1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
|
// std lib related includes
#include <tuple>
// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybind11;
// Standard Handle
#include <Standard_Handle.hxx>
// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Circ2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Cone.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Cylinder.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Elips2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Hypr2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Parab2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Sphere.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Torus.hxx>
// module includes
#include <Convert_CircleToBSplineCurve.hxx>
#include <Convert_CompBezierCurves2dToBSplineCurve2d.hxx>
#include <Convert_CompBezierCurvesToBSplineCurve.hxx>
#include <Convert_CompPolynomialToPoles.hxx>
#include <Convert_ConeToBSplineSurface.hxx>
#include <Convert_ConicToBSplineCurve.hxx>
#include <Convert_CosAndSinEvalFunction.hxx>
#include <Convert_CylinderToBSplineSurface.hxx>
#include <Convert_ElementarySurfaceToBSplineSurface.hxx>
#include <Convert_EllipseToBSplineCurve.hxx>
#include <Convert_GridPolynomialToPoles.hxx>
#include <Convert_HyperbolaToBSplineCurve.hxx>
#include <Convert_ParabolaToBSplineCurve.hxx>
#include <Convert_ParameterisationType.hxx>
#include <Convert_PolynomialCosAndSin.hxx>
#include <Convert_SequenceOfArray1OfPoles.hxx>
#include <Convert_SequenceOfArray1OfPoles2d.hxx>
#include <Convert_SphereToBSplineSurface.hxx>
#include <Convert_TorusToBSplineSurface.hxx>
// template related includes
// ./opencascade/Convert_SequenceOfArray1OfPoles.hxx
#include "NCollection_tmpl.hxx"
// user-defined pre
#include "OCP_specific.inc"
// user-defined inclusion per module
// Module definiiton
void register_Convert(py::module &main_module) {
py::module m = static_cast<py::module>(main_module.attr("Convert"));
py::object klass;
//Python trampoline classes
// classes
// Class Convert_CompBezierCurves2dToBSplineCurve2d from ./opencascade/Convert_CompBezierCurves2dToBSplineCurve2d.hxx
klass = m.attr("Convert_CompBezierCurves2dToBSplineCurve2d");
// nested enums
static_cast<py::class_<Convert_CompBezierCurves2dToBSplineCurve2d , shared_ptr<Convert_CompBezierCurves2dToBSplineCurve2d> >>(klass)
// constructors
.def(py::init< const Standard_Real >() , py::arg("AngularTolerance")=static_cast<const Standard_Real>(1.0e-4) )
// custom constructors
// methods
.def("AddCurve",
(void (Convert_CompBezierCurves2dToBSplineCurve2d::*)( const NCollection_Array1<gp_Pnt2d> & ) ) static_cast<void (Convert_CompBezierCurves2dToBSplineCurve2d::*)( const NCollection_Array1<gp_Pnt2d> & ) >(&Convert_CompBezierCurves2dToBSplineCurve2d::AddCurve),
R"#(Adds the Bezier curve defined by the table of poles Poles, to the sequence (still contained in this framework) of adjacent Bezier curves to be converted into a BSpline curve. Only polynomial (i.e. non-rational) Bezier curves are converted using this framework. If this is not the first call to the function (i.e. if this framework still contains data in its sequence of Bezier curves), the degree of continuity of the BSpline curve will be increased at the time of computation at the first point of the added Bezier curve (i.e. the first point of the Poles table). This will be the case if the tangent vector of the curve at this point is parallel to the tangent vector at the end point of the preceding Bezier curve in the sequence of Bezier curves still contained in this framework. An angular tolerance given at the time of construction of this framework, will be used to check the parallelism of the two tangent vectors. This checking procedure, and all the relative computations will be performed by the function Perform. When the sequence of adjacent Bezier curves is complete, use the following functions: - Perform to compute the data needed to build the BSpline curve, - and the available consultation functions to access the computed data. This data may be used to construct the BSpline curve. Warning The sequence of Bezier curves treated by this framework is automatically initialized with the first Bezier curve when the function is first called. During subsequent use of this function, ensure that the first point of the added Bezier curve (i.e. the first point of the Poles table) is coincident with the last point of the sequence (i.e. the last point of the preceding Bezier curve in the sequence) of Bezier curves still contained in this framework. An error may occur at the time of computation if this condition is not satisfied. Particular care must be taken with respect to the above, as this condition is not checked either when defining the sequence of Bezier curves or at the time of computation.)#" , py::arg("Poles")
)
.def("Perform",
(void (Convert_CompBezierCurves2dToBSplineCurve2d::*)() ) static_cast<void (Convert_CompBezierCurves2dToBSplineCurve2d::*)() >(&Convert_CompBezierCurves2dToBSplineCurve2d::Perform),
R"#(Computes all the data needed to build a BSpline curve equivalent to the sequence of adjacent Bezier curves still contained in this framework. A knot is inserted on the computed BSpline curve at the junction point of two consecutive Bezier curves. The degree of continuity of the BSpline curve will be increased at the junction point of two consecutive Bezier curves if their tangent vectors at this point are parallel. An angular tolerance given at the time of construction of this framework is used to check the parallelism of the two tangent vectors. Use the available consultation functions to access the computed data. This data may then be used to construct the BSpline curve. Warning Ensure that the curves in the sequence of Bezier curves contained in this framework are adjacent. An error may occur at the time of computation if this condition is not satisfied. Particular care must be taken with respect to the above as this condition is not checked, either when defining the Bezier curve sequence or at the time of computation.)#"
