1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929
|
// std lib related includes
#include <tuple>
// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybind11;
// Standard Handle
#include <Standard_Handle.hxx>
// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Ax2.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Circ.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Cone.hxx>
#include <gp_GTrsf2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Trsf.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Cylinder.hxx>
#include <gp_GTrsf2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Elips.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt.hxx>
#include <gp_Ax1.hxx>
#include <gp_Ax2.hxx>
#include <gp_Vec.hxx>
#include <gp_Trsf.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Hypr.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Lin.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <gp_GTrsf2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Parab.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pln.hxx>
#include <gp_GTrsf2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <gp_Trsf.hxx>
#include <gp_GTrsf2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Sphere.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Trsf.hxx>
#include <gp_GTrsf2d.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_GTrsf2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_GTrsf2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Torus.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <gp_Trsf.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
// module includes
#include <Geom_Axis1Placement.hxx>
#include <Geom_Axis2Placement.hxx>
#include <Geom_AxisPlacement.hxx>
#include <Geom_BezierCurve.hxx>
#include <Geom_BezierSurface.hxx>
#include <Geom_BoundedCurve.hxx>
#include <Geom_BoundedSurface.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Geom_CartesianPoint.hxx>
#include <Geom_Circle.hxx>
#include <Geom_Conic.hxx>
#include <Geom_ConicalSurface.hxx>
#include <Geom_Curve.hxx>
#include <Geom_CylindricalSurface.hxx>
#include <Geom_Direction.hxx>
#include <Geom_ElementarySurface.hxx>
#include <Geom_Ellipse.hxx>
#include <Geom_Geometry.hxx>
#include <Geom_HSequenceOfBSplineSurface.hxx>
#include <Geom_Hyperbola.hxx>
#include <Geom_Line.hxx>
#include <Geom_OffsetCurve.hxx>
#include <Geom_OffsetSurface.hxx>
#include <Geom_OsculatingSurface.hxx>
#include <Geom_Parabola.hxx>
#include <Geom_Plane.hxx>
#include <Geom_Point.hxx>
#include <Geom_RectangularTrimmedSurface.hxx>
#include <Geom_SequenceOfBSplineSurface.hxx>
#include <Geom_SphericalSurface.hxx>
#include <Geom_Surface.hxx>
#include <Geom_SurfaceOfLinearExtrusion.hxx>
#include <Geom_SurfaceOfRevolution.hxx>
#include <Geom_SweptSurface.hxx>
#include <Geom_ToroidalSurface.hxx>
#include <Geom_Transformation.hxx>
#include <Geom_TrimmedCurve.hxx>
#include <Geom_UndefinedDerivative.hxx>
#include <Geom_UndefinedValue.hxx>
#include <Geom_Vector.hxx>
#include <Geom_VectorWithMagnitude.hxx>
// template related includes
// ./opencascade/Geom_SequenceOfBSplineSurface.hxx
#include "NCollection_tmpl.hxx"
// user-defined pre
#include "OCP_specific.inc"
// user-defined inclusion per module
// Module definiiton
void register_Geom(py::module &main_module) {
py::module m = static_cast<py::module>(main_module.attr("Geom"));
py::object klass;
//Python trampoline classes
class Py_Geom_Geometry : public Geom_Geometry{
public:
using Geom_Geometry::Geom_Geometry;
// public pure virtual
void Transform(const gp_Trsf & T) override { PYBIND11_OVERLOAD_PURE(void,Geom_Geometry,Transform,T) };
opencascade::handle<Geom_Geometry> Copy() const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Geometry>,Geom_Geometry,Copy,) };
// protected pure virtual
// private pure virtual
};
class Py_Geom_AxisPlacement : public Geom_AxisPlacement{
public:
using Geom_AxisPlacement::Geom_AxisPlacement;
// public pure virtual
void SetDirection(const gp_Dir & V) override { PYBIND11_OVERLOAD_PURE(void,Geom_AxisPlacement,SetDirection,V) };
void Transform(const gp_Trsf & T) override { PYBIND11_OVERLOAD_PURE(void,Geom_Geometry,Transform,T) };
opencascade::handle<Geom_Geometry> Copy() const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Geometry>,Geom_Geometry,Copy,) };
// protected pure virtual
// private pure virtual
};
class Py_Geom_Curve : public Geom_Curve{
public:
using Geom_Curve::Geom_Curve;
// public pure virtual
void Reverse() override { PYBIND11_OVERLOAD_PURE(void,Geom_Curve,Reverse,) };
Standard_Real ReversedParameter(const Standard_Real U) const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Curve,ReversedParameter,U) };
Standard_Real FirstParameter() const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Curve,FirstParameter,) };
Standard_Real LastParameter() const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Curve,LastParameter,) };
Standard_Boolean IsClosed() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Curve,IsClosed,) };
Standard_Boolean IsPeriodic() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Curve,IsPeriodic,) };
GeomAbs_Shape Continuity() const override { PYBIND11_OVERLOAD_PURE(GeomAbs_Shape,Geom_Curve,Continuity,) };
Standard_Boolean IsCN(const Standard_Integer N) const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Curve,IsCN,N) };
void D0(const Standard_Real U,gp_Pnt & P) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Curve,D0,U,P) };
void D1(const Standard_Real U,gp_Pnt & P,gp_Vec & V1) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Curve,D1,U,P,V1) };
void D2(const Standard_Real U,gp_Pnt & P,gp_Vec & V1,gp_Vec & V2) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Curve,D2,U,P,V1,V2) };
void D3(const Standard_Real U,gp_Pnt & P,gp_Vec & V1,gp_Vec & V2,gp_Vec & V3) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Curve,D3,U,P,V1,V2,V3) };
gp_Vec DN(const Standard_Real U,const Standard_Integer N) const override { PYBIND11_OVERLOAD_PURE(gp_Vec,Geom_Curve,DN,U,N) };
void Transform(const gp_Trsf & T) override { PYBIND11_OVERLOAD_PURE(void,Geom_Geometry,Transform,T) };
opencascade::handle<Geom_Geometry> Copy() const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Geometry>,Geom_Geometry,Copy,) };
// protected pure virtual
// private pure virtual
};
class Py_Geom_Point : public Geom_Point{
public:
using Geom_Point::Geom_Point;
// public pure virtual
gp_Pnt Pnt() const override { PYBIND11_OVERLOAD_PURE(gp_Pnt,Geom_Point,Pnt,) };
Standard_Real X() const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Point,X,) };
Standard_Real Y() const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Point,Y,) };
Standard_Real Z() const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Point,Z,) };
void Coord(Standard_Real & X,Standard_Real & Y,Standard_Real & Z) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Point,Coord,X,Y,Z) };
void Transform(const gp_Trsf & T) override { PYBIND11_OVERLOAD_PURE(void,Geom_Geometry,Transform,T) };
opencascade::handle<Geom_Geometry> Copy() const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Geometry>,Geom_Geometry,Copy,) };
// protected pure virtual
// private pure virtual
};
class Py_Geom_Surface : public Geom_Surface{
public:
using Geom_Surface::Geom_Surface;
// public pure virtual
void UReverse() override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,UReverse,) };
Standard_Real UReversedParameter(const Standard_Real U) const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Surface,UReversedParameter,U) };
void VReverse() override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,VReverse,) };
Standard_Real VReversedParameter(const Standard_Real V) const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Surface,VReversedParameter,V) };
Standard_Boolean IsUClosed() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsUClosed,) };
Standard_Boolean IsVClosed() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsVClosed,) };
Standard_Boolean IsUPeriodic() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsUPeriodic,) };
Standard_Boolean IsVPeriodic() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsVPeriodic,) };
opencascade::handle<Geom_Curve> UIso(const Standard_Real U) const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Curve>,Geom_Surface,UIso,U) };
opencascade::handle<Geom_Curve> VIso(const Standard_Real V) const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Curve>,Geom_Surface,VIso,V) };
GeomAbs_Shape Continuity() const override { PYBIND11_OVERLOAD_PURE(GeomAbs_Shape,Geom_Surface,Continuity,) };
Standard_Boolean IsCNu(const Standard_Integer N) const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsCNu,N) };
Standard_Boolean IsCNv(const Standard_Integer N) const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsCNv,N) };
void D0(const Standard_Real U,const Standard_Real V,gp_Pnt & P) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D0,U,V,P) };
void D1(const Standard_Real U,const Standard_Real V,gp_Pnt & P,gp_Vec & D1U,gp_Vec & D1V) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D1,U,V,P,D1U,D1V) };
void D2(const Standard_Real U,const Standard_Real V,gp_Pnt & P,gp_Vec & D1U,gp_Vec & D1V,gp_Vec & D2U,gp_Vec & D2V,gp_Vec & D2UV) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D2,U,V,P,D1U,D1V,D2U,D2V,D2UV) };
void D3(const Standard_Real U,const Standard_Real V,gp_Pnt & P,gp_Vec & D1U,gp_Vec & D1V,gp_Vec & D2U,gp_Vec & D2V,gp_Vec & D2UV,gp_Vec & D3U,gp_Vec & D3V,gp_Vec & D3UUV,gp_Vec & D3UVV) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D3,U,V,P,D1U,D1V,D2U,D2V,D2UV,D3U,D3V,D3UUV,D3UVV) };
gp_Vec DN(const Standard_Real U,const Standard_Real V,const Standard_Integer Nu,const Standard_Integer Nv) const override { PYBIND11_OVERLOAD_PURE(gp_Vec,Geom_Surface,DN,U,V,Nu,Nv) };
void Bounds(Standard_Real & U1,Standard_Real & U2,Standard_Real & V1,Standard_Real & V2) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,Bounds,U1,U2,V1,V2) };
void Transform(const gp_Trsf & T) override { PYBIND11_OVERLOAD_PURE(void,Geom_Geometry,Transform,T) };
opencascade::handle<Geom_Geometry> Copy() const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Geometry>,Geom_Geometry,Copy,) };
// protected pure virtual
// private pure virtual
};
class Py_Geom_Vector : public Geom_Vector{
public:
using Geom_Vector::Geom_Vector;
// public pure virtual
Standard_Real Magnitude() const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Vector,Magnitude,) };
Standard_Real SquareMagnitude() const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Vector,SquareMagnitude,) };
void Cross(const opencascade::handle<Geom_Vector> & Other) override { PYBIND11_OVERLOAD_PURE(void,Geom_Vector,Cross,Other) };
opencascade::handle<Geom_Vector> Crossed(const opencascade::handle<Geom_Vector> & Other) const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Vector>,Geom_Vector,Crossed,Other) };
void CrossCross(const opencascade::handle<Geom_Vector> & V1,const opencascade::handle<Geom_Vector> & V2) override { PYBIND11_OVERLOAD_PURE(void,Geom_Vector,CrossCross,V1,V2) };
opencascade::handle<Geom_Vector> CrossCrossed(const opencascade::handle<Geom_Vector> & V1,const opencascade::handle<Geom_Vector> & V2) const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Vector>,Geom_Vector,CrossCrossed,V1,V2) };
void Transform(const gp_Trsf & T) override { PYBIND11_OVERLOAD_PURE(void,Geom_Geometry,Transform,T) };
opencascade::handle<Geom_Geometry> Copy() const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Geometry>,Geom_Geometry,Copy,) };
// protected pure virtual
// private pure virtual
};
class Py_Geom_BoundedCurve : public Geom_BoundedCurve{
public:
using Geom_BoundedCurve::Geom_BoundedCurve;
// public pure virtual
gp_Pnt EndPoint() const override { PYBIND11_OVERLOAD_PURE(gp_Pnt,Geom_BoundedCurve,EndPoint,) };
gp_Pnt StartPoint() const override { PYBIND11_OVERLOAD_PURE(gp_Pnt,Geom_BoundedCurve,StartPoint,) };
void Reverse() override { PYBIND11_OVERLOAD_PURE(void,Geom_Curve,Reverse,) };
Standard_Real ReversedParameter(const Standard_Real U) const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Curve,ReversedParameter,U) };
Standard_Real FirstParameter() const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Curve,FirstParameter,) };
Standard_Real LastParameter() const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Curve,LastParameter,) };
Standard_Boolean IsClosed() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Curve,IsClosed,) };
Standard_Boolean IsPeriodic() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Curve,IsPeriodic,) };
GeomAbs_Shape Continuity() const override { PYBIND11_OVERLOAD_PURE(GeomAbs_Shape,Geom_Curve,Continuity,) };
Standard_Boolean IsCN(const Standard_Integer N) const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Curve,IsCN,N) };
void D0(const Standard_Real U,gp_Pnt & P) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Curve,D0,U,P) };
void D1(const Standard_Real U,gp_Pnt & P,gp_Vec & V1) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Curve,D1,U,P,V1) };
void D2(const Standard_Real U,gp_Pnt & P,gp_Vec & V1,gp_Vec & V2) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Curve,D2,U,P,V1,V2) };
void D3(const Standard_Real U,gp_Pnt & P,gp_Vec & V1,gp_Vec & V2,gp_Vec & V3) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Curve,D3,U,P,V1,V2,V3) };
gp_Vec DN(const Standard_Real U,const Standard_Integer N) const override { PYBIND11_OVERLOAD_PURE(gp_Vec,Geom_Curve,DN,U,N) };
void Transform(const gp_Trsf & T) override { PYBIND11_OVERLOAD_PURE(void,Geom_Geometry,Transform,T) };
opencascade::handle<Geom_Geometry> Copy() const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Geometry>,Geom_Geometry,Copy,) };
// protected pure virtual
// private pure virtual
};
class Py_Geom_BoundedSurface : public Geom_BoundedSurface{
public:
using Geom_BoundedSurface::Geom_BoundedSurface;
// public pure virtual
void UReverse() override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,UReverse,) };
Standard_Real UReversedParameter(const Standard_Real U) const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Surface,UReversedParameter,U) };
void VReverse() override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,VReverse,) };
Standard_Real VReversedParameter(const Standard_Real V) const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Surface,VReversedParameter,V) };
Standard_Boolean IsUClosed() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsUClosed,) };
Standard_Boolean IsVClosed() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsVClosed,) };
Standard_Boolean IsUPeriodic() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsUPeriodic,) };
Standard_Boolean IsVPeriodic() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsVPeriodic,) };
opencascade::handle<Geom_Curve> UIso(const Standard_Real U) const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Curve>,Geom_Surface,UIso,U) };
opencascade::handle<Geom_Curve> VIso(const Standard_Real V) const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Curve>,Geom_Surface,VIso,V) };
GeomAbs_Shape Continuity() const override { PYBIND11_OVERLOAD_PURE(GeomAbs_Shape,Geom_Surface,Continuity,) };
Standard_Boolean IsCNu(const Standard_Integer N) const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsCNu,N) };
Standard_Boolean IsCNv(const Standard_Integer N) const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsCNv,N) };
void D0(const Standard_Real U,const Standard_Real V,gp_Pnt & P) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D0,U,V,P) };
void D1(const Standard_Real U,const Standard_Real V,gp_Pnt & P,gp_Vec & D1U,gp_Vec & D1V) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D1,U,V,P,D1U,D1V) };
void D2(const Standard_Real U,const Standard_Real V,gp_Pnt & P,gp_Vec & D1U,gp_Vec & D1V,gp_Vec & D2U,gp_Vec & D2V,gp_Vec & D2UV) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D2,U,V,P,D1U,D1V,D2U,D2V,D2UV) };
void D3(const Standard_Real U,const Standard_Real V,gp_Pnt & P,gp_Vec & D1U,gp_Vec & D1V,gp_Vec & D2U,gp_Vec & D2V,gp_Vec & D2UV,gp_Vec & D3U,gp_Vec & D3V,gp_Vec & D3UUV,gp_Vec & D3UVV) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D3,U,V,P,D1U,D1V,D2U,D2V,D2UV,D3U,D3V,D3UUV,D3UVV) };
gp_Vec DN(const Standard_Real U,const Standard_Real V,const Standard_Integer Nu,const Standard_Integer Nv) const override { PYBIND11_OVERLOAD_PURE(gp_Vec,Geom_Surface,DN,U,V,Nu,Nv) };
void Transform(const gp_Trsf & T) override { PYBIND11_OVERLOAD_PURE(void,Geom_Geometry,Transform,T) };
opencascade::handle<Geom_Geometry> Copy() const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Geometry>,Geom_Geometry,Copy,) };
// protected pure virtual
// private pure virtual
};
class Py_Geom_Conic : public Geom_Conic{
public:
using Geom_Conic::Geom_Conic;
// public pure virtual
Standard_Real Eccentricity() const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Conic,Eccentricity,) };
Standard_Real ReversedParameter(const Standard_Real U) const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Conic,ReversedParameter,U) };
Standard_Real FirstParameter() const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Curve,FirstParameter,) };
Standard_Real LastParameter() const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Curve,LastParameter,) };
Standard_Boolean IsClosed() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Curve,IsClosed,) };
Standard_Boolean IsPeriodic() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Curve,IsPeriodic,) };
void D0(const Standard_Real U,gp_Pnt & P) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Curve,D0,U,P) };
void D1(const Standard_Real U,gp_Pnt & P,gp_Vec & V1) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Curve,D1,U,P,V1) };
void D2(const Standard_Real U,gp_Pnt & P,gp_Vec & V1,gp_Vec & V2) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Curve,D2,U,P,V1,V2) };
void D3(const Standard_Real U,gp_Pnt & P,gp_Vec & V1,gp_Vec & V2,gp_Vec & V3) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Curve,D3,U,P,V1,V2,V3) };
gp_Vec DN(const Standard_Real U,const Standard_Integer N) const override { PYBIND11_OVERLOAD_PURE(gp_Vec,Geom_Curve,DN,U,N) };
