File: Geom.cpp

package info (click to toggle)
python-ocp 7.8.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 64,720 kB
  • sloc: cpp: 362,337; pascal: 33; python: 23; makefile: 4
file content (5929 lines) | stat: -rw-r--r-- 496,883 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929

// std lib related includes
#include <tuple>

// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

namespace py = pybind11;

// Standard Handle
#include <Standard_Handle.hxx>


// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Ax2.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Circ.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Cone.hxx>
#include <gp_GTrsf2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Trsf.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Cylinder.hxx>
#include <gp_GTrsf2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Elips.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt.hxx>
#include <gp_Ax1.hxx>
#include <gp_Ax2.hxx>
#include <gp_Vec.hxx>
#include <gp_Trsf.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Hypr.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Lin.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <gp_GTrsf2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Parab.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pln.hxx>
#include <gp_GTrsf2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <gp_Trsf.hxx>
#include <gp_GTrsf2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Sphere.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Trsf.hxx>
#include <gp_GTrsf2d.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_GTrsf2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_GTrsf2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Torus.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <gp_Trsf.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>

// module includes
#include <Geom_Axis1Placement.hxx>
#include <Geom_Axis2Placement.hxx>
#include <Geom_AxisPlacement.hxx>
#include <Geom_BezierCurve.hxx>
#include <Geom_BezierSurface.hxx>
#include <Geom_BoundedCurve.hxx>
#include <Geom_BoundedSurface.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Geom_CartesianPoint.hxx>
#include <Geom_Circle.hxx>
#include <Geom_Conic.hxx>
#include <Geom_ConicalSurface.hxx>
#include <Geom_Curve.hxx>
#include <Geom_CylindricalSurface.hxx>
#include <Geom_Direction.hxx>
#include <Geom_ElementarySurface.hxx>
#include <Geom_Ellipse.hxx>
#include <Geom_Geometry.hxx>
#include <Geom_HSequenceOfBSplineSurface.hxx>
#include <Geom_Hyperbola.hxx>
#include <Geom_Line.hxx>
#include <Geom_OffsetCurve.hxx>
#include <Geom_OffsetSurface.hxx>
#include <Geom_OsculatingSurface.hxx>
#include <Geom_Parabola.hxx>
#include <Geom_Plane.hxx>
#include <Geom_Point.hxx>
#include <Geom_RectangularTrimmedSurface.hxx>
#include <Geom_SequenceOfBSplineSurface.hxx>
#include <Geom_SphericalSurface.hxx>
#include <Geom_Surface.hxx>
#include <Geom_SurfaceOfLinearExtrusion.hxx>
#include <Geom_SurfaceOfRevolution.hxx>
#include <Geom_SweptSurface.hxx>
#include <Geom_ToroidalSurface.hxx>
#include <Geom_Transformation.hxx>
#include <Geom_TrimmedCurve.hxx>
#include <Geom_UndefinedDerivative.hxx>
#include <Geom_UndefinedValue.hxx>
#include <Geom_Vector.hxx>
#include <Geom_VectorWithMagnitude.hxx>

// template related includes

// ./opencascade/Geom_SequenceOfBSplineSurface.hxx
#include "NCollection_tmpl.hxx"


// user-defined pre
#include "OCP_specific.inc"

// user-defined inclusion per module

// Module definiiton
void register_Geom(py::module &main_module) {


py::module m = static_cast<py::module>(main_module.attr("Geom"));
py::object klass;

//Python trampoline classes
    class Py_Geom_Geometry : public Geom_Geometry{
    public:
        using Geom_Geometry::Geom_Geometry;


        // public pure virtual
        void Transform(const gp_Trsf & T) override { PYBIND11_OVERLOAD_PURE(void,Geom_Geometry,Transform,T) };
        opencascade::handle<Geom_Geometry> Copy() const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Geometry>,Geom_Geometry,Copy,) };


        // protected pure virtual


        // private pure virtual

    };
    class Py_Geom_AxisPlacement : public Geom_AxisPlacement{
    public:
        using Geom_AxisPlacement::Geom_AxisPlacement;


        // public pure virtual
        void SetDirection(const gp_Dir & V) override { PYBIND11_OVERLOAD_PURE(void,Geom_AxisPlacement,SetDirection,V) };

        void Transform(const gp_Trsf & T) override { PYBIND11_OVERLOAD_PURE(void,Geom_Geometry,Transform,T) };
        opencascade::handle<Geom_Geometry> Copy() const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Geometry>,Geom_Geometry,Copy,) };

        // protected pure virtual


        // private pure virtual

    };
    class Py_Geom_Curve : public Geom_Curve{
    public:
        using Geom_Curve::Geom_Curve;


        // public pure virtual
        void Reverse() override { PYBIND11_OVERLOAD_PURE(void,Geom_Curve,Reverse,) };
        Standard_Real ReversedParameter(const Standard_Real U) const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Curve,ReversedParameter,U) };
        Standard_Real FirstParameter() const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Curve,FirstParameter,) };
        Standard_Real LastParameter() const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Curve,LastParameter,) };
        Standard_Boolean IsClosed() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Curve,IsClosed,) };
        Standard_Boolean IsPeriodic() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Curve,IsPeriodic,) };
        GeomAbs_Shape Continuity() const  override { PYBIND11_OVERLOAD_PURE(GeomAbs_Shape,Geom_Curve,Continuity,) };
        Standard_Boolean IsCN(const Standard_Integer N) const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Curve,IsCN,N) };
        void D0(const Standard_Real U,gp_Pnt & P) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Curve,D0,U,P) };
        void D1(const Standard_Real U,gp_Pnt & P,gp_Vec & V1) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Curve,D1,U,P,V1) };
        void D2(const Standard_Real U,gp_Pnt & P,gp_Vec & V1,gp_Vec & V2) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Curve,D2,U,P,V1,V2) };
        void D3(const Standard_Real U,gp_Pnt & P,gp_Vec & V1,gp_Vec & V2,gp_Vec & V3) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Curve,D3,U,P,V1,V2,V3) };
        gp_Vec DN(const Standard_Real U,const Standard_Integer N) const  override { PYBIND11_OVERLOAD_PURE(gp_Vec,Geom_Curve,DN,U,N) };

        void Transform(const gp_Trsf & T) override { PYBIND11_OVERLOAD_PURE(void,Geom_Geometry,Transform,T) };
        opencascade::handle<Geom_Geometry> Copy() const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Geometry>,Geom_Geometry,Copy,) };

        // protected pure virtual


        // private pure virtual

    };
    class Py_Geom_Point : public Geom_Point{
    public:
        using Geom_Point::Geom_Point;


        // public pure virtual
        gp_Pnt Pnt() const  override { PYBIND11_OVERLOAD_PURE(gp_Pnt,Geom_Point,Pnt,) };
        Standard_Real X() const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Point,X,) };
        Standard_Real Y() const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Point,Y,) };
        Standard_Real Z() const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Point,Z,) };
        void Coord(Standard_Real & X,Standard_Real & Y,Standard_Real & Z) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Point,Coord,X,Y,Z) };

        void Transform(const gp_Trsf & T) override { PYBIND11_OVERLOAD_PURE(void,Geom_Geometry,Transform,T) };
        opencascade::handle<Geom_Geometry> Copy() const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Geometry>,Geom_Geometry,Copy,) };

        // protected pure virtual


        // private pure virtual

    };
    class Py_Geom_Surface : public Geom_Surface{
    public:
        using Geom_Surface::Geom_Surface;


        // public pure virtual
        void UReverse() override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,UReverse,) };
        Standard_Real UReversedParameter(const Standard_Real U) const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Surface,UReversedParameter,U) };
        void VReverse() override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,VReverse,) };
        Standard_Real VReversedParameter(const Standard_Real V) const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Surface,VReversedParameter,V) };
        Standard_Boolean IsUClosed() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsUClosed,) };
        Standard_Boolean IsVClosed() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsVClosed,) };
        Standard_Boolean IsUPeriodic() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsUPeriodic,) };
        Standard_Boolean IsVPeriodic() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsVPeriodic,) };
        opencascade::handle<Geom_Curve> UIso(const Standard_Real U) const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Curve>,Geom_Surface,UIso,U) };
        opencascade::handle<Geom_Curve> VIso(const Standard_Real V) const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Curve>,Geom_Surface,VIso,V) };
        GeomAbs_Shape Continuity() const  override { PYBIND11_OVERLOAD_PURE(GeomAbs_Shape,Geom_Surface,Continuity,) };
        Standard_Boolean IsCNu(const Standard_Integer N) const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsCNu,N) };
        Standard_Boolean IsCNv(const Standard_Integer N) const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsCNv,N) };
        void D0(const Standard_Real U,const Standard_Real V,gp_Pnt & P) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D0,U,V,P) };
        void D1(const Standard_Real U,const Standard_Real V,gp_Pnt & P,gp_Vec & D1U,gp_Vec & D1V) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D1,U,V,P,D1U,D1V) };
        void D2(const Standard_Real U,const Standard_Real V,gp_Pnt & P,gp_Vec & D1U,gp_Vec & D1V,gp_Vec & D2U,gp_Vec & D2V,gp_Vec & D2UV) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D2,U,V,P,D1U,D1V,D2U,D2V,D2UV) };
        void D3(const Standard_Real U,const Standard_Real V,gp_Pnt & P,gp_Vec & D1U,gp_Vec & D1V,gp_Vec & D2U,gp_Vec & D2V,gp_Vec & D2UV,gp_Vec & D3U,gp_Vec & D3V,gp_Vec & D3UUV,gp_Vec & D3UVV) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D3,U,V,P,D1U,D1V,D2U,D2V,D2UV,D3U,D3V,D3UUV,D3UVV) };
        gp_Vec DN(const Standard_Real U,const Standard_Real V,const Standard_Integer Nu,const Standard_Integer Nv) const  override { PYBIND11_OVERLOAD_PURE(gp_Vec,Geom_Surface,DN,U,V,Nu,Nv) };
        void Bounds(Standard_Real & U1,Standard_Real & U2,Standard_Real & V1,Standard_Real & V2) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,Bounds,U1,U2,V1,V2) };

        void Transform(const gp_Trsf & T) override { PYBIND11_OVERLOAD_PURE(void,Geom_Geometry,Transform,T) };
        opencascade::handle<Geom_Geometry> Copy() const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Geometry>,Geom_Geometry,Copy,) };

        // protected pure virtual


        // private pure virtual

    };
    class Py_Geom_Vector : public Geom_Vector{
    public:
        using Geom_Vector::Geom_Vector;


        // public pure virtual
        Standard_Real Magnitude() const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Vector,Magnitude,) };
        Standard_Real SquareMagnitude() const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Vector,SquareMagnitude,) };
        void Cross(const opencascade::handle<Geom_Vector> & Other) override { PYBIND11_OVERLOAD_PURE(void,Geom_Vector,Cross,Other) };
        opencascade::handle<Geom_Vector> Crossed(const opencascade::handle<Geom_Vector> & Other) const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Vector>,Geom_Vector,Crossed,Other) };
        void CrossCross(const opencascade::handle<Geom_Vector> & V1,const opencascade::handle<Geom_Vector> & V2) override { PYBIND11_OVERLOAD_PURE(void,Geom_Vector,CrossCross,V1,V2) };
        opencascade::handle<Geom_Vector> CrossCrossed(const opencascade::handle<Geom_Vector> & V1,const opencascade::handle<Geom_Vector> & V2) const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Vector>,Geom_Vector,CrossCrossed,V1,V2) };

        void Transform(const gp_Trsf & T) override { PYBIND11_OVERLOAD_PURE(void,Geom_Geometry,Transform,T) };
        opencascade::handle<Geom_Geometry> Copy() const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Geometry>,Geom_Geometry,Copy,) };

        // protected pure virtual


        // private pure virtual

    };
    class Py_Geom_BoundedCurve : public Geom_BoundedCurve{
    public:
        using Geom_BoundedCurve::Geom_BoundedCurve;


        // public pure virtual
        gp_Pnt EndPoint() const  override { PYBIND11_OVERLOAD_PURE(gp_Pnt,Geom_BoundedCurve,EndPoint,) };
        gp_Pnt StartPoint() const  override { PYBIND11_OVERLOAD_PURE(gp_Pnt,Geom_BoundedCurve,StartPoint,) };

        void Reverse() override { PYBIND11_OVERLOAD_PURE(void,Geom_Curve,Reverse,) };
        Standard_Real ReversedParameter(const Standard_Real U) const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Curve,ReversedParameter,U) };
        Standard_Real FirstParameter() const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Curve,FirstParameter,) };
        Standard_Real LastParameter() const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Curve,LastParameter,) };
        Standard_Boolean IsClosed() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Curve,IsClosed,) };
        Standard_Boolean IsPeriodic() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Curve,IsPeriodic,) };
        GeomAbs_Shape Continuity() const  override { PYBIND11_OVERLOAD_PURE(GeomAbs_Shape,Geom_Curve,Continuity,) };
        Standard_Boolean IsCN(const Standard_Integer N) const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Curve,IsCN,N) };
        void D0(const Standard_Real U,gp_Pnt & P) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Curve,D0,U,P) };
        void D1(const Standard_Real U,gp_Pnt & P,gp_Vec & V1) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Curve,D1,U,P,V1) };
        void D2(const Standard_Real U,gp_Pnt & P,gp_Vec & V1,gp_Vec & V2) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Curve,D2,U,P,V1,V2) };
        void D3(const Standard_Real U,gp_Pnt & P,gp_Vec & V1,gp_Vec & V2,gp_Vec & V3) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Curve,D3,U,P,V1,V2,V3) };
        gp_Vec DN(const Standard_Real U,const Standard_Integer N) const  override { PYBIND11_OVERLOAD_PURE(gp_Vec,Geom_Curve,DN,U,N) };
        void Transform(const gp_Trsf & T) override { PYBIND11_OVERLOAD_PURE(void,Geom_Geometry,Transform,T) };
        opencascade::handle<Geom_Geometry> Copy() const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Geometry>,Geom_Geometry,Copy,) };

        // protected pure virtual


        // private pure virtual

    };
    class Py_Geom_BoundedSurface : public Geom_BoundedSurface{
    public:
        using Geom_BoundedSurface::Geom_BoundedSurface;


        // public pure virtual

        void UReverse() override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,UReverse,) };
        Standard_Real UReversedParameter(const Standard_Real U) const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Surface,UReversedParameter,U) };
        void VReverse() override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,VReverse,) };
        Standard_Real VReversedParameter(const Standard_Real V) const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Surface,VReversedParameter,V) };
        Standard_Boolean IsUClosed() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsUClosed,) };
        Standard_Boolean IsVClosed() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsVClosed,) };
        Standard_Boolean IsUPeriodic() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsUPeriodic,) };
        Standard_Boolean IsVPeriodic() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsVPeriodic,) };
        opencascade::handle<Geom_Curve> UIso(const Standard_Real U) const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Curve>,Geom_Surface,UIso,U) };
        opencascade::handle<Geom_Curve> VIso(const Standard_Real V) const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Curve>,Geom_Surface,VIso,V) };
        GeomAbs_Shape Continuity() const  override { PYBIND11_OVERLOAD_PURE(GeomAbs_Shape,Geom_Surface,Continuity,) };
        Standard_Boolean IsCNu(const Standard_Integer N) const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsCNu,N) };
        Standard_Boolean IsCNv(const Standard_Integer N) const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsCNv,N) };
        void D0(const Standard_Real U,const Standard_Real V,gp_Pnt & P) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D0,U,V,P) };
        void D1(const Standard_Real U,const Standard_Real V,gp_Pnt & P,gp_Vec & D1U,gp_Vec & D1V) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D1,U,V,P,D1U,D1V) };
        void D2(const Standard_Real U,const Standard_Real V,gp_Pnt & P,gp_Vec & D1U,gp_Vec & D1V,gp_Vec & D2U,gp_Vec & D2V,gp_Vec & D2UV) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D2,U,V,P,D1U,D1V,D2U,D2V,D2UV) };
        void D3(const Standard_Real U,const Standard_Real V,gp_Pnt & P,gp_Vec & D1U,gp_Vec & D1V,gp_Vec & D2U,gp_Vec & D2V,gp_Vec & D2UV,gp_Vec & D3U,gp_Vec & D3V,gp_Vec & D3UUV,gp_Vec & D3UVV) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D3,U,V,P,D1U,D1V,D2U,D2V,D2UV,D3U,D3V,D3UUV,D3UVV) };
        gp_Vec DN(const Standard_Real U,const Standard_Real V,const Standard_Integer Nu,const Standard_Integer Nv) const  override { PYBIND11_OVERLOAD_PURE(gp_Vec,Geom_Surface,DN,U,V,Nu,Nv) };
        void Transform(const gp_Trsf & T) override { PYBIND11_OVERLOAD_PURE(void,Geom_Geometry,Transform,T) };
        opencascade::handle<Geom_Geometry> Copy() const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Geometry>,Geom_Geometry,Copy,) };

        // protected pure virtual


        // private pure virtual

    };
    class Py_Geom_Conic : public Geom_Conic{
    public:
        using Geom_Conic::Geom_Conic;


        // public pure virtual
        Standard_Real Eccentricity() const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Conic,Eccentricity,) };
        Standard_Real ReversedParameter(const Standard_Real U) const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Conic,ReversedParameter,U) };

        Standard_Real FirstParameter() const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Curve,FirstParameter,) };
        Standard_Real LastParameter() const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Curve,LastParameter,) };
        Standard_Boolean IsClosed() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Curve,IsClosed,) };
        Standard_Boolean IsPeriodic() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Curve,IsPeriodic,) };
        void D0(const Standard_Real U,gp_Pnt & P) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Curve,D0,U,P) };
        void D1(const Standard_Real U,gp_Pnt & P,gp_Vec & V1) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Curve,D1,U,P,V1) };
        void D2(const Standard_Real U,gp_Pnt & P,gp_Vec & V1,gp_Vec & V2) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Curve,D2,U,P,V1,V2) };
        void D3(const Standard_Real U,gp_Pnt & P,gp_Vec & V1,gp_Vec & V2,gp_Vec & V3) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Curve,D3,U,P,V1,V2,V3) };
        gp_Vec DN(const Standard_Real U,const Standard_Integer N) const  override { PYBIND11_OVERLOAD_PURE(gp_Vec,Geom_Curve,DN,U,N) };
        void Transform(const gp_Trsf & T) override { PYBIND11_OVERLOAD_PURE(void,Geom_Geometry,Transform,T) };
        opencascade::handle<Geom_Geometry> Copy() const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Geometry>,Geom_Geometry,Copy,) };

        // protected pure virtual


        // private pure virtual

    };
    class Py_Geom_ElementarySurface : public Geom_ElementarySurface{
    public:
        using Geom_ElementarySurface::Geom_ElementarySurface;


        // public pure virtual
        Standard_Real UReversedParameter(const Standard_Real U) const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_ElementarySurface,UReversedParameter,U) };
        Standard_Real VReversedParameter(const Standard_Real V) const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_ElementarySurface,VReversedParameter,V) };

        Standard_Boolean IsUClosed() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsUClosed,) };
        Standard_Boolean IsVClosed() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsVClosed,) };
        Standard_Boolean IsUPeriodic() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsUPeriodic,) };
        Standard_Boolean IsVPeriodic() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsVPeriodic,) };
        opencascade::handle<Geom_Curve> UIso(const Standard_Real U) const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Curve>,Geom_Surface,UIso,U) };
        opencascade::handle<Geom_Curve> VIso(const Standard_Real V) const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Curve>,Geom_Surface,VIso,V) };
        void D0(const Standard_Real U,const Standard_Real V,gp_Pnt & P) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D0,U,V,P) };
        void D1(const Standard_Real U,const Standard_Real V,gp_Pnt & P,gp_Vec & D1U,gp_Vec & D1V) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D1,U,V,P,D1U,D1V) };
        void D2(const Standard_Real U,const Standard_Real V,gp_Pnt & P,gp_Vec & D1U,gp_Vec & D1V,gp_Vec & D2U,gp_Vec & D2V,gp_Vec & D2UV) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D2,U,V,P,D1U,D1V,D2U,D2V,D2UV) };
        void D3(const Standard_Real U,const Standard_Real V,gp_Pnt & P,gp_Vec & D1U,gp_Vec & D1V,gp_Vec & D2U,gp_Vec & D2V,gp_Vec & D2UV,gp_Vec & D3U,gp_Vec & D3V,gp_Vec & D3UUV,gp_Vec & D3UVV) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D3,U,V,P,D1U,D1V,D2U,D2V,D2UV,D3U,D3V,D3UUV,D3UVV) };
        gp_Vec DN(const Standard_Real U,const Standard_Real V,const Standard_Integer Nu,const Standard_Integer Nv) const  override { PYBIND11_OVERLOAD_PURE(gp_Vec,Geom_Surface,DN,U,V,Nu,Nv) };
        void Transform(const gp_Trsf & T) override { PYBIND11_OVERLOAD_PURE(void,Geom_Geometry,Transform,T) };
        opencascade::handle<Geom_Geometry> Copy() const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Geometry>,Geom_Geometry,Copy,) };

        // protected pure virtual


        // private pure virtual

    };
    class Py_Geom_SweptSurface : public Geom_SweptSurface{
    public:
        using Geom_SweptSurface::Geom_SweptSurface;


        // public pure virtual

        void UReverse() override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,UReverse,) };
        Standard_Real UReversedParameter(const Standard_Real U) const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Surface,UReversedParameter,U) };
        void VReverse() override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,VReverse,) };
        Standard_Real VReversedParameter(const Standard_Real V) const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Surface,VReversedParameter,V) };
        Standard_Boolean IsUClosed() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsUClosed,) };
        Standard_Boolean IsVClosed() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsVClosed,) };
        Standard_Boolean IsUPeriodic() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsUPeriodic,) };
        Standard_Boolean IsVPeriodic() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsVPeriodic,) };
        opencascade::handle<Geom_Curve> UIso(const Standard_Real U) const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Curve>,Geom_Surface,UIso,U) };
        opencascade::handle<Geom_Curve> VIso(const Standard_Real V) const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Curve>,Geom_Surface,VIso,V) };
        Standard_Boolean IsCNu(const Standard_Integer N) const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsCNu,N) };
        Standard_Boolean IsCNv(const Standard_Integer N) const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsCNv,N) };
        void D0(const Standard_Real U,const Standard_Real V,gp_Pnt & P) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D0,U,V,P) };
        void D1(const Standard_Real U,const Standard_Real V,gp_Pnt & P,gp_Vec & D1U,gp_Vec & D1V) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D1,U,V,P,D1U,D1V) };
        void D2(const Standard_Real U,const Standard_Real V,gp_Pnt & P,gp_Vec & D1U,gp_Vec & D1V,gp_Vec & D2U,gp_Vec & D2V,gp_Vec & D2UV) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D2,U,V,P,D1U,D1V,D2U,D2V,D2UV) };
        void D3(const Standard_Real U,const Standard_Real V,gp_Pnt & P,gp_Vec & D1U,gp_Vec & D1V,gp_Vec & D2U,gp_Vec & D2V,gp_Vec & D2UV,gp_Vec & D3U,gp_Vec & D3V,gp_Vec & D3UUV,gp_Vec & D3UVV) const  override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D3,U,V,P,D1U,D1V,D2U,D2V,D2UV,D3U,D3V,D3UUV,D3UVV) };
        gp_Vec DN(const Standard_Real U,const Standard_Real V,const Standard_Integer Nu,const Standard_Integer Nv) const  override { PYBIND11_OVERLOAD_PURE(gp_Vec,Geom_Surface,DN,U,V,Nu,Nv) };
        void Transform(const gp_Trsf & T) override { PYBIND11_OVERLOAD_PURE(void,Geom_Geometry,Transform,T) };
        opencascade::handle<Geom_Geometry> Copy() const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Geometry>,Geom_Geometry,Copy,) };

        // protected pure virtual


        // private pure virtual

    };

// classes

    // Class Geom_Geometry from ./opencascade/Geom_Geometry.hxx
    klass = m.attr("Geom_Geometry");


    // nested enums

    static_cast<py::class_<Geom_Geometry ,opencascade::handle<Geom_Geometry> ,Py_Geom_Geometry , Standard_Transient >>(klass)
    // constructors
    // custom constructors
    // methods
        .def("Mirror",
             (void (Geom_Geometry::*)( const gp_Pnt &  ) ) static_cast<void (Geom_Geometry::*)( const gp_Pnt &  ) >(&Geom_Geometry::Mirror),
             R"#(Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.)#"  , py::arg("P")
          )
        .def("Mirror",
             (void (Geom_Geometry::*)( const gp_Ax1 &  ) ) static_cast<void (Geom_Geometry::*)( const gp_Ax1 &  ) >(&Geom_Geometry::Mirror),
             R"#(Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.)#"  , py::arg("A1")
          )
        .def("Mirror",
             (void (Geom_Geometry::*)( const gp_Ax2 &  ) ) static_cast<void (Geom_Geometry::*)( const gp_Ax2 &  ) >(&Geom_Geometry::Mirror),
             R"#(Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).)#"  , py::arg("A2")
          )
        .def("Rotate",
             (void (Geom_Geometry::*)( const gp_Ax1 & ,  const Standard_Real  ) ) static_cast<void (Geom_Geometry::*)( const gp_Ax1 & ,  const Standard_Real  ) >(&Geom_Geometry::Rotate),
             R"#(Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.)#"  , py::arg("A1"),  py::arg("Ang")
          )
        .def("Scale",
             (void (Geom_Geometry::*)( const gp_Pnt & ,  const Standard_Real  ) ) static_cast<void (Geom_Geometry::*)( const gp_Pnt & ,  const Standard_Real  ) >(&Geom_Geometry::Scale),
             R"#(Scales a Geometry. S is the scaling value.)#"  , py::arg("P"),  py::arg("S")
          )
        .def("Translate",
             (void (Geom_Geometry::*)( const gp_Vec &  ) ) static_cast<void (Geom_Geometry::*)( const gp_Vec &  ) >(&Geom_Geometry::Translate),
             R"#(Translates a Geometry. V is the vector of the translation.)#"  , py::arg("V")
          )
        .def("Translate",
             (void (Geom_Geometry::*)( const gp_Pnt & ,  const gp_Pnt &  ) ) static_cast<void (Geom_Geometry::*)( const gp_Pnt & ,  const gp_Pnt &  ) >(&Geom_Geometry::Translate),
             R"#(Translates a Geometry from the point P1 to the point P2.)#"  , py::arg("P1"),  py::arg("P2")
          )
        .def("Transform",
             (void (Geom_Geometry::*)( const gp_Trsf &  ) ) static_cast<void (Geom_Geometry::*)( const gp_Trsf &  ) >(&Geom_Geometry::Transform),
             R"#(Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom).)#"  , py::arg("T")
          )
        .def("Mirrored",
             (opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Pnt &  ) const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Pnt &  ) const>(&Geom_Geometry::Mirrored),
             R"#(None)#"  , py::arg("P")
          )
        .def("Mirrored",
             (opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Ax1 &  ) const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Ax1 &  ) const>(&Geom_Geometry::Mirrored),
             R"#(None)#"  , py::arg("A1")
          )
        .def("Mirrored",
             (opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Ax2 &  ) const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Ax2 &  ) const>(&Geom_Geometry::Mirrored),
             R"#(None)#"  , py::arg("A2")
          )
        .def("Rotated",
             (opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Ax1 & ,  const Standard_Real  ) const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Ax1 & ,  const Standard_Real  ) const>(&Geom_Geometry::Rotated),
             R"#(None)#"  , py::arg("A1"),  py::arg("Ang")
          )
        .def("Scaled",
             (opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Pnt & ,  const Standard_Real  ) const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Pnt & ,  const Standard_Real  ) const>(&Geom_Geometry::Scaled),
             R"#(None)#"  , py::arg("P"),  py::arg("S")
          )
        .def("Transformed",
             (opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Trsf &  ) const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Trsf &  ) const>(&Geom_Geometry::Transformed),
             R"#(None)#"  , py::arg("T")
          )
        .def("Translated",
             (opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Vec &  ) const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Vec &  ) const>(&Geom_Geometry::Translated),
             R"#(None)#"  , py::arg("V")
          )
        .def("Translated",
             (opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Pnt & ,  const gp_Pnt &  ) const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Pnt & ,  const gp_Pnt &  ) const>(&Geom_Geometry::Translated),
             R"#(None)#"  , py::arg("P1"),  py::arg("P2")
          )
        .def("Copy",
             (opencascade::handle<Geom_Geometry> (Geom_Geometry::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Geometry::*)() const>(&Geom_Geometry::Copy),
             R"#(Creates a new object which is a copy of this geometric object.)#" 
          )
        .def("DumpJson",
             (void (Geom_Geometry::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom_Geometry::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom_Geometry::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_Geometry::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Geometry::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_Geometry::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Geometry::*)() const>(&Geom_Geometry::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_HSequenceOfBSplineSurface from ./opencascade/Geom_HSequenceOfBSplineSurface.hxx
    klass = m.attr("Geom_HSequenceOfBSplineSurface");


    // nested enums

    static_cast<py::class_<Geom_HSequenceOfBSplineSurface ,opencascade::handle<Geom_HSequenceOfBSplineSurface>  , Geom_SequenceOfBSplineSurface , Standard_Transient >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init<  const NCollection_Sequence<opencascade::handle<Geom_BSplineSurface>> & >()  , py::arg("theOther") )
    // custom constructors
    // methods
        .def("Append",
             (void (Geom_HSequenceOfBSplineSurface::*)(  const opencascade::handle<Geom_BSplineSurface> &  ) ) static_cast<void (Geom_HSequenceOfBSplineSurface::*)(  const opencascade::handle<Geom_BSplineSurface> &  ) >(&Geom_HSequenceOfBSplineSurface::Append),
             R"#(None)#"  , py::arg("theItem")
          )
        .def("Append",
             (void (Geom_HSequenceOfBSplineSurface::*)( NCollection_Sequence<opencascade::handle<Geom_BSplineSurface>> &  ) ) static_cast<void (Geom_HSequenceOfBSplineSurface::*)( NCollection_Sequence<opencascade::handle<Geom_BSplineSurface>> &  ) >(&Geom_HSequenceOfBSplineSurface::Append),
             R"#(None)#"  , py::arg("theSequence")
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_HSequenceOfBSplineSurface::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_HSequenceOfBSplineSurface::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Sequence",
             (const Geom_SequenceOfBSplineSurface & (Geom_HSequenceOfBSplineSurface::*)() const) static_cast<const Geom_SequenceOfBSplineSurface & (Geom_HSequenceOfBSplineSurface::*)() const>(&Geom_HSequenceOfBSplineSurface::Sequence),
             R"#(None)#"
             
         )
       .def("ChangeSequence",
             (Geom_SequenceOfBSplineSurface & (Geom_HSequenceOfBSplineSurface::*)() ) static_cast<Geom_SequenceOfBSplineSurface & (Geom_HSequenceOfBSplineSurface::*)() >(&Geom_HSequenceOfBSplineSurface::ChangeSequence),
             R"#(None)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_HSequenceOfBSplineSurface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_HSequenceOfBSplineSurface::*)() const>(&Geom_HSequenceOfBSplineSurface::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_OsculatingSurface from ./opencascade/Geom_OsculatingSurface.hxx
    klass = m.attr("Geom_OsculatingSurface");


    // nested enums

    static_cast<py::class_<Geom_OsculatingSurface ,opencascade::handle<Geom_OsculatingSurface>  , Standard_Transient >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const opencascade::handle<Geom_Surface> &,const Standard_Real >()  , py::arg("BS"),  py::arg("Tol") )
    // custom constructors
    // methods
        .def("Init",
             (void (Geom_OsculatingSurface::*)( const opencascade::handle<Geom_Surface> & ,  const Standard_Real  ) ) static_cast<void (Geom_OsculatingSurface::*)( const opencascade::handle<Geom_Surface> & ,  const Standard_Real  ) >(&Geom_OsculatingSurface::Init),
             R"#(None)#"  , py::arg("BS"),  py::arg("Tol")
          )
        .def("BasisSurface",
             (opencascade::handle<Geom_Surface> (Geom_OsculatingSurface::*)() const) static_cast<opencascade::handle<Geom_Surface> (Geom_OsculatingSurface::*)() const>(&Geom_OsculatingSurface::BasisSurface),
             R"#(None)#" 
          )
        .def("Tolerance",
             (Standard_Real (Geom_OsculatingSurface::*)() const) static_cast<Standard_Real (Geom_OsculatingSurface::*)() const>(&Geom_OsculatingSurface::Tolerance),
             R"#(None)#" 
          )
        .def("UOscSurf",
             (Standard_Boolean (Geom_OsculatingSurface::*)( const Standard_Real ,  const Standard_Real ,  Standard_Boolean & ,  opencascade::handle<Geom_BSplineSurface> &  ) const) static_cast<Standard_Boolean (Geom_OsculatingSurface::*)( const Standard_Real ,  const Standard_Real ,  Standard_Boolean & ,  opencascade::handle<Geom_BSplineSurface> &  ) const>(&Geom_OsculatingSurface::UOscSurf),
             R"#(if Standard_True, L is the local osculating surface along U at the point U,V.)#"  , py::arg("U"),  py::arg("V"),  py::arg("t"),  py::arg("L")
          )
        .def("VOscSurf",
             (Standard_Boolean (Geom_OsculatingSurface::*)( const Standard_Real ,  const Standard_Real ,  Standard_Boolean & ,  opencascade::handle<Geom_BSplineSurface> &  ) const) static_cast<Standard_Boolean (Geom_OsculatingSurface::*)( const Standard_Real ,  const Standard_Real ,  Standard_Boolean & ,  opencascade::handle<Geom_BSplineSurface> &  ) const>(&Geom_OsculatingSurface::VOscSurf),
             R"#(if Standard_True, L is the local osculating surface along V at the point U,V.)#"  , py::arg("U"),  py::arg("V"),  py::arg("t"),  py::arg("L")
          )
        .def("DumpJson",
             (void (Geom_OsculatingSurface::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom_OsculatingSurface::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom_OsculatingSurface::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_OsculatingSurface::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_OsculatingSurface::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_OsculatingSurface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_OsculatingSurface::*)() const>(&Geom_OsculatingSurface::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_Transformation from ./opencascade/Geom_Transformation.hxx
    klass = m.attr("Geom_Transformation");


    // nested enums

    static_cast<py::class_<Geom_Transformation ,opencascade::handle<Geom_Transformation>  , Standard_Transient >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const gp_Trsf & >()  , py::arg("T") )
    // custom constructors
    // methods
        .def("SetMirror",
             (void (Geom_Transformation::*)( const gp_Pnt &  ) ) static_cast<void (Geom_Transformation::*)( const gp_Pnt &  ) >(&Geom_Transformation::SetMirror),
             R"#(Makes the transformation into a symmetrical transformation with respect to a point P. P is the center of the symmetry.)#"  , py::arg("thePnt")
          )
        .def("SetMirror",
             (void (Geom_Transformation::*)( const gp_Ax1 &  ) ) static_cast<void (Geom_Transformation::*)( const gp_Ax1 &  ) >(&Geom_Transformation::SetMirror),
             R"#(Makes the transformation into a symmetrical transformation with respect to an axis A1. A1 is the center of the axial symmetry.)#"  , py::arg("theA1")
          )
        .def("SetMirror",
             (void (Geom_Transformation::*)( const gp_Ax2 &  ) ) static_cast<void (Geom_Transformation::*)( const gp_Ax2 &  ) >(&Geom_Transformation::SetMirror),
             R"#(Makes the transformation into a symmetrical transformation with respect to a plane. The plane of the symmetry is defined with the axis placement A2. It is the plane (Location, XDirection, YDirection).)#"  , py::arg("theA2")
          )
        .def("SetRotation",
             (void (Geom_Transformation::*)( const gp_Ax1 & ,  const Standard_Real  ) ) static_cast<void (Geom_Transformation::*)( const gp_Ax1 & ,  const Standard_Real  ) >(&Geom_Transformation::SetRotation),
             R"#(Makes the transformation into a rotation. A1 is the axis rotation and Ang is the angular value of the rotation in radians.)#"  , py::arg("theA1"),  py::arg("theAng")
          )
        .def("SetScale",
             (void (Geom_Transformation::*)( const gp_Pnt & ,  const Standard_Real  ) ) static_cast<void (Geom_Transformation::*)( const gp_Pnt & ,  const Standard_Real  ) >(&Geom_Transformation::SetScale),
             R"#(Makes the transformation into a scale. P is the center of the scale and S is the scaling value.)#"  , py::arg("thePnt"),  py::arg("theScale")
          )
        .def("SetTransformation",
             (void (Geom_Transformation::*)( const gp_Ax3 & ,  const gp_Ax3 &  ) ) static_cast<void (Geom_Transformation::*)( const gp_Ax3 & ,  const gp_Ax3 &  ) >(&Geom_Transformation::SetTransformation),
             R"#(Makes a transformation allowing passage from the coordinate system "FromSystem1" to the coordinate system "ToSystem2". Example : In a C++ implementation : Real x1, y1, z1; // are the coordinates of a point in the // local system FromSystem1 Real x2, y2, z2; // are the coordinates of a point in the // local system ToSystem2 gp_Pnt P1 (x1, y1, z1) Geom_Transformation T; T.SetTransformation (FromSystem1, ToSystem2); gp_Pnt P2 = P1.Transformed (T); P2.Coord (x2, y2, z2);)#"  , py::arg("theFromSystem1"),  py::arg("theToSystem2")
          )
        .def("SetTransformation",
             (void (Geom_Transformation::*)( const gp_Ax3 &  ) ) static_cast<void (Geom_Transformation::*)( const gp_Ax3 &  ) >(&Geom_Transformation::SetTransformation),
             R"#(Makes the transformation allowing passage from the basic coordinate system {P(0.,0.,0.), VX (1.,0.,0.), VY (0.,1.,0.), VZ (0., 0. ,1.) } to the local coordinate system defined with the Ax2 ToSystem. Same utilisation as the previous method. FromSystem1 is defaulted to the absolute coordinate system.)#"  , py::arg("theToSystem")
          )
        .def("SetTranslation",
             (void (Geom_Transformation::*)( const gp_Vec &  ) ) static_cast<void (Geom_Transformation::*)( const gp_Vec &  ) >(&Geom_Transformation::SetTranslation),
             R"#(Makes the transformation into a translation. V is the vector of the translation.)#"  , py::arg("theVec")
          )
        .def("SetTranslation",
             (void (Geom_Transformation::*)( const gp_Pnt & ,  const gp_Pnt &  ) ) static_cast<void (Geom_Transformation::*)( const gp_Pnt & ,  const gp_Pnt &  ) >(&Geom_Transformation::SetTranslation),
             R"#(Makes the transformation into a translation from the point P1 to the point P2.)#"  , py::arg("P1"),  py::arg("P2")
          )
        .def("SetTrsf",
             (void (Geom_Transformation::*)( const gp_Trsf &  ) ) static_cast<void (Geom_Transformation::*)( const gp_Trsf &  ) >(&Geom_Transformation::SetTrsf),
             R"#(Converts the gp_Trsf transformation T into this transformation.)#"  , py::arg("theTrsf")
          )
        .def("IsNegative",
             (Standard_Boolean (Geom_Transformation::*)() const) static_cast<Standard_Boolean (Geom_Transformation::*)() const>(&Geom_Transformation::IsNegative),
             R"#(Checks whether this transformation is an indirect transformation: returns true if the determinant of the matrix of the vectorial part of the transformation is less than 0.)#" 
          )
        .def("Form",
             (gp_TrsfForm (Geom_Transformation::*)() const) static_cast<gp_TrsfForm (Geom_Transformation::*)() const>(&Geom_Transformation::Form),
             R"#(Returns the nature of this transformation as a value of the gp_TrsfForm enumeration.)#" 
          )
        .def("ScaleFactor",
             (Standard_Real (Geom_Transformation::*)() const) static_cast<Standard_Real (Geom_Transformation::*)() const>(&Geom_Transformation::ScaleFactor),
             R"#(Returns the scale value of the transformation.)#" 
          )
        .def("Value",
             (Standard_Real (Geom_Transformation::*)( const Standard_Integer ,  const Standard_Integer  ) const) static_cast<Standard_Real (Geom_Transformation::*)( const Standard_Integer ,  const Standard_Integer  ) const>(&Geom_Transformation::Value),
             R"#(Returns the coefficients of the global matrix of transformation. It is a 3 rows X 4 columns matrix.)#"  , py::arg("theRow"),  py::arg("theCol")
          )
        .def("Invert",
             (void (Geom_Transformation::*)() ) static_cast<void (Geom_Transformation::*)() >(&Geom_Transformation::Invert),
             R"#(Raised if the transformation is singular. This means that the ScaleFactor is lower or equal to Resolution from package gp.)#" 
          )
        .def("Inverted",
             (opencascade::handle<Geom_Transformation> (Geom_Transformation::*)() const) static_cast<opencascade::handle<Geom_Transformation> (Geom_Transformation::*)() const>(&Geom_Transformation::Inverted),
             R"#(Raised if the transformation is singular. This means that the ScaleFactor is lower or equal to Resolution from package gp.)#" 
          )
        .def("Multiplied",
             (opencascade::handle<Geom_Transformation> (Geom_Transformation::*)( const opencascade::handle<Geom_Transformation> &  ) const) static_cast<opencascade::handle<Geom_Transformation> (Geom_Transformation::*)( const opencascade::handle<Geom_Transformation> &  ) const>(&Geom_Transformation::Multiplied),
             R"#(Computes the transformation composed with Other and <me>. <me> * Other. Returns a new transformation)#"  , py::arg("Other")
          )
        .def("Multiply",
             (void (Geom_Transformation::*)( const opencascade::handle<Geom_Transformation> &  ) ) static_cast<void (Geom_Transformation::*)( const opencascade::handle<Geom_Transformation> &  ) >(&Geom_Transformation::Multiply),
             R"#(Computes the transformation composed with Other and <me> . <me> = <me> * Other.)#"  , py::arg("theOther")
          )
        .def("Power",
             (void (Geom_Transformation::*)( const Standard_Integer  ) ) static_cast<void (Geom_Transformation::*)( const Standard_Integer  ) >(&Geom_Transformation::Power),
             R"#(Computes the following composition of transformations if N > 0 <me> * <me> * .......* <me>. if N = 0 Identity if N < 0 <me>.Invert() * .........* <me>.Invert())#"  , py::arg("N")
          )
        .def("Powered",
             (opencascade::handle<Geom_Transformation> (Geom_Transformation::*)( const Standard_Integer  ) const) static_cast<opencascade::handle<Geom_Transformation> (Geom_Transformation::*)( const Standard_Integer  ) const>(&Geom_Transformation::Powered),
             R"#(Raised if N < 0 and if the transformation is not inversible)#"  , py::arg("N")
          )
        .def("PreMultiply",
             (void (Geom_Transformation::*)( const opencascade::handle<Geom_Transformation> &  ) ) static_cast<void (Geom_Transformation::*)( const opencascade::handle<Geom_Transformation> &  ) >(&Geom_Transformation::PreMultiply),
             R"#(Computes the matrix of the transformation composed with <me> and Other. <me> = Other * <me>)#"  , py::arg("Other")
          )
        .def("Copy",
             (opencascade::handle<Geom_Transformation> (Geom_Transformation::*)() const) static_cast<opencascade::handle<Geom_Transformation> (Geom_Transformation::*)() const>(&Geom_Transformation::Copy),
             R"#(Creates a new object which is a copy of this transformation.)#" 
          )
        .def("DumpJson",
             (void (Geom_Transformation::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom_Transformation::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom_Transformation::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
        .def("Transforms",
             []( Geom_Transformation &self   ){
                 Standard_Real  theX;
                Standard_Real  theY;
                Standard_Real  theZ;

                 self.Transforms(theX,theY,theZ);
                 
                 return std::make_tuple(theX,theY,theZ); },
             R"#(Applies the transformation <me> to the triplet {X, Y, Z}.)#" 
          )
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_Transformation::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Transformation::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_Transformation::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Transformation::*)() const>(&Geom_Transformation::DynamicType),
             R"#(None)#"
             
         )
       .def("Trsf",
             (const gp_Trsf & (Geom_Transformation::*)() const) static_cast<const gp_Trsf & (Geom_Transformation::*)() const>(&Geom_Transformation::Trsf),
             R"#(Returns a non transient copy of <me>.)#"
             
         )
;

    // Class Geom_AxisPlacement from ./opencascade/Geom_AxisPlacement.hxx
    klass = m.attr("Geom_AxisPlacement");


    // nested enums

    static_cast<py::class_<Geom_AxisPlacement ,opencascade::handle<Geom_AxisPlacement> ,Py_Geom_AxisPlacement , Geom_Geometry >>(klass)
    // constructors
    // custom constructors
    // methods
        .def("SetAxis",
             (void (Geom_AxisPlacement::*)( const gp_Ax1 &  ) ) static_cast<void (Geom_AxisPlacement::*)( const gp_Ax1 &  ) >(&Geom_AxisPlacement::SetAxis),
             R"#(Assigns A1 as the "main Axis" of this positioning system. This modifies - its origin, and - its "main Direction". If this positioning system is a Geom_Axis2Placement, then its "X Direction" and "Y Direction" are recomputed. Exceptions For a Geom_Axis2Placement: Standard_ConstructionError if A1 and the previous "X Direction" of the coordinate system are parallel.)#"  , py::arg("A1")
          )
        .def("SetDirection",
             (void (Geom_AxisPlacement::*)( const gp_Dir &  ) ) static_cast<void (Geom_AxisPlacement::*)( const gp_Dir &  ) >(&Geom_AxisPlacement::SetDirection),
             R"#(Changes the direction of the axis placement. If <me> is an axis placement two axis the main "Direction" is modified and the "XDirection" and "YDirection" are recomputed. Raises ConstructionError only for an axis placement two axis if V and the previous "XDirection" are parallel because it is not possible to calculate the new "XDirection" and the new "YDirection".)#"  , py::arg("V")
          )
        .def("SetLocation",
             (void (Geom_AxisPlacement::*)( const gp_Pnt &  ) ) static_cast<void (Geom_AxisPlacement::*)( const gp_Pnt &  ) >(&Geom_AxisPlacement::SetLocation),
             R"#(Assigns the point P as the origin of this positioning system.)#"  , py::arg("P")
          )
        .def("Angle",
             (Standard_Real (Geom_AxisPlacement::*)( const opencascade::handle<Geom_AxisPlacement> &  ) const) static_cast<Standard_Real (Geom_AxisPlacement::*)( const opencascade::handle<Geom_AxisPlacement> &  ) const>(&Geom_AxisPlacement::Angle),
             R"#(Computes the angular value, in radians, between the "main Direction" of this positioning system and that of positioning system Other. The result is a value between 0 and Pi.)#"  , py::arg("Other")
          )
        .def("Direction",
             (gp_Dir (Geom_AxisPlacement::*)() const) static_cast<gp_Dir (Geom_AxisPlacement::*)() const>(&Geom_AxisPlacement::Direction),
             R"#(Returns the main "Direction" of an axis placement.)#" 
          )
        .def("Location",
             (gp_Pnt (Geom_AxisPlacement::*)() const) static_cast<gp_Pnt (Geom_AxisPlacement::*)() const>(&Geom_AxisPlacement::Location),
             R"#(Returns the Location point (origin) of the axis placement.)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_AxisPlacement::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_AxisPlacement::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Axis",
             (const gp_Ax1 & (Geom_AxisPlacement::*)() const) static_cast<const gp_Ax1 & (Geom_AxisPlacement::*)() const>(&Geom_AxisPlacement::Axis),
             R"#(Returns the main axis of the axis placement. For an "Axis2placement" it is the main axis (Location, Direction ). For an "Axis1Placement" this method returns a copy of <me>.)#"
             
         )
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_AxisPlacement::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_AxisPlacement::*)() const>(&Geom_AxisPlacement::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_Curve from ./opencascade/Geom_Curve.hxx
    klass = m.attr("Geom_Curve");