)
.def("Degree",
(Standard_Integer (Convert_CompBezierCurves2dToBSplineCurve2d::*)() const) static_cast<Standard_Integer (Convert_CompBezierCurves2dToBSplineCurve2d::*)() const>(&Convert_CompBezierCurves2dToBSplineCurve2d::Degree),
R"#(Returns the degree of the BSpline curve whose data is computed in this framework. Warning Take particular care not to use this function before the computation is performed (Perform function), as this condition is not checked and an error may therefore occur.)#"
)
.def("NbPoles",
(Standard_Integer (Convert_CompBezierCurves2dToBSplineCurve2d::*)() const) static_cast<Standard_Integer (Convert_CompBezierCurves2dToBSplineCurve2d::*)() const>(&Convert_CompBezierCurves2dToBSplineCurve2d::NbPoles),
R"#(Returns the number of poles of the BSpline curve whose data is computed in this framework. Warning Take particular care not to use this function before the computation is performed (Perform function), as this condition is not checked and an error may therefore occur.)#"
)
.def("Poles",
(void (Convert_CompBezierCurves2dToBSplineCurve2d::*)( NCollection_Array1<gp_Pnt2d> & ) const) static_cast<void (Convert_CompBezierCurves2dToBSplineCurve2d::*)( NCollection_Array1<gp_Pnt2d> & ) const>(&Convert_CompBezierCurves2dToBSplineCurve2d::Poles),
R"#(Loads the Poles table with the poles of the BSpline curve whose data is computed in this framework. Warning - Do not use this function before the computation is performed (Perform function). - The length of the Poles array must be equal to the number of poles of the BSpline curve whose data is computed in this framework. Particular care must be taken with respect to the above, as these conditions are not checked, and an error may occur.)#" , py::arg("Poles")
)
.def("NbKnots",
(Standard_Integer (Convert_CompBezierCurves2dToBSplineCurve2d::*)() const) static_cast<Standard_Integer (Convert_CompBezierCurves2dToBSplineCurve2d::*)() const>(&Convert_CompBezierCurves2dToBSplineCurve2d::NbKnots),
R"#(Returns the number of knots of the BSpline curve whose data is computed in this framework. Warning Take particular care not to use this function before the computation is performed (Perform function), as this condition is not checked and an error may therefore occur.)#"
)
.def("KnotsAndMults",
(void (Convert_CompBezierCurves2dToBSplineCurve2d::*)( NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & ) const) static_cast<void (Convert_CompBezierCurves2dToBSplineCurve2d::*)( NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & ) const>(&Convert_CompBezierCurves2dToBSplineCurve2d::KnotsAndMults),
R"#(Loads the Knots table with the knots and the Mults table with the corresponding multiplicities of the BSpline curve whose data is computed in this framework. Warning - Do not use this function before the computation is performed (Perform function). - The length of the Knots and Mults arrays must be equal to the number of knots in the BSpline curve whose data is computed in this framework. Particular care must be taken with respect to the above as these conditions are not checked, and an error may occur.)#" , py::arg("Knots"), py::arg("Mults")
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class Convert_CompBezierCurvesToBSplineCurve from ./opencascade/Convert_CompBezierCurvesToBSplineCurve.hxx
klass = m.attr("Convert_CompBezierCurvesToBSplineCurve");
// nested enums
static_cast<py::class_<Convert_CompBezierCurvesToBSplineCurve , shared_ptr<Convert_CompBezierCurvesToBSplineCurve> >>(klass)
// constructors
.def(py::init< const Standard_Real >() , py::arg("AngularTolerance")=static_cast<const Standard_Real>(1.0e-4) )
// custom constructors
// methods
.def("AddCurve",
(void (Convert_CompBezierCurvesToBSplineCurve::*)( const NCollection_Array1<gp_Pnt> & ) ) static_cast<void (Convert_CompBezierCurvesToBSplineCurve::*)( const NCollection_Array1<gp_Pnt> & ) >(&Convert_CompBezierCurvesToBSplineCurve::AddCurve),
R"#(Adds the Bezier curve defined by the table of poles Poles, to the sequence (still contained in this framework) of adjacent Bezier curves to be converted into a BSpline curve. Only polynomial (i.e. non-rational) Bezier curves are converted using this framework. If this is not the first call to the function (i.e. if this framework still contains data in its Bezier curve sequence), the degree of continuity of the BSpline curve will be increased at the time of computation at the first point of the added Bezier curve (i.e. the first point of the Poles table). This will be the case if the tangent vector of the curve at this point is parallel to the tangent vector at the end point of the preceding Bezier curve in the Bezier curve sequence still contained in this framework. An angular tolerance given at the time of construction of this framework will be used to check the parallelism of the two tangent vectors. This checking procedure and all related computations will be performed by the Perform function. When the adjacent Bezier curve sequence is complete, use the following functions: - Perform to compute the data needed to build the BSpline curve, - and the available consultation functions to access the computed data. This data may be used to construct the BSpline curve. Warning The Bezier curve sequence treated by this framework is automatically initialized with the first Bezier curve when the function is first called. During subsequent use of this function, ensure that the first point of the added Bezier curve (i.e. the first point of the Poles table) is coincident with the last point of the Bezier curve sequence (i.e. the last point of the preceding Bezier curve in the sequence) still contained in this framework. An error may occur at the time of computation if this condition is not satisfied. Particular care must be taken with respect to the above, as this condition is not checked either when defining the Bezier curve sequence or at the time of computation.)#" , py::arg("Poles")
