1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
|
// std lib related includes
#include <tuple>
// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybind11;
// Standard Handle
#include <Standard_Handle.hxx>
// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Lin.hxx>
#include <Bnd_Box.hxx>
#include <gp_Lin2d.hxx>
#include <Bnd_Box2d.hxx>
#include <gp_Circ.hxx>
#include <gp_Circ2d.hxx>
#include <gp_Elips.hxx>
#include <gp_Elips2d.hxx>
#include <gp_Parab.hxx>
#include <gp_Parab2d.hxx>
#include <gp_Hypr.hxx>
#include <gp_Hypr2d.hxx>
#include <gp_Cylinder.hxx>
#include <gp_Cone.hxx>
#include <gp_Sphere.hxx>
#include <gp_Torus.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Bnd_Box2d.hxx>
#include <Geom2d_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Bnd_Box.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Bnd_Box.hxx>
// module includes
#include <BndLib.hxx>
#include <BndLib_Add2dCurve.hxx>
#include <BndLib_Add3dCurve.hxx>
#include <BndLib_AddSurface.hxx>
// template related includes
// user-defined pre
#include "OCP_specific.inc"
// user-defined inclusion per module
// Module definiiton
void register_BndLib(py::module &main_module) {
py::module m = static_cast<py::module>(main_module.attr("BndLib"));
py::object klass;
//Python trampoline classes
// classes
// Class BndLib from ./opencascade/BndLib.hxx
klass = m.attr("BndLib");
// default constructor
register_default_constructor<BndLib , shared_ptr<BndLib>>(m,"BndLib");
// nested enums
static_cast<py::class_<BndLib , shared_ptr<BndLib> >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("Add_s",
(void (*)( const gp_Lin & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) ) static_cast<void (*)( const gp_Lin & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) >(&BndLib::Add),
R"#(Bounding box for a surface trimmed or not Adds the segment of the line L limited by the two parameter values P1 and P2, to the bounding box B, and then enlarges B by the tolerance value Tol. Tol is the tolerance value to enlarge the minimum and maximum dimension P1 and P2 may represent infinite values. Exceptions Standard_Failure if P1 and P2 are either two negative infinite real numbers, or two positive infinite real numbers.)#" , py::arg("L"), py::arg("P1"), py::arg("P2"), py::arg("Tol"), py::arg("B")
)
.def_static("Add_s",
(void (*)( const gp_Lin2d & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box2d & ) ) static_cast<void (*)( const gp_Lin2d & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box2d & ) >(&BndLib::Add),
R"#(None)#" , py::arg("L"), py::arg("P1"), py::arg("P2"), py::arg("Tol"), py::arg("B")
)
.def_static("Add_s",
(void (*)( const gp_Circ & , const Standard_Real , Bnd_Box & ) ) static_cast<void (*)( const gp_Circ & , const Standard_Real , Bnd_Box & ) >(&BndLib::Add),
R"#(None)#" , py::arg("C"), py::arg("Tol"), py::arg("B")
)
.def_static("Add_s",
(void (*)( const gp_Circ & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) ) static_cast<void (*)( const gp_Circ & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) >(&BndLib::Add),
R"#(P2-P1 can be in [0,2*pi])#" , py::arg("C"), py::arg("P1"), py::arg("P2"), py::arg("Tol"), py::arg("B")
)
.def_static("Add_s",
(void (*)( const gp_Circ2d & , const Standard_Real , Bnd_Box2d & ) ) static_cast<void (*)( const gp_Circ2d & , const Standard_Real , Bnd_Box2d & ) >(&BndLib::Add),
R"#(None)#" , py::arg("C"), py::arg("Tol"), py::arg("B")
)
.def_static("Add_s",
(void (*)( const gp_Circ2d & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box2d & ) ) static_cast<void (*)( const gp_Circ2d & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box2d & ) >(&BndLib::Add),
R"#(Adds the circle C, or the arc of the circle C limited by the two parameter values P1 and P2, to the bounding box B, and then enlarges B by the tolerance value Tol. P2-P1 can be in [0,2*pi])#" , py::arg("C"), py::arg("P1"), py::arg("P2"), py::arg("Tol"), py::arg("B")
