File: FairCurve.cpp

package info (click to toggle)
python-ocp 7.8.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 64,720 kB
  • sloc: cpp: 362,337; pascal: 33; python: 23; makefile: 4
file content (741 lines) | stat: -rw-r--r-- 50,517 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741

// std lib related includes
#include <tuple>

// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

namespace py = pybind11;

// Standard Handle
#include <Standard_Handle.hxx>


// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <math_MultipleVarFunctionWithHessian.hxx>

// module includes
#include <FairCurve_AnalysisCode.hxx>
#include <FairCurve_Batten.hxx>
#include <FairCurve_BattenLaw.hxx>
#include <FairCurve_DistributionOfEnergy.hxx>
#include <FairCurve_DistributionOfJerk.hxx>
#include <FairCurve_DistributionOfSagging.hxx>
#include <FairCurve_DistributionOfTension.hxx>
#include <FairCurve_Energy.hxx>
#include <FairCurve_EnergyOfBatten.hxx>
#include <FairCurve_EnergyOfMVC.hxx>
#include <FairCurve_MinimalVariation.hxx>
#include <FairCurve_Newton.hxx>

// template related includes


// user-defined pre
#include "OCP_specific.inc"

// user-defined inclusion per module

// Module definiiton
void register_FairCurve(py::module &main_module) {


py::module m = static_cast<py::module>(main_module.attr("FairCurve"));
py::object klass;

//Python trampoline classes
    class Py_FairCurve_DistributionOfEnergy : public FairCurve_DistributionOfEnergy{
    public:
        using FairCurve_DistributionOfEnergy::FairCurve_DistributionOfEnergy;


        // public pure virtual

        Standard_Boolean Value( const math_VectorBase<double> & X,math_VectorBase<double> & F) override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,math_FunctionSet,Value,X,F) };

        // protected pure virtual


        // private pure virtual

    };
    class Py_FairCurve_Energy : public FairCurve_Energy{
    public:
        using FairCurve_Energy::FairCurve_Energy;


        // public pure virtual


        // protected pure virtual
        Standard_Boolean Compute(const Standard_Integer DerivativeOrder,math_VectorBase<double> & Result) override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,FairCurve_Energy,Compute,DerivativeOrder,Result) };


        // private pure virtual

    };

// classes

    // Class FairCurve_Batten from ./opencascade/FairCurve_Batten.hxx
    klass = m.attr("FairCurve_Batten");


