1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
|
// std lib related includes
#include <tuple>
// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybind11;
// Standard Handle
#include <Standard_Handle.hxx>
// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <math_MultipleVarFunctionWithHessian.hxx>
// module includes
#include <FairCurve_AnalysisCode.hxx>
#include <FairCurve_Batten.hxx>
#include <FairCurve_BattenLaw.hxx>
#include <FairCurve_DistributionOfEnergy.hxx>
#include <FairCurve_DistributionOfJerk.hxx>
#include <FairCurve_DistributionOfSagging.hxx>
#include <FairCurve_DistributionOfTension.hxx>
#include <FairCurve_Energy.hxx>
#include <FairCurve_EnergyOfBatten.hxx>
#include <FairCurve_EnergyOfMVC.hxx>
#include <FairCurve_MinimalVariation.hxx>
#include <FairCurve_Newton.hxx>
// template related includes
// user-defined pre
#include "OCP_specific.inc"
// user-defined inclusion per module
// Module definiiton
void register_FairCurve(py::module &main_module) {
py::module m = static_cast<py::module>(main_module.attr("FairCurve"));
py::object klass;
//Python trampoline classes
class Py_FairCurve_DistributionOfEnergy : public FairCurve_DistributionOfEnergy{
public:
using FairCurve_DistributionOfEnergy::FairCurve_DistributionOfEnergy;
// public pure virtual
Standard_Boolean Value( const math_VectorBase<double> & X,math_VectorBase<double> & F) override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,math_FunctionSet,Value,X,F) };
// protected pure virtual
// private pure virtual
};
class Py_FairCurve_Energy : public FairCurve_Energy{
public:
using FairCurve_Energy::FairCurve_Energy;
// public pure virtual
// protected pure virtual
Standard_Boolean Compute(const Standard_Integer DerivativeOrder,math_VectorBase<double> & Result) override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,FairCurve_Energy,Compute,DerivativeOrder,Result) };
// private pure virtual
};
// classes
// Class FairCurve_Batten from ./opencascade/FairCurve_Batten.hxx
klass = m.attr("FairCurve_Batten");
// nested enums
static_cast<py::class_<FairCurve_Batten , shared_ptr<FairCurve_Batten> >>(klass)
// constructors
.def(py::init< const gp_Pnt2d &,const gp_Pnt2d &,const Standard_Real,const Standard_Real >() , py::arg("P1"), py::arg("P2"), py::arg("Height"), py::arg("Slope")=static_cast<const Standard_Real>(0) )
// custom constructors
// methods
.def("SetFreeSliding",
(void (FairCurve_Batten::*)( const Standard_Boolean ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Boolean ) >(&FairCurve_Batten::SetFreeSliding),
R"#(Freesliding is initialized with the default setting false. When Freesliding is set to true and, as a result, sliding is free, the sliding factor is automatically computed to satisfy the equilibrium of the batten.)#" , py::arg("FreeSliding")
)
.def("SetConstraintOrder1",
(void (FairCurve_Batten::*)( const Standard_Integer ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Integer ) >(&FairCurve_Batten::SetConstraintOrder1),
R"#(Allows you to change the order of the constraint on the first point. ConstraintOrder has the default setting of 1. The following settings are available: - 0-the curve must pass through a point - 1-the curve must pass through a point and have a given tangent - 2-the curve must pass through a point, have a given tangent and a given curvature. The third setting is only valid for FairCurve_MinimalVariation curves. These constraints, though geometric, represent the mechanical constraints due, for example, to the resistance of the material the actual physical batten is made of.)#" , py::arg("ConstraintOrder")
)
.def("SetConstraintOrder2",
(void (FairCurve_Batten::*)( const Standard_Integer ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Integer ) >(&FairCurve_Batten::SetConstraintOrder2),
R"#(Allows you to change the order of the constraint on the second point. ConstraintOrder is initialized with the default setting of 1. The following settings are available: - 0-the curve must pass through a point - 1-the curve must pass through a point and have a given tangent - 2-the curve must pass through a point, have a given tangent and a given curvature. The third setting is only valid for FairCurve_MinimalVariation curves. These constraints, though geometric, represent the mechanical constraints due, for example, to the resistance of the material the actual physical batten is made of.)#" , py::arg("ConstraintOrder")
)
.def("SetP1",
(void (FairCurve_Batten::*)( const gp_Pnt2d & ) ) static_cast<void (FairCurve_Batten::*)( const gp_Pnt2d & ) >(&FairCurve_Batten::SetP1),
R"#(Allows you to change the location of the point, P1, and in doing so, modify the curve. Warning This method changes the angle as well as the point. Exceptions NullValue if the distance between P1 and P2 is less than or equal to the tolerance value for distance in Precision::Confusion: P1.IsEqual(P2, Precision::Confusion()). The function gp_Pnt2d::IsEqual tests to see if this is the case.)#" , py::arg("P1")
)
.def("SetP2",
(void (FairCurve_Batten::*)( const gp_Pnt2d & ) ) static_cast<void (FairCurve_Batten::*)( const gp_Pnt2d & ) >(&FairCurve_Batten::SetP2),