)
.def("Perform",
(void (Convert_CompBezierCurvesToBSplineCurve::*)() ) static_cast<void (Convert_CompBezierCurvesToBSplineCurve::*)() >(&Convert_CompBezierCurvesToBSplineCurve::Perform),
R"#(Computes all the data needed to build a BSpline curve equivalent to the adjacent Bezier curve sequence still contained in this framework. A knot is inserted on the computed BSpline curve at the junction point of two consecutive Bezier curves. The degree of continuity of the BSpline curve will be increased at the junction point of two consecutive Bezier curves if their tangent vectors at this point are parallel. An angular tolerance given at the time of construction of this framework is used to check the parallelism of the two tangent vectors. Use the available consultation functions to access the computed data. This data may then be used to construct the BSpline curve. Warning Make sure that the curves in the Bezier curve sequence contained in this framework are adjacent. An error may occur at the time of computation if this condition is not satisfied. Particular care must be taken with respect to the above as this condition is not checked, either when defining the Bezier curve sequence or at the time of computation.)#"
)
.def("Degree",
(Standard_Integer (Convert_CompBezierCurvesToBSplineCurve::*)() const) static_cast<Standard_Integer (Convert_CompBezierCurvesToBSplineCurve::*)() const>(&Convert_CompBezierCurvesToBSplineCurve::Degree),
R"#(Returns the degree of the BSpline curve whose data is computed in this framework. Warning Take particular care not to use this function before the computation is performed (Perform function), as this condition is not checked and an error may therefore occur.)#"
)
.def("NbPoles",
(Standard_Integer (Convert_CompBezierCurvesToBSplineCurve::*)() const) static_cast<Standard_Integer (Convert_CompBezierCurvesToBSplineCurve::*)() const>(&Convert_CompBezierCurvesToBSplineCurve::NbPoles),
R"#(Returns the number of poles of the BSpline curve whose data is computed in this framework. Warning Take particular care not to use this function before the computation is performed (Perform function), as this condition is not checked and an error may therefore occur.)#"
)
.def("Poles",
(void (Convert_CompBezierCurvesToBSplineCurve::*)( NCollection_Array1<gp_Pnt> & ) const) static_cast<void (Convert_CompBezierCurvesToBSplineCurve::*)( NCollection_Array1<gp_Pnt> & ) const>(&Convert_CompBezierCurvesToBSplineCurve::Poles),
R"#(Loads the Poles table with the poles of the BSpline curve whose data is computed in this framework. Warning - Do not use this function before the computation is performed (Perform function). - The length of the Poles array must be equal to the number of poles of the BSpline curve whose data is computed in this framework. Particular care must be taken with respect to the above, as these conditions are not checked, and an error may occur.)#" , py::arg("Poles")
)
.def("NbKnots",
(Standard_Integer (Convert_CompBezierCurvesToBSplineCurve::*)() const) static_cast<Standard_Integer (Convert_CompBezierCurvesToBSplineCurve::*)() const>(&Convert_CompBezierCurvesToBSplineCurve::NbKnots),
R"#(Returns the number of knots of the BSpline curve whose data is computed in this framework. Warning Take particular care not to use this function before the computation is performed (Perform function), as this condition is not checked and an error may therefore occur.)#"
)
.def("KnotsAndMults",
(void (Convert_CompBezierCurvesToBSplineCurve::*)( NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & ) const) static_cast<void (Convert_CompBezierCurvesToBSplineCurve::*)( NCollection_Array1<Standard_Real> & , NCollection_Array1<Standard_Integer> & ) const>(&Convert_CompBezierCurvesToBSplineCurve::KnotsAndMults),
R"#(- loads the Knots table with the knots, - and loads the Mults table with the corresponding multiplicities of the BSpline curve whose data is computed in this framework. Warning - Do not use this function before the computation is performed (Perform function). - The length of the Knots and Mults arrays must be equal to the number of knots in the BSpline curve whose data is computed in this framework. Particular care must be taken with respect to the above as these conditions are not checked, and an error may occur.)#" , py::arg("Knots"), py::arg("Mults")
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class Convert_CompPolynomialToPoles from ./opencascade/Convert_CompPolynomialToPoles.hxx
klass = m.attr("Convert_CompPolynomialToPoles");
// nested enums
static_cast<py::class_<Convert_CompPolynomialToPoles , shared_ptr<Convert_CompPolynomialToPoles> >>(klass)
// constructors
.def(py::init< const Standard_Integer,const Standard_Integer,const Standard_Integer,const Standard_Integer,const opencascade::handle<TColStd_HArray1OfInteger> &,const opencascade::handle<TColStd_HArray1OfReal> &,const opencascade::handle<TColStd_HArray2OfReal> &,const opencascade::handle<TColStd_HArray1OfReal> & >() , py::arg("NumCurves"), py::arg("Continuity"), py::arg("Dimension"), py::arg("MaxDegree"), py::arg("NumCoeffPerCurve"), py::arg("Coefficients"), py::arg("PolynomialIntervals"), py::arg("TrueIntervals") )