)
.def_static("Add_s",
(void (*)( const gp_Elips & , const Standard_Real , Bnd_Box & ) ) static_cast<void (*)( const gp_Elips & , const Standard_Real , Bnd_Box & ) >(&BndLib::Add),
R"#(None)#" , py::arg("C"), py::arg("Tol"), py::arg("B")
)
.def_static("Add_s",
(void (*)( const gp_Elips & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) ) static_cast<void (*)( const gp_Elips & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) >(&BndLib::Add),
R"#(P2-P1 can be in [0,2*pi])#" , py::arg("C"), py::arg("P1"), py::arg("P2"), py::arg("Tol"), py::arg("B")
)
.def_static("Add_s",
(void (*)( const gp_Elips2d & , const Standard_Real , Bnd_Box2d & ) ) static_cast<void (*)( const gp_Elips2d & , const Standard_Real , Bnd_Box2d & ) >(&BndLib::Add),
R"#(None)#" , py::arg("C"), py::arg("Tol"), py::arg("B")
)
.def_static("Add_s",
(void (*)( const gp_Elips2d & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box2d & ) ) static_cast<void (*)( const gp_Elips2d & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box2d & ) >(&BndLib::Add),
R"#(Adds the ellipse E, or the arc of the ellipse E limited by the two parameter values P1 and P2, to the bounding box B, and then enlarges B by the tolerance value Tol. P2-P1 can be in [0,2*pi])#" , py::arg("C"), py::arg("P1"), py::arg("P2"), py::arg("Tol"), py::arg("B")
)
.def_static("Add_s",
(void (*)( const gp_Parab & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) ) static_cast<void (*)( const gp_Parab & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) >(&BndLib::Add),
R"#(None)#" , py::arg("P"), py::arg("P1"), py::arg("P2"), py::arg("Tol"), py::arg("B")
)
.def_static("Add_s",
(void (*)( const gp_Parab2d & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box2d & ) ) static_cast<void (*)( const gp_Parab2d & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box2d & ) >(&BndLib::Add),
R"#(Adds the arc of the parabola P limited by the two parameter values P1 and P2, to the bounding box B, and then enlarges B by the tolerance value Tol. P1 and P2 may represent infinite values. Exceptions Standard_Failure if P1 and P2 are either two negative infinite real numbers, or two positive infinite real numbers.)#" , py::arg("P"), py::arg("P1"), py::arg("P2"), py::arg("Tol"), py::arg("B")
)
.def_static("Add_s",
(void (*)( const gp_Hypr & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) ) static_cast<void (*)( const gp_Hypr & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) >(&BndLib::Add),
R"#(None)#" , py::arg("H"), py::arg("P1"), py::arg("P2"), py::arg("Tol"), py::arg("B")
)
.def_static("Add_s",
(void (*)( const gp_Hypr2d & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box2d & ) ) static_cast<void (*)( const gp_Hypr2d & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box2d & ) >(&BndLib::Add),
R"#(Adds the arc of the branch of hyperbola H limited by the two parameter values P1 and P2, to the bounding box B, and then enlarges B by the tolerance value Tol. P1 and P2 may represent infinite values. Exceptions Standard_Failure if P1 and P2 are either two negative infinite real numbers, or two positive infinite real numbers.)#" , py::arg("H"), py::arg("P1"), py::arg("P2"), py::arg("Tol"), py::arg("B")
)
.def_static("Add_s",
(void (*)( const gp_Cylinder & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) ) static_cast<void (*)( const gp_Cylinder & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) >(&BndLib::Add),
R"#(UMax -UMin can be in [0,2*pi])#" , py::arg("S"), py::arg("UMin"), py::arg("UMax"), py::arg("VMin"), py::arg("VMax"), py::arg("Tol"), py::arg("B")
)
.def_static("Add_s",
(void (*)( const gp_Cylinder & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) ) static_cast<void (*)( const gp_Cylinder & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) >(&BndLib::Add),