R"#(Allows you to change the location of the point, P1, and in doing so, modify the curve. Warning This method changes the angle as well as the point. Exceptions NullValue if the distance between P1 and P2 is less than or equal to the tolerance value for distance in Precision::Confusion: P1.IsEqual(P2, Precision::Confusion()). The function gp_Pnt2d::IsEqual tests to see if this is the case.)#" , py::arg("P2")
)
.def("SetAngle1",
(void (FairCurve_Batten::*)( const Standard_Real ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Real ) >(&FairCurve_Batten::SetAngle1),
R"#(Allows you to change the angle Angle1 at the first point, P1. The default setting is 0.)#" , py::arg("Angle1")
)
.def("SetAngle2",
(void (FairCurve_Batten::*)( const Standard_Real ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Real ) >(&FairCurve_Batten::SetAngle2),
R"#(Allows you to change the angle Angle2 at the second point, P2. The default setting is 0.)#" , py::arg("Angle2")
)
.def("SetHeight",
(void (FairCurve_Batten::*)( const Standard_Real ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Real ) >(&FairCurve_Batten::SetHeight),
R"#(Allows you to change the height of the deformation. Raises NegativeValue; -- if Height <= 0 if Height <= 0)#" , py::arg("Height")
)
.def("SetSlope",
(void (FairCurve_Batten::*)( const Standard_Real ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Real ) >(&FairCurve_Batten::SetSlope),
R"#(Allows you to set the slope value, Slope.)#" , py::arg("Slope")
)
.def("SetSlidingFactor",
(void (FairCurve_Batten::*)( const Standard_Real ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Real ) >(&FairCurve_Batten::SetSlidingFactor),
R"#(Allows you to change the ratio SlidingFactor. This compares the length of the batten and the reference length, which is, in turn, a function of the constraints. This modification has one of the following two effects: - if you increase the value, it inflates the batten - if you decrease the value, it flattens the batten. When sliding is free, the sliding factor is automatically computed to satisfy the equilibrium of the batten. When sliding is imposed, a value is required for the sliding factor. SlidingFactor is initialized with the default setting of 1.)#" , py::arg("SlidingFactor")
)
.def("Compute",
(Standard_Boolean (FairCurve_Batten::*)( FairCurve_AnalysisCode & , const Standard_Integer , const Standard_Real ) ) static_cast<Standard_Boolean (FairCurve_Batten::*)( FairCurve_AnalysisCode & , const Standard_Integer , const Standard_Real ) >(&FairCurve_Batten::Compute),
R"#(Performs the algorithm, using the arguments Code, NbIterations and Tolerance and computes the curve with respect to the constraints. Code will have one of the following values: - OK - NotConverged - InfiniteSliding - NullHeight The parameters Tolerance and NbIterations control how precise the computation is, and how long it will take.)#" , py::arg("Code"), py::arg("NbIterations")=static_cast<const Standard_Integer>(50), py::arg("Tolerance")=static_cast<const Standard_Real>(1.0e-3)
)
.def("SlidingOfReference",
(Standard_Real (FairCurve_Batten::*)() const) static_cast<Standard_Real (FairCurve_Batten::*)() const>(&FairCurve_Batten::SlidingOfReference),
R"#(Computes the real number value for length Sliding of Reference for new constraints. If you want to give a specific length to a batten curve, use the following syntax: b.SetSlidingFactor(L / b.SlidingOfReference()) where b is the name of the batten curve object.)#"
)
.def("GetFreeSliding",
(Standard_Boolean (FairCurve_Batten::*)() const) static_cast<Standard_Boolean (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetFreeSliding),
R"#(Returns the initial free sliding value, false by default. Free sliding is generally more aesthetically pleasing than constrained sliding. However, the computation can fail with values such as angles greater than PI/2. This is because the resulting batten length is theoretically infinite.)#"
)
.def("GetConstraintOrder1",
(Standard_Integer (FairCurve_Batten::*)() const) static_cast<Standard_Integer (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetConstraintOrder1),
R"#(Returns the established first constraint order.)#"
)
.def("GetConstraintOrder2",
(Standard_Integer (FairCurve_Batten::*)() const) static_cast<Standard_Integer (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetConstraintOrder2),
R"#(Returns the established second constraint order.)#"
)
.def("GetAngle1",
(Standard_Real (FairCurve_Batten::*)() const) static_cast<Standard_Real (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetAngle1),
R"#(Returns the established first angle.)#"
)
.def("GetAngle2",
(Standard_Real (FairCurve_Batten::*)() const) static_cast<Standard_Real (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetAngle2),
R"#(Returns the established second angle.)#"
)
.def("GetHeight",
(Standard_Real (FairCurve_Batten::*)() const) static_cast<Standard_Real (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetHeight),
R"#(Returns the thickness of the lathe.)#"
)
.def("GetSlope",
(Standard_Real (FairCurve_Batten::*)() const) static_cast<Standard_Real (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetSlope),
R"#(Returns the established slope value.)#"
)
.def("GetSlidingFactor",