.def(py::init< const Standard_Integer,const Standard_Integer,const Standard_Integer, const NCollection_Array1<Standard_Integer> &, const NCollection_Array1<Standard_Integer> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array2<Standard_Real> &, const NCollection_Array1<Standard_Real> & >() , py::arg("NumCurves"), py::arg("Dimension"), py::arg("MaxDegree"), py::arg("Continuity"), py::arg("NumCoeffPerCurve"), py::arg("Coefficients"), py::arg("PolynomialIntervals"), py::arg("TrueIntervals") )
.def(py::init< const Standard_Integer,const Standard_Integer,const Standard_Integer, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Real> & >() , py::arg("Dimension"), py::arg("MaxDegree"), py::arg("Degree"), py::arg("Coefficients"), py::arg("PolynomialIntervals"), py::arg("TrueIntervals") )
// custom constructors
// methods
.def("NbPoles",
(Standard_Integer (Convert_CompPolynomialToPoles::*)() const) static_cast<Standard_Integer (Convert_CompPolynomialToPoles::*)() const>(&Convert_CompPolynomialToPoles::NbPoles),
R"#(number of poles of the n-dimensional BSpline)#"
)
.def("Degree",
(Standard_Integer (Convert_CompPolynomialToPoles::*)() const) static_cast<Standard_Integer (Convert_CompPolynomialToPoles::*)() const>(&Convert_CompPolynomialToPoles::Degree),
R"#(None)#"
)
.def("NbKnots",
(Standard_Integer (Convert_CompPolynomialToPoles::*)() const) static_cast<Standard_Integer (Convert_CompPolynomialToPoles::*)() const>(&Convert_CompPolynomialToPoles::NbKnots),
R"#(Degree of the n-dimensional Bspline)#"
)
.def("IsDone",
(Standard_Boolean (Convert_CompPolynomialToPoles::*)() const) static_cast<Standard_Boolean (Convert_CompPolynomialToPoles::*)() const>(&Convert_CompPolynomialToPoles::IsDone),
R"#(None)#"
)
// methods using call by reference i.s.o. return
.def("Poles",
[]( Convert_CompPolynomialToPoles &self , TColStd_HArray2OfReal& Poles ){
opencascade::handle<TColStd_HArray2OfReal> Poles_ptr; Poles_ptr = &Poles;
self.Poles(Poles_ptr);
if ( Poles_ptr.get() != &Poles ) copy_if_copy_constructible(Poles, *Poles_ptr);
return std::make_tuple(); },
R"#(returns the poles of the n-dimensional BSpline in the following format : [1..NumPoles][1..Dimension])#" , py::arg("Poles")
)
.def("Knots",
[]( Convert_CompPolynomialToPoles &self , TColStd_HArray1OfReal& K ){
opencascade::handle<TColStd_HArray1OfReal> K_ptr; K_ptr = &K;
self.Knots(K_ptr);
if ( K_ptr.get() != &K ) copy_if_copy_constructible(K, *K_ptr);
return std::make_tuple(); },
R"#(Knots of the n-dimensional Bspline)#" , py::arg("K")
)
.def("Multiplicities",
[]( Convert_CompPolynomialToPoles &self , TColStd_HArray1OfInteger& M ){
opencascade::handle<TColStd_HArray1OfInteger> M_ptr; M_ptr = &M;
self.Multiplicities(M_ptr);
if ( M_ptr.get() != &M ) copy_if_copy_constructible(M, *M_ptr);
return std::make_tuple(); },
R"#(Multiplicities of the knots in the BSpline)#" , py::arg("M")
)
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class Convert_ConicToBSplineCurve from ./opencascade/Convert_ConicToBSplineCurve.hxx
klass = m.attr("Convert_ConicToBSplineCurve");
// nested enums
static_cast<py::class_<Convert_ConicToBSplineCurve , shared_ptr<Convert_ConicToBSplineCurve> >>(klass)
// constructors
// custom constructors
// methods
.def("Degree",
(Standard_Integer (Convert_ConicToBSplineCurve::*)() const) static_cast<Standard_Integer (Convert_ConicToBSplineCurve::*)() const>(&Convert_ConicToBSplineCurve::Degree),
R"#(Returns the degree of the BSpline curve whose data is computed in this framework.)#"
)
.def("NbPoles",
(Standard_Integer (Convert_ConicToBSplineCurve::*)() const) static_cast<Standard_Integer (Convert_ConicToBSplineCurve::*)() const>(&Convert_ConicToBSplineCurve::NbPoles),
R"#(Returns the number of poles of the BSpline curve whose data is computed in this framework.)#"
)
.def("NbKnots",
(Standard_Integer (Convert_ConicToBSplineCurve::*)() const) static_cast<Standard_Integer (Convert_ConicToBSplineCurve::*)() const>(&Convert_ConicToBSplineCurve::NbKnots),
R"#(Returns the number of knots of the BSpline curve whose data is computed in this framework.)#"
)
.def("IsPeriodic",
(Standard_Boolean (Convert_ConicToBSplineCurve::*)() const) static_cast<Standard_Boolean (Convert_ConicToBSplineCurve::*)() const>(&Convert_ConicToBSplineCurve::IsPeriodic),
R"#(Returns true if the BSpline curve whose data is computed in this framework is periodic.)#"
)
.def("Pole",
(gp_Pnt2d (Convert_ConicToBSplineCurve::*)( const Standard_Integer ) const) static_cast<gp_Pnt2d (Convert_ConicToBSplineCurve::*)( const Standard_Integer ) const>(&Convert_ConicToBSplineCurve::Pole),
R"#(Returns the pole of index Index to the poles table of the BSpline curve whose data is computed in this framework. Exceptions Standard_OutOfRange if Index is outside the bounds of the poles table of the BSpline curve whose data is computed in this framework.)#" , py::arg("Index")
)
.def("Weight",
(Standard_Real (Convert_ConicToBSplineCurve::*)( const Standard_Integer ) const) static_cast<Standard_Real (Convert_ConicToBSplineCurve::*)( const Standard_Integer ) const>(&Convert_ConicToBSplineCurve::Weight),
R"#(Returns the weight of the pole of index Index to the poles table of the BSpline curve whose data is computed in this framework. Exceptions Standard_OutOfRange if Index is outside the bounds of the poles table of the BSpline curve whose data is computed in this framework.)#" , py::arg("Index")
)
.def("Knot",
(Standard_Real (Convert_ConicToBSplineCurve::*)( const Standard_Integer ) const) static_cast<Standard_Real (Convert_ConicToBSplineCurve::*)( const Standard_Integer ) const>(&Convert_ConicToBSplineCurve::Knot),
R"#(Returns the knot of index Index to the knots table of the BSpline curve whose data is computed in this framework. Exceptions Standard_OutOfRange if Index is outside the bounds of the knots table of the BSpline curve whose data is computed in this framework.)#" , py::arg("Index")
)
.def("Multiplicity",
