object to sort abstract primitive set.)#");
}

template <typename T,int N>
void register_template_BVH_Sorter(py::object &m, const char *name){
    static_cast<py::class_<BVH_Sorter<T,N> , shared_ptr<BVH_Sorter<T,N>> >>(m.attr(name))
        .def(py::init<  >()  )
        .def("Perform",
             (void (BVH_Sorter<T,N>::*)( BVH_Set<T, N> *  ) ) &BVH_Sorter<T,N>::Perform,
             R"#(Sorts the set.)#" ,py::arg("theSet"))
        .def("Perform",
             (void (BVH_Sorter<T,N>::*)( BVH_Set<T, N> * ,  const Standard_Integer ,  const Standard_Integer  ) ) &BVH_Sorter<T,N>::Perform,
             R"#(Sorts the given (inclusive) range in the set.)#" ,py::arg("theSet"), py::arg("theStart"), py::arg("theFinal"))
        .def("IsParallel",
             (Standard_Boolean (BVH_Sorter<T,N>::*)() const) &BVH_Sorter<T,N>::IsParallel,
             R"#(Returns parallel flag.)#" )
        .def("SetParallel",
             (void (BVH_Sorter<T,N>::*)( const Standard_Boolean  ) ) &BVH_Sorter<T,N>::SetParallel,
             R"#(Set parallel flag contolling possibility of parallel execution.)#" ,py::arg("isParallel"))
    ;
};

template <typename T,int N>
void preregister_template_BVH_Builder(py::object &m, const char *name){
    py::class_<BVH_Builder<T,N> , opencascade::handle<BVH_Builder<T,N>> , BVH_BuilderTransient >(m,name,R"#(Performs construction of BVH tree using bounding boxes (AABBs) of abstract objects.)#");
}

template <typename T,int N>
void register_template_BVH_Builder(py::object &m, const char *name){
    static_cast<py::class_<BVH_Builder<T,N> , opencascade::handle<BVH_Builder<T,N>> , BVH_BuilderTransient >>(m.attr(name))
        .def("Build",
             (void (BVH_Builder<T,N>::*)( BVH_Set<T, N> * ,  BVH_Tree<T, N> * ,  const BVH_Box<T, N> &  ) const) &BVH_Builder<T,N>::Build,
             R"#(Builds BVH using specific algorithm.)#" ,py::arg("theSet"), py::arg("theBVH"), py::arg("theBox"))
    ;
};

template <typename T,int N>
void preregister_template_BVH_Object(py::object &m, const char *name){
    py::class_<BVH_Object<T,N> , opencascade::handle<BVH_Object<T,N>> , BVH_ObjectTransient >(m,name,R"#(Abstract geometric object bounded by BVH box.)#");
}

template <typename T,int N>
void register_template_BVH_Object(py::object &m, const char *name){
    static_cast<py::class_<BVH_Object<T,N> , opencascade::handle<BVH_Object<T,N>> , BVH_ObjectTransient >>(m.attr(name))
        .def(py::init<  >()  )
        .def("Box",
             (BVH_Box<T, N> (BVH_Object<T,N>::*)() const) &BVH_Object<T,N>::Box,
             R"#(Returns AABB of the geometric object.)#" )
    ;
};

template <typename T,int N>
void preregister_template_BVH_SpatialMedianBuilder(py::object &m, const char *name){
    py::class_<BVH_SpatialMedianBuilder<T,N> , shared_ptr<BVH_SpatialMedianBuilder<T,N>> >(m,name,R"#(Performs building of BVH tree using spatial median split algorithm.)#");
}

template <typename T,int N>
void register_template_BVH_SpatialMedianBuilder(py::object &m, const char *name){
    static_cast<py::class_<BVH_SpatialMedianBuilder<T,N> , shared_ptr<BVH_SpatialMedianBuilder<T,N>> >>(m.attr(name))
        .def(py::init< const Standard_Integer,const Standard_Integer,const Standard_Boolean >() ,py::arg("theLeafNodeSize")=static_cast<const Standard_Integer>(BVH_Constants_LeafNodeSizeDefault), py::arg("theMaxTreeDepth")=static_cast<const Standard_Integer>(BVH_Constants_MaxTreeDepth), py::arg("theToUseMainAxis")=static_cast<const Standard_Boolean>(Standard_False) )
    ;
};

template <typename T,int N>
void preregister_template_BVH_Bin(py::object &m, const char *name){
    py::class_<BVH_Bin<T,N> , shared_ptr<BVH_Bin<T,N>> >(m,name,R"#(Stores parameters of single bin (slice of AABB).)#");
}

template <typename T,int N>
void register_template_BVH_Bin(py::object &m, const char *name){
    static_cast<py::class_<BVH_Bin<T,N> , shared_ptr<BVH_Bin<T,N>> >>(m.attr(name))
        .def(py::init<  >()  )
    ;
};

template <typename T,int N,int Bins=BVH_Constants_NbBinsOptimal>
void preregister_template_BVH_BinnedBuilder(py::object &m, const char *name){
    py::class_<BVH_BinnedBuilder<T,N,Bins> , shared_ptr<BVH_BinnedBuilder<T,N,Bins>> >(m,name,R"#(Performs construction of BVH tree using binned SAH algorithm. Number of bins controls BVH quality in cost of construction time (greater - better). For optimal results, use 32 - 48 bins. However, reasonable performance is provided even for 4 - 8 bins (it is only 10-20% lower in comparison with optimal settings). Note that multiple threads can be used only with thread safe BVH primitive sets.)#");
}

template <typename T,int N,int Bins=BVH_Constants_NbBinsOptimal>
void register_template_BVH_BinnedBuilder(py::object &m, const char *name){
    static_cast<py::class_<BVH_BinnedBuilder<T,N,Bins> , shared_ptr<BVH_BinnedBuilder<T,N,Bins>> >>(m.attr(name))
        .def(py::init< const Standard_Integer,const Standard_Integer,const Standard_Boolean,const Standard_Integer >() ,py::arg("theLeafNodeSize")=static_cast<const Standard_Integer>(BVH_Constants_LeafNodeSizeDefault), py::arg("theMaxTreeDepth")=static_cast<const Standard_Integer>(BVH_Constants_MaxTreeDepth), py::arg("theDoMainSplits")=static_cast<const Standard_Boolean>(Standard_False), py::arg("theNumOfThreads")=static_cast<const Standard_Integer>(1) )
    ;
};

