File: Convert.cpp

package info (click to toggle)
python-ocp 7.8.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 64,720 kB
  • sloc: cpp: 362,337; pascal: 33; python: 23; makefile: 4
file content (745 lines) | stat: -rw-r--r-- 55,955 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745

// std lib related includes
#include <tuple>

// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

namespace py = pybind11;

// Standard Handle
#include <Standard_Handle.hxx>


// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Circ2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Cone.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Cylinder.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Elips2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Hypr2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Parab2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Sphere.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Torus.hxx>

// module includes
#include <Convert_CircleToBSplineCurve.hxx>
#include <Convert_CompBezierCurves2dToBSplineCurve2d.hxx>
#include <Convert_CompBezierCurvesToBSplineCurve.hxx>
#include <Convert_CompPolynomialToPoles.hxx>
#include <Convert_ConeToBSplineSurface.hxx>
#include <Convert_ConicToBSplineCurve.hxx>
#include <Convert_CosAndSinEvalFunction.hxx>
#include <Convert_CylinderToBSplineSurface.hxx>
#include <Convert_ElementarySurfaceToBSplineSurface.hxx>
#include <Convert_EllipseToBSplineCurve.hxx>
#include <Convert_GridPolynomialToPoles.hxx>
#include <Convert_HyperbolaToBSplineCurve.hxx>
#include <Convert_ParabolaToBSplineCurve.hxx>
#include <Convert_ParameterisationType.hxx>
#include <Convert_PolynomialCosAndSin.hxx>
#include <Convert_SequenceOfArray1OfPoles.hxx>
#include <Convert_SequenceOfArray1OfPoles2d.hxx>
#include <Convert_SphereToBSplineSurface.hxx>
#include <Convert_TorusToBSplineSurface.hxx>

// template related includes

// ./opencascade/Convert_SequenceOfArray1OfPoles.hxx
#include "NCollection_tmpl.hxx"


// user-defined pre
#include "OCP_specific.inc"

// user-defined inclusion per module

// Module definiiton
void register_Convert(py::module &main_module) {


py::module m = static_cast<py::module>(main_module.attr("Convert"));
py::object klass;

//Python trampoline classes

// classes

    // Class Convert_CompBezierCurves2dToBSplineCurve2d from ./opencascade/Convert_CompBezierCurves2dToBSplineCurve2d.hxx
    klass = m.attr("Convert_CompBezierCurves2dToBSplineCurve2d");


    // nested enums

    static_cast<py::class_<Convert_CompBezierCurves2dToBSplineCurve2d , shared_ptr<Convert_CompBezierCurves2dToBSplineCurve2d>  >>(klass)
    // constructors
        .def(py::init< const Standard_Real >()  , py::arg("AngularTolerance")=static_cast<const Standard_Real>(1.0e-4) )
    // custom constructors
    // methods
        .def("AddCurve",
             (void (Convert_CompBezierCurves2dToBSplineCurve2d::*)(  const NCollection_Array1<gp_Pnt2d> &  ) ) static_cast<void (Convert_CompBezierCurves2dToBSplineCurve2d::*)(  const NCollection_Array1<gp_Pnt2d> &  ) >(&Convert_CompBezierCurves2dToBSplineCurve2d::AddCurve),
             R"#(Adds the Bezier curve defined by the table of poles Poles, to the sequence (still contained in this framework) of adjacent Bezier curves to be converted into a BSpline curve. Only polynomial (i.e. non-rational) Bezier curves are converted using this framework. If this is not the first call to the function (i.e. if this framework still contains data in its sequence of Bezier curves), the degree of continuity of the BSpline curve will be increased at the time of computation at the first point of the added Bezier curve (i.e. the first point of the Poles table). This will be the case if the tangent vector of the curve at this point is parallel to the tangent vector at the end point of the preceding Bezier curve in the sequence of Bezier curves still contained in this framework. An angular tolerance given at the time of construction of this framework, will be used to check the parallelism of the two tangent vectors. This checking procedure, and all the relative computations will be performed by the function Perform. When the sequence of adjacent Bezier curves is complete, use the following functions: - Perform to compute the data needed to build the BSpline curve, - and the available consultation functions to access the computed data. This data may be used to construct the BSpline curve. Warning The sequence of Bezier curves treated by this framework is automatically initialized with the first Bezier curve when the function is first called. During subsequent use of this function, ensure that the first point of the added Bezier curve (i.e. the first point of the Poles table) is coincident with the last point of the sequence (i.e. the last point of the preceding Bezier curve in the sequence) of Bezier curves still contained in this framework. An error may occur at the time of computation if this condition is not satisfied. Particular care must be taken with respect to the above, as this condition is not checked either when defining the sequence of Bezier curves or at the time of computation.)#"  , py::arg("Poles")
          )
        .def("Perform",
             (void (Convert_CompBezierCurves2dToBSplineCurve2d::*)() ) static_cast<void (Convert_CompBezierCurves2dToBSplineCurve2d::*)() >(&Convert_CompBezierCurves2dToBSplineCurve2d::Perform),
             R"#(Computes all the data needed to build a BSpline curve equivalent to the sequence of adjacent Bezier curves still contained in this framework. A knot is inserted on the computed BSpline curve at the junction point of two consecutive Bezier curves. The degree of continuity of the BSpline curve will be increased at the junction point of two consecutive Bezier curves if their tangent vectors at this point are parallel. An angular tolerance given at the time of construction of this framework is used to check the parallelism of the two tangent vectors. Use the available consultation functions to access the computed data. This data may then be used to construct the BSpline curve. Warning Ensure that the curves in the sequence of Bezier curves contained in this framework are adjacent. An error may occur at the time of computation if this condition is not satisfied. Particular care must be taken with respect to the above as this condition is not checked, either when defining the Bezier curve sequence or at the time of computation.)#" 
          )
        .def("Degree",
             (Standard_Integer (Convert_CompBezierCurves2dToBSplineCurve2d::*)() const) static_cast<Standard_Integer (Convert_CompBezierCurves2dToBSplineCurve2d::*)() const>(&Convert_CompBezierCurves2dToBSplineCurve2d::Degree),
             R"#(Returns the degree of the BSpline curve whose data is computed in this framework. Warning Take particular care not to use this function before the computation is performed (Perform function), as this condition is not checked and an error may therefore occur.)#" 
          )
        .def("NbPoles",
             (Standard_Integer (Convert_CompBezierCurves2dToBSplineCurve2d::*)() const) static_cast<Standard_Integer (Convert_CompBezierCurves2dToBSplineCurve2d::*)() const>(&Convert_CompBezierCurves2dToBSplineCurve2d::NbPoles),
             R"#(Returns the number of poles of the BSpline curve whose data is computed in this framework. Warning Take particular care not to use this function before the computation is performed (Perform function), as this condition is not checked and an error may therefore occur.)#" 
          )
        .def("Poles",
             (void (Convert_CompBezierCurves2dToBSplineCurve2d::*)( NCollection_Array1<gp_Pnt2d> &  ) const) static_cast<void (Convert_CompBezierCurves2dToBSplineCurve2d::*)( NCollection_Array1<gp_Pnt2d> &  ) const>(&Convert_CompBezierCurves2dToBSplineCurve2d::Poles),
             R"#(Loads the Poles table with the poles of the BSpline curve whose data is computed in this framework. Warning - Do not use this function before the computation is performed (Perform function). - The length of the Poles array must be equal to the number of poles of the BSpline curve whose data is computed in this framework. Particular care must be taken with respect to the above, as these conditions are not checked, and an error may occur.)#"  , py::arg("Poles")
          )
        .def("NbKnots",
             (Standard_Integer (Convert_CompBezierCurves2dToBSplineCurve2d::*)() const) static_cast<Standard_Integer (Convert_CompBezierCurves2dToBSplineCurve2d::*)() const>(&Convert_CompBezierCurves2dToBSplineCurve2d::NbKnots),
             R"#(Returns the number of knots of the BSpline curve whose data is computed in this framework. Warning Take particular care not to use this function before the computation is performed (Perform function), as this condition is not checked and an error may therefore occur.)#" 
          )
        .def("KnotsAndMults",
             (void (Convert_CompBezierCurves2dToBSplineCurve2d::*)( NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> &  ) const) static_cast<void (Convert_CompBezierCurves2dToBSplineCurve2d::*)( NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> &  ) const>(&Convert_CompBezierCurves2dToBSplineCurve2d::KnotsAndMults),
             R"#(Loads the Knots table with the knots and the Mults table with the corresponding multiplicities of the BSpline curve whose data is computed in this framework. Warning - Do not use this function before the computation is performed (Perform function). - The length of the Knots and Mults arrays must be equal to the number of knots in the BSpline curve whose data is computed in this framework. Particular care must be taken with respect to the above as these conditions are not checked, and an error may occur.)#"  , py::arg("Knots"),  py::arg("Mults")
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class Convert_CompBezierCurvesToBSplineCurve from ./opencascade/Convert_CompBezierCurvesToBSplineCurve.hxx
    klass = m.attr("Convert_CompBezierCurvesToBSplineCurve");