void Transform(const gp_Trsf & T) override { PYBIND11_OVERLOAD_PURE(void,Geom_Geometry,Transform,T) };
opencascade::handle<Geom_Geometry> Copy() const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Geometry>,Geom_Geometry,Copy,) };
// protected pure virtual
// private pure virtual
};
class Py_Geom_ElementarySurface : public Geom_ElementarySurface{
public:
using Geom_ElementarySurface::Geom_ElementarySurface;
// public pure virtual
Standard_Real UReversedParameter(const Standard_Real U) const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_ElementarySurface,UReversedParameter,U) };
Standard_Real VReversedParameter(const Standard_Real V) const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_ElementarySurface,VReversedParameter,V) };
Standard_Boolean IsUClosed() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsUClosed,) };
Standard_Boolean IsVClosed() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsVClosed,) };
Standard_Boolean IsUPeriodic() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsUPeriodic,) };
Standard_Boolean IsVPeriodic() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsVPeriodic,) };
opencascade::handle<Geom_Curve> UIso(const Standard_Real U) const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Curve>,Geom_Surface,UIso,U) };
opencascade::handle<Geom_Curve> VIso(const Standard_Real V) const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Curve>,Geom_Surface,VIso,V) };
void D0(const Standard_Real U,const Standard_Real V,gp_Pnt & P) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D0,U,V,P) };
void D1(const Standard_Real U,const Standard_Real V,gp_Pnt & P,gp_Vec & D1U,gp_Vec & D1V) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D1,U,V,P,D1U,D1V) };
void D2(const Standard_Real U,const Standard_Real V,gp_Pnt & P,gp_Vec & D1U,gp_Vec & D1V,gp_Vec & D2U,gp_Vec & D2V,gp_Vec & D2UV) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D2,U,V,P,D1U,D1V,D2U,D2V,D2UV) };
void D3(const Standard_Real U,const Standard_Real V,gp_Pnt & P,gp_Vec & D1U,gp_Vec & D1V,gp_Vec & D2U,gp_Vec & D2V,gp_Vec & D2UV,gp_Vec & D3U,gp_Vec & D3V,gp_Vec & D3UUV,gp_Vec & D3UVV) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D3,U,V,P,D1U,D1V,D2U,D2V,D2UV,D3U,D3V,D3UUV,D3UVV) };
gp_Vec DN(const Standard_Real U,const Standard_Real V,const Standard_Integer Nu,const Standard_Integer Nv) const override { PYBIND11_OVERLOAD_PURE(gp_Vec,Geom_Surface,DN,U,V,Nu,Nv) };
void Transform(const gp_Trsf & T) override { PYBIND11_OVERLOAD_PURE(void,Geom_Geometry,Transform,T) };
opencascade::handle<Geom_Geometry> Copy() const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Geometry>,Geom_Geometry,Copy,) };
// protected pure virtual
// private pure virtual
};
class Py_Geom_SweptSurface : public Geom_SweptSurface{
public:
using Geom_SweptSurface::Geom_SweptSurface;
// public pure virtual
void UReverse() override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,UReverse,) };
Standard_Real UReversedParameter(const Standard_Real U) const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Surface,UReversedParameter,U) };
void VReverse() override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,VReverse,) };
Standard_Real VReversedParameter(const Standard_Real V) const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom_Surface,VReversedParameter,V) };
Standard_Boolean IsUClosed() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsUClosed,) };
Standard_Boolean IsVClosed() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsVClosed,) };
Standard_Boolean IsUPeriodic() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsUPeriodic,) };
Standard_Boolean IsVPeriodic() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsVPeriodic,) };
opencascade::handle<Geom_Curve> UIso(const Standard_Real U) const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Curve>,Geom_Surface,UIso,U) };
opencascade::handle<Geom_Curve> VIso(const Standard_Real V) const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Curve>,Geom_Surface,VIso,V) };
Standard_Boolean IsCNu(const Standard_Integer N) const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsCNu,N) };
Standard_Boolean IsCNv(const Standard_Integer N) const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom_Surface,IsCNv,N) };
void D0(const Standard_Real U,const Standard_Real V,gp_Pnt & P) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D0,U,V,P) };
void D1(const Standard_Real U,const Standard_Real V,gp_Pnt & P,gp_Vec & D1U,gp_Vec & D1V) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D1,U,V,P,D1U,D1V) };
void D2(const Standard_Real U,const Standard_Real V,gp_Pnt & P,gp_Vec & D1U,gp_Vec & D1V,gp_Vec & D2U,gp_Vec & D2V,gp_Vec & D2UV) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D2,U,V,P,D1U,D1V,D2U,D2V,D2UV) };
void D3(const Standard_Real U,const Standard_Real V,gp_Pnt & P,gp_Vec & D1U,gp_Vec & D1V,gp_Vec & D2U,gp_Vec & D2V,gp_Vec & D2UV,gp_Vec & D3U,gp_Vec & D3V,gp_Vec & D3UUV,gp_Vec & D3UVV) const override { PYBIND11_OVERLOAD_PURE(void,Geom_Surface,D3,U,V,P,D1U,D1V,D2U,D2V,D2UV,D3U,D3V,D3UUV,D3UVV) };
gp_Vec DN(const Standard_Real U,const Standard_Real V,const Standard_Integer Nu,const Standard_Integer Nv) const override { PYBIND11_OVERLOAD_PURE(gp_Vec,Geom_Surface,DN,U,V,Nu,Nv) };
void Transform(const gp_Trsf & T) override { PYBIND11_OVERLOAD_PURE(void,Geom_Geometry,Transform,T) };
opencascade::handle<Geom_Geometry> Copy() const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom_Geometry>,Geom_Geometry,Copy,) };
// protected pure virtual
// private pure virtual
};
// classes
// Class Geom_Geometry from ./opencascade/Geom_Geometry.hxx
klass = m.attr("Geom_Geometry");
// nested enums
static_cast<py::class_<Geom_Geometry ,opencascade::handle<Geom_Geometry> ,Py_Geom_Geometry , Standard_Transient >>(klass)
// constructors
// custom constructors
// methods
.def("Mirror",
(void (Geom_Geometry::*)( const gp_Pnt & ) ) static_cast<void (Geom_Geometry::*)( const gp_Pnt & ) >(&Geom_Geometry::Mirror),
R"#(Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.)#" , py::arg("P")
)
.def("Mirror",
(void (Geom_Geometry::*)( const gp_Ax1 & ) ) static_cast<void (Geom_Geometry::*)( const gp_Ax1 & ) >(&Geom_Geometry::Mirror),
R"#(Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.)#" , py::arg("A1")
)
.def("Mirror",
(void (Geom_Geometry::*)( const gp_Ax2 & ) ) static_cast<void (Geom_Geometry::*)( const gp_Ax2 & ) >(&Geom_Geometry::Mirror),
R"#(Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).)#" , py::arg("A2")
)
.def("Rotate",
(void (Geom_Geometry::*)( const gp_Ax1 & , const Standard_Real ) ) static_cast<void (Geom_Geometry::*)( const gp_Ax1 & , const Standard_Real ) >(&Geom_Geometry::Rotate),
R"#(Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.)#" , py::arg("A1"), py::arg("Ang")
)
.def("Scale",
(void (Geom_Geometry::*)( const gp_Pnt & , const Standard_Real ) ) static_cast<void (Geom_Geometry::*)( const gp_Pnt & , const Standard_Real ) >(&Geom_Geometry::Scale),
R"#(Scales a Geometry. S is the scaling value.)#" , py::arg("P"), py::arg("S")
)
.def("Translate",
(void (Geom_Geometry::*)( const gp_Vec & ) ) static_cast<void (Geom_Geometry::*)( const gp_Vec & ) >(&Geom_Geometry::Translate),
R"#(Translates a Geometry. V is the vector of the translation.)#" , py::arg("V")
)
.def("Translate",
(void (Geom_Geometry::*)( const gp_Pnt & , const gp_Pnt & ) ) static_cast<void (Geom_Geometry::*)( const gp_Pnt & , const gp_Pnt & ) >(&Geom_Geometry::Translate),
R"#(Translates a Geometry from the point P1 to the point P2.)#" , py::arg("P1"), py::arg("P2")
)
.def("Transform",
(void (Geom_Geometry::*)( const gp_Trsf & ) ) static_cast<void (Geom_Geometry::*)( const gp_Trsf & ) >(&Geom_Geometry::Transform),
R"#(Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom).)#" , py::arg("T")
)
.def("Mirrored",
(opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Pnt & ) const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Pnt & ) const>(&Geom_Geometry::Mirrored),
R"#(None)#" , py::arg("P")
)
.def("Mirrored",
(opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Ax1 & ) const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Ax1 & ) const>(&Geom_Geometry::Mirrored),
R"#(None)#" , py::arg("A1")
)
.def("Mirrored",
(opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Ax2 & ) const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Ax2 & ) const>(&Geom_Geometry::Mirrored),
R"#(None)#" , py::arg("A2")
)
.def("Rotated",
(opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Ax1 & , const Standard_Real ) const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Ax1 & , const Standard_Real ) const>(&Geom_Geometry::Rotated),
R"#(None)#" , py::arg("A1"), py::arg("Ang")
)
.def("Scaled",
(opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Pnt & , const Standard_Real ) const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Pnt & , const Standard_Real ) const>(&Geom_Geometry::Scaled),
R"#(None)#" , py::arg("P"), py::arg("S")
)
.def("Transformed",
(opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Trsf & ) const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Trsf & ) const>(&Geom_Geometry::Transformed),
R"#(None)#" , py::arg("T")
)
.def("Translated",
(opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Vec & ) const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Vec & ) const>(&Geom_Geometry::Translated),
R"#(None)#" , py::arg("V")
)
.def("Translated",
(opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Pnt & , const gp_Pnt & ) const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Geometry::*)( const gp_Pnt & , const gp_Pnt & ) const>(&Geom_Geometry::Translated),
R"#(None)#" , py::arg("P1"), py::arg("P2")
)
.def("Copy",
(opencascade::handle<Geom_Geometry> (Geom_Geometry::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Geometry::*)() const>(&Geom_Geometry::Copy),
R"#(Creates a new object which is a copy of this geometric object.)#"
)
.def("DumpJson",
(void (Geom_Geometry::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom_Geometry::*)( std::ostream & , Standard_Integer ) const>(&Geom_Geometry::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_Geometry::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Geometry::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_Geometry::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Geometry::*)() const>(&Geom_Geometry::DynamicType),
R"#(None)#"
)
;
// Class Geom_HSequenceOfBSplineSurface from ./opencascade/Geom_HSequenceOfBSplineSurface.hxx
klass = m.attr("Geom_HSequenceOfBSplineSurface");
// nested enums
static_cast<py::class_<Geom_HSequenceOfBSplineSurface ,opencascade::handle<Geom_HSequenceOfBSplineSurface> , Geom_SequenceOfBSplineSurface , Standard_Transient >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const NCollection_Sequence<opencascade::handle<Geom_BSplineSurface>> & >() , py::arg("theOther") )
// custom constructors
// methods
.def("Append",
(void (Geom_HSequenceOfBSplineSurface::*)( const opencascade::handle<Geom_BSplineSurface> & ) ) static_cast<void (Geom_HSequenceOfBSplineSurface::*)( const opencascade::handle<Geom_BSplineSurface> & ) >(&Geom_HSequenceOfBSplineSurface::Append),
R"#(None)#" , py::arg("theItem")
)
.def("Append",
(void (Geom_HSequenceOfBSplineSurface::*)( NCollection_Sequence<opencascade::handle<Geom_BSplineSurface>> & ) ) static_cast<void (Geom_HSequenceOfBSplineSurface::*)( NCollection_Sequence<opencascade::handle<Geom_BSplineSurface>> & ) >(&Geom_HSequenceOfBSplineSurface::Append),
R"#(None)#" , py::arg("theSequence")
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_HSequenceOfBSplineSurface::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_HSequenceOfBSplineSurface::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Sequence",
(const Geom_SequenceOfBSplineSurface & (Geom_HSequenceOfBSplineSurface::*)() const) static_cast<const Geom_SequenceOfBSplineSurface & (Geom_HSequenceOfBSplineSurface::*)() const>(&Geom_HSequenceOfBSplineSurface::Sequence),
R"#(None)#"
)
.def("ChangeSequence",
(Geom_SequenceOfBSplineSurface & (Geom_HSequenceOfBSplineSurface::*)() ) static_cast<Geom_SequenceOfBSplineSurface & (Geom_HSequenceOfBSplineSurface::*)() >(&Geom_HSequenceOfBSplineSurface::ChangeSequence),
R"#(None)#"
, py::return_value_policy::reference_internal
)
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_HSequenceOfBSplineSurface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_HSequenceOfBSplineSurface::*)() const>(&Geom_HSequenceOfBSplineSurface::DynamicType),
R"#(None)#"
)
;
// Class Geom_OsculatingSurface from ./opencascade/Geom_OsculatingSurface.hxx
klass = m.attr("Geom_OsculatingSurface");
// nested enums
static_cast<py::class_<Geom_OsculatingSurface ,opencascade::handle<Geom_OsculatingSurface> , Standard_Transient >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const opencascade::handle<Geom_Surface> &,const Standard_Real >() , py::arg("BS"), py::arg("Tol") )
// custom constructors
// methods
.def("Init",
(void (Geom_OsculatingSurface::*)( const opencascade::handle<Geom_Surface> & , const Standard_Real ) ) static_cast<void (Geom_OsculatingSurface::*)( const opencascade::handle<Geom_Surface> & , const Standard_Real ) >(&Geom_OsculatingSurface::Init),
R"#(None)#" , py::arg("BS"), py::arg("Tol")
)
.def("BasisSurface",
(opencascade::handle<Geom_Surface> (Geom_OsculatingSurface::*)() const) static_cast<opencascade::handle<Geom_Surface> (Geom_OsculatingSurface::*)() const>(&Geom_OsculatingSurface::BasisSurface),
R"#(None)#"
)
.def("Tolerance",
(Standard_Real (Geom_OsculatingSurface::*)() const) static_cast<Standard_Real (Geom_OsculatingSurface::*)() const>(&Geom_OsculatingSurface::Tolerance),
R"#(None)#"
)
.def("UOscSurf",
(Standard_Boolean (Geom_OsculatingSurface::*)( const Standard_Real , const Standard_Real , Standard_Boolean & , opencascade::handle<Geom_BSplineSurface> & ) const) static_cast<Standard_Boolean (Geom_OsculatingSurface::*)( const Standard_Real , const Standard_Real , Standard_Boolean & , opencascade::handle<Geom_BSplineSurface> & ) const>(&Geom_OsculatingSurface::UOscSurf),
R"#(if Standard_True, L is the local osculating surface along U at the point U,V.)#" , py::arg("U"), py::arg("V"), py::arg("t"), py::arg("L")
)
.def("VOscSurf",
(Standard_Boolean (Geom_OsculatingSurface::*)( const Standard_Real , const Standard_Real , Standard_Boolean & , opencascade::handle<Geom_BSplineSurface> & ) const) static_cast<Standard_Boolean (Geom_OsculatingSurface::*)( const Standard_Real , const Standard_Real , Standard_Boolean & , opencascade::handle<Geom_BSplineSurface> & ) const>(&Geom_OsculatingSurface::VOscSurf),
R"#(if Standard_True, L is the local osculating surface along V at the point U,V.)#" , py::arg("U"), py::arg("V"), py::arg("t"), py::arg("L")
)
.def("DumpJson",
(void (Geom_OsculatingSurface::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom_OsculatingSurface::*)( std::ostream & , Standard_Integer ) const>(&Geom_OsculatingSurface::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_OsculatingSurface::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_OsculatingSurface::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_OsculatingSurface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_OsculatingSurface::*)() const>(&Geom_OsculatingSurface::DynamicType),
R"#(None)#"
)
;
// Class Geom_Transformation from ./opencascade/Geom_Transformation.hxx
klass = m.attr("Geom_Transformation");
// nested enums
static_cast<py::class_<Geom_Transformation ,opencascade::handle<Geom_Transformation> , Standard_Transient >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const gp_Trsf & >() , py::arg("T") )
// custom constructors
// methods
.def("SetMirror",
(void (Geom_Transformation::*)( const gp_Pnt & ) ) static_cast<void (Geom_Transformation::*)( const gp_Pnt & ) >(&Geom_Transformation::SetMirror),
R"#(Makes the transformation into a symmetrical transformation with respect to a point P. P is the center of the symmetry.)#" , py::arg("thePnt")
)
.def("SetMirror",
(void (Geom_Transformation::*)( const gp_Ax1 & ) ) static_cast<void (Geom_Transformation::*)( const gp_Ax1 & ) >(&Geom_Transformation::SetMirror),
R"#(Makes the transformation into a symmetrical transformation with respect to an axis A1. A1 is the center of the axial symmetry.)#" , py::arg("theA1")
)
.def("SetMirror",
(void (Geom_Transformation::*)( const gp_Ax2 & ) ) static_cast<void (Geom_Transformation::*)( const gp_Ax2 & ) >(&Geom_Transformation::SetMirror),
R"#(Makes the transformation into a symmetrical transformation with respect to a plane. The plane of the symmetry is defined with the axis placement A2. It is the plane (Location, XDirection, YDirection).)#" , py::arg("theA2")
)
.def("SetRotation",
(void (Geom_Transformation::*)( const gp_Ax1 & , const Standard_Real ) ) static_cast<void (Geom_Transformation::*)( const gp_Ax1 & , const Standard_Real ) >(&Geom_Transformation::SetRotation),
R"#(Makes the transformation into a rotation. A1 is the axis rotation and Ang is the angular value of the rotation in radians.)#" , py::arg("theA1"), py::arg("theAng")
)
.def("SetScale",
(void (Geom_Transformation::*)( const gp_Pnt & , const Standard_Real ) ) static_cast<void (Geom_Transformation::*)( const gp_Pnt & , const Standard_Real ) >(&Geom_Transformation::SetScale),
R"#(Makes the transformation into a scale. P is the center of the scale and S is the scaling value.)#" , py::arg("thePnt"), py::arg("theScale")
)
.def("SetTransformation",
(void (Geom_Transformation::*)( const gp_Ax3 & , const gp_Ax3 & ) ) static_cast<void (Geom_Transformation::*)( const gp_Ax3 & , const gp_Ax3 & ) >(&Geom_Transformation::SetTransformation),
R"#(Makes a transformation allowing passage from the coordinate system "FromSystem1" to the coordinate system "ToSystem2". Example : In a C++ implementation : Real x1, y1, z1; // are the coordinates of a point in the // local system FromSystem1 Real x2, y2, z2; // are the coordinates of a point in the // local system ToSystem2 gp_Pnt P1 (x1, y1, z1) Geom_Transformation T; T.SetTransformation (FromSystem1, ToSystem2); gp_Pnt P2 = P1.Transformed (T); P2.Coord (x2, y2, z2);)#" , py::arg("theFromSystem1"), py::arg("theToSystem2")