    // nested enums

    static_cast<py::class_<Geom_Curve ,opencascade::handle<Geom_Curve> ,Py_Geom_Curve , Geom_Geometry >>(klass)
    // constructors
    // custom constructors
    // methods
        .def("Reverse",
             (void (Geom_Curve::*)() ) static_cast<void (Geom_Curve::*)() >(&Geom_Curve::Reverse),
             R"#(Changes the direction of parametrization of <me>. The "FirstParameter" and the "LastParameter" are not changed but the orientation of the curve is modified. If the curve is bounded the StartPoint of the initial curve becomes the EndPoint of the reversed curve and the EndPoint of the initial curve becomes the StartPoint of the reversed curve.)#" 
          )
        .def("ReversedParameter",
             (Standard_Real (Geom_Curve::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_Curve::*)( const Standard_Real  ) const>(&Geom_Curve::ReversedParameter),
             R"#(Returns the parameter on the reversed curve for the point of parameter U on <me>.)#"  , py::arg("U")
          )
        .def("TransformedParameter",
             (Standard_Real (Geom_Curve::*)( const Standard_Real ,  const gp_Trsf &  ) const) static_cast<Standard_Real (Geom_Curve::*)( const Standard_Real ,  const gp_Trsf &  ) const>(&Geom_Curve::TransformedParameter),
             R"#(Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.)#"  , py::arg("U"),  py::arg("T")
          )
        .def("ParametricTransformation",
             (Standard_Real (Geom_Curve::*)( const gp_Trsf &  ) const) static_cast<Standard_Real (Geom_Curve::*)( const gp_Trsf &  ) const>(&Geom_Curve::ParametricTransformation),
             R"#(Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.)#"  , py::arg("T")
          )
        .def("Reversed",
             (opencascade::handle<Geom_Curve> (Geom_Curve::*)() const) static_cast<opencascade::handle<Geom_Curve> (Geom_Curve::*)() const>(&Geom_Curve::Reversed),
             R"#(Returns a copy of <me> reversed.)#" 
          )
        .def("FirstParameter",
             (Standard_Real (Geom_Curve::*)() const) static_cast<Standard_Real (Geom_Curve::*)() const>(&Geom_Curve::FirstParameter),
             R"#(Returns the value of the first parameter. Warnings : It can be RealFirst from package Standard if the curve is infinite)#" 
          )
        .def("LastParameter",
             (Standard_Real (Geom_Curve::*)() const) static_cast<Standard_Real (Geom_Curve::*)() const>(&Geom_Curve::LastParameter),
             R"#(Returns the value of the last parameter. Warnings : It can be RealLast from package Standard if the curve is infinite)#" 
          )
        .def("IsClosed",
             (Standard_Boolean (Geom_Curve::*)() const) static_cast<Standard_Boolean (Geom_Curve::*)() const>(&Geom_Curve::IsClosed),
             R"#(Returns true if the curve is closed. Some curves such as circle are always closed, others such as line are never closed (by definition). Some Curves such as OffsetCurve can be closed or not. These curves are considered as closed if the distance between the first point and the last point of the curve is lower or equal to the Resolution from package gp which is a fixed criterion independent of the application.)#" 
          )
        .def("IsPeriodic",
             (Standard_Boolean (Geom_Curve::*)() const) static_cast<Standard_Boolean (Geom_Curve::*)() const>(&Geom_Curve::IsPeriodic),
             R"#(Is the parametrization of the curve periodic ? It is possible only if the curve is closed and if the following relation is satisfied : for each parametric value U the distance between the point P(u) and the point P (u + T) is lower or equal to Resolution from package gp, T is the period and must be a constant. There are three possibilities : . the curve is never periodic by definition (SegmentLine) . the curve is always periodic by definition (Circle) . the curve can be defined as periodic (BSpline). In this case a function SetPeriodic allows you to give the shape of the curve. The general rule for this case is : if a curve can be periodic or not the default periodicity set is non periodic and you have to turn (explicitly) the curve into a periodic curve if you want the curve to be periodic.)#" 
          )
        .def("Period",
             (Standard_Real (Geom_Curve::*)() const) static_cast<Standard_Real (Geom_Curve::*)() const>(&Geom_Curve::Period),
             R"#(Returns the period of this curve. Exceptions Standard_NoSuchObject if this curve is not periodic.)#" 
          )
        .def("Continuity",
             (GeomAbs_Shape (Geom_Curve::*)() const) static_cast<GeomAbs_Shape (Geom_Curve::*)() const>(&Geom_Curve::Continuity),
             R"#(It is the global continuity of the curve C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, G1 : tangency continuity all along the Curve, G2 : curvature continuity all along the Curve, CN : the order of continuity is infinite.)#" 
          )
        .def("IsCN",
             (Standard_Boolean (Geom_Curve::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom_Curve::*)( const Standard_Integer  ) const>(&Geom_Curve::IsCN),
             R"#(Returns true if the degree of continuity of this curve is at least N. Exceptions - Standard_RangeError if N is less than 0.)#"  , py::arg("N")
          )
        .def("D0",
             (void (Geom_Curve::*)( const Standard_Real ,  gp_Pnt &  ) const) static_cast<void (Geom_Curve::*)( const Standard_Real ,  gp_Pnt &  ) const>(&Geom_Curve::D0),
             R"#(Returns in P the point of parameter U. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve.)#"  , py::arg("U"),  py::arg("P")
          )
        .def("D1",
             (void (Geom_Curve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec &  ) const) static_cast<void (Geom_Curve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec &  ) const>(&Geom_Curve::D1),
             R"#(Returns the point P of parameter U and the first derivative V1. Raised if the continuity of the curve is not C1.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1")
          )
        .def("D2",
             (void (Geom_Curve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_Curve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_Curve::D2),
             R"#(Returns the point P of parameter U, the first and second derivatives V1 and V2. Raised if the continuity of the curve is not C2.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def("D3",
             (void (Geom_Curve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_Curve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_Curve::D3),
             R"#(Returns the point P of parameter U, the first, the second and the third derivative. Raised if the continuity of the curve is not C3.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3")
          )
        .def("DN",
             (gp_Vec (Geom_Curve::*)( const Standard_Real ,  const Standard_Integer  ) const) static_cast<gp_Vec (Geom_Curve::*)( const Standard_Real ,  const Standard_Integer  ) const>(&Geom_Curve::DN),
             R"#(The returned vector gives the value of the derivative for the order of derivation N. Raised if the continuity of the curve is not CN.)#"  , py::arg("U"),  py::arg("N")
          )
        .def("Value",
             (gp_Pnt (Geom_Curve::*)( const Standard_Real  ) const) static_cast<gp_Pnt (Geom_Curve::*)( const Standard_Real  ) const>(&Geom_Curve::Value),
             R"#(Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve. it is implemented with D0.)#"  , py::arg("U")
          )
        .def("DumpJson",
             (void (Geom_Curve::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom_Curve::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom_Curve::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_Curve::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Curve::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_Curve::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Curve::*)() const>(&Geom_Curve::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_Point from ./opencascade/Geom_Point.hxx
    klass = m.attr("Geom_Point");


    // nested enums

    static_cast<py::class_<Geom_Point ,opencascade::handle<Geom_Point> ,Py_Geom_Point , Geom_Geometry >>(klass)
    // constructors
    // custom constructors
    // methods
        .def("Pnt",
             (gp_Pnt (Geom_Point::*)() const) static_cast<gp_Pnt (Geom_Point::*)() const>(&Geom_Point::Pnt),
             R"#(returns a non transient copy of <me>)#" 
          )
        .def("X",
             (Standard_Real (Geom_Point::*)() const) static_cast<Standard_Real (Geom_Point::*)() const>(&Geom_Point::X),
             R"#(returns the X coordinate of <me>.)#" 
          )
        .def("Y",
             (Standard_Real (Geom_Point::*)() const) static_cast<Standard_Real (Geom_Point::*)() const>(&Geom_Point::Y),
             R"#(returns the Y coordinate of <me>.)#" 
          )
        .def("Z",
             (Standard_Real (Geom_Point::*)() const) static_cast<Standard_Real (Geom_Point::*)() const>(&Geom_Point::Z),
             R"#(returns the Z coordinate of <me>.)#" 
          )
        .def("Distance",
             (Standard_Real (Geom_Point::*)( const opencascade::handle<Geom_Point> &  ) const) static_cast<Standard_Real (Geom_Point::*)( const opencascade::handle<Geom_Point> &  ) const>(&Geom_Point::Distance),
             R"#(Computes the distance between <me> and <Other>.)#"  , py::arg("Other")
          )
        .def("SquareDistance",
             (Standard_Real (Geom_Point::*)( const opencascade::handle<Geom_Point> &  ) const) static_cast<Standard_Real (Geom_Point::*)( const opencascade::handle<Geom_Point> &  ) const>(&Geom_Point::SquareDistance),
             R"#(Computes the square distance between <me> and <Other>.)#"  , py::arg("Other")
          )
    // methods using call by reference i.s.o. return
        .def("Coord",
             []( Geom_Point &self   ){
                 Standard_Real  X;
                Standard_Real  Y;
                Standard_Real  Z;

                 self.Coord(X,Y,Z);
                 
                 return std::make_tuple(X,Y,Z); },
             R"#(returns the Coordinates of <me>.)#" 
          )
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_Point::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Point::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_Point::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Point::*)() const>(&Geom_Point::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_Surface from ./opencascade/Geom_Surface.hxx
    klass = m.attr("Geom_Surface");


    // nested enums

    static_cast<py::class_<Geom_Surface ,opencascade::handle<Geom_Surface> ,Py_Geom_Surface , Geom_Geometry >>(klass)
    // constructors
    // custom constructors
    // methods
        .def("UReverse",
             (void (Geom_Surface::*)() ) static_cast<void (Geom_Surface::*)() >(&Geom_Surface::UReverse),
             R"#(Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified.)#" 
          )
        .def("UReversed",
             (opencascade::handle<Geom_Surface> (Geom_Surface::*)() const) static_cast<opencascade::handle<Geom_Surface> (Geom_Surface::*)() const>(&Geom_Surface::UReversed),
             R"#(Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.)#" 
          )
        .def("UReversedParameter",
             (Standard_Real (Geom_Surface::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_Surface::*)( const Standard_Real  ) const>(&Geom_Surface::UReversedParameter),
             R"#(Returns the parameter on the Ureversed surface for the point of parameter U on <me>. is the same point as)#"  , py::arg("U")
          )
        .def("VReverse",
             (void (Geom_Surface::*)() ) static_cast<void (Geom_Surface::*)() >(&Geom_Surface::VReverse),
             R"#(Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified.)#" 
          )
        .def("VReversed",
             (opencascade::handle<Geom_Surface> (Geom_Surface::*)() const) static_cast<opencascade::handle<Geom_Surface> (Geom_Surface::*)() const>(&Geom_Surface::VReversed),
             R"#(Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.)#" 
          )
        .def("VReversedParameter",
             (Standard_Real (Geom_Surface::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_Surface::*)( const Standard_Real  ) const>(&Geom_Surface::VReversedParameter),
             R"#(Returns the parameter on the Vreversed surface for the point of parameter V on <me>. is the same point as)#"  , py::arg("V")
          )
        .def("ParametricTransformation",
             (gp_GTrsf2d (Geom_Surface::*)( const gp_Trsf &  ) const) static_cast<gp_GTrsf2d (Geom_Surface::*)( const gp_Trsf &  ) const>(&Geom_Surface::ParametricTransformation),
             R"#(Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns an identity transformation)#"  , py::arg("T")
          )
        .def("IsUClosed",
             (Standard_Boolean (Geom_Surface::*)() const) static_cast<Standard_Boolean (Geom_Surface::*)() const>(&Geom_Surface::IsUClosed),
             R"#(Checks whether this surface is closed in the u parametric direction. Returns true if, in the u parametric direction: taking uFirst and uLast as the parametric bounds in the u parametric direction, for each parameter v, the distance between the points P(uFirst, v) and P(uLast, v) is less than or equal to gp::Resolution().)#" 
          )
        .def("IsVClosed",
             (Standard_Boolean (Geom_Surface::*)() const) static_cast<Standard_Boolean (Geom_Surface::*)() const>(&Geom_Surface::IsVClosed),
             R"#(Checks whether this surface is closed in the u parametric direction. Returns true if, in the v parametric direction: taking vFirst and vLast as the parametric bounds in the v parametric direction, for each parameter u, the distance between the points P(u, vFirst) and P(u, vLast) is less than or equal to gp::Resolution().)#" 
          )
        .def("IsUPeriodic",
             (Standard_Boolean (Geom_Surface::*)() const) static_cast<Standard_Boolean (Geom_Surface::*)() const>(&Geom_Surface::IsUPeriodic),
             R"#(Checks if this surface is periodic in the u parametric direction. Returns true if: - this surface is closed in the u parametric direction, and - there is a constant T such that the distance between the points P (u, v) and P (u + T, v) (or the points P (u, v) and P (u, v + T)) is less than or equal to gp::Resolution().)#" 
          )
        .def("UPeriod",
             (Standard_Real (Geom_Surface::*)() const) static_cast<Standard_Real (Geom_Surface::*)() const>(&Geom_Surface::UPeriod),
             R"#(Returns the period of this surface in the u parametric direction. Raises if the surface is not uperiodic.)#" 
          )
        .def("IsVPeriodic",
             (Standard_Boolean (Geom_Surface::*)() const) static_cast<Standard_Boolean (Geom_Surface::*)() const>(&Geom_Surface::IsVPeriodic),
             R"#(Checks if this surface is periodic in the v parametric direction. Returns true if: - this surface is closed in the v parametric direction, and - there is a constant T such that the distance between the points P (u, v) and P (u + T, v) (or the points P (u, v) and P (u, v + T)) is less than or equal to gp::Resolution().)#" 
          )
        .def("VPeriod",
             (Standard_Real (Geom_Surface::*)() const) static_cast<Standard_Real (Geom_Surface::*)() const>(&Geom_Surface::VPeriod),
             R"#(Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic.)#" 
          )
        .def("UIso",
             (opencascade::handle<Geom_Curve> (Geom_Surface::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_Surface::*)( const Standard_Real  ) const>(&Geom_Surface::UIso),
             R"#(Computes the U isoparametric curve.)#"  , py::arg("U")
          )
        .def("VIso",
             (opencascade::handle<Geom_Curve> (Geom_Surface::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_Surface::*)( const Standard_Real  ) const>(&Geom_Surface::VIso),
             R"#(Computes the V isoparametric curve.)#"  , py::arg("V")
          )
        .def("Continuity",
             (GeomAbs_Shape (Geom_Surface::*)() const) static_cast<GeomAbs_Shape (Geom_Surface::*)() const>(&Geom_Surface::Continuity),
             R"#(Returns the Global Continuity of the surface in direction U and V : - C0: only geometric continuity, - C1: continuity of the first derivative all along the surface, - C2: continuity of the second derivative all along the surface, - C3: continuity of the third derivative all along the surface, - G1: tangency continuity all along the surface, - G2: curvature continuity all along the surface, - CN: the order of continuity is infinite.)#" 
          )
        .def("IsCNu",
             (Standard_Boolean (Geom_Surface::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom_Surface::*)( const Standard_Integer  ) const>(&Geom_Surface::IsCNu),
             R"#(Returns the order of continuity of the surface in the U parametric direction. Raised if N < 0.)#"  , py::arg("N")
          )
        .def("IsCNv",
             (Standard_Boolean (Geom_Surface::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom_Surface::*)( const Standard_Integer  ) const>(&Geom_Surface::IsCNv),
             R"#(Returns the order of continuity of the surface in the V parametric direction. Raised if N < 0.)#"  , py::arg("N")
          )
        .def("D0",
             (void (Geom_Surface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt &  ) const) static_cast<void (Geom_Surface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt &  ) const>(&Geom_Surface::D0),
             R"#(Computes the point of parameter U,V on the surface.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P")
          )
        .def("D1",
             (void (Geom_Surface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_Surface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_Surface::D1),
             R"#(Computes the point P and the first derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C1.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V")
          )
        .def("D2",
             (void (Geom_Surface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_Surface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_Surface::D2),
             R"#(Computes the point P, the first and the second derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C2.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV")
          )
        .def("D3",
             (void (Geom_Surface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_Surface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_Surface::D3),
             R"#(Computes the point P, the first,the second and the third derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C2.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV"),  py::arg("D3U"),  py::arg("D3V"),  py::arg("D3UUV"),  py::arg("D3UVV")
          )
        .def("DN",
             (gp_Vec (Geom_Surface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const) static_cast<gp_Vec (Geom_Surface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const>(&Geom_Surface::DN),
             R"#(Computes the derivative of order Nu in the direction U and Nv in the direction V at the point P(U, V).)#"  , py::arg("U"),  py::arg("V"),  py::arg("Nu"),  py::arg("Nv")
          )
        .def("Value",
             (gp_Pnt (Geom_Surface::*)( const Standard_Real ,  const Standard_Real  ) const) static_cast<gp_Pnt (Geom_Surface::*)( const Standard_Real ,  const Standard_Real  ) const>(&Geom_Surface::Value),
             R"#(Computes the point of parameter (U, V) on the surface.)#"  , py::arg("U"),  py::arg("V")
          )
        .def("DumpJson",
             (void (Geom_Surface::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom_Surface::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom_Surface::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
        .def("TransformParameters",
             []( Geom_Surface &self , const gp_Trsf & T ){
                 Standard_Real  U;
                Standard_Real  V;

                 self.TransformParameters(U,V,T);
                 
                 return std::make_tuple(U,V); },
             R"#(Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method does not change <U> and <V>)#"  , py::arg("T")
          )
        .def("Bounds",
             []( Geom_Surface &self   ){
                 Standard_Real  U1;
                Standard_Real  U2;
                Standard_Real  V1;
                Standard_Real  V2;

                 self.Bounds(U1,U2,V1,V2);
                 
                 return std::make_tuple(U1,U2,V1,V2); },
             R"#(Returns the parametric bounds U1, U2, V1 and V2 of this surface. If the surface is infinite, this function can return a value equal to Precision::Infinite: instead of Standard_Real::LastReal.)#" 
          )
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_Surface::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Surface::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_Surface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Surface::*)() const>(&Geom_Surface::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_Vector from ./opencascade/Geom_Vector.hxx
    klass = m.attr("Geom_Vector");


    // nested enums

    static_cast<py::class_<Geom_Vector ,opencascade::handle<Geom_Vector> ,Py_Geom_Vector , Geom_Geometry >>(klass)
    // constructors
    // custom constructors
    // methods
        .def("Reverse",
             (void (Geom_Vector::*)() ) static_cast<void (Geom_Vector::*)() >(&Geom_Vector::Reverse),
             R"#(Reverses the vector <me>.)#" 
          )
        .def("Reversed",
             (opencascade::handle<Geom_Vector> (Geom_Vector::*)() const) static_cast<opencascade::handle<Geom_Vector> (Geom_Vector::*)() const>(&Geom_Vector::Reversed),
             R"#(Returns a copy of <me> reversed.)#" 
          )
        .def("Angle",
             (Standard_Real (Geom_Vector::*)( const opencascade::handle<Geom_Vector> &  ) const) static_cast<Standard_Real (Geom_Vector::*)( const opencascade::handle<Geom_Vector> &  ) const>(&Geom_Vector::Angle),
             R"#(Computes the angular value, in radians, between this vector and vector Other. The result is a value between 0 and Pi. Exceptions gp_VectorWithNullMagnitude if: - the magnitude of this vector is less than or equal to gp::Resolution(), or - the magnitude of vector Other is less than or equal to gp::Resolution().)#"  , py::arg("Other")
          )
        .def("AngleWithRef",
             (Standard_Real (Geom_Vector::*)( const opencascade::handle<Geom_Vector> & ,  const opencascade::handle<Geom_Vector> &  ) const) static_cast<Standard_Real (Geom_Vector::*)( const opencascade::handle<Geom_Vector> & ,  const opencascade::handle<Geom_Vector> &  ) const>(&Geom_Vector::AngleWithRef),
             R"#(Computes the angular value, in radians, between this vector and vector Other. The result is a value between -Pi and Pi. The vector VRef defines the positive sense of rotation: the angular value is positive if the cross product this ^ Other has the same orientation as VRef (in relation to the plane defined by this vector and vector Other). Otherwise, it is negative. Exceptions Standard_DomainError if this vector, vector Other and vector VRef are coplanar, except if this vector and vector Other are parallel. gp_VectorWithNullMagnitude if the magnitude of this vector, vector Other or vector VRef is less than or equal to gp::Resolution().)#"  , py::arg("Other"),  py::arg("VRef")
          )
        .def("Magnitude",
             (Standard_Real (Geom_Vector::*)() const) static_cast<Standard_Real (Geom_Vector::*)() const>(&Geom_Vector::Magnitude),
             R"#(Returns the Magnitude of <me>.)#" 
          )
        .def("SquareMagnitude",
             (Standard_Real (Geom_Vector::*)() const) static_cast<Standard_Real (Geom_Vector::*)() const>(&Geom_Vector::SquareMagnitude),
             R"#(Returns the square magnitude of <me>.)#" 
          )
        .def("X",
             (Standard_Real (Geom_Vector::*)() const) static_cast<Standard_Real (Geom_Vector::*)() const>(&Geom_Vector::X),
             R"#(Returns the X coordinate of <me>.)#" 
          )
        .def("Y",
             (Standard_Real (Geom_Vector::*)() const) static_cast<Standard_Real (Geom_Vector::*)() const>(&Geom_Vector::Y),
             R"#(Returns the Y coordinate of <me>.)#" 
          )
        .def("Z",
             (Standard_Real (Geom_Vector::*)() const) static_cast<Standard_Real (Geom_Vector::*)() const>(&Geom_Vector::Z),
             R"#(Returns the Z coordinate of <me>.)#" 
          )
        .def("Cross",
             (void (Geom_Vector::*)( const opencascade::handle<Geom_Vector> &  ) ) static_cast<void (Geom_Vector::*)( const opencascade::handle<Geom_Vector> &  ) >(&Geom_Vector::Cross),
             R"#(Computes the cross product between <me> and <Other>.)#"  , py::arg("Other")
          )
        .def("Crossed",
             (opencascade::handle<Geom_Vector> (Geom_Vector::*)( const opencascade::handle<Geom_Vector> &  ) const) static_cast<opencascade::handle<Geom_Vector> (Geom_Vector::*)( const opencascade::handle<Geom_Vector> &  ) const>(&Geom_Vector::Crossed),
             R"#(Computes the cross product between <me> and <Other>. A new direction is returned.)#"  , py::arg("Other")
          )
        .def("CrossCross",
             (void (Geom_Vector::*)( const opencascade::handle<Geom_Vector> & ,  const opencascade::handle<Geom_Vector> &  ) ) static_cast<void (Geom_Vector::*)( const opencascade::handle<Geom_Vector> & ,  const opencascade::handle<Geom_Vector> &  ) >(&Geom_Vector::CrossCross),
             R"#(Computes the triple vector product <me> ^(V1 ^ V2).)#"  , py::arg("V1"),  py::arg("V2")
          )
        .def("CrossCrossed",
             (opencascade::handle<Geom_Vector> (Geom_Vector::*)( const opencascade::handle<Geom_Vector> & ,  const opencascade::handle<Geom_Vector> &  ) const) static_cast<opencascade::handle<Geom_Vector> (Geom_Vector::*)( const opencascade::handle<Geom_Vector> & ,  const opencascade::handle<Geom_Vector> &  ) const>(&Geom_Vector::CrossCrossed),
             R"#(Computes the triple vector product <me> ^(V1 ^ V2).)#"  , py::arg("V1"),  py::arg("V2")
          )
        .def("Dot",
             (Standard_Real (Geom_Vector::*)( const opencascade::handle<Geom_Vector> &  ) const) static_cast<Standard_Real (Geom_Vector::*)( const opencascade::handle<Geom_Vector> &  ) const>(&Geom_Vector::Dot),
             R"#(Computes the scalar product of this vector and vector Other.)#"  , py::arg("Other")
          )
        .def("DotCross",
             (Standard_Real (Geom_Vector::*)( const opencascade::handle<Geom_Vector> & ,  const opencascade::handle<Geom_Vector> &  ) const) static_cast<Standard_Real (Geom_Vector::*)( const opencascade::handle<Geom_Vector> & ,  const opencascade::handle<Geom_Vector> &  ) const>(&Geom_Vector::DotCross),
             R"#(Computes the triple scalar product. Returns me . (V1 ^ V2))#"  , py::arg("V1"),  py::arg("V2")
          )
    // methods using call by reference i.s.o. return
        .def("Coord",
             []( Geom_Vector &self   ){
                 Standard_Real  X;
                Standard_Real  Y;
                Standard_Real  Z;

                 self.Coord(X,Y,Z);
                 
                 return std::make_tuple(X,Y,Z); },
             R"#(Returns the coordinates X, Y and Z of this vector.)#" 
          )
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_Vector::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Vector::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Vec",
             (const gp_Vec & (Geom_Vector::*)() const) static_cast<const gp_Vec & (Geom_Vector::*)() const>(&Geom_Vector::Vec),
             R"#(Converts this vector into a gp_Vec vector.)#"
             
         )
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_Vector::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Vector::*)() const>(&Geom_Vector::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_Axis1Placement from ./opencascade/Geom_Axis1Placement.hxx
    klass = m.attr("Geom_Axis1Placement");


    // nested enums

    static_cast<py::class_<Geom_Axis1Placement ,opencascade::handle<Geom_Axis1Placement>  , Geom_AxisPlacement >>(klass)
    // constructors
        .def(py::init< const gp_Ax1 & >()  , py::arg("A1") )
        .def(py::init< const gp_Pnt &,const gp_Dir & >()  , py::arg("P"),  py::arg("V") )
    // custom constructors
    // methods
        .def("Reverse",
             (void (Geom_Axis1Placement::*)() ) static_cast<void (Geom_Axis1Placement::*)() >(&Geom_Axis1Placement::Reverse),
             R"#(Reverses the direction of the axis placement.)#" 
          )
        .def("Reversed",
             (opencascade::handle<Geom_Axis1Placement> (Geom_Axis1Placement::*)() const) static_cast<opencascade::handle<Geom_Axis1Placement> (Geom_Axis1Placement::*)() const>(&Geom_Axis1Placement::Reversed),
             R"#(Returns a copy of <me> reversed.)#" 
          )
        .def("SetDirection",
             (void (Geom_Axis1Placement::*)( const gp_Dir &  ) ) static_cast<void (Geom_Axis1Placement::*)( const gp_Dir &  ) >(&Geom_Axis1Placement::SetDirection),
             R"#(Assigns V to the unit vector of this axis.)#"  , py::arg("V")
          )
        .def("Transform",
             (void (Geom_Axis1Placement::*)( const gp_Trsf &  ) ) static_cast<void (Geom_Axis1Placement::*)( const gp_Trsf &  ) >(&Geom_Axis1Placement::Transform),
             R"#(Applies the transformation T to this axis.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom_Geometry> (Geom_Axis1Placement::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Axis1Placement::*)() const>(&Geom_Axis1Placement::Copy),
             R"#(Creates a new object, which is a copy of this axis.)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_Axis1Placement::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Axis1Placement::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Ax1",
             (const gp_Ax1 & (Geom_Axis1Placement::*)() const) static_cast<const gp_Ax1 & (Geom_Axis1Placement::*)() const>(&Geom_Axis1Placement::Ax1),
             R"#(Returns a non transient copy of <me>.)#"
             
         )
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_Axis1Placement::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Axis1Placement::*)() const>(&Geom_Axis1Placement::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_Axis2Placement from ./opencascade/Geom_Axis2Placement.hxx
    klass = m.attr("Geom_Axis2Placement");


    // nested enums

    static_cast<py::class_<Geom_Axis2Placement ,opencascade::handle<Geom_Axis2Placement>  , Geom_AxisPlacement >>(klass)
    // constructors
        .def(py::init< const gp_Ax2 & >()  , py::arg("A2") )
        .def(py::init< const gp_Pnt &,const gp_Dir &,const gp_Dir & >()  , py::arg("P"),  py::arg("N"),  py::arg("Vx") )
    // custom constructors
    // methods
        .def("SetAx2",
             (void (Geom_Axis2Placement::*)( const gp_Ax2 &  ) ) static_cast<void (Geom_Axis2Placement::*)( const gp_Ax2 &  ) >(&Geom_Axis2Placement::SetAx2),
             R"#(Assigns the origin and the three unit vectors of A2 to this coordinate system.)#"  , py::arg("A2")
          )
        .def("SetDirection",
             (void (Geom_Axis2Placement::*)( const gp_Dir &  ) ) static_cast<void (Geom_Axis2Placement::*)( const gp_Dir &  ) >(&Geom_Axis2Placement::SetDirection),
             R"#(Changes the main direction of the axis placement. The "Xdirection" is modified : New XDirection = V ^ (Previous_Xdirection ^ V).)#"  , py::arg("V")
          )
        .def("SetXDirection",
             (void (Geom_Axis2Placement::*)( const gp_Dir &  ) ) static_cast<void (Geom_Axis2Placement::*)( const gp_Dir &  ) >(&Geom_Axis2Placement::SetXDirection),
             R"#(Changes the "XDirection" of the axis placement, Vx is the new "XDirection". If Vx is not normal to the main direction then "XDirection" is computed as follow : XDirection = Direction ^ ( Vx ^ Direction). The main direction is not modified. Raised if Vx and "Direction" are parallel.)#"  , py::arg("Vx")
          )
        .def("SetYDirection",
             (void (Geom_Axis2Placement::*)( const gp_Dir &  ) ) static_cast<void (Geom_Axis2Placement::*)( const gp_Dir &  ) >(&Geom_Axis2Placement::SetYDirection),
             R"#(Changes the "YDirection" of the axis placement, Vy is the new "YDirection". If Vy is not normal to the main direction then "YDirection" is computed as follow : YDirection = Direction ^ ( Vy ^ Direction). The main direction is not modified. The "XDirection" is modified. Raised if Vy and the main direction are parallel.)#"  , py::arg("Vy")
          )
        .def("Ax2",
             (gp_Ax2 (Geom_Axis2Placement::*)() const) static_cast<gp_Ax2 (Geom_Axis2Placement::*)() const>(&Geom_Axis2Placement::Ax2),
             R"#(Returns a non transient copy of <me>.)#" 
          )
        .def("Transform",
             (void (Geom_Axis2Placement::*)( const gp_Trsf &  ) ) static_cast<void (Geom_Axis2Placement::*)( const gp_Trsf &  ) >(&Geom_Axis2Placement::Transform),
             R"#(Transforms an axis placement with a Trsf. The "Location" point, the "XDirection" and the "YDirection" are transformed with T. The resulting main "Direction" of <me> is the cross product between the "XDirection" and the "YDirection" after transformation.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom_Geometry> (Geom_Axis2Placement::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Axis2Placement::*)() const>(&Geom_Axis2Placement::Copy),
             R"#(Creates a new object which is a copy of this coordinate system.)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_Axis2Placement::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Axis2Placement::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("XDirection",
             (const gp_Dir & (Geom_Axis2Placement::*)() const) static_cast<const gp_Dir & (Geom_Axis2Placement::*)() const>(&Geom_Axis2Placement::XDirection),
             R"#(Returns the "XDirection". This is a unit vector.)#"
             
         )
       .def("YDirection",
             (const gp_Dir & (Geom_Axis2Placement::*)() const) static_cast<const gp_Dir & (Geom_Axis2Placement::*)() const>(&Geom_Axis2Placement::YDirection),
             R"#(Returns the "YDirection". This is a unit vector.)#"
             
         )
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_Axis2Placement::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Axis2Placement::*)() const>(&Geom_Axis2Placement::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_BoundedCurve from ./opencascade/Geom_BoundedCurve.hxx
    klass = m.attr("Geom_BoundedCurve");


    // nested enums

    static_cast<py::class_<Geom_BoundedCurve ,opencascade::handle<Geom_BoundedCurve> ,Py_Geom_BoundedCurve , Geom_Curve >>(klass)
    // constructors
    // custom constructors
    // methods
        .def("EndPoint",
             (gp_Pnt (Geom_BoundedCurve::*)() const) static_cast<gp_Pnt (Geom_BoundedCurve::*)() const>(&Geom_BoundedCurve::EndPoint),
             R"#(Returns the end point of the curve.)#" 
          )
        .def("StartPoint",
             (gp_Pnt (Geom_BoundedCurve::*)() const) static_cast<gp_Pnt (Geom_BoundedCurve::*)() const>(&Geom_BoundedCurve::StartPoint),
             R"#(Returns the start point of the curve.)#" 
          )
        .def("DumpJson",
             (void (Geom_BoundedCurve::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom_BoundedCurve::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom_BoundedCurve::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_BoundedCurve::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_BoundedCurve::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_BoundedCurve::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_BoundedCurve::*)() const>(&Geom_BoundedCurve::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_BoundedSurface from ./opencascade/Geom_BoundedSurface.hxx
    klass = m.attr("Geom_BoundedSurface");


    // nested enums

    static_cast<py::class_<Geom_BoundedSurface ,opencascade::handle<Geom_BoundedSurface> ,Py_Geom_BoundedSurface , Geom_Surface >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_BoundedSurface::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_BoundedSurface::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_BoundedSurface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_BoundedSurface::*)() const>(&Geom_BoundedSurface::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_CartesianPoint from ./opencascade/Geom_CartesianPoint.hxx
    klass = m.attr("Geom_CartesianPoint");


    // nested enums

    static_cast<py::class_<Geom_CartesianPoint ,opencascade::handle<Geom_CartesianPoint>  , Geom_Point >>(klass)
    // constructors
        .def(py::init< const gp_Pnt & >()  , py::arg("P") )
        .def(py::init< const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("X"),  py::arg("Y"),  py::arg("Z") )
    // custom constructors
    // methods
        .def("SetCoord",
             (void (Geom_CartesianPoint::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (Geom_CartesianPoint::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&Geom_CartesianPoint::SetCoord),
             R"#(Assigns the coordinates X, Y and Z to this point.)#"  , py::arg("X"),  py::arg("Y"),  py::arg("Z")
          )
        .def("SetPnt",
             (void (Geom_CartesianPoint::*)( const gp_Pnt &  ) ) static_cast<void (Geom_CartesianPoint::*)( const gp_Pnt &  ) >(&Geom_CartesianPoint::SetPnt),
             R"#(Set <me> to P.X(), P.Y(), P.Z() coordinates.)#"  , py::arg("P")
          )
        .def("SetX",
             (void (Geom_CartesianPoint::*)( const Standard_Real  ) ) static_cast<void (Geom_CartesianPoint::*)( const Standard_Real  ) >(&Geom_CartesianPoint::SetX),
             R"#(Changes the X coordinate of me.)#"  , py::arg("X")
          )
        .def("SetY",
             (void (Geom_CartesianPoint::*)( const Standard_Real  ) ) static_cast<void (Geom_CartesianPoint::*)( const Standard_Real  ) >(&Geom_CartesianPoint::SetY),
             R"#(Changes the Y coordinate of me.)#"  , py::arg("Y")
          )
        .def("SetZ",
             (void (Geom_CartesianPoint::*)( const Standard_Real  ) ) static_cast<void (Geom_CartesianPoint::*)( const Standard_Real  ) >(&Geom_CartesianPoint::SetZ),
             R"#(Changes the Z coordinate of me.)#"  , py::arg("Z")
          )
        .def("Pnt",
             (gp_Pnt (Geom_CartesianPoint::*)() const) static_cast<gp_Pnt (Geom_CartesianPoint::*)() const>(&Geom_CartesianPoint::Pnt),
             R"#(Returns a non transient cartesian point with the same coordinates as <me>.)#" 
          )
        .def("X",
             (Standard_Real (Geom_CartesianPoint::*)() const) static_cast<Standard_Real (Geom_CartesianPoint::*)() const>(&Geom_CartesianPoint::X),
             R"#(Returns the X coordinate of <me>.)#" 
          )
        .def("Y",
             (Standard_Real (Geom_CartesianPoint::*)() const) static_cast<Standard_Real (Geom_CartesianPoint::*)() const>(&Geom_CartesianPoint::Y),
             R"#(Returns the Y coordinate of <me>.)#" 
          )
        .def("Z",
             (Standard_Real (Geom_CartesianPoint::*)() const) static_cast<Standard_Real (Geom_CartesianPoint::*)() const>(&Geom_CartesianPoint::Z),
             R"#(Returns the Z coordinate of <me>.)#" 
          )
        .def("Transform",
             (void (Geom_CartesianPoint::*)( const gp_Trsf &  ) ) static_cast<void (Geom_CartesianPoint::*)( const gp_Trsf &  ) >(&Geom_CartesianPoint::Transform),
             R"#(Applies the transformation T to this point.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom_Geometry> (Geom_CartesianPoint::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_CartesianPoint::*)() const>(&Geom_CartesianPoint::Copy),
             R"#(Creates a new object which is a copy of this point.)#" 
          )
    // methods using call by reference i.s.o. return
        .def("Coord",
             []( Geom_CartesianPoint &self   ){
                 Standard_Real  X;
                Standard_Real  Y;
                Standard_Real  Z;

                 self.Coord(X,Y,Z);
                 
                 return std::make_tuple(X,Y,Z); },
             R"#(Returns the coordinates of <me>.)#" 
          )
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_CartesianPoint::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_CartesianPoint::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_CartesianPoint::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_CartesianPoint::*)() const>(&Geom_CartesianPoint::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_Conic from ./opencascade/Geom_Conic.hxx
    klass = m.attr("Geom_Conic");


    // nested enums

    static_cast<py::class_<Geom_Conic ,opencascade::handle<Geom_Conic> ,Py_Geom_Conic , Geom_Curve >>(klass)
    // constructors
    // custom constructors
    // methods
        .def("SetAxis",
             (void (Geom_Conic::*)( const gp_Ax1 &  ) ) static_cast<void (Geom_Conic::*)( const gp_Ax1 &  ) >(&Geom_Conic::SetAxis),
             R"#(Changes the orientation of the conic's plane. The normal axis to the plane is A1. The XAxis and the YAxis are recomputed.)#"  , py::arg("theA1")
          )
        .def("SetLocation",
             (void (Geom_Conic::*)( const gp_Pnt &  ) ) static_cast<void (Geom_Conic::*)( const gp_Pnt &  ) >(&Geom_Conic::SetLocation),
             R"#(changes the location point of the conic.)#"  , py::arg("theP")
          )
        .def("SetPosition",
             (void (Geom_Conic::*)( const gp_Ax2 &  ) ) static_cast<void (Geom_Conic::*)( const gp_Ax2 &  ) >(&Geom_Conic::SetPosition),
             R"#(changes the local coordinate system of the conic.)#"  , py::arg("theA2")
          )
        .def("Eccentricity",
             (Standard_Real (Geom_Conic::*)() const) static_cast<Standard_Real (Geom_Conic::*)() const>(&Geom_Conic::Eccentricity),
             R"#(Returns the eccentricity value of the conic e. e = 0 for a circle 0 < e < 1 for an ellipse (e = 0 if MajorRadius = MinorRadius) e > 1 for a hyperbola e = 1 for a parabola Exceptions Standard_DomainError in the case of a hyperbola if its major radius is null.)#" 
          )
        .def("XAxis",
             (gp_Ax1 (Geom_Conic::*)() const) static_cast<gp_Ax1 (Geom_Conic::*)() const>(&Geom_Conic::XAxis),
             R"#(Returns the XAxis of the conic. This axis defines the origin of parametrization of the conic. This axis is perpendicular to the Axis of the conic. This axis and the Yaxis define the plane of the conic.)#" 
          )
        .def("YAxis",
             (gp_Ax1 (Geom_Conic::*)() const) static_cast<gp_Ax1 (Geom_Conic::*)() const>(&Geom_Conic::YAxis),
             R"#(Returns the YAxis of the conic. The YAxis is perpendicular to the Xaxis. This axis and the Xaxis define the plane of the conic.)#" 
          )
        .def("Reverse",
             (void (Geom_Conic::*)() ) static_cast<void (Geom_Conic::*)() >(&Geom_Conic::Reverse),
             R"#(Reverses the direction of parameterization of <me>. The local coordinate system of the conic is modified.)#" 
          )
        .def("ReversedParameter",
             (Standard_Real (Geom_Conic::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_Conic::*)( const Standard_Real  ) const>(&Geom_Conic::ReversedParameter),
             R"#(Returns the parameter on the reversed curve for the point of parameter U on <me>.)#"  , py::arg("U")
          )
        .def("Continuity",
             (GeomAbs_Shape (Geom_Conic::*)() const) static_cast<GeomAbs_Shape (Geom_Conic::*)() const>(&Geom_Conic::Continuity),
             R"#(The continuity of the conic is Cn.)#" 
          )
        .def("IsCN",
             (Standard_Boolean (Geom_Conic::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom_Conic::*)( const Standard_Integer  ) const>(&Geom_Conic::IsCN),
             R"#(Returns True. Raised if N < 0.)#"  , py::arg("N")
          )
        .def("DumpJson",
             (void (Geom_Conic::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom_Conic::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom_Conic::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_Conic::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Conic::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Axis",
             (const gp_Ax1 & (Geom_Conic::*)() const) static_cast<const gp_Ax1 & (Geom_Conic::*)() const>(&Geom_Conic::Axis),
             R"#(Returns the "main Axis" of this conic. This axis is normal to the plane of the conic.)#"
             
         )
       .def("Location",
             (const gp_Pnt & (Geom_Conic::*)() const) static_cast<const gp_Pnt & (Geom_Conic::*)() const>(&Geom_Conic::Location),
             R"#(Returns the location point of the conic. For the circle, the ellipse and the hyperbola it is the center of the conic. For the parabola it is the Apex of the parabola.)#"
             
         )
       .def("Position",
             (const gp_Ax2 & (Geom_Conic::*)() const) static_cast<const gp_Ax2 & (Geom_Conic::*)() const>(&Geom_Conic::Position),
             R"#(Returns the local coordinates system of the conic. The main direction of the Axis2Placement is normal to the plane of the conic. The X direction of the Axis2placement is in the plane of the conic and corresponds to the origin for the conic's parametric value u.)#"
             
         )
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_Conic::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Conic::*)() const>(&Geom_Conic::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_Direction from ./opencascade/Geom_Direction.hxx
    klass = m.attr("Geom_Direction");


    // nested enums

    static_cast<py::class_<Geom_Direction ,opencascade::handle<Geom_Direction>  , Geom_Vector >>(klass)
    // constructors
        .def(py::init< const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("X"),  py::arg("Y"),  py::arg("Z") )
        .def(py::init< const gp_Dir & >()  , py::arg("V") )
    // custom constructors
    // methods
        .def("SetCoord",
             (void (Geom_Direction::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (Geom_Direction::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&Geom_Direction::SetCoord),
             R"#(Sets <me> to X,Y,Z coordinates.)#"  , py::arg("X"),  py::arg("Y"),  py::arg("Z")
          )
        .def("SetDir",
             (void (Geom_Direction::*)( const gp_Dir &  ) ) static_cast<void (Geom_Direction::*)( const gp_Dir &  ) >(&Geom_Direction::SetDir),
             R"#(Converts the gp_Dir unit vector V into this unit vector.)#"  , py::arg("V")
          )
        .def("SetX",
             (void (Geom_Direction::*)( const Standard_Real  ) ) static_cast<void (Geom_Direction::*)( const Standard_Real  ) >(&Geom_Direction::SetX),
             R"#(Changes the X coordinate of <me>.)#"  , py::arg("X")
          )
        .def("SetY",
             (void (Geom_Direction::*)( const Standard_Real  ) ) static_cast<void (Geom_Direction::*)( const Standard_Real  ) >(&Geom_Direction::SetY),
             R"#(Changes the Y coordinate of <me>.)#"  , py::arg("Y")
          )
        .def("SetZ",
             (void (Geom_Direction::*)( const Standard_Real  ) ) static_cast<void (Geom_Direction::*)( const Standard_Real  ) >(&Geom_Direction::SetZ),
             R"#(Changes the Z coordinate of <me>.)#"  , py::arg("Z")
          )
        .def("Dir",
             (gp_Dir (Geom_Direction::*)() const) static_cast<gp_Dir (Geom_Direction::*)() const>(&Geom_Direction::Dir),
             R"#(Returns the non transient direction with the same coordinates as <me>.)#" 
          )
        .def("Magnitude",
             (Standard_Real (Geom_Direction::*)() const) static_cast<Standard_Real (Geom_Direction::*)() const>(&Geom_Direction::Magnitude),
             R"#(returns 1.0 which is the magnitude of any unit vector.)#" 
          )
        .def("SquareMagnitude",
             (Standard_Real (Geom_Direction::*)() const) static_cast<Standard_Real (Geom_Direction::*)() const>(&Geom_Direction::SquareMagnitude),
             R"#(returns 1.0 which is the square magnitude of any unit vector.)#" 
          )
        .def("Cross",
             (void (Geom_Direction::*)( const opencascade::handle<Geom_Vector> &  ) ) static_cast<void (Geom_Direction::*)( const opencascade::handle<Geom_Vector> &  ) >(&Geom_Direction::Cross),
             R"#(Computes the cross product between <me> and <Other>.)#"  , py::arg("Other")
          )
        .def("CrossCross",
             (void (Geom_Direction::*)( const opencascade::handle<Geom_Vector> & ,  const opencascade::handle<Geom_Vector> &  ) ) static_cast<void (Geom_Direction::*)( const opencascade::handle<Geom_Vector> & ,  const opencascade::handle<Geom_Vector> &  ) >(&Geom_Direction::CrossCross),
             R"#(Computes the triple vector product <me> ^(V1 ^ V2).)#"  , py::arg("V1"),  py::arg("V2")
          )
        .def("Crossed",
             (opencascade::handle<Geom_Vector> (Geom_Direction::*)( const opencascade::handle<Geom_Vector> &  ) const) static_cast<opencascade::handle<Geom_Vector> (Geom_Direction::*)( const opencascade::handle<Geom_Vector> &  ) const>(&Geom_Direction::Crossed),
             R"#(Computes the cross product between <me> and <Other>. A new direction is returned.)#"  , py::arg("Other")
          )
        .def("CrossCrossed",
             (opencascade::handle<Geom_Vector> (Geom_Direction::*)( const opencascade::handle<Geom_Vector> & ,  const opencascade::handle<Geom_Vector> &  ) const) static_cast<opencascade::handle<Geom_Vector> (Geom_Direction::*)( const opencascade::handle<Geom_Vector> & ,  const opencascade::handle<Geom_Vector> &  ) const>(&Geom_Direction::CrossCrossed),
             R"#(Computes the triple vector product <me> ^(V1 ^ V2).)#"  , py::arg("V1"),  py::arg("V2")
          )
        .def("Transform",
             (void (Geom_Direction::*)( const gp_Trsf &  ) ) static_cast<void (Geom_Direction::*)( const gp_Trsf &  ) >(&Geom_Direction::Transform),
             R"#(Applies the transformation T to this unit vector, then normalizes it.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom_Geometry> (Geom_Direction::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Direction::*)() const>(&Geom_Direction::Copy),
             R"#(Creates a new object which is a copy of this unit vector.)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_Direction::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Direction::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_Direction::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Direction::*)() const>(&Geom_Direction::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_ElementarySurface from ./opencascade/Geom_ElementarySurface.hxx
    klass = m.attr("Geom_ElementarySurface");


    // nested enums

    static_cast<py::class_<Geom_ElementarySurface ,opencascade::handle<Geom_ElementarySurface> ,Py_Geom_ElementarySurface , Geom_Surface >>(klass)
    // constructors
    // custom constructors
    // methods
        .def("SetAxis",
             (void (Geom_ElementarySurface::*)( const gp_Ax1 &  ) ) static_cast<void (Geom_ElementarySurface::*)( const gp_Ax1 &  ) >(&Geom_ElementarySurface::SetAxis),
             R"#(Changes the main axis (ZAxis) of the elementary surface.)#"  , py::arg("theA1")
          )
        .def("SetLocation",
             (void (Geom_ElementarySurface::*)( const gp_Pnt &  ) ) static_cast<void (Geom_ElementarySurface::*)( const gp_Pnt &  ) >(&Geom_ElementarySurface::SetLocation),
             R"#(Changes the location of the local coordinates system of the surface.)#"  , py::arg("theLoc")
          )
        .def("SetPosition",
             (void (Geom_ElementarySurface::*)( const gp_Ax3 &  ) ) static_cast<void (Geom_ElementarySurface::*)( const gp_Ax3 &  ) >(&Geom_ElementarySurface::SetPosition),
             R"#(Changes the local coordinates system of the surface.)#"  , py::arg("theAx3")
          )
        .def("UReverse",
             (void (Geom_ElementarySurface::*)() ) static_cast<void (Geom_ElementarySurface::*)() >(&Geom_ElementarySurface::UReverse),
             R"#(Reverses the U parametric direction of the surface.)#" 
          )
        .def("UReversedParameter",
             (Standard_Real (Geom_ElementarySurface::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_ElementarySurface::*)( const Standard_Real  ) const>(&Geom_ElementarySurface::UReversedParameter),
             R"#(Return the parameter on the Ureversed surface for the point of parameter U on <me>.)#"  , py::arg("U")
          )
        .def("VReverse",
             (void (Geom_ElementarySurface::*)() ) static_cast<void (Geom_ElementarySurface::*)() >(&Geom_ElementarySurface::VReverse),
             R"#(Reverses the V parametric direction of the surface.)#" 
          )
        .def("VReversedParameter",
             (Standard_Real (Geom_ElementarySurface::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_ElementarySurface::*)( const Standard_Real  ) const>(&Geom_ElementarySurface::VReversedParameter),
             R"#(Return the parameter on the Vreversed surface for the point of parameter V on <me>.)#"  , py::arg("V")
          )
        .def("Continuity",
             (GeomAbs_Shape (Geom_ElementarySurface::*)() const) static_cast<GeomAbs_Shape (Geom_ElementarySurface::*)() const>(&Geom_ElementarySurface::Continuity),
             R"#(Returns GeomAbs_CN, the global continuity of any elementary surface.)#" 
          )
        .def("IsCNu",
             (Standard_Boolean (Geom_ElementarySurface::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom_ElementarySurface::*)( const Standard_Integer  ) const>(&Geom_ElementarySurface::IsCNu),
             R"#(Returns True.)#"  , py::arg("N")
          )
        .def("IsCNv",
             (Standard_Boolean (Geom_ElementarySurface::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom_ElementarySurface::*)( const Standard_Integer  ) const>(&Geom_ElementarySurface::IsCNv),
             R"#(Returns True.)#"  , py::arg("N")
          )
        .def("DumpJson",
             (void (Geom_ElementarySurface::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom_ElementarySurface::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom_ElementarySurface::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_ElementarySurface::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_ElementarySurface::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Axis",
             (const gp_Ax1 & (Geom_ElementarySurface::*)() const) static_cast<const gp_Ax1 & (Geom_ElementarySurface::*)() const>(&Geom_ElementarySurface::Axis),
             R"#(Returns the main axis of the surface (ZAxis).)#"
             