(Standard_Integer (Convert_ConicToBSplineCurve::*)( const Standard_Integer ) const) static_cast<Standard_Integer (Convert_ConicToBSplineCurve::*)( const Standard_Integer ) const>(&Convert_ConicToBSplineCurve::Multiplicity),
R"#(Returns the multiplicity of the knot of index Index to the knots table of the BSpline curve whose data is computed in this framework. Exceptions Standard_OutOfRange if Index is outside the bounds of the knots table of the BSpline curve whose data is computed in this framework.)#" , py::arg("Index")
)
// methods using call by reference i.s.o. return
.def("BuildCosAndSin",
[]( Convert_ConicToBSplineCurve &self , const Convert_ParameterisationType Parametrisation,TColStd_HArray1OfReal& CosNumerator,TColStd_HArray1OfReal& SinNumerator,TColStd_HArray1OfReal& Denominator,TColStd_HArray1OfReal& Knots,TColStd_HArray1OfInteger& Mults ){
Standard_Integer Degree;
opencascade::handle<TColStd_HArray1OfReal> CosNumerator_ptr; CosNumerator_ptr = &CosNumerator;
opencascade::handle<TColStd_HArray1OfReal> SinNumerator_ptr; SinNumerator_ptr = &SinNumerator;
opencascade::handle<TColStd_HArray1OfReal> Denominator_ptr; Denominator_ptr = &Denominator;
opencascade::handle<TColStd_HArray1OfReal> Knots_ptr; Knots_ptr = &Knots;
opencascade::handle<TColStd_HArray1OfInteger> Mults_ptr; Mults_ptr = &Mults;
self.BuildCosAndSin(Parametrisation,CosNumerator_ptr,SinNumerator_ptr,Denominator_ptr,Degree,Knots_ptr,Mults_ptr);
if ( CosNumerator_ptr.get() != &CosNumerator ) copy_if_copy_constructible(CosNumerator, *CosNumerator_ptr);
if ( SinNumerator_ptr.get() != &SinNumerator ) copy_if_copy_constructible(SinNumerator, *SinNumerator_ptr);
if ( Denominator_ptr.get() != &Denominator ) copy_if_copy_constructible(Denominator, *Denominator_ptr);
if ( Knots_ptr.get() != &Knots ) copy_if_copy_constructible(Knots, *Knots_ptr);
if ( Mults_ptr.get() != &Mults ) copy_if_copy_constructible(Mults, *Mults_ptr);
return std::make_tuple(Degree); },
R"#(None)#" , py::arg("Parametrisation"), py::arg("CosNumerator"), py::arg("SinNumerator"), py::arg("Denominator"), py::arg("Knots"), py::arg("Mults")
)
.def("BuildCosAndSin",
[]( Convert_ConicToBSplineCurve &self , const Convert_ParameterisationType Parametrisation,const Standard_Real UFirst,const Standard_Real ULast,TColStd_HArray1OfReal& CosNumerator,TColStd_HArray1OfReal& SinNumerator,TColStd_HArray1OfReal& Denominator,TColStd_HArray1OfReal& Knots,TColStd_HArray1OfInteger& Mults ){
Standard_Integer Degree;
opencascade::handle<TColStd_HArray1OfReal> CosNumerator_ptr; CosNumerator_ptr = &CosNumerator;
opencascade::handle<TColStd_HArray1OfReal> SinNumerator_ptr; SinNumerator_ptr = &SinNumerator;
opencascade::handle<TColStd_HArray1OfReal> Denominator_ptr; Denominator_ptr = &Denominator;
opencascade::handle<TColStd_HArray1OfReal> Knots_ptr; Knots_ptr = &Knots;
opencascade::handle<TColStd_HArray1OfInteger> Mults_ptr; Mults_ptr = &Mults;
self.BuildCosAndSin(Parametrisation,UFirst,ULast,CosNumerator_ptr,SinNumerator_ptr,Denominator_ptr,Degree,Knots_ptr,Mults_ptr);
if ( CosNumerator_ptr.get() != &CosNumerator ) copy_if_copy_constructible(CosNumerator, *CosNumerator_ptr);
if ( SinNumerator_ptr.get() != &SinNumerator ) copy_if_copy_constructible(SinNumerator, *SinNumerator_ptr);
if ( Denominator_ptr.get() != &Denominator ) copy_if_copy_constructible(Denominator, *Denominator_ptr);
if ( Knots_ptr.get() != &Knots ) copy_if_copy_constructible(Knots, *Knots_ptr);
if ( Mults_ptr.get() != &Mults ) copy_if_copy_constructible(Mults, *Mults_ptr);
return std::make_tuple(Degree); },
R"#(None)#" , py::arg("Parametrisation"), py::arg("UFirst"), py::arg("ULast"), py::arg("CosNumerator"), py::arg("SinNumerator"), py::arg("Denominator"), py::arg("Knots"), py::arg("Mults")
)
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class Convert_ElementarySurfaceToBSplineSurface from ./opencascade/Convert_ElementarySurfaceToBSplineSurface.hxx
klass = m.attr("Convert_ElementarySurfaceToBSplineSurface");
// nested enums
static_cast<py::class_<Convert_ElementarySurfaceToBSplineSurface , shared_ptr<Convert_ElementarySurfaceToBSplineSurface> >>(klass)
// constructors
// custom constructors
// methods
.def("UDegree",
(Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)() const) static_cast<Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)() const>(&Convert_ElementarySurfaceToBSplineSurface::UDegree),
R"#(None)#"
)
.def("VDegree",
(Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)() const) static_cast<Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)() const>(&Convert_ElementarySurfaceToBSplineSurface::VDegree),
R"#(Returns the degree for the u or v parametric direction of the BSpline surface whose data is computed in this framework.)#"
)
.def("NbUPoles",
(Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)() const) static_cast<Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)() const>(&Convert_ElementarySurfaceToBSplineSurface::NbUPoles),
R"#(None)#"
)
.def("NbVPoles",
(Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)() const) static_cast<Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)() const>(&Convert_ElementarySurfaceToBSplineSurface::NbVPoles),
R"#(Returns the number of poles for the u or v parametric direction of the BSpline surface whose data is computed in this framework.)#"
)
.def("NbUKnots",
(Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)() const) static_cast<Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)() const>(&Convert_ElementarySurfaceToBSplineSurface::NbUKnots),
R"#(None)#"
)
.def("NbVKnots",
(Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)() const) static_cast<Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)() const>(&Convert_ElementarySurfaceToBSplineSurface::NbVKnots),
R"#(Returns the number of knots for the u or v parametric direction of the BSpline surface whose data is computed in this framework .)#"