    // nested enums

    static_cast<py::class_<Convert_CompBezierCurvesToBSplineCurve , shared_ptr<Convert_CompBezierCurvesToBSplineCurve>  >>(klass)
    // constructors
        .def(py::init< const Standard_Real >()  , py::arg("AngularTolerance")=static_cast<const Standard_Real>(1.0e-4) )
    // custom constructors
    // methods
        .def("AddCurve",
             (void (Convert_CompBezierCurvesToBSplineCurve::*)(  const NCollection_Array1<gp_Pnt> &  ) ) static_cast<void (Convert_CompBezierCurvesToBSplineCurve::*)(  const NCollection_Array1<gp_Pnt> &  ) >(&Convert_CompBezierCurvesToBSplineCurve::AddCurve),
             R"#(Adds the Bezier curve defined by the table of poles Poles, to the sequence (still contained in this framework) of adjacent Bezier curves to be converted into a BSpline curve. Only polynomial (i.e. non-rational) Bezier curves are converted using this framework. If this is not the first call to the function (i.e. if this framework still contains data in its Bezier curve sequence), the degree of continuity of the BSpline curve will be increased at the time of computation at the first point of the added Bezier curve (i.e. the first point of the Poles table). This will be the case if the tangent vector of the curve at this point is parallel to the tangent vector at the end point of the preceding Bezier curve in the Bezier curve sequence still contained in this framework. An angular tolerance given at the time of construction of this framework will be used to check the parallelism of the two tangent vectors. This checking procedure and all related computations will be performed by the Perform function. When the adjacent Bezier curve sequence is complete, use the following functions: - Perform to compute the data needed to build the BSpline curve, - and the available consultation functions to access the computed data. This data may be used to construct the BSpline curve. Warning The Bezier curve sequence treated by this framework is automatically initialized with the first Bezier curve when the function is first called. During subsequent use of this function, ensure that the first point of the added Bezier curve (i.e. the first point of the Poles table) is coincident with the last point of the Bezier curve sequence (i.e. the last point of the preceding Bezier curve in the sequence) still contained in this framework. An error may occur at the time of computation if this condition is not satisfied. Particular care must be taken with respect to the above, as this condition is not checked either when defining the Bezier curve sequence or at the time of computation.)#"  , py::arg("Poles")
          )
        .def("Perform",
             (void (Convert_CompBezierCurvesToBSplineCurve::*)() ) static_cast<void (Convert_CompBezierCurvesToBSplineCurve::*)() >(&Convert_CompBezierCurvesToBSplineCurve::Perform),
             R"#(Computes all the data needed to build a BSpline curve equivalent to the adjacent Bezier curve sequence still contained in this framework. A knot is inserted on the computed BSpline curve at the junction point of two consecutive Bezier curves. The degree of continuity of the BSpline curve will be increased at the junction point of two consecutive Bezier curves if their tangent vectors at this point are parallel. An angular tolerance given at the time of construction of this framework is used to check the parallelism of the two tangent vectors. Use the available consultation functions to access the computed data. This data may then be used to construct the BSpline curve. Warning Make sure that the curves in the Bezier curve sequence contained in this framework are adjacent. An error may occur at the time of computation if this condition is not satisfied. Particular care must be taken with respect to the above as this condition is not checked, either when defining the Bezier curve sequence or at the time of computation.)#" 
          )
        .def("Degree",
             (Standard_Integer (Convert_CompBezierCurvesToBSplineCurve::*)() const) static_cast<Standard_Integer (Convert_CompBezierCurvesToBSplineCurve::*)() const>(&Convert_CompBezierCurvesToBSplineCurve::Degree),
             R"#(Returns the degree of the BSpline curve whose data is computed in this framework. Warning Take particular care not to use this function before the computation is performed (Perform function), as this condition is not checked and an error may therefore occur.)#" 
          )
        .def("NbPoles",
             (Standard_Integer (Convert_CompBezierCurvesToBSplineCurve::*)() const) static_cast<Standard_Integer (Convert_CompBezierCurvesToBSplineCurve::*)() const>(&Convert_CompBezierCurvesToBSplineCurve::NbPoles),
             R"#(Returns the number of poles of the BSpline curve whose data is computed in this framework. Warning Take particular care not to use this function before the computation is performed (Perform function), as this condition is not checked and an error may therefore occur.)#" 
          )
        .def("Poles",
             (void (Convert_CompBezierCurvesToBSplineCurve::*)( NCollection_Array1<gp_Pnt> &  ) const) static_cast<void (Convert_CompBezierCurvesToBSplineCurve::*)( NCollection_Array1<gp_Pnt> &  ) const>(&Convert_CompBezierCurvesToBSplineCurve::Poles),
             R"#(Loads the Poles table with the poles of the BSpline curve whose data is computed in this framework. Warning - Do not use this function before the computation is performed (Perform function). - The length of the Poles array must be equal to the number of poles of the BSpline curve whose data is computed in this framework. Particular care must be taken with respect to the above, as these conditions are not checked, and an error may occur.)#"  , py::arg("Poles")
          )
        .def("NbKnots",
             (Standard_Integer (Convert_CompBezierCurvesToBSplineCurve::*)() const) static_cast<Standard_Integer (Convert_CompBezierCurvesToBSplineCurve::*)() const>(&Convert_CompBezierCurvesToBSplineCurve::NbKnots),
             R"#(Returns the number of knots of the BSpline curve whose data is computed in this framework. Warning Take particular care not to use this function before the computation is performed (Perform function), as this condition is not checked and an error may therefore occur.)#" 
          )
        .def("KnotsAndMults",
             (void (Convert_CompBezierCurvesToBSplineCurve::*)( NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> &  ) const) static_cast<void (Convert_CompBezierCurvesToBSplineCurve::*)( NCollection_Array1<Standard_Real> & ,  NCollection_Array1<Standard_Integer> &  ) const>(&Convert_CompBezierCurvesToBSplineCurve::KnotsAndMults),
             R"#(- loads the Knots table with the knots, - and loads the Mults table with the corresponding multiplicities of the BSpline curve whose data is computed in this framework. Warning - Do not use this function before the computation is performed (Perform function). - The length of the Knots and Mults arrays must be equal to the number of knots in the BSpline curve whose data is computed in this framework. Particular care must be taken with respect to the above as these conditions are not checked, and an error may occur.)#"  , py::arg("Knots"),  py::arg("Mults")
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class Convert_CompPolynomialToPoles from ./opencascade/Convert_CompPolynomialToPoles.hxx
    klass = m.attr("Convert_CompPolynomialToPoles");