(Standard_Real (FairCurve_Batten::*)() const) static_cast<Standard_Real (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetSlidingFactor),
R"#(Returns the initial sliding factor.)#"
)
.def("Curve",
(opencascade::handle<Geom2d_BSplineCurve> (FairCurve_Batten::*)() const) static_cast<opencascade::handle<Geom2d_BSplineCurve> (FairCurve_Batten::*)() const>(&FairCurve_Batten::Curve),
R"#(Returns the computed curve a 2d BSpline.)#"
)
.def("Dump",
(void (FairCurve_Batten::*)( std::ostream & ) const) static_cast<void (FairCurve_Batten::*)( std::ostream & ) const>(&FairCurve_Batten::Dump),
R"#(Prints on the stream o information on the current state of the object.)#" , py::arg("o")
)
.def("SetFreeSliding",
(void (FairCurve_Batten::*)( const Standard_Boolean ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Boolean ) >(&FairCurve_Batten::SetFreeSliding),
R"#(Freesliding is initialized with the default setting false. When Freesliding is set to true and, as a result, sliding is free, the sliding factor is automatically computed to satisfy the equilibrium of the batten.)#" , py::arg("FreeSliding")
)
.def("SetConstraintOrder1",
(void (FairCurve_Batten::*)( const Standard_Integer ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Integer ) >(&FairCurve_Batten::SetConstraintOrder1),
R"#(Allows you to change the order of the constraint on the first point. ConstraintOrder has the default setting of 1. The following settings are available: - 0-the curve must pass through a point - 1-the curve must pass through a point and have a given tangent - 2-the curve must pass through a point, have a given tangent and a given curvature. The third setting is only valid for FairCurve_MinimalVariation curves. These constraints, though geometric, represent the mechanical constraints due, for example, to the resistance of the material the actual physical batten is made of.)#" , py::arg("ConstraintOrder")
)
.def("SetConstraintOrder2",
(void (FairCurve_Batten::*)( const Standard_Integer ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Integer ) >(&FairCurve_Batten::SetConstraintOrder2),
R"#(Allows you to change the order of the constraint on the second point. ConstraintOrder is initialized with the default setting of 1. The following settings are available: - 0-the curve must pass through a point - 1-the curve must pass through a point and have a given tangent - 2-the curve must pass through a point, have a given tangent and a given curvature. The third setting is only valid for FairCurve_MinimalVariation curves. These constraints, though geometric, represent the mechanical constraints due, for example, to the resistance of the material the actual physical batten is made of.)#" , py::arg("ConstraintOrder")
)
.def("SetAngle1",
(void (FairCurve_Batten::*)( const Standard_Real ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Real ) >(&FairCurve_Batten::SetAngle1),
R"#(Allows you to change the angle Angle1 at the first point, P1. The default setting is 0.)#" , py::arg("Angle1")
)
.def("SetAngle2",
(void (FairCurve_Batten::*)( const Standard_Real ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Real ) >(&FairCurve_Batten::SetAngle2),
R"#(Allows you to change the angle Angle2 at the second point, P2. The default setting is 0.)#" , py::arg("Angle2")
)
.def("SetHeight",
(void (FairCurve_Batten::*)( const Standard_Real ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Real ) >(&FairCurve_Batten::SetHeight),
R"#(Allows you to change the height of the deformation. Raises NegativeValue; -- if Height <= 0 if Height <= 0)#" , py::arg("Height")
)
.def("SetSlope",
(void (FairCurve_Batten::*)( const Standard_Real ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Real ) >(&FairCurve_Batten::SetSlope),
R"#(Allows you to set the slope value, Slope.)#" , py::arg("Slope")
)
.def("SetSlidingFactor",
(void (FairCurve_Batten::*)( const Standard_Real ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Real ) >(&FairCurve_Batten::SetSlidingFactor),
R"#(Allows you to change the ratio SlidingFactor. This compares the length of the batten and the reference length, which is, in turn, a function of the constraints. This modification has one of the following two effects: - if you increase the value, it inflates the batten - if you decrease the value, it flattens the batten. When sliding is free, the sliding factor is automatically computed to satisfy the equilibrium of the batten. When sliding is imposed, a value is required for the sliding factor. SlidingFactor is initialized with the default setting of 1.)#" , py::arg("SlidingFactor")
)
.def("GetFreeSliding",
(Standard_Boolean (FairCurve_Batten::*)() const) static_cast<Standard_Boolean (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetFreeSliding),
R"#(Returns the initial free sliding value, false by default. Free sliding is generally more aesthetically pleasing than constrained sliding. However, the computation can fail with values such as angles greater than PI/2. This is because the resulting batten length is theoretically infinite.)#"
)
.def("GetConstraintOrder1",
(Standard_Integer (FairCurve_Batten::*)() const) static_cast<Standard_Integer (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetConstraintOrder1),
R"#(Returns the established first constraint order.)#"