    // nested enums

    static_cast<py::class_<FairCurve_Batten , shared_ptr<FairCurve_Batten>  >>(klass)
    // constructors
        .def(py::init< const gp_Pnt2d &,const gp_Pnt2d &,const Standard_Real,const Standard_Real >()  , py::arg("P1"),  py::arg("P2"),  py::arg("Height"),  py::arg("Slope")=static_cast<const Standard_Real>(0) )
    // custom constructors
    // methods
        .def("SetFreeSliding",
             (void (FairCurve_Batten::*)( const Standard_Boolean  ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Boolean  ) >(&FairCurve_Batten::SetFreeSliding),
             R"#(Freesliding is initialized with the default setting false. When Freesliding is set to true and, as a result, sliding is free, the sliding factor is automatically computed to satisfy the equilibrium of the batten.)#"  , py::arg("FreeSliding")
          )
        .def("SetConstraintOrder1",
             (void (FairCurve_Batten::*)( const Standard_Integer  ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Integer  ) >(&FairCurve_Batten::SetConstraintOrder1),
             R"#(Allows you to change the order of the constraint on the first point. ConstraintOrder has the default setting of 1. The following settings are available: - 0-the curve must pass through a point - 1-the curve must pass through a point and have a given tangent - 2-the curve must pass through a point, have a given tangent and a given curvature. The third setting is only valid for FairCurve_MinimalVariation curves. These constraints, though geometric, represent the mechanical constraints due, for example, to the resistance of the material the actual physical batten is made of.)#"  , py::arg("ConstraintOrder")
          )
        .def("SetConstraintOrder2",
             (void (FairCurve_Batten::*)( const Standard_Integer  ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Integer  ) >(&FairCurve_Batten::SetConstraintOrder2),
             R"#(Allows you to change the order of the constraint on the second point. ConstraintOrder is initialized with the default setting of 1. The following settings are available: - 0-the curve must pass through a point - 1-the curve must pass through a point and have a given tangent - 2-the curve must pass through a point, have a given tangent and a given curvature. The third setting is only valid for FairCurve_MinimalVariation curves. These constraints, though geometric, represent the mechanical constraints due, for example, to the resistance of the material the actual physical batten is made of.)#"  , py::arg("ConstraintOrder")
          )
        .def("SetP1",
             (void (FairCurve_Batten::*)( const gp_Pnt2d &  ) ) static_cast<void (FairCurve_Batten::*)( const gp_Pnt2d &  ) >(&FairCurve_Batten::SetP1),
             R"#(Allows you to change the location of the point, P1, and in doing so, modify the curve. Warning This method changes the angle as well as the point. Exceptions NullValue if the distance between P1 and P2 is less than or equal to the tolerance value for distance in Precision::Confusion: P1.IsEqual(P2, Precision::Confusion()). The function gp_Pnt2d::IsEqual tests to see if this is the case.)#"  , py::arg("P1")
          )
        .def("SetP2",
             (void (FairCurve_Batten::*)( const gp_Pnt2d &  ) ) static_cast<void (FairCurve_Batten::*)( const gp_Pnt2d &  ) >(&FairCurve_Batten::SetP2),
             R"#(Allows you to change the location of the point, P1, and in doing so, modify the curve. Warning This method changes the angle as well as the point. Exceptions NullValue if the distance between P1 and P2 is less than or equal to the tolerance value for distance in Precision::Confusion: P1.IsEqual(P2, Precision::Confusion()). The function gp_Pnt2d::IsEqual tests to see if this is the case.)#"  , py::arg("P2")
          )
        .def("SetAngle1",
             (void (FairCurve_Batten::*)( const Standard_Real  ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Real  ) >(&FairCurve_Batten::SetAngle1),
             R"#(Allows you to change the angle Angle1 at the first point, P1. The default setting is 0.)#"  , py::arg("Angle1")
          )
        .def("SetAngle2",
             (void (FairCurve_Batten::*)( const Standard_Real  ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Real  ) >(&FairCurve_Batten::SetAngle2),
             R"#(Allows you to change the angle Angle2 at the second point, P2. The default setting is 0.)#"  , py::arg("Angle2")
          )
        .def("SetHeight",
             (void (FairCurve_Batten::*)( const Standard_Real  ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Real  ) >(&FairCurve_Batten::SetHeight),
             R"#(Allows you to change the height of the deformation. Raises NegativeValue; -- if Height <= 0 if Height <= 0)#"  , py::arg("Height")
          )
        .def("SetSlope",
             (void (FairCurve_Batten::*)( const Standard_Real  ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Real  ) >(&FairCurve_Batten::SetSlope),
             R"#(Allows you to set the slope value, Slope.)#"  , py::arg("Slope")
          )
        .def("SetSlidingFactor",
             (void (FairCurve_Batten::*)( const Standard_Real  ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Real  ) >(&FairCurve_Batten::SetSlidingFactor),
             R"#(Allows you to change the ratio SlidingFactor. This compares the length of the batten and the reference length, which is, in turn, a function of the constraints. This modification has one of the following two effects: - if you increase the value, it inflates the batten - if you decrease the value, it flattens the batten. When sliding is free, the sliding factor is automatically computed to satisfy the equilibrium of the batten. When sliding is imposed, a value is required for the sliding factor. SlidingFactor is initialized with the default setting of 1.)#"  , py::arg("SlidingFactor")
          )
        .def("Compute",
             (Standard_Boolean (FairCurve_Batten::*)( FairCurve_AnalysisCode & ,  const Standard_Integer ,  const Standard_Real  ) ) static_cast<Standard_Boolean (FairCurve_Batten::*)( FairCurve_AnalysisCode & ,  const Standard_Integer ,  const Standard_Real  ) >(&FairCurve_Batten::Compute),
             R"#(Performs the algorithm, using the arguments Code, NbIterations and Tolerance and computes the curve with respect to the constraints. Code will have one of the following values: - OK - NotConverged - InfiniteSliding - NullHeight The parameters Tolerance and NbIterations control how precise the computation is, and how long it will take.)#"  , py::arg("Code"),  py::arg("NbIterations")=static_cast<const Standard_Integer>(50),  py::arg("Tolerance")=static_cast<const Standard_Real>(1.0e-3)
          )
        .def("SlidingOfReference",
             (Standard_Real (FairCurve_Batten::*)() const) static_cast<Standard_Real (FairCurve_Batten::*)() const>(&FairCurve_Batten::SlidingOfReference),
             R"#(Computes the real number value for length Sliding of Reference for new constraints. If you want to give a specific length to a batten curve, use the following syntax: b.SetSlidingFactor(L / b.SlidingOfReference()) where b is the name of the batten curve object.)#" 
          )
        .def("GetFreeSliding",
             (Standard_Boolean (FairCurve_Batten::*)() const) static_cast<Standard_Boolean (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetFreeSliding),
             R"#(Returns the initial free sliding value, false by default. Free sliding is generally more aesthetically pleasing than constrained sliding. However, the computation can fail with values such as angles greater than PI/2. This is because the resulting batten length is theoretically infinite.)#" 
          )
        .def("GetConstraintOrder1",
             (Standard_Integer (FairCurve_Batten::*)() const) static_cast<Standard_Integer (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetConstraintOrder1),
             R"#(Returns the established first constraint order.)#" 
          )
        .def("GetConstraintOrder2",
             (Standard_Integer (FairCurve_Batten::*)() const) static_cast<Standard_Integer (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetConstraintOrder2),
             R"#(Returns the established second constraint order.)#" 
          )
        .def("GetAngle1",
             (Standard_Real (FairCurve_Batten::*)() const) static_cast<Standard_Real (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetAngle1),
             R"#(Returns the established first angle.)#" 