template <typename T,int N>
void preregister_template_BVH_PrimitiveSet(py::object &m, const char *name){
    py::class_<BVH_PrimitiveSet<T,N> , shared_ptr<BVH_PrimitiveSet<T,N>> >(m,name,R"#(Set of abstract geometric primitives organized with bounding volume hierarchy (BVH). Unlike an object set, this collection is designed for storing structural elements of a single object (such as triangles in the object triangulation). Because there may be a large number of such elements, the implementations of this interface should be sufficiently optimized.)#");
}

template <typename T,int N>
void register_template_BVH_PrimitiveSet(py::object &m, const char *name){
    static_cast<py::class_<BVH_PrimitiveSet<T,N> , shared_ptr<BVH_PrimitiveSet<T,N>> >>(m.attr(name))
        .def(py::init<  >()  )
        .def(py::init< const opencascade::handle<BVH_Builder<T, N>> & >() ,py::arg("theBuilder") )
        .def("Box",
             (BVH_Box<T, N> (BVH_PrimitiveSet<T,N>::*)() const) &BVH_PrimitiveSet<T,N>::Box,
             R"#(Returns AABB of primitive set.)#" )
        .def("BVH",
             (const opencascade::handle<BVH_Tree<T, N>> & (BVH_PrimitiveSet<T,N>::*)() ) &BVH_PrimitiveSet<T,N>::BVH,
             R"#(Returns BVH tree (and builds it if necessary).)#" )
        .def("Builder",
             (const opencascade::handle<BVH_Builder<T, N>> & (BVH_PrimitiveSet<T,N>::*)() const) &BVH_PrimitiveSet<T,N>::Builder,
             R"#(Returns the method (builder) used to construct BVH.)#" )
        .def("SetBuilder",
             (void (BVH_PrimitiveSet<T,N>::*)( const opencascade::handle<BVH_Builder<T, N>> &  ) ) &BVH_PrimitiveSet<T,N>::SetBuilder,
             R"#(Sets the method (builder) used to construct BVH.)#" ,py::arg("theBuilder"))
    ;
};

template <typename T,int N>
void preregister_template_BVH_ParallelDistanceFieldBuilder(py::object &m, const char *name){
    py::class_<BVH_ParallelDistanceFieldBuilder<T,N> , shared_ptr<BVH_ParallelDistanceFieldBuilder<T,N>> >(m,name,R"#(Tool object for parallel construction of distance field (uses Intel TBB).)#");
}

template <typename T,int N>
void register_template_BVH_ParallelDistanceFieldBuilder(py::object &m, const char *name){
    static_cast<py::class_<BVH_ParallelDistanceFieldBuilder<T,N> , shared_ptr<BVH_ParallelDistanceFieldBuilder<T,N>> >>(m.attr(name))
        .def(py::init< BVH_DistanceField<T, N> *,BVH_Geometry<T, N> * >() ,py::arg("theOutField"), py::arg("theGeometry") )
        .def("__call__",
             (void (BVH_ParallelDistanceFieldBuilder<T,N>::*)( const Standard_Integer  ) const) &BVH_ParallelDistanceFieldBuilder<T,N>::operator(),
             py::is_operator(),
             R"#(None)#" ,py::arg("theIndex"))
    ;
};

template <typename T,int N>
void preregister_template_BVH_DistanceField(py::object &m, const char *name){
    py::class_<BVH_DistanceField<T,N> , shared_ptr<BVH_DistanceField<T,N>> >(m,name,R"#(Tool object for building 3D distance field from the set of BVH triangulations. Distance field is a scalar field that measures the distance from a given point to some object, including optional information about the inside and outside of the structure. Distance fields are used as alternative surface representations (like polygons or NURBS).)#");
}

template <typename T,int N>
void register_template_BVH_DistanceField(py::object &m, const char *name){
    static_cast<py::class_<BVH_DistanceField<T,N> , shared_ptr<BVH_DistanceField<T,N>> >>(m.attr(name))
        .def(py::init< const Standard_Integer,const Standard_Boolean >() ,py::arg("theMaximumSize"), py::arg("theComputeSign") )
        .def("Build",
             (Standard_Boolean (BVH_DistanceField<T,N>::*)( BVH_Geometry<T, N> &  ) ) &BVH_DistanceField<T,N>::Build,
             R"#(Builds 3D distance field from BVH geometry.)#" ,py::arg("theGeometry"))
        .def("IsParallel",
             (Standard_Boolean (BVH_DistanceField<T,N>::*)() const) &BVH_DistanceField<T,N>::IsParallel,
             R"#(Returns parallel flag.)#" )
        .def("SetParallel",
             (void (BVH_DistanceField<T,N>::*)( const Standard_Boolean  ) ) &BVH_DistanceField<T,N>::SetParallel,
             R"#(Set parallel flag contolling possibility of parallel execution.)#" ,py::arg("isParallel"))
        .def("PackedData",
             (const T * (BVH_DistanceField<T,N>::*)() const) &BVH_DistanceField<T,N>::PackedData,
             R"#(Returns packed voxel data.)#" )
        .def("Voxel",
             (T & (BVH_DistanceField<T,N>::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) ) &BVH_DistanceField<T,N>::Voxel,
             R"#(Returns distance value for the given voxel.)#" ,py::arg("theX"), py::arg("theY"), py::arg("theZ"))
        .def("Voxel",
             (T (BVH_DistanceField<T,N>::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) const) &BVH_DistanceField<T,N>::Voxel,
             R"#(Returns distance value for the given voxel.)#" ,py::arg("theX"), py::arg("theY"), py::arg("theZ"))
        .def("DimensionX",
             (Standard_Integer (BVH_DistanceField<T,N>::*)() const) &BVH_DistanceField<T,N>::DimensionX,
             R"#(Returns size of voxel grid in X dimension.)#" )
        .def("DimensionY",
             (Standard_Integer (BVH_DistanceField<T,N>::*)() const) &BVH_DistanceField<T,N>::DimensionY,
             R"#(Returns size of voxel grid in Y dimension.)#" )
        .def("DimensionZ",
             (Standard_Integer (BVH_DistanceField<T,N>::*)() const) &BVH_DistanceField<T,N>::DimensionZ,
             R"#(Returns size of voxel grid in Z dimension.)#" )
    ;
};