)
.def("GetConstraintOrder2",
(Standard_Integer (FairCurve_Batten::*)() const) static_cast<Standard_Integer (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetConstraintOrder2),
R"#(Returns the established second constraint order.)#"
)
.def("GetAngle1",
(Standard_Real (FairCurve_Batten::*)() const) static_cast<Standard_Real (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetAngle1),
R"#(Returns the established first angle.)#"
)
.def("GetAngle2",
(Standard_Real (FairCurve_Batten::*)() const) static_cast<Standard_Real (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetAngle2),
R"#(Returns the established second angle.)#"
)
.def("GetHeight",
(Standard_Real (FairCurve_Batten::*)() const) static_cast<Standard_Real (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetHeight),
R"#(Returns the thickness of the lathe.)#"
)
.def("GetSlope",
(Standard_Real (FairCurve_Batten::*)() const) static_cast<Standard_Real (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetSlope),
R"#(Returns the established slope value.)#"
)
.def("GetSlidingFactor",
(Standard_Real (FairCurve_Batten::*)() const) static_cast<Standard_Real (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetSlidingFactor),
R"#(Returns the initial sliding factor.)#"
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("GetP1",
(const gp_Pnt2d & (FairCurve_Batten::*)() const) static_cast<const gp_Pnt2d & (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetP1),
R"#(Returns the established location of the point P1.)#"
)
.def("GetP2",
(const gp_Pnt2d & (FairCurve_Batten::*)() const) static_cast<const gp_Pnt2d & (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetP2),
R"#(Returns the established location of the point P2.)#"
)
.def("GetP1",
(const gp_Pnt2d & (FairCurve_Batten::*)() const) static_cast<const gp_Pnt2d & (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetP1),
R"#(Returns the established location of the point P1.)#"
)
.def("GetP2",
(const gp_Pnt2d & (FairCurve_Batten::*)() const) static_cast<const gp_Pnt2d & (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetP2),
R"#(Returns the established location of the point P2.)#"
)
;
// Class FairCurve_BattenLaw from ./opencascade/FairCurve_BattenLaw.hxx
klass = m.attr("FairCurve_BattenLaw");
// nested enums
static_cast<py::class_<FairCurve_BattenLaw , shared_ptr<FairCurve_BattenLaw> , math_Function >>(klass)
// constructors
.def(py::init< const Standard_Real,const Standard_Real,const Standard_Real >() , py::arg("Heigth"), py::arg("Slope"), py::arg("Sliding") )
// custom constructors
// methods
.def("SetSliding",
(void (FairCurve_BattenLaw::*)( const Standard_Real ) ) static_cast<void (FairCurve_BattenLaw::*)( const Standard_Real ) >(&FairCurve_BattenLaw::SetSliding),
R"#(Change the value of sliding)#" , py::arg("Sliding")
)
.def("SetHeigth",
(void (FairCurve_BattenLaw::*)( const Standard_Real ) ) static_cast<void (FairCurve_BattenLaw::*)( const Standard_Real ) >(&FairCurve_BattenLaw::SetHeigth),
R"#(Change the value of Heigth at the middle point.)#" , py::arg("Heigth")
)
.def("SetSlope",
(void (FairCurve_BattenLaw::*)( const Standard_Real ) ) static_cast<void (FairCurve_BattenLaw::*)( const Standard_Real ) >(&FairCurve_BattenLaw::SetSlope),
R"#(Change the value of the geometric slope.)#" , py::arg("Slope")
)
.def("Value",
(Standard_Boolean (FairCurve_BattenLaw::*)( const Standard_Real , Standard_Real & ) ) static_cast<Standard_Boolean (FairCurve_BattenLaw::*)( const Standard_Real , Standard_Real & ) >(&FairCurve_BattenLaw::Value),
R"#(computes the value of the heigth for the parameter T on the neutral fibber)#" , py::arg("T"), py::arg("THeigth")
)
.def("SetSliding",
(void (FairCurve_BattenLaw::*)( const Standard_Real ) ) static_cast<void (FairCurve_BattenLaw::*)( const Standard_Real ) >(&FairCurve_BattenLaw::SetSliding),
R"#(Change the value of sliding)#" , py::arg("Sliding")
)
.def("SetHeigth",
(void (FairCurve_BattenLaw::*)( const Standard_Real ) ) static_cast<void (FairCurve_BattenLaw::*)( const Standard_Real ) >(&FairCurve_BattenLaw::SetHeigth),
R"#(Change the value of Heigth at the middle point.)#" , py::arg("Heigth")
)
.def("SetSlope",
(void (FairCurve_BattenLaw::*)( const Standard_Real ) ) static_cast<void (FairCurve_BattenLaw::*)( const Standard_Real ) >(&FairCurve_BattenLaw::SetSlope),
R"#(Change the value of the geometric slope.)#" , py::arg("Slope")
)
.def("Value",
(Standard_Boolean (FairCurve_BattenLaw::*)( const Standard_Real , Standard_Real & ) ) static_cast<Standard_Boolean (FairCurve_BattenLaw::*)( const Standard_Real , Standard_Real & ) >(&FairCurve_BattenLaw::Value),
R"#(computes the value of the heigth for the parameter T on the neutral fibber)#" , py::arg("T"), py::arg("THeigth")
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class FairCurve_DistributionOfEnergy from ./opencascade/FairCurve_DistributionOfEnergy.hxx
klass = m.attr("FairCurve_DistributionOfEnergy");
// nested enums
static_cast<py::class_<FairCurve_DistributionOfEnergy , shared_ptr<FairCurve_DistributionOfEnergy> ,Py_FairCurve_DistributionOfEnergy , math_FunctionSet >>(klass)
// constructors
// custom constructors
// methods
.def("NbVariables",