          )
        .def("GetAngle2",
             (Standard_Real (FairCurve_Batten::*)() const) static_cast<Standard_Real (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetAngle2),
             R"#(Returns the established second angle.)#" 
          )
        .def("GetHeight",
             (Standard_Real (FairCurve_Batten::*)() const) static_cast<Standard_Real (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetHeight),
             R"#(Returns the thickness of the lathe.)#" 
          )
        .def("GetSlope",
             (Standard_Real (FairCurve_Batten::*)() const) static_cast<Standard_Real (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetSlope),
             R"#(Returns the established slope value.)#" 
          )
        .def("GetSlidingFactor",
             (Standard_Real (FairCurve_Batten::*)() const) static_cast<Standard_Real (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetSlidingFactor),
             R"#(Returns the initial sliding factor.)#" 
          )
        .def("Curve",
             (opencascade::handle<Geom2d_BSplineCurve> (FairCurve_Batten::*)() const) static_cast<opencascade::handle<Geom2d_BSplineCurve> (FairCurve_Batten::*)() const>(&FairCurve_Batten::Curve),
             R"#(Returns the computed curve a 2d BSpline.)#" 
          )
        .def("Dump",
             (void (FairCurve_Batten::*)( std::ostream &  ) const) static_cast<void (FairCurve_Batten::*)( std::ostream &  ) const>(&FairCurve_Batten::Dump),
             R"#(Prints on the stream o information on the current state of the object.)#"  , py::arg("o")
          )
        .def("SetFreeSliding",
             (void (FairCurve_Batten::*)( const Standard_Boolean  ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Boolean  ) >(&FairCurve_Batten::SetFreeSliding),
             R"#(Freesliding is initialized with the default setting false. When Freesliding is set to true and, as a result, sliding is free, the sliding factor is automatically computed to satisfy the equilibrium of the batten.)#"  , py::arg("FreeSliding")
          )
        .def("SetConstraintOrder1",
             (void (FairCurve_Batten::*)( const Standard_Integer  ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Integer  ) >(&FairCurve_Batten::SetConstraintOrder1),
             R"#(Allows you to change the order of the constraint on the first point. ConstraintOrder has the default setting of 1. The following settings are available: - 0-the curve must pass through a point - 1-the curve must pass through a point and have a given tangent - 2-the curve must pass through a point, have a given tangent and a given curvature. The third setting is only valid for FairCurve_MinimalVariation curves. These constraints, though geometric, represent the mechanical constraints due, for example, to the resistance of the material the actual physical batten is made of.)#"  , py::arg("ConstraintOrder")
          )
        .def("SetConstraintOrder2",
             (void (FairCurve_Batten::*)( const Standard_Integer  ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Integer  ) >(&FairCurve_Batten::SetConstraintOrder2),
             R"#(Allows you to change the order of the constraint on the second point. ConstraintOrder is initialized with the default setting of 1. The following settings are available: - 0-the curve must pass through a point - 1-the curve must pass through a point and have a given tangent - 2-the curve must pass through a point, have a given tangent and a given curvature. The third setting is only valid for FairCurve_MinimalVariation curves. These constraints, though geometric, represent the mechanical constraints due, for example, to the resistance of the material the actual physical batten is made of.)#"  , py::arg("ConstraintOrder")
          )
        .def("SetAngle1",
             (void (FairCurve_Batten::*)( const Standard_Real  ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Real  ) >(&FairCurve_Batten::SetAngle1),
             R"#(Allows you to change the angle Angle1 at the first point, P1. The default setting is 0.)#"  , py::arg("Angle1")
          )
        .def("SetAngle2",
             (void (FairCurve_Batten::*)( const Standard_Real  ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Real  ) >(&FairCurve_Batten::SetAngle2),
             R"#(Allows you to change the angle Angle2 at the second point, P2. The default setting is 0.)#"  , py::arg("Angle2")
          )
        .def("SetHeight",
             (void (FairCurve_Batten::*)( const Standard_Real  ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Real  ) >(&FairCurve_Batten::SetHeight),
             R"#(Allows you to change the height of the deformation. Raises NegativeValue; -- if Height <= 0 if Height <= 0)#"  , py::arg("Height")
          )
        .def("SetSlope",
             (void (FairCurve_Batten::*)( const Standard_Real  ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Real  ) >(&FairCurve_Batten::SetSlope),
             R"#(Allows you to set the slope value, Slope.)#"  , py::arg("Slope")
          )
        .def("SetSlidingFactor",
             (void (FairCurve_Batten::*)( const Standard_Real  ) ) static_cast<void (FairCurve_Batten::*)( const Standard_Real  ) >(&FairCurve_Batten::SetSlidingFactor),
             R"#(Allows you to change the ratio SlidingFactor. This compares the length of the batten and the reference length, which is, in turn, a function of the constraints. This modification has one of the following two effects: - if you increase the value, it inflates the batten - if you decrease the value, it flattens the batten. When sliding is free, the sliding factor is automatically computed to satisfy the equilibrium of the batten. When sliding is imposed, a value is required for the sliding factor. SlidingFactor is initialized with the default setting of 1.)#"  , py::arg("SlidingFactor")
          )
        .def("GetFreeSliding",
             (Standard_Boolean (FairCurve_Batten::*)() const) static_cast<Standard_Boolean (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetFreeSliding),
             R"#(Returns the initial free sliding value, false by default. Free sliding is generally more aesthetically pleasing than constrained sliding. However, the computation can fail with values such as angles greater than PI/2. This is because the resulting batten length is theoretically infinite.)#" 
          )
        .def("GetConstraintOrder1",
             (Standard_Integer (FairCurve_Batten::*)() const) static_cast<Standard_Integer (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetConstraintOrder1),
             R"#(Returns the established first constraint order.)#" 
          )
        .def("GetConstraintOrder2",
             (Standard_Integer (FairCurve_Batten::*)() const) static_cast<Standard_Integer (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetConstraintOrder2),
             R"#(Returns the established second constraint order.)#" 
          )
        .def("GetAngle1",
             (Standard_Real (FairCurve_Batten::*)() const) static_cast<Standard_Real (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetAngle1),
             R"#(Returns the established first angle.)#" 
          )
        .def("GetAngle2",
             (Standard_Real (FairCurve_Batten::*)() const) static_cast<Standard_Real (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetAngle2),
             R"#(Returns the established second angle.)#" 
          )
        .def("GetHeight",
             (Standard_Real (FairCurve_Batten::*)() const) static_cast<Standard_Real (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetHeight),
             R"#(Returns the thickness of the lathe.)#" 
          )
        .def("GetSlope",
             (Standard_Real (FairCurve_Batten::*)() const) static_cast<Standard_Real (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetSlope),
             R"#(Returns the established slope value.)#" 
          )
        .def("GetSlidingFactor",
             (Standard_Real (FairCurve_Batten::*)() const) static_cast<Standard_Real (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetSlidingFactor),
             R"#(Returns the initial sliding factor.)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("GetP1",
             (const gp_Pnt2d & (FairCurve_Batten::*)() const) static_cast<const gp_Pnt2d & (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetP1),
             R"#(Returns the established location of the point P1.)#"
             