)
.def("SetTransformation",
(void (Geom_Transformation::*)( const gp_Ax3 & ) ) static_cast<void (Geom_Transformation::*)( const gp_Ax3 & ) >(&Geom_Transformation::SetTransformation),
R"#(Makes the transformation allowing passage from the basic coordinate system {P(0.,0.,0.), VX (1.,0.,0.), VY (0.,1.,0.), VZ (0., 0. ,1.) } to the local coordinate system defined with the Ax2 ToSystem. Same utilisation as the previous method. FromSystem1 is defaulted to the absolute coordinate system.)#" , py::arg("theToSystem")
)
.def("SetTranslation",
(void (Geom_Transformation::*)( const gp_Vec & ) ) static_cast<void (Geom_Transformation::*)( const gp_Vec & ) >(&Geom_Transformation::SetTranslation),
R"#(Makes the transformation into a translation. V is the vector of the translation.)#" , py::arg("theVec")
)
.def("SetTranslation",
(void (Geom_Transformation::*)( const gp_Pnt & , const gp_Pnt & ) ) static_cast<void (Geom_Transformation::*)( const gp_Pnt & , const gp_Pnt & ) >(&Geom_Transformation::SetTranslation),
R"#(Makes the transformation into a translation from the point P1 to the point P2.)#" , py::arg("P1"), py::arg("P2")
)
.def("SetTrsf",
(void (Geom_Transformation::*)( const gp_Trsf & ) ) static_cast<void (Geom_Transformation::*)( const gp_Trsf & ) >(&Geom_Transformation::SetTrsf),
R"#(Converts the gp_Trsf transformation T into this transformation.)#" , py::arg("theTrsf")
)
.def("IsNegative",
(Standard_Boolean (Geom_Transformation::*)() const) static_cast<Standard_Boolean (Geom_Transformation::*)() const>(&Geom_Transformation::IsNegative),
R"#(Checks whether this transformation is an indirect transformation: returns true if the determinant of the matrix of the vectorial part of the transformation is less than 0.)#"
)
.def("Form",
(gp_TrsfForm (Geom_Transformation::*)() const) static_cast<gp_TrsfForm (Geom_Transformation::*)() const>(&Geom_Transformation::Form),
R"#(Returns the nature of this transformation as a value of the gp_TrsfForm enumeration.)#"
)
.def("ScaleFactor",
(Standard_Real (Geom_Transformation::*)() const) static_cast<Standard_Real (Geom_Transformation::*)() const>(&Geom_Transformation::ScaleFactor),
R"#(Returns the scale value of the transformation.)#"
)
.def("Value",
(Standard_Real (Geom_Transformation::*)( const Standard_Integer , const Standard_Integer ) const) static_cast<Standard_Real (Geom_Transformation::*)( const Standard_Integer , const Standard_Integer ) const>(&Geom_Transformation::Value),
R"#(Returns the coefficients of the global matrix of transformation. It is a 3 rows X 4 columns matrix.)#" , py::arg("theRow"), py::arg("theCol")
)
.def("Invert",
(void (Geom_Transformation::*)() ) static_cast<void (Geom_Transformation::*)() >(&Geom_Transformation::Invert),
R"#(Raised if the transformation is singular. This means that the ScaleFactor is lower or equal to Resolution from package gp.)#"
)
.def("Inverted",
(opencascade::handle<Geom_Transformation> (Geom_Transformation::*)() const) static_cast<opencascade::handle<Geom_Transformation> (Geom_Transformation::*)() const>(&Geom_Transformation::Inverted),
R"#(Raised if the transformation is singular. This means that the ScaleFactor is lower or equal to Resolution from package gp.)#"
)
.def("Multiplied",
(opencascade::handle<Geom_Transformation> (Geom_Transformation::*)( const opencascade::handle<Geom_Transformation> & ) const) static_cast<opencascade::handle<Geom_Transformation> (Geom_Transformation::*)( const opencascade::handle<Geom_Transformation> & ) const>(&Geom_Transformation::Multiplied),
R"#(Computes the transformation composed with Other and <me>. <me> * Other. Returns a new transformation)#" , py::arg("Other")
)
.def("Multiply",
(void (Geom_Transformation::*)( const opencascade::handle<Geom_Transformation> & ) ) static_cast<void (Geom_Transformation::*)( const opencascade::handle<Geom_Transformation> & ) >(&Geom_Transformation::Multiply),
R"#(Computes the transformation composed with Other and <me> . <me> = <me> * Other.)#" , py::arg("theOther")
)
.def("Power",
(void (Geom_Transformation::*)( const Standard_Integer ) ) static_cast<void (Geom_Transformation::*)( const Standard_Integer ) >(&Geom_Transformation::Power),
R"#(Computes the following composition of transformations if N > 0 <me> * <me> * .......* <me>. if N = 0 Identity if N < 0 <me>.Invert() * .........* <me>.Invert())#" , py::arg("N")
)
.def("Powered",
(opencascade::handle<Geom_Transformation> (Geom_Transformation::*)( const Standard_Integer ) const) static_cast<opencascade::handle<Geom_Transformation> (Geom_Transformation::*)( const Standard_Integer ) const>(&Geom_Transformation::Powered),
R"#(Raised if N < 0 and if the transformation is not inversible)#" , py::arg("N")
)
.def("PreMultiply",
(void (Geom_Transformation::*)( const opencascade::handle<Geom_Transformation> & ) ) static_cast<void (Geom_Transformation::*)( const opencascade::handle<Geom_Transformation> & ) >(&Geom_Transformation::PreMultiply),
R"#(Computes the matrix of the transformation composed with <me> and Other. <me> = Other * <me>)#" , py::arg("Other")
)
.def("Copy",
(opencascade::handle<Geom_Transformation> (Geom_Transformation::*)() const) static_cast<opencascade::handle<Geom_Transformation> (Geom_Transformation::*)() const>(&Geom_Transformation::Copy),
R"#(Creates a new object which is a copy of this transformation.)#"
)
.def("DumpJson",
(void (Geom_Transformation::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom_Transformation::*)( std::ostream & , Standard_Integer ) const>(&Geom_Transformation::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
.def("Transforms",
[]( Geom_Transformation &self ){
Standard_Real theX;
Standard_Real theY;
Standard_Real theZ;
self.Transforms(theX,theY,theZ);
return std::make_tuple(theX,theY,theZ); },
R"#(Applies the transformation <me> to the triplet {X, Y, Z}.)#"
)
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_Transformation::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Transformation::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_Transformation::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Transformation::*)() const>(&Geom_Transformation::DynamicType),
R"#(None)#"
)
.def("Trsf",
(const gp_Trsf & (Geom_Transformation::*)() const) static_cast<const gp_Trsf & (Geom_Transformation::*)() const>(&Geom_Transformation::Trsf),
R"#(Returns a non transient copy of <me>.)#"
)
;
// Class Geom_AxisPlacement from ./opencascade/Geom_AxisPlacement.hxx
klass = m.attr("Geom_AxisPlacement");
// nested enums
static_cast<py::class_<Geom_AxisPlacement ,opencascade::handle<Geom_AxisPlacement> ,Py_Geom_AxisPlacement , Geom_Geometry >>(klass)
// constructors
// custom constructors
// methods
.def("SetAxis",
(void (Geom_AxisPlacement::*)( const gp_Ax1 & ) ) static_cast<void (Geom_AxisPlacement::*)( const gp_Ax1 & ) >(&Geom_AxisPlacement::SetAxis),
R"#(Assigns A1 as the "main Axis" of this positioning system. This modifies - its origin, and - its "main Direction". If this positioning system is a Geom_Axis2Placement, then its "X Direction" and "Y Direction" are recomputed. Exceptions For a Geom_Axis2Placement: Standard_ConstructionError if A1 and the previous "X Direction" of the coordinate system are parallel.)#" , py::arg("A1")
)
.def("SetDirection",
(void (Geom_AxisPlacement::*)( const gp_Dir & ) ) static_cast<void (Geom_AxisPlacement::*)( const gp_Dir & ) >(&Geom_AxisPlacement::SetDirection),
R"#(Changes the direction of the axis placement. If <me> is an axis placement two axis the main "Direction" is modified and the "XDirection" and "YDirection" are recomputed. Raises ConstructionError only for an axis placement two axis if V and the previous "XDirection" are parallel because it is not possible to calculate the new "XDirection" and the new "YDirection".)#" , py::arg("V")
)
.def("SetLocation",
(void (Geom_AxisPlacement::*)( const gp_Pnt & ) ) static_cast<void (Geom_AxisPlacement::*)( const gp_Pnt & ) >(&Geom_AxisPlacement::SetLocation),
R"#(Assigns the point P as the origin of this positioning system.)#" , py::arg("P")
)
.def("Angle",
(Standard_Real (Geom_AxisPlacement::*)( const opencascade::handle<Geom_AxisPlacement> & ) const) static_cast<Standard_Real (Geom_AxisPlacement::*)( const opencascade::handle<Geom_AxisPlacement> & ) const>(&Geom_AxisPlacement::Angle),
R"#(Computes the angular value, in radians, between the "main Direction" of this positioning system and that of positioning system Other. The result is a value between 0 and Pi.)#" , py::arg("Other")
)
.def("Direction",
(gp_Dir (Geom_AxisPlacement::*)() const) static_cast<gp_Dir (Geom_AxisPlacement::*)() const>(&Geom_AxisPlacement::Direction),
R"#(Returns the main "Direction" of an axis placement.)#"
)
.def("Location",
(gp_Pnt (Geom_AxisPlacement::*)() const) static_cast<gp_Pnt (Geom_AxisPlacement::*)() const>(&Geom_AxisPlacement::Location),
R"#(Returns the Location point (origin) of the axis placement.)#"
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_AxisPlacement::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_AxisPlacement::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Axis",
(const gp_Ax1 & (Geom_AxisPlacement::*)() const) static_cast<const gp_Ax1 & (Geom_AxisPlacement::*)() const>(&Geom_AxisPlacement::Axis),
R"#(Returns the main axis of the axis placement. For an "Axis2placement" it is the main axis (Location, Direction ). For an "Axis1Placement" this method returns a copy of <me>.)#"
)
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_AxisPlacement::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_AxisPlacement::*)() const>(&Geom_AxisPlacement::DynamicType),
R"#(None)#"
)
;
// Class Geom_Curve from ./opencascade/Geom_Curve.hxx
klass = m.attr("Geom_Curve");
// nested enums
static_cast<py::class_<Geom_Curve ,opencascade::handle<Geom_Curve> ,Py_Geom_Curve , Geom_Geometry >>(klass)
// constructors
// custom constructors
// methods
.def("Reverse",
(void (Geom_Curve::*)() ) static_cast<void (Geom_Curve::*)() >(&Geom_Curve::Reverse),
R"#(Changes the direction of parametrization of <me>. The "FirstParameter" and the "LastParameter" are not changed but the orientation of the curve is modified. If the curve is bounded the StartPoint of the initial curve becomes the EndPoint of the reversed curve and the EndPoint of the initial curve becomes the StartPoint of the reversed curve.)#"
)
.def("ReversedParameter",
(Standard_Real (Geom_Curve::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_Curve::*)( const Standard_Real ) const>(&Geom_Curve::ReversedParameter),
R"#(Returns the parameter on the reversed curve for the point of parameter U on <me>.)#" , py::arg("U")
)
.def("TransformedParameter",
(Standard_Real (Geom_Curve::*)( const Standard_Real , const gp_Trsf & ) const) static_cast<Standard_Real (Geom_Curve::*)( const Standard_Real , const gp_Trsf & ) const>(&Geom_Curve::TransformedParameter),
R"#(Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.)#" , py::arg("U"), py::arg("T")
)
.def("ParametricTransformation",
(Standard_Real (Geom_Curve::*)( const gp_Trsf & ) const) static_cast<Standard_Real (Geom_Curve::*)( const gp_Trsf & ) const>(&Geom_Curve::ParametricTransformation),
R"#(Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.)#" , py::arg("T")
)
.def("Reversed",
(opencascade::handle<Geom_Curve> (Geom_Curve::*)() const) static_cast<opencascade::handle<Geom_Curve> (Geom_Curve::*)() const>(&Geom_Curve::Reversed),
R"#(Returns a copy of <me> reversed.)#"
)
.def("FirstParameter",
(Standard_Real (Geom_Curve::*)() const) static_cast<Standard_Real (Geom_Curve::*)() const>(&Geom_Curve::FirstParameter),
R"#(Returns the value of the first parameter. Warnings : It can be RealFirst from package Standard if the curve is infinite)#"
)
.def("LastParameter",
(Standard_Real (Geom_Curve::*)() const) static_cast<Standard_Real (Geom_Curve::*)() const>(&Geom_Curve::LastParameter),
R"#(Returns the value of the last parameter. Warnings : It can be RealLast from package Standard if the curve is infinite)#"
)
.def("IsClosed",
(Standard_Boolean (Geom_Curve::*)() const) static_cast<Standard_Boolean (Geom_Curve::*)() const>(&Geom_Curve::IsClosed),
R"#(Returns true if the curve is closed. Some curves such as circle are always closed, others such as line are never closed (by definition). Some Curves such as OffsetCurve can be closed or not. These curves are considered as closed if the distance between the first point and the last point of the curve is lower or equal to the Resolution from package gp which is a fixed criterion independent of the application.)#"
)
.def("IsPeriodic",
(Standard_Boolean (Geom_Curve::*)() const) static_cast<Standard_Boolean (Geom_Curve::*)() const>(&Geom_Curve::IsPeriodic),
R"#(Is the parametrization of the curve periodic ? It is possible only if the curve is closed and if the following relation is satisfied : for each parametric value U the distance between the point P(u) and the point P (u + T) is lower or equal to Resolution from package gp, T is the period and must be a constant. There are three possibilities : . the curve is never periodic by definition (SegmentLine) . the curve is always periodic by definition (Circle) . the curve can be defined as periodic (BSpline). In this case a function SetPeriodic allows you to give the shape of the curve. The general rule for this case is : if a curve can be periodic or not the default periodicity set is non periodic and you have to turn (explicitly) the curve into a periodic curve if you want the curve to be periodic.)#"
)
.def("Period",
(Standard_Real (Geom_Curve::*)() const) static_cast<Standard_Real (Geom_Curve::*)() const>(&Geom_Curve::Period),
R"#(Returns the period of this curve. Exceptions Standard_NoSuchObject if this curve is not periodic.)#"
)
.def("Continuity",
(GeomAbs_Shape (Geom_Curve::*)() const) static_cast<GeomAbs_Shape (Geom_Curve::*)() const>(&Geom_Curve::Continuity),
R"#(It is the global continuity of the curve C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, G1 : tangency continuity all along the Curve, G2 : curvature continuity all along the Curve, CN : the order of continuity is infinite.)#"
)
.def("IsCN",
(Standard_Boolean (Geom_Curve::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom_Curve::*)( const Standard_Integer ) const>(&Geom_Curve::IsCN),
R"#(Returns true if the degree of continuity of this curve is at least N. Exceptions - Standard_RangeError if N is less than 0.)#" , py::arg("N")
)
.def("D0",
(void (Geom_Curve::*)( const Standard_Real , gp_Pnt & ) const) static_cast<void (Geom_Curve::*)( const Standard_Real , gp_Pnt & ) const>(&Geom_Curve::D0),
R"#(Returns in P the point of parameter U. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve.)#" , py::arg("U"), py::arg("P")
)
.def("D1",
(void (Geom_Curve::*)( const Standard_Real , gp_Pnt & , gp_Vec & ) const) static_cast<void (Geom_Curve::*)( const Standard_Real , gp_Pnt & , gp_Vec & ) const>(&Geom_Curve::D1),
R"#(Returns the point P of parameter U and the first derivative V1. Raised if the continuity of the curve is not C1.)#" , py::arg("U"), py::arg("P"), py::arg("V1")
)
.def("D2",
(void (Geom_Curve::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_Curve::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const>(&Geom_Curve::D2),
R"#(Returns the point P of parameter U, the first and second derivatives V1 and V2. Raised if the continuity of the curve is not C2.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2")
)
.def("D3",
(void (Geom_Curve::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_Curve::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_Curve::D3),
R"#(Returns the point P of parameter U, the first, the second and the third derivative. Raised if the continuity of the curve is not C3.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2"), py::arg("V3")
)
.def("DN",
(gp_Vec (Geom_Curve::*)( const Standard_Real , const Standard_Integer ) const) static_cast<gp_Vec (Geom_Curve::*)( const Standard_Real , const Standard_Integer ) const>(&Geom_Curve::DN),
R"#(The returned vector gives the value of the derivative for the order of derivation N. Raised if the continuity of the curve is not CN.)#" , py::arg("U"), py::arg("N")
)
.def("Value",
(gp_Pnt (Geom_Curve::*)( const Standard_Real ) const) static_cast<gp_Pnt (Geom_Curve::*)( const Standard_Real ) const>(&Geom_Curve::Value),
R"#(Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve. it is implemented with D0.)#" , py::arg("U")
)
.def("DumpJson",
(void (Geom_Curve::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom_Curve::*)( std::ostream & , Standard_Integer ) const>(&Geom_Curve::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_Curve::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Curve::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_Curve::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Curve::*)() const>(&Geom_Curve::DynamicType),
R"#(None)#"
)
;
// Class Geom_Point from ./opencascade/Geom_Point.hxx
klass = m.attr("Geom_Point");
// nested enums
static_cast<py::class_<Geom_Point ,opencascade::handle<Geom_Point> ,Py_Geom_Point , Geom_Geometry >>(klass)
// constructors
// custom constructors
// methods
.def("Pnt",
(gp_Pnt (Geom_Point::*)() const) static_cast<gp_Pnt (Geom_Point::*)() const>(&Geom_Point::Pnt),
R"#(returns a non transient copy of <me>)#"
)
.def("X",
(Standard_Real (Geom_Point::*)() const) static_cast<Standard_Real (Geom_Point::*)() const>(&Geom_Point::X),
R"#(returns the X coordinate of <me>.)#"
)
.def("Y",
(Standard_Real (Geom_Point::*)() const) static_cast<Standard_Real (Geom_Point::*)() const>(&Geom_Point::Y),
R"#(returns the Y coordinate of <me>.)#"
)
.def("Z",
(Standard_Real (Geom_Point::*)() const) static_cast<Standard_Real (Geom_Point::*)() const>(&Geom_Point::Z),
R"#(returns the Z coordinate of <me>.)#"
)
.def("Distance",
(Standard_Real (Geom_Point::*)( const opencascade::handle<Geom_Point> & ) const) static_cast<Standard_Real (Geom_Point::*)( const opencascade::handle<Geom_Point> & ) const>(&Geom_Point::Distance),
R"#(Computes the distance between <me> and <Other>.)#" , py::arg("Other")
)
.def("SquareDistance",