(Standard_Integer (FairCurve_DistributionOfEnergy::*)() const) static_cast<Standard_Integer (FairCurve_DistributionOfEnergy::*)() const>(&FairCurve_DistributionOfEnergy::NbVariables),
R"#(returns the number of variables of the function.)#"
)
.def("NbEquations",
(Standard_Integer (FairCurve_DistributionOfEnergy::*)() const) static_cast<Standard_Integer (FairCurve_DistributionOfEnergy::*)() const>(&FairCurve_DistributionOfEnergy::NbEquations),
R"#(returns the number of equations of the function.)#"
)
.def("SetDerivativeOrder",
(void (FairCurve_DistributionOfEnergy::*)( const Standard_Integer ) ) static_cast<void (FairCurve_DistributionOfEnergy::*)( const Standard_Integer ) >(&FairCurve_DistributionOfEnergy::SetDerivativeOrder),
R"#(None)#" , py::arg("DerivativeOrder")
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class FairCurve_Energy from ./opencascade/FairCurve_Energy.hxx
klass = m.attr("FairCurve_Energy");
// nested enums
static_cast<py::class_<FairCurve_Energy , shared_ptr<FairCurve_Energy> ,Py_FairCurve_Energy , math_MultipleVarFunctionWithHessian >>(klass)
// constructors
// custom constructors
// methods
.def("NbVariables",
(Standard_Integer (FairCurve_Energy::*)() const) static_cast<Standard_Integer (FairCurve_Energy::*)() const>(&FairCurve_Energy::NbVariables),
R"#(returns the number of variables of the energy.)#"
)
.def("Value",
(Standard_Boolean (FairCurve_Energy::*)( const math_VectorBase<double> & , Standard_Real & ) ) static_cast<Standard_Boolean (FairCurve_Energy::*)( const math_VectorBase<double> & , Standard_Real & ) >(&FairCurve_Energy::Value),
R"#(computes the values of the Energys E for the variable <X>. Returns True if the computation was done successfully, False otherwise.)#" , py::arg("X"), py::arg("E")
)
.def("Gradient",
(Standard_Boolean (FairCurve_Energy::*)( const math_VectorBase<double> & , math_VectorBase<double> & ) ) static_cast<Standard_Boolean (FairCurve_Energy::*)( const math_VectorBase<double> & , math_VectorBase<double> & ) >(&FairCurve_Energy::Gradient),
R"#(computes the gradient <G> of the energys for the variable <X>. Returns True if the computation was done successfully, False otherwise.)#" , py::arg("X"), py::arg("G")
)
.def("Values",
(Standard_Boolean (FairCurve_Energy::*)( const math_VectorBase<double> & , Standard_Real & , math_VectorBase<double> & ) ) static_cast<Standard_Boolean (FairCurve_Energy::*)( const math_VectorBase<double> & , Standard_Real & , math_VectorBase<double> & ) >(&FairCurve_Energy::Values),
R"#(computes the Energy <E> and the gradient <G> of the energy for the variable <X>. Returns True if the computation was done successfully, False otherwise.)#" , py::arg("X"), py::arg("E"), py::arg("G")
)
.def("Values",
(Standard_Boolean (FairCurve_Energy::*)( const math_VectorBase<double> & , Standard_Real & , math_VectorBase<double> & , math_Matrix & ) ) static_cast<Standard_Boolean (FairCurve_Energy::*)( const math_VectorBase<double> & , Standard_Real & , math_VectorBase<double> & , math_Matrix & ) >(&FairCurve_Energy::Values),
R"#(computes the Energy <E>, the gradient <G> and the Hessian <H> of the energy for the variable <X>. Returns True if the computation was done successfully, False otherwise.)#" , py::arg("X"), py::arg("E"), py::arg("G"), py::arg("H")
)
.def("Variable",
(Standard_Boolean (FairCurve_Energy::*)( math_VectorBase<double> & ) const) static_cast<Standard_Boolean (FairCurve_Energy::*)( math_VectorBase<double> & ) const>(&FairCurve_Energy::Variable),
R"#(compute the variables <X> which correspond with the field <MyPoles>)#" , py::arg("X")
)
.def("NbVariables",
(Standard_Integer (FairCurve_Energy::*)() const) static_cast<Standard_Integer (FairCurve_Energy::*)() const>(&FairCurve_Energy::NbVariables),
R"#(returns the number of variables of the energy.)#"
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Poles",
(const opencascade::handle<TColgp_HArray1OfPnt2d> & (FairCurve_Energy::*)() const) static_cast<const opencascade::handle<TColgp_HArray1OfPnt2d> & (FairCurve_Energy::*)() const>(&FairCurve_Energy::Poles),
R"#(return the poles)#"
, py::return_value_policy::reference_internal
)
.def("Poles",
(const opencascade::handle<TColgp_HArray1OfPnt2d> & (FairCurve_Energy::*)() const) static_cast<const opencascade::handle<TColgp_HArray1OfPnt2d> & (FairCurve_Energy::*)() const>(&FairCurve_Energy::Poles),
R"#(return the poles)#"
, py::return_value_policy::reference_internal
)
;
// Class FairCurve_Newton from ./opencascade/FairCurve_Newton.hxx
klass = m.attr("FairCurve_Newton");
// nested enums
static_cast<py::class_<FairCurve_Newton , shared_ptr<FairCurve_Newton> , math_NewtonMinimum >>(klass)
// constructors
.def(py::init< const math_MultipleVarFunctionWithHessian &,const Standard_Real,const Standard_Real,const Standard_Integer,const Standard_Real,const Standard_Boolean >() , py::arg("theFunction"), py::arg("theSpatialTolerance")=static_cast<const Standard_Real>(1.0e-7), py::arg("theCriteriumTolerance")=static_cast<const Standard_Real>(1.0e-7), py::arg("theNbIterations")=static_cast<const Standard_Integer>(40), py::arg("theConvexity")=static_cast<const Standard_Real>(1.0e-6), py::arg("theWithSingularity")=static_cast<const Standard_Boolean>(Standard_True) )
// custom constructors
// methods
.def("IsConverged",