template <typename T,int N>
void preregister_template_BVH_Tools(py::object &m, const char *name){
    py::class_<BVH_Tools<T,N> , shared_ptr<BVH_Tools<T,N>> >(m,name,R"#(Defines a set of static methods operating with points and bounding boxes.)#");
}

template <typename T,int N>
void register_template_BVH_Tools(py::object &m, const char *name){
    static_cast<py::class_<BVH_Tools<T,N> , shared_ptr<BVH_Tools<T,N>> >>(m.attr(name))
        .def_static("BoxBoxSquareDistance_s",
                    (T (*)( const BVH_Box<T, N> & ,  const BVH_Box<T, N> &  ) ) &BVH_Tools<T,N>::BoxBoxSquareDistance,
                    R"#(Computes Square distance between Axis aligned bounding boxes)#" ,py::arg("theBox1"), py::arg("theBox2"))
        .def_static("BoxBoxSquareDistance_s",
                    (T (*)(  const typename BVH::VectorType<T, N>::Type & ,   const typename BVH::VectorType<T, N>::Type & ,   const typename BVH::VectorType<T, N>::Type & ,   const typename BVH::VectorType<T, N>::Type &  ) ) &BVH_Tools<T,N>::BoxBoxSquareDistance,
                    R"#(Computes Square distance between Axis aligned bounding boxes)#" ,py::arg("theCMin1"), py::arg("theCMax1"), py::arg("theCMin2"), py::arg("theCMax2"))
        .def_static("PointBoxSquareDistance_s",
                    (T (*)(  const typename BVH::VectorType<T, N>::Type & ,  const BVH_Box<T, N> &  ) ) &BVH_Tools<T,N>::PointBoxSquareDistance,
                    R"#(Computes square distance between point and bounding box)#" ,py::arg("thePoint"), py::arg("theBox"))
        .def_static("PointBoxSquareDistance_s",
                    (T (*)(  const typename BVH::VectorType<T, N>::Type & ,   const typename BVH::VectorType<T, N>::Type & ,   const typename BVH::VectorType<T, N>::Type &  ) ) &BVH_Tools<T,N>::PointBoxSquareDistance,
                    R"#(Computes square distance between point and bounding box)#" ,py::arg("thePoint"), py::arg("theCMin"), py::arg("theCMax"))
        .def_static("PointTriangleProjection_s",
                    (typename BVH_Tools<T,N>::BVH_VecNt (*)(  const typename BVH::VectorType<T, N>::Type & ,   const typename BVH::VectorType<T, N>::Type & ,   const typename BVH::VectorType<T, N>::Type & ,   const typename BVH::VectorType<T, N>::Type & ,  typename BVH_Tools<T, N>::BVH_PrjStateInTriangle * ,  Standard_Integer * ,  Standard_Integer *  ) ) &BVH_Tools<T,N>::PointTriangleProjection,
                    R"#(Find nearest point on a triangle for the given point)#" ,py::arg("thePoint"), py::arg("theNode0"), py::arg("theNode1"), py::arg("theNode2"), py::arg("thePrjState")=static_cast<typename BVH_Tools<T, N>::BVH_PrjStateInTriangle *>(nullptr), py::arg("theNumberOfFirstNode")=static_cast<Standard_Integer *>(nullptr), py::arg("theNumberOfLastNode")=static_cast<Standard_Integer *>(nullptr))
        .def_static("PointTriangleSquareDistance_s",
                    (T (*)(  const typename BVH::VectorType<T, N>::Type & ,   const typename BVH::VectorType<T, N>::Type & ,   const typename BVH::VectorType<T, N>::Type & ,   const typename BVH::VectorType<T, N>::Type &  ) ) &BVH_Tools<T,N>::PointTriangleSquareDistance,
                    R"#(Computes square distance between point and triangle)#" ,py::arg("thePoint"), py::arg("theNode0"), py::arg("theNode1"), py::arg("theNode2"))
        .def_static("RayBoxIntersection_s",
                    (Standard_Boolean (*)( const BVH_Ray<T, N> & ,  const BVH_Box<T, N> & ,  T & ,  T &  ) ) &BVH_Tools<T,N>::RayBoxIntersection,
                    R"#(Computes hit time of ray-box intersection)#" ,py::arg("theRay"), py::arg("theBox"), py::arg("theTimeEnter"), py::arg("theTimeLeave"))
        .def_static("RayBoxIntersection_s",
                    (Standard_Boolean (*)( const BVH_Ray<T, N> & ,   const typename BVH::VectorType<T, N>::Type & ,   const typename BVH::VectorType<T, N>::Type & ,  T & ,  T &  ) ) &BVH_Tools<T,N>::RayBoxIntersection,
                    R"#(Computes hit time of ray-box intersection)#" ,py::arg("theRay"), py::arg("theBoxCMin"), py::arg("theBoxCMax"), py::arg("theTimeEnter"), py::arg("theTimeLeave"))
        .def_static("RayBoxIntersection_s",
                    (Standard_Boolean (*)(  const typename BVH::VectorType<T, N>::Type & ,   const typename BVH::VectorType<T, N>::Type & ,  const BVH_Box<T, N> & ,  T & ,  T &  ) ) &BVH_Tools<T,N>::RayBoxIntersection,
                    R"#(Computes hit time of ray-box intersection)#" ,py::arg("theRayOrigin"), py::arg("theRayDirection"), py::arg("theBox"), py::arg("theTimeEnter"), py::arg("theTimeLeave"))
        .def_static("RayBoxIntersection_s",
                    (Standard_Boolean (*)(  const typename BVH::VectorType<T, N>::Type & ,   const typename BVH::VectorType<T, N>::Type & ,   const typename BVH::VectorType<T, N>::Type & ,   const typename BVH::VectorType<T, N>::Type & ,  T & ,  T &  ) ) &BVH_Tools<T,N>::RayBoxIntersection,
                    R"#(Computes hit time of ray-box intersection)#" ,py::arg("theRayOrigin"), py::arg("theRayDirection"), py::arg("theBoxCMin"), py::arg("theBoxCMax"), py::arg("theTimeEnter"), py::arg("theTimeLeave"))
    ;
};

template <typename NumType,int Dimension,typename BVHSetType>
void preregister_template_BVH_PairDistance(py::object &m, const char *name){
    py::class_<BVH_PairDistance<NumType,Dimension,BVHSetType> , shared_ptr<BVH_PairDistance<NumType,Dimension,BVHSetType>> >(m,name,R"#(Abstract class for computation of the min distance between elements of two BVH trees. To use this class it is required to define only the method *Accept* to compute the distance between elements of the trees.)#");
}