R"#(Adds to the bounding box B, the patch of the cylinder S limited - in the v parametric direction, by the two parameter values VMin and VMax - and optionally in the u parametric direction, by the two parameter values UMin and UMax. B is then enlarged by the tolerance value Tol. VMin and VMax may represent infinite values. Exceptions Standard_Failure if VMin and VMax are either two negative infinite real numbers, or two positive infinite real numbers.)#" , py::arg("S"), py::arg("VMin"), py::arg("VMax"), py::arg("Tol"), py::arg("B")
)
.def_static("Add_s",
(void (*)( const gp_Cone & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) ) static_cast<void (*)( const gp_Cone & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) >(&BndLib::Add),
R"#(UMax-UMin can be in [0,2*pi])#" , py::arg("S"), py::arg("UMin"), py::arg("UMax"), py::arg("VMin"), py::arg("VMax"), py::arg("Tol"), py::arg("B")
)
.def_static("Add_s",
(void (*)( const gp_Cone & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) ) static_cast<void (*)( const gp_Cone & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) >(&BndLib::Add),
R"#(Adds to the bounding box B, the patch of the cone S limited - in the v parametric direction, by the two parameter values VMin and VMax - and optionally in the u parametric direction, by the two parameter values UMin and UMax, B is then enlarged by the tolerance value Tol. VMin and VMax may represent infinite values. Exceptions Standard_Failure if VMin and VMax are either two negative infinite real numbers, or two positive infinite real numbers.)#" , py::arg("S"), py::arg("VMin"), py::arg("VMax"), py::arg("Tol"), py::arg("B")
)
.def_static("Add_s",
(void (*)( const gp_Sphere & , const Standard_Real , Bnd_Box & ) ) static_cast<void (*)( const gp_Sphere & , const Standard_Real , Bnd_Box & ) >(&BndLib::Add),
R"#(None)#" , py::arg("S"), py::arg("Tol"), py::arg("B")
)
.def_static("Add_s",
(void (*)( const gp_Sphere & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) ) static_cast<void (*)( const gp_Sphere & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) >(&BndLib::Add),
R"#(Adds to the bounding box B the sphere S, or - the patch of the sphere S, limited in the u parametric direction, by the two parameter values UMin and UMax, and in the v parametric direction, by the two parameter values VMin and VMax. B is then enlarged by the tolerance value Tol. UMax-UMin can be in [0,2*pi] VMin,VMax can be [-pi/2,pi/2])#" , py::arg("S"), py::arg("UMin"), py::arg("UMax"), py::arg("VMin"), py::arg("VMax"), py::arg("Tol"), py::arg("B")
)
.def_static("Add_s",
(void (*)( const gp_Torus & , const Standard_Real , Bnd_Box & ) ) static_cast<void (*)( const gp_Torus & , const Standard_Real , Bnd_Box & ) >(&BndLib::Add),
R"#(None)#" , py::arg("P"), py::arg("Tol"), py::arg("B")
)
.def_static("Add_s",
(void (*)( const gp_Torus & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) ) static_cast<void (*)( const gp_Torus & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) >(&BndLib::Add),
R"#(Adds to the bounding box B - the torus S, or - the patch of the torus S, limited in the u parametric direction, by the two parameter values UMin and UMax, and in the v parametric direction, by the two parameter values VMin and VMax. B is then enlarged by the tolerance value Tol. UMax-UMin can be in [0,2*pi], VMin,VMax can be [-pi/2,pi/2])#" , py::arg("P"), py::arg("UMin"), py::arg("UMax"), py::arg("VMin"), py::arg("VMax"), py::arg("Tol"), py::arg("B")
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class BndLib_Add2dCurve from ./opencascade/BndLib_Add2dCurve.hxx
klass = m.attr("BndLib_Add2dCurve");
// default constructor
register_default_constructor<BndLib_Add2dCurve , shared_ptr<BndLib_Add2dCurve>>(m,"BndLib_Add2dCurve");
// nested enums
static_cast<py::class_<BndLib_Add2dCurve , shared_ptr<BndLib_Add2dCurve> >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("Add_s",