(Standard_Boolean (FairCurve_Newton::*)() const) static_cast<Standard_Boolean (FairCurve_Newton::*)() const>(&FairCurve_Newton::IsConverged),
R"#(This method is called at the end of each iteration to check the convergence : || Xi+1 - Xi || < SpatialTolerance/100 Or || Xi+1 - Xi || < SpatialTolerance and |F(Xi+1) - F(Xi)| < CriteriumTolerance * |F(xi)| It can be redefined in a sub-class to implement a specific test.)#"
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class FairCurve_DistributionOfJerk from ./opencascade/FairCurve_DistributionOfJerk.hxx
klass = m.attr("FairCurve_DistributionOfJerk");
// nested enums
static_cast<py::class_<FairCurve_DistributionOfJerk , shared_ptr<FairCurve_DistributionOfJerk> , FairCurve_DistributionOfEnergy >>(klass)
// constructors
.def(py::init< const Standard_Integer,const opencascade::handle<TColStd_HArray1OfReal> &,const opencascade::handle<TColgp_HArray1OfPnt2d> &,const Standard_Integer,const FairCurve_BattenLaw &,const Standard_Integer >() , py::arg("BSplOrder"), py::arg("FlatKnots"), py::arg("Poles"), py::arg("DerivativeOrder"), py::arg("Law"), py::arg("NbValAux")=static_cast<const Standard_Integer>(0) )
// custom constructors
// methods
.def("Value",
(Standard_Boolean (FairCurve_DistributionOfJerk::*)( const math_VectorBase<double> & , math_VectorBase<double> & ) ) static_cast<Standard_Boolean (FairCurve_DistributionOfJerk::*)( const math_VectorBase<double> & , math_VectorBase<double> & ) >(&FairCurve_DistributionOfJerk::Value),
R"#(computes the values <F> of the functions for the variable <X>. returns True if the computation was done successfully, False otherwise.)#" , py::arg("X"), py::arg("F")
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class FairCurve_DistributionOfSagging from ./opencascade/FairCurve_DistributionOfSagging.hxx
klass = m.attr("FairCurve_DistributionOfSagging");
// nested enums
static_cast<py::class_<FairCurve_DistributionOfSagging , shared_ptr<FairCurve_DistributionOfSagging> , FairCurve_DistributionOfEnergy >>(klass)
// constructors
.def(py::init< const Standard_Integer,const opencascade::handle<TColStd_HArray1OfReal> &,const opencascade::handle<TColgp_HArray1OfPnt2d> &,const Standard_Integer,const FairCurve_BattenLaw &,const Standard_Integer >() , py::arg("BSplOrder"), py::arg("FlatKnots"), py::arg("Poles"), py::arg("DerivativeOrder"), py::arg("Law"), py::arg("NbValAux")=static_cast<const Standard_Integer>(0) )
// custom constructors
// methods
.def("Value",
(Standard_Boolean (FairCurve_DistributionOfSagging::*)( const math_VectorBase<double> & , math_VectorBase<double> & ) ) static_cast<Standard_Boolean (FairCurve_DistributionOfSagging::*)( const math_VectorBase<double> & , math_VectorBase<double> & ) >(&FairCurve_DistributionOfSagging::Value),
R"#(computes the values <F> of the functions for the variable <X>. returns True if the computation was done successfully, False otherwise.)#" , py::arg("X"), py::arg("F")
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class FairCurve_DistributionOfTension from ./opencascade/FairCurve_DistributionOfTension.hxx
klass = m.attr("FairCurve_DistributionOfTension");
// nested enums
static_cast<py::class_<FairCurve_DistributionOfTension , shared_ptr<FairCurve_DistributionOfTension> , FairCurve_DistributionOfEnergy >>(klass)
// constructors
.def(py::init< const Standard_Integer,const opencascade::handle<TColStd_HArray1OfReal> &,const opencascade::handle<TColgp_HArray1OfPnt2d> &,const Standard_Integer,const Standard_Real,const FairCurve_BattenLaw &,const Standard_Integer,const Standard_Boolean >() , py::arg("BSplOrder"), py::arg("FlatKnots"), py::arg("Poles"), py::arg("DerivativeOrder"), py::arg("LengthSliding"), py::arg("Law"), py::arg("NbValAux")=static_cast<const Standard_Integer>(0), py::arg("Uniform")=static_cast<const Standard_Boolean>(Standard_False) )
// custom constructors
// methods
.def("SetLengthSliding",
(void (FairCurve_DistributionOfTension::*)( const Standard_Real ) ) static_cast<void (FairCurve_DistributionOfTension::*)( const Standard_Real ) >(&FairCurve_DistributionOfTension::SetLengthSliding),
R"#(change the length sliding)#" , py::arg("LengthSliding")
)
.def("Value",
(Standard_Boolean (FairCurve_DistributionOfTension::*)( const math_VectorBase<double> & , math_VectorBase<double> & ) ) static_cast<Standard_Boolean (FairCurve_DistributionOfTension::*)( const math_VectorBase<double> & , math_VectorBase<double> & ) >(&FairCurve_DistributionOfTension::Value),
R"#(computes the values <F> of the functions for the variable <X>. returns True if the computation was done successfully, False otherwise.)#" , py::arg("X"), py::arg("F")
)
.def("SetLengthSliding",
(void (FairCurve_DistributionOfTension::*)( const Standard_Real ) ) static_cast<void (FairCurve_DistributionOfTension::*)( const Standard_Real ) >(&FairCurve_DistributionOfTension::SetLengthSliding),
R"#(change the length sliding)#" , py::arg("LengthSliding")
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class FairCurve_EnergyOfBatten from ./opencascade/FairCurve_EnergyOfBatten.hxx
klass = m.attr("FairCurve_EnergyOfBatten");
// nested enums
static_cast<py::class_<FairCurve_EnergyOfBatten , shared_ptr<FairCurve_EnergyOfBatten> , FairCurve_Energy >>(klass)