         )
       .def("Location",
             (const gp_Pnt & (Geom_ElementarySurface::*)() const) static_cast<const gp_Pnt & (Geom_ElementarySurface::*)() const>(&Geom_ElementarySurface::Location),
             R"#(Returns the location point of the local coordinate system of the surface.)#"
             
         )
       .def("Position",
             (const gp_Ax3 & (Geom_ElementarySurface::*)() const) static_cast<const gp_Ax3 & (Geom_ElementarySurface::*)() const>(&Geom_ElementarySurface::Position),
             R"#(Returns the local coordinates system of the surface.)#"
             
         )
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_ElementarySurface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_ElementarySurface::*)() const>(&Geom_ElementarySurface::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_Line from ./opencascade/Geom_Line.hxx
    klass = m.attr("Geom_Line");


    // nested enums

    static_cast<py::class_<Geom_Line ,opencascade::handle<Geom_Line>  , Geom_Curve >>(klass)
    // constructors
        .def(py::init< const gp_Ax1 & >()  , py::arg("A1") )
        .def(py::init< const gp_Lin & >()  , py::arg("L") )
        .def(py::init< const gp_Pnt &,const gp_Dir & >()  , py::arg("P"),  py::arg("V") )
    // custom constructors
    // methods
        .def("SetLin",
             (void (Geom_Line::*)( const gp_Lin &  ) ) static_cast<void (Geom_Line::*)( const gp_Lin &  ) >(&Geom_Line::SetLin),
             R"#(Set <me> so that <me> has the same geometric properties as L.)#"  , py::arg("L")
          )
        .def("SetDirection",
             (void (Geom_Line::*)( const gp_Dir &  ) ) static_cast<void (Geom_Line::*)( const gp_Dir &  ) >(&Geom_Line::SetDirection),
             R"#(changes the direction of the line.)#"  , py::arg("V")
          )
        .def("SetLocation",
             (void (Geom_Line::*)( const gp_Pnt &  ) ) static_cast<void (Geom_Line::*)( const gp_Pnt &  ) >(&Geom_Line::SetLocation),
             R"#(changes the "Location" point (origin) of the line.)#"  , py::arg("P")
          )
        .def("SetPosition",
             (void (Geom_Line::*)( const gp_Ax1 &  ) ) static_cast<void (Geom_Line::*)( const gp_Ax1 &  ) >(&Geom_Line::SetPosition),
             R"#(changes the "Location" and a the "Direction" of <me>.)#"  , py::arg("A1")
          )
        .def("Lin",
             (gp_Lin (Geom_Line::*)() const) static_cast<gp_Lin (Geom_Line::*)() const>(&Geom_Line::Lin),
             R"#(Returns non transient line from gp with the same geometric properties as <me>)#" 
          )
        .def("Reverse",
             (void (Geom_Line::*)() ) static_cast<void (Geom_Line::*)() >(&Geom_Line::Reverse),
             R"#(Changes the orientation of this line. As a result, the unit vector of the positioning axis of this line is reversed.)#" 
          )
        .def("ReversedParameter",
             (Standard_Real (Geom_Line::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_Line::*)( const Standard_Real  ) const>(&Geom_Line::ReversedParameter),
             R"#(Computes the parameter on the reversed line for the point of parameter U on this line. For a line, the returned value is -U.)#"  , py::arg("U")
          )
        .def("FirstParameter",
             (Standard_Real (Geom_Line::*)() const) static_cast<Standard_Real (Geom_Line::*)() const>(&Geom_Line::FirstParameter),
             R"#(Returns the value of the first parameter of this line. This is Standard_Real::RealFirst().)#" 
          )
        .def("LastParameter",
             (Standard_Real (Geom_Line::*)() const) static_cast<Standard_Real (Geom_Line::*)() const>(&Geom_Line::LastParameter),
             R"#(Returns the value of the last parameter of this line. This is Standard_Real::RealLast().)#" 
          )
        .def("IsClosed",
             (Standard_Boolean (Geom_Line::*)() const) static_cast<Standard_Boolean (Geom_Line::*)() const>(&Geom_Line::IsClosed),
             R"#(returns False)#" 
          )
        .def("IsPeriodic",
             (Standard_Boolean (Geom_Line::*)() const) static_cast<Standard_Boolean (Geom_Line::*)() const>(&Geom_Line::IsPeriodic),
             R"#(returns False)#" 
          )
        .def("Continuity",
             (GeomAbs_Shape (Geom_Line::*)() const) static_cast<GeomAbs_Shape (Geom_Line::*)() const>(&Geom_Line::Continuity),
             R"#(Returns GeomAbs_CN, which is the global continuity of any line.)#" 
          )
        .def("IsCN",
             (Standard_Boolean (Geom_Line::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom_Line::*)( const Standard_Integer  ) const>(&Geom_Line::IsCN),
             R"#(returns True. Raised if N < 0.)#"  , py::arg("N")
          )
        .def("D0",
             (void (Geom_Line::*)( const Standard_Real ,  gp_Pnt &  ) const) static_cast<void (Geom_Line::*)( const Standard_Real ,  gp_Pnt &  ) const>(&Geom_Line::D0),
             R"#(Returns in P the point of parameter U. P (U) = O + U * Dir where O is the "Location" point of the line and Dir the direction of the line.)#"  , py::arg("U"),  py::arg("P")
          )
        .def("D1",
             (void (Geom_Line::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec &  ) const) static_cast<void (Geom_Line::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec &  ) const>(&Geom_Line::D1),
             R"#(Returns the point P of parameter u and the first derivative V1.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1")
          )
        .def("D2",
             (void (Geom_Line::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_Line::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_Line::D2),
             R"#(Returns the point P of parameter U, the first and second derivatives V1 and V2. V2 is a vector with null magnitude for a line.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def("D3",
             (void (Geom_Line::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_Line::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_Line::D3),
             R"#(V2 and V3 are vectors with null magnitude for a line.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3")
          )
        .def("DN",
             (gp_Vec (Geom_Line::*)( const Standard_Real ,  const Standard_Integer  ) const) static_cast<gp_Vec (Geom_Line::*)( const Standard_Real ,  const Standard_Integer  ) const>(&Geom_Line::DN),
             R"#(The returned vector gives the value of the derivative for the order of derivation N. Raised if N < 1.)#"  , py::arg("U"),  py::arg("N")
          )
        .def("Transform",
             (void (Geom_Line::*)( const gp_Trsf &  ) ) static_cast<void (Geom_Line::*)( const gp_Trsf &  ) >(&Geom_Line::Transform),
             R"#(Applies the transformation T to this line.)#"  , py::arg("T")
          )
        .def("TransformedParameter",
             (Standard_Real (Geom_Line::*)( const Standard_Real ,  const gp_Trsf &  ) const) static_cast<Standard_Real (Geom_Line::*)( const Standard_Real ,  const gp_Trsf &  ) const>(&Geom_Line::TransformedParameter),
             R"#(Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.)#"  , py::arg("U"),  py::arg("T")
          )
        .def("ParametricTransformation",
             (Standard_Real (Geom_Line::*)( const gp_Trsf &  ) const) static_cast<Standard_Real (Geom_Line::*)( const gp_Trsf &  ) const>(&Geom_Line::ParametricTransformation),
             R"#(Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom_Geometry> (Geom_Line::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Line::*)() const>(&Geom_Line::Copy),
             R"#(Creates a new object which is a copy of this line.)#" 
          )
        .def("DumpJson",
             (void (Geom_Line::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom_Line::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom_Line::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_Line::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Line::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Position",
             (const gp_Ax1 & (Geom_Line::*)() const) static_cast<const gp_Ax1 & (Geom_Line::*)() const>(&Geom_Line::Position),
             R"#(Returns the positioning axis of this line; this is also its local coordinate system.)#"
             
         )
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_Line::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Line::*)() const>(&Geom_Line::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_OffsetCurve from ./opencascade/Geom_OffsetCurve.hxx
    klass = m.attr("Geom_OffsetCurve");


    // nested enums

    static_cast<py::class_<Geom_OffsetCurve ,opencascade::handle<Geom_OffsetCurve>  , Geom_Curve >>(klass)
    // constructors
        .def(py::init< const opencascade::handle<Geom_Curve> &,const Standard_Real,const gp_Dir &,const Standard_Boolean >()  , py::arg("C"),  py::arg("Offset"),  py::arg("V"),  py::arg("isNotCheckC0")=static_cast<const Standard_Boolean>(Standard_False) )
    // custom constructors
    // methods
        .def("Reverse",
             (void (Geom_OffsetCurve::*)() ) static_cast<void (Geom_OffsetCurve::*)() >(&Geom_OffsetCurve::Reverse),
             R"#(Changes the orientation of this offset curve. As a result: - the basis curve is reversed, - the start point of the initial curve becomes the end point of the reversed curve, - the end point of the initial curve becomes the start point of the reversed curve, and - the first and last parameters are recomputed.)#" 
          )
        .def("ReversedParameter",
             (Standard_Real (Geom_OffsetCurve::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_OffsetCurve::*)( const Standard_Real  ) const>(&Geom_OffsetCurve::ReversedParameter),
             R"#(Computes the parameter on the reversed curve for the point of parameter U on this offset curve.)#"  , py::arg("U")
          )
        .def("SetBasisCurve",
             (void (Geom_OffsetCurve::*)( const opencascade::handle<Geom_Curve> & ,  const Standard_Boolean  ) ) static_cast<void (Geom_OffsetCurve::*)( const opencascade::handle<Geom_Curve> & ,  const Standard_Boolean  ) >(&Geom_OffsetCurve::SetBasisCurve),
             R"#(Changes this offset curve by assigning C as the basis curve from which it is built. If isNotCheckC0 = TRUE checking if basis curve has C0-continuity is not made. Exceptions Standard_ConstructionError if the curve C is not at least "C1" continuous.)#"  , py::arg("C"),  py::arg("isNotCheckC0")=static_cast<const Standard_Boolean>(Standard_False)
          )
        .def("SetDirection",
             (void (Geom_OffsetCurve::*)( const gp_Dir &  ) ) static_cast<void (Geom_OffsetCurve::*)( const gp_Dir &  ) >(&Geom_OffsetCurve::SetDirection),
             R"#(Changes this offset curve by assigning V as the reference vector used to compute the offset direction.)#"  , py::arg("V")
          )
        .def("SetOffsetValue",
             (void (Geom_OffsetCurve::*)( const Standard_Real  ) ) static_cast<void (Geom_OffsetCurve::*)( const Standard_Real  ) >(&Geom_OffsetCurve::SetOffsetValue),
             R"#(Changes this offset curve by assigning D as the offset value.)#"  , py::arg("D")
          )
        .def("BasisCurve",
             (opencascade::handle<Geom_Curve> (Geom_OffsetCurve::*)() const) static_cast<opencascade::handle<Geom_Curve> (Geom_OffsetCurve::*)() const>(&Geom_OffsetCurve::BasisCurve),
             R"#(Returns the basis curve of this offset curve. Note: The basis curve can be an offset curve.)#" 
          )
        .def("Continuity",
             (GeomAbs_Shape (Geom_OffsetCurve::*)() const) static_cast<GeomAbs_Shape (Geom_OffsetCurve::*)() const>(&Geom_OffsetCurve::Continuity),
             R"#(Returns the global continuity of this offset curve as a value of the GeomAbs_Shape enumeration. The degree of continuity of this offset curve is equal to the degree of continuity of the basis curve minus 1. Continuity of the Offset curve : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, G1 : tangency continuity all along the Curve, G2 : curvature continuity all along the Curve, CN : the order of continuity is infinite. Warnings : Returns the continuity of the basis curve - 1. The offset curve must have a unique offset direction defined at any point.)#" 
          )
        .def("D0",
             (void (Geom_OffsetCurve::*)( const Standard_Real ,  gp_Pnt &  ) const) static_cast<void (Geom_OffsetCurve::*)( const Standard_Real ,  gp_Pnt &  ) const>(&Geom_OffsetCurve::D0),
             R"#(Warning! this should not be called if the basis curve is not at least C1. Nevertheless if used on portion where the curve is C1, it is OK)#"  , py::arg("U"),  py::arg("P")
          )
        .def("D1",
             (void (Geom_OffsetCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec &  ) const) static_cast<void (Geom_OffsetCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec &  ) const>(&Geom_OffsetCurve::D1),
             R"#(Warning! this should not be called if the continuity of the basis curve is not C2. Nevertheless, it's OK to use it on portion where the curve is C2)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1")
          )
        .def("D2",
             (void (Geom_OffsetCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_OffsetCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_OffsetCurve::D2),
             R"#(Warning! this should not be called if the continuity of the basis curve is not C3. Nevertheless, it's OK to use it on portion where the curve is C3)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def("D3",
             (void (Geom_OffsetCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_OffsetCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_OffsetCurve::D3),
             R"#(None)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3")
          )
        .def("DN",
             (gp_Vec (Geom_OffsetCurve::*)( const Standard_Real ,  const Standard_Integer  ) const) static_cast<gp_Vec (Geom_OffsetCurve::*)( const Standard_Real ,  const Standard_Integer  ) const>(&Geom_OffsetCurve::DN),
             R"#(The returned vector gives the value of the derivative for the order of derivation N.)#"  , py::arg("U"),  py::arg("N")
          )
        .def("FirstParameter",
             (Standard_Real (Geom_OffsetCurve::*)() const) static_cast<Standard_Real (Geom_OffsetCurve::*)() const>(&Geom_OffsetCurve::FirstParameter),
             R"#(Returns the value of the first parameter of this offset curve. The first parameter corresponds to the start point of the curve. Note: the first and last parameters of this offset curve are also the ones of its basis curve.)#" 
          )
        .def("LastParameter",
             (Standard_Real (Geom_OffsetCurve::*)() const) static_cast<Standard_Real (Geom_OffsetCurve::*)() const>(&Geom_OffsetCurve::LastParameter),
             R"#(Returns the value of the last parameter of this offset curve. The last parameter corresponds to the end point. Note: the first and last parameters of this offset curve are also the ones of its basis curve.)#" 
          )
        .def("Offset",
             (Standard_Real (Geom_OffsetCurve::*)() const) static_cast<Standard_Real (Geom_OffsetCurve::*)() const>(&Geom_OffsetCurve::Offset),
             R"#(Returns the offset value of this offset curve.)#" 
          )
        .def("IsClosed",
             (Standard_Boolean (Geom_OffsetCurve::*)() const) static_cast<Standard_Boolean (Geom_OffsetCurve::*)() const>(&Geom_OffsetCurve::IsClosed),
             R"#(Returns True if the distance between the start point and the end point of the curve is lower or equal to Resolution from package gp.)#" 
          )
        .def("IsCN",
             (Standard_Boolean (Geom_OffsetCurve::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom_OffsetCurve::*)( const Standard_Integer  ) const>(&Geom_OffsetCurve::IsCN),
             R"#(Returns true if the degree of continuity of the basis curve of this offset curve is at least N + 1. This method answer True if the continuity of the basis curve is N + 1. We suppose in this class that a normal direction to the basis curve (used to compute the offset curve) is defined at any point on the basis curve. Raised if N < 0.)#"  , py::arg("N")
          )
        .def("IsPeriodic",
             (Standard_Boolean (Geom_OffsetCurve::*)() const) static_cast<Standard_Boolean (Geom_OffsetCurve::*)() const>(&Geom_OffsetCurve::IsPeriodic),
             R"#(Returns true if this offset curve is periodic, i.e. if the basis curve of this offset curve is periodic.)#" 
          )
        .def("Period",
             (Standard_Real (Geom_OffsetCurve::*)() const) static_cast<Standard_Real (Geom_OffsetCurve::*)() const>(&Geom_OffsetCurve::Period),
             R"#(Returns the period of this offset curve, i.e. the period of the basis curve of this offset curve. Exceptions Standard_NoSuchObject if the basis curve is not periodic.)#" 
          )
        .def("Transform",
             (void (Geom_OffsetCurve::*)( const gp_Trsf &  ) ) static_cast<void (Geom_OffsetCurve::*)( const gp_Trsf &  ) >(&Geom_OffsetCurve::Transform),
             R"#(Applies the transformation T to this offset curve. Note: the basis curve is also modified.)#"  , py::arg("T")
          )
        .def("TransformedParameter",
             (Standard_Real (Geom_OffsetCurve::*)( const Standard_Real ,  const gp_Trsf &  ) const) static_cast<Standard_Real (Geom_OffsetCurve::*)( const Standard_Real ,  const gp_Trsf &  ) const>(&Geom_OffsetCurve::TransformedParameter),
             R"#(Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>. me->Transformed(T)->Value(me->TransformedParameter(U,T)) is the same point as me->Value(U).Transformed(T) This methods calls the basis curve method.)#"  , py::arg("U"),  py::arg("T")
          )
        .def("ParametricTransformation",
             (Standard_Real (Geom_OffsetCurve::*)( const gp_Trsf &  ) const) static_cast<Standard_Real (Geom_OffsetCurve::*)( const gp_Trsf &  ) const>(&Geom_OffsetCurve::ParametricTransformation),
             R"#(Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom_Geometry> (Geom_OffsetCurve::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_OffsetCurve::*)() const>(&Geom_OffsetCurve::Copy),
             R"#(Creates a new object which is a copy of this offset curve.)#" 
          )
        .def("GetBasisCurveContinuity",
             (GeomAbs_Shape (Geom_OffsetCurve::*)() const) static_cast<GeomAbs_Shape (Geom_OffsetCurve::*)() const>(&Geom_OffsetCurve::GetBasisCurveContinuity),
             R"#(Returns continuity of the basis curve.)#" 
          )
        .def("DumpJson",
             (void (Geom_OffsetCurve::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom_OffsetCurve::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom_OffsetCurve::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_OffsetCurve::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_OffsetCurve::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Direction",
             (const gp_Dir & (Geom_OffsetCurve::*)() const) static_cast<const gp_Dir & (Geom_OffsetCurve::*)() const>(&Geom_OffsetCurve::Direction),
             R"#(Returns the reference vector of this offset curve. Value and derivatives Warnings : The exception UndefinedValue or UndefinedDerivative is raised if it is not possible to compute a unique offset direction. If T is the first derivative with not null length and V the offset direction the relation ||T(U) ^ V|| != 0 must be satisfied to evaluate the offset curve. No check is done at the creation time and we suppose in this package that the offset curve is well defined.)#"
             
         )
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_OffsetCurve::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_OffsetCurve::*)() const>(&Geom_OffsetCurve::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_OffsetSurface from ./opencascade/Geom_OffsetSurface.hxx
    klass = m.attr("Geom_OffsetSurface");


    // nested enums

    static_cast<py::class_<Geom_OffsetSurface ,opencascade::handle<Geom_OffsetSurface>  , Geom_Surface >>(klass)
    // constructors
        .def(py::init< const opencascade::handle<Geom_Surface> &,const Standard_Real,const Standard_Boolean >()  , py::arg("S"),  py::arg("Offset"),  py::arg("isNotCheckC0")=static_cast<const Standard_Boolean>(Standard_False) )
    // custom constructors
    // methods
        .def("SetBasisSurface",
             (void (Geom_OffsetSurface::*)( const opencascade::handle<Geom_Surface> & ,  const Standard_Boolean  ) ) static_cast<void (Geom_OffsetSurface::*)( const opencascade::handle<Geom_Surface> & ,  const Standard_Boolean  ) >(&Geom_OffsetSurface::SetBasisSurface),
             R"#(Raised if S is not at least C1. Warnings : No check is done to verify that a unique normal direction is defined at any point of the basis surface S. If isNotCheckC0 = TRUE checking if basis surface has C0-continuity is not made. Exceptions Standard_ConstructionError if the surface S is not at least "C1" continuous.)#"  , py::arg("S"),  py::arg("isNotCheckC0")=static_cast<const Standard_Boolean>(Standard_False)
          )
        .def("SetOffsetValue",
             (void (Geom_OffsetSurface::*)( const Standard_Real  ) ) static_cast<void (Geom_OffsetSurface::*)( const Standard_Real  ) >(&Geom_OffsetSurface::SetOffsetValue),
             R"#(Changes this offset surface by assigning D as the offset value.)#"  , py::arg("D")
          )
        .def("Offset",
             (Standard_Real (Geom_OffsetSurface::*)() const) static_cast<Standard_Real (Geom_OffsetSurface::*)() const>(&Geom_OffsetSurface::Offset),
             R"#(Returns the offset value of this offset surface.)#" 
          )
        .def("UReverse",
             (void (Geom_OffsetSurface::*)() ) static_cast<void (Geom_OffsetSurface::*)() >(&Geom_OffsetSurface::UReverse),
             R"#(Changes the orientation of this offset surface in the u parametric direction. The bounds of the surface are not changed but the given parametric direction is reversed.)#" 
          )
        .def("UReversedParameter",
             (Standard_Real (Geom_OffsetSurface::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_OffsetSurface::*)( const Standard_Real  ) const>(&Geom_OffsetSurface::UReversedParameter),
             R"#(Computes the u parameter on the modified surface, produced by reversing the u parametric direction of this offset surface, for any point of u parameter U on this offset surface.)#"  , py::arg("U")
          )
        .def("VReverse",
             (void (Geom_OffsetSurface::*)() ) static_cast<void (Geom_OffsetSurface::*)() >(&Geom_OffsetSurface::VReverse),
             R"#(Changes the orientation of this offset surface in the v parametric direction. The bounds of the surface are not changed but the given parametric direction is reversed.)#" 
          )
        .def("VReversedParameter",
             (Standard_Real (Geom_OffsetSurface::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_OffsetSurface::*)( const Standard_Real  ) const>(&Geom_OffsetSurface::VReversedParameter),
             R"#(Computes the v parameter on the modified surface, produced by reversing the or v parametric direction of this offset surface, for any point of v parameter V on this offset surface.)#"  , py::arg("V")
          )
        .def("Continuity",
             (GeomAbs_Shape (Geom_OffsetSurface::*)() const) static_cast<GeomAbs_Shape (Geom_OffsetSurface::*)() const>(&Geom_OffsetSurface::Continuity),
             R"#(This method returns the continuity of the basis surface - 1. Continuity of the Offset surface : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Surface, C2 : continuity of the second derivative all along the Surface, C3 : continuity of the third derivative all along the Surface, CN : the order of continuity is infinite. Example : If the basis surface is C2 in the V direction and C3 in the U direction Shape = C1. Warnings : If the basis surface has a unique normal direction defined at any point this method gives the continuity of the offset surface otherwise the effective continuity can be lower than the continuity of the basis surface - 1.)#" 
          )
        .def("IsCNu",
             (Standard_Boolean (Geom_OffsetSurface::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom_OffsetSurface::*)( const Standard_Integer  ) const>(&Geom_OffsetSurface::IsCNu),
             R"#(This method answer True if the continuity of the basis surface is N + 1 in the U parametric direction. We suppose in this class that a unique normal is defined at any point on the basis surface. Raised if N <0.)#"  , py::arg("N")
          )
        .def("IsCNv",
             (Standard_Boolean (Geom_OffsetSurface::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom_OffsetSurface::*)( const Standard_Integer  ) const>(&Geom_OffsetSurface::IsCNv),
             R"#(This method answer True if the continuity of the basis surface is N + 1 in the V parametric direction. We suppose in this class that a unique normal is defined at any point on the basis surface. Raised if N <0.)#"  , py::arg("N")
          )
        .def("IsUClosed",
             (Standard_Boolean (Geom_OffsetSurface::*)() const) static_cast<Standard_Boolean (Geom_OffsetSurface::*)() const>(&Geom_OffsetSurface::IsUClosed),
             R"#(Checks whether this offset surface is closed in the u parametric direction. Returns true if, taking uFirst and uLast as the parametric bounds in the u parametric direction, the distance between the points P(uFirst,v) and P(uLast,v) is less than or equal to gp::Resolution() for each value of the parameter v.)#" 
          )
        .def("IsVClosed",
             (Standard_Boolean (Geom_OffsetSurface::*)() const) static_cast<Standard_Boolean (Geom_OffsetSurface::*)() const>(&Geom_OffsetSurface::IsVClosed),
             R"#(Checks whether this offset surface is closed in the u or v parametric direction. Returns true if taking vFirst and vLast as the parametric bounds in the v parametric direction, the distance between the points P(u,vFirst) and P(u,vLast) is less than or equal to gp::Resolution() for each value of the parameter u.)#" 
          )
        .def("IsUPeriodic",
             (Standard_Boolean (Geom_OffsetSurface::*)() const) static_cast<Standard_Boolean (Geom_OffsetSurface::*)() const>(&Geom_OffsetSurface::IsUPeriodic),
             R"#(Returns true if this offset surface is periodic in the u parametric direction, i.e. if the basis surface of this offset surface is periodic in this direction.)#" 
          )
        .def("UPeriod",
             (Standard_Real (Geom_OffsetSurface::*)() const) static_cast<Standard_Real (Geom_OffsetSurface::*)() const>(&Geom_OffsetSurface::UPeriod),
             R"#(Returns the period of this offset surface in the u parametric direction respectively, i.e. the period of the basis surface of this offset surface in this parametric direction. raises if the surface is not uperiodic.)#" 
          )
        .def("IsVPeriodic",
             (Standard_Boolean (Geom_OffsetSurface::*)() const) static_cast<Standard_Boolean (Geom_OffsetSurface::*)() const>(&Geom_OffsetSurface::IsVPeriodic),
             R"#(Returns true if this offset surface is periodic in the v parametric direction, i.e. if the basis surface of this offset surface is periodic in this direction.)#" 
          )
        .def("VPeriod",
             (Standard_Real (Geom_OffsetSurface::*)() const) static_cast<Standard_Real (Geom_OffsetSurface::*)() const>(&Geom_OffsetSurface::VPeriod),
             R"#(Returns the period of this offset surface in the v parametric direction respectively, i.e. the period of the basis surface of this offset surface in this parametric direction. raises if the surface is not vperiodic.)#" 
          )
        .def("UIso",
             (opencascade::handle<Geom_Curve> (Geom_OffsetSurface::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_OffsetSurface::*)( const Standard_Real  ) const>(&Geom_OffsetSurface::UIso),
             R"#(Computes the U isoparametric curve.)#"  , py::arg("U")
          )
        .def("VIso",
             (opencascade::handle<Geom_Curve> (Geom_OffsetSurface::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_OffsetSurface::*)( const Standard_Real  ) const>(&Geom_OffsetSurface::VIso),
             R"#(Computes the V isoparametric curve.)#"  , py::arg("V")
          )
        .def("D0",
             (void (Geom_OffsetSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt &  ) const) static_cast<void (Geom_OffsetSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt &  ) const>(&Geom_OffsetSurface::D0),
             R"#(where is the normal direction of the basis surface. Pbasis, D1Ubasis, D1Vbasis are the point and the first derivatives on the basis surface. If Ndir is undefined this method computes an approached normal direction using the following limited development: with Eps->0 which requires to compute the second derivatives on the basis surface. If the normal direction cannot be approximate for this order of derivation the exception UndefinedValue is raised.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P")
          )
        .def("D1",
             (void (Geom_OffsetSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_OffsetSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_OffsetSurface::D1),
             R"#(Raised if the continuity of the basis surface is not C2.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V")
          )
        .def("D2",
             (void (Geom_OffsetSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_OffsetSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_OffsetSurface::D2),
             R"#(Raised if the continuity of the basis surface is not C3.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV")
          )
        .def("D3",
             (void (Geom_OffsetSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_OffsetSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_OffsetSurface::D3),
             R"#(Raised if the continuity of the basis surface is not C4.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV"),  py::arg("D3U"),  py::arg("D3V"),  py::arg("D3UUV"),  py::arg("D3UVV")
          )
        .def("DN",
             (gp_Vec (Geom_OffsetSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const) static_cast<gp_Vec (Geom_OffsetSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const>(&Geom_OffsetSurface::DN),
             R"#(Computes the derivative of order Nu in the direction u and Nv in the direction v.)#"  , py::arg("U"),  py::arg("V"),  py::arg("Nu"),  py::arg("Nv")
          )
        .def("Transform",
             (void (Geom_OffsetSurface::*)( const gp_Trsf &  ) ) static_cast<void (Geom_OffsetSurface::*)( const gp_Trsf &  ) >(&Geom_OffsetSurface::Transform),
             R"#(Applies the transformation T to this offset surface. Note: the basis surface is also modified.)#"  , py::arg("T")
          )
        .def("ParametricTransformation",
             (gp_GTrsf2d (Geom_OffsetSurface::*)( const gp_Trsf &  ) const) static_cast<gp_GTrsf2d (Geom_OffsetSurface::*)( const gp_Trsf &  ) const>(&Geom_OffsetSurface::ParametricTransformation),
             R"#(Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method calls the basis surface method.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom_Geometry> (Geom_OffsetSurface::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_OffsetSurface::*)() const>(&Geom_OffsetSurface::Copy),
             R"#(Creates a new object which is a copy of this offset surface.)#" 
          )
        .def("Surface",
             (opencascade::handle<Geom_Surface> (Geom_OffsetSurface::*)() const) static_cast<opencascade::handle<Geom_Surface> (Geom_OffsetSurface::*)() const>(&Geom_OffsetSurface::Surface),
             R"#(returns an equivalent surface of the offset surface when the basis surface is a canonic surface or a rectangular limited surface on canonic surface or if the offset is null.)#" 
          )
        .def("UOsculatingSurface",
             (Standard_Boolean (Geom_OffsetSurface::*)( const Standard_Real ,  const Standard_Real ,  Standard_Boolean & ,  opencascade::handle<Geom_BSplineSurface> &  ) const) static_cast<Standard_Boolean (Geom_OffsetSurface::*)( const Standard_Real ,  const Standard_Real ,  Standard_Boolean & ,  opencascade::handle<Geom_BSplineSurface> &  ) const>(&Geom_OffsetSurface::UOsculatingSurface),
             R"#(if Standard_True, L is the local osculating surface along U at the point U,V. It means that DL/DU is collinear to DS/DU . If IsOpposite == Standard_True these vectors have opposite direction.)#"  , py::arg("U"),  py::arg("V"),  py::arg("IsOpposite"),  py::arg("UOsculSurf")
          )
        .def("VOsculatingSurface",
             (Standard_Boolean (Geom_OffsetSurface::*)( const Standard_Real ,  const Standard_Real ,  Standard_Boolean & ,  opencascade::handle<Geom_BSplineSurface> &  ) const) static_cast<Standard_Boolean (Geom_OffsetSurface::*)( const Standard_Real ,  const Standard_Real ,  Standard_Boolean & ,  opencascade::handle<Geom_BSplineSurface> &  ) const>(&Geom_OffsetSurface::VOsculatingSurface),
             R"#(if Standard_True, L is the local osculating surface along V at the point U,V. It means that DL/DV is collinear to DS/DV . If IsOpposite == Standard_True these vectors have opposite direction.)#"  , py::arg("U"),  py::arg("V"),  py::arg("IsOpposite"),  py::arg("VOsculSurf")
          )
        .def("GetBasisSurfContinuity",
             (GeomAbs_Shape (Geom_OffsetSurface::*)() const) static_cast<GeomAbs_Shape (Geom_OffsetSurface::*)() const>(&Geom_OffsetSurface::GetBasisSurfContinuity),
             R"#(Returns continuity of the basis surface.)#" 
          )
        .def("DumpJson",
             (void (Geom_OffsetSurface::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom_OffsetSurface::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom_OffsetSurface::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
        .def("Bounds",
             []( Geom_OffsetSurface &self   ){
                 Standard_Real  U1;
                Standard_Real  U2;
                Standard_Real  V1;
                Standard_Real  V2;

                 self.Bounds(U1,U2,V1,V2);
                 
                 return std::make_tuple(U1,U2,V1,V2); },
             R"#(Returns the parametric bounds U1, U2, V1 and V2 of this offset surface. If the surface is infinite, this function can return: - Standard_Real::RealFirst(), or - Standard_Real::RealLast().)#" 
          )
        .def("TransformParameters",
             []( Geom_OffsetSurface &self , const gp_Trsf & T ){
                 Standard_Real  U;
                Standard_Real  V;

                 self.TransformParameters(U,V,T);
                 
                 return std::make_tuple(U,V); },
             R"#(Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method calls the basis surface method.)#"  , py::arg("T")
          )
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_OffsetSurface::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_OffsetSurface::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("BasisSurface",
             (const opencascade::handle<Geom_Surface> & (Geom_OffsetSurface::*)() const) static_cast<const opencascade::handle<Geom_Surface> & (Geom_OffsetSurface::*)() const>(&Geom_OffsetSurface::BasisSurface),
             R"#(Returns the basis surface of this offset surface. Note: The basis surface can be an offset surface.)#"
             
         )
       .def("OsculatingSurface",
             (const opencascade::handle<Geom_OsculatingSurface> & (Geom_OffsetSurface::*)() const) static_cast<const opencascade::handle<Geom_OsculatingSurface> & (Geom_OffsetSurface::*)() const>(&Geom_OffsetSurface::OsculatingSurface),
             R"#(Returns osculating surface if base surface is B-spline or Bezier)#"
             
         )
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_OffsetSurface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_OffsetSurface::*)() const>(&Geom_OffsetSurface::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_SweptSurface from ./opencascade/Geom_SweptSurface.hxx
    klass = m.attr("Geom_SweptSurface");


    // nested enums

    static_cast<py::class_<Geom_SweptSurface ,opencascade::handle<Geom_SweptSurface> ,Py_Geom_SweptSurface , Geom_Surface >>(klass)
    // constructors
    // custom constructors
    // methods
        .def("Continuity",
             (GeomAbs_Shape (Geom_SweptSurface::*)() const) static_cast<GeomAbs_Shape (Geom_SweptSurface::*)() const>(&Geom_SweptSurface::Continuity),
             R"#(returns the continuity of the surface : C0 : only geometric continuity, C1 : continuity of the first derivative all along the surface, C2 : continuity of the second derivative all along the surface, C3 : continuity of the third derivative all along the surface, G1 : tangency continuity all along the surface, G2 : curvature continuity all along the surface, CN : the order of continuity is infinite.)#" 
          )
        .def("BasisCurve",
             (opencascade::handle<Geom_Curve> (Geom_SweptSurface::*)() const) static_cast<opencascade::handle<Geom_Curve> (Geom_SweptSurface::*)() const>(&Geom_SweptSurface::BasisCurve),
             R"#(Returns the referenced curve of the surface. For a surface of revolution it is the revolution curve, for a surface of linear extrusion it is the extruded curve.)#" 
          )
        .def("DumpJson",
             (void (Geom_SweptSurface::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom_SweptSurface::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom_SweptSurface::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_SweptSurface::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_SweptSurface::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Direction",
             (const gp_Dir & (Geom_SweptSurface::*)() const) static_cast<const gp_Dir & (Geom_SweptSurface::*)() const>(&Geom_SweptSurface::Direction),
             R"#(Returns the reference direction of the swept surface. For a surface of revolution it is the direction of the revolution axis, for a surface of linear extrusion it is the direction of extrusion.)#"
             
         )
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_SweptSurface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_SweptSurface::*)() const>(&Geom_SweptSurface::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_VectorWithMagnitude from ./opencascade/Geom_VectorWithMagnitude.hxx
    klass = m.attr("Geom_VectorWithMagnitude");


    // nested enums

    static_cast<py::class_<Geom_VectorWithMagnitude ,opencascade::handle<Geom_VectorWithMagnitude>  , Geom_Vector >>(klass)
    // constructors
        .def(py::init< const gp_Vec & >()  , py::arg("V") )
        .def(py::init< const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("X"),  py::arg("Y"),  py::arg("Z") )
        .def(py::init< const gp_Pnt &,const gp_Pnt & >()  , py::arg("P1"),  py::arg("P2") )
    // custom constructors
    // methods
        .def("SetCoord",
             (void (Geom_VectorWithMagnitude::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (Geom_VectorWithMagnitude::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&Geom_VectorWithMagnitude::SetCoord),
             R"#(Assigns the values X, Y and Z to the coordinates of this vector.)#"  , py::arg("X"),  py::arg("Y"),  py::arg("Z")
          )
        .def("SetVec",
             (void (Geom_VectorWithMagnitude::*)( const gp_Vec &  ) ) static_cast<void (Geom_VectorWithMagnitude::*)( const gp_Vec &  ) >(&Geom_VectorWithMagnitude::SetVec),
             R"#(Converts the gp_Vec vector V into this vector.)#"  , py::arg("V")
          )
        .def("SetX",
             (void (Geom_VectorWithMagnitude::*)( const Standard_Real  ) ) static_cast<void (Geom_VectorWithMagnitude::*)( const Standard_Real  ) >(&Geom_VectorWithMagnitude::SetX),
             R"#(Changes the X coordinate of <me>.)#"  , py::arg("X")
          )
        .def("SetY",
             (void (Geom_VectorWithMagnitude::*)( const Standard_Real  ) ) static_cast<void (Geom_VectorWithMagnitude::*)( const Standard_Real  ) >(&Geom_VectorWithMagnitude::SetY),
             R"#(Changes the Y coordinate of <me>)#"  , py::arg("Y")
          )
        .def("SetZ",
             (void (Geom_VectorWithMagnitude::*)( const Standard_Real  ) ) static_cast<void (Geom_VectorWithMagnitude::*)( const Standard_Real  ) >(&Geom_VectorWithMagnitude::SetZ),
             R"#(Changes the Z coordinate of <me>.)#"  , py::arg("Z")
          )
        .def("Magnitude",
             (Standard_Real (Geom_VectorWithMagnitude::*)() const) static_cast<Standard_Real (Geom_VectorWithMagnitude::*)() const>(&Geom_VectorWithMagnitude::Magnitude),
             R"#(Returns the magnitude of <me>.)#" 
          )
        .def("SquareMagnitude",
             (Standard_Real (Geom_VectorWithMagnitude::*)() const) static_cast<Standard_Real (Geom_VectorWithMagnitude::*)() const>(&Geom_VectorWithMagnitude::SquareMagnitude),
             R"#(Returns the square magnitude of <me>.)#" 
          )
        .def("Add",
             (void (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> &  ) ) static_cast<void (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> &  ) >(&Geom_VectorWithMagnitude::Add),
             R"#(Adds the Vector Other to <me>.)#"  , py::arg("Other")
          )
        .def("Added",
             (opencascade::handle<Geom_VectorWithMagnitude> (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> &  ) const) static_cast<opencascade::handle<Geom_VectorWithMagnitude> (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> &  ) const>(&Geom_VectorWithMagnitude::Added),
             R"#(Adds the vector Other to <me>.)#"  , py::arg("Other")
          )
        .def("Cross",
             (void (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> &  ) ) static_cast<void (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> &  ) >(&Geom_VectorWithMagnitude::Cross),
             R"#(Computes the cross product between <me> and Other <me> ^ Other.)#"  , py::arg("Other")
          )
        .def("Crossed",
             (opencascade::handle<Geom_Vector> (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> &  ) const) static_cast<opencascade::handle<Geom_Vector> (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> &  ) const>(&Geom_VectorWithMagnitude::Crossed),
             R"#(Computes the cross product between <me> and Other <me> ^ Other. A new vector is returned.)#"  , py::arg("Other")
          )
        .def("CrossCross",
             (void (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> & ,  const opencascade::handle<Geom_Vector> &  ) ) static_cast<void (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> & ,  const opencascade::handle<Geom_Vector> &  ) >(&Geom_VectorWithMagnitude::CrossCross),
             R"#(Computes the triple vector product <me> ^ (V1 ^ V2).)#"  , py::arg("V1"),  py::arg("V2")
          )
        .def("CrossCrossed",
             (opencascade::handle<Geom_Vector> (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> & ,  const opencascade::handle<Geom_Vector> &  ) const) static_cast<opencascade::handle<Geom_Vector> (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> & ,  const opencascade::handle<Geom_Vector> &  ) const>(&Geom_VectorWithMagnitude::CrossCrossed),
             R"#(Computes the triple vector product <me> ^ (V1 ^ V2). A new vector is returned.)#"  , py::arg("V1"),  py::arg("V2")
          )
        .def("Divide",
             (void (Geom_VectorWithMagnitude::*)( const Standard_Real  ) ) static_cast<void (Geom_VectorWithMagnitude::*)( const Standard_Real  ) >(&Geom_VectorWithMagnitude::Divide),
             R"#(Divides <me> by a scalar.)#"  , py::arg("Scalar")
          )
        .def("Divided",
             (opencascade::handle<Geom_VectorWithMagnitude> (Geom_VectorWithMagnitude::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom_VectorWithMagnitude> (Geom_VectorWithMagnitude::*)( const Standard_Real  ) const>(&Geom_VectorWithMagnitude::Divided),
             R"#(Divides <me> by a scalar. A new vector is returned.)#"  , py::arg("Scalar")
          )
        .def("Multiplied",
             (opencascade::handle<Geom_VectorWithMagnitude> (Geom_VectorWithMagnitude::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom_VectorWithMagnitude> (Geom_VectorWithMagnitude::*)( const Standard_Real  ) const>(&Geom_VectorWithMagnitude::Multiplied),
             R"#(Computes the product of the vector <me> by a scalar. A new vector is returned.)#"  , py::arg("Scalar")
          )
        .def("Multiply",
             (void (Geom_VectorWithMagnitude::*)( const Standard_Real  ) ) static_cast<void (Geom_VectorWithMagnitude::*)( const Standard_Real  ) >(&Geom_VectorWithMagnitude::Multiply),
             R"#(Computes the product of the vector <me> by a scalar.)#"  , py::arg("Scalar")
          )
        .def("Normalize",
             (void (Geom_VectorWithMagnitude::*)() ) static_cast<void (Geom_VectorWithMagnitude::*)() >(&Geom_VectorWithMagnitude::Normalize),
             R"#(Normalizes <me>.)#" 
          )
        .def("Normalized",
             (opencascade::handle<Geom_VectorWithMagnitude> (Geom_VectorWithMagnitude::*)() const) static_cast<opencascade::handle<Geom_VectorWithMagnitude> (Geom_VectorWithMagnitude::*)() const>(&Geom_VectorWithMagnitude::Normalized),
             R"#(Returns a copy of <me> Normalized.)#" 
          )
        .def("Subtract",
             (void (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> &  ) ) static_cast<void (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> &  ) >(&Geom_VectorWithMagnitude::Subtract),
             R"#(Subtracts the Vector Other to <me>.)#"  , py::arg("Other")
          )
        .def("Subtracted",
             (opencascade::handle<Geom_VectorWithMagnitude> (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> &  ) const) static_cast<opencascade::handle<Geom_VectorWithMagnitude> (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> &  ) const>(&Geom_VectorWithMagnitude::Subtracted),
             R"#(Subtracts the vector Other to <me>. A new vector is returned.)#"  , py::arg("Other")
          )
        .def("Transform",
             (void (Geom_VectorWithMagnitude::*)( const gp_Trsf &  ) ) static_cast<void (Geom_VectorWithMagnitude::*)( const gp_Trsf &  ) >(&Geom_VectorWithMagnitude::Transform),
             R"#(Applies the transformation T to this vector.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom_Geometry> (Geom_VectorWithMagnitude::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_VectorWithMagnitude::*)() const>(&Geom_VectorWithMagnitude::Copy),
             R"#(Creates a new object which is a copy of this vector.)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_VectorWithMagnitude::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_VectorWithMagnitude::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_VectorWithMagnitude::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_VectorWithMagnitude::*)() const>(&Geom_VectorWithMagnitude::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_BSplineCurve from ./opencascade/Geom_BSplineCurve.hxx
    klass = m.attr("Geom_BSplineCurve");