template <typename NumType,int Dimension,typename BVHSetType>
void register_template_BVH_PairDistance(py::object &m, const char *name){
    static_cast<py::class_<BVH_PairDistance<NumType,Dimension,BVHSetType> , shared_ptr<BVH_PairDistance<NumType,Dimension,BVHSetType>> >>(m.attr(name))
        .def(py::init<  >()  )
        .def("ComputeDistance",
             (NumType (BVH_PairDistance<NumType,Dimension,BVHSetType>::*)() ) &BVH_PairDistance<NumType,Dimension,BVHSetType>::ComputeDistance,
             R"#(Computes the distance between two BVH trees)#" )
        .def("IsDone",
             (Standard_Boolean (BVH_PairDistance<NumType,Dimension,BVHSetType>::*)() const) &BVH_PairDistance<NumType,Dimension,BVHSetType>::IsDone,
             R"#(Returns IsDone flag)#" )
        .def("Distance",
             (NumType (BVH_PairDistance<NumType,Dimension,BVHSetType>::*)() const) &BVH_PairDistance<NumType,Dimension,BVHSetType>::Distance,
             R"#(Returns the computed distance)#" )
        .def("IsMetricBetter",
             (Standard_Boolean (BVH_PairDistance<NumType,Dimension,BVHSetType>::*)( const NumType & ,  const NumType &  ) const) &BVH_PairDistance<NumType,Dimension,BVHSetType>::IsMetricBetter,
             R"#(Compares the two metrics and chooses the best one)#" ,py::arg("theLeft"), py::arg("theRight"))
        .def("RejectNode",
             (Standard_Boolean (BVH_PairDistance<NumType,Dimension,BVHSetType>::*)(  const typename BVH_Tools<NumType, Dimension>::BVH_VecNt & ,   const typename BVH_Tools<NumType, Dimension>::BVH_VecNt & ,   const typename BVH_Tools<NumType, Dimension>::BVH_VecNt & ,   const typename BVH_Tools<NumType, Dimension>::BVH_VecNt & ,  NumType &  ) const) &BVH_PairDistance<NumType,Dimension,BVHSetType>::RejectNode,
             R"#(Computes the distance between boxes of the nodes)#" ,py::arg("theCornerMin1"), py::arg("theCornerMax1"), py::arg("theCornerMin2"), py::arg("theCornerMax2"), py::arg("theMetric"))
        .def("RejectMetric",
             (Standard_Boolean (BVH_PairDistance<NumType,Dimension,BVHSetType>::*)( const NumType &  ) const) &BVH_PairDistance<NumType,Dimension,BVHSetType>::RejectMetric,
             R"#(Rejects the branch by the metric)#" ,py::arg("theMetric"))
        .def("Stop",
             (Standard_Boolean (BVH_PairDistance<NumType,Dimension,BVHSetType>::*)() const) &BVH_PairDistance<NumType,Dimension,BVHSetType>::Stop,
             R"#(Returns the flag controlling the tree descend)#" )
    ;
};

template <typename T,int N>
void preregister_template_BVH_TreeBase(py::object &m, const char *name){
    py::class_<BVH_TreeBase<T,N> , opencascade::handle<BVH_TreeBase<T,N>> , BVH_TreeBaseTransient >(m,name,R"#(Stores parameters of bounding volume hierarchy (BVH). Bounding volume hierarchy (BVH) organizes geometric objects in the tree based on spatial relationships. Each node in the tree contains an axis-aligned bounding box of all the objects below it. Bounding volume hierarchies are used in many algorithms to support efficient operations on the sets of geometric objects, such as collision detection, ray-tracing, searching of nearest objects, and view frustum culling.)#");
}

template <typename T,int N>
void register_template_BVH_TreeBase(py::object &m, const char *name){
    static_cast<py::class_<BVH_TreeBase<T,N> , opencascade::handle<BVH_TreeBase<T,N>> , BVH_TreeBaseTransient >>(m.attr(name))
        .def(py::init<  >()  )
        .def("Depth",
             (int (BVH_TreeBase<T,N>::*)() const) &BVH_TreeBase<T,N>::Depth,
             R"#(Returns depth (height) of BVH tree.)#" )
        .def("Length",
             (int (BVH_TreeBase<T,N>::*)() const) &BVH_TreeBase<T,N>::Length,
             R"#(Returns total number of BVH tree nodes.)#" )
        .def("BegPrimitive",
             (int & (BVH_TreeBase<T,N>::*)( const int  ) ) &BVH_TreeBase<T,N>::BegPrimitive,
             R"#(Returns index of first primitive of the given leaf node.)#" ,py::arg("theNodeIndex"))
        .def("EndPrimitive",
             (int & (BVH_TreeBase<T,N>::*)( const int  ) ) &BVH_TreeBase<T,N>::EndPrimitive,
             R"#(Returns index of last primitive of the given leaf node.)#" ,py::arg("theNodeIndex"))
        .def("BegPrimitive",
             (int (BVH_TreeBase<T,N>::*)( const int  ) const) &BVH_TreeBase<T,N>::BegPrimitive,
             R"#(Returns index of first primitive of the given leaf node.)#" ,py::arg("theNodeIndex"))
        .def("EndPrimitive",
             (int (BVH_TreeBase<T,N>::*)( const int  ) const) &BVH_TreeBase<T,N>::EndPrimitive,
             R"#(Returns index of last primitive of the given leaf node.)#" ,py::arg("theNodeIndex"))
        .def("NbPrimitives",
             (int (BVH_TreeBase<T,N>::*)( const int  ) const) &BVH_TreeBase<T,N>::NbPrimitives,
             R"#(Returns number of primitives in the given leaf node.)#" ,py::arg("theNodeIndex"))
        .def("Level",
             (int & (BVH_TreeBase<T,N>::*)( const int  ) ) &BVH_TreeBase<T,N>::Level,
             R"#(Returns level (depth) of the given node.)#" ,py::arg("theNodeIndex"))
        .def("Level",
             (int (BVH_TreeBase<T,N>::*)( const int  ) const) &BVH_TreeBase<T,N>::Level,
             R"#(Returns level (depth) of the given node.)#" ,py::arg("theNodeIndex"))
        .def("IsOuter",
             (bool (BVH_TreeBase<T,N>::*)( const int  ) const) &BVH_TreeBase<T,N>::IsOuter,
             R"#(Checks whether the given node is outer.)#" ,py::arg("theNodeIndex"))
        .def("NodeInfoBuffer",
             (BVH_Array4i & (BVH_TreeBase<T,N>::*)() ) &BVH_TreeBase<T,N>::NodeInfoBuffer,
             R"#(Returns array of node data records.)#" )
        .def("NodeInfoBuffer",
             (const BVH_Array4i & (BVH_TreeBase<T,N>::*)() const) &BVH_TreeBase<T,N>::NodeInfoBuffer,
             R"#(Returns array of node data records.)#" )
        .def("MinPointBuffer",
             (typename BVH::ArrayType<T, N>::Type & (BVH_TreeBase<T,N>::*)() ) &BVH_TreeBase<T,N>::MinPointBuffer,
             R"#(Returns array of node minimum points.)#" )
        .def("MaxPointBuffer",
             (typename BVH::ArrayType<T, N>::Type & (BVH_TreeBase<T,N>::*)() ) &BVH_TreeBase<T,N>::MaxPointBuffer,
             R"#(Returns array of node maximum points.)#" )
        .def("MinPointBuffer",
             (const typename BVH::ArrayType<T, N>::Type & (BVH_TreeBase<T,N>::*)() const) &BVH_TreeBase<T,N>::MinPointBuffer,
             R"#(Returns array of node minimum points.)#" )
        .def("MaxPointBuffer",
             (const typename BVH::ArrayType<T, N>::Type & (BVH_TreeBase<T,N>::*)() const) &BVH_TreeBase<T,N>::MaxPointBuffer,
             R"#(Returns array of node maximum points.)#" )
        .def("DumpJson",
             (void (BVH_TreeBase<T,N>::*)( std::ostream & ,  Standard_Integer  ) const) &BVH_TreeBase<T,N>::DumpJson,
             R"#(Dumps the content of me into the stream)#" ,py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1))
        .def("DumpNode",
             (void (BVH_TreeBase<T,N>::*)( const int ,  std::ostream & ,  Standard_Integer  ) const) &BVH_TreeBase<T,N>::DumpNode,
             R"#(Dumps the content of node into the stream)#" ,py::arg("theNodeIndex"), py::arg("theOStream"), py::arg("theDepth"))
    ;
};