    // nested enums

    static_cast<py::class_<Convert_CompPolynomialToPoles , shared_ptr<Convert_CompPolynomialToPoles>  >>(klass)
    // constructors
        .def(py::init< const Standard_Integer,const Standard_Integer,const Standard_Integer,const Standard_Integer,const opencascade::handle<TColStd_HArray1OfInteger> &,const opencascade::handle<TColStd_HArray1OfReal> &,const opencascade::handle<TColStd_HArray2OfReal> &,const opencascade::handle<TColStd_HArray1OfReal> & >()  , py::arg("NumCurves"),  py::arg("Continuity"),  py::arg("Dimension"),  py::arg("MaxDegree"),  py::arg("NumCoeffPerCurve"),  py::arg("Coefficients"),  py::arg("PolynomialIntervals"),  py::arg("TrueIntervals") )
        .def(py::init< const Standard_Integer,const Standard_Integer,const Standard_Integer, const NCollection_Array1<Standard_Integer> &, const NCollection_Array1<Standard_Integer> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array2<Standard_Real> &, const NCollection_Array1<Standard_Real> & >()  , py::arg("NumCurves"),  py::arg("Dimension"),  py::arg("MaxDegree"),  py::arg("Continuity"),  py::arg("NumCoeffPerCurve"),  py::arg("Coefficients"),  py::arg("PolynomialIntervals"),  py::arg("TrueIntervals") )
        .def(py::init< const Standard_Integer,const Standard_Integer,const Standard_Integer, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Real> & >()  , py::arg("Dimension"),  py::arg("MaxDegree"),  py::arg("Degree"),  py::arg("Coefficients"),  py::arg("PolynomialIntervals"),  py::arg("TrueIntervals") )
    // custom constructors
    // methods
        .def("NbPoles",
             (Standard_Integer (Convert_CompPolynomialToPoles::*)() const) static_cast<Standard_Integer (Convert_CompPolynomialToPoles::*)() const>(&Convert_CompPolynomialToPoles::NbPoles),
             R"#(number of poles of the n-dimensional BSpline)#" 
          )
        .def("Degree",
             (Standard_Integer (Convert_CompPolynomialToPoles::*)() const) static_cast<Standard_Integer (Convert_CompPolynomialToPoles::*)() const>(&Convert_CompPolynomialToPoles::Degree),
             R"#(None)#" 
          )
        .def("NbKnots",
             (Standard_Integer (Convert_CompPolynomialToPoles::*)() const) static_cast<Standard_Integer (Convert_CompPolynomialToPoles::*)() const>(&Convert_CompPolynomialToPoles::NbKnots),
             R"#(Degree of the n-dimensional Bspline)#" 
          )
        .def("IsDone",
             (Standard_Boolean (Convert_CompPolynomialToPoles::*)() const) static_cast<Standard_Boolean (Convert_CompPolynomialToPoles::*)() const>(&Convert_CompPolynomialToPoles::IsDone),
             R"#(None)#" 
          )
    // methods using call by reference i.s.o. return
        .def("Poles",
             []( Convert_CompPolynomialToPoles &self , TColStd_HArray2OfReal& Poles ){
                 opencascade::handle<TColStd_HArray2OfReal>  Poles_ptr; Poles_ptr = &Poles;

                 self.Poles(Poles_ptr);
                 if ( Poles_ptr.get() != &Poles ) copy_if_copy_constructible(Poles, *Poles_ptr);