(Standard_Real (Geom_Point::*)( const opencascade::handle<Geom_Point> & ) const) static_cast<Standard_Real (Geom_Point::*)( const opencascade::handle<Geom_Point> & ) const>(&Geom_Point::SquareDistance),
R"#(Computes the square distance between <me> and <Other>.)#" , py::arg("Other")
)
// methods using call by reference i.s.o. return
.def("Coord",
[]( Geom_Point &self ){
Standard_Real X;
Standard_Real Y;
Standard_Real Z;
self.Coord(X,Y,Z);
return std::make_tuple(X,Y,Z); },
R"#(returns the Coordinates of <me>.)#"
)
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_Point::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Point::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_Point::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Point::*)() const>(&Geom_Point::DynamicType),
R"#(None)#"
)
;
// Class Geom_Surface from ./opencascade/Geom_Surface.hxx
klass = m.attr("Geom_Surface");
// nested enums
static_cast<py::class_<Geom_Surface ,opencascade::handle<Geom_Surface> ,Py_Geom_Surface , Geom_Geometry >>(klass)
// constructors
// custom constructors
// methods
.def("UReverse",
(void (Geom_Surface::*)() ) static_cast<void (Geom_Surface::*)() >(&Geom_Surface::UReverse),
R"#(Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified.)#"
)
.def("UReversed",
(opencascade::handle<Geom_Surface> (Geom_Surface::*)() const) static_cast<opencascade::handle<Geom_Surface> (Geom_Surface::*)() const>(&Geom_Surface::UReversed),
R"#(Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.)#"
)
.def("UReversedParameter",
(Standard_Real (Geom_Surface::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_Surface::*)( const Standard_Real ) const>(&Geom_Surface::UReversedParameter),
R"#(Returns the parameter on the Ureversed surface for the point of parameter U on <me>. is the same point as)#" , py::arg("U")
)
.def("VReverse",
(void (Geom_Surface::*)() ) static_cast<void (Geom_Surface::*)() >(&Geom_Surface::VReverse),
R"#(Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified.)#"
)
.def("VReversed",
(opencascade::handle<Geom_Surface> (Geom_Surface::*)() const) static_cast<opencascade::handle<Geom_Surface> (Geom_Surface::*)() const>(&Geom_Surface::VReversed),
R"#(Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.)#"
)
.def("VReversedParameter",
(Standard_Real (Geom_Surface::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_Surface::*)( const Standard_Real ) const>(&Geom_Surface::VReversedParameter),
R"#(Returns the parameter on the Vreversed surface for the point of parameter V on <me>. is the same point as)#" , py::arg("V")
)
.def("ParametricTransformation",
(gp_GTrsf2d (Geom_Surface::*)( const gp_Trsf & ) const) static_cast<gp_GTrsf2d (Geom_Surface::*)( const gp_Trsf & ) const>(&Geom_Surface::ParametricTransformation),
R"#(Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns an identity transformation)#" , py::arg("T")
)
.def("IsUClosed",
(Standard_Boolean (Geom_Surface::*)() const) static_cast<Standard_Boolean (Geom_Surface::*)() const>(&Geom_Surface::IsUClosed),
R"#(Checks whether this surface is closed in the u parametric direction. Returns true if, in the u parametric direction: taking uFirst and uLast as the parametric bounds in the u parametric direction, for each parameter v, the distance between the points P(uFirst, v) and P(uLast, v) is less than or equal to gp::Resolution().)#"
)
.def("IsVClosed",
(Standard_Boolean (Geom_Surface::*)() const) static_cast<Standard_Boolean (Geom_Surface::*)() const>(&Geom_Surface::IsVClosed),
R"#(Checks whether this surface is closed in the u parametric direction. Returns true if, in the v parametric direction: taking vFirst and vLast as the parametric bounds in the v parametric direction, for each parameter u, the distance between the points P(u, vFirst) and P(u, vLast) is less than or equal to gp::Resolution().)#"
)
.def("IsUPeriodic",
(Standard_Boolean (Geom_Surface::*)() const) static_cast<Standard_Boolean (Geom_Surface::*)() const>(&Geom_Surface::IsUPeriodic),
R"#(Checks if this surface is periodic in the u parametric direction. Returns true if: - this surface is closed in the u parametric direction, and - there is a constant T such that the distance between the points P (u, v) and P (u + T, v) (or the points P (u, v) and P (u, v + T)) is less than or equal to gp::Resolution().)#"
)
.def("UPeriod",
(Standard_Real (Geom_Surface::*)() const) static_cast<Standard_Real (Geom_Surface::*)() const>(&Geom_Surface::UPeriod),
R"#(Returns the period of this surface in the u parametric direction. Raises if the surface is not uperiodic.)#"
)
.def("IsVPeriodic",
(Standard_Boolean (Geom_Surface::*)() const) static_cast<Standard_Boolean (Geom_Surface::*)() const>(&Geom_Surface::IsVPeriodic),
R"#(Checks if this surface is periodic in the v parametric direction. Returns true if: - this surface is closed in the v parametric direction, and - there is a constant T such that the distance between the points P (u, v) and P (u + T, v) (or the points P (u, v) and P (u, v + T)) is less than or equal to gp::Resolution().)#"
)
.def("VPeriod",
(Standard_Real (Geom_Surface::*)() const) static_cast<Standard_Real (Geom_Surface::*)() const>(&Geom_Surface::VPeriod),
R"#(Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic.)#"
)
.def("UIso",
(opencascade::handle<Geom_Curve> (Geom_Surface::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_Surface::*)( const Standard_Real ) const>(&Geom_Surface::UIso),
R"#(Computes the U isoparametric curve.)#" , py::arg("U")
)
.def("VIso",
(opencascade::handle<Geom_Curve> (Geom_Surface::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_Surface::*)( const Standard_Real ) const>(&Geom_Surface::VIso),
R"#(Computes the V isoparametric curve.)#" , py::arg("V")
)
.def("Continuity",
(GeomAbs_Shape (Geom_Surface::*)() const) static_cast<GeomAbs_Shape (Geom_Surface::*)() const>(&Geom_Surface::Continuity),
R"#(Returns the Global Continuity of the surface in direction U and V : - C0: only geometric continuity, - C1: continuity of the first derivative all along the surface, - C2: continuity of the second derivative all along the surface, - C3: continuity of the third derivative all along the surface, - G1: tangency continuity all along the surface, - G2: curvature continuity all along the surface, - CN: the order of continuity is infinite.)#"
)
.def("IsCNu",
(Standard_Boolean (Geom_Surface::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom_Surface::*)( const Standard_Integer ) const>(&Geom_Surface::IsCNu),
R"#(Returns the order of continuity of the surface in the U parametric direction. Raised if N < 0.)#" , py::arg("N")
)
.def("IsCNv",
(Standard_Boolean (Geom_Surface::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom_Surface::*)( const Standard_Integer ) const>(&Geom_Surface::IsCNv),
R"#(Returns the order of continuity of the surface in the V parametric direction. Raised if N < 0.)#" , py::arg("N")
)
.def("D0",
(void (Geom_Surface::*)( const Standard_Real , const Standard_Real , gp_Pnt & ) const) static_cast<void (Geom_Surface::*)( const Standard_Real , const Standard_Real , gp_Pnt & ) const>(&Geom_Surface::D0),
R"#(Computes the point of parameter U,V on the surface.)#" , py::arg("U"), py::arg("V"), py::arg("P")
)
.def("D1",
(void (Geom_Surface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_Surface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const>(&Geom_Surface::D1),
R"#(Computes the point P and the first derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C1.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V")
)
.def("D2",
(void (Geom_Surface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_Surface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_Surface::D2),
R"#(Computes the point P, the first and the second derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C2.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V"), py::arg("D2U"), py::arg("D2V"), py::arg("D2UV")
)
.def("D3",
(void (Geom_Surface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_Surface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_Surface::D3),
R"#(Computes the point P, the first,the second and the third derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C2.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V"), py::arg("D2U"), py::arg("D2V"), py::arg("D2UV"), py::arg("D3U"), py::arg("D3V"), py::arg("D3UUV"), py::arg("D3UVV")
)
.def("DN",
(gp_Vec (Geom_Surface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer ) const) static_cast<gp_Vec (Geom_Surface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer ) const>(&Geom_Surface::DN),
R"#(Computes the derivative of order Nu in the direction U and Nv in the direction V at the point P(U, V).)#" , py::arg("U"), py::arg("V"), py::arg("Nu"), py::arg("Nv")
)
.def("Value",
(gp_Pnt (Geom_Surface::*)( const Standard_Real , const Standard_Real ) const) static_cast<gp_Pnt (Geom_Surface::*)( const Standard_Real , const Standard_Real ) const>(&Geom_Surface::Value),
R"#(Computes the point of parameter (U, V) on the surface.)#" , py::arg("U"), py::arg("V")
)
.def("DumpJson",
(void (Geom_Surface::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom_Surface::*)( std::ostream & , Standard_Integer ) const>(&Geom_Surface::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
.def("TransformParameters",
[]( Geom_Surface &self , const gp_Trsf & T ){
Standard_Real U;
Standard_Real V;
self.TransformParameters(U,V,T);
return std::make_tuple(U,V); },
R"#(Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method does not change <U> and <V>)#" , py::arg("T")
)
.def("Bounds",
[]( Geom_Surface &self ){
Standard_Real U1;
Standard_Real U2;
Standard_Real V1;
Standard_Real V2;
self.Bounds(U1,U2,V1,V2);
return std::make_tuple(U1,U2,V1,V2); },
R"#(Returns the parametric bounds U1, U2, V1 and V2 of this surface. If the surface is infinite, this function can return a value equal to Precision::Infinite: instead of Standard_Real::LastReal.)#"
)
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_Surface::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Surface::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_Surface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Surface::*)() const>(&Geom_Surface::DynamicType),
R"#(None)#"
)
;
// Class Geom_Vector from ./opencascade/Geom_Vector.hxx
klass = m.attr("Geom_Vector");
// nested enums
static_cast<py::class_<Geom_Vector ,opencascade::handle<Geom_Vector> ,Py_Geom_Vector , Geom_Geometry >>(klass)
// constructors
// custom constructors
// methods
.def("Reverse",
(void (Geom_Vector::*)() ) static_cast<void (Geom_Vector::*)() >(&Geom_Vector::Reverse),
R"#(Reverses the vector <me>.)#"
)
.def("Reversed",
(opencascade::handle<Geom_Vector> (Geom_Vector::*)() const) static_cast<opencascade::handle<Geom_Vector> (Geom_Vector::*)() const>(&Geom_Vector::Reversed),
R"#(Returns a copy of <me> reversed.)#"
)
.def("Angle",
(Standard_Real (Geom_Vector::*)( const opencascade::handle<Geom_Vector> & ) const) static_cast<Standard_Real (Geom_Vector::*)( const opencascade::handle<Geom_Vector> & ) const>(&Geom_Vector::Angle),
R"#(Computes the angular value, in radians, between this vector and vector Other. The result is a value between 0 and Pi. Exceptions gp_VectorWithNullMagnitude if: - the magnitude of this vector is less than or equal to gp::Resolution(), or - the magnitude of vector Other is less than or equal to gp::Resolution().)#" , py::arg("Other")
)
.def("AngleWithRef",
(Standard_Real (Geom_Vector::*)( const opencascade::handle<Geom_Vector> & , const opencascade::handle<Geom_Vector> & ) const) static_cast<Standard_Real (Geom_Vector::*)( const opencascade::handle<Geom_Vector> & , const opencascade::handle<Geom_Vector> & ) const>(&Geom_Vector::AngleWithRef),
R"#(Computes the angular value, in radians, between this vector and vector Other. The result is a value between -Pi and Pi. The vector VRef defines the positive sense of rotation: the angular value is positive if the cross product this ^ Other has the same orientation as VRef (in relation to the plane defined by this vector and vector Other). Otherwise, it is negative. Exceptions Standard_DomainError if this vector, vector Other and vector VRef are coplanar, except if this vector and vector Other are parallel. gp_VectorWithNullMagnitude if the magnitude of this vector, vector Other or vector VRef is less than or equal to gp::Resolution().)#" , py::arg("Other"), py::arg("VRef")
)
.def("Magnitude",
(Standard_Real (Geom_Vector::*)() const) static_cast<Standard_Real (Geom_Vector::*)() const>(&Geom_Vector::Magnitude),
R"#(Returns the Magnitude of <me>.)#"
)
.def("SquareMagnitude",
(Standard_Real (Geom_Vector::*)() const) static_cast<Standard_Real (Geom_Vector::*)() const>(&Geom_Vector::SquareMagnitude),
R"#(Returns the square magnitude of <me>.)#"
)
.def("X",
(Standard_Real (Geom_Vector::*)() const) static_cast<Standard_Real (Geom_Vector::*)() const>(&Geom_Vector::X),
R"#(Returns the X coordinate of <me>.)#"
)
.def("Y",
(Standard_Real (Geom_Vector::*)() const) static_cast<Standard_Real (Geom_Vector::*)() const>(&Geom_Vector::Y),
R"#(Returns the Y coordinate of <me>.)#"
)
.def("Z",
(Standard_Real (Geom_Vector::*)() const) static_cast<Standard_Real (Geom_Vector::*)() const>(&Geom_Vector::Z),
R"#(Returns the Z coordinate of <me>.)#"
)
.def("Cross",
(void (Geom_Vector::*)( const opencascade::handle<Geom_Vector> & ) ) static_cast<void (Geom_Vector::*)( const opencascade::handle<Geom_Vector> & ) >(&Geom_Vector::Cross),
R"#(Computes the cross product between <me> and <Other>.)#" , py::arg("Other")
)
.def("Crossed",
(opencascade::handle<Geom_Vector> (Geom_Vector::*)( const opencascade::handle<Geom_Vector> & ) const) static_cast<opencascade::handle<Geom_Vector> (Geom_Vector::*)( const opencascade::handle<Geom_Vector> & ) const>(&Geom_Vector::Crossed),
R"#(Computes the cross product between <me> and <Other>. A new direction is returned.)#" , py::arg("Other")
)
.def("CrossCross",
(void (Geom_Vector::*)( const opencascade::handle<Geom_Vector> & , const opencascade::handle<Geom_Vector> & ) ) static_cast<void (Geom_Vector::*)( const opencascade::handle<Geom_Vector> & , const opencascade::handle<Geom_Vector> & ) >(&Geom_Vector::CrossCross),
R"#(Computes the triple vector product <me> ^(V1 ^ V2).)#" , py::arg("V1"), py::arg("V2")
)
.def("CrossCrossed",
(opencascade::handle<Geom_Vector> (Geom_Vector::*)( const opencascade::handle<Geom_Vector> & , const opencascade::handle<Geom_Vector> & ) const) static_cast<opencascade::handle<Geom_Vector> (Geom_Vector::*)( const opencascade::handle<Geom_Vector> & , const opencascade::handle<Geom_Vector> & ) const>(&Geom_Vector::CrossCrossed),
R"#(Computes the triple vector product <me> ^(V1 ^ V2).)#" , py::arg("V1"), py::arg("V2")
)
.def("Dot",
(Standard_Real (Geom_Vector::*)( const opencascade::handle<Geom_Vector> & ) const) static_cast<Standard_Real (Geom_Vector::*)( const opencascade::handle<Geom_Vector> & ) const>(&Geom_Vector::Dot),
R"#(Computes the scalar product of this vector and vector Other.)#" , py::arg("Other")
)
.def("DotCross",
(Standard_Real (Geom_Vector::*)( const opencascade::handle<Geom_Vector> & , const opencascade::handle<Geom_Vector> & ) const) static_cast<Standard_Real (Geom_Vector::*)( const opencascade::handle<Geom_Vector> & , const opencascade::handle<Geom_Vector> & ) const>(&Geom_Vector::DotCross),
R"#(Computes the triple scalar product. Returns me . (V1 ^ V2))#" , py::arg("V1"), py::arg("V2")
)
// methods using call by reference i.s.o. return
.def("Coord",
[]( Geom_Vector &self ){
Standard_Real X;
Standard_Real Y;
Standard_Real Z;
self.Coord(X,Y,Z);
return std::make_tuple(X,Y,Z); },
R"#(Returns the coordinates X, Y and Z of this vector.)#"
)
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_Vector::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Vector::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Vec",
(const gp_Vec & (Geom_Vector::*)() const) static_cast<const gp_Vec & (Geom_Vector::*)() const>(&Geom_Vector::Vec),
R"#(Converts this vector into a gp_Vec vector.)#"
)
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_Vector::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Vector::*)() const>(&Geom_Vector::DynamicType),
R"#(None)#"
)
;
// Class Geom_Axis1Placement from ./opencascade/Geom_Axis1Placement.hxx
klass = m.attr("Geom_Axis1Placement");
// nested enums
static_cast<py::class_<Geom_Axis1Placement ,opencascade::handle<Geom_Axis1Placement> , Geom_AxisPlacement >>(klass)
// constructors
.def(py::init< const gp_Ax1 & >() , py::arg("A1") )
.def(py::init< const gp_Pnt &,const gp_Dir & >() , py::arg("P"), py::arg("V") )
// custom constructors
// methods
.def("Reverse",
(void (Geom_Axis1Placement::*)() ) static_cast<void (Geom_Axis1Placement::*)() >(&Geom_Axis1Placement::Reverse),
R"#(Reverses the direction of the axis placement.)#"
)
.def("Reversed",
(opencascade::handle<Geom_Axis1Placement> (Geom_Axis1Placement::*)() const) static_cast<opencascade::handle<Geom_Axis1Placement> (Geom_Axis1Placement::*)() const>(&Geom_Axis1Placement::Reversed),
R"#(Returns a copy of <me> reversed.)#"
)
.def("SetDirection",
(void (Geom_Axis1Placement::*)( const gp_Dir & ) ) static_cast<void (Geom_Axis1Placement::*)( const gp_Dir & ) >(&Geom_Axis1Placement::SetDirection),
R"#(Assigns V to the unit vector of this axis.)#" , py::arg("V")
)
.def("Transform",
(void (Geom_Axis1Placement::*)( const gp_Trsf & ) ) static_cast<void (Geom_Axis1Placement::*)( const gp_Trsf & ) >(&Geom_Axis1Placement::Transform),
R"#(Applies the transformation T to this axis.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom_Geometry> (Geom_Axis1Placement::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Axis1Placement::*)() const>(&Geom_Axis1Placement::Copy),
R"#(Creates a new object, which is a copy of this axis.)#"
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_Axis1Placement::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Axis1Placement::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Ax1",
(const gp_Ax1 & (Geom_Axis1Placement::*)() const) static_cast<const gp_Ax1 & (Geom_Axis1Placement::*)() const>(&Geom_Axis1Placement::Ax1),