(void (*)( const Adaptor2d_Curve2d & , const Standard_Real , Bnd_Box2d & ) ) static_cast<void (*)( const Adaptor2d_Curve2d & , const Standard_Real , Bnd_Box2d & ) >(&BndLib_Add2dCurve::Add),
R"#(Adds to the bounding box B the curve C B is then enlarged by the tolerance value Tol. Note: depending on the type of curve, one of the following representations of the curve C is used to include it in the bounding box B: - an exact representation if C is built from a line, a circle or a conic curve, - the poles of the curve if C is built from a Bezier curve or a BSpline curve, - if not, the points of an approximation of the curve C. Warning C is an adapted curve, that is, an object which is an interface between: - the services provided by a 2D curve from the package Geom2d - and those required of the curve by the computation algorithm. The adapted curve is created in the following way: Handle(Geom2d_Curve) mycurve = ... ; Geom2dAdaptor_Curve C(mycurve); The bounding box B is then enlarged by adding it: Bnd_Box2d B; // ... Standard_Real Tol = ... ; Add2dCurve::Add ( C, Tol, B ); Exceptions Standard_Failure if the curve is built from: - a Geom_Line, or - a Geom_Parabola, or - a Geom_Hyperbola, and P1 and P2 are either two negative infinite real numbers, or two positive infinite real numbers.)#" , py::arg("C"), py::arg("Tol"), py::arg("B")
)
.def_static("Add_s",
(void (*)( const Adaptor2d_Curve2d & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box2d & ) ) static_cast<void (*)( const Adaptor2d_Curve2d & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box2d & ) >(&BndLib_Add2dCurve::Add),
R"#(Adds to the bounding box Bthe arc of the curve C limited by the two parameter values P1 and P2. B is then enlarged by the tolerance value Tol. Note: depending on the type of curve, one of the following representations of the curve C is used to include it in the bounding box B: - an exact representation if C is built from a line, a circle or a conic curve, - the poles of the curve if C is built from a Bezier curve or a BSpline curve, - if not, the points of an approximation of the curve C. Warning C is an adapted curve, that is, an object which is an interface between: - the services provided by a 2D curve from the package Geom2d - and those required of the curve by the computation algorithm. The adapted curve is created in the following way: Handle(Geom2d_Curve) mycurve = ... ; Geom2dAdaptor_Curve C(mycurve); The bounding box B is then enlarged by adding it: Bnd_Box2d B; // ... Standard_Real Tol = ... ; Add2dCurve::Add ( C, Tol, B ); Exceptions Standard_Failure if the curve is built from: - a Geom_Line, or - a Geom_Parabola, or - a Geom_Hyperbola, and P1 and P2 are either two negative infinite real numbers, or two positive infinite real numbers.)#" , py::arg("C"), py::arg("U1"), py::arg("U2"), py::arg("Tol"), py::arg("B")
)
.def_static("Add_s",
(void (*)( const opencascade::handle<Geom2d_Curve> & , const Standard_Real , Bnd_Box2d & ) ) static_cast<void (*)( const opencascade::handle<Geom2d_Curve> & , const Standard_Real , Bnd_Box2d & ) >(&BndLib_Add2dCurve::Add),
R"#(Adds to the bounding box B the curve C B is then enlarged by the tolerance value Tol. Note: depending on the type of curve, one of the following representations of the curve C is used to include it in the bounding box B: - an exact representation if C is built from a line, a circle or a conic curve, - the poles of the curve if C is built from a Bezier curve or a BSpline curve, - if not, the points of an approximation of the curve C.)#" , py::arg("C"), py::arg("Tol"), py::arg("Box")
)
.def_static("Add_s",
(void (*)( const opencascade::handle<Geom2d_Curve> & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box2d & ) ) static_cast<void (*)( const opencascade::handle<Geom2d_Curve> & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box2d & ) >(&BndLib_Add2dCurve::Add),