         )
       .def("GetP2",
             (const gp_Pnt2d & (FairCurve_Batten::*)() const) static_cast<const gp_Pnt2d & (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetP2),
             R"#(Returns the established location of the point P2.)#"
             
         )
       .def("GetP1",
             (const gp_Pnt2d & (FairCurve_Batten::*)() const) static_cast<const gp_Pnt2d & (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetP1),
             R"#(Returns the established location of the point P1.)#"
             
         )
       .def("GetP2",
             (const gp_Pnt2d & (FairCurve_Batten::*)() const) static_cast<const gp_Pnt2d & (FairCurve_Batten::*)() const>(&FairCurve_Batten::GetP2),
             R"#(Returns the established location of the point P2.)#"
             
         )
;

    // Class FairCurve_BattenLaw from ./opencascade/FairCurve_BattenLaw.hxx
    klass = m.attr("FairCurve_BattenLaw");


    // nested enums

    static_cast<py::class_<FairCurve_BattenLaw , shared_ptr<FairCurve_BattenLaw>  , math_Function >>(klass)
    // constructors
        .def(py::init< const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("Heigth"),  py::arg("Slope"),  py::arg("Sliding") )
    // custom constructors
    // methods
        .def("SetSliding",
             (void (FairCurve_BattenLaw::*)( const Standard_Real  ) ) static_cast<void (FairCurve_BattenLaw::*)( const Standard_Real  ) >(&FairCurve_BattenLaw::SetSliding),
             R"#(Change the value of sliding)#"  , py::arg("Sliding")
          )
        .def("SetHeigth",
             (void (FairCurve_BattenLaw::*)( const Standard_Real  ) ) static_cast<void (FairCurve_BattenLaw::*)( const Standard_Real  ) >(&FairCurve_BattenLaw::SetHeigth),
             R"#(Change the value of Heigth at the middle point.)#"  , py::arg("Heigth")
          )
        .def("SetSlope",
             (void (FairCurve_BattenLaw::*)( const Standard_Real  ) ) static_cast<void (FairCurve_BattenLaw::*)( const Standard_Real  ) >(&FairCurve_BattenLaw::SetSlope),
             R"#(Change the value of the geometric slope.)#"  , py::arg("Slope")
          )
        .def("Value",
             (Standard_Boolean (FairCurve_BattenLaw::*)( const Standard_Real ,  Standard_Real &  ) ) static_cast<Standard_Boolean (FairCurve_BattenLaw::*)( const Standard_Real ,  Standard_Real &  ) >(&FairCurve_BattenLaw::Value),
             R"#(computes the value of the heigth for the parameter T on the neutral fibber)#"  , py::arg("T"),  py::arg("THeigth")
          )
        .def("SetSliding",
             (void (FairCurve_BattenLaw::*)( const Standard_Real  ) ) static_cast<void (FairCurve_BattenLaw::*)( const Standard_Real  ) >(&FairCurve_BattenLaw::SetSliding),
             R"#(Change the value of sliding)#"  , py::arg("Sliding")
          )
        .def("SetHeigth",
             (void (FairCurve_BattenLaw::*)( const Standard_Real  ) ) static_cast<void (FairCurve_BattenLaw::*)( const Standard_Real  ) >(&FairCurve_BattenLaw::SetHeigth),
             R"#(Change the value of Heigth at the middle point.)#"  , py::arg("Heigth")
          )
        .def("SetSlope",
             (void (FairCurve_BattenLaw::*)( const Standard_Real  ) ) static_cast<void (FairCurve_BattenLaw::*)( const Standard_Real  ) >(&FairCurve_BattenLaw::SetSlope),
             R"#(Change the value of the geometric slope.)#"  , py::arg("Slope")
          )
        .def("Value",
             (Standard_Boolean (FairCurve_BattenLaw::*)( const Standard_Real ,  Standard_Real &  ) ) static_cast<Standard_Boolean (FairCurve_BattenLaw::*)( const Standard_Real ,  Standard_Real &  ) >(&FairCurve_BattenLaw::Value),
             R"#(computes the value of the heigth for the parameter T on the neutral fibber)#"  , py::arg("T"),  py::arg("THeigth")
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class FairCurve_DistributionOfEnergy from ./opencascade/FairCurve_DistributionOfEnergy.hxx
    klass = m.attr("FairCurve_DistributionOfEnergy");


    // nested enums

    static_cast<py::class_<FairCurve_DistributionOfEnergy , shared_ptr<FairCurve_DistributionOfEnergy> ,Py_FairCurve_DistributionOfEnergy , math_FunctionSet >>(klass)
    // constructors
    // custom constructors
    // methods
        .def("NbVariables",
             (Standard_Integer (FairCurve_DistributionOfEnergy::*)() const) static_cast<Standard_Integer (FairCurve_DistributionOfEnergy::*)() const>(&FairCurve_DistributionOfEnergy::NbVariables),
             R"#(returns the number of variables of the function.)#" 
          )
        .def("NbEquations",
             (Standard_Integer (FairCurve_DistributionOfEnergy::*)() const) static_cast<Standard_Integer (FairCurve_DistributionOfEnergy::*)() const>(&FairCurve_DistributionOfEnergy::NbEquations),
             R"#(returns the number of equations of the function.)#" 
          )
        .def("SetDerivativeOrder",
             (void (FairCurve_DistributionOfEnergy::*)( const Standard_Integer  ) ) static_cast<void (FairCurve_DistributionOfEnergy::*)( const Standard_Integer  ) >(&FairCurve_DistributionOfEnergy::SetDerivativeOrder),
             R"#(None)#"  , py::arg("DerivativeOrder")
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class FairCurve_Energy from ./opencascade/FairCurve_Energy.hxx
    klass = m.attr("FairCurve_Energy");