)
.def("IsUPeriodic",
(Standard_Boolean (Convert_ElementarySurfaceToBSplineSurface::*)() const) static_cast<Standard_Boolean (Convert_ElementarySurfaceToBSplineSurface::*)() const>(&Convert_ElementarySurfaceToBSplineSurface::IsUPeriodic),
R"#(None)#"
)
.def("IsVPeriodic",
(Standard_Boolean (Convert_ElementarySurfaceToBSplineSurface::*)() const) static_cast<Standard_Boolean (Convert_ElementarySurfaceToBSplineSurface::*)() const>(&Convert_ElementarySurfaceToBSplineSurface::IsVPeriodic),
R"#(Returns true if the BSpline surface whose data is computed in this framework is periodic in the u or v parametric direction.)#"
)
.def("Pole",
(gp_Pnt (Convert_ElementarySurfaceToBSplineSurface::*)( const Standard_Integer , const Standard_Integer ) const) static_cast<gp_Pnt (Convert_ElementarySurfaceToBSplineSurface::*)( const Standard_Integer , const Standard_Integer ) const>(&Convert_ElementarySurfaceToBSplineSurface::Pole),
R"#(Returns the pole of index (UIndex,VIndex) to the poles table of the BSpline surface whose data is computed in this framework. Exceptions Standard_OutOfRange if, for the BSpline surface whose data is computed in this framework: - UIndex is outside the bounds of the poles table in the u parametric direction, or - VIndex is outside the bounds of the poles table in the v parametric direction.)#" , py::arg("UIndex"), py::arg("VIndex")
)
.def("Weight",
(Standard_Real (Convert_ElementarySurfaceToBSplineSurface::*)( const Standard_Integer , const Standard_Integer ) const) static_cast<Standard_Real (Convert_ElementarySurfaceToBSplineSurface::*)( const Standard_Integer , const Standard_Integer ) const>(&Convert_ElementarySurfaceToBSplineSurface::Weight),
R"#(Returns the weight of the pole of index (UIndex,VIndex) to the poles table of the BSpline surface whose data is computed in this framework. Exceptions Standard_OutOfRange if, for the BSpline surface whose data is computed in this framework: - UIndex is outside the bounds of the poles table in the u parametric direction, or - VIndex is outside the bounds of the poles table in the v parametric direction.)#" , py::arg("UIndex"), py::arg("VIndex")
)
.def("UKnot",
(Standard_Real (Convert_ElementarySurfaceToBSplineSurface::*)( const Standard_Integer ) const) static_cast<Standard_Real (Convert_ElementarySurfaceToBSplineSurface::*)( const Standard_Integer ) const>(&Convert_ElementarySurfaceToBSplineSurface::UKnot),
R"#(Returns the U-knot of range UIndex. Raised if UIndex < 1 or UIndex > NbUKnots.)#" , py::arg("UIndex")
)
.def("VKnot",
(Standard_Real (Convert_ElementarySurfaceToBSplineSurface::*)( const Standard_Integer ) const) static_cast<Standard_Real (Convert_ElementarySurfaceToBSplineSurface::*)( const Standard_Integer ) const>(&Convert_ElementarySurfaceToBSplineSurface::VKnot),
R"#(Returns the V-knot of range VIndex. Raised if VIndex < 1 or VIndex > NbVKnots.)#" , py::arg("UIndex")
)
.def("UMultiplicity",
(Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)( const Standard_Integer ) const) static_cast<Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)( const Standard_Integer ) const>(&Convert_ElementarySurfaceToBSplineSurface::UMultiplicity),
R"#(Returns the multiplicity of the U-knot of range UIndex. Raised if UIndex < 1 or UIndex > NbUKnots.)#" , py::arg("UIndex")
)
.def("VMultiplicity",
(Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)( const Standard_Integer ) const) static_cast<Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)( const Standard_Integer ) const>(&Convert_ElementarySurfaceToBSplineSurface::VMultiplicity),
R"#(Returns the multiplicity of the V-knot of range VIndex. Raised if VIndex < 1 or VIndex > NbVKnots.)#" , py::arg("VIndex")
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class Convert_GridPolynomialToPoles from ./opencascade/Convert_GridPolynomialToPoles.hxx
klass = m.attr("Convert_GridPolynomialToPoles");
// nested enums
static_cast<py::class_<Convert_GridPolynomialToPoles , shared_ptr<Convert_GridPolynomialToPoles> >>(klass)
// constructors
.def(py::init< const Standard_Integer,const Standard_Integer,const opencascade::handle<TColStd_HArray1OfInteger> &,const opencascade::handle<TColStd_HArray1OfReal> &,const opencascade::handle<TColStd_HArray1OfReal> &,const opencascade::handle<TColStd_HArray1OfReal> & >() , py::arg("MaxUDegree"), py::arg("MaxVDegree"), py::arg("NumCoeff"), py::arg("Coefficients"), py::arg("PolynomialUIntervals"), py::arg("PolynomialVIntervals") )
.def(py::init< const Standard_Integer,const Standard_Integer,const Standard_Integer,const Standard_Integer,const Standard_Integer,const Standard_Integer,const opencascade::handle<TColStd_HArray2OfInteger> &,const opencascade::handle<TColStd_HArray1OfReal> &,const opencascade::handle<TColStd_HArray1OfReal> &,const opencascade::handle<TColStd_HArray1OfReal> &,const opencascade::handle<TColStd_HArray1OfReal> &,const opencascade::handle<TColStd_HArray1OfReal> & >() , py::arg("NbUSurfaces"), py::arg("NBVSurfaces"), py::arg("UContinuity"), py::arg("VContinuity"), py::arg("MaxUDegree"), py::arg("MaxVDegree"), py::arg("NumCoeffPerSurface"), py::arg("Coefficients"), py::arg("PolynomialUIntervals"), py::arg("PolynomialVIntervals"), py::arg("TrueUIntervals"), py::arg("TrueVIntervals") )
// custom constructors
// methods
.def("Perform",
(void (Convert_GridPolynomialToPoles::*)( const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const opencascade::handle<TColStd_HArray2OfInteger> & , const opencascade::handle<TColStd_HArray1OfReal> & , const opencascade::handle<TColStd_HArray1OfReal> & , const opencascade::handle<TColStd_HArray1OfReal> & , const opencascade::handle<TColStd_HArray1OfReal> & , const opencascade::handle<TColStd_HArray1OfReal> & ) ) static_cast<void (Convert_GridPolynomialToPoles::*)( const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const opencascade::handle<TColStd_HArray2OfInteger> & , const opencascade::handle<TColStd_HArray1OfReal> & , const opencascade::handle<TColStd_HArray1OfReal> & , const opencascade::handle<TColStd_HArray1OfReal> & , const opencascade::handle<TColStd_HArray1OfReal> & , const opencascade::handle<TColStd_HArray1OfReal> & ) >(&Convert_GridPolynomialToPoles::Perform),