R"#(Adds to the bounding box B the part of curve C B is then enlarged by the tolerance value Tol. U1, U2 - the parametric range to compute the bounding box; Note: depending on the type of curve, one of the following representations of the curve C is used to include it in the bounding box B: - an exact representation if C is built from a line, a circle or a conic curve, - the poles of the curve if C is built from a Bezier curve or a BSpline curve, - if not, the points of an approximation of the curve C.)#" , py::arg("C"), py::arg("U1"), py::arg("U2"), py::arg("Tol"), py::arg("B")
)
.def_static("AddOptimal_s",
(void (*)( const opencascade::handle<Geom2d_Curve> & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box2d & ) ) static_cast<void (*)( const opencascade::handle<Geom2d_Curve> & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box2d & ) >(&BndLib_Add2dCurve::AddOptimal),
R"#(Adds to the bounding box B the part of curve C B is then enlarged by the tolerance value Tol. U1, U2 - the parametric range to compute the bounding box; Note: depending on the type of curve, one of the following algorithms is used to include it in the bounding box B: - an exact analytical if C is built from a line, a circle or a conic curve, - numerical calculation of bounding box sizes, based on minimization algorithm, for other types of curve If Tol = < Precision::PConfusion(), Precision::PConfusion is used as tolerance for calculation)#" , py::arg("C"), py::arg("U1"), py::arg("U2"), py::arg("Tol"), py::arg("B")
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class BndLib_Add3dCurve from ./opencascade/BndLib_Add3dCurve.hxx
klass = m.attr("BndLib_Add3dCurve");
// default constructor
register_default_constructor<BndLib_Add3dCurve , shared_ptr<BndLib_Add3dCurve>>(m,"BndLib_Add3dCurve");
// nested enums
static_cast<py::class_<BndLib_Add3dCurve , shared_ptr<BndLib_Add3dCurve> >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("Add_s",
(void (*)( const Adaptor3d_Curve & , const Standard_Real , Bnd_Box & ) ) static_cast<void (*)( const Adaptor3d_Curve & , const Standard_Real , Bnd_Box & ) >(&BndLib_Add3dCurve::Add),
R"#(Adds to the bounding box B the curve C B is then enlarged by the tolerance value Tol. Note: depending on the type of curve, one of the following representations of the curve C is used to include it in the bounding box B: - an exact representation if C is built from a line, a circle or a conic curve, - the poles of the curve if C is built from a Bezier curve or a BSpline curve, if not, the points of an approximation of the curve C. Warning C is an adapted curve, that is, an object which is an interface between: - the services provided by a 3D curve from the package Geom - and those required of the curve by the computation algorithm. The adapted curve is created in the following way: Handle(Geom_Curve) mycurve = ... ; GeomAdaptor_Curve C(mycurve); The bounding box B is then enlarged by adding it: Bnd_Box B; // ... Standard_Real Tol = ... ; Add3dCurve::Add ( C, Tol, B ); Exceptions Standard_Failure if the curve is built from: - a Geom_Line, or - a Geom_Parabola, or - a Geom_Hyperbola, and P1 and P2 are either two negative infinite real numbers, or two positive infinite real numbers.)#" , py::arg("C"), py::arg("Tol"), py::arg("B")
)
.def_static("Add_s",
(void (*)( const Adaptor3d_Curve & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) ) static_cast<void (*)( const Adaptor3d_Curve & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) >(&BndLib_Add3dCurve::Add),