    // nested enums

    static_cast<py::class_<Geom_BSplineCurve ,opencascade::handle<Geom_BSplineCurve>  , Geom_BoundedCurve >>(klass)
    // constructors
        .def(py::init<  const NCollection_Array1<gp_Pnt> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Integer> &,const Standard_Integer,const Standard_Boolean >()  , py::arg("Poles"),  py::arg("Knots"),  py::arg("Multiplicities"),  py::arg("Degree"),  py::arg("Periodic")=static_cast<const Standard_Boolean>(Standard_False) )
        .def(py::init<  const NCollection_Array1<gp_Pnt> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Integer> &,const Standard_Integer,const Standard_Boolean,const Standard_Boolean >()  , py::arg("Poles"),  py::arg("Weights"),  py::arg("Knots"),  py::arg("Multiplicities"),  py::arg("Degree"),  py::arg("Periodic")=static_cast<const Standard_Boolean>(Standard_False),  py::arg("CheckRational")=static_cast<const Standard_Boolean>(Standard_True) )
    // custom constructors
    // methods
        .def("IncreaseDegree",
             (void (Geom_BSplineCurve::*)( const Standard_Integer  ) ) static_cast<void (Geom_BSplineCurve::*)( const Standard_Integer  ) >(&Geom_BSplineCurve::IncreaseDegree),
             R"#(Increases the degree of this BSpline curve to Degree. As a result, the poles, weights and multiplicities tables are modified; the knots table is not changed. Nothing is done if Degree is less than or equal to the current degree. Exceptions Standard_ConstructionError if Degree is greater than Geom_BSplineCurve::MaxDegree().)#"  , py::arg("Degree")
          )
        .def("IncreaseMultiplicity",
             (void (Geom_BSplineCurve::*)( const Standard_Integer ,  const Standard_Integer  ) ) static_cast<void (Geom_BSplineCurve::*)( const Standard_Integer ,  const Standard_Integer  ) >(&Geom_BSplineCurve::IncreaseMultiplicity),
             R"#(Increases the multiplicity of the knot <Index> to <M>.)#"  , py::arg("Index"),  py::arg("M")
          )
        .def("IncreaseMultiplicity",
             (void (Geom_BSplineCurve::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) ) static_cast<void (Geom_BSplineCurve::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) >(&Geom_BSplineCurve::IncreaseMultiplicity),
             R"#(Increases the multiplicities of the knots in [I1,I2] to <M>.)#"  , py::arg("I1"),  py::arg("I2"),  py::arg("M")
          )
        .def("IncrementMultiplicity",
             (void (Geom_BSplineCurve::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) ) static_cast<void (Geom_BSplineCurve::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) >(&Geom_BSplineCurve::IncrementMultiplicity),
             R"#(Increment the multiplicities of the knots in [I1,I2] by <M>.)#"  , py::arg("I1"),  py::arg("I2"),  py::arg("M")
          )
        .def("InsertKnot",
             (void (Geom_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<void (Geom_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Boolean  ) >(&Geom_BSplineCurve::InsertKnot),
             R"#(Inserts a knot value in the sequence of knots. If <U> is an existing knot the multiplicity is increased by <M>.)#"  , py::arg("U"),  py::arg("M")=static_cast<const Standard_Integer>(1),  py::arg("ParametricTolerance")=static_cast<const Standard_Real>(0.0),  py::arg("Add")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def("InsertKnots",
             (void (Geom_BSplineCurve::*)(  const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<void (Geom_BSplineCurve::*)(  const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  const Standard_Real ,  const Standard_Boolean  ) >(&Geom_BSplineCurve::InsertKnots),
             R"#(Inserts a set of knots values in the sequence of knots.)#"  , py::arg("Knots"),  py::arg("Mults"),  py::arg("ParametricTolerance")=static_cast<const Standard_Real>(0.0),  py::arg("Add")=static_cast<const Standard_Boolean>(Standard_False)
          )
        .def("RemoveKnot",
             (Standard_Boolean (Geom_BSplineCurve::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Real  ) ) static_cast<Standard_Boolean (Geom_BSplineCurve::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Real  ) >(&Geom_BSplineCurve::RemoveKnot),
             R"#(Reduces the multiplicity of the knot of index Index to M. If M is equal to 0, the knot is removed. With a modification of this type, the array of poles is also modified. Two different algorithms are systematically used to compute the new poles of the curve. If, for each pole, the distance between the pole calculated using the first algorithm and the same pole calculated using the second algorithm, is less than Tolerance, this ensures that the curve is not modified by more than Tolerance. Under these conditions, true is returned; otherwise, false is returned. A low tolerance is used to prevent modification of the curve. A high tolerance is used to "smooth" the curve. Exceptions Standard_OutOfRange if Index is outside the bounds of the knots table. pole insertion and pole removing this operation is limited to the Uniform or QuasiUniform BSplineCurve. The knot values are modified . If the BSpline is NonUniform or Piecewise Bezier an exception Construction error is raised.)#"  , py::arg("Index"),  py::arg("M"),  py::arg("Tolerance")
          )
        .def("Reverse",
             (void (Geom_BSplineCurve::*)() ) static_cast<void (Geom_BSplineCurve::*)() >(&Geom_BSplineCurve::Reverse),
             R"#(Changes the direction of parametrization of <me>. The Knot sequence is modified, the FirstParameter and the LastParameter are not modified. The StartPoint of the initial curve becomes the EndPoint of the reversed curve and the EndPoint of the initial curve becomes the StartPoint of the reversed curve.)#" 
          )
        .def("ReversedParameter",
             (Standard_Real (Geom_BSplineCurve::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_BSplineCurve::*)( const Standard_Real  ) const>(&Geom_BSplineCurve::ReversedParameter),
             R"#(Returns the parameter on the reversed curve for the point of parameter U on <me>.)#"  , py::arg("U")
          )
        .def("Segment",
             (void (Geom_BSplineCurve::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (Geom_BSplineCurve::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&Geom_BSplineCurve::Segment),
             R"#(Modifies this BSpline curve by segmenting it between U1 and U2. Either of these values can be outside the bounds of the curve, but U2 must be greater than U1. All data structure tables of this BSpline curve are modified, but the knots located between U1 and U2 are retained. The degree of the curve is not modified.)#"  , py::arg("U1"),  py::arg("U2"),  py::arg("theTolerance")=static_cast<const Standard_Real>(Precision :: PConfusion ( ))
          )
        .def("SetKnot",
             (void (Geom_BSplineCurve::*)( const Standard_Integer ,  const Standard_Real  ) ) static_cast<void (Geom_BSplineCurve::*)( const Standard_Integer ,  const Standard_Real  ) >(&Geom_BSplineCurve::SetKnot),
             R"#(Modifies this BSpline curve by assigning the value K to the knot of index Index in the knots table. This is a relatively local modification because K must be such that: Knots(Index - 1) < K < Knots(Index + 1) The second syntax allows you also to increase the multiplicity of the knot to M (but it is not possible to decrease the multiplicity of the knot with this function). Standard_ConstructionError if: - K is not such that: Knots(Index - 1) < K < Knots(Index + 1) - M is greater than the degree of this BSpline curve or lower than the previous multiplicity of knot of index Index in the knots table. Standard_OutOfRange if Index is outside the bounds of the knots table.)#"  , py::arg("Index"),  py::arg("K")
          )
        .def("SetKnots",
             (void (Geom_BSplineCurve::*)(  const NCollection_Array1<Standard_Real> &  ) ) static_cast<void (Geom_BSplineCurve::*)(  const NCollection_Array1<Standard_Real> &  ) >(&Geom_BSplineCurve::SetKnots),
             R"#(Modifies this BSpline curve by assigning the array K to its knots table. The multiplicity of the knots is not modified. Exceptions Standard_ConstructionError if the values in the array K are not in ascending order. Standard_OutOfRange if the bounds of the array K are not respectively 1 and the number of knots of this BSpline curve.)#"  , py::arg("K")
          )
        .def("SetKnot",
             (void (Geom_BSplineCurve::*)( const Standard_Integer ,  const Standard_Real ,  const Standard_Integer  ) ) static_cast<void (Geom_BSplineCurve::*)( const Standard_Integer ,  const Standard_Real ,  const Standard_Integer  ) >(&Geom_BSplineCurve::SetKnot),
             R"#(Changes the knot of range Index with its multiplicity. You can increase the multiplicity of a knot but it is not allowed to decrease the multiplicity of an existing knot.)#"  , py::arg("Index"),  py::arg("K"),  py::arg("M")
          )
        .def("SetPeriodic",
             (void (Geom_BSplineCurve::*)() ) static_cast<void (Geom_BSplineCurve::*)() >(&Geom_BSplineCurve::SetPeriodic),
             R"#(Changes this BSpline curve into a periodic curve. To become periodic, the curve must first be closed. Next, the knot sequence must be periodic. For this, FirstUKnotIndex and LastUKnotIndex are used to compute I1 and I2, the indexes in the knots array of the knots corresponding to the first and last parameters of this BSpline curve. The period is therefore: Knots(I2) - Knots(I1). Consequently, the knots and poles tables are modified. Exceptions Standard_ConstructionError if this BSpline curve is not closed.)#" 
          )
        .def("SetOrigin",
             (void (Geom_BSplineCurve::*)( const Standard_Integer  ) ) static_cast<void (Geom_BSplineCurve::*)( const Standard_Integer  ) >(&Geom_BSplineCurve::SetOrigin),
             R"#(Assigns the knot of index Index in the knots table as the origin of this periodic BSpline curve. As a consequence, the knots and poles tables are modified. Exceptions Standard_NoSuchObject if this curve is not periodic. Standard_DomainError if Index is outside the bounds of the knots table.)#"  , py::arg("Index")
          )
        .def("SetOrigin",
             (void (Geom_BSplineCurve::*)( const Standard_Real ,  const Standard_Real  ) ) static_cast<void (Geom_BSplineCurve::*)( const Standard_Real ,  const Standard_Real  ) >(&Geom_BSplineCurve::SetOrigin),
             R"#(Set the origin of a periodic curve at Knot U. If U is not a knot of the BSpline a new knot is inserted. KnotVector and poles are modified. Raised if the curve is not periodic)#"  , py::arg("U"),  py::arg("Tol")
          )
        .def("SetNotPeriodic",
             (void (Geom_BSplineCurve::*)() ) static_cast<void (Geom_BSplineCurve::*)() >(&Geom_BSplineCurve::SetNotPeriodic),
             R"#(Changes this BSpline curve into a non-periodic curve. If this curve is already non-periodic, it is not modified. Note: the poles and knots tables are modified. Warning If this curve is periodic, as the multiplicity of the first and last knots is not modified, and is not equal to Degree + 1, where Degree is the degree of this BSpline curve, the start and end points of the curve are not its first and last poles.)#" 
          )
        .def("SetPole",
             (void (Geom_BSplineCurve::*)( const Standard_Integer ,  const gp_Pnt &  ) ) static_cast<void (Geom_BSplineCurve::*)( const Standard_Integer ,  const gp_Pnt &  ) >(&Geom_BSplineCurve::SetPole),
             R"#(Modifies this BSpline curve by assigning P to the pole of index Index in the poles table. Exceptions Standard_OutOfRange if Index is outside the bounds of the poles table. Standard_ConstructionError if Weight is negative or null.)#"  , py::arg("Index"),  py::arg("P")
          )
        .def("SetPole",
             (void (Geom_BSplineCurve::*)( const Standard_Integer ,  const gp_Pnt & ,  const Standard_Real  ) ) static_cast<void (Geom_BSplineCurve::*)( const Standard_Integer ,  const gp_Pnt & ,  const Standard_Real  ) >(&Geom_BSplineCurve::SetPole),
             R"#(Modifies this BSpline curve by assigning P to the pole of index Index in the poles table. This syntax also allows you to modify the weight of the modified pole, which becomes Weight. In this case, if this BSpline curve is non-rational, it can become rational and vice versa. Exceptions Standard_OutOfRange if Index is outside the bounds of the poles table. Standard_ConstructionError if Weight is negative or null.)#"  , py::arg("Index"),  py::arg("P"),  py::arg("Weight")
          )
        .def("SetWeight",
             (void (Geom_BSplineCurve::*)( const Standard_Integer ,  const Standard_Real  ) ) static_cast<void (Geom_BSplineCurve::*)( const Standard_Integer ,  const Standard_Real  ) >(&Geom_BSplineCurve::SetWeight),
             R"#(Changes the weight for the pole of range Index. If the curve was non rational it can become rational. If the curve was rational it can become non rational.)#"  , py::arg("Index"),  py::arg("Weight")
          )
        .def("IsCN",
             (Standard_Boolean (Geom_BSplineCurve::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom_BSplineCurve::*)( const Standard_Integer  ) const>(&Geom_BSplineCurve::IsCN),
             R"#(Returns the continuity of the curve, the curve is at least C0. Raised if N < 0.)#"  , py::arg("N")
          )
        .def("IsG1",
             (Standard_Boolean (Geom_BSplineCurve::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) const) static_cast<Standard_Boolean (Geom_BSplineCurve::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) const>(&Geom_BSplineCurve::IsG1),
             R"#(Check if curve has at least G1 continuity in interval [theTf, theTl] Returns true if IsCN(1) or angle between "left" and "right" first derivatives at knots with C0 continuity is less then theAngTol only knots in interval [theTf, theTl] is checked)#"  , py::arg("theTf"),  py::arg("theTl"),  py::arg("theAngTol")
          )
        .def("IsClosed",
             (Standard_Boolean (Geom_BSplineCurve::*)() const) static_cast<Standard_Boolean (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::IsClosed),
             R"#(Returns true if the distance between the first point and the last point of the curve is lower or equal to Resolution from package gp. Warnings : The first and the last point can be different from the first pole and the last pole of the curve.)#" 
          )
        .def("IsPeriodic",
             (Standard_Boolean (Geom_BSplineCurve::*)() const) static_cast<Standard_Boolean (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::IsPeriodic),
             R"#(Returns True if the curve is periodic.)#" 
          )
        .def("IsRational",
             (Standard_Boolean (Geom_BSplineCurve::*)() const) static_cast<Standard_Boolean (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::IsRational),
             R"#(Returns True if the weights are not identical. The tolerance criterion is Epsilon of the class Real.)#" 
          )
        .def("Continuity",
             (GeomAbs_Shape (Geom_BSplineCurve::*)() const) static_cast<GeomAbs_Shape (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::Continuity),
             R"#(Returns the global continuity of the curve : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, CN : the order of continuity is infinite. For a B-spline curve of degree d if a knot Ui has a multiplicity p the B-spline curve is only Cd-p continuous at Ui. So the global continuity of the curve can't be greater than Cd-p where p is the maximum multiplicity of the interior Knots. In the interior of a knot span the curve is infinitely continuously differentiable.)#" 
          )
        .def("Degree",
             (Standard_Integer (Geom_BSplineCurve::*)() const) static_cast<Standard_Integer (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::Degree),
             R"#(Returns the degree of this BSpline curve. The degree of a Geom_BSplineCurve curve cannot be greater than Geom_BSplineCurve::MaxDegree(). Computation of value and derivatives)#" 
          )
        .def("D0",
             (void (Geom_BSplineCurve::*)( const Standard_Real ,  gp_Pnt &  ) const) static_cast<void (Geom_BSplineCurve::*)( const Standard_Real ,  gp_Pnt &  ) const>(&Geom_BSplineCurve::D0),
             R"#(Returns in P the point of parameter U.)#"  , py::arg("U"),  py::arg("P")
          )
        .def("D1",
             (void (Geom_BSplineCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec &  ) const) static_cast<void (Geom_BSplineCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec &  ) const>(&Geom_BSplineCurve::D1),
             R"#(Raised if the continuity of the curve is not C1.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1")
          )
        .def("D2",
             (void (Geom_BSplineCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_BSplineCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_BSplineCurve::D2),
             R"#(Raised if the continuity of the curve is not C2.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def("D3",
             (void (Geom_BSplineCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_BSplineCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_BSplineCurve::D3),
             R"#(Raised if the continuity of the curve is not C3.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3")
          )
        .def("DN",
             (gp_Vec (Geom_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer  ) const) static_cast<gp_Vec (Geom_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer  ) const>(&Geom_BSplineCurve::DN),
             R"#(For the point of parameter U of this BSpline curve, computes the vector corresponding to the Nth derivative. Warning On a point where the continuity of the curve is not the one requested, this function impacts the part defined by the parameter with a value greater than U, i.e. the part of the curve to the "right" of the singularity. Exceptions Standard_RangeError if N is less than 1.)#"  , py::arg("U"),  py::arg("N")
          )
        .def("LocalValue",
             (gp_Pnt (Geom_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const) static_cast<gp_Pnt (Geom_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const>(&Geom_BSplineCurve::LocalValue),
             R"#(Raised if FromK1 = ToK2.)#"  , py::arg("U"),  py::arg("FromK1"),  py::arg("ToK2")
          )
        .def("LocalD0",
             (void (Geom_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  gp_Pnt &  ) const) static_cast<void (Geom_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  gp_Pnt &  ) const>(&Geom_BSplineCurve::LocalD0),
             R"#(Raised if FromK1 = ToK2.)#"  , py::arg("U"),  py::arg("FromK1"),  py::arg("ToK2"),  py::arg("P")
          )
        .def("LocalD1",
             (void (Geom_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  gp_Pnt & ,  gp_Vec &  ) const) static_cast<void (Geom_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  gp_Pnt & ,  gp_Vec &  ) const>(&Geom_BSplineCurve::LocalD1),
             R"#(Raised if the local continuity of the curve is not C1 between the knot K1 and the knot K2. Raised if FromK1 = ToK2.)#"  , py::arg("U"),  py::arg("FromK1"),  py::arg("ToK2"),  py::arg("P"),  py::arg("V1")
          )
        .def("LocalD2",
             (void (Geom_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_BSplineCurve::LocalD2),
             R"#(Raised if the local continuity of the curve is not C2 between the knot K1 and the knot K2. Raised if FromK1 = ToK2.)#"  , py::arg("U"),  py::arg("FromK1"),  py::arg("ToK2"),  py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def("LocalD3",
             (void (Geom_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_BSplineCurve::LocalD3),
             R"#(Raised if the local continuity of the curve is not C3 between the knot K1 and the knot K2. Raised if FromK1 = ToK2.)#"  , py::arg("U"),  py::arg("FromK1"),  py::arg("ToK2"),  py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3")
          )
        .def("LocalDN",
             (gp_Vec (Geom_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) const) static_cast<gp_Vec (Geom_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) const>(&Geom_BSplineCurve::LocalDN),
             R"#(Raised if the local continuity of the curve is not CN between the knot K1 and the knot K2. Raised if FromK1 = ToK2. Raised if N < 1.)#"  , py::arg("U"),  py::arg("FromK1"),  py::arg("ToK2"),  py::arg("N")
          )
        .def("EndPoint",
             (gp_Pnt (Geom_BSplineCurve::*)() const) static_cast<gp_Pnt (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::EndPoint),
             R"#(Returns the last point of the curve. Warnings : The last point of the curve is different from the last pole of the curve if the multiplicity of the last knot is lower than Degree.)#" 
          )
        .def("FirstUKnotIndex",
             (Standard_Integer (Geom_BSplineCurve::*)() const) static_cast<Standard_Integer (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::FirstUKnotIndex),
             R"#(Returns the index in the knot array of the knot corresponding to the first or last parameter of this BSpline curve. For a BSpline curve, the first (or last) parameter (which gives the start (or end) point of the curve) is a knot value. However, if the multiplicity of the first (or last) knot is less than Degree + 1, where Degree is the degree of the curve, it is not the first (or last) knot of the curve.)#" 
          )
        .def("FirstParameter",
             (Standard_Real (Geom_BSplineCurve::*)() const) static_cast<Standard_Real (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::FirstParameter),
             R"#(Returns the value of the first parameter of this BSpline curve. This is a knot value. The first parameter is the one of the start point of the BSpline curve.)#" 
          )
        .def("Knot",
             (Standard_Real (Geom_BSplineCurve::*)( const Standard_Integer  ) const) static_cast<Standard_Real (Geom_BSplineCurve::*)( const Standard_Integer  ) const>(&Geom_BSplineCurve::Knot),
             R"#(Returns the knot of range Index. When there is a knot with a multiplicity greater than 1 the knot is not repeated. The method Multiplicity can be used to get the multiplicity of the Knot. Raised if Index < 1 or Index > NbKnots)#"  , py::arg("Index")
          )
        .def("Knots",
             (void (Geom_BSplineCurve::*)( NCollection_Array1<Standard_Real> &  ) const) static_cast<void (Geom_BSplineCurve::*)( NCollection_Array1<Standard_Real> &  ) const>(&Geom_BSplineCurve::Knots),
             R"#(returns the knot values of the B-spline curve; Warning A knot with a multiplicity greater than 1 is not repeated in the knot table. The Multiplicity function can be used to obtain the multiplicity of each knot.)#"  , py::arg("K")
          )
        .def("KnotSequence",
             (void (Geom_BSplineCurve::*)( NCollection_Array1<Standard_Real> &  ) const) static_cast<void (Geom_BSplineCurve::*)( NCollection_Array1<Standard_Real> &  ) const>(&Geom_BSplineCurve::KnotSequence),
             R"#(Returns K, the knots sequence of this BSpline curve. In this sequence, knots with a multiplicity greater than 1 are repeated. In the case of a non-periodic curve the length of the sequence must be equal to the sum of the NbKnots multiplicities of the knots of the curve (where NbKnots is the number of knots of this BSpline curve). This sum is also equal to : NbPoles + Degree + 1 where NbPoles is the number of poles and Degree the degree of this BSpline curve. In the case of a periodic curve, if there are k periodic knots, the period is Knot(k+1) - Knot(1). The initial sequence is built by writing knots 1 to k+1, which are repeated according to their corresponding multiplicities. If Degree is the degree of the curve, the degree of continuity of the curve at the knot of index 1 (or k+1) is equal to c = Degree + 1 - Mult(1). c knots are then inserted at the beginning and end of the initial sequence: - the c values of knots preceding the first item Knot(k+1) in the initial sequence are inserted at the beginning; the period is subtracted from these c values; - the c values of knots following the last item Knot(1) in the initial sequence are inserted at the end; the period is added to these c values. The length of the sequence must therefore be equal to: NbPoles + 2*Degree - Mult(1) + 2. Example For a non-periodic BSpline curve of degree 2 where: - the array of knots is: { k1 k2 k3 k4 }, - with associated multiplicities: { 3 1 2 3 }, the knot sequence is: K = { k1 k1 k1 k2 k3 k3 k4 k4 k4 } For a periodic BSpline curve of degree 4 , which is "C1" continuous at the first knot, and where : - the periodic knots are: { k1 k2 k3 (k4) } (3 periodic knots: the points of parameter k1 and k4 are identical, the period is p = k4 - k1), - with associated multiplicities: { 3 1 2 (3) }, the degree of continuity at knots k1 and k4 is: Degree + 1 - Mult(i) = 2. 2 supplementary knots are added at the beginning and end of the sequence: - at the beginning: the 2 knots preceding k4 minus the period; in this example, this is k3 - p both times; - at the end: the 2 knots following k1 plus the period; in this example, this is k2 + p and k3 + p. The knot sequence is therefore: K = { k3-p k3-p k1 k1 k1 k2 k3 k3 k4 k4 k4 k2+p k3+p } Exceptions Raised if K.Lower() is less than number of first knot in knot sequence with repetitions or K.Upper() is more than number of last knot in knot sequence with repetitions.)#"  , py::arg("K")
          )
        .def("KnotDistribution",
             (GeomAbs_BSplKnotDistribution (Geom_BSplineCurve::*)() const) static_cast<GeomAbs_BSplKnotDistribution (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::KnotDistribution),
             R"#(Returns NonUniform or Uniform or QuasiUniform or PiecewiseBezier. If all the knots differ by a positive constant from the preceding knot the BSpline Curve can be : - Uniform if all the knots are of multiplicity 1, - QuasiUniform if all the knots are of multiplicity 1 except for the first and last knot which are of multiplicity Degree + 1, - PiecewiseBezier if the first and last knots have multiplicity Degree + 1 and if interior knots have multiplicity Degree A piecewise Bezier with only two knots is a BezierCurve. else the curve is non uniform. The tolerance criterion is Epsilon from class Real.)#" 
          )
        .def("LastUKnotIndex",
             (Standard_Integer (Geom_BSplineCurve::*)() const) static_cast<Standard_Integer (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::LastUKnotIndex),
             R"#(For a BSpline curve the last parameter (which gives the end point of the curve) is a knot value but if the multiplicity of the last knot index is lower than Degree + 1 it is not the last knot of the curve. This method computes the index of the knot corresponding to the last parameter.)#" 
          )
        .def("LastParameter",
             (Standard_Real (Geom_BSplineCurve::*)() const) static_cast<Standard_Real (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::LastParameter),
             R"#(Computes the parametric value of the end point of the curve. It is a knot value.)#" 
          )
        .def("Multiplicity",
             (Standard_Integer (Geom_BSplineCurve::*)( const Standard_Integer  ) const) static_cast<Standard_Integer (Geom_BSplineCurve::*)( const Standard_Integer  ) const>(&Geom_BSplineCurve::Multiplicity),
             R"#(Returns the multiplicity of the knots of range Index. Raised if Index < 1 or Index > NbKnots)#"  , py::arg("Index")
          )
        .def("Multiplicities",
             (void (Geom_BSplineCurve::*)( NCollection_Array1<Standard_Integer> &  ) const) static_cast<void (Geom_BSplineCurve::*)( NCollection_Array1<Standard_Integer> &  ) const>(&Geom_BSplineCurve::Multiplicities),
             R"#(Returns the multiplicity of the knots of the curve.)#"  , py::arg("M")
          )
        .def("NbKnots",
             (Standard_Integer (Geom_BSplineCurve::*)() const) static_cast<Standard_Integer (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::NbKnots),
             R"#(Returns the number of knots. This method returns the number of knot without repetition of multiple knots.)#" 
          )
        .def("NbPoles",
             (Standard_Integer (Geom_BSplineCurve::*)() const) static_cast<Standard_Integer (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::NbPoles),
             R"#(Returns the number of poles)#" 
          )
        .def("Pole",
             (const gp_Pnt & (Geom_BSplineCurve::*)( const Standard_Integer  ) const) static_cast<const gp_Pnt & (Geom_BSplineCurve::*)( const Standard_Integer  ) const>(&Geom_BSplineCurve::Pole),
             R"#(Returns the pole of range Index. Raised if Index < 1 or Index > NbPoles.)#"  , py::arg("Index")
          )
        .def("Poles",
             (void (Geom_BSplineCurve::*)( NCollection_Array1<gp_Pnt> &  ) const) static_cast<void (Geom_BSplineCurve::*)( NCollection_Array1<gp_Pnt> &  ) const>(&Geom_BSplineCurve::Poles),
             R"#(Returns the poles of the B-spline curve;)#"  , py::arg("P")
          )
        .def("StartPoint",
             (gp_Pnt (Geom_BSplineCurve::*)() const) static_cast<gp_Pnt (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::StartPoint),
             R"#(Returns the start point of the curve. Warnings : This point is different from the first pole of the curve if the multiplicity of the first knot is lower than Degree.)#" 
          )
        .def("Weight",
             (Standard_Real (Geom_BSplineCurve::*)( const Standard_Integer  ) const) static_cast<Standard_Real (Geom_BSplineCurve::*)( const Standard_Integer  ) const>(&Geom_BSplineCurve::Weight),
             R"#(Returns the weight of the pole of range Index . Raised if Index < 1 or Index > NbPoles.)#"  , py::arg("Index")
          )
        .def("Weights",
             (void (Geom_BSplineCurve::*)( NCollection_Array1<Standard_Real> &  ) const) static_cast<void (Geom_BSplineCurve::*)( NCollection_Array1<Standard_Real> &  ) const>(&Geom_BSplineCurve::Weights),
             R"#(Returns the weights of the B-spline curve;)#"  , py::arg("W")
          )
        .def("Weights",
             (const TColStd_Array1OfReal * (Geom_BSplineCurve::*)() const) static_cast<const TColStd_Array1OfReal * (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::Weights),
             R"#(Returns the weights of the B-spline curve;)#" 
          )
        .def("Transform",
             (void (Geom_BSplineCurve::*)( const gp_Trsf &  ) ) static_cast<void (Geom_BSplineCurve::*)( const gp_Trsf &  ) >(&Geom_BSplineCurve::Transform),
             R"#(Applies the transformation T to this BSpline curve.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom_Geometry> (Geom_BSplineCurve::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::Copy),
             R"#(Creates a new object which is a copy of this BSpline curve.)#" 
          )
        .def("IsEqual",
             (Standard_Boolean (Geom_BSplineCurve::*)( const opencascade::handle<Geom_BSplineCurve> & ,  const Standard_Real  ) const) static_cast<Standard_Boolean (Geom_BSplineCurve::*)( const opencascade::handle<Geom_BSplineCurve> & ,  const Standard_Real  ) const>(&Geom_BSplineCurve::IsEqual),
             R"#(Comapare two Bspline curve on identity;)#"  , py::arg("theOther"),  py::arg("thePreci")
          )
        .def("DumpJson",
             (void (Geom_BSplineCurve::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom_BSplineCurve::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom_BSplineCurve::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
        .def("PeriodicNormalization",
             []( Geom_BSplineCurve &self   ){
                 Standard_Real  U;

                 self.PeriodicNormalization(U);
                 
                 return std::make_tuple(U); },
             R"#(returns the parameter normalized within the period if the curve is periodic : otherwise does not do anything)#" 
          )
        .def("MovePoint",
             []( Geom_BSplineCurve &self , const Standard_Real U,const gp_Pnt & P,const Standard_Integer Index1,const Standard_Integer Index2 ){
                 Standard_Integer  FirstModifiedPole;
                Standard_Integer  LastModifiedPole;

                 self.MovePoint(U,P,Index1,Index2,FirstModifiedPole,LastModifiedPole);
                 
                 return std::make_tuple(FirstModifiedPole,LastModifiedPole); },
             R"#(Moves the point of parameter U of this BSpline curve to P. Index1 and Index2 are the indexes in the table of poles of this BSpline curve of the first and last poles designated to be moved. FirstModifiedPole and LastModifiedPole are the indexes of the first and last poles which are effectively modified. In the event of incompatibility between Index1, Index2 and the value U: - no change is made to this BSpline curve, and - the FirstModifiedPole and LastModifiedPole are returned null. Exceptions Standard_OutOfRange if: - Index1 is greater than or equal to Index2, or - Index1 or Index2 is less than 1 or greater than the number of poles of this BSpline curve.)#"  , py::arg("U"),  py::arg("P"),  py::arg("Index1"),  py::arg("Index2")
          )
        .def("MovePointAndTangent",
             []( Geom_BSplineCurve &self , const Standard_Real U,const gp_Pnt & P,const gp_Vec & Tangent,const Standard_Real Tolerance,const Standard_Integer StartingCondition,const Standard_Integer EndingCondition ){
                 Standard_Integer  ErrorStatus;

                 self.MovePointAndTangent(U,P,Tangent,Tolerance,StartingCondition,EndingCondition,ErrorStatus);
                 
                 return std::make_tuple(ErrorStatus); },
             R"#(Move a point with parameter U to P. and makes it tangent at U be Tangent. StartingCondition = -1 means first can move EndingCondition = -1 means last point can move StartingCondition = 0 means the first point cannot move EndingCondition = 0 means the last point cannot move StartingCondition = 1 means the first point and tangent cannot move EndingCondition = 1 means the last point and tangent cannot move and so forth ErrorStatus != 0 means that there are not enough degree of freedom with the constrain to deform the curve accordingly)#"  , py::arg("U"),  py::arg("P"),  py::arg("Tangent"),  py::arg("Tolerance"),  py::arg("StartingCondition"),  py::arg("EndingCondition")
          )
        .def("LocateU",
             []( Geom_BSplineCurve &self , const Standard_Real U,const Standard_Real ParametricTolerance,const Standard_Boolean WithKnotRepetition ){
                 Standard_Integer  I1;
                Standard_Integer  I2;

                 self.LocateU(U,ParametricTolerance,I1,I2,WithKnotRepetition);
                 
                 return std::make_tuple(I1,I2); },
             R"#(Locates the parametric value U in the sequence of knots. If "WithKnotRepetition" is True we consider the knot's representation with repetition of multiple knot value, otherwise we consider the knot's representation with no repetition of multiple knot values. Knots (I1) <= U <= Knots (I2) . if I1 = I2 U is a knot value (the tolerance criterion ParametricTolerance is used). . if I1 < 1 => U < Knots (1) - Abs(ParametricTolerance) . if I2 > NbKnots => U > Knots (NbKnots) + Abs(ParametricTolerance))#"  , py::arg("U"),  py::arg("ParametricTolerance"),  py::arg("WithKnotRepetition")=static_cast<const Standard_Boolean>(Standard_False)
          )
        .def("Resolution",
             []( Geom_BSplineCurve &self , const Standard_Real Tolerance3D ){
                 Standard_Real  UTolerance;

                 self.Resolution(Tolerance3D,UTolerance);
                 
                 return std::make_tuple(UTolerance); },
             R"#(Computes for this BSpline curve the parametric tolerance UTolerance for a given 3D tolerance Tolerance3D. If f(t) is the equation of this BSpline curve, UTolerance ensures that: | t1 - t0| < Utolerance ===> |f(t1) - f(t0)| < Tolerance3D)#"  , py::arg("Tolerance3D")
          )
    // static methods
        .def_static("MaxDegree_s",
                    (Standard_Integer (*)() ) static_cast<Standard_Integer (*)() >(&Geom_BSplineCurve::MaxDegree),
                    R"#(Returns the value of the maximum degree of the normalized B-spline basis functions in this package.)#" 
          )
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_BSplineCurve::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_BSplineCurve::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Knots",
             (const TColStd_Array1OfReal & (Geom_BSplineCurve::*)() const) static_cast<const TColStd_Array1OfReal & (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::Knots),
             R"#(returns the knot values of the B-spline curve; Warning A knot with a multiplicity greater than 1 is not repeated in the knot table. The Multiplicity function can be used to obtain the multiplicity of each knot.)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("KnotSequence",
             (const TColStd_Array1OfReal & (Geom_BSplineCurve::*)() const) static_cast<const TColStd_Array1OfReal & (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::KnotSequence),
             R"#(returns the knots of the B-spline curve. Knots with multiplicit greater than 1 are repeated)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("Multiplicities",
             (const TColStd_Array1OfInteger & (Geom_BSplineCurve::*)() const) static_cast<const TColStd_Array1OfInteger & (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::Multiplicities),
             R"#(returns the multiplicity of the knots of the curve.)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("Poles",
             (const TColgp_Array1OfPnt & (Geom_BSplineCurve::*)() const) static_cast<const TColgp_Array1OfPnt & (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::Poles),
             R"#(Returns the poles of the B-spline curve;)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_BSplineCurve::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_BSplineSurface from ./opencascade/Geom_BSplineSurface.hxx
    klass = m.attr("Geom_BSplineSurface");