R"#(None)#" , py::arg("UContinuity"), py::arg("VContinuity"), py::arg("MaxUDegree"), py::arg("MaxVDegree"), py::arg("NumCoeffPerSurface"), py::arg("Coefficients"), py::arg("PolynomialUIntervals"), py::arg("PolynomialVIntervals"), py::arg("TrueUIntervals"), py::arg("TrueVIntervals")
)
.def("NbUPoles",
(Standard_Integer (Convert_GridPolynomialToPoles::*)() const) static_cast<Standard_Integer (Convert_GridPolynomialToPoles::*)() const>(&Convert_GridPolynomialToPoles::NbUPoles),
R"#(None)#"
)
.def("NbVPoles",
(Standard_Integer (Convert_GridPolynomialToPoles::*)() const) static_cast<Standard_Integer (Convert_GridPolynomialToPoles::*)() const>(&Convert_GridPolynomialToPoles::NbVPoles),
R"#(None)#"
)
.def("UDegree",
(Standard_Integer (Convert_GridPolynomialToPoles::*)() const) static_cast<Standard_Integer (Convert_GridPolynomialToPoles::*)() const>(&Convert_GridPolynomialToPoles::UDegree),
R"#(None)#"
)
.def("VDegree",
(Standard_Integer (Convert_GridPolynomialToPoles::*)() const) static_cast<Standard_Integer (Convert_GridPolynomialToPoles::*)() const>(&Convert_GridPolynomialToPoles::VDegree),
R"#(None)#"
)
.def("NbUKnots",
(Standard_Integer (Convert_GridPolynomialToPoles::*)() const) static_cast<Standard_Integer (Convert_GridPolynomialToPoles::*)() const>(&Convert_GridPolynomialToPoles::NbUKnots),
R"#(None)#"
)
.def("NbVKnots",
(Standard_Integer (Convert_GridPolynomialToPoles::*)() const) static_cast<Standard_Integer (Convert_GridPolynomialToPoles::*)() const>(&Convert_GridPolynomialToPoles::NbVKnots),
R"#(None)#"
)
.def("IsDone",
(Standard_Boolean (Convert_GridPolynomialToPoles::*)() const) static_cast<Standard_Boolean (Convert_GridPolynomialToPoles::*)() const>(&Convert_GridPolynomialToPoles::IsDone),
R"#(None)#"
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Poles",
(const opencascade::handle<TColgp_HArray2OfPnt> & (Convert_GridPolynomialToPoles::*)() const) static_cast<const opencascade::handle<TColgp_HArray2OfPnt> & (Convert_GridPolynomialToPoles::*)() const>(&Convert_GridPolynomialToPoles::Poles),
R"#(returns the poles of the BSpline Surface)#"
, py::return_value_policy::reference_internal
)
.def("UKnots",
(const opencascade::handle<TColStd_HArray1OfReal> & (Convert_GridPolynomialToPoles::*)() const) static_cast<const opencascade::handle<TColStd_HArray1OfReal> & (Convert_GridPolynomialToPoles::*)() const>(&Convert_GridPolynomialToPoles::UKnots),
R"#(Knots in the U direction)#"
, py::return_value_policy::reference_internal
)
.def("VKnots",
(const opencascade::handle<TColStd_HArray1OfReal> & (Convert_GridPolynomialToPoles::*)() const) static_cast<const opencascade::handle<TColStd_HArray1OfReal> & (Convert_GridPolynomialToPoles::*)() const>(&Convert_GridPolynomialToPoles::VKnots),
R"#(Knots in the V direction)#"
, py::return_value_policy::reference_internal
)
.def("UMultiplicities",
(const opencascade::handle<TColStd_HArray1OfInteger> & (Convert_GridPolynomialToPoles::*)() const) static_cast<const opencascade::handle<TColStd_HArray1OfInteger> & (Convert_GridPolynomialToPoles::*)() const>(&Convert_GridPolynomialToPoles::UMultiplicities),
R"#(Multiplicities of the knots in the U direction)#"
, py::return_value_policy::reference_internal
)
.def("VMultiplicities",
(const opencascade::handle<TColStd_HArray1OfInteger> & (Convert_GridPolynomialToPoles::*)() const) static_cast<const opencascade::handle<TColStd_HArray1OfInteger> & (Convert_GridPolynomialToPoles::*)() const>(&Convert_GridPolynomialToPoles::VMultiplicities),
R"#(Multiplicities of the knots in the V direction)#"
, py::return_value_policy::reference_internal
)
;
// Class Convert_CircleToBSplineCurve from ./opencascade/Convert_CircleToBSplineCurve.hxx
klass = m.attr("Convert_CircleToBSplineCurve");
// nested enums
static_cast<py::class_<Convert_CircleToBSplineCurve , shared_ptr<Convert_CircleToBSplineCurve> , Convert_ConicToBSplineCurve >>(klass)
// constructors
.def(py::init< const gp_Circ2d &,const Convert_ParameterisationType >() , py::arg("C"), py::arg("Parameterisation")=static_cast<const Convert_ParameterisationType>(Convert_TgtThetaOver2) )
.def(py::init< const gp_Circ2d &,const Standard_Real,const Standard_Real,const Convert_ParameterisationType >() , py::arg("C"), py::arg("U1"), py::arg("U2"), py::arg("Parameterisation")=static_cast<const Convert_ParameterisationType>(Convert_TgtThetaOver2) )
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class Convert_ConeToBSplineSurface from ./opencascade/Convert_ConeToBSplineSurface.hxx
klass = m.attr("Convert_ConeToBSplineSurface");
// nested enums
static_cast<py::class_<Convert_ConeToBSplineSurface , shared_ptr<Convert_ConeToBSplineSurface> , Convert_ElementarySurfaceToBSplineSurface >>(klass)
// constructors
.def(py::init< const gp_Cone &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real >() , py::arg("C"), py::arg("U1"), py::arg("U2"), py::arg("V1"), py::arg("V2") )
.def(py::init< const gp_Cone &,const Standard_Real,const Standard_Real >() , py::arg("C"), py::arg("V1"), py::arg("V2") )
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class Convert_CylinderToBSplineSurface from ./opencascade/Convert_CylinderToBSplineSurface.hxx
klass = m.attr("Convert_CylinderToBSplineSurface");
// nested enums
static_cast<py::class_<Convert_CylinderToBSplineSurface , shared_ptr<Convert_CylinderToBSplineSurface> , Convert_ElementarySurfaceToBSplineSurface >>(klass)