    // nested enums

    static_cast<py::class_<FairCurve_Energy , shared_ptr<FairCurve_Energy> ,Py_FairCurve_Energy , math_MultipleVarFunctionWithHessian >>(klass)
    // constructors
    // custom constructors
    // methods
        .def("NbVariables",
             (Standard_Integer (FairCurve_Energy::*)() const) static_cast<Standard_Integer (FairCurve_Energy::*)() const>(&FairCurve_Energy::NbVariables),
             R"#(returns the number of variables of the energy.)#" 
          )
        .def("Value",
             (Standard_Boolean (FairCurve_Energy::*)(  const math_VectorBase<double> & ,  Standard_Real &  ) ) static_cast<Standard_Boolean (FairCurve_Energy::*)(  const math_VectorBase<double> & ,  Standard_Real &  ) >(&FairCurve_Energy::Value),
             R"#(computes the values of the Energys E for the variable <X>. Returns True if the computation was done successfully, False otherwise.)#"  , py::arg("X"),  py::arg("E")
          )
        .def("Gradient",
             (Standard_Boolean (FairCurve_Energy::*)(  const math_VectorBase<double> & ,  math_VectorBase<double> &  ) ) static_cast<Standard_Boolean (FairCurve_Energy::*)(  const math_VectorBase<double> & ,  math_VectorBase<double> &  ) >(&FairCurve_Energy::Gradient),
             R"#(computes the gradient <G> of the energys for the variable <X>. Returns True if the computation was done successfully, False otherwise.)#"  , py::arg("X"),  py::arg("G")
          )
        .def("Values",
             (Standard_Boolean (FairCurve_Energy::*)(  const math_VectorBase<double> & ,  Standard_Real & ,  math_VectorBase<double> &  ) ) static_cast<Standard_Boolean (FairCurve_Energy::*)(  const math_VectorBase<double> & ,  Standard_Real & ,  math_VectorBase<double> &  ) >(&FairCurve_Energy::Values),
             R"#(computes the Energy <E> and the gradient <G> of the energy for the variable <X>. Returns True if the computation was done successfully, False otherwise.)#"  , py::arg("X"),  py::arg("E"),  py::arg("G")
          )
        .def("Values",
             (Standard_Boolean (FairCurve_Energy::*)(  const math_VectorBase<double> & ,  Standard_Real & ,  math_VectorBase<double> & ,  math_Matrix &  ) ) static_cast<Standard_Boolean (FairCurve_Energy::*)(  const math_VectorBase<double> & ,  Standard_Real & ,  math_VectorBase<double> & ,  math_Matrix &  ) >(&FairCurve_Energy::Values),
             R"#(computes the Energy <E>, the gradient <G> and the Hessian <H> of the energy for the variable <X>. Returns True if the computation was done successfully, False otherwise.)#"  , py::arg("X"),  py::arg("E"),  py::arg("G"),  py::arg("H")
          )
        .def("Variable",
             (Standard_Boolean (FairCurve_Energy::*)( math_VectorBase<double> &  ) const) static_cast<Standard_Boolean (FairCurve_Energy::*)( math_VectorBase<double> &  ) const>(&FairCurve_Energy::Variable),
             R"#(compute the variables <X> which correspond with the field <MyPoles>)#"  , py::arg("X")
          )
        .def("NbVariables",
             (Standard_Integer (FairCurve_Energy::*)() const) static_cast<Standard_Integer (FairCurve_Energy::*)() const>(&FairCurve_Energy::NbVariables),
             R"#(returns the number of variables of the energy.)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Poles",
             (const opencascade::handle<TColgp_HArray1OfPnt2d> & (FairCurve_Energy::*)() const) static_cast<const opencascade::handle<TColgp_HArray1OfPnt2d> & (FairCurve_Energy::*)() const>(&FairCurve_Energy::Poles),
             R"#(return the poles)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("Poles",
             (const opencascade::handle<TColgp_HArray1OfPnt2d> & (FairCurve_Energy::*)() const) static_cast<const opencascade::handle<TColgp_HArray1OfPnt2d> & (FairCurve_Energy::*)() const>(&FairCurve_Energy::Poles),
             R"#(return the poles)#"
             
             , py::return_value_policy::reference_internal
         )
;

    // Class FairCurve_Newton from ./opencascade/FairCurve_Newton.hxx
    klass = m.attr("FairCurve_Newton");


    // nested enums

    static_cast<py::class_<FairCurve_Newton , shared_ptr<FairCurve_Newton>  , math_NewtonMinimum >>(klass)
    // constructors
        .def(py::init< const math_MultipleVarFunctionWithHessian &,const Standard_Real,const Standard_Real,const Standard_Integer,const Standard_Real,const Standard_Boolean >()  , py::arg("theFunction"),  py::arg("theSpatialTolerance")=static_cast<const Standard_Real>(1.0e-7),  py::arg("theCriteriumTolerance")=static_cast<const Standard_Real>(1.0e-7),  py::arg("theNbIterations")=static_cast<const Standard_Integer>(40),  py::arg("theConvexity")=static_cast<const Standard_Real>(1.0e-6),  py::arg("theWithSingularity")=static_cast<const Standard_Boolean>(Standard_True) )
    // custom constructors
    // methods
        .def("IsConverged",
             (Standard_Boolean (FairCurve_Newton::*)() const) static_cast<Standard_Boolean (FairCurve_Newton::*)() const>(&FairCurve_Newton::IsConverged),
             R"#(This method is called at the end of each iteration to check the convergence : || Xi+1 - Xi || < SpatialTolerance/100 Or || Xi+1 - Xi || < SpatialTolerance and |F(Xi+1) - F(Xi)| < CriteriumTolerance * |F(xi)| It can be redefined in a sub-class to implement a specific test.)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class FairCurve_DistributionOfJerk from ./opencascade/FairCurve_DistributionOfJerk.hxx
    klass = m.attr("FairCurve_DistributionOfJerk");