R"#(Returns a non transient copy of <me>.)#"
)
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_Axis1Placement::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Axis1Placement::*)() const>(&Geom_Axis1Placement::DynamicType),
R"#(None)#"
)
;
// Class Geom_Axis2Placement from ./opencascade/Geom_Axis2Placement.hxx
klass = m.attr("Geom_Axis2Placement");
// nested enums
static_cast<py::class_<Geom_Axis2Placement ,opencascade::handle<Geom_Axis2Placement> , Geom_AxisPlacement >>(klass)
// constructors
.def(py::init< const gp_Ax2 & >() , py::arg("A2") )
.def(py::init< const gp_Pnt &,const gp_Dir &,const gp_Dir & >() , py::arg("P"), py::arg("N"), py::arg("Vx") )
// custom constructors
// methods
.def("SetAx2",
(void (Geom_Axis2Placement::*)( const gp_Ax2 & ) ) static_cast<void (Geom_Axis2Placement::*)( const gp_Ax2 & ) >(&Geom_Axis2Placement::SetAx2),
R"#(Assigns the origin and the three unit vectors of A2 to this coordinate system.)#" , py::arg("A2")
)
.def("SetDirection",
(void (Geom_Axis2Placement::*)( const gp_Dir & ) ) static_cast<void (Geom_Axis2Placement::*)( const gp_Dir & ) >(&Geom_Axis2Placement::SetDirection),
R"#(Changes the main direction of the axis placement. The "Xdirection" is modified : New XDirection = V ^ (Previous_Xdirection ^ V).)#" , py::arg("V")
)
.def("SetXDirection",
(void (Geom_Axis2Placement::*)( const gp_Dir & ) ) static_cast<void (Geom_Axis2Placement::*)( const gp_Dir & ) >(&Geom_Axis2Placement::SetXDirection),
R"#(Changes the "XDirection" of the axis placement, Vx is the new "XDirection". If Vx is not normal to the main direction then "XDirection" is computed as follow : XDirection = Direction ^ ( Vx ^ Direction). The main direction is not modified. Raised if Vx and "Direction" are parallel.)#" , py::arg("Vx")
)
.def("SetYDirection",
(void (Geom_Axis2Placement::*)( const gp_Dir & ) ) static_cast<void (Geom_Axis2Placement::*)( const gp_Dir & ) >(&Geom_Axis2Placement::SetYDirection),
R"#(Changes the "YDirection" of the axis placement, Vy is the new "YDirection". If Vy is not normal to the main direction then "YDirection" is computed as follow : YDirection = Direction ^ ( Vy ^ Direction). The main direction is not modified. The "XDirection" is modified. Raised if Vy and the main direction are parallel.)#" , py::arg("Vy")
)
.def("Ax2",
(gp_Ax2 (Geom_Axis2Placement::*)() const) static_cast<gp_Ax2 (Geom_Axis2Placement::*)() const>(&Geom_Axis2Placement::Ax2),
R"#(Returns a non transient copy of <me>.)#"
)
.def("Transform",
(void (Geom_Axis2Placement::*)( const gp_Trsf & ) ) static_cast<void (Geom_Axis2Placement::*)( const gp_Trsf & ) >(&Geom_Axis2Placement::Transform),
R"#(Transforms an axis placement with a Trsf. The "Location" point, the "XDirection" and the "YDirection" are transformed with T. The resulting main "Direction" of <me> is the cross product between the "XDirection" and the "YDirection" after transformation.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom_Geometry> (Geom_Axis2Placement::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Axis2Placement::*)() const>(&Geom_Axis2Placement::Copy),
R"#(Creates a new object which is a copy of this coordinate system.)#"
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_Axis2Placement::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Axis2Placement::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("XDirection",
(const gp_Dir & (Geom_Axis2Placement::*)() const) static_cast<const gp_Dir & (Geom_Axis2Placement::*)() const>(&Geom_Axis2Placement::XDirection),
R"#(Returns the "XDirection". This is a unit vector.)#"
)
.def("YDirection",
(const gp_Dir & (Geom_Axis2Placement::*)() const) static_cast<const gp_Dir & (Geom_Axis2Placement::*)() const>(&Geom_Axis2Placement::YDirection),
R"#(Returns the "YDirection". This is a unit vector.)#"
)
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_Axis2Placement::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Axis2Placement::*)() const>(&Geom_Axis2Placement::DynamicType),
R"#(None)#"
)
;
// Class Geom_BoundedCurve from ./opencascade/Geom_BoundedCurve.hxx
klass = m.attr("Geom_BoundedCurve");
// nested enums
static_cast<py::class_<Geom_BoundedCurve ,opencascade::handle<Geom_BoundedCurve> ,Py_Geom_BoundedCurve , Geom_Curve >>(klass)
// constructors
// custom constructors
// methods
.def("EndPoint",
(gp_Pnt (Geom_BoundedCurve::*)() const) static_cast<gp_Pnt (Geom_BoundedCurve::*)() const>(&Geom_BoundedCurve::EndPoint),
R"#(Returns the end point of the curve.)#"
)
.def("StartPoint",
(gp_Pnt (Geom_BoundedCurve::*)() const) static_cast<gp_Pnt (Geom_BoundedCurve::*)() const>(&Geom_BoundedCurve::StartPoint),
R"#(Returns the start point of the curve.)#"
)
.def("DumpJson",
(void (Geom_BoundedCurve::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom_BoundedCurve::*)( std::ostream & , Standard_Integer ) const>(&Geom_BoundedCurve::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_BoundedCurve::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_BoundedCurve::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_BoundedCurve::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_BoundedCurve::*)() const>(&Geom_BoundedCurve::DynamicType),
R"#(None)#"
)
;
// Class Geom_BoundedSurface from ./opencascade/Geom_BoundedSurface.hxx
klass = m.attr("Geom_BoundedSurface");
// nested enums
static_cast<py::class_<Geom_BoundedSurface ,opencascade::handle<Geom_BoundedSurface> ,Py_Geom_BoundedSurface , Geom_Surface >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_BoundedSurface::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_BoundedSurface::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_BoundedSurface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_BoundedSurface::*)() const>(&Geom_BoundedSurface::DynamicType),
R"#(None)#"
)
;
// Class Geom_CartesianPoint from ./opencascade/Geom_CartesianPoint.hxx
klass = m.attr("Geom_CartesianPoint");
// nested enums
static_cast<py::class_<Geom_CartesianPoint ,opencascade::handle<Geom_CartesianPoint> , Geom_Point >>(klass)
// constructors
.def(py::init< const gp_Pnt & >() , py::arg("P") )
.def(py::init< const Standard_Real,const Standard_Real,const Standard_Real >() , py::arg("X"), py::arg("Y"), py::arg("Z") )
// custom constructors
// methods
.def("SetCoord",
(void (Geom_CartesianPoint::*)( const Standard_Real , const Standard_Real , const Standard_Real ) ) static_cast<void (Geom_CartesianPoint::*)( const Standard_Real , const Standard_Real , const Standard_Real ) >(&Geom_CartesianPoint::SetCoord),
R"#(Assigns the coordinates X, Y and Z to this point.)#" , py::arg("X"), py::arg("Y"), py::arg("Z")
)
.def("SetPnt",
(void (Geom_CartesianPoint::*)( const gp_Pnt & ) ) static_cast<void (Geom_CartesianPoint::*)( const gp_Pnt & ) >(&Geom_CartesianPoint::SetPnt),
R"#(Set <me> to P.X(), P.Y(), P.Z() coordinates.)#" , py::arg("P")
)
.def("SetX",
(void (Geom_CartesianPoint::*)( const Standard_Real ) ) static_cast<void (Geom_CartesianPoint::*)( const Standard_Real ) >(&Geom_CartesianPoint::SetX),
R"#(Changes the X coordinate of me.)#" , py::arg("X")
)
.def("SetY",
(void (Geom_CartesianPoint::*)( const Standard_Real ) ) static_cast<void (Geom_CartesianPoint::*)( const Standard_Real ) >(&Geom_CartesianPoint::SetY),
R"#(Changes the Y coordinate of me.)#" , py::arg("Y")
)
.def("SetZ",
(void (Geom_CartesianPoint::*)( const Standard_Real ) ) static_cast<void (Geom_CartesianPoint::*)( const Standard_Real ) >(&Geom_CartesianPoint::SetZ),
R"#(Changes the Z coordinate of me.)#" , py::arg("Z")
)
.def("Pnt",
(gp_Pnt (Geom_CartesianPoint::*)() const) static_cast<gp_Pnt (Geom_CartesianPoint::*)() const>(&Geom_CartesianPoint::Pnt),
R"#(Returns a non transient cartesian point with the same coordinates as <me>.)#"
)
.def("X",
(Standard_Real (Geom_CartesianPoint::*)() const) static_cast<Standard_Real (Geom_CartesianPoint::*)() const>(&Geom_CartesianPoint::X),
R"#(Returns the X coordinate of <me>.)#"
)
.def("Y",
(Standard_Real (Geom_CartesianPoint::*)() const) static_cast<Standard_Real (Geom_CartesianPoint::*)() const>(&Geom_CartesianPoint::Y),
R"#(Returns the Y coordinate of <me>.)#"
)
.def("Z",
(Standard_Real (Geom_CartesianPoint::*)() const) static_cast<Standard_Real (Geom_CartesianPoint::*)() const>(&Geom_CartesianPoint::Z),
R"#(Returns the Z coordinate of <me>.)#"
)
.def("Transform",
(void (Geom_CartesianPoint::*)( const gp_Trsf & ) ) static_cast<void (Geom_CartesianPoint::*)( const gp_Trsf & ) >(&Geom_CartesianPoint::Transform),
R"#(Applies the transformation T to this point.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom_Geometry> (Geom_CartesianPoint::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_CartesianPoint::*)() const>(&Geom_CartesianPoint::Copy),
R"#(Creates a new object which is a copy of this point.)#"
)
// methods using call by reference i.s.o. return
.def("Coord",
[]( Geom_CartesianPoint &self ){
Standard_Real X;
Standard_Real Y;
Standard_Real Z;
self.Coord(X,Y,Z);
return std::make_tuple(X,Y,Z); },
R"#(Returns the coordinates of <me>.)#"
)
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_CartesianPoint::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_CartesianPoint::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_CartesianPoint::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_CartesianPoint::*)() const>(&Geom_CartesianPoint::DynamicType),
R"#(None)#"
)
;
// Class Geom_Conic from ./opencascade/Geom_Conic.hxx
klass = m.attr("Geom_Conic");
// nested enums
static_cast<py::class_<Geom_Conic ,opencascade::handle<Geom_Conic> ,Py_Geom_Conic , Geom_Curve >>(klass)
// constructors
// custom constructors
// methods
.def("SetAxis",
(void (Geom_Conic::*)( const gp_Ax1 & ) ) static_cast<void (Geom_Conic::*)( const gp_Ax1 & ) >(&Geom_Conic::SetAxis),
R"#(Changes the orientation of the conic's plane. The normal axis to the plane is A1. The XAxis and the YAxis are recomputed.)#" , py::arg("theA1")
)
.def("SetLocation",
(void (Geom_Conic::*)( const gp_Pnt & ) ) static_cast<void (Geom_Conic::*)( const gp_Pnt & ) >(&Geom_Conic::SetLocation),
R"#(changes the location point of the conic.)#" , py::arg("theP")
)
.def("SetPosition",
(void (Geom_Conic::*)( const gp_Ax2 & ) ) static_cast<void (Geom_Conic::*)( const gp_Ax2 & ) >(&Geom_Conic::SetPosition),
R"#(changes the local coordinate system of the conic.)#" , py::arg("theA2")
)
.def("Eccentricity",
(Standard_Real (Geom_Conic::*)() const) static_cast<Standard_Real (Geom_Conic::*)() const>(&Geom_Conic::Eccentricity),
R"#(Returns the eccentricity value of the conic e. e = 0 for a circle 0 < e < 1 for an ellipse (e = 0 if MajorRadius = MinorRadius) e > 1 for a hyperbola e = 1 for a parabola Exceptions Standard_DomainError in the case of a hyperbola if its major radius is null.)#"
)
.def("XAxis",
(gp_Ax1 (Geom_Conic::*)() const) static_cast<gp_Ax1 (Geom_Conic::*)() const>(&Geom_Conic::XAxis),
R"#(Returns the XAxis of the conic. This axis defines the origin of parametrization of the conic. This axis is perpendicular to the Axis of the conic. This axis and the Yaxis define the plane of the conic.)#"
)
.def("YAxis",
(gp_Ax1 (Geom_Conic::*)() const) static_cast<gp_Ax1 (Geom_Conic::*)() const>(&Geom_Conic::YAxis),
R"#(Returns the YAxis of the conic. The YAxis is perpendicular to the Xaxis. This axis and the Xaxis define the plane of the conic.)#"
)
.def("Reverse",
(void (Geom_Conic::*)() ) static_cast<void (Geom_Conic::*)() >(&Geom_Conic::Reverse),
R"#(Reverses the direction of parameterization of <me>. The local coordinate system of the conic is modified.)#"
)
.def("ReversedParameter",
(Standard_Real (Geom_Conic::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_Conic::*)( const Standard_Real ) const>(&Geom_Conic::ReversedParameter),
R"#(Returns the parameter on the reversed curve for the point of parameter U on <me>.)#" , py::arg("U")
)
.def("Continuity",
(GeomAbs_Shape (Geom_Conic::*)() const) static_cast<GeomAbs_Shape (Geom_Conic::*)() const>(&Geom_Conic::Continuity),
R"#(The continuity of the conic is Cn.)#"
)
.def("IsCN",
(Standard_Boolean (Geom_Conic::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom_Conic::*)( const Standard_Integer ) const>(&Geom_Conic::IsCN),
R"#(Returns True. Raised if N < 0.)#" , py::arg("N")
)
.def("DumpJson",
(void (Geom_Conic::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom_Conic::*)( std::ostream & , Standard_Integer ) const>(&Geom_Conic::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_Conic::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Conic::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Axis",
(const gp_Ax1 & (Geom_Conic::*)() const) static_cast<const gp_Ax1 & (Geom_Conic::*)() const>(&Geom_Conic::Axis),
R"#(Returns the "main Axis" of this conic. This axis is normal to the plane of the conic.)#"
)
.def("Location",
(const gp_Pnt & (Geom_Conic::*)() const) static_cast<const gp_Pnt & (Geom_Conic::*)() const>(&Geom_Conic::Location),
R"#(Returns the location point of the conic. For the circle, the ellipse and the hyperbola it is the center of the conic. For the parabola it is the Apex of the parabola.)#"
)
.def("Position",
(const gp_Ax2 & (Geom_Conic::*)() const) static_cast<const gp_Ax2 & (Geom_Conic::*)() const>(&Geom_Conic::Position),
R"#(Returns the local coordinates system of the conic. The main direction of the Axis2Placement is normal to the plane of the conic. The X direction of the Axis2placement is in the plane of the conic and corresponds to the origin for the conic's parametric value u.)#"
)
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_Conic::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Conic::*)() const>(&Geom_Conic::DynamicType),
R"#(None)#"
)
;
// Class Geom_Direction from ./opencascade/Geom_Direction.hxx
klass = m.attr("Geom_Direction");
// nested enums
static_cast<py::class_<Geom_Direction ,opencascade::handle<Geom_Direction> , Geom_Vector >>(klass)
// constructors
.def(py::init< const Standard_Real,const Standard_Real,const Standard_Real >() , py::arg("X"), py::arg("Y"), py::arg("Z") )
.def(py::init< const gp_Dir & >() , py::arg("V") )
// custom constructors
// methods
.def("SetCoord",
(void (Geom_Direction::*)( const Standard_Real , const Standard_Real , const Standard_Real ) ) static_cast<void (Geom_Direction::*)( const Standard_Real , const Standard_Real , const Standard_Real ) >(&Geom_Direction::SetCoord),
R"#(Sets <me> to X,Y,Z coordinates.)#" , py::arg("X"), py::arg("Y"), py::arg("Z")
)
.def("SetDir",
(void (Geom_Direction::*)( const gp_Dir & ) ) static_cast<void (Geom_Direction::*)( const gp_Dir & ) >(&Geom_Direction::SetDir),
R"#(Converts the gp_Dir unit vector V into this unit vector.)#" , py::arg("V")
)
.def("SetX",
(void (Geom_Direction::*)( const Standard_Real ) ) static_cast<void (Geom_Direction::*)( const Standard_Real ) >(&Geom_Direction::SetX),
R"#(Changes the X coordinate of <me>.)#" , py::arg("X")
)
.def("SetY",
(void (Geom_Direction::*)( const Standard_Real ) ) static_cast<void (Geom_Direction::*)( const Standard_Real ) >(&Geom_Direction::SetY),
R"#(Changes the Y coordinate of <me>.)#" , py::arg("Y")
)
.def("SetZ",
(void (Geom_Direction::*)( const Standard_Real ) ) static_cast<void (Geom_Direction::*)( const Standard_Real ) >(&Geom_Direction::SetZ),
R"#(Changes the Z coordinate of <me>.)#" , py::arg("Z")
)
.def("Dir",
(gp_Dir (Geom_Direction::*)() const) static_cast<gp_Dir (Geom_Direction::*)() const>(&Geom_Direction::Dir),
R"#(Returns the non transient direction with the same coordinates as <me>.)#"
)
.def("Magnitude",
(Standard_Real (Geom_Direction::*)() const) static_cast<Standard_Real (Geom_Direction::*)() const>(&Geom_Direction::Magnitude),
R"#(returns 1.0 which is the magnitude of any unit vector.)#"
)
.def("SquareMagnitude",
(Standard_Real (Geom_Direction::*)() const) static_cast<Standard_Real (Geom_Direction::*)() const>(&Geom_Direction::SquareMagnitude),
R"#(returns 1.0 which is the square magnitude of any unit vector.)#"
)
.def("Cross",
(void (Geom_Direction::*)( const opencascade::handle<Geom_Vector> & ) ) static_cast<void (Geom_Direction::*)( const opencascade::handle<Geom_Vector> & ) >(&Geom_Direction::Cross),
R"#(Computes the cross product between <me> and <Other>.)#" , py::arg("Other")
)
.def("CrossCross",
(void (Geom_Direction::*)( const opencascade::handle<Geom_Vector> & , const opencascade::handle<Geom_Vector> & ) ) static_cast<void (Geom_Direction::*)( const opencascade::handle<Geom_Vector> & , const opencascade::handle<Geom_Vector> & ) >(&Geom_Direction::CrossCross),
R"#(Computes the triple vector product <me> ^(V1 ^ V2).)#" , py::arg("V1"), py::arg("V2")
)
.def("Crossed",
(opencascade::handle<Geom_Vector> (Geom_Direction::*)( const opencascade::handle<Geom_Vector> & ) const) static_cast<opencascade::handle<Geom_Vector> (Geom_Direction::*)( const opencascade::handle<Geom_Vector> & ) const>(&Geom_Direction::Crossed),
R"#(Computes the cross product between <me> and <Other>. A new direction is returned.)#" , py::arg("Other")
)
.def("CrossCrossed",
(opencascade::handle<Geom_Vector> (Geom_Direction::*)( const opencascade::handle<Geom_Vector> & , const opencascade::handle<Geom_Vector> & ) const) static_cast<opencascade::handle<Geom_Vector> (Geom_Direction::*)( const opencascade::handle<Geom_Vector> & , const opencascade::handle<Geom_Vector> & ) const>(&Geom_Direction::CrossCrossed),
R"#(Computes the triple vector product <me> ^(V1 ^ V2).)#" , py::arg("V1"), py::arg("V2")
)
.def("Transform",
(void (Geom_Direction::*)( const gp_Trsf & ) ) static_cast<void (Geom_Direction::*)( const gp_Trsf & ) >(&Geom_Direction::Transform),
R"#(Applies the transformation T to this unit vector, then normalizes it.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom_Geometry> (Geom_Direction::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Direction::*)() const>(&Geom_Direction::Copy),
R"#(Creates a new object which is a copy of this unit vector.)#"
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_Direction::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Direction::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_Direction::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Direction::*)() const>(&Geom_Direction::DynamicType),