    // nested enums

    static_cast<py::class_<Geom_BSplineSurface ,opencascade::handle<Geom_BSplineSurface>  , Geom_BoundedSurface >>(klass)
    // constructors
        .def(py::init<  const NCollection_Array2<gp_Pnt> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Integer> &, const NCollection_Array1<Standard_Integer> &,const Standard_Integer,const Standard_Integer,const Standard_Boolean,const Standard_Boolean >()  , py::arg("Poles"),  py::arg("UKnots"),  py::arg("VKnots"),  py::arg("UMults"),  py::arg("VMults"),  py::arg("UDegree"),  py::arg("VDegree"),  py::arg("UPeriodic")=static_cast<const Standard_Boolean>(Standard_False),  py::arg("VPeriodic")=static_cast<const Standard_Boolean>(Standard_False) )
        .def(py::init<  const NCollection_Array2<gp_Pnt> &, const NCollection_Array2<Standard_Real> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Integer> &, const NCollection_Array1<Standard_Integer> &,const Standard_Integer,const Standard_Integer,const Standard_Boolean,const Standard_Boolean >()  , py::arg("Poles"),  py::arg("Weights"),  py::arg("UKnots"),  py::arg("VKnots"),  py::arg("UMults"),  py::arg("VMults"),  py::arg("UDegree"),  py::arg("VDegree"),  py::arg("UPeriodic")=static_cast<const Standard_Boolean>(Standard_False),  py::arg("VPeriodic")=static_cast<const Standard_Boolean>(Standard_False) )
    // custom constructors
    // methods
        .def("ExchangeUV",
             (void (Geom_BSplineSurface::*)() ) static_cast<void (Geom_BSplineSurface::*)() >(&Geom_BSplineSurface::ExchangeUV),
             R"#(Exchanges the u and v parametric directions on this BSpline surface. As a consequence: - the poles and weights tables are transposed, - the knots and multiplicities tables are exchanged, - degrees of continuity, and rational, periodic and uniform characteristics are exchanged, and - the orientation of the surface is inverted.)#" 
          )
        .def("SetUPeriodic",
             (void (Geom_BSplineSurface::*)() ) static_cast<void (Geom_BSplineSurface::*)() >(&Geom_BSplineSurface::SetUPeriodic),
             R"#(Sets the surface U periodic. Modifies this surface to be periodic in the U parametric direction. To become periodic in a given parametric direction a surface must be closed in that parametric direction, and the knot sequence relative to that direction must be periodic. To generate this periodic sequence of knots, the functions FirstUKnotIndex and LastUKnotIndex are used to compute I1 and I2. These are the indexes, in the knot array associated with the given parametric direction, of the knots that correspond to the first and last parameters of this BSpline surface in the given parametric direction. Hence the period is: Knots(I1) - Knots(I2) As a result, the knots and poles tables are modified. Exceptions Standard_ConstructionError if the surface is not closed in the given parametric direction.)#" 
          )
        .def("SetVPeriodic",
             (void (Geom_BSplineSurface::*)() ) static_cast<void (Geom_BSplineSurface::*)() >(&Geom_BSplineSurface::SetVPeriodic),
             R"#(Sets the surface V periodic. Modifies this surface to be periodic in the V parametric direction. To become periodic in a given parametric direction a surface must be closed in that parametric direction, and the knot sequence relative to that direction must be periodic. To generate this periodic sequence of knots, the functions FirstVKnotIndex and LastVKnotIndex are used to compute I1 and I2. These are the indexes, in the knot array associated with the given parametric direction, of the knots that correspond to the first and last parameters of this BSpline surface in the given parametric direction. Hence the period is: Knots(I1) - Knots(I2) As a result, the knots and poles tables are modified. Exceptions Standard_ConstructionError if the surface is not closed in the given parametric direction.)#" 
          )
        .def("SetUOrigin",
             (void (Geom_BSplineSurface::*)( const Standard_Integer  ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer  ) >(&Geom_BSplineSurface::SetUOrigin),
             R"#(Assigns the knot of index Index in the knots table in the corresponding parametric direction to be the origin of this periodic BSpline surface. As a consequence, the knots and poles tables are modified. Exceptions Standard_NoSuchObject if this BSpline surface is not periodic in the given parametric direction. Standard_DomainError if Index is outside the bounds of the knots table in the given parametric direction.)#"  , py::arg("Index")
          )
        .def("SetVOrigin",
             (void (Geom_BSplineSurface::*)( const Standard_Integer  ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer  ) >(&Geom_BSplineSurface::SetVOrigin),
             R"#(Assigns the knot of index Index in the knots table in the corresponding parametric direction to be the origin of this periodic BSpline surface. As a consequence, the knots and poles tables are modified. Exceptions Standard_NoSuchObject if this BSpline surface is not periodic in the given parametric direction. Standard_DomainError if Index is outside the bounds of the knots table in the given parametric direction.)#"  , py::arg("Index")
          )
        .def("SetUNotPeriodic",
             (void (Geom_BSplineSurface::*)() ) static_cast<void (Geom_BSplineSurface::*)() >(&Geom_BSplineSurface::SetUNotPeriodic),
             R"#(Sets the surface U not periodic. Changes this BSpline surface into a non-periodic surface along U direction. If this surface is already non-periodic, it is not modified. Note: the poles and knots tables are modified.)#" 
          )
        .def("SetVNotPeriodic",
             (void (Geom_BSplineSurface::*)() ) static_cast<void (Geom_BSplineSurface::*)() >(&Geom_BSplineSurface::SetVNotPeriodic),
             R"#(Sets the surface V not periodic. Changes this BSpline surface into a non-periodic surface along V direction. If this surface is already non-periodic, it is not modified. Note: the poles and knots tables are modified.)#" 
          )
        .def("UReverse",
             (void (Geom_BSplineSurface::*)() ) static_cast<void (Geom_BSplineSurface::*)() >(&Geom_BSplineSurface::UReverse),
             R"#(Changes the orientation of this BSpline surface in the U parametric direction. The bounds of the surface are not changed but the given parametric direction is reversed. Hence the orientation of the surface is reversed. The knots and poles tables are modified.)#" 
          )
        .def("VReverse",
             (void (Geom_BSplineSurface::*)() ) static_cast<void (Geom_BSplineSurface::*)() >(&Geom_BSplineSurface::VReverse),
             R"#(Changes the orientation of this BSpline surface in the V parametric direction. The bounds of the surface are not changed but the given parametric direction is reversed. Hence the orientation of the surface is reversed. The knots and poles tables are modified.)#" 
          )
        .def("UReversedParameter",
             (Standard_Real (Geom_BSplineSurface::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_BSplineSurface::*)( const Standard_Real  ) const>(&Geom_BSplineSurface::UReversedParameter),
             R"#(Computes the u parameter on the modified surface, produced by reversing its U parametric direction, for the point of u parameter U, on this BSpline surface. For a BSpline surface, these functions return respectively: - UFirst + ULast - U, where UFirst, ULast are the values of the first and last parameters of this BSpline surface, in the u parametric directions.)#"  , py::arg("U")
          )
        .def("VReversedParameter",
             (Standard_Real (Geom_BSplineSurface::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_BSplineSurface::*)( const Standard_Real  ) const>(&Geom_BSplineSurface::VReversedParameter),
             R"#(Computes the v parameter on the modified surface, produced by reversing its V parametric direction, for the point of v parameter V on this BSpline surface. For a BSpline surface, these functions return respectively: - VFirst + VLast - V, VFirst and VLast are the values of the first and last parameters of this BSpline surface, in the v pametric directions.)#"  , py::arg("V")
          )
        .def("IncreaseDegree",
             (void (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Integer  ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Integer  ) >(&Geom_BSplineSurface::IncreaseDegree),
             R"#(Increases the degrees of this BSpline surface to UDegree and VDegree in the u and v parametric directions respectively. As a result, the tables of poles, weights and multiplicities are modified. The tables of knots is not changed. Note: Nothing is done if the given degree is less than or equal to the current degree in the corresponding parametric direction. Exceptions Standard_ConstructionError if UDegree or VDegree is greater than Geom_BSplineSurface::MaxDegree().)#"  , py::arg("UDegree"),  py::arg("VDegree")
          )
        .def("InsertUKnots",
             (void (Geom_BSplineSurface::*)(  const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<void (Geom_BSplineSurface::*)(  const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  const Standard_Real ,  const Standard_Boolean  ) >(&Geom_BSplineSurface::InsertUKnots),
             R"#(Inserts into the knots table for the U parametric direction of this BSpline surface: - the values of the array Knots, with their respective multiplicities, Mults. If the knot value to insert already exists in the table, its multiplicity is: - increased by M, if Add is true (the default), or - increased to M, if Add is false. The tolerance criterion used to check the equality of the knots is the larger of the values ParametricTolerance and Standard_Real::Epsilon(val), where val is the knot value to be inserted. Warning - If a given multiplicity coefficient is null, or negative, nothing is done. - The new multiplicity of a knot is limited to the degree of this BSpline surface in the corresponding parametric direction. Exceptions Standard_ConstructionError if a knot value to insert is outside the bounds of this BSpline surface in the specified parametric direction. The comparison uses the precision criterion ParametricTolerance.)#"  , py::arg("Knots"),  py::arg("Mults"),  py::arg("ParametricTolerance")=static_cast<const Standard_Real>(0.0),  py::arg("Add")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def("InsertVKnots",
             (void (Geom_BSplineSurface::*)(  const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<void (Geom_BSplineSurface::*)(  const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  const Standard_Real ,  const Standard_Boolean  ) >(&Geom_BSplineSurface::InsertVKnots),
             R"#(Inserts into the knots table for the V parametric direction of this BSpline surface: - the values of the array Knots, with their respective multiplicities, Mults. If the knot value to insert already exists in the table, its multiplicity is: - increased by M, if Add is true (the default), or - increased to M, if Add is false. The tolerance criterion used to check the equality of the knots is the larger of the values ParametricTolerance and Standard_Real::Epsilon(val), where val is the knot value to be inserted. Warning - If a given multiplicity coefficient is null, or negative, nothing is done. - The new multiplicity of a knot is limited to the degree of this BSpline surface in the corresponding parametric direction. Exceptions Standard_ConstructionError if a knot value to insert is outside the bounds of this BSpline surface in the specified parametric direction. The comparison uses the precision criterion ParametricTolerance.)#"  , py::arg("Knots"),  py::arg("Mults"),  py::arg("ParametricTolerance")=static_cast<const Standard_Real>(0.0),  py::arg("Add")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def("RemoveUKnot",
             (Standard_Boolean (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Real  ) ) static_cast<Standard_Boolean (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Real  ) >(&Geom_BSplineSurface::RemoveUKnot),
             R"#(Reduces to M the multiplicity of the knot of index Index in the U parametric direction. If M is 0, the knot is removed. With a modification of this type, the table of poles is also modified. Two different algorithms are used systematically to compute the new poles of the surface. For each pole, the distance between the pole calculated using the first algorithm and the same pole calculated using the second algorithm, is checked. If this distance is less than Tolerance it ensures that the surface is not modified by more than Tolerance. Under these conditions, the function returns true; otherwise, it returns false. A low tolerance prevents modification of the surface. A high tolerance "smoothes" the surface. Exceptions Standard_OutOfRange if Index is outside the bounds of the knots table of this BSpline surface.)#"  , py::arg("Index"),  py::arg("M"),  py::arg("Tolerance")
          )
        .def("RemoveVKnot",
             (Standard_Boolean (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Real  ) ) static_cast<Standard_Boolean (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Real  ) >(&Geom_BSplineSurface::RemoveVKnot),
             R"#(Reduces to M the multiplicity of the knot of index Index in the V parametric direction. If M is 0, the knot is removed. With a modification of this type, the table of poles is also modified. Two different algorithms are used systematically to compute the new poles of the surface. For each pole, the distance between the pole calculated using the first algorithm and the same pole calculated using the second algorithm, is checked. If this distance is less than Tolerance it ensures that the surface is not modified by more than Tolerance. Under these conditions, the function returns true; otherwise, it returns false. A low tolerance prevents modification of the surface. A high tolerance "smoothes" the surface. Exceptions Standard_OutOfRange if Index is outside the bounds of the knots table of this BSpline surface.)#"  , py::arg("Index"),  py::arg("M"),  py::arg("Tolerance")
          )
        .def("IncreaseUMultiplicity",
             (void (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Integer  ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Integer  ) >(&Geom_BSplineSurface::IncreaseUMultiplicity),
             R"#(Increases the multiplicity of the knot of range UIndex in the UKnots sequence. M is the new multiplicity. M must be greater than the previous multiplicity and lower or equal to the degree of the surface in the U parametric direction. Raised if M is not in the range [1, UDegree])#"  , py::arg("UIndex"),  py::arg("M")
          )
        .def("IncreaseUMultiplicity",
             (void (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) >(&Geom_BSplineSurface::IncreaseUMultiplicity),
             R"#(Increases until order M the multiplicity of the set of knots FromI1,...., ToI2 in the U direction. This method can be used to make a B_spline surface into a PiecewiseBezier B_spline surface. If <me> was uniform, it can become non uniform.)#"  , py::arg("FromI1"),  py::arg("ToI2"),  py::arg("M")
          )
        .def("IncrementUMultiplicity",
             (void (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) >(&Geom_BSplineSurface::IncrementUMultiplicity),
             R"#(Increments the multiplicity of the consecutives uknots FromI1..ToI2 by step. The multiplicity of each knot FromI1,.....,ToI2 must be lower or equal to the UDegree of the B_spline.)#"  , py::arg("FromI1"),  py::arg("ToI2"),  py::arg("Step")
          )
        .def("IncreaseVMultiplicity",
             (void (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Integer  ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Integer  ) >(&Geom_BSplineSurface::IncreaseVMultiplicity),
             R"#(Increases the multiplicity of a knot in the V direction. M is the new multiplicity.)#"  , py::arg("VIndex"),  py::arg("M")
          )
        .def("IncreaseVMultiplicity",
             (void (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) >(&Geom_BSplineSurface::IncreaseVMultiplicity),
             R"#(Increases until order M the multiplicity of the set of knots FromI1,...., ToI2 in the V direction. This method can be used to make a BSplineSurface into a PiecewiseBezier B_spline surface. If <me> was uniform, it can become non-uniform.)#"  , py::arg("FromI1"),  py::arg("ToI2"),  py::arg("M")
          )
        .def("IncrementVMultiplicity",
             (void (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) >(&Geom_BSplineSurface::IncrementVMultiplicity),
             R"#(Increments the multiplicity of the consecutives vknots FromI1..ToI2 by step. The multiplicity of each knot FromI1,.....,ToI2 must be lower or equal to the VDegree of the B_spline.)#"  , py::arg("FromI1"),  py::arg("ToI2"),  py::arg("Step")
          )
        .def("InsertUKnot",
             (void (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Boolean  ) >(&Geom_BSplineSurface::InsertUKnot),
             R"#(Inserts a knot value in the sequence of UKnots. If U is a knot value this method increases the multiplicity of the knot if the previous multiplicity was lower than M else it does nothing. The tolerance criterion is ParametricTolerance. ParametricTolerance should be greater or equal than Resolution from package gp.)#"  , py::arg("U"),  py::arg("M"),  py::arg("ParametricTolerance"),  py::arg("Add")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def("InsertVKnot",
             (void (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Boolean  ) >(&Geom_BSplineSurface::InsertVKnot),
             R"#(Inserts a knot value in the sequence of VKnots. If V is a knot value this method increases the multiplicity of the knot if the previous multiplicity was lower than M otherwise it does nothing. The tolerance criterion is ParametricTolerance. ParametricTolerance should be greater or equal than Resolution from package gp.)#"  , py::arg("V"),  py::arg("M"),  py::arg("ParametricTolerance"),  py::arg("Add")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def("Segment",
             (void (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&Geom_BSplineSurface::Segment),
             R"#(Segments the surface between U1 and U2 in the U-Direction. between V1 and V2 in the V-Direction. The control points are modified, the first and the last point are not the same.)#"  , py::arg("U1"),  py::arg("U2"),  py::arg("V1"),  py::arg("V2"),  py::arg("theUTolerance")=static_cast<const Standard_Real>(Precision :: PConfusion ( )),  py::arg("theVTolerance")=static_cast<const Standard_Real>(Precision :: PConfusion ( ))
          )
        .def("CheckAndSegment",
             (void (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&Geom_BSplineSurface::CheckAndSegment),
             R"#(Segments the surface between U1 and U2 in the U-Direction. between V1 and V2 in the V-Direction.)#"  , py::arg("U1"),  py::arg("U2"),  py::arg("V1"),  py::arg("V2"),  py::arg("theUTolerance")=static_cast<const Standard_Real>(Precision :: PConfusion ( )),  py::arg("theVTolerance")=static_cast<const Standard_Real>(Precision :: PConfusion ( ))
          )
        .def("SetUKnot",
             (void (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Real  ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Real  ) >(&Geom_BSplineSurface::SetUKnot),
             R"#(Substitutes the UKnots of range UIndex with K.)#"  , py::arg("UIndex"),  py::arg("K")
          )
        .def("SetUKnots",
             (void (Geom_BSplineSurface::*)(  const NCollection_Array1<Standard_Real> &  ) ) static_cast<void (Geom_BSplineSurface::*)(  const NCollection_Array1<Standard_Real> &  ) >(&Geom_BSplineSurface::SetUKnots),
             R"#(Changes all the U-knots of the surface. The multiplicity of the knots are not modified.)#"  , py::arg("UK")
          )
        .def("SetUKnot",
             (void (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Real ,  const Standard_Integer  ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Real ,  const Standard_Integer  ) >(&Geom_BSplineSurface::SetUKnot),
             R"#(Changes the value of the UKnots of range UIndex and increases its multiplicity.)#"  , py::arg("UIndex"),  py::arg("K"),  py::arg("M")
          )
        .def("SetVKnot",
             (void (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Real  ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Real  ) >(&Geom_BSplineSurface::SetVKnot),
             R"#(Substitutes the VKnots of range VIndex with K.)#"  , py::arg("VIndex"),  py::arg("K")
          )
        .def("SetVKnots",
             (void (Geom_BSplineSurface::*)(  const NCollection_Array1<Standard_Real> &  ) ) static_cast<void (Geom_BSplineSurface::*)(  const NCollection_Array1<Standard_Real> &  ) >(&Geom_BSplineSurface::SetVKnots),
             R"#(Changes all the V-knots of the surface. The multiplicity of the knots are not modified.)#"  , py::arg("VK")
          )
        .def("SetVKnot",
             (void (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Real ,  const Standard_Integer  ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Real ,  const Standard_Integer  ) >(&Geom_BSplineSurface::SetVKnot),
             R"#(Changes the value of the VKnots of range VIndex and increases its multiplicity.)#"  , py::arg("VIndex"),  py::arg("K"),  py::arg("M")
          )
        .def("SetPole",
             (void (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Integer ,  const gp_Pnt &  ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Integer ,  const gp_Pnt &  ) >(&Geom_BSplineSurface::SetPole),
             R"#(Substitutes the pole of range (UIndex, VIndex) with P. If the surface is rational the weight of range (UIndex, VIndex) is not modified.)#"  , py::arg("UIndex"),  py::arg("VIndex"),  py::arg("P")
          )
        .def("SetPole",
             (void (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Integer ,  const gp_Pnt & ,  const Standard_Real  ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Integer ,  const gp_Pnt & ,  const Standard_Real  ) >(&Geom_BSplineSurface::SetPole),
             R"#(Substitutes the pole and the weight of range (UIndex, VIndex) with P and W.)#"  , py::arg("UIndex"),  py::arg("VIndex"),  py::arg("P"),  py::arg("Weight")
          )
        .def("SetPoleCol",
             (void (Geom_BSplineSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> &  ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> &  ) >(&Geom_BSplineSurface::SetPoleCol),
             R"#(Changes a column of poles or a part of this column. Raised if Vindex < 1 or VIndex > NbVPoles.)#"  , py::arg("VIndex"),  py::arg("CPoles")
          )
        .def("SetPoleCol",
             (void (Geom_BSplineSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> &  ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> &  ) >(&Geom_BSplineSurface::SetPoleCol),
             R"#(Changes a column of poles or a part of this column with the corresponding weights. If the surface was rational it can become non rational. If the surface was non rational it can become rational. Raised if Vindex < 1 or VIndex > NbVPoles.)#"  , py::arg("VIndex"),  py::arg("CPoles"),  py::arg("CPoleWeights")
          )
        .def("SetPoleRow",
             (void (Geom_BSplineSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> &  ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> &  ) >(&Geom_BSplineSurface::SetPoleRow),
             R"#(Changes a row of poles or a part of this row with the corresponding weights. If the surface was rational it can become non rational. If the surface was non rational it can become rational. Raised if Uindex < 1 or UIndex > NbUPoles.)#"  , py::arg("UIndex"),  py::arg("CPoles"),  py::arg("CPoleWeights")
          )
        .def("SetPoleRow",
             (void (Geom_BSplineSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> &  ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> &  ) >(&Geom_BSplineSurface::SetPoleRow),
             R"#(Changes a row of poles or a part of this row. Raised if Uindex < 1 or UIndex > NbUPoles.)#"  , py::arg("UIndex"),  py::arg("CPoles")
          )
        .def("SetWeight",
             (void (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Real  ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Real  ) >(&Geom_BSplineSurface::SetWeight),
             R"#(Changes the weight of the pole of range UIndex, VIndex. If the surface was non rational it can become rational. If the surface was rational it can become non rational.)#"  , py::arg("UIndex"),  py::arg("VIndex"),  py::arg("Weight")
          )
        .def("SetWeightCol",
             (void (Geom_BSplineSurface::*)( const Standard_Integer ,   const NCollection_Array1<Standard_Real> &  ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer ,   const NCollection_Array1<Standard_Real> &  ) >(&Geom_BSplineSurface::SetWeightCol),
             R"#(Changes a column of weights of a part of this column.)#"  , py::arg("VIndex"),  py::arg("CPoleWeights")
          )
        .def("SetWeightRow",
             (void (Geom_BSplineSurface::*)( const Standard_Integer ,   const NCollection_Array1<Standard_Real> &  ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer ,   const NCollection_Array1<Standard_Real> &  ) >(&Geom_BSplineSurface::SetWeightRow),
             R"#(Changes a row of weights or a part of this row.)#"  , py::arg("UIndex"),  py::arg("CPoleWeights")
          )
        .def("IsUClosed",
             (Standard_Boolean (Geom_BSplineSurface::*)() const) static_cast<Standard_Boolean (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::IsUClosed),
             R"#(Returns true if the first control points row and the last control points row are identical. The tolerance criterion is Resolution from package gp.)#" 
          )
        .def("IsVClosed",
             (Standard_Boolean (Geom_BSplineSurface::*)() const) static_cast<Standard_Boolean (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::IsVClosed),
             R"#(Returns true if the first control points column and the last last control points column are identical. The tolerance criterion is Resolution from package gp.)#" 
          )
        .def("IsCNu",
             (Standard_Boolean (Geom_BSplineSurface::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom_BSplineSurface::*)( const Standard_Integer  ) const>(&Geom_BSplineSurface::IsCNu),
             R"#(Returns True if the order of continuity of the surface in the U direction is N. Raised if N < 0.)#"  , py::arg("N")
          )
        .def("IsCNv",
             (Standard_Boolean (Geom_BSplineSurface::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom_BSplineSurface::*)( const Standard_Integer  ) const>(&Geom_BSplineSurface::IsCNv),
             R"#(Returns True if the order of continuity of the surface in the V direction is N. Raised if N < 0.)#"  , py::arg("N")
          )
        .def("IsUPeriodic",
             (Standard_Boolean (Geom_BSplineSurface::*)() const) static_cast<Standard_Boolean (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::IsUPeriodic),
             R"#(Returns True if the surface is closed in the U direction and if the B-spline has been turned into a periodic surface using the function SetUPeriodic.)#" 
          )
        .def("IsURational",
             (Standard_Boolean (Geom_BSplineSurface::*)() const) static_cast<Standard_Boolean (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::IsURational),
             R"#(Returns False if for each row of weights all the weights are identical. The tolerance criterion is resolution from package gp. Example : |1.0, 1.0, 1.0| if Weights = |0.5, 0.5, 0.5| returns False |2.0, 2.0, 2.0|)#" 
          )
        .def("IsVPeriodic",
             (Standard_Boolean (Geom_BSplineSurface::*)() const) static_cast<Standard_Boolean (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::IsVPeriodic),
             R"#(Returns True if the surface is closed in the V direction and if the B-spline has been turned into a periodic surface using the function SetVPeriodic.)#" 
          )
        .def("IsVRational",
             (Standard_Boolean (Geom_BSplineSurface::*)() const) static_cast<Standard_Boolean (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::IsVRational),
             R"#(Returns False if for each column of weights all the weights are identical. The tolerance criterion is resolution from package gp. Examples : |1.0, 2.0, 0.5| if Weights = |1.0, 2.0, 0.5| returns False |1.0, 2.0, 0.5|)#" 
          )
        .def("Continuity",
             (GeomAbs_Shape (Geom_BSplineSurface::*)() const) static_cast<GeomAbs_Shape (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::Continuity),
             R"#(Returns the continuity of the surface : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Surface, C2 : continuity of the second derivative all along the Surface, C3 : continuity of the third derivative all along the Surface, CN : the order of continuity is infinite. A B-spline surface is infinitely continuously differentiable for the couple of parameters U, V such that U != UKnots(i) and V != VKnots(i). The continuity of the surface at a knot value depends on the multiplicity of this knot. Example : If the surface is C1 in the V direction and C2 in the U direction this function returns Shape = C1.)#" 
          )
        .def("FirstUKnotIndex",
             (Standard_Integer (Geom_BSplineSurface::*)() const) static_cast<Standard_Integer (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::FirstUKnotIndex),
             R"#(Computes the Index of the UKnots which gives the first parametric value of the surface in the U direction. The UIso curve corresponding to this value is a boundary curve of the surface.)#" 
          )
        .def("FirstVKnotIndex",
             (Standard_Integer (Geom_BSplineSurface::*)() const) static_cast<Standard_Integer (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::FirstVKnotIndex),
             R"#(Computes the Index of the VKnots which gives the first parametric value of the surface in the V direction. The VIso curve corresponding to this knot is a boundary curve of the surface.)#" 
          )
        .def("LastUKnotIndex",
             (Standard_Integer (Geom_BSplineSurface::*)() const) static_cast<Standard_Integer (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::LastUKnotIndex),
             R"#(Computes the Index of the UKnots which gives the last parametric value of the surface in the U direction. The UIso curve corresponding to this knot is a boundary curve of the surface.)#" 
          )
        .def("LastVKnotIndex",
             (Standard_Integer (Geom_BSplineSurface::*)() const) static_cast<Standard_Integer (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::LastVKnotIndex),
             R"#(Computes the Index of the VKnots which gives the last parametric value of the surface in the V direction. The VIso curve corresponding to this knot is a boundary curve of the surface.)#" 
          )
        .def("NbUKnots",
             (Standard_Integer (Geom_BSplineSurface::*)() const) static_cast<Standard_Integer (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::NbUKnots),
             R"#(Returns the number of knots in the U direction.)#" 
          )
        .def("NbUPoles",
             (Standard_Integer (Geom_BSplineSurface::*)() const) static_cast<Standard_Integer (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::NbUPoles),
             R"#(Returns number of poles in the U direction.)#" 
          )
        .def("NbVKnots",
             (Standard_Integer (Geom_BSplineSurface::*)() const) static_cast<Standard_Integer (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::NbVKnots),
             R"#(Returns the number of knots in the V direction.)#" 
          )
        .def("NbVPoles",
             (Standard_Integer (Geom_BSplineSurface::*)() const) static_cast<Standard_Integer (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::NbVPoles),
             R"#(Returns the number of poles in the V direction.)#" 
          )
        .def("Pole",
             (const gp_Pnt & (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Integer  ) const) static_cast<const gp_Pnt & (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Integer  ) const>(&Geom_BSplineSurface::Pole),
             R"#(Returns the pole of range (UIndex, VIndex).)#"  , py::arg("UIndex"),  py::arg("VIndex")
          )
        .def("Poles",
             (void (Geom_BSplineSurface::*)( NCollection_Array2<gp_Pnt> &  ) const) static_cast<void (Geom_BSplineSurface::*)( NCollection_Array2<gp_Pnt> &  ) const>(&Geom_BSplineSurface::Poles),
             R"#(Returns the poles of the B-spline surface.)#"  , py::arg("P")
          )
        .def("UDegree",
             (Standard_Integer (Geom_BSplineSurface::*)() const) static_cast<Standard_Integer (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::UDegree),
             R"#(Returns the degree of the normalized B-splines Ni,n in the U direction.)#" 
          )
        .def("UKnot",
             (Standard_Real (Geom_BSplineSurface::*)( const Standard_Integer  ) const) static_cast<Standard_Real (Geom_BSplineSurface::*)( const Standard_Integer  ) const>(&Geom_BSplineSurface::UKnot),
             R"#(Returns the Knot value of range UIndex. Raised if UIndex < 1 or UIndex > NbUKnots)#"  , py::arg("UIndex")
          )
        .def("UKnotDistribution",
             (GeomAbs_BSplKnotDistribution (Geom_BSplineSurface::*)() const) static_cast<GeomAbs_BSplKnotDistribution (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::UKnotDistribution),
             R"#(Returns NonUniform or Uniform or QuasiUniform or PiecewiseBezier. If all the knots differ by a positive constant from the preceding knot in the U direction the B-spline surface can be : - Uniform if all the knots are of multiplicity 1, - QuasiUniform if all the knots are of multiplicity 1 except for the first and last knot which are of multiplicity Degree + 1, - PiecewiseBezier if the first and last knots have multiplicity Degree + 1 and if interior knots have multiplicity Degree otherwise the surface is non uniform in the U direction The tolerance criterion is Resolution from package gp.)#" 
          )
        .def("UKnots",
             (void (Geom_BSplineSurface::*)( NCollection_Array1<Standard_Real> &  ) const) static_cast<void (Geom_BSplineSurface::*)( NCollection_Array1<Standard_Real> &  ) const>(&Geom_BSplineSurface::UKnots),
             R"#(Returns the knots in the U direction.)#"  , py::arg("Ku")
          )
        .def("UKnotSequence",
             (void (Geom_BSplineSurface::*)( NCollection_Array1<Standard_Real> &  ) const) static_cast<void (Geom_BSplineSurface::*)( NCollection_Array1<Standard_Real> &  ) const>(&Geom_BSplineSurface::UKnotSequence),
             R"#(Returns the uknots sequence. In this sequence the knots with a multiplicity greater than 1 are repeated. Example : Ku = {k1, k1, k1, k2, k3, k3, k4, k4, k4})#"  , py::arg("Ku")
          )
        .def("UMultiplicity",
             (Standard_Integer (Geom_BSplineSurface::*)( const Standard_Integer  ) const) static_cast<Standard_Integer (Geom_BSplineSurface::*)( const Standard_Integer  ) const>(&Geom_BSplineSurface::UMultiplicity),
             R"#(Returns the multiplicity value of knot of range UIndex in the u direction. Raised if UIndex < 1 or UIndex > NbUKnots.)#"  , py::arg("UIndex")
          )
        .def("UMultiplicities",
             (void (Geom_BSplineSurface::*)( NCollection_Array1<Standard_Integer> &  ) const) static_cast<void (Geom_BSplineSurface::*)( NCollection_Array1<Standard_Integer> &  ) const>(&Geom_BSplineSurface::UMultiplicities),
             R"#(Returns the multiplicities of the knots in the U direction.)#"  , py::arg("Mu")
          )
        .def("VDegree",
             (Standard_Integer (Geom_BSplineSurface::*)() const) static_cast<Standard_Integer (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::VDegree),
             R"#(Returns the degree of the normalized B-splines Ni,d in the V direction.)#" 
          )
        .def("VKnot",
             (Standard_Real (Geom_BSplineSurface::*)( const Standard_Integer  ) const) static_cast<Standard_Real (Geom_BSplineSurface::*)( const Standard_Integer  ) const>(&Geom_BSplineSurface::VKnot),
             R"#(Returns the Knot value of range VIndex. Raised if VIndex < 1 or VIndex > NbVKnots)#"  , py::arg("VIndex")
          )
        .def("VKnotDistribution",
             (GeomAbs_BSplKnotDistribution (Geom_BSplineSurface::*)() const) static_cast<GeomAbs_BSplKnotDistribution (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::VKnotDistribution),
             R"#(Returns NonUniform or Uniform or QuasiUniform or PiecewiseBezier. If all the knots differ by a positive constant from the preceding knot in the V direction the B-spline surface can be : - Uniform if all the knots are of multiplicity 1, - QuasiUniform if all the knots are of multiplicity 1 except for the first and last knot which are of multiplicity Degree + 1, - PiecewiseBezier if the first and last knots have multiplicity Degree + 1 and if interior knots have multiplicity Degree otherwise the surface is non uniform in the V direction. The tolerance criterion is Resolution from package gp.)#" 
          )
        .def("VKnots",
             (void (Geom_BSplineSurface::*)( NCollection_Array1<Standard_Real> &  ) const) static_cast<void (Geom_BSplineSurface::*)( NCollection_Array1<Standard_Real> &  ) const>(&Geom_BSplineSurface::VKnots),
             R"#(Returns the knots in the V direction.)#"  , py::arg("Kv")
          )
        .def("VKnotSequence",
             (void (Geom_BSplineSurface::*)( NCollection_Array1<Standard_Real> &  ) const) static_cast<void (Geom_BSplineSurface::*)( NCollection_Array1<Standard_Real> &  ) const>(&Geom_BSplineSurface::VKnotSequence),
             R"#(Returns the vknots sequence. In this sequence the knots with a multiplicity greater than 1 are repeated. Example : Kv = {k1, k1, k1, k2, k3, k3, k4, k4, k4})#"  , py::arg("Kv")
          )
        .def("VMultiplicity",
             (Standard_Integer (Geom_BSplineSurface::*)( const Standard_Integer  ) const) static_cast<Standard_Integer (Geom_BSplineSurface::*)( const Standard_Integer  ) const>(&Geom_BSplineSurface::VMultiplicity),
             R"#(Returns the multiplicity value of knot of range VIndex in the v direction. Raised if VIndex < 1 or VIndex > NbVKnots)#"  , py::arg("VIndex")
          )
        .def("VMultiplicities",
             (void (Geom_BSplineSurface::*)( NCollection_Array1<Standard_Integer> &  ) const) static_cast<void (Geom_BSplineSurface::*)( NCollection_Array1<Standard_Integer> &  ) const>(&Geom_BSplineSurface::VMultiplicities),
             R"#(Returns the multiplicities of the knots in the V direction.)#"  , py::arg("Mv")
          )
        .def("Weight",
             (Standard_Real (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Integer  ) const) static_cast<Standard_Real (Geom_BSplineSurface::*)( const Standard_Integer ,  const Standard_Integer  ) const>(&Geom_BSplineSurface::Weight),
             R"#(Returns the weight value of range UIndex, VIndex.)#"  , py::arg("UIndex"),  py::arg("VIndex")
          )
        .def("Weights",
             (void (Geom_BSplineSurface::*)( NCollection_Array2<Standard_Real> &  ) const) static_cast<void (Geom_BSplineSurface::*)( NCollection_Array2<Standard_Real> &  ) const>(&Geom_BSplineSurface::Weights),
             R"#(Returns the weights of the B-spline surface.)#"  , py::arg("W")
          )
        .def("Weights",
             (const TColStd_Array2OfReal * (Geom_BSplineSurface::*)() const) static_cast<const TColStd_Array2OfReal * (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::Weights),
             R"#(Returns the weights of the B-spline surface. value and derivatives computation)#" 
          )
        .def("D0",
             (void (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt &  ) const) static_cast<void (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt &  ) const>(&Geom_BSplineSurface::D0),
             R"#(None)#"  , py::arg("U"),  py::arg("V"),  py::arg("P")
          )
        .def("D1",
             (void (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_BSplineSurface::D1),
             R"#(Raised if the continuity of the surface is not C1.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V")
          )
        .def("D2",
             (void (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_BSplineSurface::D2),
             R"#(Raised if the continuity of the surface is not C2.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV")
          )
        .def("D3",
             (void (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_BSplineSurface::D3),
             R"#(Raised if the continuity of the surface is not C3.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV"),  py::arg("D3U"),  py::arg("D3V"),  py::arg("D3UUV"),  py::arg("D3UVV")
          )
        .def("DN",
             (gp_Vec (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const) static_cast<gp_Vec (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const>(&Geom_BSplineSurface::DN),
             R"#(Nu is the order of derivation in the U parametric direction and Nv is the order of derivation in the V parametric direction.)#"  , py::arg("U"),  py::arg("V"),  py::arg("Nu"),  py::arg("Nv")
          )
        .def("LocalD0",
             (void (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  gp_Pnt &  ) const) static_cast<void (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  gp_Pnt &  ) const>(&Geom_BSplineSurface::LocalD0),
             R"#(Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2.)#"  , py::arg("U"),  py::arg("V"),  py::arg("FromUK1"),  py::arg("ToUK2"),  py::arg("FromVK1"),  py::arg("ToVK2"),  py::arg("P")
          )
        .def("LocalD1",
             (void (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_BSplineSurface::LocalD1),
             R"#(Raised if the local continuity of the surface is not C1 between the knots FromUK1, ToUK2 and FromVK1, ToVK2. Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2.)#"  , py::arg("U"),  py::arg("V"),  py::arg("FromUK1"),  py::arg("ToUK2"),  py::arg("FromVK1"),  py::arg("ToVK2"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V")
          )
        .def("LocalD2",
             (void (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_BSplineSurface::LocalD2),
             R"#(Raised if the local continuity of the surface is not C2 between the knots FromUK1, ToUK2 and FromVK1, ToVK2. Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2.)#"  , py::arg("U"),  py::arg("V"),  py::arg("FromUK1"),  py::arg("ToUK2"),  py::arg("FromVK1"),  py::arg("ToVK2"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV")
          )
        .def("LocalD3",
             (void (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_BSplineSurface::LocalD3),
             R"#(Raised if the local continuity of the surface is not C3 between the knots FromUK1, ToUK2 and FromVK1, ToVK2. Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2.)#"  , py::arg("U"),  py::arg("V"),  py::arg("FromUK1"),  py::arg("ToUK2"),  py::arg("FromVK1"),  py::arg("ToVK2"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV"),  py::arg("D3U"),  py::arg("D3V"),  py::arg("D3UUV"),  py::arg("D3UVV")
          )
        .def("LocalDN",
             (gp_Vec (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) const) static_cast<gp_Vec (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) const>(&Geom_BSplineSurface::LocalDN),
             R"#(Raised if the local continuity of the surface is not CNu between the knots FromUK1, ToUK2 and CNv between the knots FromVK1, ToVK2. Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2.)#"  , py::arg("U"),  py::arg("V"),  py::arg("FromUK1"),  py::arg("ToUK2"),  py::arg("FromVK1"),  py::arg("ToVK2"),  py::arg("Nu"),  py::arg("Nv")
          )
        .def("LocalValue",
             (gp_Pnt (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) const) static_cast<gp_Pnt (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) const>(&Geom_BSplineSurface::LocalValue),
             R"#(Computes the point of parameter U, V on the BSpline surface patch defines between the knots UK1 UK2, VK1, VK2. U can be out of the bounds [Knot UK1, Knot UK2] and V can be outof the bounds [Knot VK1, Knot VK2] but for the computation we only use the definition of the surface between these knot values. Raises if FromUK1 = ToUK2 or FromVK1 = ToVK2.)#"  , py::arg("U"),  py::arg("V"),  py::arg("FromUK1"),  py::arg("ToUK2"),  py::arg("FromVK1"),  py::arg("ToVK2")
          )
        .def("UIso",
             (opencascade::handle<Geom_Curve> (Geom_BSplineSurface::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_BSplineSurface::*)( const Standard_Real  ) const>(&Geom_BSplineSurface::UIso),
             R"#(Computes the U isoparametric curve. A B-spline curve is returned.)#"  , py::arg("U")
          )
        .def("VIso",
             (opencascade::handle<Geom_Curve> (Geom_BSplineSurface::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_BSplineSurface::*)( const Standard_Real  ) const>(&Geom_BSplineSurface::VIso),
             R"#(Computes the V isoparametric curve. A B-spline curve is returned.)#"  , py::arg("V")
          )
        .def("UIso",
             (opencascade::handle<Geom_Curve> (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Boolean  ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Boolean  ) const>(&Geom_BSplineSurface::UIso),
             R"#(Computes the U isoparametric curve. If CheckRational=False, no try to make it non-rational. A B-spline curve is returned.)#"  , py::arg("U"),  py::arg("CheckRational")
          )
        .def("VIso",
             (opencascade::handle<Geom_Curve> (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Boolean  ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_BSplineSurface::*)( const Standard_Real ,  const Standard_Boolean  ) const>(&Geom_BSplineSurface::VIso),
             R"#(Computes the V isoparametric curve. If CheckRational=False, no try to make it non-rational. A B-spline curve is returned. transformations)#"  , py::arg("V"),  py::arg("CheckRational")
          )
        .def("Transform",
             (void (Geom_BSplineSurface::*)( const gp_Trsf &  ) ) static_cast<void (Geom_BSplineSurface::*)( const gp_Trsf &  ) >(&Geom_BSplineSurface::Transform),
             R"#(Applies the transformation T to this BSpline surface.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom_Geometry> (Geom_BSplineSurface::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::Copy),
             R"#(Creates a new object which is a copy of this BSpline surface.)#" 
          )
        .def("DumpJson",
             (void (Geom_BSplineSurface::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom_BSplineSurface::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom_BSplineSurface::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
        .def("PeriodicNormalization",
             []( Geom_BSplineSurface &self   ){
                 Standard_Real  U;
                Standard_Real  V;

                 self.PeriodicNormalization(U,V);
                 
                 return std::make_tuple(U,V); },
             R"#(returns the parameter normalized within the period if the surface is periodic : otherwise does not do anything)#" 
          )
        .def("LocateU",
             []( Geom_BSplineSurface &self , const Standard_Real U,const Standard_Real ParametricTolerance,const Standard_Boolean WithKnotRepetition ){
                 Standard_Integer  I1;
                Standard_Integer  I2;

                 self.LocateU(U,ParametricTolerance,I1,I2,WithKnotRepetition);
                 
                 return std::make_tuple(I1,I2); },
             R"#(Locates the parametric value U in the sequence of UKnots. If "WithKnotRepetition" is True we consider the knot's representation with repetition of multiple knot value, otherwise we consider the knot's representation with no repetition of multiple knot values. UKnots (I1) <= U <= UKnots (I2) . if I1 = I2 U is a knot value (the tolerance criterion ParametricTolerance is used). . if I1 < 1 => U < UKnots(1) - Abs(ParametricTolerance) . if I2 > NbUKnots => U > UKnots(NbUKnots)+Abs(ParametricTolerance))#"  , py::arg("U"),  py::arg("ParametricTolerance"),  py::arg("WithKnotRepetition")=static_cast<const Standard_Boolean>(Standard_False)
          )
        .def("LocateV",
             []( Geom_BSplineSurface &self , const Standard_Real V,const Standard_Real ParametricTolerance,const Standard_Boolean WithKnotRepetition ){
                 Standard_Integer  I1;
                Standard_Integer  I2;

                 self.LocateV(V,ParametricTolerance,I1,I2,WithKnotRepetition);
                 
                 return std::make_tuple(I1,I2); },
             R"#(Locates the parametric value V in the sequence of knots. If "WithKnotRepetition" is True we consider the knot's representation with repetition of multiple knot value, otherwise we consider the knot's representation with no repetition of multiple knot values. VKnots (I1) <= V <= VKnots (I2) . if I1 = I2 V is a knot value (the tolerance criterion ParametricTolerance is used). . if I1 < 1 => V < VKnots(1) - Abs(ParametricTolerance) . if I2 > NbVKnots => V > VKnots(NbVKnots)+Abs(ParametricTolerance) poles insertion and removing The following methods are available only if the surface is Uniform or QuasiUniform in the considered direction The knot repartition is modified.)#"  , py::arg("V"),  py::arg("ParametricTolerance"),  py::arg("WithKnotRepetition")=static_cast<const Standard_Boolean>(Standard_False)
          )
        .def("MovePoint",
             []( Geom_BSplineSurface &self , const Standard_Real U,const Standard_Real V,const gp_Pnt & P,const Standard_Integer UIndex1,const Standard_Integer UIndex2,const Standard_Integer VIndex1,const Standard_Integer VIndex2 ){
                 Standard_Integer  UFirstIndex;
                Standard_Integer  ULastIndex;
                Standard_Integer  VFirstIndex;
                Standard_Integer  VLastIndex;

                 self.MovePoint(U,V,P,UIndex1,UIndex2,VIndex1,VIndex2,UFirstIndex,ULastIndex,VFirstIndex,VLastIndex);
                 
                 return std::make_tuple(UFirstIndex,ULastIndex,VFirstIndex,VLastIndex); },
             R"#(Move a point with parameter U and V to P. given u,v as parameters) to reach a new position UIndex1, UIndex2, VIndex1, VIndex2: indicates the poles which can be moved if Problem in BSplineBasis calculation, no change for the curve and UFirstIndex, VLastIndex = 0 VFirstIndex, VLastIndex = 0)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("UIndex1"),  py::arg("UIndex2"),  py::arg("VIndex1"),  py::arg("VIndex2")
          )
        .def("Bounds",
             []( Geom_BSplineSurface &self   ){
                 Standard_Real  U1;
                Standard_Real  U2;
                Standard_Real  V1;
                Standard_Real  V2;

                 self.Bounds(U1,U2,V1,V2);
                 
                 return std::make_tuple(U1,U2,V1,V2); },
             R"#(Returns the parametric bounds of the surface. Warnings : These parametric values are the bounds of the array of knots UKnots and VKnots only if the first knots and the last knots have a multiplicity equal to UDegree + 1 or VDegree + 1)#" 
          )
        .def("Resolution",
             []( Geom_BSplineSurface &self , const Standard_Real Tolerance3D ){
                 Standard_Real  UTolerance;
                Standard_Real  VTolerance;

                 self.Resolution(Tolerance3D,UTolerance,VTolerance);
                 
                 return std::make_tuple(UTolerance,VTolerance); },
             R"#(Computes two tolerance values for this BSpline surface, based on the given tolerance in 3D space Tolerance3D. The tolerances computed are: - UTolerance in the u parametric direction, and - VTolerance in the v parametric direction. If f(u,v) is the equation of this BSpline surface, UTolerance and VTolerance guarantee that : | u1 - u0 | < UTolerance and | v1 - v0 | < VTolerance ====> |f (u1,v1) - f (u0,v0)| < Tolerance3D)#"  , py::arg("Tolerance3D")
          )
    // static methods
        .def_static("MaxDegree_s",
                    (Standard_Integer (*)() ) static_cast<Standard_Integer (*)() >(&Geom_BSplineSurface::MaxDegree),
                    R"#(Returns the value of the maximum degree of the normalized B-spline basis functions in the u and v directions.)#" 
          )
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_BSplineSurface::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_BSplineSurface::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Poles",
             (const TColgp_Array2OfPnt & (Geom_BSplineSurface::*)() const) static_cast<const TColgp_Array2OfPnt & (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::Poles),
             R"#(Returns the poles of the B-spline surface.)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("UKnots",
             (const TColStd_Array1OfReal & (Geom_BSplineSurface::*)() const) static_cast<const TColStd_Array1OfReal & (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::UKnots),
             R"#(Returns the knots in the U direction.)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("UKnotSequence",
             (const TColStd_Array1OfReal & (Geom_BSplineSurface::*)() const) static_cast<const TColStd_Array1OfReal & (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::UKnotSequence),
             R"#(Returns the uknots sequence. In this sequence the knots with a multiplicity greater than 1 are repeated. Example : Ku = {k1, k1, k1, k2, k3, k3, k4, k4, k4})#"
             
             , py::return_value_policy::reference_internal
         )
       .def("UMultiplicities",
             (const TColStd_Array1OfInteger & (Geom_BSplineSurface::*)() const) static_cast<const TColStd_Array1OfInteger & (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::UMultiplicities),
             R"#(Returns the multiplicities of the knots in the U direction.)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("VKnots",
             (const TColStd_Array1OfReal & (Geom_BSplineSurface::*)() const) static_cast<const TColStd_Array1OfReal & (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::VKnots),
             R"#(Returns the knots in the V direction.)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("VKnotSequence",
             (const TColStd_Array1OfReal & (Geom_BSplineSurface::*)() const) static_cast<const TColStd_Array1OfReal & (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::VKnotSequence),
             R"#(Returns the vknots sequence. In this sequence the knots with a multiplicity greater than 1 are repeated. Example : Ku = {k1, k1, k1, k2, k3, k3, k4, k4, k4})#"
             
             , py::return_value_policy::reference_internal
         )
       .def("VMultiplicities",
             (const TColStd_Array1OfInteger & (Geom_BSplineSurface::*)() const) static_cast<const TColStd_Array1OfInteger & (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::VMultiplicities),
             R"#(Returns the multiplicities of the knots in the V direction.)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_BSplineSurface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_BezierCurve from ./opencascade/Geom_BezierCurve.hxx
    klass = m.attr("Geom_BezierCurve");


    // nested enums

    static_cast<py::class_<Geom_BezierCurve ,opencascade::handle<Geom_BezierCurve>  , Geom_BoundedCurve >>(klass)
    // constructors
        .def(py::init<  const NCollection_Array1<gp_Pnt> & >()  , py::arg("CurvePoles") )
        .def(py::init<  const NCollection_Array1<gp_Pnt> &, const NCollection_Array1<Standard_Real> & >()  , py::arg("CurvePoles"),  py::arg("PoleWeights") )
    // custom constructors
    // methods
        .def("Increase",
             (void (Geom_BezierCurve::*)( const Standard_Integer  ) ) static_cast<void (Geom_BezierCurve::*)( const Standard_Integer  ) >(&Geom_BezierCurve::Increase),
             R"#(Increases the degree of a bezier curve. Degree is the new degree of <me>. Raises ConstructionError if Degree is greater than MaxDegree or lower than 2 or lower than the initial degree of <me>.)#"  , py::arg("Degree")
          )
        .def("InsertPoleAfter",
             (void (Geom_BezierCurve::*)( const Standard_Integer ,  const gp_Pnt &  ) ) static_cast<void (Geom_BezierCurve::*)( const Standard_Integer ,  const gp_Pnt &  ) >(&Geom_BezierCurve::InsertPoleAfter),
             R"#(Inserts a pole P after the pole of range Index. If the curve <me> is rational the weight value for the new pole of range Index is 1.0. raised if Index is not in the range [1, NbPoles])#"  , py::arg("Index"),  py::arg("P")
          )
        .def("InsertPoleAfter",
             (void (Geom_BezierCurve::*)( const Standard_Integer ,  const gp_Pnt & ,  const Standard_Real  ) ) static_cast<void (Geom_BezierCurve::*)( const Standard_Integer ,  const gp_Pnt & ,  const Standard_Real  ) >(&Geom_BezierCurve::InsertPoleAfter),
             R"#(Inserts a pole with its weight in the set of poles after the pole of range Index. If the curve was non rational it can become rational if all the weights are not identical. Raised if Index is not in the range [1, NbPoles])#"  , py::arg("Index"),  py::arg("P"),  py::arg("Weight")
          )
        .def("InsertPoleBefore",
             (void (Geom_BezierCurve::*)( const Standard_Integer ,  const gp_Pnt &  ) ) static_cast<void (Geom_BezierCurve::*)( const Standard_Integer ,  const gp_Pnt &  ) >(&Geom_BezierCurve::InsertPoleBefore),
             R"#(Inserts a pole P before the pole of range Index. If the curve <me> is rational the weight value for the new pole of range Index is 1.0. Raised if Index is not in the range [1, NbPoles])#"  , py::arg("Index"),  py::arg("P")
          )
        .def("InsertPoleBefore",
             (void (Geom_BezierCurve::*)( const Standard_Integer ,  const gp_Pnt & ,  const Standard_Real  ) ) static_cast<void (Geom_BezierCurve::*)( const Standard_Integer ,  const gp_Pnt & ,  const Standard_Real  ) >(&Geom_BezierCurve::InsertPoleBefore),
             R"#(Inserts a pole with its weight in the set of poles after the pole of range Index. If the curve was non rational it can become rational if all the weights are not identical. Raised if Index is not in the range [1, NbPoles])#"  , py::arg("Index"),  py::arg("P"),  py::arg("Weight")
          )
        .def("RemovePole",
             (void (Geom_BezierCurve::*)( const Standard_Integer  ) ) static_cast<void (Geom_BezierCurve::*)( const Standard_Integer  ) >(&Geom_BezierCurve::RemovePole),
             R"#(Removes the pole of range Index. If the curve was rational it can become non rational. Raised if Index is not in the range [1, NbPoles] Raised if Degree is lower than 2.)#"  , py::arg("Index")
          )
        .def("Reverse",
             (void (Geom_BezierCurve::*)() ) static_cast<void (Geom_BezierCurve::*)() >(&Geom_BezierCurve::Reverse),
             R"#(Reverses the direction of parametrization of <me> Value (NewU) = Value (1 - OldU))#" 
          )
        .def("ReversedParameter",
             (Standard_Real (Geom_BezierCurve::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_BezierCurve::*)( const Standard_Real  ) const>(&Geom_BezierCurve::ReversedParameter),
             R"#(Returns the parameter on the reversed curve for the point of parameter U on <me>.)#"  , py::arg("U")
          )
        .def("Segment",
             (void (Geom_BezierCurve::*)( const Standard_Real ,  const Standard_Real  ) ) static_cast<void (Geom_BezierCurve::*)( const Standard_Real ,  const Standard_Real  ) >(&Geom_BezierCurve::Segment),
             R"#(Segments the curve between U1 and U2 which can be out of the bounds of the curve. The curve is oriented from U1 to U2. The control points are modified, the first and the last point are not the same but the parametrization range is [0, 1] else it could not be a Bezier curve. Warnings : Even if <me> is not closed it can become closed after the segmentation for example if U1 or U2 are out of the bounds of the curve <me> or if the curve makes loop. After the segmentation the length of a curve can be null.)#"  , py::arg("U1"),  py::arg("U2")
          )
        .def("SetPole",
             (void (Geom_BezierCurve::*)( const Standard_Integer ,  const gp_Pnt &  ) ) static_cast<void (Geom_BezierCurve::*)( const Standard_Integer ,  const gp_Pnt &  ) >(&Geom_BezierCurve::SetPole),
             R"#(Substitutes the pole of range index with P. If the curve <me> is rational the weight of range Index is not modified. raiseD if Index is not in the range [1, NbPoles])#"  , py::arg("Index"),  py::arg("P")
          )
        .def("SetPole",
             (void (Geom_BezierCurve::*)( const Standard_Integer ,  const gp_Pnt & ,  const Standard_Real  ) ) static_cast<void (Geom_BezierCurve::*)( const Standard_Integer ,  const gp_Pnt & ,  const Standard_Real  ) >(&Geom_BezierCurve::SetPole),
             R"#(Substitutes the pole and the weights of range Index. If the curve <me> is not rational it can become rational if all the weights are not identical. If the curve was rational it can become non rational if all the weights are identical. Raised if Index is not in the range [1, NbPoles] Raised if Weight <= Resolution from package gp)#"  , py::arg("Index"),  py::arg("P"),  py::arg("Weight")
          )
        .def("SetWeight",
             (void (Geom_BezierCurve::*)( const Standard_Integer ,  const Standard_Real  ) ) static_cast<void (Geom_BezierCurve::*)( const Standard_Integer ,  const Standard_Real  ) >(&Geom_BezierCurve::SetWeight),
             R"#(Changes the weight of the pole of range Index. If the curve <me> is not rational it can become rational if all the weights are not identical. If the curve was rational it can become non rational if all the weights are identical. Raised if Index is not in the range [1, NbPoles] Raised if Weight <= Resolution from package gp)#"  , py::arg("Index"),  py::arg("Weight")
          )
        .def("IsClosed",
             (Standard_Boolean (Geom_BezierCurve::*)() const) static_cast<Standard_Boolean (Geom_BezierCurve::*)() const>(&Geom_BezierCurve::IsClosed),
             R"#(Returns True if the distance between the first point and the last point of the curve is lower or equal to the Resolution from package gp.)#" 
          )
        .def("IsCN",
             (Standard_Boolean (Geom_BezierCurve::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom_BezierCurve::*)( const Standard_Integer  ) const>(&Geom_BezierCurve::IsCN),
             R"#(Continuity of the curve, returns True.)#"  , py::arg("N")
          )
        .def("IsPeriodic",
             (Standard_Boolean (Geom_BezierCurve::*)() const) static_cast<Standard_Boolean (Geom_BezierCurve::*)() const>(&Geom_BezierCurve::IsPeriodic),
             R"#(Returns True if the parametrization of a curve is periodic. (P(u) = P(u + T) T = constante))#" 
          )
        .def("IsRational",
             (Standard_Boolean (Geom_BezierCurve::*)() const) static_cast<Standard_Boolean (Geom_BezierCurve::*)() const>(&Geom_BezierCurve::IsRational),
             R"#(Returns false if all the weights are identical. The tolerance criterion is Resolution from package gp.)#" 
          )
        .def("Continuity",
             (GeomAbs_Shape (Geom_BezierCurve::*)() const) static_cast<GeomAbs_Shape (Geom_BezierCurve::*)() const>(&Geom_BezierCurve::Continuity),
             R"#(a Bezier curve is CN)#" 
          )
        .def("Degree",
             (Standard_Integer (Geom_BezierCurve::*)() const) static_cast<Standard_Integer (Geom_BezierCurve::*)() const>(&Geom_BezierCurve::Degree),
             R"#(Returns the polynomial degree of the curve. it is the number of poles - 1 point P and derivatives (V1, V2, V3) computation The Bezier Curve has a Polynomial representation so the parameter U can be out of the bounds of the curve.)#" 
          )
        .def("D0",
             (void (Geom_BezierCurve::*)( const Standard_Real ,  gp_Pnt &  ) const) static_cast<void (Geom_BezierCurve::*)( const Standard_Real ,  gp_Pnt &  ) const>(&Geom_BezierCurve::D0),
             R"#(None)#"  , py::arg("U"),  py::arg("P")
          )
        .def("D1",
             (void (Geom_BezierCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec &  ) const) static_cast<void (Geom_BezierCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec &  ) const>(&Geom_BezierCurve::D1),
             R"#(None)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1")
          )
        .def("D2",
             (void (Geom_BezierCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_BezierCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_BezierCurve::D2),
             R"#(None)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def("D3",
             (void (Geom_BezierCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_BezierCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_BezierCurve::D3),
             R"#(For this Bezier curve, computes - the point P of parameter U, or - the point P and one or more of the following values: - V1, the first derivative vector, - V2, the second derivative vector, - V3, the third derivative vector. Note: the parameter U can be outside the bounds of the curve.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3")
          )
        .def("DN",
             (gp_Vec (Geom_BezierCurve::*)( const Standard_Real ,  const Standard_Integer  ) const) static_cast<gp_Vec (Geom_BezierCurve::*)( const Standard_Real ,  const Standard_Integer  ) const>(&Geom_BezierCurve::DN),
             R"#(For the point of parameter U of this Bezier curve, computes the vector corresponding to the Nth derivative. Note: the parameter U can be outside the bounds of the curve. Exceptions Standard_RangeError if N is less than 1.)#"  , py::arg("U"),  py::arg("N")
          )
        .def("StartPoint",
             (gp_Pnt (Geom_BezierCurve::*)() const) static_cast<gp_Pnt (Geom_BezierCurve::*)() const>(&Geom_BezierCurve::StartPoint),
             R"#(Returns Value (U=0.), it is the first control point of the curve.)#" 
          )
        .def("EndPoint",
             (gp_Pnt (Geom_BezierCurve::*)() const) static_cast<gp_Pnt (Geom_BezierCurve::*)() const>(&Geom_BezierCurve::EndPoint),
             R"#(Returns Value (U=1.), it is the last control point of the Bezier curve.)#" 
          )
        .def("FirstParameter",
             (Standard_Real (Geom_BezierCurve::*)() const) static_cast<Standard_Real (Geom_BezierCurve::*)() const>(&Geom_BezierCurve::FirstParameter),
             R"#(Returns the value of the first parameter of this Bezier curve. This is 0.0, which gives the start point of this Bezier curve)#" 
          )
        .def("LastParameter",
             (Standard_Real (Geom_BezierCurve::*)() const) static_cast<Standard_Real (Geom_BezierCurve::*)() const>(&Geom_BezierCurve::LastParameter),
             R"#(Returns the value of the last parameter of this Bezier curve. This is 1.0, which gives the end point of this Bezier curve.)#" 
          )
        .def("NbPoles",
             (Standard_Integer (Geom_BezierCurve::*)() const) static_cast<Standard_Integer (Geom_BezierCurve::*)() const>(&Geom_BezierCurve::NbPoles),
             R"#(Returns the number of poles of this Bezier curve.)#" 
          )
        .def("Pole",
             (const gp_Pnt & (Geom_BezierCurve::*)( const Standard_Integer  ) const) static_cast<const gp_Pnt & (Geom_BezierCurve::*)( const Standard_Integer  ) const>(&Geom_BezierCurve::Pole),
             R"#(Returns the pole of range Index. Raised if Index is not in the range [1, NbPoles])#"  , py::arg("Index")
          )
        .def("Poles",
             (void (Geom_BezierCurve::*)( NCollection_Array1<gp_Pnt> &  ) const) static_cast<void (Geom_BezierCurve::*)( NCollection_Array1<gp_Pnt> &  ) const>(&Geom_BezierCurve::Poles),
             R"#(Returns all the poles of the curve.)#"  , py::arg("P")
          )
        .def("Weight",
             (Standard_Real (Geom_BezierCurve::*)( const Standard_Integer  ) const) static_cast<Standard_Real (Geom_BezierCurve::*)( const Standard_Integer  ) const>(&Geom_BezierCurve::Weight),
             R"#(Returns the weight of range Index. Raised if Index is not in the range [1, NbPoles])#"  , py::arg("Index")
          )
        .def("Weights",
             (void (Geom_BezierCurve::*)( NCollection_Array1<Standard_Real> &  ) const) static_cast<void (Geom_BezierCurve::*)( NCollection_Array1<Standard_Real> &  ) const>(&Geom_BezierCurve::Weights),
             R"#(Returns all the weights of the curve.)#"  , py::arg("W")
          )
        .def("Weights",
             (const TColStd_Array1OfReal * (Geom_BezierCurve::*)() const) static_cast<const TColStd_Array1OfReal * (Geom_BezierCurve::*)() const>(&Geom_BezierCurve::Weights),
             R"#(Returns all the weights of the curve.)#" 
          )
        .def("Transform",
             (void (Geom_BezierCurve::*)( const gp_Trsf &  ) ) static_cast<void (Geom_BezierCurve::*)( const gp_Trsf &  ) >(&Geom_BezierCurve::Transform),
             R"#(Applies the transformation T to this Bezier curve.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom_Geometry> (Geom_BezierCurve::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_BezierCurve::*)() const>(&Geom_BezierCurve::Copy),
             R"#(Creates a new object which is a copy of this Bezier curve.)#" 
          )
        .def("DumpJson",
             (void (Geom_BezierCurve::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom_BezierCurve::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom_BezierCurve::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
        .def("Resolution",
             []( Geom_BezierCurve &self , const Standard_Real Tolerance3D ){
                 Standard_Real  UTolerance;

                 self.Resolution(Tolerance3D,UTolerance);
                 
                 return std::make_tuple(UTolerance); },
             R"#(Computes for this Bezier curve the parametric tolerance UTolerance for a given 3D tolerance Tolerance3D. If f(t) is the equation of this Bezier curve, UTolerance ensures that: |t1-t0| < UTolerance ===> |f(t1)-f(t0)| < Tolerance3D)#"  , py::arg("Tolerance3D")
          )
    // static methods
        .def_static("MaxDegree_s",
                    (Standard_Integer (*)() ) static_cast<Standard_Integer (*)() >(&Geom_BezierCurve::MaxDegree),
                    R"#(Returns the value of the maximum polynomial degree of any Geom_BezierCurve curve. This value is 25.)#" 
          )
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_BezierCurve::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_BezierCurve::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Poles",
             (const TColgp_Array1OfPnt & (Geom_BezierCurve::*)() const) static_cast<const TColgp_Array1OfPnt & (Geom_BezierCurve::*)() const>(&Geom_BezierCurve::Poles),
             R"#(Returns all the poles of the curve.)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_BezierCurve::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_BezierCurve::*)() const>(&Geom_BezierCurve::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_BezierSurface from ./opencascade/Geom_BezierSurface.hxx
    klass = m.attr("Geom_BezierSurface");