    // nested enums

    static_cast<py::class_<FairCurve_DistributionOfJerk , shared_ptr<FairCurve_DistributionOfJerk>  , FairCurve_DistributionOfEnergy >>(klass)
    // constructors
        .def(py::init< const Standard_Integer,const opencascade::handle<TColStd_HArray1OfReal> &,const opencascade::handle<TColgp_HArray1OfPnt2d> &,const Standard_Integer,const FairCurve_BattenLaw &,const Standard_Integer >()  , py::arg("BSplOrder"),  py::arg("FlatKnots"),  py::arg("Poles"),  py::arg("DerivativeOrder"),  py::arg("Law"),  py::arg("NbValAux")=static_cast<const Standard_Integer>(0) )
    // custom constructors
    // methods
        .def("Value",
             (Standard_Boolean (FairCurve_DistributionOfJerk::*)(  const math_VectorBase<double> & ,  math_VectorBase<double> &  ) ) static_cast<Standard_Boolean (FairCurve_DistributionOfJerk::*)(  const math_VectorBase<double> & ,  math_VectorBase<double> &  ) >(&FairCurve_DistributionOfJerk::Value),
             R"#(computes the values <F> of the functions for the variable <X>. returns True if the computation was done successfully, False otherwise.)#"  , py::arg("X"),  py::arg("F")
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class FairCurve_DistributionOfSagging from ./opencascade/FairCurve_DistributionOfSagging.hxx
    klass = m.attr("FairCurve_DistributionOfSagging");


    // nested enums

    static_cast<py::class_<FairCurve_DistributionOfSagging , shared_ptr<FairCurve_DistributionOfSagging>  , FairCurve_DistributionOfEnergy >>(klass)
    // constructors
        .def(py::init< const Standard_Integer,const opencascade::handle<TColStd_HArray1OfReal> &,const opencascade::handle<TColgp_HArray1OfPnt2d> &,const Standard_Integer,const FairCurve_BattenLaw &,const Standard_Integer >()  , py::arg("BSplOrder"),  py::arg("FlatKnots"),  py::arg("Poles"),  py::arg("DerivativeOrder"),  py::arg("Law"),  py::arg("NbValAux")=static_cast<const Standard_Integer>(0) )
    // custom constructors
    // methods
        .def("Value",
             (Standard_Boolean (FairCurve_DistributionOfSagging::*)(  const math_VectorBase<double> & ,  math_VectorBase<double> &  ) ) static_cast<Standard_Boolean (FairCurve_DistributionOfSagging::*)(  const math_VectorBase<double> & ,  math_VectorBase<double> &  ) >(&FairCurve_DistributionOfSagging::Value),
             R"#(computes the values <F> of the functions for the variable <X>. returns True if the computation was done successfully, False otherwise.)#"  , py::arg("X"),  py::arg("F")
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class FairCurve_DistributionOfTension from ./opencascade/FairCurve_DistributionOfTension.hxx
    klass = m.attr("FairCurve_DistributionOfTension");


    // nested enums

    static_cast<py::class_<FairCurve_DistributionOfTension , shared_ptr<FairCurve_DistributionOfTension>  , FairCurve_DistributionOfEnergy >>(klass)
    // constructors
        .def(py::init< const Standard_Integer,const opencascade::handle<TColStd_HArray1OfReal> &,const opencascade::handle<TColgp_HArray1OfPnt2d> &,const Standard_Integer,const Standard_Real,const FairCurve_BattenLaw &,const Standard_Integer,const Standard_Boolean >()  , py::arg("BSplOrder"),  py::arg("FlatKnots"),  py::arg("Poles"),  py::arg("DerivativeOrder"),  py::arg("LengthSliding"),  py::arg("Law"),  py::arg("NbValAux")=static_cast<const Standard_Integer>(0),  py::arg("Uniform")=static_cast<const Standard_Boolean>(Standard_False) )
    // custom constructors
    // methods
        .def("SetLengthSliding",
             (void (FairCurve_DistributionOfTension::*)( const Standard_Real  ) ) static_cast<void (FairCurve_DistributionOfTension::*)( const Standard_Real  ) >(&FairCurve_DistributionOfTension::SetLengthSliding),
             R"#(change the length sliding)#"  , py::arg("LengthSliding")
          )
        .def("Value",
             (Standard_Boolean (FairCurve_DistributionOfTension::*)(  const math_VectorBase<double> & ,  math_VectorBase<double> &  ) ) static_cast<Standard_Boolean (FairCurve_DistributionOfTension::*)(  const math_VectorBase<double> & ,  math_VectorBase<double> &  ) >(&FairCurve_DistributionOfTension::Value),
             R"#(computes the values <F> of the functions for the variable <X>. returns True if the computation was done successfully, False otherwise.)#"  , py::arg("X"),  py::arg("F")
          )
        .def("SetLengthSliding",
             (void (FairCurve_DistributionOfTension::*)( const Standard_Real  ) ) static_cast<void (FairCurve_DistributionOfTension::*)( const Standard_Real  ) >(&FairCurve_DistributionOfTension::SetLengthSliding),
             R"#(change the length sliding)#"  , py::arg("LengthSliding")
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class FairCurve_EnergyOfBatten from ./opencascade/FairCurve_EnergyOfBatten.hxx
    klass = m.attr("FairCurve_EnergyOfBatten");