template <typename T,int N,typename Arity=BVH_BinaryTree>
void preregister_template_BVH_Tree(py::object &m, const char *name){
    py::class_<BVH_Tree<T,N,Arity> , shared_ptr<BVH_Tree<T,N,Arity>> >(m,name,R"#(BVH tree with given arity (2 or 4).)#");
}

template <typename T,int N,typename Arity=BVH_BinaryTree>
void register_template_BVH_Tree(py::object &m, const char *name){
    static_cast<py::class_<BVH_Tree<T,N,Arity> , shared_ptr<BVH_Tree<T,N,Arity>> >>(m.attr(name))
    ;
};

template <typename NumType,int Dimension,typename ObjectType,typename BVHSetType>
void preregister_template_BVH_Distance(py::object &m, const char *name){
    py::class_<BVH_Distance<NumType,Dimension,ObjectType,BVHSetType> , shared_ptr<BVH_Distance<NumType,Dimension,ObjectType,BVHSetType>> >(m,name,R"#(Abstract class for computation of the min distance between some Object and elements of BVH tree. To use this class it is required to define two methods: - *RejectNode* to compute distance from the object to bounding box - *Accept* to compute distance from the object to the element of tree)#");
}

template <typename NumType,int Dimension,typename ObjectType,typename BVHSetType>
void register_template_BVH_Distance(py::object &m, const char *name){
    static_cast<py::class_<BVH_Distance<NumType,Dimension,ObjectType,BVHSetType> , shared_ptr<BVH_Distance<NumType,Dimension,ObjectType,BVHSetType>> >>(m.attr(name))
        .def(py::init<  >()  )
        .def("SetObject",
             (void (BVH_Distance<NumType,Dimension,ObjectType,BVHSetType>::*)( const ObjectType &  ) ) &BVH_Distance<NumType,Dimension,ObjectType,BVHSetType>::SetObject,
             R"#(Sets the object to which the distance is required)#" ,py::arg("theObject"))
        .def("ComputeDistance",
             (NumType (BVH_Distance<NumType,Dimension,ObjectType,BVHSetType>::*)() ) &BVH_Distance<NumType,Dimension,ObjectType,BVHSetType>::ComputeDistance,
             R"#(Computes the distance between object and BVH tree)#" )
        .def("IsDone",
             (Standard_Boolean (BVH_Distance<NumType,Dimension,ObjectType,BVHSetType>::*)() const) &BVH_Distance<NumType,Dimension,ObjectType,BVHSetType>::IsDone,
             R"#(Returns IsDone flag)#" )
        .def("Distance",
             (NumType (BVH_Distance<NumType,Dimension,ObjectType,BVHSetType>::*)() const) &BVH_Distance<NumType,Dimension,ObjectType,BVHSetType>::Distance,
             R"#(Returns the computed distance)#" )
        .def("IsMetricBetter",
             (Standard_Boolean (BVH_Distance<NumType,Dimension,ObjectType,BVHSetType>::*)( const NumType & ,  const NumType &  ) const) &BVH_Distance<NumType,Dimension,ObjectType,BVHSetType>::IsMetricBetter,
             R"#(Compares the two metrics and chooses the best one)#" ,py::arg("theLeft"), py::arg("theRight"))
        .def("RejectMetric",
             (Standard_Boolean (BVH_Distance<NumType,Dimension,ObjectType,BVHSetType>::*)( const NumType &  ) const) &BVH_Distance<NumType,Dimension,ObjectType,BVHSetType>::RejectMetric,
             R"#(Rejects the branch by the metric)#" ,py::arg("theMetric"))
        .def("Stop",
             (Standard_Boolean (BVH_Distance<NumType,Dimension,ObjectType,BVHSetType>::*)() const) &BVH_Distance<NumType,Dimension,ObjectType,BVHSetType>::Stop,
             R"#(Returns the flag controlling the tree descend)#" )
    ;
};

template <typename T,int N>
void preregister_template_BVH_Box(py::object &m, const char *name){
    py::class_<BVH_Box<T,N> , shared_ptr<BVH_Box<T,N>> >(m,name,R"#(Defines axis aligned bounding box (AABB) based on BVH vectors.)#");
}