    // nested enums

    static_cast<py::class_<Geom_BezierSurface ,opencascade::handle<Geom_BezierSurface>  , Geom_BoundedSurface >>(klass)
    // constructors
        .def(py::init<  const NCollection_Array2<gp_Pnt> & >()  , py::arg("SurfacePoles") )
        .def(py::init<  const NCollection_Array2<gp_Pnt> &, const NCollection_Array2<Standard_Real> & >()  , py::arg("SurfacePoles"),  py::arg("PoleWeights") )
    // custom constructors
    // methods
        .def("ExchangeUV",
             (void (Geom_BezierSurface::*)() ) static_cast<void (Geom_BezierSurface::*)() >(&Geom_BezierSurface::ExchangeUV),
             R"#(Exchanges the direction U and V on a Bezier surface As a consequence: - the poles and weights tables are transposed, - degrees, rational characteristics and so on are exchanged between the two parametric directions, and - the orientation of the surface is reversed.)#" 
          )
        .def("Increase",
             (void (Geom_BezierSurface::*)( const Standard_Integer ,  const Standard_Integer  ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer ,  const Standard_Integer  ) >(&Geom_BezierSurface::Increase),
             R"#(Increases the degree of this Bezier surface in the two parametric directions.)#"  , py::arg("UDeg"),  py::arg("VDeg")
          )
        .def("InsertPoleColAfter",
             (void (Geom_BezierSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> &  ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> &  ) >(&Geom_BezierSurface::InsertPoleColAfter),
             R"#(Inserts a column of poles. If the surface is rational the weights values associated with CPoles are equal defaulted to 1.)#"  , py::arg("VIndex"),  py::arg("CPoles")
          )
        .def("InsertPoleColAfter",
             (void (Geom_BezierSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> &  ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> &  ) >(&Geom_BezierSurface::InsertPoleColAfter),
             R"#(Inserts a column of poles and weights. If the surface was non-rational it can become rational.)#"  , py::arg("VIndex"),  py::arg("CPoles"),  py::arg("CPoleWeights")
          )
        .def("InsertPoleColBefore",
             (void (Geom_BezierSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> &  ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> &  ) >(&Geom_BezierSurface::InsertPoleColBefore),
             R"#(Inserts a column of poles. If the surface is rational the weights values associated with CPoles are equal defaulted to 1.)#"  , py::arg("VIndex"),  py::arg("CPoles")
          )
        .def("InsertPoleColBefore",
             (void (Geom_BezierSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> &  ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> &  ) >(&Geom_BezierSurface::InsertPoleColBefore),
             R"#(Inserts a column of poles and weights. If the surface was non-rational it can become rational.)#"  , py::arg("VIndex"),  py::arg("CPoles"),  py::arg("CPoleWeights")
          )
        .def("InsertPoleRowAfter",
             (void (Geom_BezierSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> &  ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> &  ) >(&Geom_BezierSurface::InsertPoleRowAfter),
             R"#(Inserts a row of poles. If the surface is rational the weights values associated with CPoles are equal defaulted to 1.)#"  , py::arg("UIndex"),  py::arg("CPoles")
          )
        .def("InsertPoleRowAfter",
             (void (Geom_BezierSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> &  ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> &  ) >(&Geom_BezierSurface::InsertPoleRowAfter),
             R"#(Inserts a row of poles and weights. If the surface was non-rational it can become rational.)#"  , py::arg("UIndex"),  py::arg("CPoles"),  py::arg("CPoleWeights")
          )
        .def("InsertPoleRowBefore",
             (void (Geom_BezierSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> &  ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> &  ) >(&Geom_BezierSurface::InsertPoleRowBefore),
             R"#(Inserts a row of poles. If the surface is rational the weights values associated with CPoles are equal defaulted to 1.)#"  , py::arg("UIndex"),  py::arg("CPoles")
          )
        .def("InsertPoleRowBefore",
             (void (Geom_BezierSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> &  ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> &  ) >(&Geom_BezierSurface::InsertPoleRowBefore),
             R"#(Inserts a row of poles and weights. If the surface was non-rational it can become rational.)#"  , py::arg("UIndex"),  py::arg("CPoles"),  py::arg("CPoleWeights")
          )
        .def("RemovePoleCol",
             (void (Geom_BezierSurface::*)( const Standard_Integer  ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer  ) >(&Geom_BezierSurface::RemovePoleCol),
             R"#(Removes a column of poles. If the surface was rational it can become non-rational.)#"  , py::arg("VIndex")
          )
        .def("RemovePoleRow",
             (void (Geom_BezierSurface::*)( const Standard_Integer  ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer  ) >(&Geom_BezierSurface::RemovePoleRow),
             R"#(Removes a row of poles. If the surface was rational it can become non-rational.)#"  , py::arg("UIndex")
          )
        .def("Segment",
             (void (Geom_BezierSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&Geom_BezierSurface::Segment),
             R"#(Modifies this Bezier surface by segmenting it between U1 and U2 in the u parametric direction, and between V1 and V2 in the v parametric direction. U1, U2, V1, and V2 can be outside the bounds of this surface. - U1 and U2 isoparametric Bezier curves, segmented between V1 and V2, become the two bounds of the surface in the v parametric direction (0. and 1. u isoparametric curves). - V1 and V2 isoparametric Bezier curves, segmented between U1 and U2, become the two bounds of the surface in the u parametric direction (0. and 1. v isoparametric curves). The poles and weights tables are modified, but the degree of this surface in the u and v parametric directions does not change. U1 can be greater than U2, and V1 can be greater than V2. In these cases, the corresponding parametric direction is inverted. The orientation of the surface is inverted if one (and only one) parametric direction is inverted.)#"  , py::arg("U1"),  py::arg("U2"),  py::arg("V1"),  py::arg("V2")
          )
        .def("SetPole",
             (void (Geom_BezierSurface::*)( const Standard_Integer ,  const Standard_Integer ,  const gp_Pnt &  ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer ,  const Standard_Integer ,  const gp_Pnt &  ) >(&Geom_BezierSurface::SetPole),
             R"#(Modifies a pole value. If the surface is rational the weight of range (UIndex, VIndex) is not modified.)#"  , py::arg("UIndex"),  py::arg("VIndex"),  py::arg("P")
          )
        .def("SetPole",
             (void (Geom_BezierSurface::*)( const Standard_Integer ,  const Standard_Integer ,  const gp_Pnt & ,  const Standard_Real  ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer ,  const Standard_Integer ,  const gp_Pnt & ,  const Standard_Real  ) >(&Geom_BezierSurface::SetPole),
             R"#(Substitutes the pole and the weight of range UIndex, VIndex. If the surface <me> is not rational it can become rational. if the surface was rational it can become non-rational.)#"  , py::arg("UIndex"),  py::arg("VIndex"),  py::arg("P"),  py::arg("Weight")
          )
        .def("SetPoleCol",
             (void (Geom_BezierSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> &  ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> &  ) >(&Geom_BezierSurface::SetPoleCol),
             R"#(Modifies a column of poles. The length of CPoles can be lower but not greater than NbUPoles so you can modify just a part of the column. Raised if VIndex < 1 or VIndex > NbVPoles)#"  , py::arg("VIndex"),  py::arg("CPoles")
          )
        .def("SetPoleCol",
             (void (Geom_BezierSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> &  ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> &  ) >(&Geom_BezierSurface::SetPoleCol),
             R"#(Modifies a column of poles. If the surface was rational it can become non-rational If the surface was non-rational it can become rational. The length of CPoles can be lower but not greater than NbUPoles so you can modify just a part of the column. Raised if VIndex < 1 or VIndex > NbVPoles)#"  , py::arg("VIndex"),  py::arg("CPoles"),  py::arg("CPoleWeights")
          )
        .def("SetPoleRow",
             (void (Geom_BezierSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> &  ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> &  ) >(&Geom_BezierSurface::SetPoleRow),
             R"#(Modifies a row of poles. The length of CPoles can be lower but not greater than NbVPoles so you can modify just a part of the row. Raised if UIndex < 1 or UIndex > NbUPoles)#"  , py::arg("UIndex"),  py::arg("CPoles")
          )
        .def("SetPoleRow",
             (void (Geom_BezierSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> &  ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer ,   const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> &  ) >(&Geom_BezierSurface::SetPoleRow),
             R"#(Modifies a row of poles and weights. If the surface was rational it can become non-rational. If the surface was non-rational it can become rational. The length of CPoles can be lower but not greater than NbVPoles so you can modify just a part of the row. Raised if UIndex < 1 or UIndex > NbUPoles)#"  , py::arg("UIndex"),  py::arg("CPoles"),  py::arg("CPoleWeights")
          )
        .def("SetWeight",
             (void (Geom_BezierSurface::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Real  ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Real  ) >(&Geom_BezierSurface::SetWeight),
             R"#(Modifies the weight of the pole of range UIndex, VIndex. If the surface was non-rational it can become rational. If the surface was rational it can become non-rational.)#"  , py::arg("UIndex"),  py::arg("VIndex"),  py::arg("Weight")
          )
        .def("SetWeightCol",
             (void (Geom_BezierSurface::*)( const Standard_Integer ,   const NCollection_Array1<Standard_Real> &  ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer ,   const NCollection_Array1<Standard_Real> &  ) >(&Geom_BezierSurface::SetWeightCol),
             R"#(Modifies a column of weights. If the surface was rational it can become non-rational. If the surface was non-rational it can become rational. The length of CPoleWeights can be lower but not greater than NbUPoles. Raised if VIndex < 1 or VIndex > NbVPoles)#"  , py::arg("VIndex"),  py::arg("CPoleWeights")
          )
        .def("SetWeightRow",
             (void (Geom_BezierSurface::*)( const Standard_Integer ,   const NCollection_Array1<Standard_Real> &  ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer ,   const NCollection_Array1<Standard_Real> &  ) >(&Geom_BezierSurface::SetWeightRow),
             R"#(Modifies a row of weights. If the surface was rational it can become non-rational. If the surface was non-rational it can become rational. The length of CPoleWeights can be lower but not greater than NbVPoles. Raised if UIndex < 1 or UIndex > NbUPoles)#"  , py::arg("UIndex"),  py::arg("CPoleWeights")
          )
        .def("UReverse",
             (void (Geom_BezierSurface::*)() ) static_cast<void (Geom_BezierSurface::*)() >(&Geom_BezierSurface::UReverse),
             R"#(Changes the orientation of this Bezier surface in the u parametric direction. The bounds of the surface are not changed, but the given parametric direction is reversed. Hence, the orientation of the surface is reversed.)#" 
          )
        .def("UReversedParameter",
             (Standard_Real (Geom_BezierSurface::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_BezierSurface::*)( const Standard_Real  ) const>(&Geom_BezierSurface::UReversedParameter),
             R"#(Computes the u (or v) parameter on the modified surface, produced by reversing its u (or v) parametric direction, for any point of u parameter U (or of v parameter V) on this Bezier surface. In the case of a Bezier surface, these functions return respectively: - 1.-U, or 1.-V.)#"  , py::arg("U")
          )
        .def("VReverse",
             (void (Geom_BezierSurface::*)() ) static_cast<void (Geom_BezierSurface::*)() >(&Geom_BezierSurface::VReverse),
             R"#(Changes the orientation of this Bezier surface in the v parametric direction. The bounds of the surface are not changed, but the given parametric direction is reversed. Hence, the orientation of the surface is reversed.)#" 
          )
        .def("VReversedParameter",
             (Standard_Real (Geom_BezierSurface::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_BezierSurface::*)( const Standard_Real  ) const>(&Geom_BezierSurface::VReversedParameter),
             R"#(Computes the u (or v) parameter on the modified surface, produced by reversing its u (or v) parametric direction, for any point of u parameter U (or of v parameter V) on this Bezier surface. In the case of a Bezier surface, these functions return respectively: - 1.-U, or 1.-V.)#"  , py::arg("V")
          )
        .def("Continuity",
             (GeomAbs_Shape (Geom_BezierSurface::*)() const) static_cast<GeomAbs_Shape (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::Continuity),
             R"#(Returns the continuity of the surface CN : the order of continuity is infinite.)#" 
          )
        .def("D0",
             (void (Geom_BezierSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt &  ) const) static_cast<void (Geom_BezierSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt &  ) const>(&Geom_BezierSurface::D0),
             R"#(None)#"  , py::arg("U"),  py::arg("V"),  py::arg("P")
          )
        .def("D1",
             (void (Geom_BezierSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_BezierSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_BezierSurface::D1),
             R"#(None)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V")
          )
        .def("D2",
             (void (Geom_BezierSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_BezierSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_BezierSurface::D2),
             R"#(None)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV")
          )
        .def("D3",
             (void (Geom_BezierSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_BezierSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_BezierSurface::D3),
             R"#(Computes P, the point of parameters (U, V) of this Bezier surface, and - one or more of the following sets of vectors: - D1U and D1V, the first derivative vectors at this point, - D2U, D2V and D2UV, the second derivative vectors at this point, - D3U, D3V, D3UUV and D3UVV, the third derivative vectors at this point. Note: The parameters U and V can be outside the bounds of the surface.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV"),  py::arg("D3U"),  py::arg("D3V"),  py::arg("D3UUV"),  py::arg("D3UVV")
          )
        .def("DN",
             (gp_Vec (Geom_BezierSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const) static_cast<gp_Vec (Geom_BezierSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const>(&Geom_BezierSurface::DN),
             R"#(Computes the derivative of order Nu in the u parametric direction, and Nv in the v parametric direction, at the point of parameters (U, V) of this Bezier surface. Note: The parameters U and V can be outside the bounds of the surface. Exceptions Standard_RangeError if: - Nu + Nv is less than 1, or Nu or Nv is negative.)#"  , py::arg("U"),  py::arg("V"),  py::arg("Nu"),  py::arg("Nv")
          )
        .def("NbUPoles",
             (Standard_Integer (Geom_BezierSurface::*)() const) static_cast<Standard_Integer (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::NbUPoles),
             R"#(Returns the number of poles in the U direction.)#" 
          )
        .def("NbVPoles",
             (Standard_Integer (Geom_BezierSurface::*)() const) static_cast<Standard_Integer (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::NbVPoles),
             R"#(Returns the number of poles in the V direction.)#" 
          )
        .def("Pole",
             (const gp_Pnt & (Geom_BezierSurface::*)( const Standard_Integer ,  const Standard_Integer  ) const) static_cast<const gp_Pnt & (Geom_BezierSurface::*)( const Standard_Integer ,  const Standard_Integer  ) const>(&Geom_BezierSurface::Pole),
             R"#(Returns the pole of range UIndex, VIndex Raised if UIndex < 1 or UIndex > NbUPoles, or VIndex < 1 or VIndex > NbVPoles.)#"  , py::arg("UIndex"),  py::arg("VIndex")
          )
        .def("Poles",
             (void (Geom_BezierSurface::*)( NCollection_Array2<gp_Pnt> &  ) const) static_cast<void (Geom_BezierSurface::*)( NCollection_Array2<gp_Pnt> &  ) const>(&Geom_BezierSurface::Poles),
             R"#(Returns the poles of the Bezier surface.)#"  , py::arg("P")
          )
        .def("UDegree",
             (Standard_Integer (Geom_BezierSurface::*)() const) static_cast<Standard_Integer (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::UDegree),
             R"#(Returns the degree of the surface in the U direction it is NbUPoles - 1)#" 
          )
        .def("UIso",
             (opencascade::handle<Geom_Curve> (Geom_BezierSurface::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_BezierSurface::*)( const Standard_Real  ) const>(&Geom_BezierSurface::UIso),
             R"#(Computes the U isoparametric curve. For a Bezier surface the UIso curve is a Bezier curve.)#"  , py::arg("U")
          )
        .def("VDegree",
             (Standard_Integer (Geom_BezierSurface::*)() const) static_cast<Standard_Integer (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::VDegree),
             R"#(Returns the degree of the surface in the V direction it is NbVPoles - 1)#" 
          )
        .def("VIso",
             (opencascade::handle<Geom_Curve> (Geom_BezierSurface::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_BezierSurface::*)( const Standard_Real  ) const>(&Geom_BezierSurface::VIso),
             R"#(Computes the V isoparametric curve. For a Bezier surface the VIso curve is a Bezier curve.)#"  , py::arg("V")
          )
        .def("Weight",
             (Standard_Real (Geom_BezierSurface::*)( const Standard_Integer ,  const Standard_Integer  ) const) static_cast<Standard_Real (Geom_BezierSurface::*)( const Standard_Integer ,  const Standard_Integer  ) const>(&Geom_BezierSurface::Weight),
             R"#(Returns the weight of range UIndex, VIndex)#"  , py::arg("UIndex"),  py::arg("VIndex")
          )
        .def("Weights",
             (void (Geom_BezierSurface::*)( NCollection_Array2<Standard_Real> &  ) const) static_cast<void (Geom_BezierSurface::*)( NCollection_Array2<Standard_Real> &  ) const>(&Geom_BezierSurface::Weights),
             R"#(Returns the weights of the Bezier surface.)#"  , py::arg("W")
          )
        .def("Weights",
             (const TColStd_Array2OfReal * (Geom_BezierSurface::*)() const) static_cast<const TColStd_Array2OfReal * (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::Weights),
             R"#(Returns the weights of the Bezier surface.)#" 
          )
        .def("IsUClosed",
             (Standard_Boolean (Geom_BezierSurface::*)() const) static_cast<Standard_Boolean (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::IsUClosed),
             R"#(Returns True if the first control points row and the last control points row are identical. The tolerance criterion is Resolution from package gp.)#" 
          )
        .def("IsVClosed",
             (Standard_Boolean (Geom_BezierSurface::*)() const) static_cast<Standard_Boolean (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::IsVClosed),
             R"#(Returns True if the first control points column and the last control points column are identical. The tolerance criterion is Resolution from package gp.)#" 
          )
        .def("IsCNu",
             (Standard_Boolean (Geom_BezierSurface::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom_BezierSurface::*)( const Standard_Integer  ) const>(&Geom_BezierSurface::IsCNu),
             R"#(Returns True, a Bezier surface is always CN)#"  , py::arg("N")
          )
        .def("IsCNv",
             (Standard_Boolean (Geom_BezierSurface::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom_BezierSurface::*)( const Standard_Integer  ) const>(&Geom_BezierSurface::IsCNv),
             R"#(Returns True, a BezierSurface is always CN)#"  , py::arg("N")
          )
        .def("IsUPeriodic",
             (Standard_Boolean (Geom_BezierSurface::*)() const) static_cast<Standard_Boolean (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::IsUPeriodic),
             R"#(Returns False.)#" 
          )
        .def("IsVPeriodic",
             (Standard_Boolean (Geom_BezierSurface::*)() const) static_cast<Standard_Boolean (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::IsVPeriodic),
             R"#(Returns False.)#" 
          )
        .def("IsURational",
             (Standard_Boolean (Geom_BezierSurface::*)() const) static_cast<Standard_Boolean (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::IsURational),
             R"#(Returns False if the weights are identical in the U direction, The tolerance criterion is Resolution from package gp. Example : |1.0, 1.0, 1.0| if Weights = |0.5, 0.5, 0.5| returns False |2.0, 2.0, 2.0|)#" 
          )
        .def("IsVRational",
             (Standard_Boolean (Geom_BezierSurface::*)() const) static_cast<Standard_Boolean (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::IsVRational),
             R"#(Returns False if the weights are identical in the V direction, The tolerance criterion is Resolution from package gp. Example : |1.0, 2.0, 0.5| if Weights = |1.0, 2.0, 0.5| returns False |1.0, 2.0, 0.5|)#" 
          )
        .def("Transform",
             (void (Geom_BezierSurface::*)( const gp_Trsf &  ) ) static_cast<void (Geom_BezierSurface::*)( const gp_Trsf &  ) >(&Geom_BezierSurface::Transform),
             R"#(Applies the transformation T to this Bezier surface.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom_Geometry> (Geom_BezierSurface::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::Copy),
             R"#(Creates a new object which is a copy of this Bezier surface.)#" 
          )
        .def("DumpJson",
             (void (Geom_BezierSurface::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom_BezierSurface::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom_BezierSurface::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
        .def("Bounds",
             []( Geom_BezierSurface &self   ){
                 Standard_Real  U1;
                Standard_Real  U2;
                Standard_Real  V1;
                Standard_Real  V2;

                 self.Bounds(U1,U2,V1,V2);
                 
                 return std::make_tuple(U1,U2,V1,V2); },
             R"#(Returns the parametric bounds U1, U2, V1 and V2 of this Bezier surface. In the case of a Bezier surface, this function returns U1 = 0, V1 = 0, U2 = 1, V2 = 1.)#" 
          )
        .def("Resolution",
             []( Geom_BezierSurface &self , const Standard_Real Tolerance3D ){
                 Standard_Real  UTolerance;
                Standard_Real  VTolerance;

                 self.Resolution(Tolerance3D,UTolerance,VTolerance);
                 
                 return std::make_tuple(UTolerance,VTolerance); },
             R"#(Computes two tolerance values for this Bezier surface, based on the given tolerance in 3D space Tolerance3D. The tolerances computed are: - UTolerance in the u parametric direction, and - VTolerance in the v parametric direction. If f(u,v) is the equation of this Bezier surface, UTolerance and VTolerance guarantee that: | u1 - u0 | < UTolerance and | v1 - v0 | < VTolerance ====> |f (u1,v1) - f (u0,v0)| < Tolerance3D)#"  , py::arg("Tolerance3D")
          )
    // static methods
        .def_static("MaxDegree_s",
                    (Standard_Integer (*)() ) static_cast<Standard_Integer (*)() >(&Geom_BezierSurface::MaxDegree),
                    R"#(Returns the value of the maximum polynomial degree of a Bezier surface. This value is 25.)#" 
          )
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_BezierSurface::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_BezierSurface::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Poles",
             (const TColgp_Array2OfPnt & (Geom_BezierSurface::*)() const) static_cast<const TColgp_Array2OfPnt & (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::Poles),
             R"#(Returns the poles of the Bezier surface.)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_BezierSurface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_Circle from ./opencascade/Geom_Circle.hxx
    klass = m.attr("Geom_Circle");


    // nested enums

    static_cast<py::class_<Geom_Circle ,opencascade::handle<Geom_Circle>  , Geom_Conic >>(klass)
    // constructors
        .def(py::init< const gp_Circ & >()  , py::arg("C") )
        .def(py::init< const gp_Ax2 &,const Standard_Real >()  , py::arg("A2"),  py::arg("Radius") )
    // custom constructors
    // methods
        .def("SetCirc",
             (void (Geom_Circle::*)( const gp_Circ &  ) ) static_cast<void (Geom_Circle::*)( const gp_Circ &  ) >(&Geom_Circle::SetCirc),
             R"#(Set <me> so that <me> has the same geometric properties as C.)#"  , py::arg("C")
          )
        .def("SetRadius",
             (void (Geom_Circle::*)( const Standard_Real  ) ) static_cast<void (Geom_Circle::*)( const Standard_Real  ) >(&Geom_Circle::SetRadius),
             R"#(Assigns the value R to the radius of this circle. Note: it is possible to have a circle with a radius equal to 0.0. Exceptions - Standard_ConstructionError if R is negative.)#"  , py::arg("R")
          )
        .def("Circ",
             (gp_Circ (Geom_Circle::*)() const) static_cast<gp_Circ (Geom_Circle::*)() const>(&Geom_Circle::Circ),
             R"#(returns the non transient circle from gp with the same geometric properties as <me>.)#" 
          )
        .def("Radius",
             (Standard_Real (Geom_Circle::*)() const) static_cast<Standard_Real (Geom_Circle::*)() const>(&Geom_Circle::Radius),
             R"#(Returns the radius of this circle.)#" 
          )
        .def("ReversedParameter",
             (Standard_Real (Geom_Circle::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_Circle::*)( const Standard_Real  ) const>(&Geom_Circle::ReversedParameter),
             R"#(Computes the parameter on the reversed circle for the point of parameter U on this circle. For a circle, the returned value is: 2.*Pi - U.)#"  , py::arg("U")
          )
        .def("Eccentricity",
             (Standard_Real (Geom_Circle::*)() const) static_cast<Standard_Real (Geom_Circle::*)() const>(&Geom_Circle::Eccentricity),
             R"#(Returns the eccentricity e = 0 for a circle.)#" 
          )
        .def("FirstParameter",
             (Standard_Real (Geom_Circle::*)() const) static_cast<Standard_Real (Geom_Circle::*)() const>(&Geom_Circle::FirstParameter),
             R"#(Returns the value of the first parameter of this circle. This is 0.0, which gives the start point of this circle, or The start point and end point of a circle are coincident.)#" 
          )
        .def("LastParameter",
             (Standard_Real (Geom_Circle::*)() const) static_cast<Standard_Real (Geom_Circle::*)() const>(&Geom_Circle::LastParameter),
             R"#(Returns the value of the last parameter of this circle. This is 2.*Pi, which gives the end point of this circle. The start point and end point of a circle are coincident.)#" 
          )
        .def("IsClosed",
             (Standard_Boolean (Geom_Circle::*)() const) static_cast<Standard_Boolean (Geom_Circle::*)() const>(&Geom_Circle::IsClosed),
             R"#(returns True.)#" 
          )
        .def("IsPeriodic",
             (Standard_Boolean (Geom_Circle::*)() const) static_cast<Standard_Boolean (Geom_Circle::*)() const>(&Geom_Circle::IsPeriodic),
             R"#(returns True.)#" 
          )
        .def("D0",
             (void (Geom_Circle::*)( const Standard_Real ,  gp_Pnt &  ) const) static_cast<void (Geom_Circle::*)( const Standard_Real ,  gp_Pnt &  ) const>(&Geom_Circle::D0),
             R"#(Returns in P the point of parameter U. P = C + R * Cos (U) * XDir + R * Sin (U) * YDir where C is the center of the circle , XDir the XDirection and YDir the YDirection of the circle's local coordinate system.)#"  , py::arg("U"),  py::arg("P")
          )
        .def("D1",
             (void (Geom_Circle::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec &  ) const) static_cast<void (Geom_Circle::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec &  ) const>(&Geom_Circle::D1),
             R"#(Returns the point P of parameter U and the first derivative V1.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1")
          )
        .def("D2",
             (void (Geom_Circle::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_Circle::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_Circle::D2),
             R"#(Returns the point P of parameter U, the first and second derivatives V1 and V2.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def("D3",
             (void (Geom_Circle::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_Circle::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_Circle::D3),
             R"#(Returns the point P of parameter u, the first second and third derivatives V1 V2 and V3.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3")
          )
        .def("DN",
             (gp_Vec (Geom_Circle::*)( const Standard_Real ,  const Standard_Integer  ) const) static_cast<gp_Vec (Geom_Circle::*)( const Standard_Real ,  const Standard_Integer  ) const>(&Geom_Circle::DN),
             R"#(The returned vector gives the value of the derivative for the order of derivation N. Raised if N < 1.)#"  , py::arg("U"),  py::arg("N")
          )
        .def("Transform",
             (void (Geom_Circle::*)( const gp_Trsf &  ) ) static_cast<void (Geom_Circle::*)( const gp_Trsf &  ) >(&Geom_Circle::Transform),
             R"#(Applies the transformation T to this circle.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom_Geometry> (Geom_Circle::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Circle::*)() const>(&Geom_Circle::Copy),
             R"#(Creates a new object which is a copy of this circle.)#" 
          )
        .def("DumpJson",
             (void (Geom_Circle::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom_Circle::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom_Circle::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_Circle::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Circle::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_Circle::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Circle::*)() const>(&Geom_Circle::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_ConicalSurface from ./opencascade/Geom_ConicalSurface.hxx
    klass = m.attr("Geom_ConicalSurface");


    // nested enums

    static_cast<py::class_<Geom_ConicalSurface ,opencascade::handle<Geom_ConicalSurface>  , Geom_ElementarySurface >>(klass)
    // constructors
        .def(py::init< const gp_Ax3 &,const Standard_Real,const Standard_Real >()  , py::arg("A3"),  py::arg("Ang"),  py::arg("Radius") )
        .def(py::init< const gp_Cone & >()  , py::arg("C") )
    // custom constructors
    // methods
        .def("SetCone",
             (void (Geom_ConicalSurface::*)( const gp_Cone &  ) ) static_cast<void (Geom_ConicalSurface::*)( const gp_Cone &  ) >(&Geom_ConicalSurface::SetCone),
             R"#(Set <me> so that <me> has the same geometric properties as C.)#"  , py::arg("C")
          )
        .def("SetRadius",
             (void (Geom_ConicalSurface::*)( const Standard_Real  ) ) static_cast<void (Geom_ConicalSurface::*)( const Standard_Real  ) >(&Geom_ConicalSurface::SetRadius),
             R"#(Changes the radius of the conical surface in the placement plane (Z = 0, V = 0). The local coordinate system is not modified. Raised if R < 0.0)#"  , py::arg("R")
          )
        .def("SetSemiAngle",
             (void (Geom_ConicalSurface::*)( const Standard_Real  ) ) static_cast<void (Geom_ConicalSurface::*)( const Standard_Real  ) >(&Geom_ConicalSurface::SetSemiAngle),
             R"#(Changes the semi angle of the conical surface. Semi-angle can be negative. Its absolute value Abs(Ang) is in range ]0,PI/2[. Raises ConstructionError if Abs(Ang) < Resolution from gp or Abs(Ang) >= PI/2 - Resolution)#"  , py::arg("Ang")
          )
        .def("Cone",
             (gp_Cone (Geom_ConicalSurface::*)() const) static_cast<gp_Cone (Geom_ConicalSurface::*)() const>(&Geom_ConicalSurface::Cone),
             R"#(Returns a non transient cone with the same geometric properties as <me>.)#" 
          )
        .def("UReversedParameter",
             (Standard_Real (Geom_ConicalSurface::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_ConicalSurface::*)( const Standard_Real  ) const>(&Geom_ConicalSurface::UReversedParameter),
             R"#(Eeturn 2.PI - U.)#"  , py::arg("U")
          )
        .def("VReversedParameter",
             (Standard_Real (Geom_ConicalSurface::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_ConicalSurface::*)( const Standard_Real  ) const>(&Geom_ConicalSurface::VReversedParameter),
             R"#(Computes the u (or v) parameter on the modified surface, when reversing its u (or v) parametric direction, for any point of u parameter U (or of v parameter V) on this cone. In the case of a cone, these functions return respectively: - 2.*Pi - U, -V.)#"  , py::arg("V")
          )
        .def("VReverse",
             (void (Geom_ConicalSurface::*)() ) static_cast<void (Geom_ConicalSurface::*)() >(&Geom_ConicalSurface::VReverse),
             R"#(Changes the orientation of this cone in the v parametric direction. The bounds of the surface are not changed but the v parametric direction is reversed. As a consequence, for a cone: - the "main Direction" of the local coordinate system is reversed, and - the half-angle at the apex is inverted.)#" 
          )
        .def("ParametricTransformation",
             (gp_GTrsf2d (Geom_ConicalSurface::*)( const gp_Trsf &  ) const) static_cast<gp_GTrsf2d (Geom_ConicalSurface::*)( const gp_Trsf &  ) const>(&Geom_ConicalSurface::ParametricTransformation),
             R"#(Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns a scale centered on the U axis with T.ScaleFactor)#"  , py::arg("T")
          )
        .def("Apex",
             (gp_Pnt (Geom_ConicalSurface::*)() const) static_cast<gp_Pnt (Geom_ConicalSurface::*)() const>(&Geom_ConicalSurface::Apex),
             R"#(Computes the apex of this cone. It is on the negative side of the axis of revolution of this cone if the half-angle at the apex is positive, and on the positive side of the "main Axis" if the half-angle is negative.)#" 
          )
        .def("RefRadius",
             (Standard_Real (Geom_ConicalSurface::*)() const) static_cast<Standard_Real (Geom_ConicalSurface::*)() const>(&Geom_ConicalSurface::RefRadius),
             R"#(Returns the reference radius of this cone. The reference radius is the radius of the circle formed by the intersection of this cone and its reference plane (i.e. the plane defined by the origin, "X Direction" and "Y Direction" of the local coordinate system of this cone). If the apex of this cone is on the origin of the local coordinate system of this cone, the returned value is 0.)#" 
          )
        .def("SemiAngle",
             (Standard_Real (Geom_ConicalSurface::*)() const) static_cast<Standard_Real (Geom_ConicalSurface::*)() const>(&Geom_ConicalSurface::SemiAngle),
             R"#(Returns the semi-angle at the apex of this cone. Attention! Semi-angle can be negative.)#" 
          )
        .def("IsUClosed",
             (Standard_Boolean (Geom_ConicalSurface::*)() const) static_cast<Standard_Boolean (Geom_ConicalSurface::*)() const>(&Geom_ConicalSurface::IsUClosed),
             R"#(returns True.)#" 
          )
        .def("IsVClosed",
             (Standard_Boolean (Geom_ConicalSurface::*)() const) static_cast<Standard_Boolean (Geom_ConicalSurface::*)() const>(&Geom_ConicalSurface::IsVClosed),
             R"#(returns False.)#" 
          )
        .def("IsUPeriodic",
             (Standard_Boolean (Geom_ConicalSurface::*)() const) static_cast<Standard_Boolean (Geom_ConicalSurface::*)() const>(&Geom_ConicalSurface::IsUPeriodic),
             R"#(Returns True.)#" 
          )
        .def("IsVPeriodic",
             (Standard_Boolean (Geom_ConicalSurface::*)() const) static_cast<Standard_Boolean (Geom_ConicalSurface::*)() const>(&Geom_ConicalSurface::IsVPeriodic),
             R"#(Returns False.)#" 
          )
        .def("UIso",
             (opencascade::handle<Geom_Curve> (Geom_ConicalSurface::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_ConicalSurface::*)( const Standard_Real  ) const>(&Geom_ConicalSurface::UIso),
             R"#(Builds the U isoparametric line of this cone. The origin of this line is on the reference plane of this cone (i.e. the plane defined by the origin, "X Direction" and "Y Direction" of the local coordinate system of this cone).)#"  , py::arg("U")
          )
        .def("VIso",
             (opencascade::handle<Geom_Curve> (Geom_ConicalSurface::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_ConicalSurface::*)( const Standard_Real  ) const>(&Geom_ConicalSurface::VIso),
             R"#(Builds the V isoparametric circle of this cone. It is the circle on this cone, located in the plane of Z coordinate V*cos(Semi-Angle) in the local coordinate system of this cone. The "Axis" of this circle is the axis of revolution of this cone. Its starting point is defined by the "X Direction" of this cone. Warning If the V isoparametric circle is close to the apex of this cone, the radius of the circle becomes very small. It is possible to have a circle with radius equal to 0.0.)#"  , py::arg("V")
          )
        .def("D0",
             (void (Geom_ConicalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt &  ) const) static_cast<void (Geom_ConicalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt &  ) const>(&Geom_ConicalSurface::D0),
             R"#(Computes the point P (U, V) on the surface. where Loc is the origin of the placement plane (XAxis, YAxis) XDir is the direction of the XAxis and YDir the direction of the YAxis.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P")
          )
        .def("D1",
             (void (Geom_ConicalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_ConicalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_ConicalSurface::D1),
             R"#(Computes the current point and the first derivatives in the directions U and V.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V")
          )
        .def("D2",
             (void (Geom_ConicalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_ConicalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_ConicalSurface::D2),
             R"#(Computes the current point, the first and the second derivatives in the directions U and V.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV")
          )
        .def("D3",
             (void (Geom_ConicalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_ConicalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_ConicalSurface::D3),
             R"#(Computes the current point, the first,the second and the third derivatives in the directions U and V.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV"),  py::arg("D3U"),  py::arg("D3V"),  py::arg("D3UUV"),  py::arg("D3UVV")
          )
        .def("DN",
             (gp_Vec (Geom_ConicalSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const) static_cast<gp_Vec (Geom_ConicalSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const>(&Geom_ConicalSurface::DN),
             R"#(Computes the derivative of order Nu in the u parametric direction, and Nv in the v parametric direction at the point of parameters (U, V) of this cone. Exceptions Standard_RangeError if: - Nu + Nv is less than 1, - Nu or Nv is negative.)#"  , py::arg("U"),  py::arg("V"),  py::arg("Nu"),  py::arg("Nv")
          )
        .def("Transform",
             (void (Geom_ConicalSurface::*)( const gp_Trsf &  ) ) static_cast<void (Geom_ConicalSurface::*)( const gp_Trsf &  ) >(&Geom_ConicalSurface::Transform),
             R"#(Applies the transformation T to this cone.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom_Geometry> (Geom_ConicalSurface::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_ConicalSurface::*)() const>(&Geom_ConicalSurface::Copy),
             R"#(Creates a new object which is a copy of this cone.)#" 
          )
        .def("DumpJson",
             (void (Geom_ConicalSurface::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom_ConicalSurface::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom_ConicalSurface::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
        .def("TransformParameters",
             []( Geom_ConicalSurface &self , const gp_Trsf & T ){
                 Standard_Real  U;
                Standard_Real  V;

                 self.TransformParameters(U,V,T);
                 
                 return std::make_tuple(U,V); },
             R"#(Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method multiplies V by T.ScaleFactor())#"  , py::arg("T")
          )
        .def("Bounds",
             []( Geom_ConicalSurface &self   ){
                 Standard_Real  U1;
                Standard_Real  U2;
                Standard_Real  V1;
                Standard_Real  V2;

                 self.Bounds(U1,U2,V1,V2);
                 
                 return std::make_tuple(U1,U2,V1,V2); },
             R"#(The conical surface is infinite in the V direction so V1 = Realfirst from Standard and V2 = RealLast. U1 = 0 and U2 = 2*PI.)#" 
          )
        .def("Coefficients",
             []( Geom_ConicalSurface &self   ){
                 Standard_Real  A1;
                Standard_Real  A2;
                Standard_Real  A3;
                Standard_Real  B1;
                Standard_Real  B2;
                Standard_Real  B3;
                Standard_Real  C1;
                Standard_Real  C2;
                Standard_Real  C3;
                Standard_Real  D;

                 self.Coefficients(A1,A2,A3,B1,B2,B3,C1,C2,C3,D);
                 
                 return std::make_tuple(A1,A2,A3,B1,B2,B3,C1,C2,C3,D); },
             R"#(Returns the coefficients of the implicit equation of the quadric in the absolute cartesian coordinate system : These coefficients are normalized.)#" 
          )
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_ConicalSurface::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_ConicalSurface::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_ConicalSurface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_ConicalSurface::*)() const>(&Geom_ConicalSurface::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_CylindricalSurface from ./opencascade/Geom_CylindricalSurface.hxx
    klass = m.attr("Geom_CylindricalSurface");


    // nested enums

    static_cast<py::class_<Geom_CylindricalSurface ,opencascade::handle<Geom_CylindricalSurface>  , Geom_ElementarySurface >>(klass)
    // constructors
        .def(py::init< const gp_Ax3 &,const Standard_Real >()  , py::arg("A3"),  py::arg("Radius") )
        .def(py::init< const gp_Cylinder & >()  , py::arg("C") )
    // custom constructors
    // methods
        .def("SetCylinder",
             (void (Geom_CylindricalSurface::*)( const gp_Cylinder &  ) ) static_cast<void (Geom_CylindricalSurface::*)( const gp_Cylinder &  ) >(&Geom_CylindricalSurface::SetCylinder),
             R"#(Set <me> so that <me> has the same geometric properties as C.)#"  , py::arg("C")
          )
        .def("SetRadius",
             (void (Geom_CylindricalSurface::*)( const Standard_Real  ) ) static_cast<void (Geom_CylindricalSurface::*)( const Standard_Real  ) >(&Geom_CylindricalSurface::SetRadius),
             R"#(Changes the radius of the cylinder. Raised if R < 0.0)#"  , py::arg("R")
          )
        .def("Cylinder",
             (gp_Cylinder (Geom_CylindricalSurface::*)() const) static_cast<gp_Cylinder (Geom_CylindricalSurface::*)() const>(&Geom_CylindricalSurface::Cylinder),
             R"#(returns a non transient cylinder with the same geometric properties as <me>.)#" 
          )
        .def("UReversedParameter",
             (Standard_Real (Geom_CylindricalSurface::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_CylindricalSurface::*)( const Standard_Real  ) const>(&Geom_CylindricalSurface::UReversedParameter),
             R"#(Return the parameter on the Ureversed surface for the point of parameter U on <me>. Return 2.PI - U.)#"  , py::arg("U")
          )
        .def("VReversedParameter",
             (Standard_Real (Geom_CylindricalSurface::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_CylindricalSurface::*)( const Standard_Real  ) const>(&Geom_CylindricalSurface::VReversedParameter),
             R"#(Return the parameter on the Vreversed surface for the point of parameter V on <me>. Return -V)#"  , py::arg("V")
          )
        .def("ParametricTransformation",
             (gp_GTrsf2d (Geom_CylindricalSurface::*)( const gp_Trsf &  ) const) static_cast<gp_GTrsf2d (Geom_CylindricalSurface::*)( const gp_Trsf &  ) const>(&Geom_CylindricalSurface::ParametricTransformation),
             R"#(Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns a scale centered on the U axis with T.ScaleFactor)#"  , py::arg("T")
          )
        .def("Radius",
             (Standard_Real (Geom_CylindricalSurface::*)() const) static_cast<Standard_Real (Geom_CylindricalSurface::*)() const>(&Geom_CylindricalSurface::Radius),
             R"#(Returns the radius of this cylinder.)#" 
          )
        .def("IsUClosed",
             (Standard_Boolean (Geom_CylindricalSurface::*)() const) static_cast<Standard_Boolean (Geom_CylindricalSurface::*)() const>(&Geom_CylindricalSurface::IsUClosed),
             R"#(Returns True.)#" 
          )
        .def("IsVClosed",
             (Standard_Boolean (Geom_CylindricalSurface::*)() const) static_cast<Standard_Boolean (Geom_CylindricalSurface::*)() const>(&Geom_CylindricalSurface::IsVClosed),
             R"#(Returns False.)#" 
          )
        .def("IsUPeriodic",
             (Standard_Boolean (Geom_CylindricalSurface::*)() const) static_cast<Standard_Boolean (Geom_CylindricalSurface::*)() const>(&Geom_CylindricalSurface::IsUPeriodic),
             R"#(Returns True.)#" 
          )
        .def("IsVPeriodic",
             (Standard_Boolean (Geom_CylindricalSurface::*)() const) static_cast<Standard_Boolean (Geom_CylindricalSurface::*)() const>(&Geom_CylindricalSurface::IsVPeriodic),
             R"#(Returns False.)#" 
          )
        .def("UIso",
             (opencascade::handle<Geom_Curve> (Geom_CylindricalSurface::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_CylindricalSurface::*)( const Standard_Real  ) const>(&Geom_CylindricalSurface::UIso),
             R"#(The UIso curve is a Line. The location point of this line is on the placement plane (XAxis, YAxis) of the surface. This line is parallel to the axis of symmetry of the surface.)#"  , py::arg("U")
          )
        .def("VIso",
             (opencascade::handle<Geom_Curve> (Geom_CylindricalSurface::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_CylindricalSurface::*)( const Standard_Real  ) const>(&Geom_CylindricalSurface::VIso),
             R"#(The VIso curve is a circle. The start point of this circle (U = 0) is defined with the "XAxis" of the surface. The center of the circle is on the symmetry axis.)#"  , py::arg("V")
          )
        .def("D0",
             (void (Geom_CylindricalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt &  ) const) static_cast<void (Geom_CylindricalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt &  ) const>(&Geom_CylindricalSurface::D0),
             R"#(Computes the point P (U, V) on the surface. P (U, V) = Loc + Radius * (cos (U) * XDir + sin (U) * YDir) + V * ZDir where Loc is the origin of the placement plane (XAxis, YAxis) XDir is the direction of the XAxis and YDir the direction of the YAxis.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P")
          )
        .def("D1",
             (void (Geom_CylindricalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_CylindricalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_CylindricalSurface::D1),
             R"#(Computes the current point and the first derivatives in the directions U and V.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V")
          )
        .def("D2",
             (void (Geom_CylindricalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_CylindricalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_CylindricalSurface::D2),
             R"#(Computes the current point, the first and the second derivatives in the directions U and V.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV")
          )
        .def("D3",
             (void (Geom_CylindricalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_CylindricalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_CylindricalSurface::D3),
             R"#(Computes the current point, the first, the second and the third derivatives in the directions U and V.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV"),  py::arg("D3U"),  py::arg("D3V"),  py::arg("D3UUV"),  py::arg("D3UVV")
          )
        .def("DN",
             (gp_Vec (Geom_CylindricalSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const) static_cast<gp_Vec (Geom_CylindricalSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const>(&Geom_CylindricalSurface::DN),
             R"#(Computes the derivative of order Nu in the direction u and Nv in the direction v. Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.)#"  , py::arg("U"),  py::arg("V"),  py::arg("Nu"),  py::arg("Nv")
          )
        .def("Transform",
             (void (Geom_CylindricalSurface::*)( const gp_Trsf &  ) ) static_cast<void (Geom_CylindricalSurface::*)( const gp_Trsf &  ) >(&Geom_CylindricalSurface::Transform),
             R"#(Applies the transformation T to this cylinder.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom_Geometry> (Geom_CylindricalSurface::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_CylindricalSurface::*)() const>(&Geom_CylindricalSurface::Copy),
             R"#(Creates a new object which is a copy of this cylinder.)#" 
          )
        .def("DumpJson",
             (void (Geom_CylindricalSurface::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom_CylindricalSurface::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom_CylindricalSurface::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
        .def("TransformParameters",
             []( Geom_CylindricalSurface &self , const gp_Trsf & T ){
                 Standard_Real  U;
                Standard_Real  V;

                 self.TransformParameters(U,V,T);
                 
                 return std::make_tuple(U,V); },
             R"#(Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method multiplies V by T.ScaleFactor())#"  , py::arg("T")
          )
        .def("Bounds",
             []( Geom_CylindricalSurface &self   ){
                 Standard_Real  U1;
                Standard_Real  U2;
                Standard_Real  V1;
                Standard_Real  V2;

                 self.Bounds(U1,U2,V1,V2);
                 
                 return std::make_tuple(U1,U2,V1,V2); },
             R"#(The CylindricalSurface is infinite in the V direction so V1 = Realfirst, V2 = RealLast from package Standard. U1 = 0 and U2 = 2*PI.)#" 
          )
        .def("Coefficients",
             []( Geom_CylindricalSurface &self   ){
                 Standard_Real  A1;
                Standard_Real  A2;
                Standard_Real  A3;
                Standard_Real  B1;
                Standard_Real  B2;
                Standard_Real  B3;
                Standard_Real  C1;
                Standard_Real  C2;
                Standard_Real  C3;
                Standard_Real  D;

                 self.Coefficients(A1,A2,A3,B1,B2,B3,C1,C2,C3,D);
                 
                 return std::make_tuple(A1,A2,A3,B1,B2,B3,C1,C2,C3,D); },
             R"#(Returns the coefficients of the implicit equation of the quadric in the absolute cartesian coordinate system : These coefficients are normalized.)#" 
          )
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_CylindricalSurface::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_CylindricalSurface::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_CylindricalSurface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_CylindricalSurface::*)() const>(&Geom_CylindricalSurface::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_Ellipse from ./opencascade/Geom_Ellipse.hxx
    klass = m.attr("Geom_Ellipse");


    // nested enums

    static_cast<py::class_<Geom_Ellipse ,opencascade::handle<Geom_Ellipse>  , Geom_Conic >>(klass)
    // constructors
        .def(py::init< const gp_Elips & >()  , py::arg("E") )
        .def(py::init< const gp_Ax2 &,const Standard_Real,const Standard_Real >()  , py::arg("A2"),  py::arg("MajorRadius"),  py::arg("MinorRadius") )
    // custom constructors
    // methods
        .def("SetElips",
             (void (Geom_Ellipse::*)( const gp_Elips &  ) ) static_cast<void (Geom_Ellipse::*)( const gp_Elips &  ) >(&Geom_Ellipse::SetElips),
             R"#(Converts the gp_Elips ellipse E into this ellipse.)#"  , py::arg("E")
          )
        .def("SetMajorRadius",
             (void (Geom_Ellipse::*)( const Standard_Real  ) ) static_cast<void (Geom_Ellipse::*)( const Standard_Real  ) >(&Geom_Ellipse::SetMajorRadius),
             R"#(Assigns a value to the major radius of this ellipse. ConstructionError raised if MajorRadius < MinorRadius.)#"  , py::arg("MajorRadius")
          )
        .def("SetMinorRadius",
             (void (Geom_Ellipse::*)( const Standard_Real  ) ) static_cast<void (Geom_Ellipse::*)( const Standard_Real  ) >(&Geom_Ellipse::SetMinorRadius),
             R"#(Assigns a value to the minor radius of this ellipse. ConstructionError raised if MajorRadius < MinorRadius or if MinorRadius < 0.)#"  , py::arg("MinorRadius")
          )
        .def("Elips",
             (gp_Elips (Geom_Ellipse::*)() const) static_cast<gp_Elips (Geom_Ellipse::*)() const>(&Geom_Ellipse::Elips),
             R"#(returns the non transient ellipse from gp with the same)#" 
          )
        .def("ReversedParameter",
             (Standard_Real (Geom_Ellipse::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_Ellipse::*)( const Standard_Real  ) const>(&Geom_Ellipse::ReversedParameter),
             R"#(Computes the parameter on the reversed ellipse for the point of parameter U on this ellipse. For an ellipse, the returned value is: 2.*Pi - U.)#"  , py::arg("U")
          )
        .def("Directrix1",
             (gp_Ax1 (Geom_Ellipse::*)() const) static_cast<gp_Ax1 (Geom_Ellipse::*)() const>(&Geom_Ellipse::Directrix1),
             R"#(This directrix is the line normal to the XAxis of the ellipse in the local plane (Z = 0) at a distance d = MajorRadius / e from the center of the ellipse, where e is the eccentricity of the ellipse. This line is parallel to the "YAxis". The intersection point between directrix1 and the "XAxis" is the "Location" point of the directrix1. This point is on the positive side of the "XAxis". Raised if Eccentricity = 0.0. (The ellipse degenerates into a circle))#" 
          )
        .def("Directrix2",
             (gp_Ax1 (Geom_Ellipse::*)() const) static_cast<gp_Ax1 (Geom_Ellipse::*)() const>(&Geom_Ellipse::Directrix2),
             R"#(This line is obtained by the symmetrical transformation of "Directrix1" with respect to the "YAxis" of the ellipse.)#" 
          )
        .def("Eccentricity",
             (Standard_Real (Geom_Ellipse::*)() const) static_cast<Standard_Real (Geom_Ellipse::*)() const>(&Geom_Ellipse::Eccentricity),
             R"#(Returns the eccentricity of the ellipse between 0.0 and 1.0 If f is the distance between the center of the ellipse and the Focus1 then the eccentricity e = f / MajorRadius. Returns 0 if MajorRadius = 0)#" 
          )
        .def("Focal",
             (Standard_Real (Geom_Ellipse::*)() const) static_cast<Standard_Real (Geom_Ellipse::*)() const>(&Geom_Ellipse::Focal),
             R"#(Computes the focal distance. It is the distance between the the two focus of the ellipse.)#" 
          )
        .def("Focus1",
             (gp_Pnt (Geom_Ellipse::*)() const) static_cast<gp_Pnt (Geom_Ellipse::*)() const>(&Geom_Ellipse::Focus1),
             R"#(Returns the first focus of the ellipse. This focus is on the positive side of the "XAxis" of the ellipse.)#" 
          )
        .def("Focus2",
             (gp_Pnt (Geom_Ellipse::*)() const) static_cast<gp_Pnt (Geom_Ellipse::*)() const>(&Geom_Ellipse::Focus2),
             R"#(Returns the second focus of the ellipse. This focus is on the negative side of the "XAxis" of the ellipse.)#" 
          )
        .def("MajorRadius",
             (Standard_Real (Geom_Ellipse::*)() const) static_cast<Standard_Real (Geom_Ellipse::*)() const>(&Geom_Ellipse::MajorRadius),
             R"#(Returns the major radius of this ellipse.)#" 
          )
        .def("MinorRadius",
             (Standard_Real (Geom_Ellipse::*)() const) static_cast<Standard_Real (Geom_Ellipse::*)() const>(&Geom_Ellipse::MinorRadius),
             R"#(Returns the minor radius of this ellipse.)#" 
          )
        .def("Parameter",
             (Standard_Real (Geom_Ellipse::*)() const) static_cast<Standard_Real (Geom_Ellipse::*)() const>(&Geom_Ellipse::Parameter),
             R"#(Returns p = (1 - e * e) * MajorRadius where e is the eccentricity of the ellipse. Returns 0 if MajorRadius = 0)#" 
          )
        .def("FirstParameter",
             (Standard_Real (Geom_Ellipse::*)() const) static_cast<Standard_Real (Geom_Ellipse::*)() const>(&Geom_Ellipse::FirstParameter),
             R"#(Returns the value of the first parameter of this ellipse. This is respectively: - 0.0, which gives the start point of this ellipse, or The start point and end point of an ellipse are coincident.)#" 
          )
        .def("LastParameter",
             (Standard_Real (Geom_Ellipse::*)() const) static_cast<Standard_Real (Geom_Ellipse::*)() const>(&Geom_Ellipse::LastParameter),
             R"#(Returns the value of the last parameter of this ellipse. This is respectively: - 2.*Pi, which gives the end point of this ellipse. The start point and end point of an ellipse are coincident.)#" 
          )
        .def("IsClosed",
             (Standard_Boolean (Geom_Ellipse::*)() const) static_cast<Standard_Boolean (Geom_Ellipse::*)() const>(&Geom_Ellipse::IsClosed),
             R"#(return True.)#" 
          )
        .def("IsPeriodic",
             (Standard_Boolean (Geom_Ellipse::*)() const) static_cast<Standard_Boolean (Geom_Ellipse::*)() const>(&Geom_Ellipse::IsPeriodic),
             R"#(return True.)#" 
          )
        .def("D0",
             (void (Geom_Ellipse::*)( const Standard_Real ,  gp_Pnt &  ) const) static_cast<void (Geom_Ellipse::*)( const Standard_Real ,  gp_Pnt &  ) const>(&Geom_Ellipse::D0),
             R"#(Returns in P the point of parameter U. P = C + MajorRadius * Cos (U) * XDir + MinorRadius * Sin (U) * YDir where C is the center of the ellipse , XDir the direction of the "XAxis" and "YDir" the "YAxis" of the ellipse.)#"  , py::arg("U"),  py::arg("P")
          )
        .def("D1",
             (void (Geom_Ellipse::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec &  ) const) static_cast<void (Geom_Ellipse::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec &  ) const>(&Geom_Ellipse::D1),
             R"#(None)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1")
          )
        .def("D2",
             (void (Geom_Ellipse::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_Ellipse::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_Ellipse::D2),
             R"#(Returns the point P of parameter U. The vectors V1 and V2 are the first and second derivatives at this point.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def("D3",
             (void (Geom_Ellipse::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_Ellipse::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_Ellipse::D3),
             R"#(Returns the point P of parameter U, the first second and third derivatives V1 V2 and V3.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3")
          )
        .def("DN",
             (gp_Vec (Geom_Ellipse::*)( const Standard_Real ,  const Standard_Integer  ) const) static_cast<gp_Vec (Geom_Ellipse::*)( const Standard_Real ,  const Standard_Integer  ) const>(&Geom_Ellipse::DN),
             R"#(For the point of parameter U of this ellipse, computes the vector corresponding to the Nth derivative. Exceptions Standard_RangeError if N is less than 1.)#"  , py::arg("U"),  py::arg("N")
          )
        .def("Transform",
             (void (Geom_Ellipse::*)( const gp_Trsf &  ) ) static_cast<void (Geom_Ellipse::*)( const gp_Trsf &  ) >(&Geom_Ellipse::Transform),
             R"#(Applies the transformation T to this ellipse.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom_Geometry> (Geom_Ellipse::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Ellipse::*)() const>(&Geom_Ellipse::Copy),
             R"#(Creates a new object which is a copy of this ellipse.)#" 
          )
        .def("DumpJson",
             (void (Geom_Ellipse::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom_Ellipse::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom_Ellipse::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_Ellipse::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Ellipse::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_Ellipse::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Ellipse::*)() const>(&Geom_Ellipse::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_Hyperbola from ./opencascade/Geom_Hyperbola.hxx
    klass = m.attr("Geom_Hyperbola");