                 return std::make_tuple(); },
             R"#(returns the poles of the n-dimensional BSpline in the following format : [1..NumPoles][1..Dimension])#"  , py::arg("Poles")
          )
        .def("Knots",
             []( Convert_CompPolynomialToPoles &self , TColStd_HArray1OfReal& K ){
                 opencascade::handle<TColStd_HArray1OfReal>  K_ptr; K_ptr = &K;

                 self.Knots(K_ptr);
                 if ( K_ptr.get() != &K ) copy_if_copy_constructible(K, *K_ptr);

                 return std::make_tuple(); },
             R"#(Knots of the n-dimensional Bspline)#"  , py::arg("K")
          )
        .def("Multiplicities",
             []( Convert_CompPolynomialToPoles &self , TColStd_HArray1OfInteger& M ){
                 opencascade::handle<TColStd_HArray1OfInteger>  M_ptr; M_ptr = &M;

                 self.Multiplicities(M_ptr);
                 if ( M_ptr.get() != &M ) copy_if_copy_constructible(M, *M_ptr);

                 return std::make_tuple(); },
             R"#(Multiplicities of the knots in the BSpline)#"  , py::arg("M")
          )
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class Convert_ConicToBSplineCurve from ./opencascade/Convert_ConicToBSplineCurve.hxx
    klass = m.attr("Convert_ConicToBSplineCurve");


    // nested enums

    static_cast<py::class_<Convert_ConicToBSplineCurve , shared_ptr<Convert_ConicToBSplineCurve>  >>(klass)
    // constructors
    // custom constructors
    // methods
        .def("Degree",
             (Standard_Integer (Convert_ConicToBSplineCurve::*)() const) static_cast<Standard_Integer (Convert_ConicToBSplineCurve::*)() const>(&Convert_ConicToBSplineCurve::Degree),
             R"#(Returns the degree of the BSpline curve whose data is computed in this framework.)#" 
          )
        .def("NbPoles",
             (Standard_Integer (Convert_ConicToBSplineCurve::*)() const) static_cast<Standard_Integer (Convert_ConicToBSplineCurve::*)() const>(&Convert_ConicToBSplineCurve::NbPoles),
             R"#(Returns the number of poles of the BSpline curve whose data is computed in this framework.)#" 
          )
        .def("NbKnots",
             (Standard_Integer (Convert_ConicToBSplineCurve::*)() const) static_cast<Standard_Integer (Convert_ConicToBSplineCurve::*)() const>(&Convert_ConicToBSplineCurve::NbKnots),
             R"#(Returns the number of knots of the BSpline curve whose data is computed in this framework.)#" 
          )
        .def("IsPeriodic",
             (Standard_Boolean (Convert_ConicToBSplineCurve::*)() const) static_cast<Standard_Boolean (Convert_ConicToBSplineCurve::*)() const>(&Convert_ConicToBSplineCurve::IsPeriodic),
             R"#(Returns true if the BSpline curve whose data is computed in this framework is periodic.)#" 
          )
        .def("Pole",
             (gp_Pnt2d (Convert_ConicToBSplineCurve::*)( const Standard_Integer  ) const) static_cast<gp_Pnt2d (Convert_ConicToBSplineCurve::*)( const Standard_Integer  ) const>(&Convert_ConicToBSplineCurve::Pole),
             R"#(Returns the pole of index Index to the poles table of the BSpline curve whose data is computed in this framework. Exceptions Standard_OutOfRange if Index is outside the bounds of the poles table of the BSpline curve whose data is computed in this framework.)#"  , py::arg("Index")
          )
        .def("Weight",
             (Standard_Real (Convert_ConicToBSplineCurve::*)( const Standard_Integer  ) const) static_cast<Standard_Real (Convert_ConicToBSplineCurve::*)( const Standard_Integer  ) const>(&Convert_ConicToBSplineCurve::Weight),
             R"#(Returns the weight of the pole of index Index to the poles table of the BSpline curve whose data is computed in this framework. Exceptions Standard_OutOfRange if Index is outside the bounds of the poles table of the BSpline curve whose data is computed in this framework.)#"  , py::arg("Index")
          )
        .def("Knot",
             (Standard_Real (Convert_ConicToBSplineCurve::*)( const Standard_Integer  ) const) static_cast<Standard_Real (Convert_ConicToBSplineCurve::*)( const Standard_Integer  ) const>(&Convert_ConicToBSplineCurve::Knot),
             R"#(Returns the knot of index Index to the knots table of the BSpline curve whose data is computed in this framework. Exceptions Standard_OutOfRange if Index is outside the bounds of the knots table of the BSpline curve whose data is computed in this framework.)#"  , py::arg("Index")
          )
        .def("Multiplicity",
             (Standard_Integer (Convert_ConicToBSplineCurve::*)( const Standard_Integer  ) const) static_cast<Standard_Integer (Convert_ConicToBSplineCurve::*)( const Standard_Integer  ) const>(&Convert_ConicToBSplineCurve::Multiplicity),
             R"#(Returns the multiplicity of the knot of index Index to the knots table of the BSpline curve whose data is computed in this framework. Exceptions Standard_OutOfRange if Index is outside the bounds of the knots table of the BSpline curve whose data is computed in this framework.)#"  , py::arg("Index")
          )
    // methods using call by reference i.s.o. return
        .def("BuildCosAndSin",
             []( Convert_ConicToBSplineCurve &self , const Convert_ParameterisationType Parametrisation,TColStd_HArray1OfReal& CosNumerator,TColStd_HArray1OfReal& SinNumerator,TColStd_HArray1OfReal& Denominator,TColStd_HArray1OfReal& Knots,TColStd_HArray1OfInteger& Mults ){
                 Standard_Integer  Degree;
                opencascade::handle<TColStd_HArray1OfReal>  CosNumerator_ptr; CosNumerator_ptr = &CosNumerator;
                opencascade::handle<TColStd_HArray1OfReal>  SinNumerator_ptr; SinNumerator_ptr = &SinNumerator;
                opencascade::handle<TColStd_HArray1OfReal>  Denominator_ptr; Denominator_ptr = &Denominator;
                opencascade::handle<TColStd_HArray1OfReal>  Knots_ptr; Knots_ptr = &Knots;
                opencascade::handle<TColStd_HArray1OfInteger>  Mults_ptr; Mults_ptr = &Mults;