template <typename T,int N>
void register_template_BVH_Box(py::object &m, const char *name){
    static_cast<py::class_<BVH_Box<T,N> , shared_ptr<BVH_Box<T,N>> >>(m.attr(name))
        .def(py::init<  >()  )
        .def(py::init<  const typename BVH::VectorType<T, N>::Type & >() ,py::arg("thePoint") )
        .def(py::init<  const typename BVH::VectorType<T, N>::Type &, const typename BVH::VectorType<T, N>::Type & >() ,py::arg("theMinPoint"), py::arg("theMaxPoint") )
        .def("Clear",
             (void (BVH_Box<T,N>::*)() ) &BVH_Box<T,N>::Clear,
             R"#(Clears bounding box.)#" )
        .def("IsValid",
             (Standard_Boolean (BVH_Box<T,N>::*)() const) &BVH_Box<T,N>::IsValid,
             R"#(Is bounding box valid?)#" )
        .def("Add",
             (void (BVH_Box<T,N>::*)(  const typename BVH::VectorType<T, N>::Type &  ) ) &BVH_Box<T,N>::Add,
             R"#(Appends new point to the bounding box.)#" ,py::arg("thePoint"))
        .def("Combine",
             (void (BVH_Box<T,N>::*)( const BVH_Box<T, N> &  ) ) &BVH_Box<T,N>::Combine,
             R"#(Combines bounding box with another one.)#" ,py::arg("theBox"))
        .def("Area",
             (T (BVH_Box<T,N>::*)() const) &BVH_Box<T,N>::Area,
             R"#(Returns surface area of bounding box. If the box is degenerated into line, returns the perimeter instead.)#" )
        .def("Center",
             (T (BVH_Box<T,N>::*)( const Standard_Integer  ) const) &BVH_Box<T,N>::Center,
             R"#(Returns center of bounding box along the given axis.)#" ,py::arg("theAxis"))
        .def("DumpJson",
             (void (BVH_Box<T,N>::*)( std::ostream & ,  Standard_Integer  ) const) &BVH_Box<T,N>::DumpJson,
             R"#(Dumps the content of me into the stream)#" ,py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1))
        .def("InitFromJson",
             (Standard_Boolean (BVH_Box<T,N>::*)(  const std::stringstream & ,  Standard_Integer &  ) ) &BVH_Box<T,N>::InitFromJson,
             R"#(Inits the content of me from the stream)#" ,py::arg("theSStream"), py::arg("theStreamPos"))
        .def("IsOut",
             (Standard_Boolean (BVH_Box<T,N>::*)( const BVH_Box<T, N> &  ) const) &BVH_Box<T,N>::IsOut,
             R"#(Checks if the Box is out of the other box.)#" ,py::arg("theOther"))
        .def("IsOut",
             (Standard_Boolean (BVH_Box<T,N>::*)(  const typename BVH::VectorType<T, N>::Type & ,   const typename BVH::VectorType<T, N>::Type &  ) const) &BVH_Box<T,N>::IsOut,
             R"#(Checks if the Box is out of the other box defined by two points.)#" ,py::arg("theMinPoint"), py::arg("theMaxPoint"))
        .def("Contains",
             (Standard_Boolean (BVH_Box<T,N>::*)( const BVH_Box<T, N> & ,  Standard_Boolean &  ) const) &BVH_Box<T,N>::Contains,
             R"#(Checks if the Box fully contains the other box.)#" ,py::arg("theOther"), py::arg("hasOverlap"))
        .def("Contains",
             (Standard_Boolean (BVH_Box<T,N>::*)(  const typename BVH::VectorType<T, N>::Type & ,   const typename BVH::VectorType<T, N>::Type & ,  Standard_Boolean &  ) const) &BVH_Box<T,N>::Contains,
             R"#(Checks if the Box is fully contains the other box.)#" ,py::arg("theMinPoint"), py::arg("theMaxPoint"), py::arg("hasOverlap"))
        .def("IsOut",
             (Standard_Boolean (BVH_Box<T,N>::*)(  const typename BVH::VectorType<T, N>::Type &  ) const) &BVH_Box<T,N>::IsOut,
             R"#(Checks if the Point is out of the box.)#" ,py::arg("thePoint"))
        .def("__len__",[](const BVH_Box<T,N> &self)
             { return self.Size(); }
             )
    ;
};

template <typename T,int N>
void preregister_template_BVH_Triangulation(py::object &m, const char *name){
    py::class_<BVH_Triangulation<T,N> , shared_ptr<BVH_Triangulation<T,N>> >(m,name,R"#(Triangulation as an example of BVH primitive set.)#");
}

template <typename T,int N>
void register_template_BVH_Triangulation(py::object &m, const char *name){
    static_cast<py::class_<BVH_Triangulation<T,N> , shared_ptr<BVH_Triangulation<T,N>> >>(m.attr(name))
        .def(py::init<  >()  )
        .def(py::init< const opencascade::handle<BVH_Builder<T, N>> & >() ,py::arg("theBuilder") )
        .def("Size",
             (Standard_Integer (BVH_Triangulation<T,N>::*)() const) &BVH_Triangulation<T,N>::Size,
             R"#(Returns total number of triangles.)#" )
        .def("Box",
             (BVH_Box<T, N> (BVH_Triangulation<T,N>::*)( const Standard_Integer  ) const) &BVH_Triangulation<T,N>::Box,
             R"#(Returns AABB of the given triangle.)#" ,py::arg("theIndex"))
        .def("Center",
             (T (BVH_Triangulation<T,N>::*)( const Standard_Integer ,  const Standard_Integer  ) const) &BVH_Triangulation<T,N>::Center,
             R"#(Returns centroid position along the given axis.)#" ,py::arg("theIndex"), py::arg("theAxis"))
        .def("Swap",
             (void (BVH_Triangulation<T,N>::*)( const Standard_Integer ,  const Standard_Integer  ) ) &BVH_Triangulation<T,N>::Swap,
             R"#(Performs transposing the two given triangles in the set.)#" ,py::arg("theIndex1"), py::arg("theIndex2"))
        .def("__len__",[](const BVH_Triangulation<T,N> &self)
             { return self.Size(); }
             )
    ;
};