    // nested enums

    static_cast<py::class_<Geom_Hyperbola ,opencascade::handle<Geom_Hyperbola>  , Geom_Conic >>(klass)
    // constructors
        .def(py::init< const gp_Hypr & >()  , py::arg("H") )
        .def(py::init< const gp_Ax2 &,const Standard_Real,const Standard_Real >()  , py::arg("A2"),  py::arg("MajorRadius"),  py::arg("MinorRadius") )
    // custom constructors
    // methods
        .def("SetHypr",
             (void (Geom_Hyperbola::*)( const gp_Hypr &  ) ) static_cast<void (Geom_Hyperbola::*)( const gp_Hypr &  ) >(&Geom_Hyperbola::SetHypr),
             R"#(Converts the gp_Hypr hyperbola H into this hyperbola.)#"  , py::arg("H")
          )
        .def("SetMajorRadius",
             (void (Geom_Hyperbola::*)( const Standard_Real  ) ) static_cast<void (Geom_Hyperbola::*)( const Standard_Real  ) >(&Geom_Hyperbola::SetMajorRadius),
             R"#(Assigns a value to the major radius of this hyperbola. Exceptions Standard_ConstructionError if: - MajorRadius is less than 0.0, or - MinorRadius is less than 0.0.Raised if MajorRadius < 0.0)#"  , py::arg("MajorRadius")
          )
        .def("SetMinorRadius",
             (void (Geom_Hyperbola::*)( const Standard_Real  ) ) static_cast<void (Geom_Hyperbola::*)( const Standard_Real  ) >(&Geom_Hyperbola::SetMinorRadius),
             R"#(Assigns a value to the minor radius of this hyperbola. Exceptions Standard_ConstructionError if: - MajorRadius is less than 0.0, or - MinorRadius is less than 0.0.Raised if MajorRadius < 0.0)#"  , py::arg("MinorRadius")
          )
        .def("Hypr",
             (gp_Hypr (Geom_Hyperbola::*)() const) static_cast<gp_Hypr (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::Hypr),
             R"#(returns the non transient parabola from gp with the same geometric properties as <me>.)#" 
          )
        .def("ReversedParameter",
             (Standard_Real (Geom_Hyperbola::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_Hyperbola::*)( const Standard_Real  ) const>(&Geom_Hyperbola::ReversedParameter),
             R"#(Computes the parameter on the reversed hyperbola, for the point of parameter U on this hyperbola. For a hyperbola, the returned value is: -U.)#"  , py::arg("U")
          )
        .def("FirstParameter",
             (Standard_Real (Geom_Hyperbola::*)() const) static_cast<Standard_Real (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::FirstParameter),
             R"#(Returns RealFirst from Standard.)#" 
          )
        .def("LastParameter",
             (Standard_Real (Geom_Hyperbola::*)() const) static_cast<Standard_Real (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::LastParameter),
             R"#(returns RealLast from Standard.)#" 
          )
        .def("IsClosed",
             (Standard_Boolean (Geom_Hyperbola::*)() const) static_cast<Standard_Boolean (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::IsClosed),
             R"#(Returns False.)#" 
          )
        .def("IsPeriodic",
             (Standard_Boolean (Geom_Hyperbola::*)() const) static_cast<Standard_Boolean (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::IsPeriodic),
             R"#(return False for an hyperbola.)#" 
          )
        .def("Asymptote1",
             (gp_Ax1 (Geom_Hyperbola::*)() const) static_cast<gp_Ax1 (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::Asymptote1),
             R"#(In the local coordinate system of the hyperbola the equation of the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the equation of the first asymptote is Y = (B/A)*X. Raises ConstructionError if MajorRadius = 0.0)#" 
          )
        .def("Asymptote2",
             (gp_Ax1 (Geom_Hyperbola::*)() const) static_cast<gp_Ax1 (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::Asymptote2),
             R"#(In the local coordinate system of the hyperbola the equation of the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the equation of the first asymptote is Y = -(B/A)*X. Raises ConstructionError if MajorRadius = 0.0)#" 
          )
        .def("ConjugateBranch1",
             (gp_Hypr (Geom_Hyperbola::*)() const) static_cast<gp_Hypr (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::ConjugateBranch1),
             R"#(This branch of hyperbola is on the positive side of the YAxis of <me>.)#" 
          )
        .def("ConjugateBranch2",
             (gp_Hypr (Geom_Hyperbola::*)() const) static_cast<gp_Hypr (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::ConjugateBranch2),
             R"#(This branch of hyperbola is on the negative side of the YAxis of <me>. Note: The diagram given under the class purpose indicates where these two branches of hyperbola are positioned in relation to this branch of hyperbola.)#" 
          )
        .def("Directrix1",
             (gp_Ax1 (Geom_Hyperbola::*)() const) static_cast<gp_Ax1 (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::Directrix1),
             R"#(This directrix is the line normal to the XAxis of the hyperbola in the local plane (Z = 0) at a distance d = MajorRadius / e from the center of the hyperbola, where e is the eccentricity of the hyperbola. This line is parallel to the YAxis. The intersection point between directrix1 and the XAxis is the location point of the directrix1. This point is on the positive side of the XAxis.)#" 
          )
        .def("Directrix2",
             (gp_Ax1 (Geom_Hyperbola::*)() const) static_cast<gp_Ax1 (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::Directrix2),
             R"#(This line is obtained by the symmetrical transformation of "directrix1" with respect to the YAxis of the hyperbola.)#" 
          )
        .def("Eccentricity",
             (Standard_Real (Geom_Hyperbola::*)() const) static_cast<Standard_Real (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::Eccentricity),
             R"#(Returns the eccentricity of the hyperbola (e > 1). If f is the distance between the location of the hyperbola and the Focus1 then the eccentricity e = f / MajorRadius. raised if MajorRadius = 0.0)#" 
          )
        .def("Focal",
             (Standard_Real (Geom_Hyperbola::*)() const) static_cast<Standard_Real (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::Focal),
             R"#(Computes the focal distance. It is the distance between the two focus of the hyperbola.)#" 
          )
        .def("Focus1",
             (gp_Pnt (Geom_Hyperbola::*)() const) static_cast<gp_Pnt (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::Focus1),
             R"#(Returns the first focus of the hyperbola. This focus is on the positive side of the XAxis of the hyperbola.)#" 
          )
        .def("Focus2",
             (gp_Pnt (Geom_Hyperbola::*)() const) static_cast<gp_Pnt (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::Focus2),
             R"#(Returns the second focus of the hyperbola. This focus is on the negative side of the XAxis of the hyperbola.)#" 
          )
        .def("MajorRadius",
             (Standard_Real (Geom_Hyperbola::*)() const) static_cast<Standard_Real (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::MajorRadius),
             R"#(Returns the major or minor radius of this hyperbola. The major radius is also the distance between the center of the hyperbola and the apex of the main branch (located on the "X Axis" of the hyperbola).)#" 
          )
        .def("MinorRadius",
             (Standard_Real (Geom_Hyperbola::*)() const) static_cast<Standard_Real (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::MinorRadius),
             R"#(Returns the major or minor radius of this hyperbola. The minor radius is also the distance between the center of the hyperbola and the apex of a conjugate branch (located on the "Y Axis" of the hyperbola).)#" 
          )
        .def("OtherBranch",
             (gp_Hypr (Geom_Hyperbola::*)() const) static_cast<gp_Hypr (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::OtherBranch),
             R"#(Computes the "other" branch of this hyperbola. This is the symmetrical branch with respect to the center of this hyperbola. Note: The diagram given under the class purpose indicates where the "other" branch is positioned in relation to this branch of the hyperbola.)#" 
          )
        .def("Parameter",
             (Standard_Real (Geom_Hyperbola::*)() const) static_cast<Standard_Real (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::Parameter),
             R"#(Returns p = (e * e - 1) * MajorRadius where e is the eccentricity of the hyperbola. raised if MajorRadius = 0.0)#" 
          )
        .def("D0",
             (void (Geom_Hyperbola::*)( const Standard_Real ,  gp_Pnt &  ) const) static_cast<void (Geom_Hyperbola::*)( const Standard_Real ,  gp_Pnt &  ) const>(&Geom_Hyperbola::D0),
             R"#(Returns in P the point of parameter U. P = C + MajorRadius * Cosh (U) * XDir + MinorRadius * Sinh (U) * YDir where C is the center of the hyperbola , XDir the XDirection and YDir the YDirection of the hyperbola's local coordinate system.)#"  , py::arg("U"),  py::arg("P")
          )
        .def("D1",
             (void (Geom_Hyperbola::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec &  ) const) static_cast<void (Geom_Hyperbola::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec &  ) const>(&Geom_Hyperbola::D1),
             R"#(Returns the point P of parameter U and the first derivative V1.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1")
          )
        .def("D2",
             (void (Geom_Hyperbola::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_Hyperbola::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_Hyperbola::D2),
             R"#(Returns the point P of parameter U, the first and second derivatives V1 and V2.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def("D3",
             (void (Geom_Hyperbola::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_Hyperbola::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_Hyperbola::D3),
             R"#(Returns the point P of parameter U, the first second and third derivatives V1 V2 and V3.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3")
          )
        .def("DN",
             (gp_Vec (Geom_Hyperbola::*)( const Standard_Real ,  const Standard_Integer  ) const) static_cast<gp_Vec (Geom_Hyperbola::*)( const Standard_Real ,  const Standard_Integer  ) const>(&Geom_Hyperbola::DN),
             R"#(The returned vector gives the value of the derivative for the order of derivation N. Raised if N < 1.)#"  , py::arg("U"),  py::arg("N")
          )
        .def("Transform",
             (void (Geom_Hyperbola::*)( const gp_Trsf &  ) ) static_cast<void (Geom_Hyperbola::*)( const gp_Trsf &  ) >(&Geom_Hyperbola::Transform),
             R"#(Applies the transformation T to this hyperbola.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom_Geometry> (Geom_Hyperbola::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::Copy),
             R"#(Creates a new object which is a copy of this hyperbola.)#" 
          )
        .def("DumpJson",
             (void (Geom_Hyperbola::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom_Hyperbola::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom_Hyperbola::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_Hyperbola::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Hyperbola::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_Hyperbola::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_Parabola from ./opencascade/Geom_Parabola.hxx
    klass = m.attr("Geom_Parabola");


    // nested enums

    static_cast<py::class_<Geom_Parabola ,opencascade::handle<Geom_Parabola>  , Geom_Conic >>(klass)
    // constructors
        .def(py::init< const gp_Parab & >()  , py::arg("Prb") )
        .def(py::init< const gp_Ax2 &,const Standard_Real >()  , py::arg("A2"),  py::arg("Focal") )
        .def(py::init< const gp_Ax1 &,const gp_Pnt & >()  , py::arg("D"),  py::arg("F") )
    // custom constructors
    // methods
        .def("SetFocal",
             (void (Geom_Parabola::*)( const Standard_Real  ) ) static_cast<void (Geom_Parabola::*)( const Standard_Real  ) >(&Geom_Parabola::SetFocal),
             R"#(Assigns the value Focal to the focal distance of this parabola. Exceptions Standard_ConstructionError if Focal is negative.)#"  , py::arg("Focal")
          )
        .def("SetParab",
             (void (Geom_Parabola::*)( const gp_Parab &  ) ) static_cast<void (Geom_Parabola::*)( const gp_Parab &  ) >(&Geom_Parabola::SetParab),
             R"#(Converts the gp_Parab parabola Prb into this parabola.)#"  , py::arg("Prb")
          )
        .def("Parab",
             (gp_Parab (Geom_Parabola::*)() const) static_cast<gp_Parab (Geom_Parabola::*)() const>(&Geom_Parabola::Parab),
             R"#(Returns the non transient parabola from gp with the same geometric properties as <me>.)#" 
          )
        .def("ReversedParameter",
             (Standard_Real (Geom_Parabola::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_Parabola::*)( const Standard_Real  ) const>(&Geom_Parabola::ReversedParameter),
             R"#(Computes the parameter on the reversed parabola, for the point of parameter U on this parabola. For a parabola, the returned value is: -U.)#"  , py::arg("U")
          )
        .def("FirstParameter",
             (Standard_Real (Geom_Parabola::*)() const) static_cast<Standard_Real (Geom_Parabola::*)() const>(&Geom_Parabola::FirstParameter),
             R"#(Returns the value of the first or last parameter of this parabola. This is, respectively: - Standard_Real::RealFirst(), or - Standard_Real::RealLast().)#" 
          )
        .def("LastParameter",
             (Standard_Real (Geom_Parabola::*)() const) static_cast<Standard_Real (Geom_Parabola::*)() const>(&Geom_Parabola::LastParameter),
             R"#(Returns the value of the first or last parameter of this parabola. This is, respectively: - Standard_Real::RealFirst(), or - Standard_Real::RealLast().)#" 
          )
        .def("IsClosed",
             (Standard_Boolean (Geom_Parabola::*)() const) static_cast<Standard_Boolean (Geom_Parabola::*)() const>(&Geom_Parabola::IsClosed),
             R"#(Returns False)#" 
          )
        .def("IsPeriodic",
             (Standard_Boolean (Geom_Parabola::*)() const) static_cast<Standard_Boolean (Geom_Parabola::*)() const>(&Geom_Parabola::IsPeriodic),
             R"#(Returns False)#" 
          )
        .def("Directrix",
             (gp_Ax1 (Geom_Parabola::*)() const) static_cast<gp_Ax1 (Geom_Parabola::*)() const>(&Geom_Parabola::Directrix),
             R"#(Computes the directrix of this parabola. This is a line normal to the axis of symmetry, in the plane of this parabola, located on the negative side of its axis of symmetry, at a distance from the apex equal to the focal length. The directrix is returned as an axis (gp_Ax1 object), where the origin is located on the "X Axis" of this parabola.)#" 
          )
        .def("Eccentricity",
             (Standard_Real (Geom_Parabola::*)() const) static_cast<Standard_Real (Geom_Parabola::*)() const>(&Geom_Parabola::Eccentricity),
             R"#(Returns 1. (which is the eccentricity of any parabola).)#" 
          )
        .def("Focus",
             (gp_Pnt (Geom_Parabola::*)() const) static_cast<gp_Pnt (Geom_Parabola::*)() const>(&Geom_Parabola::Focus),
             R"#(Computes the focus of this parabola. The focus is on the positive side of the "X Axis" of the local coordinate system of the parabola.)#" 
          )
        .def("Focal",
             (Standard_Real (Geom_Parabola::*)() const) static_cast<Standard_Real (Geom_Parabola::*)() const>(&Geom_Parabola::Focal),
             R"#(Computes the focal distance of this parabola The focal distance is the distance between the apex and the focus of the parabola.)#" 
          )
        .def("Parameter",
             (Standard_Real (Geom_Parabola::*)() const) static_cast<Standard_Real (Geom_Parabola::*)() const>(&Geom_Parabola::Parameter),
             R"#(Computes the parameter of this parabola which is the distance between its focus and its directrix. This distance is twice the focal length. If P is the parameter of the parabola, the equation of the parabola in its local coordinate system is: Y**2 = 2.*P*X.)#" 
          )
        .def("D0",
             (void (Geom_Parabola::*)( const Standard_Real ,  gp_Pnt &  ) const) static_cast<void (Geom_Parabola::*)( const Standard_Real ,  gp_Pnt &  ) const>(&Geom_Parabola::D0),
             R"#(Returns in P the point of parameter U. If U = 0 the returned point is the origin of the XAxis and the YAxis of the parabola and it is the vertex of the parabola. P = S + F * (U * U * XDir + * U * YDir) where S is the vertex of the parabola, XDir the XDirection and YDir the YDirection of the parabola's local coordinate system.)#"  , py::arg("U"),  py::arg("P")
          )
        .def("D1",
             (void (Geom_Parabola::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec &  ) const) static_cast<void (Geom_Parabola::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec &  ) const>(&Geom_Parabola::D1),
             R"#(Returns the point P of parameter U and the first derivative V1.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1")
          )
        .def("D2",
             (void (Geom_Parabola::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_Parabola::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_Parabola::D2),
             R"#(Returns the point P of parameter U, the first and second derivatives V1 and V2.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def("D3",
             (void (Geom_Parabola::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_Parabola::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_Parabola::D3),
             R"#(Returns the point P of parameter U, the first second and third derivatives V1 V2 and V3.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3")
          )
        .def("DN",
             (gp_Vec (Geom_Parabola::*)( const Standard_Real ,  const Standard_Integer  ) const) static_cast<gp_Vec (Geom_Parabola::*)( const Standard_Real ,  const Standard_Integer  ) const>(&Geom_Parabola::DN),
             R"#(For the point of parameter U of this parabola, computes the vector corresponding to the Nth derivative. Exceptions Standard_RangeError if N is less than 1.)#"  , py::arg("U"),  py::arg("N")
          )
        .def("Transform",
             (void (Geom_Parabola::*)( const gp_Trsf &  ) ) static_cast<void (Geom_Parabola::*)( const gp_Trsf &  ) >(&Geom_Parabola::Transform),
             R"#(Applies the transformation T to this parabola.)#"  , py::arg("T")
          )
        .def("TransformedParameter",
             (Standard_Real (Geom_Parabola::*)( const Standard_Real ,  const gp_Trsf &  ) const) static_cast<Standard_Real (Geom_Parabola::*)( const Standard_Real ,  const gp_Trsf &  ) const>(&Geom_Parabola::TransformedParameter),
             R"#(Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.)#"  , py::arg("U"),  py::arg("T")
          )
        .def("ParametricTransformation",
             (Standard_Real (Geom_Parabola::*)( const gp_Trsf &  ) const) static_cast<Standard_Real (Geom_Parabola::*)( const gp_Trsf &  ) const>(&Geom_Parabola::ParametricTransformation),
             R"#(Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom_Geometry> (Geom_Parabola::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Parabola::*)() const>(&Geom_Parabola::Copy),
             R"#(Creates a new object which is a copy of this parabola.)#" 
          )
        .def("DumpJson",
             (void (Geom_Parabola::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom_Parabola::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom_Parabola::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_Parabola::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Parabola::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_Parabola::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Parabola::*)() const>(&Geom_Parabola::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_Plane from ./opencascade/Geom_Plane.hxx
    klass = m.attr("Geom_Plane");


    // nested enums

    static_cast<py::class_<Geom_Plane ,opencascade::handle<Geom_Plane>  , Geom_ElementarySurface >>(klass)
    // constructors
        .def(py::init< const gp_Ax3 & >()  , py::arg("A3") )
        .def(py::init< const gp_Pln & >()  , py::arg("Pl") )
        .def(py::init< const gp_Pnt &,const gp_Dir & >()  , py::arg("P"),  py::arg("V") )
        .def(py::init< const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("A"),  py::arg("B"),  py::arg("C"),  py::arg("D") )
    // custom constructors
    // methods
        .def("SetPln",
             (void (Geom_Plane::*)( const gp_Pln &  ) ) static_cast<void (Geom_Plane::*)( const gp_Pln &  ) >(&Geom_Plane::SetPln),
             R"#(Set <me> so that <me> has the same geometric properties as Pl.)#"  , py::arg("Pl")
          )
        .def("Pln",
             (gp_Pln (Geom_Plane::*)() const) static_cast<gp_Pln (Geom_Plane::*)() const>(&Geom_Plane::Pln),
             R"#(Converts this plane into a gp_Pln plane.)#" 
          )
        .def("UReverse",
             (void (Geom_Plane::*)() ) static_cast<void (Geom_Plane::*)() >(&Geom_Plane::UReverse),
             R"#(Changes the orientation of this plane in the u (or v) parametric direction. The bounds of the plane are not changed but the given parametric direction is reversed. Hence the orientation of the surface is reversed.)#" 
          )
        .def("UReversedParameter",
             (Standard_Real (Geom_Plane::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_Plane::*)( const Standard_Real  ) const>(&Geom_Plane::UReversedParameter),
             R"#(Computes the u parameter on the modified plane, produced when reversing the u parametric of this plane, for any point of u parameter U on this plane. In the case of a plane, these methods return - -U.)#"  , py::arg("U")
          )
        .def("VReverse",
             (void (Geom_Plane::*)() ) static_cast<void (Geom_Plane::*)() >(&Geom_Plane::VReverse),
             R"#(Changes the orientation of this plane in the u (or v) parametric direction. The bounds of the plane are not changed but the given parametric direction is reversed. Hence the orientation of the surface is reversed.)#" 
          )
        .def("VReversedParameter",
             (Standard_Real (Geom_Plane::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_Plane::*)( const Standard_Real  ) const>(&Geom_Plane::VReversedParameter),
             R"#(Computes the v parameter on the modified plane, produced when reversing the v parametric of this plane, for any point of v parameter V on this plane. In the case of a plane, these methods return -V.)#"  , py::arg("V")
          )
        .def("ParametricTransformation",
             (gp_GTrsf2d (Geom_Plane::*)( const gp_Trsf &  ) const) static_cast<gp_GTrsf2d (Geom_Plane::*)( const gp_Trsf &  ) const>(&Geom_Plane::ParametricTransformation),
             R"#(Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns a scale centered on the origin with T.ScaleFactor)#"  , py::arg("T")
          )
        .def("IsUClosed",
             (Standard_Boolean (Geom_Plane::*)() const) static_cast<Standard_Boolean (Geom_Plane::*)() const>(&Geom_Plane::IsUClosed),
             R"#(return False)#" 
          )
        .def("IsVClosed",
             (Standard_Boolean (Geom_Plane::*)() const) static_cast<Standard_Boolean (Geom_Plane::*)() const>(&Geom_Plane::IsVClosed),
             R"#(return False)#" 
          )
        .def("IsUPeriodic",
             (Standard_Boolean (Geom_Plane::*)() const) static_cast<Standard_Boolean (Geom_Plane::*)() const>(&Geom_Plane::IsUPeriodic),
             R"#(return False.)#" 
          )
        .def("IsVPeriodic",
             (Standard_Boolean (Geom_Plane::*)() const) static_cast<Standard_Boolean (Geom_Plane::*)() const>(&Geom_Plane::IsVPeriodic),
             R"#(return False.)#" 
          )
        .def("UIso",
             (opencascade::handle<Geom_Curve> (Geom_Plane::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_Plane::*)( const Standard_Real  ) const>(&Geom_Plane::UIso),
             R"#(Computes the U isoparametric curve. This is a Line parallel to the YAxis of the plane.)#"  , py::arg("U")
          )
        .def("VIso",
             (opencascade::handle<Geom_Curve> (Geom_Plane::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_Plane::*)( const Standard_Real  ) const>(&Geom_Plane::VIso),
             R"#(Computes the V isoparametric curve. This is a Line parallel to the XAxis of the plane.)#"  , py::arg("V")
          )
        .def("D0",
             (void (Geom_Plane::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt &  ) const) static_cast<void (Geom_Plane::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt &  ) const>(&Geom_Plane::D0),
             R"#(Computes the point P (U, V) on <me>. where O is the "Location" point of the plane, XDir the "XDirection" and YDir the "YDirection" of the plane's local coordinate system.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P")
          )
        .def("D1",
             (void (Geom_Plane::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_Plane::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_Plane::D1),
             R"#(Computes the current point and the first derivatives in the directions U and V.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V")
          )
        .def("D2",
             (void (Geom_Plane::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_Plane::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_Plane::D2),
             R"#(Computes the current point, the first and the second derivatives in the directions U and V.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV")
          )
        .def("D3",
             (void (Geom_Plane::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_Plane::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_Plane::D3),
             R"#(Computes the current point, the first,the second and the third derivatives in the directions U and V.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV"),  py::arg("D3U"),  py::arg("D3V"),  py::arg("D3UUV"),  py::arg("D3UVV")
          )
        .def("DN",
             (gp_Vec (Geom_Plane::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const) static_cast<gp_Vec (Geom_Plane::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const>(&Geom_Plane::DN),
             R"#(Computes the derivative of order Nu in the direction u and Nv in the direction v. Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.)#"  , py::arg("U"),  py::arg("V"),  py::arg("Nu"),  py::arg("Nv")
          )
        .def("Transform",
             (void (Geom_Plane::*)( const gp_Trsf &  ) ) static_cast<void (Geom_Plane::*)( const gp_Trsf &  ) >(&Geom_Plane::Transform),
             R"#(Applies the transformation T to this plane.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom_Geometry> (Geom_Plane::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Plane::*)() const>(&Geom_Plane::Copy),
             R"#(Creates a new object which is a copy of this plane.)#" 
          )
        .def("DumpJson",
             (void (Geom_Plane::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom_Plane::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom_Plane::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
        .def("TransformParameters",
             []( Geom_Plane &self , const gp_Trsf & T ){
                 Standard_Real  U;
                Standard_Real  V;

                 self.TransformParameters(U,V,T);
                 
                 return std::make_tuple(U,V); },
             R"#(Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method multiplies U and V by T.ScaleFactor())#"  , py::arg("T")
          )
        .def("Bounds",
             []( Geom_Plane &self   ){
                 Standard_Real  U1;
                Standard_Real  U2;
                Standard_Real  V1;
                Standard_Real  V2;

                 self.Bounds(U1,U2,V1,V2);
                 
                 return std::make_tuple(U1,U2,V1,V2); },
             R"#(Returns the parametric bounds U1, U2, V1 and V2 of this plane. Because a plane is an infinite surface, the following is always true: - U1 = V1 = Standard_Real::RealFirst() - U2 = V2 = Standard_Real::RealLast().)#" 
          )
        .def("Coefficients",
             []( Geom_Plane &self   ){
                 Standard_Real  A;
                Standard_Real  B;
                Standard_Real  C;
                Standard_Real  D;

                 self.Coefficients(A,B,C,D);
                 
                 return std::make_tuple(A,B,C,D); },
             R"#(Computes the normalized coefficients of the plane's cartesian equation:)#" 
          )
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_Plane::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Plane::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_Plane::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Plane::*)() const>(&Geom_Plane::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_RectangularTrimmedSurface from ./opencascade/Geom_RectangularTrimmedSurface.hxx
    klass = m.attr("Geom_RectangularTrimmedSurface");


    // nested enums

    static_cast<py::class_<Geom_RectangularTrimmedSurface ,opencascade::handle<Geom_RectangularTrimmedSurface>  , Geom_BoundedSurface >>(klass)
    // constructors
        .def(py::init< const opencascade::handle<Geom_Surface> &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Boolean,const Standard_Boolean >()  , py::arg("S"),  py::arg("U1"),  py::arg("U2"),  py::arg("V1"),  py::arg("V2"),  py::arg("USense")=static_cast<const Standard_Boolean>(Standard_True),  py::arg("VSense")=static_cast<const Standard_Boolean>(Standard_True) )
        .def(py::init< const opencascade::handle<Geom_Surface> &,const Standard_Real,const Standard_Real,const Standard_Boolean,const Standard_Boolean >()  , py::arg("S"),  py::arg("Param1"),  py::arg("Param2"),  py::arg("UTrim"),  py::arg("Sense")=static_cast<const Standard_Boolean>(Standard_True) )
    // custom constructors
    // methods
        .def("SetTrim",
             (void (Geom_RectangularTrimmedSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Boolean  ) ) static_cast<void (Geom_RectangularTrimmedSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Boolean  ) >(&Geom_RectangularTrimmedSurface::SetTrim),
             R"#(Modifies this patch by changing the trim values applied to the original surface The u parametric direction of this patch is oriented from U1 to U2. The v parametric direction of this patch is oriented from V1 to V2. USense and VSense are used for the construction only if the surface is periodic in the corresponding parametric direction, and define the available part of the surface; by default in this case, this patch has the same orientation as the basis surface. Raised if The BasisSurface is not periodic in the UDirection and U1 or U2 are out of the bounds of the BasisSurface. The BasisSurface is not periodic in the VDirection and V1 or V2 are out of the bounds of the BasisSurface. U1 = U2 or V1 = V2)#"  , py::arg("U1"),  py::arg("U2"),  py::arg("V1"),  py::arg("V2"),  py::arg("USense")=static_cast<const Standard_Boolean>(Standard_True),  py::arg("VSense")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def("SetTrim",
             (void (Geom_RectangularTrimmedSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Boolean  ) ) static_cast<void (Geom_RectangularTrimmedSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Boolean  ) >(&Geom_RectangularTrimmedSurface::SetTrim),
             R"#(Modifies this patch by changing the trim values applied to the original surface The basis surface is trimmed only in one parametric direction: if UTrim is true, the surface is trimmed in the u parametric direction; if it is false, it is trimmed in the v parametric direction. In the "trimmed" direction, this patch is oriented from Param1 to Param2. If the basis surface is periodic in the "trimmed" direction, Sense defines its available part. By default in this case, this patch has the same orientation as the basis surface in this parametric direction. If the basis surface is closed or periodic in the other parametric direction (i.e. not the "trimmed" direction), this patch has the same characteristics as the basis surface in that parametric direction. Raised if The BasisSurface is not periodic in the considered direction and Param1 or Param2 are out of the bounds of the BasisSurface. Param1 = Param2)#"  , py::arg("Param1"),  py::arg("Param2"),  py::arg("UTrim"),  py::arg("Sense")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def("BasisSurface",
             (opencascade::handle<Geom_Surface> (Geom_RectangularTrimmedSurface::*)() const) static_cast<opencascade::handle<Geom_Surface> (Geom_RectangularTrimmedSurface::*)() const>(&Geom_RectangularTrimmedSurface::BasisSurface),
             R"#(Returns the Basis surface of <me>.)#" 
          )
        .def("UReverse",
             (void (Geom_RectangularTrimmedSurface::*)() ) static_cast<void (Geom_RectangularTrimmedSurface::*)() >(&Geom_RectangularTrimmedSurface::UReverse),
             R"#(Changes the orientation of this patch in the u parametric direction. The bounds of the surface are not changed, but the given parametric direction is reversed. Hence the orientation of the surface is reversed.)#" 
          )
        .def("UReversedParameter",
             (Standard_Real (Geom_RectangularTrimmedSurface::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_RectangularTrimmedSurface::*)( const Standard_Real  ) const>(&Geom_RectangularTrimmedSurface::UReversedParameter),
             R"#(Computes the u parameter on the modified surface, produced by when reversing its u parametric direction, for any point of u parameter U on this patch.)#"  , py::arg("U")
          )
        .def("VReverse",
             (void (Geom_RectangularTrimmedSurface::*)() ) static_cast<void (Geom_RectangularTrimmedSurface::*)() >(&Geom_RectangularTrimmedSurface::VReverse),
             R"#(Changes the orientation of this patch in the v parametric direction. The bounds of the surface are not changed, but the given parametric direction is reversed. Hence the orientation of the surface is reversed.)#" 
          )
        .def("VReversedParameter",
             (Standard_Real (Geom_RectangularTrimmedSurface::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_RectangularTrimmedSurface::*)( const Standard_Real  ) const>(&Geom_RectangularTrimmedSurface::VReversedParameter),
             R"#(Computes the v parameter on the modified surface, produced by when reversing its v parametric direction, for any point of v parameter V on this patch.)#"  , py::arg("V")
          )
        .def("Continuity",
             (GeomAbs_Shape (Geom_RectangularTrimmedSurface::*)() const) static_cast<GeomAbs_Shape (Geom_RectangularTrimmedSurface::*)() const>(&Geom_RectangularTrimmedSurface::Continuity),
             R"#(Returns the continuity of the surface : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Surface, C2 : continuity of the second derivative all along the Surface, C3 : continuity of the third derivative all along the Surface, CN : the order of continuity is infinite.)#" 
          )
        .def("IsUClosed",
             (Standard_Boolean (Geom_RectangularTrimmedSurface::*)() const) static_cast<Standard_Boolean (Geom_RectangularTrimmedSurface::*)() const>(&Geom_RectangularTrimmedSurface::IsUClosed),
             R"#(Returns true if this patch is closed in the given parametric direction.)#" 
          )
        .def("IsVClosed",
             (Standard_Boolean (Geom_RectangularTrimmedSurface::*)() const) static_cast<Standard_Boolean (Geom_RectangularTrimmedSurface::*)() const>(&Geom_RectangularTrimmedSurface::IsVClosed),
             R"#(Returns true if this patch is closed in the given parametric direction.)#" 
          )
        .def("IsCNu",
             (Standard_Boolean (Geom_RectangularTrimmedSurface::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom_RectangularTrimmedSurface::*)( const Standard_Integer  ) const>(&Geom_RectangularTrimmedSurface::IsCNu),
             R"#(Returns true if the order of derivation in the U parametric direction is N. Raised if N < 0.)#"  , py::arg("N")
          )
        .def("IsCNv",
             (Standard_Boolean (Geom_RectangularTrimmedSurface::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom_RectangularTrimmedSurface::*)( const Standard_Integer  ) const>(&Geom_RectangularTrimmedSurface::IsCNv),
             R"#(Returns true if the order of derivation in the V parametric direction is N. Raised if N < 0.)#"  , py::arg("N")
          )
        .def("IsUPeriodic",
             (Standard_Boolean (Geom_RectangularTrimmedSurface::*)() const) static_cast<Standard_Boolean (Geom_RectangularTrimmedSurface::*)() const>(&Geom_RectangularTrimmedSurface::IsUPeriodic),
             R"#(Returns true if this patch is periodic and not trimmed in the given parametric direction.)#" 
          )
        .def("UPeriod",
             (Standard_Real (Geom_RectangularTrimmedSurface::*)() const) static_cast<Standard_Real (Geom_RectangularTrimmedSurface::*)() const>(&Geom_RectangularTrimmedSurface::UPeriod),
             R"#(Returns the period of this patch in the u parametric direction. raises if the surface is not uperiodic.)#" 
          )
        .def("IsVPeriodic",
             (Standard_Boolean (Geom_RectangularTrimmedSurface::*)() const) static_cast<Standard_Boolean (Geom_RectangularTrimmedSurface::*)() const>(&Geom_RectangularTrimmedSurface::IsVPeriodic),
             R"#(Returns true if this patch is periodic and not trimmed in the given parametric direction.)#" 
          )
        .def("VPeriod",
             (Standard_Real (Geom_RectangularTrimmedSurface::*)() const) static_cast<Standard_Real (Geom_RectangularTrimmedSurface::*)() const>(&Geom_RectangularTrimmedSurface::VPeriod),
             R"#(Returns the period of this patch in the v parametric direction. raises if the surface is not vperiodic. value and derivatives)#" 
          )
        .def("UIso",
             (opencascade::handle<Geom_Curve> (Geom_RectangularTrimmedSurface::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_RectangularTrimmedSurface::*)( const Standard_Real  ) const>(&Geom_RectangularTrimmedSurface::UIso),
             R"#(computes the U isoparametric curve.)#"  , py::arg("U")
          )
        .def("VIso",
             (opencascade::handle<Geom_Curve> (Geom_RectangularTrimmedSurface::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_RectangularTrimmedSurface::*)( const Standard_Real  ) const>(&Geom_RectangularTrimmedSurface::VIso),
             R"#(Computes the V isoparametric curve.)#"  , py::arg("V")
          )
        .def("D0",
             (void (Geom_RectangularTrimmedSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt &  ) const) static_cast<void (Geom_RectangularTrimmedSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt &  ) const>(&Geom_RectangularTrimmedSurface::D0),
             R"#(Can be raised if the basis surface is an OffsetSurface.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P")
          )
        .def("D1",
             (void (Geom_RectangularTrimmedSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_RectangularTrimmedSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_RectangularTrimmedSurface::D1),
             R"#(The returned derivatives have the same orientation as the derivatives of the basis surface even if the trimmed surface has not the same parametric orientation. Warning! UndefinedDerivative raised if the continuity of the surface is not C1.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V")
          )
        .def("D2",
             (void (Geom_RectangularTrimmedSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_RectangularTrimmedSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_RectangularTrimmedSurface::D2),
             R"#(The returned derivatives have the same orientation as the derivatives of the basis surface even if the trimmed surface has not the same parametric orientation. Warning! UndefinedDerivative raised if the continuity of the surface is not C2.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV")
          )
        .def("D3",
             (void (Geom_RectangularTrimmedSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_RectangularTrimmedSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_RectangularTrimmedSurface::D3),
             R"#(The returned derivatives have the same orientation as the derivatives of the basis surface even if the trimmed surface has not the same parametric orientation. Warning UndefinedDerivative raised if the continuity of the surface is not C3.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV"),  py::arg("D3U"),  py::arg("D3V"),  py::arg("D3UUV"),  py::arg("D3UVV")
          )
        .def("DN",
             (gp_Vec (Geom_RectangularTrimmedSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const) static_cast<gp_Vec (Geom_RectangularTrimmedSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const>(&Geom_RectangularTrimmedSurface::DN),
             R"#(The returned derivative has the same orientation as the derivative of the basis surface even if the trimmed surface has not the same parametric orientation. Warning! UndefinedDerivative raised if the continuity of the surface is not CNu in the U parametric direction and CNv in the V parametric direction. RangeError Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.)#"  , py::arg("U"),  py::arg("V"),  py::arg("Nu"),  py::arg("Nv")
          )
        .def("Transform",
             (void (Geom_RectangularTrimmedSurface::*)( const gp_Trsf &  ) ) static_cast<void (Geom_RectangularTrimmedSurface::*)( const gp_Trsf &  ) >(&Geom_RectangularTrimmedSurface::Transform),
             R"#(Applies the transformation T to this patch. Warning As a consequence, the basis surface included in the data structure of this patch is also modified.)#"  , py::arg("T")
          )
        .def("ParametricTransformation",
             (gp_GTrsf2d (Geom_RectangularTrimmedSurface::*)( const gp_Trsf &  ) const) static_cast<gp_GTrsf2d (Geom_RectangularTrimmedSurface::*)( const gp_Trsf &  ) const>(&Geom_RectangularTrimmedSurface::ParametricTransformation),
             R"#(Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method calls the basis surface method.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom_Geometry> (Geom_RectangularTrimmedSurface::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_RectangularTrimmedSurface::*)() const>(&Geom_RectangularTrimmedSurface::Copy),
             R"#(Creates a new object which is a copy of this patch.)#" 
          )
        .def("DumpJson",
             (void (Geom_RectangularTrimmedSurface::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom_RectangularTrimmedSurface::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom_RectangularTrimmedSurface::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
        .def("Bounds",
             []( Geom_RectangularTrimmedSurface &self   ){
                 Standard_Real  U1;
                Standard_Real  U2;
                Standard_Real  V1;
                Standard_Real  V2;

                 self.Bounds(U1,U2,V1,V2);
                 
                 return std::make_tuple(U1,U2,V1,V2); },
             R"#(Returns the parametric bounds U1, U2, V1 and V2 of this patch.)#" 
          )
        .def("TransformParameters",
             []( Geom_RectangularTrimmedSurface &self , const gp_Trsf & T ){
                 Standard_Real  U;
                Standard_Real  V;

                 self.TransformParameters(U,V,T);
                 
                 return std::make_tuple(U,V); },
             R"#(Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method calls the basis surface method.)#"  , py::arg("T")
          )
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_RectangularTrimmedSurface::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_RectangularTrimmedSurface::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_RectangularTrimmedSurface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_RectangularTrimmedSurface::*)() const>(&Geom_RectangularTrimmedSurface::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_SphericalSurface from ./opencascade/Geom_SphericalSurface.hxx
    klass = m.attr("Geom_SphericalSurface");


    // nested enums

    static_cast<py::class_<Geom_SphericalSurface ,opencascade::handle<Geom_SphericalSurface>  , Geom_ElementarySurface >>(klass)
    // constructors
        .def(py::init< const gp_Ax3 &,const Standard_Real >()  , py::arg("A3"),  py::arg("Radius") )
        .def(py::init< const gp_Sphere & >()  , py::arg("S") )
    // custom constructors
    // methods
        .def("SetRadius",
             (void (Geom_SphericalSurface::*)( const Standard_Real  ) ) static_cast<void (Geom_SphericalSurface::*)( const Standard_Real  ) >(&Geom_SphericalSurface::SetRadius),
             R"#(Assigns the value R to the radius of this sphere. Exceptions Standard_ConstructionError if R is less than 0.0.)#"  , py::arg("R")
          )
        .def("SetSphere",
             (void (Geom_SphericalSurface::*)( const gp_Sphere &  ) ) static_cast<void (Geom_SphericalSurface::*)( const gp_Sphere &  ) >(&Geom_SphericalSurface::SetSphere),
             R"#(Converts the gp_Sphere S into this sphere.)#"  , py::arg("S")
          )
        .def("Sphere",
             (gp_Sphere (Geom_SphericalSurface::*)() const) static_cast<gp_Sphere (Geom_SphericalSurface::*)() const>(&Geom_SphericalSurface::Sphere),
             R"#(Returns a non persistent sphere with the same geometric properties as <me>.)#" 
          )
        .def("UReversedParameter",
             (Standard_Real (Geom_SphericalSurface::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_SphericalSurface::*)( const Standard_Real  ) const>(&Geom_SphericalSurface::UReversedParameter),
             R"#(Computes the u parameter on the modified surface, when reversing its u parametric direction, for any point of u parameter U on this sphere. In the case of a sphere, these functions returns 2.PI - U.)#"  , py::arg("U")
          )
        .def("VReversedParameter",
             (Standard_Real (Geom_SphericalSurface::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_SphericalSurface::*)( const Standard_Real  ) const>(&Geom_SphericalSurface::VReversedParameter),
             R"#(Computes the v parameter on the modified surface, when reversing its v parametric direction, for any point of v parameter V on this sphere. In the case of a sphere, these functions returns -U.)#"  , py::arg("V")
          )
        .def("Area",
             (Standard_Real (Geom_SphericalSurface::*)() const) static_cast<Standard_Real (Geom_SphericalSurface::*)() const>(&Geom_SphericalSurface::Area),
             R"#(Computes the aera of the spherical surface.)#" 
          )
        .def("Radius",
             (Standard_Real (Geom_SphericalSurface::*)() const) static_cast<Standard_Real (Geom_SphericalSurface::*)() const>(&Geom_SphericalSurface::Radius),
             R"#(Computes the coefficients of the implicit equation of this quadric in the absolute Cartesian coordinate system: A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) + 2.(C1.X + C2.Y + C3.Z) + D = 0.0 An implicit normalization is applied (i.e. A1 = A2 = 1. in the local coordinate system of this sphere).)#" 
          )
        .def("Volume",
             (Standard_Real (Geom_SphericalSurface::*)() const) static_cast<Standard_Real (Geom_SphericalSurface::*)() const>(&Geom_SphericalSurface::Volume),
             R"#(Computes the volume of the spherical surface.)#" 
          )
        .def("IsUClosed",
             (Standard_Boolean (Geom_SphericalSurface::*)() const) static_cast<Standard_Boolean (Geom_SphericalSurface::*)() const>(&Geom_SphericalSurface::IsUClosed),
             R"#(Returns True.)#" 
          )
        .def("IsVClosed",
             (Standard_Boolean (Geom_SphericalSurface::*)() const) static_cast<Standard_Boolean (Geom_SphericalSurface::*)() const>(&Geom_SphericalSurface::IsVClosed),
             R"#(Returns False.)#" 
          )
        .def("IsUPeriodic",
             (Standard_Boolean (Geom_SphericalSurface::*)() const) static_cast<Standard_Boolean (Geom_SphericalSurface::*)() const>(&Geom_SphericalSurface::IsUPeriodic),
             R"#(Returns True.)#" 
          )
        .def("IsVPeriodic",
             (Standard_Boolean (Geom_SphericalSurface::*)() const) static_cast<Standard_Boolean (Geom_SphericalSurface::*)() const>(&Geom_SphericalSurface::IsVPeriodic),
             R"#(Returns False.)#" 
          )
        .def("UIso",
             (opencascade::handle<Geom_Curve> (Geom_SphericalSurface::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_SphericalSurface::*)( const Standard_Real  ) const>(&Geom_SphericalSurface::UIso),
             R"#(Computes the U isoparametric curve. The U isoparametric curves of the surface are defined by the section of the spherical surface with plane obtained by rotation of the plane (Location, XAxis, ZAxis) around ZAxis. This plane defines the origin of parametrization u. For a SphericalSurface the UIso curve is a Circle. Warnings : The radius of this circle can be zero.)#"  , py::arg("U")
          )
        .def("VIso",
             (opencascade::handle<Geom_Curve> (Geom_SphericalSurface::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_SphericalSurface::*)( const Standard_Real  ) const>(&Geom_SphericalSurface::VIso),
             R"#(Computes the V isoparametric curve. The V isoparametric curves of the surface are defined by the section of the spherical surface with plane parallel to the plane (Location, XAxis, YAxis). This plane defines the origin of parametrization V. Be careful if V is close to PI/2 or 3*PI/2 the radius of the circle becomes tiny. It is not forbidden in this toolkit to create circle with radius = 0.0 For a SphericalSurface the VIso curve is a Circle. Warnings : The radius of this circle can be zero.)#"  , py::arg("V")
          )
        .def("D0",
             (void (Geom_SphericalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt &  ) const) static_cast<void (Geom_SphericalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt &  ) const>(&Geom_SphericalSurface::D0),
             R"#(Computes the point P (U, V) on the surface. P (U, V) = Loc + Radius * Sin (V) * Zdir + Radius * Cos (V) * (cos (U) * XDir + sin (U) * YDir) where Loc is the origin of the placement plane (XAxis, YAxis) XDir is the direction of the XAxis and YDir the direction of the YAxis and ZDir the direction of the ZAxis.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P")
          )
        .def("D1",
             (void (Geom_SphericalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_SphericalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_SphericalSurface::D1),
             R"#(Computes the current point and the first derivatives in the directions U and V.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V")
          )
        .def("D2",
             (void (Geom_SphericalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_SphericalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_SphericalSurface::D2),
             R"#(Computes the current point, the first and the second derivatives in the directions U and V.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV")
          )
        .def("D3",
             (void (Geom_SphericalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_SphericalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_SphericalSurface::D3),
             R"#(Computes the current point, the first,the second and the third derivatives in the directions U and V.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV"),  py::arg("D3U"),  py::arg("D3V"),  py::arg("D3UUV"),  py::arg("D3UVV")
          )
        .def("DN",
             (gp_Vec (Geom_SphericalSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const) static_cast<gp_Vec (Geom_SphericalSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const>(&Geom_SphericalSurface::DN),
             R"#(Computes the derivative of order Nu in the direction u and Nv in the direction v. Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.)#"  , py::arg("U"),  py::arg("V"),  py::arg("Nu"),  py::arg("Nv")
          )
        .def("Transform",
             (void (Geom_SphericalSurface::*)( const gp_Trsf &  ) ) static_cast<void (Geom_SphericalSurface::*)( const gp_Trsf &  ) >(&Geom_SphericalSurface::Transform),
             R"#(Applies the transformation T to this sphere.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom_Geometry> (Geom_SphericalSurface::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_SphericalSurface::*)() const>(&Geom_SphericalSurface::Copy),
             R"#(Creates a new object which is a copy of this sphere.)#" 
          )
        .def("DumpJson",
             (void (Geom_SphericalSurface::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom_SphericalSurface::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom_SphericalSurface::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
        .def("Bounds",
             []( Geom_SphericalSurface &self   ){
                 Standard_Real  U1;
                Standard_Real  U2;
                Standard_Real  V1;
                Standard_Real  V2;

                 self.Bounds(U1,U2,V1,V2);
                 
                 return std::make_tuple(U1,U2,V1,V2); },
             R"#(Returns the parametric bounds U1, U2, V1 and V2 of this sphere. For a sphere: U1 = 0, U2 = 2*PI, V1 = -PI/2, V2 = PI/2.)#" 
          )
        .def("Coefficients",
             []( Geom_SphericalSurface &self   ){
                 Standard_Real  A1;
                Standard_Real  A2;
                Standard_Real  A3;
                Standard_Real  B1;
                Standard_Real  B2;
                Standard_Real  B3;
                Standard_Real  C1;
                Standard_Real  C2;
                Standard_Real  C3;
                Standard_Real  D;

                 self.Coefficients(A1,A2,A3,B1,B2,B3,C1,C2,C3,D);
                 
                 return std::make_tuple(A1,A2,A3,B1,B2,B3,C1,C2,C3,D); },
             R"#(Returns the coefficients of the implicit equation of the quadric in the absolute cartesian coordinates system : These coefficients are normalized. A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) + 2.(C1.X + C2.Y + C3.Z) + D = 0.0)#" 
          )
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_SphericalSurface::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_SphericalSurface::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_SphericalSurface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_SphericalSurface::*)() const>(&Geom_SphericalSurface::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_SurfaceOfLinearExtrusion from ./opencascade/Geom_SurfaceOfLinearExtrusion.hxx
    klass = m.attr("Geom_SurfaceOfLinearExtrusion");