R"#(Adds to the bounding box B the curve C the arc of the curve C limited by the two parameter values P1 and P2. Note: depending on the type of curve, one of the following representations of the curve C is used to include it in the bounding box B: - an exact representation if C is built from a line, a circle or a conic curve, - the poles of the curve if C is built from a Bezier curve or a BSpline curve, if not, the points of an approximation of the curve C. Warning C is an adapted curve, that is, an object which is an interface between: - the services provided by a 3D curve from the package Geom - and those required of the curve by the computation algorithm. The adapted curve is created in the following way: Handle(Geom_Curve) mycurve = ... ; GeomAdaptor_Curve C(mycurve); The bounding box B is then enlarged by adding it: Bnd_Box B; // ... Standard_Real Tol = ... ; Add3dCurve::Add ( C, Tol, B ); Exceptions Standard_Failure if the curve is built from: - a Geom_Line, or - a Geom_Parabola, or - a Geom_Hyperbola, and P1 and P2 are either two negative infinite real numbers, or two positive infinite real numbers.)#" , py::arg("C"), py::arg("U1"), py::arg("U2"), py::arg("Tol"), py::arg("B")
)
.def_static("AddOptimal_s",
(void (*)( const Adaptor3d_Curve & , const Standard_Real , Bnd_Box & ) ) static_cast<void (*)( const Adaptor3d_Curve & , const Standard_Real , Bnd_Box & ) >(&BndLib_Add3dCurve::AddOptimal),
R"#(Adds to the bounding box B the curve C These methods use more precise algorithms for building bnd box then methods Add(...))#" , py::arg("C"), py::arg("Tol"), py::arg("B")
)
.def_static("AddOptimal_s",
(void (*)( const Adaptor3d_Curve & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) ) static_cast<void (*)( const Adaptor3d_Curve & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) >(&BndLib_Add3dCurve::AddOptimal),
R"#(None)#" , py::arg("C"), py::arg("U1"), py::arg("U2"), py::arg("Tol"), py::arg("B")
)
.def_static("AddGenCurv_s",
(void (*)( const Adaptor3d_Curve & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) ) static_cast<void (*)( const Adaptor3d_Curve & , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) >(&BndLib_Add3dCurve::AddGenCurv),
R"#(Adds to the bounding box B the curve C using numerical minimization algorithms This method is used in AddOptimal for not analytical curves. if Tol < Precision::Confusion(), Precision:;Confusion is used as computation tolerance)#" , py::arg("C"), py::arg("UMin"), py::arg("UMax"), py::arg("Tol"), py::arg("B")
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class BndLib_AddSurface from ./opencascade/BndLib_AddSurface.hxx
klass = m.attr("BndLib_AddSurface");
// default constructor
register_default_constructor<BndLib_AddSurface , shared_ptr<BndLib_AddSurface>>(m,"BndLib_AddSurface");
// nested enums
static_cast<py::class_<BndLib_AddSurface , shared_ptr<BndLib_AddSurface> >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("Add_s",
(void (*)( const Adaptor3d_Surface & , const Standard_Real , Bnd_Box & ) ) static_cast<void (*)( const Adaptor3d_Surface & , const Standard_Real , Bnd_Box & ) >(&BndLib_AddSurface::Add),
R"#(Adds to the bounding box B the surface S B is then enlarged by the tolerance value Tol. Note: depending on the type of curve, one of the following representations of the surface S is used to include it in the bounding box B: - an exact representation if S is built from a plane, a cylinder, a cone, a sphere or a torus, - the poles of the surface if S is built from a Bezier surface or a BSpline surface, - the points of an approximation of the surface S in cases other than offset surfaces; - in the case of an offset surface, the basis surface is first included according to the previous rules; then the bounding box is enlarged by the offset value. Warning Do not use these functions to add a non-finite surface to the bounding box B. If UMin, UMax, VMin or VMax is an infinite value B will become WholeSpace. S is an adapted surface, that is, an object which is an interface between: - the services provided by a surface from the package Geom - and those required of the surface by the computation algorithm. The adapted surface is created in the following way: Handle(Geom_Surface) mysurface = ... ; GeomAdaptor_Surface S(mysurface); The bounding box B is then enlarged by adding this surface: Bnd_Box B; // ... Standard_Real Tol = ... ; AddSurface::Add ( S, Tol, B );)#" , py::arg("S"), py::arg("Tol"), py::arg("B")