// constructors
.def(py::init< const gp_Cylinder &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real >() , py::arg("Cyl"), py::arg("U1"), py::arg("U2"), py::arg("V1"), py::arg("V2") )
.def(py::init< const gp_Cylinder &,const Standard_Real,const Standard_Real >() , py::arg("Cyl"), py::arg("V1"), py::arg("V2") )
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class Convert_EllipseToBSplineCurve from ./opencascade/Convert_EllipseToBSplineCurve.hxx
klass = m.attr("Convert_EllipseToBSplineCurve");
// nested enums
static_cast<py::class_<Convert_EllipseToBSplineCurve , shared_ptr<Convert_EllipseToBSplineCurve> , Convert_ConicToBSplineCurve >>(klass)
// constructors
.def(py::init< const gp_Elips2d &,const Convert_ParameterisationType >() , py::arg("E"), py::arg("Parameterisation")=static_cast<const Convert_ParameterisationType>(Convert_TgtThetaOver2) )
.def(py::init< const gp_Elips2d &,const Standard_Real,const Standard_Real,const Convert_ParameterisationType >() , py::arg("E"), py::arg("U1"), py::arg("U2"), py::arg("Parameterisation")=static_cast<const Convert_ParameterisationType>(Convert_TgtThetaOver2) )
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class Convert_HyperbolaToBSplineCurve from ./opencascade/Convert_HyperbolaToBSplineCurve.hxx
klass = m.attr("Convert_HyperbolaToBSplineCurve");
// nested enums
static_cast<py::class_<Convert_HyperbolaToBSplineCurve , shared_ptr<Convert_HyperbolaToBSplineCurve> , Convert_ConicToBSplineCurve >>(klass)
// constructors
.def(py::init< const gp_Hypr2d &,const Standard_Real,const Standard_Real >() , py::arg("H"), py::arg("U1"), py::arg("U2") )
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class Convert_ParabolaToBSplineCurve from ./opencascade/Convert_ParabolaToBSplineCurve.hxx
klass = m.attr("Convert_ParabolaToBSplineCurve");
// nested enums
static_cast<py::class_<Convert_ParabolaToBSplineCurve , shared_ptr<Convert_ParabolaToBSplineCurve> , Convert_ConicToBSplineCurve >>(klass)
// constructors
.def(py::init< const gp_Parab2d &,const Standard_Real,const Standard_Real >() , py::arg("Prb"), py::arg("U1"), py::arg("U2") )
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class Convert_SphereToBSplineSurface from ./opencascade/Convert_SphereToBSplineSurface.hxx
klass = m.attr("Convert_SphereToBSplineSurface");
// nested enums
static_cast<py::class_<Convert_SphereToBSplineSurface , shared_ptr<Convert_SphereToBSplineSurface> , Convert_ElementarySurfaceToBSplineSurface >>(klass)
// constructors
.def(py::init< const gp_Sphere &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real >() , py::arg("Sph"), py::arg("U1"), py::arg("U2"), py::arg("V1"), py::arg("V2") )
.def(py::init< const gp_Sphere &,const Standard_Real,const Standard_Real,const Standard_Boolean >() , py::arg("Sph"), py::arg("Param1"), py::arg("Param2"), py::arg("UTrim")=static_cast<const Standard_Boolean>(Standard_True) )
.def(py::init< const gp_Sphere & >() , py::arg("Sph") )
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class Convert_TorusToBSplineSurface from ./opencascade/Convert_TorusToBSplineSurface.hxx
klass = m.attr("Convert_TorusToBSplineSurface");
// nested enums
static_cast<py::class_<Convert_TorusToBSplineSurface , shared_ptr<Convert_TorusToBSplineSurface> , Convert_ElementarySurfaceToBSplineSurface >>(klass)
// constructors
.def(py::init< const gp_Torus &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real >() , py::arg("T"), py::arg("U1"), py::arg("U2"), py::arg("V1"), py::arg("V2") )
.def(py::init< const gp_Torus &,const Standard_Real,const Standard_Real,const Standard_Boolean >() , py::arg("T"), py::arg("Param1"), py::arg("Param2"), py::arg("UTrim")=static_cast<const Standard_Boolean>(Standard_True) )
.def(py::init< const gp_Torus & >() , py::arg("T") )
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// functions
// ./opencascade/Convert_CircleToBSplineCurve.hxx
// ./opencascade/Convert_CompBezierCurves2dToBSplineCurve2d.hxx
// ./opencascade/Convert_CompBezierCurvesToBSplineCurve.hxx
// ./opencascade/Convert_CompPolynomialToPoles.hxx
// ./opencascade/Convert_ConeToBSplineSurface.hxx
// ./opencascade/Convert_ConicToBSplineCurve.hxx
// ./opencascade/Convert_CosAndSinEvalFunction.hxx
// ./opencascade/Convert_CylinderToBSplineSurface.hxx
// ./opencascade/Convert_ElementarySurfaceToBSplineSurface.hxx
// ./opencascade/Convert_EllipseToBSplineCurve.hxx
// ./opencascade/Convert_GridPolynomialToPoles.hxx
// ./opencascade/Convert_HyperbolaToBSplineCurve.hxx
// ./opencascade/Convert_ParabolaToBSplineCurve.hxx
// ./opencascade/Convert_ParameterisationType.hxx
// ./opencascade/Convert_PolynomialCosAndSin.hxx
m.def("BuildPolynomialCosAndSin",
(void (*)( const Standard_Real , const Standard_Real , const Standard_Integer , opencascade::handle<TColStd_HArray1OfReal> & , opencascade::handle<TColStd_HArray1OfReal> & , opencascade::handle<TColStd_HArray1OfReal> & )) static_cast<void (*)( const Standard_Real , const Standard_Real , const Standard_Integer , opencascade::handle<TColStd_HArray1OfReal> & , opencascade::handle<TColStd_HArray1OfReal> & , opencascade::handle<TColStd_HArray1OfReal> & )>(&BuildPolynomialCosAndSin),
R"#(None)#" , py::arg("arg"), py::arg("arg"), py::arg("arg"), py::arg("arg"), py::arg("arg"), py::arg("arg")
);
// ./opencascade/Convert_SequenceOfArray1OfPoles.hxx
// ./opencascade/Convert_SequenceOfArray1OfPoles2d.hxx
// ./opencascade/Convert_SphereToBSplineSurface.hxx
// ./opencascade/Convert_TorusToBSplineSurface.hxx
// Additional functions
// operators
// register typdefs
register_template_NCollection_Sequence<opencascade::handle<TColgp_HArray1OfPnt>>(m,"Convert_SequenceOfArray1OfPoles");
// exceptions
// user-defined post-inclusion per module in the body
};
// user-defined post-inclusion per module
// user-defined post
|