                 self.BuildCosAndSin(Parametrisation,CosNumerator_ptr,SinNumerator_ptr,Denominator_ptr,Degree,Knots_ptr,Mults_ptr);
                 if ( CosNumerator_ptr.get() != &CosNumerator ) copy_if_copy_constructible(CosNumerator, *CosNumerator_ptr);
                if ( SinNumerator_ptr.get() != &SinNumerator ) copy_if_copy_constructible(SinNumerator, *SinNumerator_ptr);
                if ( Denominator_ptr.get() != &Denominator ) copy_if_copy_constructible(Denominator, *Denominator_ptr);
                if ( Knots_ptr.get() != &Knots ) copy_if_copy_constructible(Knots, *Knots_ptr);
                if ( Mults_ptr.get() != &Mults ) copy_if_copy_constructible(Mults, *Mults_ptr);

                 return std::make_tuple(Degree); },
             R"#(None)#"  , py::arg("Parametrisation"),  py::arg("CosNumerator"),  py::arg("SinNumerator"),  py::arg("Denominator"),  py::arg("Knots"),  py::arg("Mults")
          )
        .def("BuildCosAndSin",
             []( Convert_ConicToBSplineCurve &self , const Convert_ParameterisationType Parametrisation,const Standard_Real UFirst,const Standard_Real ULast,TColStd_HArray1OfReal& CosNumerator,TColStd_HArray1OfReal& SinNumerator,TColStd_HArray1OfReal& Denominator,TColStd_HArray1OfReal& Knots,TColStd_HArray1OfInteger& Mults ){
                 Standard_Integer  Degree;
                opencascade::handle<TColStd_HArray1OfReal>  CosNumerator_ptr; CosNumerator_ptr = &CosNumerator;
                opencascade::handle<TColStd_HArray1OfReal>  SinNumerator_ptr; SinNumerator_ptr = &SinNumerator;
                opencascade::handle<TColStd_HArray1OfReal>  Denominator_ptr; Denominator_ptr = &Denominator;
                opencascade::handle<TColStd_HArray1OfReal>  Knots_ptr; Knots_ptr = &Knots;
                opencascade::handle<TColStd_HArray1OfInteger>  Mults_ptr; Mults_ptr = &Mults;

                 self.BuildCosAndSin(Parametrisation,UFirst,ULast,CosNumerator_ptr,SinNumerator_ptr,Denominator_ptr,Degree,Knots_ptr,Mults_ptr);
                 if ( CosNumerator_ptr.get() != &CosNumerator ) copy_if_copy_constructible(CosNumerator, *CosNumerator_ptr);
                if ( SinNumerator_ptr.get() != &SinNumerator ) copy_if_copy_constructible(SinNumerator, *SinNumerator_ptr);
                if ( Denominator_ptr.get() != &Denominator ) copy_if_copy_constructible(Denominator, *Denominator_ptr);
                if ( Knots_ptr.get() != &Knots ) copy_if_copy_constructible(Knots, *Knots_ptr);
                if ( Mults_ptr.get() != &Mults ) copy_if_copy_constructible(Mults, *Mults_ptr);

                 return std::make_tuple(Degree); },
             R"#(None)#"  , py::arg("Parametrisation"),  py::arg("UFirst"),  py::arg("ULast"),  py::arg("CosNumerator"),  py::arg("SinNumerator"),  py::arg("Denominator"),  py::arg("Knots"),  py::arg("Mults")
          )
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class Convert_ElementarySurfaceToBSplineSurface from ./opencascade/Convert_ElementarySurfaceToBSplineSurface.hxx
    klass = m.attr("Convert_ElementarySurfaceToBSplineSurface");