template <typename T,int N>
void preregister_template_BVH_LinearBuilder(py::object &m, const char *name){
    py::class_<BVH_LinearBuilder<T,N> , shared_ptr<BVH_LinearBuilder<T,N>> >(m,name,R"#(Performs fast BVH construction using LBVH building approach. Algorithm uses spatial Morton codes to reduce the BVH construction problem to a sorting problem (radix sort -- O(N) complexity). This Linear Bounding Volume Hierarchy (LBVH) builder produces BVH trees of lower quality compared to SAH-based BVH builders but it is over an order of magnitude faster (up to 3M triangles per second).)#");
}

template <typename T,int N>
void register_template_BVH_LinearBuilder(py::object &m, const char *name){
    static_cast<py::class_<BVH_LinearBuilder<T,N> , shared_ptr<BVH_LinearBuilder<T,N>> >>(m.attr(name))
        .def(py::init< const Standard_Integer,const Standard_Integer >() ,py::arg("theLeafNodeSize")=static_cast<const Standard_Integer>(BVH_Constants_LeafNodeSizeDefault), py::arg("theMaxTreeDepth")=static_cast<const Standard_Integer>(BVH_Constants_MaxTreeDepth) )
        .def("Build",
             (void (BVH_LinearBuilder<T,N>::*)( BVH_Set<T, N> * ,  BVH_Tree<T, N> * ,  const BVH_Box<T, N> &  ) const) &BVH_LinearBuilder<T,N>::Build,
             R"#(Builds BVH.)#" ,py::arg("theSet"), py::arg("theBVH"), py::arg("theBox"))
    ;
};

template <typename T,int N>
void preregister_template_BVH_ObjectSet(py::object &m, const char *name){
    py::class_<BVH_ObjectSet<T,N> , shared_ptr<BVH_ObjectSet<T,N>> >(m,name,R"#(Array of abstract entities (bounded by BVH boxes) to built BVH.)#");
}

template <typename T,int N>
void register_template_BVH_ObjectSet(py::object &m, const char *name){
    static_cast<py::class_<BVH_ObjectSet<T,N> , shared_ptr<BVH_ObjectSet<T,N>> >>(m.attr(name))
        .def(py::init<  >()  )
        .def("Clear",
             (void (BVH_ObjectSet<T,N>::*)() ) &BVH_ObjectSet<T,N>::Clear,
             R"#(Removes all geometric objects.)#" )
        .def("Size",
             (Standard_Integer (BVH_ObjectSet<T,N>::*)() const) &BVH_ObjectSet<T,N>::Size,
             R"#(Return total number of objects.)#" )
        .def("Box",
             (BVH_Box<T, N> (BVH_ObjectSet<T,N>::*)( const Standard_Integer  ) const) &BVH_ObjectSet<T,N>::Box,
             R"#(Returns AABB of the given object.)#" ,py::arg("theIndex"))
        .def("Center",
             (T (BVH_ObjectSet<T,N>::*)( const Standard_Integer ,  const Standard_Integer  ) const) &BVH_ObjectSet<T,N>::Center,
             R"#(Returns centroid position along the given axis.)#" ,py::arg("theIndex"), py::arg("theAxis"))
        .def("Swap",
             (void (BVH_ObjectSet<T,N>::*)( const Standard_Integer ,  const Standard_Integer  ) ) &BVH_ObjectSet<T,N>::Swap,
             R"#(Performs transposing the two given objects in the set.)#" ,py::arg("theIndex1"), py::arg("theIndex2"))
        .def("__len__",[](const BVH_ObjectSet<T,N> &self)
             { return self.Size(); }
             )
    ;
};

template <typename MetricType>
void preregister_template_BVH_BaseTraverse(py::object &m, const char *name){
    py::class_<BVH_BaseTraverse<MetricType> , shared_ptr_nodelete<BVH_BaseTraverse<MetricType>> >(m,name,R"#(Abstract class implementing the base Traverse interface required for selection of the elements from BVH tree.)#");
}

template <typename MetricType>
void register_template_BVH_BaseTraverse(py::object &m, const char *name){
    static_cast<py::class_<BVH_BaseTraverse<MetricType> , shared_ptr_nodelete<BVH_BaseTraverse<MetricType>> >>(m.attr(name))
        .def("IsMetricBetter",
             (Standard_Boolean (BVH_BaseTraverse<MetricType>::*)( const MetricType & ,  const MetricType &  ) const) &BVH_BaseTraverse<MetricType>::IsMetricBetter,
             R"#(Compares the two metrics and chooses the best one. Returns true if the first metric is better than the second, false otherwise.)#" ,py::arg("arg"), py::arg("arg"))
        .def("RejectMetric",
             (Standard_Boolean (BVH_BaseTraverse<MetricType>::*)( const MetricType &  ) const) &BVH_BaseTraverse<MetricType>::RejectMetric,
             R"#(Rejects the node by the metric)#" ,py::arg("arg"))
        .def("Stop",
             (Standard_Boolean (BVH_BaseTraverse<MetricType>::*)() const) &BVH_BaseTraverse<MetricType>::Stop,
             R"#(Returns the flag controlling the tree descend. Returns true if the tree descend should be stopped.)#" )
    ;
};

template <typename NumType,int Dimension,typename BVHSetType,typename MetricType=NumType>
void preregister_template_BVH_Traverse(py::object &m, const char *name){
    py::class_<BVH_Traverse<NumType,Dimension,BVHSetType,MetricType> , shared_ptr<BVH_Traverse<NumType,Dimension,BVHSetType,MetricType>> >(m,name,R"#(Abstract class implementing the traverse of the single binary tree. Selection of the data from the tree is performed by the rules defined in the Accept/Reject methods. See description of the required methods in the comments above.)#");
}