    // nested enums

    static_cast<py::class_<Geom_SurfaceOfLinearExtrusion ,opencascade::handle<Geom_SurfaceOfLinearExtrusion>  , Geom_SweptSurface >>(klass)
    // constructors
        .def(py::init< const opencascade::handle<Geom_Curve> &,const gp_Dir & >()  , py::arg("C"),  py::arg("V") )
    // custom constructors
    // methods
        .def("SetDirection",
             (void (Geom_SurfaceOfLinearExtrusion::*)( const gp_Dir &  ) ) static_cast<void (Geom_SurfaceOfLinearExtrusion::*)( const gp_Dir &  ) >(&Geom_SurfaceOfLinearExtrusion::SetDirection),
             R"#(Assigns V as the "direction of extrusion" for this surface of linear extrusion.)#"  , py::arg("V")
          )
        .def("SetBasisCurve",
             (void (Geom_SurfaceOfLinearExtrusion::*)( const opencascade::handle<Geom_Curve> &  ) ) static_cast<void (Geom_SurfaceOfLinearExtrusion::*)( const opencascade::handle<Geom_Curve> &  ) >(&Geom_SurfaceOfLinearExtrusion::SetBasisCurve),
             R"#(Modifies this surface of linear extrusion by redefining its "basis curve" (the "extruded curve").)#"  , py::arg("C")
          )
        .def("UReverse",
             (void (Geom_SurfaceOfLinearExtrusion::*)() ) static_cast<void (Geom_SurfaceOfLinearExtrusion::*)() >(&Geom_SurfaceOfLinearExtrusion::UReverse),
             R"#(Changes the orientation of this surface of linear extrusion in the u parametric direction. The bounds of the surface are not changed, but the given parametric direction is reversed. Hence the orientation of the surface is reversed. In the case of a surface of linear extrusion: - UReverse reverses the basis curve, and - VReverse reverses the direction of linear extrusion.)#" 
          )
        .def("UReversedParameter",
             (Standard_Real (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real  ) const>(&Geom_SurfaceOfLinearExtrusion::UReversedParameter),
             R"#(Computes the u parameter on the modified surface, produced by reversing its u parametric direction, for any point of u parameter U on this surface of linear extrusion. In the case of an extruded surface: - UReverseParameter returns the reversed parameter given by the function ReversedParameter called with U on the basis curve,)#"  , py::arg("U")
          )
        .def("VReverse",
             (void (Geom_SurfaceOfLinearExtrusion::*)() ) static_cast<void (Geom_SurfaceOfLinearExtrusion::*)() >(&Geom_SurfaceOfLinearExtrusion::VReverse),
             R"#(Changes the orientation of this surface of linear extrusion in the v parametric direction. The bounds of the surface are not changed, but the given parametric direction is reversed. Hence the orientation of the surface is reversed. In the case of a surface of linear extrusion: - UReverse reverses the basis curve, and - VReverse reverses the direction of linear extrusion.)#" 
          )
        .def("VReversedParameter",
             (Standard_Real (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real  ) const>(&Geom_SurfaceOfLinearExtrusion::VReversedParameter),
             R"#(Computes the v parameter on the modified surface, produced by reversing its u v parametric direction, for any point of v parameter V on this surface of linear extrusion. In the case of an extruded surface VReverse returns -V.)#"  , py::arg("V")
          )
        .def("IsUClosed",
             (Standard_Boolean (Geom_SurfaceOfLinearExtrusion::*)() const) static_cast<Standard_Boolean (Geom_SurfaceOfLinearExtrusion::*)() const>(&Geom_SurfaceOfLinearExtrusion::IsUClosed),
             R"#(IsUClosed returns true if the "basis curve" of this surface of linear extrusion is closed.)#" 
          )
        .def("IsVClosed",
             (Standard_Boolean (Geom_SurfaceOfLinearExtrusion::*)() const) static_cast<Standard_Boolean (Geom_SurfaceOfLinearExtrusion::*)() const>(&Geom_SurfaceOfLinearExtrusion::IsVClosed),
             R"#(IsVClosed always returns false.)#" 
          )
        .def("IsCNu",
             (Standard_Boolean (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Integer  ) const>(&Geom_SurfaceOfLinearExtrusion::IsCNu),
             R"#(IsCNu returns true if the degree of continuity for the "basis curve" of this surface of linear extrusion is at least N. Raises RangeError if N < 0.)#"  , py::arg("N")
          )
        .def("IsCNv",
             (Standard_Boolean (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Integer  ) const>(&Geom_SurfaceOfLinearExtrusion::IsCNv),
             R"#(IsCNv always returns true.)#"  , py::arg("N")
          )
        .def("IsUPeriodic",
             (Standard_Boolean (Geom_SurfaceOfLinearExtrusion::*)() const) static_cast<Standard_Boolean (Geom_SurfaceOfLinearExtrusion::*)() const>(&Geom_SurfaceOfLinearExtrusion::IsUPeriodic),
             R"#(IsUPeriodic returns true if the "basis curve" of this surface of linear extrusion is periodic.)#" 
          )
        .def("IsVPeriodic",
             (Standard_Boolean (Geom_SurfaceOfLinearExtrusion::*)() const) static_cast<Standard_Boolean (Geom_SurfaceOfLinearExtrusion::*)() const>(&Geom_SurfaceOfLinearExtrusion::IsVPeriodic),
             R"#(IsVPeriodic always returns false.)#" 
          )
        .def("UIso",
             (opencascade::handle<Geom_Curve> (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real  ) const>(&Geom_SurfaceOfLinearExtrusion::UIso),
             R"#(Computes the U isoparametric curve of this surface of linear extrusion. This is the line parallel to the direction of extrusion, passing through the point of parameter U of the basis curve.)#"  , py::arg("U")
          )
        .def("VIso",
             (opencascade::handle<Geom_Curve> (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real  ) const>(&Geom_SurfaceOfLinearExtrusion::VIso),
             R"#(Computes the V isoparametric curve of this surface of linear extrusion. This curve is obtained by translating the extruded curve in the direction of extrusion, with the magnitude V.)#"  , py::arg("V")
          )
        .def("D0",
             (void (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt &  ) const) static_cast<void (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt &  ) const>(&Geom_SurfaceOfLinearExtrusion::D0),
             R"#(Computes the point P (U, V) on the surface. The parameter U is the parameter on the extruded curve. The parametrization V is a linear parametrization, and the direction of parametrization is the direction of extrusion. If the point is on the extruded curve, V = 0.0)#"  , py::arg("U"),  py::arg("V"),  py::arg("P")
          )
        .def("D1",
             (void (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_SurfaceOfLinearExtrusion::D1),
             R"#(Computes the current point and the first derivatives in the directions U and V. Raises UndefinedDerivative if the continuity of the surface is not C1.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V")
          )
        .def("D2",
             (void (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_SurfaceOfLinearExtrusion::D2),
             R"#(--- Purpose ; Computes the current point, the first and the second derivatives in the directions U and V. Raises UndefinedDerivative if the continuity of the surface is not C2.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV")
          )
        .def("D3",
             (void (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_SurfaceOfLinearExtrusion::D3),
             R"#(Computes the current point, the first,the second and the third derivatives in the directions U and V. Raises UndefinedDerivative if the continuity of the surface is not C3.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV"),  py::arg("D3U"),  py::arg("D3V"),  py::arg("D3UUV"),  py::arg("D3UVV")
          )
        .def("DN",
             (gp_Vec (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const) static_cast<gp_Vec (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const>(&Geom_SurfaceOfLinearExtrusion::DN),
             R"#(Computes the derivative of order Nu in the direction u and Nv in the direction v. Raises UndefinedDerivative if the continuity of the surface is not CNu in the u direction and CNv in the v direction. Raises RangeError if Nu + Nv < 1 or Nu < 0 or Nv < 0.)#"  , py::arg("U"),  py::arg("V"),  py::arg("Nu"),  py::arg("Nv")
          )
        .def("Transform",
             (void (Geom_SurfaceOfLinearExtrusion::*)( const gp_Trsf &  ) ) static_cast<void (Geom_SurfaceOfLinearExtrusion::*)( const gp_Trsf &  ) >(&Geom_SurfaceOfLinearExtrusion::Transform),
             R"#(Applies the transformation T to this surface of linear extrusion.)#"  , py::arg("T")
          )
        .def("ParametricTransformation",
             (gp_GTrsf2d (Geom_SurfaceOfLinearExtrusion::*)( const gp_Trsf &  ) const) static_cast<gp_GTrsf2d (Geom_SurfaceOfLinearExtrusion::*)( const gp_Trsf &  ) const>(&Geom_SurfaceOfLinearExtrusion::ParametricTransformation),
             R"#(Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns a scale U by BasisCurve()->ParametricTransformation(T) V by T.ScaleFactor())#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom_Geometry> (Geom_SurfaceOfLinearExtrusion::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_SurfaceOfLinearExtrusion::*)() const>(&Geom_SurfaceOfLinearExtrusion::Copy),
             R"#(Creates a new object which is a copy of this surface of linear extrusion.)#" 
          )
        .def("DumpJson",
             (void (Geom_SurfaceOfLinearExtrusion::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom_SurfaceOfLinearExtrusion::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom_SurfaceOfLinearExtrusion::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
        .def("Bounds",
             []( Geom_SurfaceOfLinearExtrusion &self   ){
                 Standard_Real  U1;
                Standard_Real  U2;
                Standard_Real  V1;
                Standard_Real  V2;

                 self.Bounds(U1,U2,V1,V2);
                 
                 return std::make_tuple(U1,U2,V1,V2); },
             R"#(Returns the parametric bounds U1, U2, V1 and V2 of this surface of linear extrusion. A surface of linear extrusion is infinite in the v parametric direction, so: - V1 = Standard_Real::RealFirst() - V2 = Standard_Real::RealLast().)#" 
          )
        .def("TransformParameters",
             []( Geom_SurfaceOfLinearExtrusion &self , const gp_Trsf & T ){
                 Standard_Real  U;
                Standard_Real  V;

                 self.TransformParameters(U,V,T);
                 
                 return std::make_tuple(U,V); },
             R"#(Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method multiplies: U by BasisCurve()->ParametricTransformation(T) V by T.ScaleFactor())#"  , py::arg("T")
          )
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_SurfaceOfLinearExtrusion::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_SurfaceOfLinearExtrusion::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_SurfaceOfLinearExtrusion::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_SurfaceOfLinearExtrusion::*)() const>(&Geom_SurfaceOfLinearExtrusion::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_SurfaceOfRevolution from ./opencascade/Geom_SurfaceOfRevolution.hxx
    klass = m.attr("Geom_SurfaceOfRevolution");


    // nested enums

    static_cast<py::class_<Geom_SurfaceOfRevolution ,opencascade::handle<Geom_SurfaceOfRevolution>  , Geom_SweptSurface >>(klass)
    // constructors
        .def(py::init< const opencascade::handle<Geom_Curve> &,const gp_Ax1 & >()  , py::arg("C"),  py::arg("A1") )
    // custom constructors
    // methods
        .def("SetAxis",
             (void (Geom_SurfaceOfRevolution::*)( const gp_Ax1 &  ) ) static_cast<void (Geom_SurfaceOfRevolution::*)( const gp_Ax1 &  ) >(&Geom_SurfaceOfRevolution::SetAxis),
             R"#(Changes the axis of revolution. Warnings : It is not checked that the axis is in the plane of the revolved curve.)#"  , py::arg("A1")
          )
        .def("SetDirection",
             (void (Geom_SurfaceOfRevolution::*)( const gp_Dir &  ) ) static_cast<void (Geom_SurfaceOfRevolution::*)( const gp_Dir &  ) >(&Geom_SurfaceOfRevolution::SetDirection),
             R"#(Changes the direction of the revolution axis. Warnings : It is not checked that the axis is in the plane of the revolved curve.)#"  , py::arg("V")
          )
        .def("SetBasisCurve",
             (void (Geom_SurfaceOfRevolution::*)( const opencascade::handle<Geom_Curve> &  ) ) static_cast<void (Geom_SurfaceOfRevolution::*)( const opencascade::handle<Geom_Curve> &  ) >(&Geom_SurfaceOfRevolution::SetBasisCurve),
             R"#(Changes the revolved curve of the surface. Warnings : It is not checked that the curve C is planar and that the surface axis is in the plane of the curve. It is not checked that the revolved curve C doesn't self-intersects.)#"  , py::arg("C")
          )
        .def("SetLocation",
             (void (Geom_SurfaceOfRevolution::*)( const gp_Pnt &  ) ) static_cast<void (Geom_SurfaceOfRevolution::*)( const gp_Pnt &  ) >(&Geom_SurfaceOfRevolution::SetLocation),
             R"#(Changes the location point of the revolution axis. Warnings : It is not checked that the axis is in the plane of the revolved curve.)#"  , py::arg("P")
          )
        .def("Axis",
             (gp_Ax1 (Geom_SurfaceOfRevolution::*)() const) static_cast<gp_Ax1 (Geom_SurfaceOfRevolution::*)() const>(&Geom_SurfaceOfRevolution::Axis),
             R"#(Returns the revolution axis of the surface.)#" 
          )
        .def("ReferencePlane",
             (gp_Ax2 (Geom_SurfaceOfRevolution::*)() const) static_cast<gp_Ax2 (Geom_SurfaceOfRevolution::*)() const>(&Geom_SurfaceOfRevolution::ReferencePlane),
             R"#(Computes the position of the reference plane of the surface defined by the basis curve and the symmetry axis. The location point is the location point of the revolution's axis, the XDirection of the plane is given by the revolution's axis and the orientation of the normal to the plane is given by the sense of revolution.)#" 
          )
        .def("UReverse",
             (void (Geom_SurfaceOfRevolution::*)() ) static_cast<void (Geom_SurfaceOfRevolution::*)() >(&Geom_SurfaceOfRevolution::UReverse),
             R"#(Changes the orientation of this surface of revolution in the u parametric direction. The bounds of the surface are not changed but the given parametric direction is reversed. Hence the orientation of the surface is reversed. As a consequence: - UReverse reverses the direction of the axis of revolution of this surface,)#" 
          )
        .def("UReversedParameter",
             (Standard_Real (Geom_SurfaceOfRevolution::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_SurfaceOfRevolution::*)( const Standard_Real  ) const>(&Geom_SurfaceOfRevolution::UReversedParameter),
             R"#(Computes the u parameter on the modified surface, when reversing its u parametric direction, for any point of u parameter U on this surface of revolution. In the case of a revolved surface: - UReversedParameter returns 2.*Pi - U)#"  , py::arg("U")
          )
        .def("VReverse",
             (void (Geom_SurfaceOfRevolution::*)() ) static_cast<void (Geom_SurfaceOfRevolution::*)() >(&Geom_SurfaceOfRevolution::VReverse),
             R"#(Changes the orientation of this surface of revolution in the v parametric direction. The bounds of the surface are not changed but the given parametric direction is reversed. Hence the orientation of the surface is reversed. As a consequence: - VReverse reverses the meridian of this surface of revolution.)#" 
          )
        .def("VReversedParameter",
             (Standard_Real (Geom_SurfaceOfRevolution::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_SurfaceOfRevolution::*)( const Standard_Real  ) const>(&Geom_SurfaceOfRevolution::VReversedParameter),
             R"#(Computes the v parameter on the modified surface, when reversing its v parametric direction, for any point of v parameter V on this surface of revolution. In the case of a revolved surface: - VReversedParameter returns the reversed parameter given by the function ReversedParameter called with V on the meridian.)#"  , py::arg("V")
          )
        .def("ParametricTransformation",
             (gp_GTrsf2d (Geom_SurfaceOfRevolution::*)( const gp_Trsf &  ) const) static_cast<gp_GTrsf2d (Geom_SurfaceOfRevolution::*)( const gp_Trsf &  ) const>(&Geom_SurfaceOfRevolution::ParametricTransformation),
             R"#(Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns a scale centered on the U axis with BasisCurve()->ParametricTransformation(T))#"  , py::arg("T")
          )
        .def("IsUClosed",
             (Standard_Boolean (Geom_SurfaceOfRevolution::*)() const) static_cast<Standard_Boolean (Geom_SurfaceOfRevolution::*)() const>(&Geom_SurfaceOfRevolution::IsUClosed),
             R"#(IsUClosed always returns true.)#" 
          )
        .def("IsVClosed",
             (Standard_Boolean (Geom_SurfaceOfRevolution::*)() const) static_cast<Standard_Boolean (Geom_SurfaceOfRevolution::*)() const>(&Geom_SurfaceOfRevolution::IsVClosed),
             R"#(IsVClosed returns true if the meridian of this surface of revolution is closed.)#" 
          )
        .def("IsCNu",
             (Standard_Boolean (Geom_SurfaceOfRevolution::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom_SurfaceOfRevolution::*)( const Standard_Integer  ) const>(&Geom_SurfaceOfRevolution::IsCNu),
             R"#(IsCNu always returns true.)#"  , py::arg("N")
          )
        .def("IsCNv",
             (Standard_Boolean (Geom_SurfaceOfRevolution::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom_SurfaceOfRevolution::*)( const Standard_Integer  ) const>(&Geom_SurfaceOfRevolution::IsCNv),
             R"#(IsCNv returns true if the degree of continuity of the meridian of this surface of revolution is at least N. Raised if N < 0.)#"  , py::arg("N")
          )
        .def("IsUPeriodic",
             (Standard_Boolean (Geom_SurfaceOfRevolution::*)() const) static_cast<Standard_Boolean (Geom_SurfaceOfRevolution::*)() const>(&Geom_SurfaceOfRevolution::IsUPeriodic),
             R"#(Returns True.)#" 
          )
        .def("IsVPeriodic",
             (Standard_Boolean (Geom_SurfaceOfRevolution::*)() const) static_cast<Standard_Boolean (Geom_SurfaceOfRevolution::*)() const>(&Geom_SurfaceOfRevolution::IsVPeriodic),
             R"#(IsVPeriodic returns true if the meridian of this surface of revolution is periodic.)#" 
          )
        .def("UIso",
             (opencascade::handle<Geom_Curve> (Geom_SurfaceOfRevolution::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_SurfaceOfRevolution::*)( const Standard_Real  ) const>(&Geom_SurfaceOfRevolution::UIso),
             R"#(Computes the U isoparametric curve of this surface of revolution. It is the curve obtained by rotating the meridian through an angle U about the axis of revolution.)#"  , py::arg("U")
          )
        .def("VIso",
             (opencascade::handle<Geom_Curve> (Geom_SurfaceOfRevolution::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_SurfaceOfRevolution::*)( const Standard_Real  ) const>(&Geom_SurfaceOfRevolution::VIso),
             R"#(Computes the U isoparametric curve of this surface of revolution. It is the curve obtained by rotating the meridian through an angle U about the axis of revolution.)#"  , py::arg("V")
          )
        .def("D0",
             (void (Geom_SurfaceOfRevolution::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt &  ) const) static_cast<void (Geom_SurfaceOfRevolution::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt &  ) const>(&Geom_SurfaceOfRevolution::D0),
             R"#(Computes the point P (U, V) on the surface. U is the angle of the rotation around the revolution axis. The direction of this axis gives the sense of rotation. V is the parameter of the revolved curve.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P")
          )
        .def("D1",
             (void (Geom_SurfaceOfRevolution::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_SurfaceOfRevolution::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_SurfaceOfRevolution::D1),
             R"#(Computes the current point and the first derivatives in the directions U and V. Raised if the continuity of the surface is not C1.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V")
          )
        .def("D2",
             (void (Geom_SurfaceOfRevolution::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_SurfaceOfRevolution::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_SurfaceOfRevolution::D2),
             R"#(Computes the current point, the first and the second derivatives in the directions U and V. Raised if the continuity of the surface is not C2.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV")
          )
        .def("D3",
             (void (Geom_SurfaceOfRevolution::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_SurfaceOfRevolution::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_SurfaceOfRevolution::D3),
             R"#(Computes the current point, the first,the second and the third derivatives in the directions U and V. Raised if the continuity of the surface is not C3.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV"),  py::arg("D3U"),  py::arg("D3V"),  py::arg("D3UUV"),  py::arg("D3UVV")
          )
        .def("DN",
             (gp_Vec (Geom_SurfaceOfRevolution::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const) static_cast<gp_Vec (Geom_SurfaceOfRevolution::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const>(&Geom_SurfaceOfRevolution::DN),
             R"#(Computes the derivative of order Nu in the direction u and Nv in the direction v.)#"  , py::arg("U"),  py::arg("V"),  py::arg("Nu"),  py::arg("Nv")
          )
        .def("Transform",
             (void (Geom_SurfaceOfRevolution::*)( const gp_Trsf &  ) ) static_cast<void (Geom_SurfaceOfRevolution::*)( const gp_Trsf &  ) >(&Geom_SurfaceOfRevolution::Transform),
             R"#(Applies the transformation T to this surface of revolution.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom_Geometry> (Geom_SurfaceOfRevolution::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_SurfaceOfRevolution::*)() const>(&Geom_SurfaceOfRevolution::Copy),
             R"#(Creates a new object which is a copy of this surface of revolution.)#" 
          )
        .def("DumpJson",
             (void (Geom_SurfaceOfRevolution::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom_SurfaceOfRevolution::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom_SurfaceOfRevolution::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
        .def("TransformParameters",
             []( Geom_SurfaceOfRevolution &self , const gp_Trsf & T ){
                 Standard_Real  U;
                Standard_Real  V;

                 self.TransformParameters(U,V,T);
                 
                 return std::make_tuple(U,V); },
             R"#(Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method multiplies V by BasisCurve()->ParametricTransformation(T))#"  , py::arg("T")
          )
        .def("Bounds",
             []( Geom_SurfaceOfRevolution &self   ){
                 Standard_Real  U1;
                Standard_Real  U2;
                Standard_Real  V1;
                Standard_Real  V2;

                 self.Bounds(U1,U2,V1,V2);
                 
                 return std::make_tuple(U1,U2,V1,V2); },
             R"#(Returns the parametric bounds U1, U2 , V1 and V2 of this surface. A surface of revolution is always complete, so U1 = 0, U2 = 2*PI.)#" 
          )
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_SurfaceOfRevolution::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_SurfaceOfRevolution::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Location",
             (const gp_Pnt & (Geom_SurfaceOfRevolution::*)() const) static_cast<const gp_Pnt & (Geom_SurfaceOfRevolution::*)() const>(&Geom_SurfaceOfRevolution::Location),
             R"#(Returns the location point of the axis of revolution.)#"
             
         )
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_SurfaceOfRevolution::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_SurfaceOfRevolution::*)() const>(&Geom_SurfaceOfRevolution::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_ToroidalSurface from ./opencascade/Geom_ToroidalSurface.hxx
    klass = m.attr("Geom_ToroidalSurface");


    // nested enums

    static_cast<py::class_<Geom_ToroidalSurface ,opencascade::handle<Geom_ToroidalSurface>  , Geom_ElementarySurface >>(klass)
    // constructors
        .def(py::init< const gp_Ax3 &,const Standard_Real,const Standard_Real >()  , py::arg("A3"),  py::arg("MajorRadius"),  py::arg("MinorRadius") )
        .def(py::init< const gp_Torus & >()  , py::arg("T") )
    // custom constructors
    // methods
        .def("SetMajorRadius",
             (void (Geom_ToroidalSurface::*)( const Standard_Real  ) ) static_cast<void (Geom_ToroidalSurface::*)( const Standard_Real  ) >(&Geom_ToroidalSurface::SetMajorRadius),
             R"#(Modifies this torus by changing its major radius. Exceptions Standard_ConstructionError if: - MajorRadius is negative, or - MajorRadius - r is less than or equal to gp::Resolution(), where r is the minor radius of this torus.)#"  , py::arg("MajorRadius")
          )
        .def("SetMinorRadius",
             (void (Geom_ToroidalSurface::*)( const Standard_Real  ) ) static_cast<void (Geom_ToroidalSurface::*)( const Standard_Real  ) >(&Geom_ToroidalSurface::SetMinorRadius),
             R"#(Modifies this torus by changing its minor radius. Exceptions Standard_ConstructionError if: - MinorRadius is negative, or - R - MinorRadius is less than or equal to gp::Resolution(), where R is the major radius of this torus.)#"  , py::arg("MinorRadius")
          )
        .def("SetTorus",
             (void (Geom_ToroidalSurface::*)( const gp_Torus &  ) ) static_cast<void (Geom_ToroidalSurface::*)( const gp_Torus &  ) >(&Geom_ToroidalSurface::SetTorus),
             R"#(Converts the gp_Torus torus T into this torus.)#"  , py::arg("T")
          )
        .def("Torus",
             (gp_Torus (Geom_ToroidalSurface::*)() const) static_cast<gp_Torus (Geom_ToroidalSurface::*)() const>(&Geom_ToroidalSurface::Torus),
             R"#(Returns the non transient torus with the same geometric properties as <me>.)#" 
          )
        .def("UReversedParameter",
             (Standard_Real (Geom_ToroidalSurface::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_ToroidalSurface::*)( const Standard_Real  ) const>(&Geom_ToroidalSurface::UReversedParameter),
             R"#(Return the parameter on the Ureversed surface for the point of parameter U on <me>. Return 2.PI - U.)#"  , py::arg("U")
          )
        .def("VReversedParameter",
             (Standard_Real (Geom_ToroidalSurface::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_ToroidalSurface::*)( const Standard_Real  ) const>(&Geom_ToroidalSurface::VReversedParameter),
             R"#(Return the parameter on the Ureversed surface for the point of parameter U on <me>. Return 2.PI - U.)#"  , py::arg("U")
          )
        .def("Area",
             (Standard_Real (Geom_ToroidalSurface::*)() const) static_cast<Standard_Real (Geom_ToroidalSurface::*)() const>(&Geom_ToroidalSurface::Area),
             R"#(Computes the aera of the surface.)#" 
          )
        .def("Coefficients",
             (void (Geom_ToroidalSurface::*)( NCollection_Array1<Standard_Real> &  ) const) static_cast<void (Geom_ToroidalSurface::*)( NCollection_Array1<Standard_Real> &  ) const>(&Geom_ToroidalSurface::Coefficients),
             R"#(Returns the coefficients of the implicit equation of the surface in the absolute cartesian coordinate system : Coef(1) * X**4 + Coef(2) * Y**4 + Coef(3) * Z**4 + Coef(4) * X**3 * Y + Coef(5) * X**3 * Z + Coef(6) * Y**3 * X + Coef(7) * Y**3 * Z + Coef(8) * Z**3 * X + Coef(9) * Z**3 * Y + Coef(10) * X**2 * Y**2 + Coef(11) * X**2 * Z**2 + Coef(12) * Y**2 * Z**2 + Coef(13) * X**3 + Coef(14) * Y**3 + Coef(15) * Z**3 + Coef(16) * X**2 * Y + Coef(17) * X**2 * Z + Coef(18) * Y**2 * X + Coef(19) * Y**2 * Z + Coef(20) * Z**2 * X + Coef(21) * Z**2 * Y + Coef(22) * X**2 + Coef(23) * Y**2 + Coef(24) * Z**2 + Coef(25) * X * Y + Coef(26) * X * Z + Coef(27) * Y * Z + Coef(28) * X + Coef(29) * Y + Coef(30) * Z + Coef(31) = 0.0 Raised if the length of Coef is lower than 31.)#"  , py::arg("Coef")
          )
        .def("MajorRadius",
             (Standard_Real (Geom_ToroidalSurface::*)() const) static_cast<Standard_Real (Geom_ToroidalSurface::*)() const>(&Geom_ToroidalSurface::MajorRadius),
             R"#(Returns the major radius, or the minor radius, of this torus.)#" 
          )
        .def("MinorRadius",
             (Standard_Real (Geom_ToroidalSurface::*)() const) static_cast<Standard_Real (Geom_ToroidalSurface::*)() const>(&Geom_ToroidalSurface::MinorRadius),
             R"#(Returns the major radius, or the minor radius, of this torus.)#" 
          )
        .def("Volume",
             (Standard_Real (Geom_ToroidalSurface::*)() const) static_cast<Standard_Real (Geom_ToroidalSurface::*)() const>(&Geom_ToroidalSurface::Volume),
             R"#(Computes the volume.)#" 
          )
        .def("IsUClosed",
             (Standard_Boolean (Geom_ToroidalSurface::*)() const) static_cast<Standard_Boolean (Geom_ToroidalSurface::*)() const>(&Geom_ToroidalSurface::IsUClosed),
             R"#(Returns True.)#" 
          )
        .def("IsVClosed",
             (Standard_Boolean (Geom_ToroidalSurface::*)() const) static_cast<Standard_Boolean (Geom_ToroidalSurface::*)() const>(&Geom_ToroidalSurface::IsVClosed),
             R"#(Returns True.)#" 
          )
        .def("IsUPeriodic",
             (Standard_Boolean (Geom_ToroidalSurface::*)() const) static_cast<Standard_Boolean (Geom_ToroidalSurface::*)() const>(&Geom_ToroidalSurface::IsUPeriodic),
             R"#(Returns True.)#" 
          )
        .def("IsVPeriodic",
             (Standard_Boolean (Geom_ToroidalSurface::*)() const) static_cast<Standard_Boolean (Geom_ToroidalSurface::*)() const>(&Geom_ToroidalSurface::IsVPeriodic),
             R"#(Returns True.)#" 
          )
        .def("UIso",
             (opencascade::handle<Geom_Curve> (Geom_ToroidalSurface::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_ToroidalSurface::*)( const Standard_Real  ) const>(&Geom_ToroidalSurface::UIso),
             R"#(Computes the U isoparametric curve.)#"  , py::arg("U")
          )
        .def("VIso",
             (opencascade::handle<Geom_Curve> (Geom_ToroidalSurface::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_ToroidalSurface::*)( const Standard_Real  ) const>(&Geom_ToroidalSurface::VIso),
             R"#(Computes the V isoparametric curve.)#"  , py::arg("V")
          )
        .def("D0",
             (void (Geom_ToroidalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt &  ) const) static_cast<void (Geom_ToroidalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt &  ) const>(&Geom_ToroidalSurface::D0),
             R"#(Computes the point P (U, V) on the surface. P (U, V) = Loc + MinorRadius * Sin (V) * Zdir + (MajorRadius + MinorRadius * Cos(V)) * (cos (U) * XDir + sin (U) * YDir) where Loc is the origin of the placement plane (XAxis, YAxis) XDir is the direction of the XAxis and YDir the direction of the YAxis and ZDir the direction of the ZAxis.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P")
          )
        .def("D1",
             (void (Geom_ToroidalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_ToroidalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_ToroidalSurface::D1),
             R"#(Computes the current point and the first derivatives in the directions U and V.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V")
          )
        .def("D2",
             (void (Geom_ToroidalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_ToroidalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_ToroidalSurface::D2),
             R"#(Computes the current point, the first and the second derivatives in the directions U and V.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV")
          )
        .def("D3",
             (void (Geom_ToroidalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_ToroidalSurface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_ToroidalSurface::D3),
             R"#(Computes the current point, the first,the second and the third derivatives in the directions U and V.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV"),  py::arg("D3U"),  py::arg("D3V"),  py::arg("D3UUV"),  py::arg("D3UVV")
          )
        .def("DN",
             (gp_Vec (Geom_ToroidalSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const) static_cast<gp_Vec (Geom_ToroidalSurface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const>(&Geom_ToroidalSurface::DN),
             R"#(Computes the derivative of order Nu in the direction u and Nv in the direction v. Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.)#"  , py::arg("U"),  py::arg("V"),  py::arg("Nu"),  py::arg("Nv")
          )
        .def("Transform",
             (void (Geom_ToroidalSurface::*)( const gp_Trsf &  ) ) static_cast<void (Geom_ToroidalSurface::*)( const gp_Trsf &  ) >(&Geom_ToroidalSurface::Transform),
             R"#(Applies the transformation T to this torus.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom_Geometry> (Geom_ToroidalSurface::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_ToroidalSurface::*)() const>(&Geom_ToroidalSurface::Copy),
             R"#(Creates a new object which is a copy of this torus.)#" 
          )
        .def("DumpJson",
             (void (Geom_ToroidalSurface::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom_ToroidalSurface::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom_ToroidalSurface::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
        .def("Bounds",
             []( Geom_ToroidalSurface &self   ){
                 Standard_Real  U1;
                Standard_Real  U2;
                Standard_Real  V1;
                Standard_Real  V2;

                 self.Bounds(U1,U2,V1,V2);
                 
                 return std::make_tuple(U1,U2,V1,V2); },
             R"#(Returns the parametric bounds U1, U2, V1 and V2 of this torus. For a torus: U1 = V1 = 0 and U2 = V2 = 2*PI .)#" 
          )
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_ToroidalSurface::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_ToroidalSurface::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_ToroidalSurface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_ToroidalSurface::*)() const>(&Geom_ToroidalSurface::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom_TrimmedCurve from ./opencascade/Geom_TrimmedCurve.hxx
    klass = m.attr("Geom_TrimmedCurve");


    // nested enums

    static_cast<py::class_<Geom_TrimmedCurve ,opencascade::handle<Geom_TrimmedCurve>  , Geom_BoundedCurve >>(klass)
    // constructors
        .def(py::init< const opencascade::handle<Geom_Curve> &,const Standard_Real,const Standard_Real,const Standard_Boolean,const Standard_Boolean >()  , py::arg("C"),  py::arg("U1"),  py::arg("U2"),  py::arg("Sense")=static_cast<const Standard_Boolean>(Standard_True),  py::arg("theAdjustPeriodic")=static_cast<const Standard_Boolean>(Standard_True) )
    // custom constructors
    // methods
        .def("Reverse",
             (void (Geom_TrimmedCurve::*)() ) static_cast<void (Geom_TrimmedCurve::*)() >(&Geom_TrimmedCurve::Reverse),
             R"#(Changes the orientation of this trimmed curve. As a result: - the basis curve is reversed, - the start point of the initial curve becomes the end point of the reversed curve, - the end point of the initial curve becomes the start point of the reversed curve, - the first and last parameters are recomputed. If the trimmed curve was defined by: - a basis curve whose parameter range is [ 0., 1. ], - the two trim values U1 (first parameter) and U2 (last parameter), the reversed trimmed curve is defined by: - the reversed basis curve, whose parameter range is still [ 0., 1. ], - the two trim values 1. - U2 (first parameter) and 1. - U1 (last parameter).)#" 
          )
        .def("ReversedParameter",
             (Standard_Real (Geom_TrimmedCurve::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom_TrimmedCurve::*)( const Standard_Real  ) const>(&Geom_TrimmedCurve::ReversedParameter),
             R"#(Computes the parameter on the reversed curve for the point of parameter U on this trimmed curve.)#"  , py::arg("U")
          )
        .def("SetTrim",
             (void (Geom_TrimmedCurve::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Boolean  ) ) static_cast<void (Geom_TrimmedCurve::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Boolean  ) >(&Geom_TrimmedCurve::SetTrim),
             R"#(Changes this trimmed curve, by redefining the parameter values U1 and U2 which limit its basis curve. Note: If the basis curve is periodic, the trimmed curve has the same orientation as the basis curve if Sense is true (default value) or the opposite orientation if Sense is false. Warning If the basis curve is periodic and theAdjustPeriodic is True, the bounds of the trimmed curve may be different from U1 and U2 if the parametric origin of the basis curve is within the arc of the trimmed curve. In this case, the modified parameter will be equal to U1 or U2 plus or minus the period. When theAdjustPeriodic is False, parameters U1 and U2 will be the same, without adjustment into the first period. Exceptions Standard_ConstructionError if: - the basis curve is not periodic, and either U1 or U2 are outside the bounds of the basis curve, or - U1 is equal to U2.)#"  , py::arg("U1"),  py::arg("U2"),  py::arg("Sense")=static_cast<const Standard_Boolean>(Standard_True),  py::arg("theAdjustPeriodic")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def("BasisCurve",
             (opencascade::handle<Geom_Curve> (Geom_TrimmedCurve::*)() const) static_cast<opencascade::handle<Geom_Curve> (Geom_TrimmedCurve::*)() const>(&Geom_TrimmedCurve::BasisCurve),
             R"#(Returns the basis curve. Warning This function does not return a constant reference. Consequently, any modification of the returned value directly modifies the trimmed curve.)#" 
          )
        .def("Continuity",
             (GeomAbs_Shape (Geom_TrimmedCurve::*)() const) static_cast<GeomAbs_Shape (Geom_TrimmedCurve::*)() const>(&Geom_TrimmedCurve::Continuity),
             R"#(Returns the continuity of the curve : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, CN : the order of continuity is infinite.)#" 
          )
        .def("IsCN",
             (Standard_Boolean (Geom_TrimmedCurve::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom_TrimmedCurve::*)( const Standard_Integer  ) const>(&Geom_TrimmedCurve::IsCN),
             R"#(Returns true if the degree of continuity of the basis curve of this trimmed curve is at least N. A trimmed curve is at least "C0" continuous. Warnings : The continuity of the trimmed curve can be greater than the continuity of the basis curve because you consider only a part of the basis curve. Raised if N < 0.)#"  , py::arg("N")
          )
        .def("EndPoint",
             (gp_Pnt (Geom_TrimmedCurve::*)() const) static_cast<gp_Pnt (Geom_TrimmedCurve::*)() const>(&Geom_TrimmedCurve::EndPoint),
             R"#(Returns the end point of <me>. This point is the evaluation of the curve for the "LastParameter".)#" 
          )
        .def("FirstParameter",
             (Standard_Real (Geom_TrimmedCurve::*)() const) static_cast<Standard_Real (Geom_TrimmedCurve::*)() const>(&Geom_TrimmedCurve::FirstParameter),
             R"#(Returns the value of the first parameter of <me>. The first parameter is the parameter of the "StartPoint" of the trimmed curve.)#" 
          )
        .def("IsClosed",
             (Standard_Boolean (Geom_TrimmedCurve::*)() const) static_cast<Standard_Boolean (Geom_TrimmedCurve::*)() const>(&Geom_TrimmedCurve::IsClosed),
             R"#(Returns True if the distance between the StartPoint and the EndPoint is lower or equal to Resolution from package gp.)#" 
          )
        .def("IsPeriodic",
             (Standard_Boolean (Geom_TrimmedCurve::*)() const) static_cast<Standard_Boolean (Geom_TrimmedCurve::*)() const>(&Geom_TrimmedCurve::IsPeriodic),
             R"#(Always returns FALSE (independently of the type of basis curve).)#" 
          )
        .def("Period",
             (Standard_Real (Geom_TrimmedCurve::*)() const) static_cast<Standard_Real (Geom_TrimmedCurve::*)() const>(&Geom_TrimmedCurve::Period),
             R"#(Returns the period of the basis curve of this trimmed curve. Exceptions Standard_NoSuchObject if the basis curve is not periodic.)#" 
          )
        .def("LastParameter",
             (Standard_Real (Geom_TrimmedCurve::*)() const) static_cast<Standard_Real (Geom_TrimmedCurve::*)() const>(&Geom_TrimmedCurve::LastParameter),
             R"#(Returns the value of the last parameter of <me>. The last parameter is the parameter of the "EndPoint" of the trimmed curve.)#" 
          )
        .def("StartPoint",
             (gp_Pnt (Geom_TrimmedCurve::*)() const) static_cast<gp_Pnt (Geom_TrimmedCurve::*)() const>(&Geom_TrimmedCurve::StartPoint),
             R"#(Returns the start point of <me>. This point is the evaluation of the curve from the "FirstParameter". value and derivatives Warnings : The returned derivatives have the same orientation as the derivatives of the basis curve even if the trimmed curve has not the same orientation as the basis curve.)#" 
          )
        .def("D0",
             (void (Geom_TrimmedCurve::*)( const Standard_Real ,  gp_Pnt &  ) const) static_cast<void (Geom_TrimmedCurve::*)( const Standard_Real ,  gp_Pnt &  ) const>(&Geom_TrimmedCurve::D0),
             R"#(Returns in P the point of parameter U.)#"  , py::arg("U"),  py::arg("P")
          )
        .def("D1",
             (void (Geom_TrimmedCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec &  ) const) static_cast<void (Geom_TrimmedCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec &  ) const>(&Geom_TrimmedCurve::D1),
             R"#(Raised if the continuity of the curve is not C1.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1")
          )
        .def("D2",
             (void (Geom_TrimmedCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_TrimmedCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_TrimmedCurve::D2),
             R"#(Raised if the continuity of the curve is not C2.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def("D3",
             (void (Geom_TrimmedCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (Geom_TrimmedCurve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&Geom_TrimmedCurve::D3),
             R"#(Raised if the continuity of the curve is not C3.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3")
          )
        .def("DN",
             (gp_Vec (Geom_TrimmedCurve::*)( const Standard_Real ,  const Standard_Integer  ) const) static_cast<gp_Vec (Geom_TrimmedCurve::*)( const Standard_Real ,  const Standard_Integer  ) const>(&Geom_TrimmedCurve::DN),
             R"#(N is the order of derivation. Raised if the continuity of the curve is not CN. Raised if N < 1. geometric transformations)#"  , py::arg("U"),  py::arg("N")
          )
        .def("Transform",
             (void (Geom_TrimmedCurve::*)( const gp_Trsf &  ) ) static_cast<void (Geom_TrimmedCurve::*)( const gp_Trsf &  ) >(&Geom_TrimmedCurve::Transform),
             R"#(Applies the transformation T to this trimmed curve. Warning The basis curve is also modified.)#"  , py::arg("T")
          )
        .def("TransformedParameter",
             (Standard_Real (Geom_TrimmedCurve::*)( const Standard_Real ,  const gp_Trsf &  ) const) static_cast<Standard_Real (Geom_TrimmedCurve::*)( const Standard_Real ,  const gp_Trsf &  ) const>(&Geom_TrimmedCurve::TransformedParameter),
             R"#(Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.)#"  , py::arg("U"),  py::arg("T")
          )
        .def("ParametricTransformation",
             (Standard_Real (Geom_TrimmedCurve::*)( const gp_Trsf &  ) const) static_cast<Standard_Real (Geom_TrimmedCurve::*)( const gp_Trsf &  ) const>(&Geom_TrimmedCurve::ParametricTransformation),
             R"#(Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom_Geometry> (Geom_TrimmedCurve::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_TrimmedCurve::*)() const>(&Geom_TrimmedCurve::Copy),
             R"#(Creates a new object which is a copy of this trimmed curve.)#" 
          )
        .def("DumpJson",
             (void (Geom_TrimmedCurve::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom_TrimmedCurve::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom_TrimmedCurve::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom_TrimmedCurve::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_TrimmedCurve::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom_TrimmedCurve::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_TrimmedCurve::*)() const>(&Geom_TrimmedCurve::DynamicType),
             R"#(None)#"
             
         )
;

// functions
// ./opencascade/Geom_Axis1Placement.hxx
// ./opencascade/Geom_Axis2Placement.hxx
// ./opencascade/Geom_AxisPlacement.hxx
// ./opencascade/Geom_BSplineCurve.hxx
// ./opencascade/Geom_BSplineSurface.hxx
// ./opencascade/Geom_BezierCurve.hxx
// ./opencascade/Geom_BezierSurface.hxx
// ./opencascade/Geom_BoundedCurve.hxx
// ./opencascade/Geom_BoundedSurface.hxx
// ./opencascade/Geom_CartesianPoint.hxx
// ./opencascade/Geom_Circle.hxx
// ./opencascade/Geom_Conic.hxx
// ./opencascade/Geom_ConicalSurface.hxx
// ./opencascade/Geom_Curve.hxx
// ./opencascade/Geom_CylindricalSurface.hxx
// ./opencascade/Geom_Direction.hxx
// ./opencascade/Geom_ElementarySurface.hxx
// ./opencascade/Geom_Ellipse.hxx
// ./opencascade/Geom_Geometry.hxx
// ./opencascade/Geom_HSequenceOfBSplineSurface.hxx
// ./opencascade/Geom_Hyperbola.hxx
// ./opencascade/Geom_Line.hxx
// ./opencascade/Geom_OffsetCurve.hxx
// ./opencascade/Geom_OffsetSurface.hxx
// ./opencascade/Geom_OsculatingSurface.hxx
// ./opencascade/Geom_Parabola.hxx
// ./opencascade/Geom_Plane.hxx
// ./opencascade/Geom_Point.hxx
// ./opencascade/Geom_RectangularTrimmedSurface.hxx
// ./opencascade/Geom_SequenceOfBSplineSurface.hxx
// ./opencascade/Geom_SphericalSurface.hxx
// ./opencascade/Geom_Surface.hxx
// ./opencascade/Geom_SurfaceOfLinearExtrusion.hxx
// ./opencascade/Geom_SurfaceOfRevolution.hxx
// ./opencascade/Geom_SweptSurface.hxx
// ./opencascade/Geom_ToroidalSurface.hxx
// ./opencascade/Geom_Transformation.hxx
// ./opencascade/Geom_TrimmedCurve.hxx
// ./opencascade/Geom_UndefinedDerivative.hxx
// ./opencascade/Geom_UndefinedValue.hxx
// ./opencascade/Geom_Vector.hxx
// ./opencascade/Geom_VectorWithMagnitude.hxx

// Additional functions

// operators

// register typdefs
    register_template_NCollection_Sequence<opencascade::handle<Geom_BSplineSurface>>(m,"Geom_SequenceOfBSplineSurface");


// exceptions
register_occ_exception<Geom_UndefinedDerivative>(m, "Geom_UndefinedDerivative");
register_occ_exception<Geom_UndefinedValue>(m, "Geom_UndefinedValue");

// user-defined post-inclusion per module in the body

};

// user-defined post-inclusion per module

// user-defined post