R"#(None)#"
)
;
// Class Geom_ElementarySurface from ./opencascade/Geom_ElementarySurface.hxx
klass = m.attr("Geom_ElementarySurface");
// nested enums
static_cast<py::class_<Geom_ElementarySurface ,opencascade::handle<Geom_ElementarySurface> ,Py_Geom_ElementarySurface , Geom_Surface >>(klass)
// constructors
// custom constructors
// methods
.def("SetAxis",
(void (Geom_ElementarySurface::*)( const gp_Ax1 & ) ) static_cast<void (Geom_ElementarySurface::*)( const gp_Ax1 & ) >(&Geom_ElementarySurface::SetAxis),
R"#(Changes the main axis (ZAxis) of the elementary surface.)#" , py::arg("theA1")
)
.def("SetLocation",
(void (Geom_ElementarySurface::*)( const gp_Pnt & ) ) static_cast<void (Geom_ElementarySurface::*)( const gp_Pnt & ) >(&Geom_ElementarySurface::SetLocation),
R"#(Changes the location of the local coordinates system of the surface.)#" , py::arg("theLoc")
)
.def("SetPosition",
(void (Geom_ElementarySurface::*)( const gp_Ax3 & ) ) static_cast<void (Geom_ElementarySurface::*)( const gp_Ax3 & ) >(&Geom_ElementarySurface::SetPosition),
R"#(Changes the local coordinates system of the surface.)#" , py::arg("theAx3")
)
.def("UReverse",
(void (Geom_ElementarySurface::*)() ) static_cast<void (Geom_ElementarySurface::*)() >(&Geom_ElementarySurface::UReverse),
R"#(Reverses the U parametric direction of the surface.)#"
)
.def("UReversedParameter",
(Standard_Real (Geom_ElementarySurface::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_ElementarySurface::*)( const Standard_Real ) const>(&Geom_ElementarySurface::UReversedParameter),
R"#(Return the parameter on the Ureversed surface for the point of parameter U on <me>.)#" , py::arg("U")
)
.def("VReverse",
(void (Geom_ElementarySurface::*)() ) static_cast<void (Geom_ElementarySurface::*)() >(&Geom_ElementarySurface::VReverse),
R"#(Reverses the V parametric direction of the surface.)#"
)
.def("VReversedParameter",
(Standard_Real (Geom_ElementarySurface::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_ElementarySurface::*)( const Standard_Real ) const>(&Geom_ElementarySurface::VReversedParameter),
R"#(Return the parameter on the Vreversed surface for the point of parameter V on <me>.)#" , py::arg("V")
)
.def("Continuity",
(GeomAbs_Shape (Geom_ElementarySurface::*)() const) static_cast<GeomAbs_Shape (Geom_ElementarySurface::*)() const>(&Geom_ElementarySurface::Continuity),
R"#(Returns GeomAbs_CN, the global continuity of any elementary surface.)#"
)
.def("IsCNu",
(Standard_Boolean (Geom_ElementarySurface::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom_ElementarySurface::*)( const Standard_Integer ) const>(&Geom_ElementarySurface::IsCNu),
R"#(Returns True.)#" , py::arg("N")
)
.def("IsCNv",
(Standard_Boolean (Geom_ElementarySurface::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom_ElementarySurface::*)( const Standard_Integer ) const>(&Geom_ElementarySurface::IsCNv),
R"#(Returns True.)#" , py::arg("N")
)
.def("DumpJson",
(void (Geom_ElementarySurface::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom_ElementarySurface::*)( std::ostream & , Standard_Integer ) const>(&Geom_ElementarySurface::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_ElementarySurface::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_ElementarySurface::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Axis",
(const gp_Ax1 & (Geom_ElementarySurface::*)() const) static_cast<const gp_Ax1 & (Geom_ElementarySurface::*)() const>(&Geom_ElementarySurface::Axis),
R"#(Returns the main axis of the surface (ZAxis).)#"
)
.def("Location",
(const gp_Pnt & (Geom_ElementarySurface::*)() const) static_cast<const gp_Pnt & (Geom_ElementarySurface::*)() const>(&Geom_ElementarySurface::Location),
R"#(Returns the location point of the local coordinate system of the surface.)#"
)
.def("Position",
(const gp_Ax3 & (Geom_ElementarySurface::*)() const) static_cast<const gp_Ax3 & (Geom_ElementarySurface::*)() const>(&Geom_ElementarySurface::Position),
R"#(Returns the local coordinates system of the surface.)#"
)
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_ElementarySurface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_ElementarySurface::*)() const>(&Geom_ElementarySurface::DynamicType),
R"#(None)#"
)
;
// Class Geom_Line from ./opencascade/Geom_Line.hxx
klass = m.attr("Geom_Line");
// nested enums
static_cast<py::class_<Geom_Line ,opencascade::handle<Geom_Line> , Geom_Curve >>(klass)
// constructors
.def(py::init< const gp_Ax1 & >() , py::arg("A1") )
.def(py::init< const gp_Lin & >() , py::arg("L") )
.def(py::init< const gp_Pnt &,const gp_Dir & >() , py::arg("P"), py::arg("V") )
// custom constructors
// methods
.def("SetLin",
(void (Geom_Line::*)( const gp_Lin & ) ) static_cast<void (Geom_Line::*)( const gp_Lin & ) >(&Geom_Line::SetLin),
R"#(Set <me> so that <me> has the same geometric properties as L.)#" , py::arg("L")
)
.def("SetDirection",
(void (Geom_Line::*)( const gp_Dir & ) ) static_cast<void (Geom_Line::*)( const gp_Dir & ) >(&Geom_Line::SetDirection),
R"#(changes the direction of the line.)#" , py::arg("V")
)
.def("SetLocation",
(void (Geom_Line::*)( const gp_Pnt & ) ) static_cast<void (Geom_Line::*)( const gp_Pnt & ) >(&Geom_Line::SetLocation),
R"#(changes the "Location" point (origin) of the line.)#" , py::arg("P")
)
.def("SetPosition",
(void (Geom_Line::*)( const gp_Ax1 & ) ) static_cast<void (Geom_Line::*)( const gp_Ax1 & ) >(&Geom_Line::SetPosition),
R"#(changes the "Location" and a the "Direction" of <me>.)#" , py::arg("A1")
)
.def("Lin",
(gp_Lin (Geom_Line::*)() const) static_cast<gp_Lin (Geom_Line::*)() const>(&Geom_Line::Lin),
R"#(Returns non transient line from gp with the same geometric properties as <me>)#"
)
.def("Reverse",
(void (Geom_Line::*)() ) static_cast<void (Geom_Line::*)() >(&Geom_Line::Reverse),
R"#(Changes the orientation of this line. As a result, the unit vector of the positioning axis of this line is reversed.)#"
)
.def("ReversedParameter",
(Standard_Real (Geom_Line::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_Line::*)( const Standard_Real ) const>(&Geom_Line::ReversedParameter),
R"#(Computes the parameter on the reversed line for the point of parameter U on this line. For a line, the returned value is -U.)#" , py::arg("U")
)
.def("FirstParameter",
(Standard_Real (Geom_Line::*)() const) static_cast<Standard_Real (Geom_Line::*)() const>(&Geom_Line::FirstParameter),
R"#(Returns the value of the first parameter of this line. This is Standard_Real::RealFirst().)#"
)
.def("LastParameter",
(Standard_Real (Geom_Line::*)() const) static_cast<Standard_Real (Geom_Line::*)() const>(&Geom_Line::LastParameter),
R"#(Returns the value of the last parameter of this line. This is Standard_Real::RealLast().)#"
)
.def("IsClosed",
(Standard_Boolean (Geom_Line::*)() const) static_cast<Standard_Boolean (Geom_Line::*)() const>(&Geom_Line::IsClosed),
R"#(returns False)#"
)
.def("IsPeriodic",
(Standard_Boolean (Geom_Line::*)() const) static_cast<Standard_Boolean (Geom_Line::*)() const>(&Geom_Line::IsPeriodic),
R"#(returns False)#"
)
.def("Continuity",
(GeomAbs_Shape (Geom_Line::*)() const) static_cast<GeomAbs_Shape (Geom_Line::*)() const>(&Geom_Line::Continuity),
R"#(Returns GeomAbs_CN, which is the global continuity of any line.)#"
)
.def("IsCN",
(Standard_Boolean (Geom_Line::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom_Line::*)( const Standard_Integer ) const>(&Geom_Line::IsCN),
R"#(returns True. Raised if N < 0.)#" , py::arg("N")
)
.def("D0",
(void (Geom_Line::*)( const Standard_Real , gp_Pnt & ) const) static_cast<void (Geom_Line::*)( const Standard_Real , gp_Pnt & ) const>(&Geom_Line::D0),
R"#(Returns in P the point of parameter U. P (U) = O + U * Dir where O is the "Location" point of the line and Dir the direction of the line.)#" , py::arg("U"), py::arg("P")
)
.def("D1",
(void (Geom_Line::*)( const Standard_Real , gp_Pnt & , gp_Vec & ) const) static_cast<void (Geom_Line::*)( const Standard_Real , gp_Pnt & , gp_Vec & ) const>(&Geom_Line::D1),
R"#(Returns the point P of parameter u and the first derivative V1.)#" , py::arg("U"), py::arg("P"), py::arg("V1")
)
.def("D2",
(void (Geom_Line::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_Line::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const>(&Geom_Line::D2),
R"#(Returns the point P of parameter U, the first and second derivatives V1 and V2. V2 is a vector with null magnitude for a line.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2")
)
.def("D3",
(void (Geom_Line::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_Line::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_Line::D3),
R"#(V2 and V3 are vectors with null magnitude for a line.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2"), py::arg("V3")
)
.def("DN",
(gp_Vec (Geom_Line::*)( const Standard_Real , const Standard_Integer ) const) static_cast<gp_Vec (Geom_Line::*)( const Standard_Real , const Standard_Integer ) const>(&Geom_Line::DN),
R"#(The returned vector gives the value of the derivative for the order of derivation N. Raised if N < 1.)#" , py::arg("U"), py::arg("N")
)
.def("Transform",
(void (Geom_Line::*)( const gp_Trsf & ) ) static_cast<void (Geom_Line::*)( const gp_Trsf & ) >(&Geom_Line::Transform),
R"#(Applies the transformation T to this line.)#" , py::arg("T")
)
.def("TransformedParameter",
(Standard_Real (Geom_Line::*)( const Standard_Real , const gp_Trsf & ) const) static_cast<Standard_Real (Geom_Line::*)( const Standard_Real , const gp_Trsf & ) const>(&Geom_Line::TransformedParameter),
R"#(Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.)#" , py::arg("U"), py::arg("T")
)
.def("ParametricTransformation",
(Standard_Real (Geom_Line::*)( const gp_Trsf & ) const) static_cast<Standard_Real (Geom_Line::*)( const gp_Trsf & ) const>(&Geom_Line::ParametricTransformation),
R"#(Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom_Geometry> (Geom_Line::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Line::*)() const>(&Geom_Line::Copy),
R"#(Creates a new object which is a copy of this line.)#"
)
.def("DumpJson",
(void (Geom_Line::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom_Line::*)( std::ostream & , Standard_Integer ) const>(&Geom_Line::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_Line::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Line::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Position",
(const gp_Ax1 & (Geom_Line::*)() const) static_cast<const gp_Ax1 & (Geom_Line::*)() const>(&Geom_Line::Position),
R"#(Returns the positioning axis of this line; this is also its local coordinate system.)#"
)
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_Line::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Line::*)() const>(&Geom_Line::DynamicType),
R"#(None)#"
)
;
// Class Geom_OffsetCurve from ./opencascade/Geom_OffsetCurve.hxx
klass = m.attr("Geom_OffsetCurve");
// nested enums
static_cast<py::class_<Geom_OffsetCurve ,opencascade::handle<Geom_OffsetCurve> , Geom_Curve >>(klass)
// constructors
.def(py::init< const opencascade::handle<Geom_Curve> &,const Standard_Real,const gp_Dir &,const Standard_Boolean >() , py::arg("C"), py::arg("Offset"), py::arg("V"), py::arg("isNotCheckC0")=static_cast<const Standard_Boolean>(Standard_False) )
// custom constructors
// methods
.def("Reverse",
(void (Geom_OffsetCurve::*)() ) static_cast<void (Geom_OffsetCurve::*)() >(&Geom_OffsetCurve::Reverse),
R"#(Changes the orientation of this offset curve. As a result: - the basis curve is reversed, - the start point of the initial curve becomes the end point of the reversed curve, - the end point of the initial curve becomes the start point of the reversed curve, and - the first and last parameters are recomputed.)#"
)
.def("ReversedParameter",
(Standard_Real (Geom_OffsetCurve::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_OffsetCurve::*)( const Standard_Real ) const>(&Geom_OffsetCurve::ReversedParameter),
R"#(Computes the parameter on the reversed curve for the point of parameter U on this offset curve.)#" , py::arg("U")
)
.def("SetBasisCurve",
(void (Geom_OffsetCurve::*)( const opencascade::handle<Geom_Curve> & , const Standard_Boolean ) ) static_cast<void (Geom_OffsetCurve::*)( const opencascade::handle<Geom_Curve> & , const Standard_Boolean ) >(&Geom_OffsetCurve::SetBasisCurve),
R"#(Changes this offset curve by assigning C as the basis curve from which it is built. If isNotCheckC0 = TRUE checking if basis curve has C0-continuity is not made. Exceptions Standard_ConstructionError if the curve C is not at least "C1" continuous.)#" , py::arg("C"), py::arg("isNotCheckC0")=static_cast<const Standard_Boolean>(Standard_False)
)
.def("SetDirection",
(void (Geom_OffsetCurve::*)( const gp_Dir & ) ) static_cast<void (Geom_OffsetCurve::*)( const gp_Dir & ) >(&Geom_OffsetCurve::SetDirection),
R"#(Changes this offset curve by assigning V as the reference vector used to compute the offset direction.)#" , py::arg("V")
)
.def("SetOffsetValue",
(void (Geom_OffsetCurve::*)( const Standard_Real ) ) static_cast<void (Geom_OffsetCurve::*)( const Standard_Real ) >(&Geom_OffsetCurve::SetOffsetValue),
R"#(Changes this offset curve by assigning D as the offset value.)#" , py::arg("D")
)
.def("BasisCurve",
(opencascade::handle<Geom_Curve> (Geom_OffsetCurve::*)() const) static_cast<opencascade::handle<Geom_Curve> (Geom_OffsetCurve::*)() const>(&Geom_OffsetCurve::BasisCurve),
R"#(Returns the basis curve of this offset curve. Note: The basis curve can be an offset curve.)#"
)
.def("Continuity",
(GeomAbs_Shape (Geom_OffsetCurve::*)() const) static_cast<GeomAbs_Shape (Geom_OffsetCurve::*)() const>(&Geom_OffsetCurve::Continuity),
R"#(Returns the global continuity of this offset curve as a value of the GeomAbs_Shape enumeration. The degree of continuity of this offset curve is equal to the degree of continuity of the basis curve minus 1. Continuity of the Offset curve : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, G1 : tangency continuity all along the Curve, G2 : curvature continuity all along the Curve, CN : the order of continuity is infinite. Warnings : Returns the continuity of the basis curve - 1. The offset curve must have a unique offset direction defined at any point.)#"
)
.def("D0",
(void (Geom_OffsetCurve::*)( const Standard_Real , gp_Pnt & ) const) static_cast<void (Geom_OffsetCurve::*)( const Standard_Real , gp_Pnt & ) const>(&Geom_OffsetCurve::D0),
R"#(Warning! this should not be called if the basis curve is not at least C1. Nevertheless if used on portion where the curve is C1, it is OK)#" , py::arg("U"), py::arg("P")
)
.def("D1",
(void (Geom_OffsetCurve::*)( const Standard_Real , gp_Pnt & , gp_Vec & ) const) static_cast<void (Geom_OffsetCurve::*)( const Standard_Real , gp_Pnt & , gp_Vec & ) const>(&Geom_OffsetCurve::D1),
R"#(Warning! this should not be called if the continuity of the basis curve is not C2. Nevertheless, it's OK to use it on portion where the curve is C2)#" , py::arg("U"), py::arg("P"), py::arg("V1")
)
.def("D2",
(void (Geom_OffsetCurve::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_OffsetCurve::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const>(&Geom_OffsetCurve::D2),
R"#(Warning! this should not be called if the continuity of the basis curve is not C3. Nevertheless, it's OK to use it on portion where the curve is C3)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2")
)
.def("D3",
(void (Geom_OffsetCurve::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_OffsetCurve::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_OffsetCurve::D3),
R"#(None)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2"), py::arg("V3")
)
.def("DN",
(gp_Vec (Geom_OffsetCurve::*)( const Standard_Real , const Standard_Integer ) const) static_cast<gp_Vec (Geom_OffsetCurve::*)( const Standard_Real , const Standard_Integer ) const>(&Geom_OffsetCurve::DN),
R"#(The returned vector gives the value of the derivative for the order of derivation N.)#" , py::arg("U"), py::arg("N")
)
.def("FirstParameter",
(Standard_Real (Geom_OffsetCurve::*)() const) static_cast<Standard_Real (Geom_OffsetCurve::*)() const>(&Geom_OffsetCurve::FirstParameter),
R"#(Returns the value of the first parameter of this offset curve. The first parameter corresponds to the start point of the curve. Note: the first and last parameters of this offset curve are also the ones of its basis curve.)#"
)
.def("LastParameter",
(Standard_Real (Geom_OffsetCurve::*)() const) static_cast<Standard_Real (Geom_OffsetCurve::*)() const>(&Geom_OffsetCurve::LastParameter),
R"#(Returns the value of the last parameter of this offset curve. The last parameter corresponds to the end point. Note: the first and last parameters of this offset curve are also the ones of its basis curve.)#"
)
.def("Offset",
(Standard_Real (Geom_OffsetCurve::*)() const) static_cast<Standard_Real (Geom_OffsetCurve::*)() const>(&Geom_OffsetCurve::Offset),
R"#(Returns the offset value of this offset curve.)#"
)
.def("IsClosed",
(Standard_Boolean (Geom_OffsetCurve::*)() const) static_cast<Standard_Boolean (Geom_OffsetCurve::*)() const>(&Geom_OffsetCurve::IsClosed),
R"#(Returns True if the distance between the start point and the end point of the curve is lower or equal to Resolution from package gp.)#"
)
.def("IsCN",
(Standard_Boolean (Geom_OffsetCurve::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom_OffsetCurve::*)( const Standard_Integer ) const>(&Geom_OffsetCurve::IsCN),
R"#(Returns true if the degree of continuity of the basis curve of this offset curve is at least N + 1. This method answer True if the continuity of the basis curve is N + 1. We suppose in this class that a normal direction to the basis curve (used to compute the offset curve) is defined at any point on the basis curve. Raised if N < 0.)#" , py::arg("N")
)
.def("IsPeriodic",
(Standard_Boolean (Geom_OffsetCurve::*)() const) static_cast<Standard_Boolean (Geom_OffsetCurve::*)() const>(&Geom_OffsetCurve::IsPeriodic),
R"#(Returns true if this offset curve is periodic, i.e. if the basis curve of this offset curve is periodic.)#"
)
.def("Period",