    // nested enums

    static_cast<py::class_<Convert_ElementarySurfaceToBSplineSurface , shared_ptr<Convert_ElementarySurfaceToBSplineSurface>  >>(klass)
    // constructors
    // custom constructors
    // methods
        .def("UDegree",
             (Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)() const) static_cast<Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)() const>(&Convert_ElementarySurfaceToBSplineSurface::UDegree),
             R"#(None)#" 
          )
        .def("VDegree",
             (Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)() const) static_cast<Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)() const>(&Convert_ElementarySurfaceToBSplineSurface::VDegree),
             R"#(Returns the degree for the u or v parametric direction of the BSpline surface whose data is computed in this framework.)#" 
          )
        .def("NbUPoles",
             (Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)() const) static_cast<Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)() const>(&Convert_ElementarySurfaceToBSplineSurface::NbUPoles),
             R"#(None)#" 
          )
        .def("NbVPoles",
             (Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)() const) static_cast<Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)() const>(&Convert_ElementarySurfaceToBSplineSurface::NbVPoles),
             R"#(Returns the number of poles for the u or v parametric direction of the BSpline surface whose data is computed in this framework.)#" 
          )
        .def("NbUKnots",
             (Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)() const) static_cast<Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)() const>(&Convert_ElementarySurfaceToBSplineSurface::NbUKnots),
             R"#(None)#" 
          )
        .def("NbVKnots",
             (Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)() const) static_cast<Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)() const>(&Convert_ElementarySurfaceToBSplineSurface::NbVKnots),
             R"#(Returns the number of knots for the u or v parametric direction of the BSpline surface whose data is computed in this framework .)#" 
          )
        .def("IsUPeriodic",
             (Standard_Boolean (Convert_ElementarySurfaceToBSplineSurface::*)() const) static_cast<Standard_Boolean (Convert_ElementarySurfaceToBSplineSurface::*)() const>(&Convert_ElementarySurfaceToBSplineSurface::IsUPeriodic),
             R"#(None)#" 
          )
        .def("IsVPeriodic",
             (Standard_Boolean (Convert_ElementarySurfaceToBSplineSurface::*)() const) static_cast<Standard_Boolean (Convert_ElementarySurfaceToBSplineSurface::*)() const>(&Convert_ElementarySurfaceToBSplineSurface::IsVPeriodic),
             R"#(Returns true if the BSpline surface whose data is computed in this framework is periodic in the u or v parametric direction.)#" 
          )
        .def("Pole",
             (gp_Pnt (Convert_ElementarySurfaceToBSplineSurface::*)( const Standard_Integer ,  const Standard_Integer  ) const) static_cast<gp_Pnt (Convert_ElementarySurfaceToBSplineSurface::*)( const Standard_Integer ,  const Standard_Integer  ) const>(&Convert_ElementarySurfaceToBSplineSurface::Pole),
             R"#(Returns the pole of index (UIndex,VIndex) to the poles table of the BSpline surface whose data is computed in this framework. Exceptions Standard_OutOfRange if, for the BSpline surface whose data is computed in this framework: - UIndex is outside the bounds of the poles table in the u parametric direction, or - VIndex is outside the bounds of the poles table in the v parametric direction.)#"  , py::arg("UIndex"),  py::arg("VIndex")
          )
        .def("Weight",
             (Standard_Real (Convert_ElementarySurfaceToBSplineSurface::*)( const Standard_Integer ,  const Standard_Integer  ) const) static_cast<Standard_Real (Convert_ElementarySurfaceToBSplineSurface::*)( const Standard_Integer ,  const Standard_Integer  ) const>(&Convert_ElementarySurfaceToBSplineSurface::Weight),
             R"#(Returns the weight of the pole of index (UIndex,VIndex) to the poles table of the BSpline surface whose data is computed in this framework. Exceptions Standard_OutOfRange if, for the BSpline surface whose data is computed in this framework: - UIndex is outside the bounds of the poles table in the u parametric direction, or - VIndex is outside the bounds of the poles table in the v parametric direction.)#"  , py::arg("UIndex"),  py::arg("VIndex")
          )
        .def("UKnot",
             (Standard_Real (Convert_ElementarySurfaceToBSplineSurface::*)( const Standard_Integer  ) const) static_cast<Standard_Real (Convert_ElementarySurfaceToBSplineSurface::*)( const Standard_Integer  ) const>(&Convert_ElementarySurfaceToBSplineSurface::UKnot),
             R"#(Returns the U-knot of range UIndex. Raised if UIndex < 1 or UIndex > NbUKnots.)#"  , py::arg("UIndex")
          )
        .def("VKnot",
             (Standard_Real (Convert_ElementarySurfaceToBSplineSurface::*)( const Standard_Integer  ) const) static_cast<Standard_Real (Convert_ElementarySurfaceToBSplineSurface::*)( const Standard_Integer  ) const>(&Convert_ElementarySurfaceToBSplineSurface::VKnot),
             R"#(Returns the V-knot of range VIndex. Raised if VIndex < 1 or VIndex > NbVKnots.)#"  , py::arg("UIndex")
          )
        .def("UMultiplicity",
             (Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)( const Standard_Integer  ) const) static_cast<Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)( const Standard_Integer  ) const>(&Convert_ElementarySurfaceToBSplineSurface::UMultiplicity),
             R"#(Returns the multiplicity of the U-knot of range UIndex. Raised if UIndex < 1 or UIndex > NbUKnots.)#"  , py::arg("UIndex")
          )
        .def("VMultiplicity",
             (Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)( const Standard_Integer  ) const) static_cast<Standard_Integer (Convert_ElementarySurfaceToBSplineSurface::*)( const Standard_Integer  ) const>(&Convert_ElementarySurfaceToBSplineSurface::VMultiplicity),
             R"#(Returns the multiplicity of the V-knot of range VIndex. Raised if VIndex < 1 or VIndex > NbVKnots.)#"  , py::arg("VIndex")
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class Convert_GridPolynomialToPoles from ./opencascade/Convert_GridPolynomialToPoles.hxx
    klass = m.attr("Convert_GridPolynomialToPoles");