template <typename NumType,int Dimension,typename BVHSetType,typename MetricType=NumType>
void register_template_BVH_Traverse(py::object &m, const char *name){
    static_cast<py::class_<BVH_Traverse<NumType,Dimension,BVHSetType,MetricType> , shared_ptr<BVH_Traverse<NumType,Dimension,BVHSetType,MetricType>> >>(m.attr(name))
        .def(py::init<  >()  )
        .def("SetBVHSet",
             (void (BVH_Traverse<NumType,Dimension,BVHSetType,MetricType>::*)( BVHSetType *  ) ) &BVH_Traverse<NumType,Dimension,BVHSetType,MetricType>::SetBVHSet,
             R"#(Sets the BVH Set containing the BVH tree)#" ,py::arg("theBVHSet"))
        .def("AcceptMetric",
             (Standard_Boolean (BVH_Traverse<NumType,Dimension,BVHSetType,MetricType>::*)( const MetricType &  ) const) &BVH_Traverse<NumType,Dimension,BVHSetType,MetricType>::AcceptMetric,
             R"#(Basing on the given metric, checks if the whole branch may be accepted without any further checks. Returns true if the metric is accepted, false otherwise.)#" ,py::arg("arg"))
        .def("RejectNode",
             (Standard_Boolean (BVH_Traverse<NumType,Dimension,BVHSetType,MetricType>::*)(  const typename BVH_Box<NumType, Dimension>::BVH_VecNt & ,   const typename BVH_Box<NumType, Dimension>::BVH_VecNt & ,  MetricType &  ) const) &BVH_Traverse<NumType,Dimension,BVHSetType,MetricType>::RejectNode,
             R"#(Rejection of the node by bounding box. Metric is computed to choose the best branch. Returns true if the node should be rejected, false otherwise.)#" ,py::arg("theCornerMin"), py::arg("theCornerMax"), py::arg("theMetric"))
        .def("Accept",
             (Standard_Boolean (BVH_Traverse<NumType,Dimension,BVHSetType,MetricType>::*)( const Standard_Integer ,  const MetricType &  ) ) &BVH_Traverse<NumType,Dimension,BVHSetType,MetricType>::Accept,
             R"#(Leaf element acceptance. Metric of the parent leaf-node is passed to avoid the check on the element and accept it unconditionally. Returns true if the element has been accepted, false otherwise.)#" ,py::arg("theIndex"), py::arg("theMetric"))
        .def("Select",
             (Standard_Integer (BVH_Traverse<NumType,Dimension,BVHSetType,MetricType>::*)() ) &BVH_Traverse<NumType,Dimension,BVHSetType,MetricType>::Select,
             R"#(Selection of the elements from the BVH tree by the rules defined in Accept/Reject methods. The method requires the BVHSet containing BVH tree to be set. Returns the number of accepted elements.)#" )
        .def("Select",
             (Standard_Integer (BVH_Traverse<NumType,Dimension,BVHSetType,MetricType>::*)( const opencascade::handle<BVH_Tree<NumType, Dimension>> &  ) ) &BVH_Traverse<NumType,Dimension,BVHSetType,MetricType>::Select,
             R"#(Performs selection of the elements from the BVH tree by the rules defined in Accept/Reject methods. Returns the number of accepted elements.)#" ,py::arg("theBVH"))
    ;
};

template <typename NumType,int Dimension,typename BVHSetType,typename MetricType=NumType>
void preregister_template_BVH_PairTraverse(py::object &m, const char *name){
    py::class_<BVH_PairTraverse<NumType,Dimension,BVHSetType,MetricType> , shared_ptr<BVH_PairTraverse<NumType,Dimension,BVHSetType,MetricType>> >(m,name,R"#(Abstract class implementing the parallel traverse of two binary trees. Selection of the data from the trees is performed by the rules defined in the Accept/Reject methods. See description of the required methods in the comments above.)#");
}

template <typename NumType,int Dimension,typename BVHSetType,typename MetricType=NumType>
void register_template_BVH_PairTraverse(py::object &m, const char *name){
    static_cast<py::class_<BVH_PairTraverse<NumType,Dimension,BVHSetType,MetricType> , shared_ptr<BVH_PairTraverse<NumType,Dimension,BVHSetType,MetricType>> >>(m.attr(name))
        .def(py::init<  >()  )
        .def("SetBVHSets",
             (void (BVH_PairTraverse<NumType,Dimension,BVHSetType,MetricType>::*)( BVHSetType * ,  BVHSetType *  ) ) &BVH_PairTraverse<NumType,Dimension,BVHSetType,MetricType>::SetBVHSets,
             R"#(Sets the BVH Sets containing the BVH trees)#" ,py::arg("theBVHSet1"), py::arg("theBVHSet2"))
        .def("RejectNode",
             (Standard_Boolean (BVH_PairTraverse<NumType,Dimension,BVHSetType,MetricType>::*)(  const typename BVH_Box<NumType, Dimension>::BVH_VecNt & ,   const typename BVH_Box<NumType, Dimension>::BVH_VecNt & ,   const typename BVH_Box<NumType, Dimension>::BVH_VecNt & ,   const typename BVH_Box<NumType, Dimension>::BVH_VecNt & ,  MetricType &  ) const) &BVH_PairTraverse<NumType,Dimension,BVHSetType,MetricType>::RejectNode,
             R"#(Rejection of the pair of nodes by bounding boxes. Metric is computed to choose the best branch. Returns true if the pair of nodes should be rejected, false otherwise.)#" ,py::arg("theCornerMin1"), py::arg("theCornerMax1"), py::arg("theCornerMin2"), py::arg("theCornerMax2"), py::arg("theMetric"))
        .def("Accept",
             (Standard_Boolean (BVH_PairTraverse<NumType,Dimension,BVHSetType,MetricType>::*)( const Standard_Integer ,  const Standard_Integer  ) ) &BVH_PairTraverse<NumType,Dimension,BVHSetType,MetricType>::Accept,
             R"#(Leaf element acceptance. Returns true if the pair of elements is accepted, false otherwise.)#" ,py::arg("theIndex1"), py::arg("theIndex2"))
        .def("Select",
             (Standard_Integer (BVH_PairTraverse<NumType,Dimension,BVHSetType,MetricType>::*)() ) &BVH_PairTraverse<NumType,Dimension,BVHSetType,MetricType>::Select,
             R"#(Selection of the pairs of elements of two BVH trees by the rules defined in Accept/Reject methods. The method requires the BVHSets containing BVH trees to be set. Returns the number of accepted pairs of elements.)#" )
        .def("Select",
             (Standard_Integer (BVH_PairTraverse<NumType,Dimension,BVHSetType,MetricType>::*)( const opencascade::handle<BVH_Tree<NumType, Dimension>> & ,  const opencascade::handle<BVH_Tree<NumType, Dimension>> &  ) ) &BVH_PairTraverse<NumType,Dimension,BVHSetType,MetricType>::Select,
             R"#(Performs selection of the elements from two BVH trees by the rules defined in Accept/Reject methods. Returns the number of accepted pairs of elements.)#" ,py::arg("theBVH1"), py::arg("theBVH2"))
    ;
};


// user-defined post