// constructors
.def(py::init< const Standard_Integer,const opencascade::handle<TColStd_HArray1OfReal> &,const opencascade::handle<TColgp_HArray1OfPnt2d> &,const Standard_Integer,const Standard_Integer,const FairCurve_BattenLaw &,const Standard_Real,const Standard_Boolean,const Standard_Real,const Standard_Real >() , py::arg("BSplOrder"), py::arg("FlatKnots"), py::arg("Poles"), py::arg("ContrOrder1"), py::arg("ContrOrder2"), py::arg("Law"), py::arg("LengthSliding"), py::arg("FreeSliding")=static_cast<const Standard_Boolean>(Standard_True), py::arg("Angle1")=static_cast<const Standard_Real>(0), py::arg("Angle2")=static_cast<const Standard_Real>(0) )
// custom constructors
// methods
.def("LengthSliding",
(Standard_Real (FairCurve_EnergyOfBatten::*)() const) static_cast<Standard_Real (FairCurve_EnergyOfBatten::*)() const>(&FairCurve_EnergyOfBatten::LengthSliding),
R"#(return the lengthSliding = P1P2 + Sliding)#"
)
.def("Status",
(FairCurve_AnalysisCode (FairCurve_EnergyOfBatten::*)() const) static_cast<FairCurve_AnalysisCode (FairCurve_EnergyOfBatten::*)() const>(&FairCurve_EnergyOfBatten::Status),
R"#(return the status)#"
)
.def("Variable",
(Standard_Boolean (FairCurve_EnergyOfBatten::*)( math_VectorBase<double> & ) const) static_cast<Standard_Boolean (FairCurve_EnergyOfBatten::*)( math_VectorBase<double> & ) const>(&FairCurve_EnergyOfBatten::Variable),
R"#(compute the variables <X> which correspond with the field <MyPoles>)#" , py::arg("X")
)
.def("LengthSliding",
(Standard_Real (FairCurve_EnergyOfBatten::*)() const) static_cast<Standard_Real (FairCurve_EnergyOfBatten::*)() const>(&FairCurve_EnergyOfBatten::LengthSliding),
R"#(return the lengthSliding = P1P2 + Sliding)#"
)
.def("Status",
(FairCurve_AnalysisCode (FairCurve_EnergyOfBatten::*)() const) static_cast<FairCurve_AnalysisCode (FairCurve_EnergyOfBatten::*)() const>(&FairCurve_EnergyOfBatten::Status),
R"#(return the status)#"
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class FairCurve_EnergyOfMVC from ./opencascade/FairCurve_EnergyOfMVC.hxx
klass = m.attr("FairCurve_EnergyOfMVC");
// nested enums
static_cast<py::class_<FairCurve_EnergyOfMVC , shared_ptr<FairCurve_EnergyOfMVC> , FairCurve_Energy >>(klass)
// constructors
.def(py::init< const Standard_Integer,const opencascade::handle<TColStd_HArray1OfReal> &,const opencascade::handle<TColgp_HArray1OfPnt2d> &,const Standard_Integer,const Standard_Integer,const FairCurve_BattenLaw &,const Standard_Real,const Standard_Real,const Standard_Boolean,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real >() , py::arg("BSplOrder"), py::arg("FlatKnots"), py::arg("Poles"), py::arg("ContrOrder1"), py::arg("ContrOrder2"), py::arg("Law"), py::arg("PhysicalRatio"), py::arg("LengthSliding"), py::arg("FreeSliding")=static_cast<const Standard_Boolean>(Standard_True), py::arg("Angle1")=static_cast<const Standard_Real>(0), py::arg("Angle2")=static_cast<const Standard_Real>(0), py::arg("Curvature1")=static_cast<const Standard_Real>(0), py::arg("Curvature2")=static_cast<const Standard_Real>(0) )
// custom constructors
// methods
.def("LengthSliding",
(Standard_Real (FairCurve_EnergyOfMVC::*)() const) static_cast<Standard_Real (FairCurve_EnergyOfMVC::*)() const>(&FairCurve_EnergyOfMVC::LengthSliding),
R"#(return the lengthSliding = P1P2 + Sliding)#"
)
.def("Status",
(FairCurve_AnalysisCode (FairCurve_EnergyOfMVC::*)() const) static_cast<FairCurve_AnalysisCode (FairCurve_EnergyOfMVC::*)() const>(&FairCurve_EnergyOfMVC::Status),
R"#(return the status)#"
)
.def("Variable",
(Standard_Boolean (FairCurve_EnergyOfMVC::*)( math_VectorBase<double> & ) const) static_cast<Standard_Boolean (FairCurve_EnergyOfMVC::*)( math_VectorBase<double> & ) const>(&FairCurve_EnergyOfMVC::Variable),
R"#(compute the variables <X> which correspond with the field <MyPoles>)#" , py::arg("X")
)
.def("LengthSliding",
(Standard_Real (FairCurve_EnergyOfMVC::*)() const) static_cast<Standard_Real (FairCurve_EnergyOfMVC::*)() const>(&FairCurve_EnergyOfMVC::LengthSliding),
R"#(return the lengthSliding = P1P2 + Sliding)#"
)
.def("Status",
(FairCurve_AnalysisCode (FairCurve_EnergyOfMVC::*)() const) static_cast<FairCurve_AnalysisCode (FairCurve_EnergyOfMVC::*)() const>(&FairCurve_EnergyOfMVC::Status),
R"#(return the status)#"
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class FairCurve_MinimalVariation from ./opencascade/FairCurve_MinimalVariation.hxx
klass = m.attr("FairCurve_MinimalVariation");
// nested enums
static_cast<py::class_<FairCurve_MinimalVariation , shared_ptr<FairCurve_MinimalVariation> , FairCurve_Batten >>(klass)
// constructors
.def(py::init< const gp_Pnt2d &,const gp_Pnt2d &,const Standard_Real,const Standard_Real,const Standard_Real >() , py::arg("P1"), py::arg("P2"), py::arg("Heigth"), py::arg("Slope")=static_cast<const Standard_Real>(0), py::arg("PhysicalRatio")=static_cast<const Standard_Real>(0) )
// custom constructors
// methods
.def("SetCurvature1",
(void (FairCurve_MinimalVariation::*)( const Standard_Real ) ) static_cast<void (FairCurve_MinimalVariation::*)( const Standard_Real ) >(&FairCurve_MinimalVariation::SetCurvature1),
R"#(Allows you to set a new constraint on curvature at the first point.)#" , py::arg("Curvature")
)
.def("SetCurvature2",