    // nested enums

    static_cast<py::class_<Convert_GridPolynomialToPoles , shared_ptr<Convert_GridPolynomialToPoles>  >>(klass)
    // constructors
        .def(py::init< const Standard_Integer,const Standard_Integer,const opencascade::handle<TColStd_HArray1OfInteger> &,const opencascade::handle<TColStd_HArray1OfReal> &,const opencascade::handle<TColStd_HArray1OfReal> &,const opencascade::handle<TColStd_HArray1OfReal> & >()  , py::arg("MaxUDegree"),  py::arg("MaxVDegree"),  py::arg("NumCoeff"),  py::arg("Coefficients"),  py::arg("PolynomialUIntervals"),  py::arg("PolynomialVIntervals") )
        .def(py::init< const Standard_Integer,const Standard_Integer,const Standard_Integer,const Standard_Integer,const Standard_Integer,const Standard_Integer,const opencascade::handle<TColStd_HArray2OfInteger> &,const opencascade::handle<TColStd_HArray1OfReal> &,const opencascade::handle<TColStd_HArray1OfReal> &,const opencascade::handle<TColStd_HArray1OfReal> &,const opencascade::handle<TColStd_HArray1OfReal> &,const opencascade::handle<TColStd_HArray1OfReal> & >()  , py::arg("NbUSurfaces"),  py::arg("NBVSurfaces"),  py::arg("UContinuity"),  py::arg("VContinuity"),  py::arg("MaxUDegree"),  py::arg("MaxVDegree"),  py::arg("NumCoeffPerSurface"),  py::arg("Coefficients"),  py::arg("PolynomialUIntervals"),  py::arg("PolynomialVIntervals"),  py::arg("TrueUIntervals"),  py::arg("TrueVIntervals") )
    // custom constructors
    // methods
        .def("Perform",
             (void (Convert_GridPolynomialToPoles::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const opencascade::handle<TColStd_HArray2OfInteger> & ,  const opencascade::handle<TColStd_HArray1OfReal> & ,  const opencascade::handle<TColStd_HArray1OfReal> & ,  const opencascade::handle<TColStd_HArray1OfReal> & ,  const opencascade::handle<TColStd_HArray1OfReal> & ,  const opencascade::handle<TColStd_HArray1OfReal> &  ) ) static_cast<void (Convert_GridPolynomialToPoles::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const opencascade::handle<TColStd_HArray2OfInteger> & ,  const opencascade::handle<TColStd_HArray1OfReal> & ,  const opencascade::handle<TColStd_HArray1OfReal> & ,  const opencascade::handle<TColStd_HArray1OfReal> & ,  const opencascade::handle<TColStd_HArray1OfReal> & ,  const opencascade::handle<TColStd_HArray1OfReal> &  ) >(&Convert_GridPolynomialToPoles::Perform),
             R"#(None)#"  , py::arg("UContinuity"),  py::arg("VContinuity"),  py::arg("MaxUDegree"),  py::arg("MaxVDegree"),  py::arg("NumCoeffPerSurface"),  py::arg("Coefficients"),  py::arg("PolynomialUIntervals"),  py::arg("PolynomialVIntervals"),  py::arg("TrueUIntervals"),  py::arg("TrueVIntervals")
          )
        .def("NbUPoles",
             (Standard_Integer (Convert_GridPolynomialToPoles::*)() const) static_cast<Standard_Integer (Convert_GridPolynomialToPoles::*)() const>(&Convert_GridPolynomialToPoles::NbUPoles),
             R"#(None)#" 
          )
        .def("NbVPoles",
             (Standard_Integer (Convert_GridPolynomialToPoles::*)() const) static_cast<Standard_Integer (Convert_GridPolynomialToPoles::*)() const>(&Convert_GridPolynomialToPoles::NbVPoles),
             R"#(None)#" 
          )
        .def("UDegree",
             (Standard_Integer (Convert_GridPolynomialToPoles::*)() const) static_cast<Standard_Integer (Convert_GridPolynomialToPoles::*)() const>(&Convert_GridPolynomialToPoles::UDegree),
             R"#(None)#" 
          )
        .def("VDegree",
             (Standard_Integer (Convert_GridPolynomialToPoles::*)() const) static_cast<Standard_Integer (Convert_GridPolynomialToPoles::*)() const>(&Convert_GridPolynomialToPoles::VDegree),
             R"#(None)#" 
          )
        .def("NbUKnots",
             (Standard_Integer (Convert_GridPolynomialToPoles::*)() const) static_cast<Standard_Integer (Convert_GridPolynomialToPoles::*)() const>(&Convert_GridPolynomialToPoles::NbUKnots),
             R"#(None)#" 
          )
        .def("NbVKnots",
             (Standard_Integer (Convert_GridPolynomialToPoles::*)() const) static_cast<Standard_Integer (Convert_GridPolynomialToPoles::*)() const>(&Convert_GridPolynomialToPoles::NbVKnots),
             R"#(None)#" 
          )
        .def("IsDone",
             (Standard_Boolean (Convert_GridPolynomialToPoles::*)() const) static_cast<Standard_Boolean (Convert_GridPolynomialToPoles::*)() const>(&Convert_GridPolynomialToPoles::IsDone),
             R"#(None)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Poles",
             (const opencascade::handle<TColgp_HArray2OfPnt> & (Convert_GridPolynomialToPoles::*)() const) static_cast<const opencascade::handle<TColgp_HArray2OfPnt> & (Convert_GridPolynomialToPoles::*)() const>(&Convert_GridPolynomialToPoles::Poles),
             R"#(returns the poles of the BSpline Surface)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("UKnots",
             (const opencascade::handle<TColStd_HArray1OfReal> & (Convert_GridPolynomialToPoles::*)() const) static_cast<const opencascade::handle<TColStd_HArray1OfReal> & (Convert_GridPolynomialToPoles::*)() const>(&Convert_GridPolynomialToPoles::UKnots),
             R"#(Knots in the U direction)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("VKnots",
             (const opencascade::handle<TColStd_HArray1OfReal> & (Convert_GridPolynomialToPoles::*)() const) static_cast<const opencascade::handle<TColStd_HArray1OfReal> & (Convert_GridPolynomialToPoles::*)() const>(&Convert_GridPolynomialToPoles::VKnots),
             R"#(Knots in the V direction)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("UMultiplicities",
             (const opencascade::handle<TColStd_HArray1OfInteger> & (Convert_GridPolynomialToPoles::*)() const) static_cast<const opencascade::handle<TColStd_HArray1OfInteger> & (Convert_GridPolynomialToPoles::*)() const>(&Convert_GridPolynomialToPoles::UMultiplicities),
             R"#(Multiplicities of the knots in the U direction)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("VMultiplicities",
             (const opencascade::handle<TColStd_HArray1OfInteger> & (Convert_GridPolynomialToPoles::*)() const) static_cast<const opencascade::handle<TColStd_HArray1OfInteger> & (Convert_GridPolynomialToPoles::*)() const>(&Convert_GridPolynomialToPoles::VMultiplicities),
             R"#(Multiplicities of the knots in the V direction)#"
             
             , py::return_value_policy::reference_internal
         )
;

    // Class Convert_CircleToBSplineCurve from ./opencascade/Convert_CircleToBSplineCurve.hxx
    klass = m.attr("Convert_CircleToBSplineCurve");


    // nested enums

    static_cast<py::class_<Convert_CircleToBSplineCurve , shared_ptr<Convert_CircleToBSplineCurve>  , Convert_ConicToBSplineCurve >>(klass)
    // constructors
        .def(py::init< const gp_Circ2d &,const Convert_ParameterisationType >()  , py::arg("C"),  py::arg("Parameterisation")=static_cast<const Convert_ParameterisationType>(Convert_TgtThetaOver2) )
        .def(py::init< const gp_Circ2d &,const Standard_Real,const Standard_Real,const Convert_ParameterisationType >()  , py::arg("C"),  py::arg("U1"),  py::arg("U2"),  py::arg("Parameterisation")=static_cast<const Convert_ParameterisationType>(Convert_TgtThetaOver2) )
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class Convert_ConeToBSplineSurface from ./opencascade/Convert_ConeToBSplineSurface.hxx
    klass = m.attr("Convert_ConeToBSplineSurface");


    // nested enums

    static_cast<py::class_<Convert_ConeToBSplineSurface , shared_ptr<Convert_ConeToBSplineSurface>  , Convert_ElementarySurfaceToBSplineSurface >>(klass)
    // constructors
        .def(py::init< const gp_Cone &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("C"),  py::arg("U1"),  py::arg("U2"),  py::arg("V1"),  py::arg("V2") )
        .def(py::init< const gp_Cone &,const Standard_Real,const Standard_Real >()  , py::arg("C"),  py::arg("V1"),  py::arg("V2") )
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class Convert_CylinderToBSplineSurface from ./opencascade/Convert_CylinderToBSplineSurface.hxx
    klass = m.attr("Convert_CylinderToBSplineSurface");


    // nested enums

    static_cast<py::class_<Convert_CylinderToBSplineSurface , shared_ptr<Convert_CylinderToBSplineSurface>  , Convert_ElementarySurfaceToBSplineSurface >>(klass)
    // constructors
        .def(py::init< const gp_Cylinder &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("Cyl"),  py::arg("U1"),  py::arg("U2"),  py::arg("V1"),  py::arg("V2") )
        .def(py::init< const gp_Cylinder &,const Standard_Real,const Standard_Real >()  , py::arg("Cyl"),  py::arg("V1"),  py::arg("V2") )
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class Convert_EllipseToBSplineCurve from ./opencascade/Convert_EllipseToBSplineCurve.hxx
    klass = m.attr("Convert_EllipseToBSplineCurve");