)
.def_static("Add_s",
(void (*)( const Adaptor3d_Surface & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) ) static_cast<void (*)( const Adaptor3d_Surface & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) >(&BndLib_AddSurface::Add),
R"#(Adds to the bounding box B the surface S the patch of the surface S limited in the u parametric direction by the two parameter values UMin, UMax, and in the v parametric direction by the two parameter values VMin, VMax. Note: depending on the type of curve, one of the following representations of the surface S is used to include it in the bounding box B: - an exact representation if S is built from a plane, a cylinder, a cone, a sphere or a torus, - the poles of the surface if S is built from a Bezier surface or a BSpline surface, - the points of an approximation of the surface S in cases other than offset surfaces; - in the case of an offset surface, the basis surface is first included according to the previous rules; then the bounding box is enlarged by the offset value. Warning Do not use these functions to add a non-finite surface to the bounding box B. If UMin, UMax, VMin or VMax is an infinite value B will become WholeSpace. S is an adapted surface, that is, an object which is an interface between: - the services provided by a surface from the package Geom - and those required of the surface by the computation algorithm. The adapted surface is created in the following way: Handle(Geom_Surface) mysurface = ... ; GeomAdaptor_Surface S(mysurface); The bounding box B is then enlarged by adding this surface: Bnd_Box B; // ... Standard_Real Tol = ... ; AddSurface::Add ( S, Tol, B );)#" , py::arg("S"), py::arg("UMin"), py::arg("UMax"), py::arg("VMin"), py::arg("VMax"), py::arg("Tol"), py::arg("B")
)
.def_static("AddOptimal_s",
(void (*)( const Adaptor3d_Surface & , const Standard_Real , Bnd_Box & ) ) static_cast<void (*)( const Adaptor3d_Surface & , const Standard_Real , Bnd_Box & ) >(&BndLib_AddSurface::AddOptimal),
R"#(Adds the surface S to the bounding box B. This algorithm builds precise bounding box)#" , py::arg("S"), py::arg("Tol"), py::arg("B")
)
.def_static("AddOptimal_s",
(void (*)( const Adaptor3d_Surface & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) ) static_cast<void (*)( const Adaptor3d_Surface & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) >(&BndLib_AddSurface::AddOptimal),
R"#(None)#" , py::arg("S"), py::arg("UMin"), py::arg("UMax"), py::arg("VMin"), py::arg("VMax"), py::arg("Tol"), py::arg("B")
)
.def_static("AddGenSurf_s",
(void (*)( const Adaptor3d_Surface & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) ) static_cast<void (*)( const Adaptor3d_Surface & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , Bnd_Box & ) >(&BndLib_AddSurface::AddGenSurf),
R"#(Adds to the bounding box B the surface S using numerical minimization algorithms This method is used in AddOptimal for not analytical surfaces and torus. if Tol < Precision::Confusion(), Precision::Confusion is used as computation tolerance)#" , py::arg("S"), py::arg("UMin"), py::arg("UMax"), py::arg("VMin"), py::arg("VMax"), py::arg("Tol"), py::arg("B")
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// functions
// ./opencascade/BndLib.hxx
// ./opencascade/BndLib_Add2dCurve.hxx
// ./opencascade/BndLib_Add3dCurve.hxx
// ./opencascade/BndLib_AddSurface.hxx
// Additional functions
// operators
// register typdefs
// exceptions
// user-defined post-inclusion per module in the body
};
// user-defined post-inclusion per module
// user-defined post
|