(void (FairCurve_MinimalVariation::*)( const Standard_Real ) ) static_cast<void (FairCurve_MinimalVariation::*)( const Standard_Real ) >(&FairCurve_MinimalVariation::SetCurvature2),
R"#(Allows you to set a new constraint on curvature at the second point.)#" , py::arg("Curvature")
)
.def("SetPhysicalRatio",
(void (FairCurve_MinimalVariation::*)( const Standard_Real ) ) static_cast<void (FairCurve_MinimalVariation::*)( const Standard_Real ) >(&FairCurve_MinimalVariation::SetPhysicalRatio),
R"#(Allows you to set the physical ratio Ratio. The kinds of energy which you can specify include: 0 is only "Jerk" Energy 1 is only "Sagging" Energy like batten Warning: if Ratio is 1 it is impossible to impose curvature constraints. Raises DomainError if Ratio < 0 or Ratio > 1)#" , py::arg("Ratio")
)
.def("Compute",
(Standard_Boolean (FairCurve_MinimalVariation::*)( FairCurve_AnalysisCode & , const Standard_Integer , const Standard_Real ) ) static_cast<Standard_Boolean (FairCurve_MinimalVariation::*)( FairCurve_AnalysisCode & , const Standard_Integer , const Standard_Real ) >(&FairCurve_MinimalVariation::Compute),
R"#(Computes the curve with respect to the constraints, NbIterations and Tolerance. The tolerance setting allows you to control the precision of computation, and the maximum number of iterations allows you to set a limit on computation time.)#" , py::arg("ACode"), py::arg("NbIterations")=static_cast<const Standard_Integer>(50), py::arg("Tolerance")=static_cast<const Standard_Real>(1.0e-3)
)
.def("GetCurvature1",
(Standard_Real (FairCurve_MinimalVariation::*)() const) static_cast<Standard_Real (FairCurve_MinimalVariation::*)() const>(&FairCurve_MinimalVariation::GetCurvature1),
R"#(Returns the first established curvature.)#"
)
.def("GetCurvature2",
(Standard_Real (FairCurve_MinimalVariation::*)() const) static_cast<Standard_Real (FairCurve_MinimalVariation::*)() const>(&FairCurve_MinimalVariation::GetCurvature2),
R"#(Returns the second established curvature.)#"
)
.def("GetPhysicalRatio",
(Standard_Real (FairCurve_MinimalVariation::*)() const) static_cast<Standard_Real (FairCurve_MinimalVariation::*)() const>(&FairCurve_MinimalVariation::GetPhysicalRatio),
R"#(Returns the physical ratio, or kind of energy.)#"
)
.def("Dump",
(void (FairCurve_MinimalVariation::*)( std::ostream & ) const) static_cast<void (FairCurve_MinimalVariation::*)( std::ostream & ) const>(&FairCurve_MinimalVariation::Dump),
R"#(Prints on the stream o information on the current state of the object. Is used to redefine the operator <<.)#" , py::arg("o")
)
.def("SetCurvature1",
(void (FairCurve_MinimalVariation::*)( const Standard_Real ) ) static_cast<void (FairCurve_MinimalVariation::*)( const Standard_Real ) >(&FairCurve_MinimalVariation::SetCurvature1),
R"#(Allows you to set a new constraint on curvature at the first point.)#" , py::arg("Curvature")
)
.def("SetCurvature2",
(void (FairCurve_MinimalVariation::*)( const Standard_Real ) ) static_cast<void (FairCurve_MinimalVariation::*)( const Standard_Real ) >(&FairCurve_MinimalVariation::SetCurvature2),
R"#(Allows you to set a new constraint on curvature at the second point.)#" , py::arg("Curvature")
)
.def("SetPhysicalRatio",
(void (FairCurve_MinimalVariation::*)( const Standard_Real ) ) static_cast<void (FairCurve_MinimalVariation::*)( const Standard_Real ) >(&FairCurve_MinimalVariation::SetPhysicalRatio),
R"#(Allows you to set the physical ratio Ratio. The kinds of energy which you can specify include: 0 is only "Jerk" Energy 1 is only "Sagging" Energy like batten Warning: if Ratio is 1 it is impossible to impose curvature constraints. Raises DomainError if Ratio < 0 or Ratio > 1)#" , py::arg("Ratio")
)
.def("GetCurvature1",
(Standard_Real (FairCurve_MinimalVariation::*)() const) static_cast<Standard_Real (FairCurve_MinimalVariation::*)() const>(&FairCurve_MinimalVariation::GetCurvature1),
R"#(Returns the first established curvature.)#"
)
.def("GetCurvature2",
(Standard_Real (FairCurve_MinimalVariation::*)() const) static_cast<Standard_Real (FairCurve_MinimalVariation::*)() const>(&FairCurve_MinimalVariation::GetCurvature2),
R"#(Returns the second established curvature.)#"
)
.def("GetPhysicalRatio",
(Standard_Real (FairCurve_MinimalVariation::*)() const) static_cast<Standard_Real (FairCurve_MinimalVariation::*)() const>(&FairCurve_MinimalVariation::GetPhysicalRatio),
R"#(Returns the physical ratio, or kind of energy.)#"
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// functions
// ./opencascade/FairCurve_AnalysisCode.hxx
// ./opencascade/FairCurve_Batten.hxx
// ./opencascade/FairCurve_BattenLaw.hxx
// ./opencascade/FairCurve_DistributionOfEnergy.hxx
// ./opencascade/FairCurve_DistributionOfJerk.hxx
// ./opencascade/FairCurve_DistributionOfSagging.hxx
// ./opencascade/FairCurve_DistributionOfTension.hxx
// ./opencascade/FairCurve_Energy.hxx
// ./opencascade/FairCurve_EnergyOfBatten.hxx
// ./opencascade/FairCurve_EnergyOfMVC.hxx
// ./opencascade/FairCurve_MinimalVariation.hxx
// ./opencascade/FairCurve_Newton.hxx
// Additional functions
// operators
// register typdefs
// exceptions
// user-defined post-inclusion per module in the body
};
// user-defined post-inclusion per module
// user-defined post
|