(Standard_Real (Geom_OffsetCurve::*)() const) static_cast<Standard_Real (Geom_OffsetCurve::*)() const>(&Geom_OffsetCurve::Period),
R"#(Returns the period of this offset curve, i.e. the period of the basis curve of this offset curve. Exceptions Standard_NoSuchObject if the basis curve is not periodic.)#"
)
.def("Transform",
(void (Geom_OffsetCurve::*)( const gp_Trsf & ) ) static_cast<void (Geom_OffsetCurve::*)( const gp_Trsf & ) >(&Geom_OffsetCurve::Transform),
R"#(Applies the transformation T to this offset curve. Note: the basis curve is also modified.)#" , py::arg("T")
)
.def("TransformedParameter",
(Standard_Real (Geom_OffsetCurve::*)( const Standard_Real , const gp_Trsf & ) const) static_cast<Standard_Real (Geom_OffsetCurve::*)( const Standard_Real , const gp_Trsf & ) const>(&Geom_OffsetCurve::TransformedParameter),
R"#(Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>. me->Transformed(T)->Value(me->TransformedParameter(U,T)) is the same point as me->Value(U).Transformed(T) This methods calls the basis curve method.)#" , py::arg("U"), py::arg("T")
)
.def("ParametricTransformation",
(Standard_Real (Geom_OffsetCurve::*)( const gp_Trsf & ) const) static_cast<Standard_Real (Geom_OffsetCurve::*)( const gp_Trsf & ) const>(&Geom_OffsetCurve::ParametricTransformation),
R"#(Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom_Geometry> (Geom_OffsetCurve::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_OffsetCurve::*)() const>(&Geom_OffsetCurve::Copy),
R"#(Creates a new object which is a copy of this offset curve.)#"
)
.def("GetBasisCurveContinuity",
(GeomAbs_Shape (Geom_OffsetCurve::*)() const) static_cast<GeomAbs_Shape (Geom_OffsetCurve::*)() const>(&Geom_OffsetCurve::GetBasisCurveContinuity),
R"#(Returns continuity of the basis curve.)#"
)
.def("DumpJson",
(void (Geom_OffsetCurve::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom_OffsetCurve::*)( std::ostream & , Standard_Integer ) const>(&Geom_OffsetCurve::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_OffsetCurve::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_OffsetCurve::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Direction",
(const gp_Dir & (Geom_OffsetCurve::*)() const) static_cast<const gp_Dir & (Geom_OffsetCurve::*)() const>(&Geom_OffsetCurve::Direction),
R"#(Returns the reference vector of this offset curve. Value and derivatives Warnings : The exception UndefinedValue or UndefinedDerivative is raised if it is not possible to compute a unique offset direction. If T is the first derivative with not null length and V the offset direction the relation ||T(U) ^ V|| != 0 must be satisfied to evaluate the offset curve. No check is done at the creation time and we suppose in this package that the offset curve is well defined.)#"
)
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_OffsetCurve::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_OffsetCurve::*)() const>(&Geom_OffsetCurve::DynamicType),
R"#(None)#"
)
;
// Class Geom_OffsetSurface from ./opencascade/Geom_OffsetSurface.hxx
klass = m.attr("Geom_OffsetSurface");
// nested enums
static_cast<py::class_<Geom_OffsetSurface ,opencascade::handle<Geom_OffsetSurface> , Geom_Surface >>(klass)
// constructors
.def(py::init< const opencascade::handle<Geom_Surface> &,const Standard_Real,const Standard_Boolean >() , py::arg("S"), py::arg("Offset"), py::arg("isNotCheckC0")=static_cast<const Standard_Boolean>(Standard_False) )
// custom constructors
// methods
.def("SetBasisSurface",
(void (Geom_OffsetSurface::*)( const opencascade::handle<Geom_Surface> & , const Standard_Boolean ) ) static_cast<void (Geom_OffsetSurface::*)( const opencascade::handle<Geom_Surface> & , const Standard_Boolean ) >(&Geom_OffsetSurface::SetBasisSurface),
R"#(Raised if S is not at least C1. Warnings : No check is done to verify that a unique normal direction is defined at any point of the basis surface S. If isNotCheckC0 = TRUE checking if basis surface has C0-continuity is not made. Exceptions Standard_ConstructionError if the surface S is not at least "C1" continuous.)#" , py::arg("S"), py::arg("isNotCheckC0")=static_cast<const Standard_Boolean>(Standard_False)
)
.def("SetOffsetValue",
(void (Geom_OffsetSurface::*)( const Standard_Real ) ) static_cast<void (Geom_OffsetSurface::*)( const Standard_Real ) >(&Geom_OffsetSurface::SetOffsetValue),
R"#(Changes this offset surface by assigning D as the offset value.)#" , py::arg("D")
)
.def("Offset",
(Standard_Real (Geom_OffsetSurface::*)() const) static_cast<Standard_Real (Geom_OffsetSurface::*)() const>(&Geom_OffsetSurface::Offset),
R"#(Returns the offset value of this offset surface.)#"
)
.def("UReverse",
(void (Geom_OffsetSurface::*)() ) static_cast<void (Geom_OffsetSurface::*)() >(&Geom_OffsetSurface::UReverse),
R"#(Changes the orientation of this offset surface in the u parametric direction. The bounds of the surface are not changed but the given parametric direction is reversed.)#"
)
.def("UReversedParameter",
(Standard_Real (Geom_OffsetSurface::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_OffsetSurface::*)( const Standard_Real ) const>(&Geom_OffsetSurface::UReversedParameter),
R"#(Computes the u parameter on the modified surface, produced by reversing the u parametric direction of this offset surface, for any point of u parameter U on this offset surface.)#" , py::arg("U")
)
.def("VReverse",
(void (Geom_OffsetSurface::*)() ) static_cast<void (Geom_OffsetSurface::*)() >(&Geom_OffsetSurface::VReverse),
R"#(Changes the orientation of this offset surface in the v parametric direction. The bounds of the surface are not changed but the given parametric direction is reversed.)#"
)
.def("VReversedParameter",
(Standard_Real (Geom_OffsetSurface::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_OffsetSurface::*)( const Standard_Real ) const>(&Geom_OffsetSurface::VReversedParameter),
R"#(Computes the v parameter on the modified surface, produced by reversing the or v parametric direction of this offset surface, for any point of v parameter V on this offset surface.)#" , py::arg("V")
)
.def("Continuity",
(GeomAbs_Shape (Geom_OffsetSurface::*)() const) static_cast<GeomAbs_Shape (Geom_OffsetSurface::*)() const>(&Geom_OffsetSurface::Continuity),
R"#(This method returns the continuity of the basis surface - 1. Continuity of the Offset surface : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Surface, C2 : continuity of the second derivative all along the Surface, C3 : continuity of the third derivative all along the Surface, CN : the order of continuity is infinite. Example : If the basis surface is C2 in the V direction and C3 in the U direction Shape = C1. Warnings : If the basis surface has a unique normal direction defined at any point this method gives the continuity of the offset surface otherwise the effective continuity can be lower than the continuity of the basis surface - 1.)#"
)
.def("IsCNu",
(Standard_Boolean (Geom_OffsetSurface::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom_OffsetSurface::*)( const Standard_Integer ) const>(&Geom_OffsetSurface::IsCNu),
R"#(This method answer True if the continuity of the basis surface is N + 1 in the U parametric direction. We suppose in this class that a unique normal is defined at any point on the basis surface. Raised if N <0.)#" , py::arg("N")
)
.def("IsCNv",
(Standard_Boolean (Geom_OffsetSurface::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom_OffsetSurface::*)( const Standard_Integer ) const>(&Geom_OffsetSurface::IsCNv),
R"#(This method answer True if the continuity of the basis surface is N + 1 in the V parametric direction. We suppose in this class that a unique normal is defined at any point on the basis surface. Raised if N <0.)#" , py::arg("N")
)
.def("IsUClosed",
(Standard_Boolean (Geom_OffsetSurface::*)() const) static_cast<Standard_Boolean (Geom_OffsetSurface::*)() const>(&Geom_OffsetSurface::IsUClosed),
R"#(Checks whether this offset surface is closed in the u parametric direction. Returns true if, taking uFirst and uLast as the parametric bounds in the u parametric direction, the distance between the points P(uFirst,v) and P(uLast,v) is less than or equal to gp::Resolution() for each value of the parameter v.)#"
)
.def("IsVClosed",
(Standard_Boolean (Geom_OffsetSurface::*)() const) static_cast<Standard_Boolean (Geom_OffsetSurface::*)() const>(&Geom_OffsetSurface::IsVClosed),
R"#(Checks whether this offset surface is closed in the u or v parametric direction. Returns true if taking vFirst and vLast as the parametric bounds in the v parametric direction, the distance between the points P(u,vFirst) and P(u,vLast) is less than or equal to gp::Resolution() for each value of the parameter u.)#"
)
.def("IsUPeriodic",
(Standard_Boolean (Geom_OffsetSurface::*)() const) static_cast<Standard_Boolean (Geom_OffsetSurface::*)() const>(&Geom_OffsetSurface::IsUPeriodic),
R"#(Returns true if this offset surface is periodic in the u parametric direction, i.e. if the basis surface of this offset surface is periodic in this direction.)#"
)
.def("UPeriod",
(Standard_Real (Geom_OffsetSurface::*)() const) static_cast<Standard_Real (Geom_OffsetSurface::*)() const>(&Geom_OffsetSurface::UPeriod),
R"#(Returns the period of this offset surface in the u parametric direction respectively, i.e. the period of the basis surface of this offset surface in this parametric direction. raises if the surface is not uperiodic.)#"
)
.def("IsVPeriodic",
(Standard_Boolean (Geom_OffsetSurface::*)() const) static_cast<Standard_Boolean (Geom_OffsetSurface::*)() const>(&Geom_OffsetSurface::IsVPeriodic),
R"#(Returns true if this offset surface is periodic in the v parametric direction, i.e. if the basis surface of this offset surface is periodic in this direction.)#"
)
.def("VPeriod",
(Standard_Real (Geom_OffsetSurface::*)() const) static_cast<Standard_Real (Geom_OffsetSurface::*)() const>(&Geom_OffsetSurface::VPeriod),
R"#(Returns the period of this offset surface in the v parametric direction respectively, i.e. the period of the basis surface of this offset surface in this parametric direction. raises if the surface is not vperiodic.)#"
)
.def("UIso",
(opencascade::handle<Geom_Curve> (Geom_OffsetSurface::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_OffsetSurface::*)( const Standard_Real ) const>(&Geom_OffsetSurface::UIso),
R"#(Computes the U isoparametric curve.)#" , py::arg("U")
)
.def("VIso",
(opencascade::handle<Geom_Curve> (Geom_OffsetSurface::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_OffsetSurface::*)( const Standard_Real ) const>(&Geom_OffsetSurface::VIso),
R"#(Computes the V isoparametric curve.)#" , py::arg("V")
)
.def("D0",
(void (Geom_OffsetSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & ) const) static_cast<void (Geom_OffsetSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & ) const>(&Geom_OffsetSurface::D0),
R"#(where is the normal direction of the basis surface. Pbasis, D1Ubasis, D1Vbasis are the point and the first derivatives on the basis surface. If Ndir is undefined this method computes an approached normal direction using the following limited development: with Eps->0 which requires to compute the second derivatives on the basis surface. If the normal direction cannot be approximate for this order of derivation the exception UndefinedValue is raised.)#" , py::arg("U"), py::arg("V"), py::arg("P")
)
.def("D1",
(void (Geom_OffsetSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_OffsetSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const>(&Geom_OffsetSurface::D1),
R"#(Raised if the continuity of the basis surface is not C2.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V")
)
.def("D2",
(void (Geom_OffsetSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_OffsetSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_OffsetSurface::D2),
R"#(Raised if the continuity of the basis surface is not C3.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V"), py::arg("D2U"), py::arg("D2V"), py::arg("D2UV")
)
.def("D3",
(void (Geom_OffsetSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_OffsetSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_OffsetSurface::D3),
R"#(Raised if the continuity of the basis surface is not C4.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V"), py::arg("D2U"), py::arg("D2V"), py::arg("D2UV"), py::arg("D3U"), py::arg("D3V"), py::arg("D3UUV"), py::arg("D3UVV")
)
.def("DN",
(gp_Vec (Geom_OffsetSurface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer ) const) static_cast<gp_Vec (Geom_OffsetSurface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer ) const>(&Geom_OffsetSurface::DN),
R"#(Computes the derivative of order Nu in the direction u and Nv in the direction v.)#" , py::arg("U"), py::arg("V"), py::arg("Nu"), py::arg("Nv")
)
.def("Transform",
(void (Geom_OffsetSurface::*)( const gp_Trsf & ) ) static_cast<void (Geom_OffsetSurface::*)( const gp_Trsf & ) >(&Geom_OffsetSurface::Transform),
R"#(Applies the transformation T to this offset surface. Note: the basis surface is also modified.)#" , py::arg("T")
)
.def("ParametricTransformation",
(gp_GTrsf2d (Geom_OffsetSurface::*)( const gp_Trsf & ) const) static_cast<gp_GTrsf2d (Geom_OffsetSurface::*)( const gp_Trsf & ) const>(&Geom_OffsetSurface::ParametricTransformation),
R"#(Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method calls the basis surface method.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom_Geometry> (Geom_OffsetSurface::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_OffsetSurface::*)() const>(&Geom_OffsetSurface::Copy),
R"#(Creates a new object which is a copy of this offset surface.)#"
)
.def("Surface",
(opencascade::handle<Geom_Surface> (Geom_OffsetSurface::*)() const) static_cast<opencascade::handle<Geom_Surface> (Geom_OffsetSurface::*)() const>(&Geom_OffsetSurface::Surface),
R"#(returns an equivalent surface of the offset surface when the basis surface is a canonic surface or a rectangular limited surface on canonic surface or if the offset is null.)#"
)
.def("UOsculatingSurface",
(Standard_Boolean (Geom_OffsetSurface::*)( const Standard_Real , const Standard_Real , Standard_Boolean & , opencascade::handle<Geom_BSplineSurface> & ) const) static_cast<Standard_Boolean (Geom_OffsetSurface::*)( const Standard_Real , const Standard_Real , Standard_Boolean & , opencascade::handle<Geom_BSplineSurface> & ) const>(&Geom_OffsetSurface::UOsculatingSurface),
R"#(if Standard_True, L is the local osculating surface along U at the point U,V. It means that DL/DU is collinear to DS/DU . If IsOpposite == Standard_True these vectors have opposite direction.)#" , py::arg("U"), py::arg("V"), py::arg("IsOpposite"), py::arg("UOsculSurf")
)
.def("VOsculatingSurface",
(Standard_Boolean (Geom_OffsetSurface::*)( const Standard_Real , const Standard_Real , Standard_Boolean & , opencascade::handle<Geom_BSplineSurface> & ) const) static_cast<Standard_Boolean (Geom_OffsetSurface::*)( const Standard_Real , const Standard_Real , Standard_Boolean & , opencascade::handle<Geom_BSplineSurface> & ) const>(&Geom_OffsetSurface::VOsculatingSurface),
R"#(if Standard_True, L is the local osculating surface along V at the point U,V. It means that DL/DV is collinear to DS/DV . If IsOpposite == Standard_True these vectors have opposite direction.)#" , py::arg("U"), py::arg("V"), py::arg("IsOpposite"), py::arg("VOsculSurf")
)
.def("GetBasisSurfContinuity",
(GeomAbs_Shape (Geom_OffsetSurface::*)() const) static_cast<GeomAbs_Shape (Geom_OffsetSurface::*)() const>(&Geom_OffsetSurface::GetBasisSurfContinuity),
R"#(Returns continuity of the basis surface.)#"
)
.def("DumpJson",
(void (Geom_OffsetSurface::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom_OffsetSurface::*)( std::ostream & , Standard_Integer ) const>(&Geom_OffsetSurface::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
.def("Bounds",
[]( Geom_OffsetSurface &self ){
Standard_Real U1;
Standard_Real U2;
Standard_Real V1;
Standard_Real V2;
self.Bounds(U1,U2,V1,V2);
return std::make_tuple(U1,U2,V1,V2); },
R"#(Returns the parametric bounds U1, U2, V1 and V2 of this offset surface. If the surface is infinite, this function can return: - Standard_Real::RealFirst(), or - Standard_Real::RealLast().)#"
)
.def("TransformParameters",
[]( Geom_OffsetSurface &self , const gp_Trsf & T ){
Standard_Real U;
Standard_Real V;
self.TransformParameters(U,V,T);
return std::make_tuple(U,V); },
R"#(Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method calls the basis surface method.)#" , py::arg("T")
)
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_OffsetSurface::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_OffsetSurface::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("BasisSurface",
(const opencascade::handle<Geom_Surface> & (Geom_OffsetSurface::*)() const) static_cast<const opencascade::handle<Geom_Surface> & (Geom_OffsetSurface::*)() const>(&Geom_OffsetSurface::BasisSurface),
R"#(Returns the basis surface of this offset surface. Note: The basis surface can be an offset surface.)#"
)
.def("OsculatingSurface",
(const opencascade::handle<Geom_OsculatingSurface> & (Geom_OffsetSurface::*)() const) static_cast<const opencascade::handle<Geom_OsculatingSurface> & (Geom_OffsetSurface::*)() const>(&Geom_OffsetSurface::OsculatingSurface),
R"#(Returns osculating surface if base surface is B-spline or Bezier)#"
)
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_OffsetSurface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_OffsetSurface::*)() const>(&Geom_OffsetSurface::DynamicType),
R"#(None)#"
)
;
// Class Geom_SweptSurface from ./opencascade/Geom_SweptSurface.hxx
klass = m.attr("Geom_SweptSurface");
// nested enums
static_cast<py::class_<Geom_SweptSurface ,opencascade::handle<Geom_SweptSurface> ,Py_Geom_SweptSurface , Geom_Surface >>(klass)
// constructors
// custom constructors
// methods
.def("Continuity",
(GeomAbs_Shape (Geom_SweptSurface::*)() const) static_cast<GeomAbs_Shape (Geom_SweptSurface::*)() const>(&Geom_SweptSurface::Continuity),