    // nested enums

    static_cast<py::class_<FairCurve_EnergyOfBatten , shared_ptr<FairCurve_EnergyOfBatten>  , FairCurve_Energy >>(klass)
    // constructors
        .def(py::init< const Standard_Integer,const opencascade::handle<TColStd_HArray1OfReal> &,const opencascade::handle<TColgp_HArray1OfPnt2d> &,const Standard_Integer,const Standard_Integer,const FairCurve_BattenLaw &,const Standard_Real,const Standard_Boolean,const Standard_Real,const Standard_Real >()  , py::arg("BSplOrder"),  py::arg("FlatKnots"),  py::arg("Poles"),  py::arg("ContrOrder1"),  py::arg("ContrOrder2"),  py::arg("Law"),  py::arg("LengthSliding"),  py::arg("FreeSliding")=static_cast<const Standard_Boolean>(Standard_True),  py::arg("Angle1")=static_cast<const Standard_Real>(0),  py::arg("Angle2")=static_cast<const Standard_Real>(0) )
    // custom constructors
    // methods
        .def("LengthSliding",
             (Standard_Real (FairCurve_EnergyOfBatten::*)() const) static_cast<Standard_Real (FairCurve_EnergyOfBatten::*)() const>(&FairCurve_EnergyOfBatten::LengthSliding),
             R"#(return the lengthSliding = P1P2 + Sliding)#" 
          )
        .def("Status",
             (FairCurve_AnalysisCode (FairCurve_EnergyOfBatten::*)() const) static_cast<FairCurve_AnalysisCode (FairCurve_EnergyOfBatten::*)() const>(&FairCurve_EnergyOfBatten::Status),
             R"#(return the status)#" 
          )
        .def("Variable",
             (Standard_Boolean (FairCurve_EnergyOfBatten::*)( math_VectorBase<double> &  ) const) static_cast<Standard_Boolean (FairCurve_EnergyOfBatten::*)( math_VectorBase<double> &  ) const>(&FairCurve_EnergyOfBatten::Variable),
             R"#(compute the variables <X> which correspond with the field <MyPoles>)#"  , py::arg("X")
          )
        .def("LengthSliding",
             (Standard_Real (FairCurve_EnergyOfBatten::*)() const) static_cast<Standard_Real (FairCurve_EnergyOfBatten::*)() const>(&FairCurve_EnergyOfBatten::LengthSliding),
             R"#(return the lengthSliding = P1P2 + Sliding)#" 
          )
        .def("Status",
             (FairCurve_AnalysisCode (FairCurve_EnergyOfBatten::*)() const) static_cast<FairCurve_AnalysisCode (FairCurve_EnergyOfBatten::*)() const>(&FairCurve_EnergyOfBatten::Status),
             R"#(return the status)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class FairCurve_EnergyOfMVC from ./opencascade/FairCurve_EnergyOfMVC.hxx
    klass = m.attr("FairCurve_EnergyOfMVC");


    // nested enums

    static_cast<py::class_<FairCurve_EnergyOfMVC , shared_ptr<FairCurve_EnergyOfMVC>  , FairCurve_Energy >>(klass)
    // constructors
        .def(py::init< const Standard_Integer,const opencascade::handle<TColStd_HArray1OfReal> &,const opencascade::handle<TColgp_HArray1OfPnt2d> &,const Standard_Integer,const Standard_Integer,const FairCurve_BattenLaw &,const Standard_Real,const Standard_Real,const Standard_Boolean,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("BSplOrder"),  py::arg("FlatKnots"),  py::arg("Poles"),  py::arg("ContrOrder1"),  py::arg("ContrOrder2"),  py::arg("Law"),  py::arg("PhysicalRatio"),  py::arg("LengthSliding"),  py::arg("FreeSliding")=static_cast<const Standard_Boolean>(Standard_True),  py::arg("Angle1")=static_cast<const Standard_Real>(0),  py::arg("Angle2")=static_cast<const Standard_Real>(0),  py::arg("Curvature1")=static_cast<const Standard_Real>(0),  py::arg("Curvature2")=static_cast<const Standard_Real>(0) )
    // custom constructors
    // methods
        .def("LengthSliding",
             (Standard_Real (FairCurve_EnergyOfMVC::*)() const) static_cast<Standard_Real (FairCurve_EnergyOfMVC::*)() const>(&FairCurve_EnergyOfMVC::LengthSliding),
             R"#(return the lengthSliding = P1P2 + Sliding)#" 
          )
        .def("Status",
             (FairCurve_AnalysisCode (FairCurve_EnergyOfMVC::*)() const) static_cast<FairCurve_AnalysisCode (FairCurve_EnergyOfMVC::*)() const>(&FairCurve_EnergyOfMVC::Status),
             R"#(return the status)#" 
          )
        .def("Variable",
             (Standard_Boolean (FairCurve_EnergyOfMVC::*)( math_VectorBase<double> &  ) const) static_cast<Standard_Boolean (FairCurve_EnergyOfMVC::*)( math_VectorBase<double> &  ) const>(&FairCurve_EnergyOfMVC::Variable),
             R"#(compute the variables <X> which correspond with the field <MyPoles>)#"  , py::arg("X")
          )
        .def("LengthSliding",
             (Standard_Real (FairCurve_EnergyOfMVC::*)() const) static_cast<Standard_Real (FairCurve_EnergyOfMVC::*)() const>(&FairCurve_EnergyOfMVC::LengthSliding),
             R"#(return the lengthSliding = P1P2 + Sliding)#" 
          )
        .def("Status",
             (FairCurve_AnalysisCode (FairCurve_EnergyOfMVC::*)() const) static_cast<FairCurve_AnalysisCode (FairCurve_EnergyOfMVC::*)() const>(&FairCurve_EnergyOfMVC::Status),
             R"#(return the status)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class FairCurve_MinimalVariation from ./opencascade/FairCurve_MinimalVariation.hxx
    klass = m.attr("FairCurve_MinimalVariation");