    // nested enums

    static_cast<py::class_<Convert_EllipseToBSplineCurve , shared_ptr<Convert_EllipseToBSplineCurve>  , Convert_ConicToBSplineCurve >>(klass)
    // constructors
        .def(py::init< const gp_Elips2d &,const Convert_ParameterisationType >()  , py::arg("E"),  py::arg("Parameterisation")=static_cast<const Convert_ParameterisationType>(Convert_TgtThetaOver2) )
        .def(py::init< const gp_Elips2d &,const Standard_Real,const Standard_Real,const Convert_ParameterisationType >()  , py::arg("E"),  py::arg("U1"),  py::arg("U2"),  py::arg("Parameterisation")=static_cast<const Convert_ParameterisationType>(Convert_TgtThetaOver2) )
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class Convert_HyperbolaToBSplineCurve from ./opencascade/Convert_HyperbolaToBSplineCurve.hxx
    klass = m.attr("Convert_HyperbolaToBSplineCurve");


    // nested enums

    static_cast<py::class_<Convert_HyperbolaToBSplineCurve , shared_ptr<Convert_HyperbolaToBSplineCurve>  , Convert_ConicToBSplineCurve >>(klass)
    // constructors
        .def(py::init< const gp_Hypr2d &,const Standard_Real,const Standard_Real >()  , py::arg("H"),  py::arg("U1"),  py::arg("U2") )
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class Convert_ParabolaToBSplineCurve from ./opencascade/Convert_ParabolaToBSplineCurve.hxx
    klass = m.attr("Convert_ParabolaToBSplineCurve");


    // nested enums

    static_cast<py::class_<Convert_ParabolaToBSplineCurve , shared_ptr<Convert_ParabolaToBSplineCurve>  , Convert_ConicToBSplineCurve >>(klass)
    // constructors
        .def(py::init< const gp_Parab2d &,const Standard_Real,const Standard_Real >()  , py::arg("Prb"),  py::arg("U1"),  py::arg("U2") )
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class Convert_SphereToBSplineSurface from ./opencascade/Convert_SphereToBSplineSurface.hxx
    klass = m.attr("Convert_SphereToBSplineSurface");


    // nested enums

    static_cast<py::class_<Convert_SphereToBSplineSurface , shared_ptr<Convert_SphereToBSplineSurface>  , Convert_ElementarySurfaceToBSplineSurface >>(klass)
    // constructors
        .def(py::init< const gp_Sphere &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("Sph"),  py::arg("U1"),  py::arg("U2"),  py::arg("V1"),  py::arg("V2") )
        .def(py::init< const gp_Sphere &,const Standard_Real,const Standard_Real,const Standard_Boolean >()  , py::arg("Sph"),  py::arg("Param1"),  py::arg("Param2"),  py::arg("UTrim")=static_cast<const Standard_Boolean>(Standard_True) )
        .def(py::init< const gp_Sphere & >()  , py::arg("Sph") )
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class Convert_TorusToBSplineSurface from ./opencascade/Convert_TorusToBSplineSurface.hxx
    klass = m.attr("Convert_TorusToBSplineSurface");


    // nested enums

    static_cast<py::class_<Convert_TorusToBSplineSurface , shared_ptr<Convert_TorusToBSplineSurface>  , Convert_ElementarySurfaceToBSplineSurface >>(klass)
    // constructors
        .def(py::init< const gp_Torus &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("T"),  py::arg("U1"),  py::arg("U2"),  py::arg("V1"),  py::arg("V2") )
        .def(py::init< const gp_Torus &,const Standard_Real,const Standard_Real,const Standard_Boolean >()  , py::arg("T"),  py::arg("Param1"),  py::arg("Param2"),  py::arg("UTrim")=static_cast<const Standard_Boolean>(Standard_True) )
        .def(py::init< const gp_Torus & >()  , py::arg("T") )
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

// functions
// ./opencascade/Convert_CircleToBSplineCurve.hxx
// ./opencascade/Convert_CompBezierCurves2dToBSplineCurve2d.hxx
// ./opencascade/Convert_CompBezierCurvesToBSplineCurve.hxx
// ./opencascade/Convert_CompPolynomialToPoles.hxx
// ./opencascade/Convert_ConeToBSplineSurface.hxx
// ./opencascade/Convert_ConicToBSplineCurve.hxx
// ./opencascade/Convert_CosAndSinEvalFunction.hxx
// ./opencascade/Convert_CylinderToBSplineSurface.hxx
// ./opencascade/Convert_ElementarySurfaceToBSplineSurface.hxx
// ./opencascade/Convert_EllipseToBSplineCurve.hxx
// ./opencascade/Convert_GridPolynomialToPoles.hxx
// ./opencascade/Convert_HyperbolaToBSplineCurve.hxx
// ./opencascade/Convert_ParabolaToBSplineCurve.hxx
// ./opencascade/Convert_ParameterisationType.hxx
// ./opencascade/Convert_PolynomialCosAndSin.hxx
    m.def("BuildPolynomialCosAndSin",
          (void (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  opencascade::handle<TColStd_HArray1OfReal> & ,  opencascade::handle<TColStd_HArray1OfReal> & ,  opencascade::handle<TColStd_HArray1OfReal> &  ))  static_cast<void (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  opencascade::handle<TColStd_HArray1OfReal> & ,  opencascade::handle<TColStd_HArray1OfReal> & ,  opencascade::handle<TColStd_HArray1OfReal> &  )>(&BuildPolynomialCosAndSin),
          R"#(None)#"  , py::arg("arg"),  py::arg("arg"),  py::arg("arg"),  py::arg("arg"),  py::arg("arg"),  py::arg("arg")
          );
// ./opencascade/Convert_SequenceOfArray1OfPoles.hxx
// ./opencascade/Convert_SequenceOfArray1OfPoles2d.hxx
// ./opencascade/Convert_SphereToBSplineSurface.hxx
// ./opencascade/Convert_TorusToBSplineSurface.hxx

// Additional functions

// operators

// register typdefs
    register_template_NCollection_Sequence<opencascade::handle<TColgp_HArray1OfPnt>>(m,"Convert_SequenceOfArray1OfPoles");


// exceptions

// user-defined post-inclusion per module in the body

};

// user-defined post-inclusion per module

// user-defined post