    // nested enums

    static_cast<py::class_<FairCurve_MinimalVariation , shared_ptr<FairCurve_MinimalVariation>  , FairCurve_Batten >>(klass)
    // constructors
        .def(py::init< const gp_Pnt2d &,const gp_Pnt2d &,const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("P1"),  py::arg("P2"),  py::arg("Heigth"),  py::arg("Slope")=static_cast<const Standard_Real>(0),  py::arg("PhysicalRatio")=static_cast<const Standard_Real>(0) )
    // custom constructors
    // methods
        .def("SetCurvature1",
             (void (FairCurve_MinimalVariation::*)( const Standard_Real  ) ) static_cast<void (FairCurve_MinimalVariation::*)( const Standard_Real  ) >(&FairCurve_MinimalVariation::SetCurvature1),
             R"#(Allows you to set a new constraint on curvature at the first point.)#"  , py::arg("Curvature")
          )
        .def("SetCurvature2",
             (void (FairCurve_MinimalVariation::*)( const Standard_Real  ) ) static_cast<void (FairCurve_MinimalVariation::*)( const Standard_Real  ) >(&FairCurve_MinimalVariation::SetCurvature2),
             R"#(Allows you to set a new constraint on curvature at the second point.)#"  , py::arg("Curvature")
          )
        .def("SetPhysicalRatio",
             (void (FairCurve_MinimalVariation::*)( const Standard_Real  ) ) static_cast<void (FairCurve_MinimalVariation::*)( const Standard_Real  ) >(&FairCurve_MinimalVariation::SetPhysicalRatio),
             R"#(Allows you to set the physical ratio Ratio. The kinds of energy which you can specify include: 0 is only "Jerk" Energy 1 is only "Sagging" Energy like batten Warning: if Ratio is 1 it is impossible to impose curvature constraints. Raises DomainError if Ratio < 0 or Ratio > 1)#"  , py::arg("Ratio")
          )
        .def("Compute",
             (Standard_Boolean (FairCurve_MinimalVariation::*)( FairCurve_AnalysisCode & ,  const Standard_Integer ,  const Standard_Real  ) ) static_cast<Standard_Boolean (FairCurve_MinimalVariation::*)( FairCurve_AnalysisCode & ,  const Standard_Integer ,  const Standard_Real  ) >(&FairCurve_MinimalVariation::Compute),
             R"#(Computes the curve with respect to the constraints, NbIterations and Tolerance. The tolerance setting allows you to control the precision of computation, and the maximum number of iterations allows you to set a limit on computation time.)#"  , py::arg("ACode"),  py::arg("NbIterations")=static_cast<const Standard_Integer>(50),  py::arg("Tolerance")=static_cast<const Standard_Real>(1.0e-3)
          )
        .def("GetCurvature1",
             (Standard_Real (FairCurve_MinimalVariation::*)() const) static_cast<Standard_Real (FairCurve_MinimalVariation::*)() const>(&FairCurve_MinimalVariation::GetCurvature1),
             R"#(Returns the first established curvature.)#" 
          )
        .def("GetCurvature2",
             (Standard_Real (FairCurve_MinimalVariation::*)() const) static_cast<Standard_Real (FairCurve_MinimalVariation::*)() const>(&FairCurve_MinimalVariation::GetCurvature2),
             R"#(Returns the second established curvature.)#" 
          )
        .def("GetPhysicalRatio",
             (Standard_Real (FairCurve_MinimalVariation::*)() const) static_cast<Standard_Real (FairCurve_MinimalVariation::*)() const>(&FairCurve_MinimalVariation::GetPhysicalRatio),
             R"#(Returns the physical ratio, or kind of energy.)#" 
          )
        .def("Dump",
             (void (FairCurve_MinimalVariation::*)( std::ostream &  ) const) static_cast<void (FairCurve_MinimalVariation::*)( std::ostream &  ) const>(&FairCurve_MinimalVariation::Dump),
             R"#(Prints on the stream o information on the current state of the object. Is used to redefine the operator <<.)#"  , py::arg("o")
          )
        .def("SetCurvature1",
             (void (FairCurve_MinimalVariation::*)( const Standard_Real  ) ) static_cast<void (FairCurve_MinimalVariation::*)( const Standard_Real  ) >(&FairCurve_MinimalVariation::SetCurvature1),
             R"#(Allows you to set a new constraint on curvature at the first point.)#"  , py::arg("Curvature")
          )
        .def("SetCurvature2",
             (void (FairCurve_MinimalVariation::*)( const Standard_Real  ) ) static_cast<void (FairCurve_MinimalVariation::*)( const Standard_Real  ) >(&FairCurve_MinimalVariation::SetCurvature2),
             R"#(Allows you to set a new constraint on curvature at the second point.)#"  , py::arg("Curvature")
          )
        .def("SetPhysicalRatio",
             (void (FairCurve_MinimalVariation::*)( const Standard_Real  ) ) static_cast<void (FairCurve_MinimalVariation::*)( const Standard_Real  ) >(&FairCurve_MinimalVariation::SetPhysicalRatio),
             R"#(Allows you to set the physical ratio Ratio. The kinds of energy which you can specify include: 0 is only "Jerk" Energy 1 is only "Sagging" Energy like batten Warning: if Ratio is 1 it is impossible to impose curvature constraints. Raises DomainError if Ratio < 0 or Ratio > 1)#"  , py::arg("Ratio")
          )
        .def("GetCurvature1",
             (Standard_Real (FairCurve_MinimalVariation::*)() const) static_cast<Standard_Real (FairCurve_MinimalVariation::*)() const>(&FairCurve_MinimalVariation::GetCurvature1),
             R"#(Returns the first established curvature.)#" 
          )
        .def("GetCurvature2",
             (Standard_Real (FairCurve_MinimalVariation::*)() const) static_cast<Standard_Real (FairCurve_MinimalVariation::*)() const>(&FairCurve_MinimalVariation::GetCurvature2),
             R"#(Returns the second established curvature.)#" 
          )
        .def("GetPhysicalRatio",
             (Standard_Real (FairCurve_MinimalVariation::*)() const) static_cast<Standard_Real (FairCurve_MinimalVariation::*)() const>(&FairCurve_MinimalVariation::GetPhysicalRatio),
             R"#(Returns the physical ratio, or kind of energy.)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

// functions
// ./opencascade/FairCurve_AnalysisCode.hxx
// ./opencascade/FairCurve_Batten.hxx
// ./opencascade/FairCurve_BattenLaw.hxx
// ./opencascade/FairCurve_DistributionOfEnergy.hxx
// ./opencascade/FairCurve_DistributionOfJerk.hxx
// ./opencascade/FairCurve_DistributionOfSagging.hxx
// ./opencascade/FairCurve_DistributionOfTension.hxx
// ./opencascade/FairCurve_Energy.hxx
// ./opencascade/FairCurve_EnergyOfBatten.hxx
// ./opencascade/FairCurve_EnergyOfMVC.hxx
// ./opencascade/FairCurve_MinimalVariation.hxx
// ./opencascade/FairCurve_Newton.hxx

// Additional functions

// operators

// register typdefs


// exceptions

// user-defined post-inclusion per module in the body

};

// user-defined post-inclusion per module

// user-defined post