R"#(returns the continuity of the surface : C0 : only geometric continuity, C1 : continuity of the first derivative all along the surface, C2 : continuity of the second derivative all along the surface, C3 : continuity of the third derivative all along the surface, G1 : tangency continuity all along the surface, G2 : curvature continuity all along the surface, CN : the order of continuity is infinite.)#"
)
.def("BasisCurve",
(opencascade::handle<Geom_Curve> (Geom_SweptSurface::*)() const) static_cast<opencascade::handle<Geom_Curve> (Geom_SweptSurface::*)() const>(&Geom_SweptSurface::BasisCurve),
R"#(Returns the referenced curve of the surface. For a surface of revolution it is the revolution curve, for a surface of linear extrusion it is the extruded curve.)#"
)
.def("DumpJson",
(void (Geom_SweptSurface::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom_SweptSurface::*)( std::ostream & , Standard_Integer ) const>(&Geom_SweptSurface::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_SweptSurface::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_SweptSurface::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Direction",
(const gp_Dir & (Geom_SweptSurface::*)() const) static_cast<const gp_Dir & (Geom_SweptSurface::*)() const>(&Geom_SweptSurface::Direction),
R"#(Returns the reference direction of the swept surface. For a surface of revolution it is the direction of the revolution axis, for a surface of linear extrusion it is the direction of extrusion.)#"
)
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_SweptSurface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_SweptSurface::*)() const>(&Geom_SweptSurface::DynamicType),
R"#(None)#"
)
;
// Class Geom_VectorWithMagnitude from ./opencascade/Geom_VectorWithMagnitude.hxx
klass = m.attr("Geom_VectorWithMagnitude");
// nested enums
static_cast<py::class_<Geom_VectorWithMagnitude ,opencascade::handle<Geom_VectorWithMagnitude> , Geom_Vector >>(klass)
// constructors
.def(py::init< const gp_Vec & >() , py::arg("V") )
.def(py::init< const Standard_Real,const Standard_Real,const Standard_Real >() , py::arg("X"), py::arg("Y"), py::arg("Z") )
.def(py::init< const gp_Pnt &,const gp_Pnt & >() , py::arg("P1"), py::arg("P2") )
// custom constructors
// methods
.def("SetCoord",
(void (Geom_VectorWithMagnitude::*)( const Standard_Real , const Standard_Real , const Standard_Real ) ) static_cast<void (Geom_VectorWithMagnitude::*)( const Standard_Real , const Standard_Real , const Standard_Real ) >(&Geom_VectorWithMagnitude::SetCoord),
R"#(Assigns the values X, Y and Z to the coordinates of this vector.)#" , py::arg("X"), py::arg("Y"), py::arg("Z")
)
.def("SetVec",
(void (Geom_VectorWithMagnitude::*)( const gp_Vec & ) ) static_cast<void (Geom_VectorWithMagnitude::*)( const gp_Vec & ) >(&Geom_VectorWithMagnitude::SetVec),
R"#(Converts the gp_Vec vector V into this vector.)#" , py::arg("V")
)
.def("SetX",
(void (Geom_VectorWithMagnitude::*)( const Standard_Real ) ) static_cast<void (Geom_VectorWithMagnitude::*)( const Standard_Real ) >(&Geom_VectorWithMagnitude::SetX),
R"#(Changes the X coordinate of <me>.)#" , py::arg("X")
)
.def("SetY",
(void (Geom_VectorWithMagnitude::*)( const Standard_Real ) ) static_cast<void (Geom_VectorWithMagnitude::*)( const Standard_Real ) >(&Geom_VectorWithMagnitude::SetY),
R"#(Changes the Y coordinate of <me>)#" , py::arg("Y")
)
.def("SetZ",
(void (Geom_VectorWithMagnitude::*)( const Standard_Real ) ) static_cast<void (Geom_VectorWithMagnitude::*)( const Standard_Real ) >(&Geom_VectorWithMagnitude::SetZ),
R"#(Changes the Z coordinate of <me>.)#" , py::arg("Z")
)
.def("Magnitude",
(Standard_Real (Geom_VectorWithMagnitude::*)() const) static_cast<Standard_Real (Geom_VectorWithMagnitude::*)() const>(&Geom_VectorWithMagnitude::Magnitude),
R"#(Returns the magnitude of <me>.)#"
)
.def("SquareMagnitude",
(Standard_Real (Geom_VectorWithMagnitude::*)() const) static_cast<Standard_Real (Geom_VectorWithMagnitude::*)() const>(&Geom_VectorWithMagnitude::SquareMagnitude),
R"#(Returns the square magnitude of <me>.)#"
)
.def("Add",
(void (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> & ) ) static_cast<void (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> & ) >(&Geom_VectorWithMagnitude::Add),
R"#(Adds the Vector Other to <me>.)#" , py::arg("Other")
)
.def("Added",
(opencascade::handle<Geom_VectorWithMagnitude> (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> & ) const) static_cast<opencascade::handle<Geom_VectorWithMagnitude> (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> & ) const>(&Geom_VectorWithMagnitude::Added),
R"#(Adds the vector Other to <me>.)#" , py::arg("Other")
)
.def("Cross",
(void (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> & ) ) static_cast<void (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> & ) >(&Geom_VectorWithMagnitude::Cross),
R"#(Computes the cross product between <me> and Other <me> ^ Other.)#" , py::arg("Other")
)
.def("Crossed",
(opencascade::handle<Geom_Vector> (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> & ) const) static_cast<opencascade::handle<Geom_Vector> (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> & ) const>(&Geom_VectorWithMagnitude::Crossed),
R"#(Computes the cross product between <me> and Other <me> ^ Other. A new vector is returned.)#" , py::arg("Other")
)
.def("CrossCross",
(void (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> & , const opencascade::handle<Geom_Vector> & ) ) static_cast<void (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> & , const opencascade::handle<Geom_Vector> & ) >(&Geom_VectorWithMagnitude::CrossCross),
R"#(Computes the triple vector product <me> ^ (V1 ^ V2).)#" , py::arg("V1"), py::arg("V2")
)
.def("CrossCrossed",
(opencascade::handle<Geom_Vector> (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> & , const opencascade::handle<Geom_Vector> & ) const) static_cast<opencascade::handle<Geom_Vector> (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> & , const opencascade::handle<Geom_Vector> & ) const>(&Geom_VectorWithMagnitude::CrossCrossed),
R"#(Computes the triple vector product <me> ^ (V1 ^ V2). A new vector is returned.)#" , py::arg("V1"), py::arg("V2")
)
.def("Divide",
(void (Geom_VectorWithMagnitude::*)( const Standard_Real ) ) static_cast<void (Geom_VectorWithMagnitude::*)( const Standard_Real ) >(&Geom_VectorWithMagnitude::Divide),
R"#(Divides <me> by a scalar.)#" , py::arg("Scalar")
)
.def("Divided",
(opencascade::handle<Geom_VectorWithMagnitude> (Geom_VectorWithMagnitude::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom_VectorWithMagnitude> (Geom_VectorWithMagnitude::*)( const Standard_Real ) const>(&Geom_VectorWithMagnitude::Divided),
R"#(Divides <me> by a scalar. A new vector is returned.)#" , py::arg("Scalar")
)
.def("Multiplied",
(opencascade::handle<Geom_VectorWithMagnitude> (Geom_VectorWithMagnitude::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom_VectorWithMagnitude> (Geom_VectorWithMagnitude::*)( const Standard_Real ) const>(&Geom_VectorWithMagnitude::Multiplied),
R"#(Computes the product of the vector <me> by a scalar. A new vector is returned.)#" , py::arg("Scalar")
)
.def("Multiply",
(void (Geom_VectorWithMagnitude::*)( const Standard_Real ) ) static_cast<void (Geom_VectorWithMagnitude::*)( const Standard_Real ) >(&Geom_VectorWithMagnitude::Multiply),
R"#(Computes the product of the vector <me> by a scalar.)#" , py::arg("Scalar")
)
.def("Normalize",
(void (Geom_VectorWithMagnitude::*)() ) static_cast<void (Geom_VectorWithMagnitude::*)() >(&Geom_VectorWithMagnitude::Normalize),
R"#(Normalizes <me>.)#"
)
.def("Normalized",
(opencascade::handle<Geom_VectorWithMagnitude> (Geom_VectorWithMagnitude::*)() const) static_cast<opencascade::handle<Geom_VectorWithMagnitude> (Geom_VectorWithMagnitude::*)() const>(&Geom_VectorWithMagnitude::Normalized),
R"#(Returns a copy of <me> Normalized.)#"
)
.def("Subtract",
(void (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> & ) ) static_cast<void (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> & ) >(&Geom_VectorWithMagnitude::Subtract),
R"#(Subtracts the Vector Other to <me>.)#" , py::arg("Other")
)
.def("Subtracted",
(opencascade::handle<Geom_VectorWithMagnitude> (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> & ) const) static_cast<opencascade::handle<Geom_VectorWithMagnitude> (Geom_VectorWithMagnitude::*)( const opencascade::handle<Geom_Vector> & ) const>(&Geom_VectorWithMagnitude::Subtracted),
R"#(Subtracts the vector Other to <me>. A new vector is returned.)#" , py::arg("Other")
)
.def("Transform",
(void (Geom_VectorWithMagnitude::*)( const gp_Trsf & ) ) static_cast<void (Geom_VectorWithMagnitude::*)( const gp_Trsf & ) >(&Geom_VectorWithMagnitude::Transform),
R"#(Applies the transformation T to this vector.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom_Geometry> (Geom_VectorWithMagnitude::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_VectorWithMagnitude::*)() const>(&Geom_VectorWithMagnitude::Copy),
R"#(Creates a new object which is a copy of this vector.)#"
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_VectorWithMagnitude::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_VectorWithMagnitude::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_VectorWithMagnitude::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_VectorWithMagnitude::*)() const>(&Geom_VectorWithMagnitude::DynamicType),
R"#(None)#"
)
;
// Class Geom_BSplineCurve from ./opencascade/Geom_BSplineCurve.hxx
klass = m.attr("Geom_BSplineCurve");
// nested enums
static_cast<py::class_<Geom_BSplineCurve ,opencascade::handle<Geom_BSplineCurve> , Geom_BoundedCurve >>(klass)
// constructors
.def(py::init< const NCollection_Array1<gp_Pnt> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Integer> &,const Standard_Integer,const Standard_Boolean >() , py::arg("Poles"), py::arg("Knots"), py::arg("Multiplicities"), py::arg("Degree"), py::arg("Periodic")=static_cast<const Standard_Boolean>(Standard_False) )
.def(py::init< const NCollection_Array1<gp_Pnt> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Integer> &,const Standard_Integer,const Standard_Boolean,const Standard_Boolean >() , py::arg("Poles"), py::arg("Weights"), py::arg("Knots"), py::arg("Multiplicities"), py::arg("Degree"), py::arg("Periodic")=static_cast<const Standard_Boolean>(Standard_False), py::arg("CheckRational")=static_cast<const Standard_Boolean>(Standard_True) )
// custom constructors
// methods
.def("IncreaseDegree",
(void (Geom_BSplineCurve::*)( const Standard_Integer ) ) static_cast<void (Geom_BSplineCurve::*)( const Standard_Integer ) >(&Geom_BSplineCurve::IncreaseDegree),
R"#(Increases the degree of this BSpline curve to Degree. As a result, the poles, weights and multiplicities tables are modified; the knots table is not changed. Nothing is done if Degree is less than or equal to the current degree. Exceptions Standard_ConstructionError if Degree is greater than Geom_BSplineCurve::MaxDegree().)#" , py::arg("Degree")
)
.def("IncreaseMultiplicity",
(void (Geom_BSplineCurve::*)( const Standard_Integer , const Standard_Integer ) ) static_cast<void (Geom_BSplineCurve::*)( const Standard_Integer , const Standard_Integer ) >(&Geom_BSplineCurve::IncreaseMultiplicity),
R"#(Increases the multiplicity of the knot <Index> to <M>.)#" , py::arg("Index"), py::arg("M")
)
.def("IncreaseMultiplicity",
(void (Geom_BSplineCurve::*)( const Standard_Integer , const Standard_Integer , const Standard_Integer ) ) static_cast<void (Geom_BSplineCurve::*)( const Standard_Integer , const Standard_Integer , const Standard_Integer ) >(&Geom_BSplineCurve::IncreaseMultiplicity),
R"#(Increases the multiplicities of the knots in [I1,I2] to <M>.)#" , py::arg("I1"), py::arg("I2"), py::arg("M")
)
.def("IncrementMultiplicity",
(void (Geom_BSplineCurve::*)( const Standard_Integer , const Standard_Integer , const Standard_Integer ) ) static_cast<void (Geom_BSplineCurve::*)( const Standard_Integer , const Standard_Integer , const Standard_Integer ) >(&Geom_BSplineCurve::IncrementMultiplicity),
R"#(Increment the multiplicities of the knots in [I1,I2] by <M>.)#" , py::arg("I1"), py::arg("I2"), py::arg("M")
)
.def("InsertKnot",
(void (Geom_BSplineCurve::*)( const Standard_Real , const Standard_Integer , const Standard_Real , const Standard_Boolean ) ) static_cast<void (Geom_BSplineCurve::*)( const Standard_Real , const Standard_Integer , const Standard_Real , const Standard_Boolean ) >(&Geom_BSplineCurve::InsertKnot),
R"#(Inserts a knot value in the sequence of knots. If <U> is an existing knot the multiplicity is increased by <M>.)#" , py::arg("U"), py::arg("M")=static_cast<const Standard_Integer>(1), py::arg("ParametricTolerance")=static_cast<const Standard_Real>(0.0), py::arg("Add")=static_cast<const Standard_Boolean>(Standard_True)
)
.def("InsertKnots",
(void (Geom_BSplineCurve::*)( const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const Standard_Real , const Standard_Boolean ) ) static_cast<void (Geom_BSplineCurve::*)( const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const Standard_Real , const Standard_Boolean ) >(&Geom_BSplineCurve::InsertKnots),
R"#(Inserts a set of knots values in the sequence of knots.)#" , py::arg("Knots"), py::arg("Mults"), py::arg("ParametricTolerance")=static_cast<const Standard_Real>(0.0), py::arg("Add")=static_cast<const Standard_Boolean>(Standard_False)
)
.def("RemoveKnot",
(Standard_Boolean (Geom_BSplineCurve::*)( const Standard_Integer , const Standard_Integer , const Standard_Real ) ) static_cast<Standard_Boolean (Geom_BSplineCurve::*)( const Standard_Integer , const Standard_Integer , const Standard_Real ) >(&Geom_BSplineCurve::RemoveKnot),
R"#(Reduces the multiplicity of the knot of index Index to M. If M is equal to 0, the knot is removed. With a modification of this type, the array of poles is also modified. Two different algorithms are systematically used to compute the new poles of the curve. If, for each pole, the distance between the pole calculated using the first algorithm and the same pole calculated using the second algorithm, is less than Tolerance, this ensures that the curve is not modified by more than Tolerance. Under these conditions, true is returned; otherwise, false is returned. A low tolerance is used to prevent modification of the curve. A high tolerance is used to "smooth" the curve. Exceptions Standard_OutOfRange if Index is outside the bounds of the knots table. pole insertion and pole removing this operation is limited to the Uniform or QuasiUniform BSplineCurve. The knot values are modified . If the BSpline is NonUniform or Piecewise Bezier an exception Construction error is raised.)#" , py::arg("Index"), py::arg("M"), py::arg("Tolerance")
)
.def("Reverse",
(void (Geom_BSplineCurve::*)() ) static_cast<void (Geom_BSplineCurve::*)() >(&Geom_BSplineCurve::Reverse),
R"#(Changes the direction of parametrization of <me>. The Knot sequence is modified, the FirstParameter and the LastParameter are not modified. The StartPoint of the initial curve becomes the EndPoint of the reversed curve and the EndPoint of the initial curve becomes the StartPoint of the reversed curve.)#"
)
.def("ReversedParameter",
(Standard_Real (Geom_BSplineCurve::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_BSplineCurve::*)( const Standard_Real ) const>(&Geom_BSplineCurve::ReversedParameter),
R"#(Returns the parameter on the reversed curve for the point of parameter U on <me>.)#" , py::arg("U")
)
.def("Segment",
(void (Geom_BSplineCurve::*)( const Standard_Real , const Standard_Real , const Standard_Real ) ) static_cast<void (Geom_BSplineCurve::*)( const Standard_Real , const Standard_Real , const Standard_Real ) >(&Geom_BSplineCurve::Segment),
R"#(Modifies this BSpline curve by segmenting it between U1 and U2. Either of these values can be outside the bounds of the curve, but U2 must be greater than U1. All data structure tables of this BSpline curve are modified, but the knots located between U1 and U2 are retained. The degree of the curve is not modified.)#" , py::arg("U1"), py::arg("U2"), py::arg("theTolerance")=static_cast<const Standard_Real>(Precision :: PConfusion ( ))
)
.def("SetKnot",
(void (Geom_BSplineCurve::*)( const Standard_Integer , const Standard_Real ) ) static_cast<void (Geom_BSplineCurve::*)( const Standard_Integer , const Standard_Real ) >(&Geom_BSplineCurve::SetKnot),
R"#(Modifies this BSpline curve by assigning the value K to the knot of index Index in the knots table. This is a relatively local modification because K must be such that: Knots(Index - 1) < K < Knots(Index + 1) The second syntax allows you also to increase the multiplicity of the knot to M (but it is not possible to decrease the multiplicity of the knot with this function). Standard_ConstructionError if: - K is not such that: Knots(Index - 1) < K < Knots(Index + 1) - M is greater than the degree of this BSpline curve or lower than the previous multiplicity of knot of index Index in the knots table. Standard_OutOfRange if Index is outside the bounds of the knots table.)#" , py::arg("Index"), py::arg("K")
)
.def("SetKnots",
(void (Geom_BSplineCurve::*)( const NCollection_Array1<Standard_Real> & ) ) static_cast<void (Geom_BSplineCurve::*)( const NCollection_Array1<Standard_Real> & ) >(&Geom_BSplineCurve::SetKnots),
R"#(Modifies this BSpline curve by assigning the array K to its knots table. The multiplicity of the knots is not modified. Exceptions Standard_ConstructionError if the values in the array K are not in ascending order. Standard_OutOfRange if the bounds of the array K are not respectively 1 and the number of knots of this BSpline curve.)#" , py::arg("K")
)
.def("SetKnot",
(void (Geom_BSplineCurve::*)( const Standard_Integer , const Standard_Real , const Standard_Integer ) ) static_cast<void (Geom_BSplineCurve::*)( const Standard_Integer , const Standard_Real , const Standard_Integer ) >(&Geom_BSplineCurve::SetKnot),
R"#(Changes the knot of range Index with its multiplicity. You can increase the multiplicity of a knot but it is not allowed to decrease the multiplicity of an existing knot.)#" , py::arg("Index"), py::arg("K"), py::arg("M")
)
.def("SetPeriodic",
(void (Geom_BSplineCurve::*)() ) static_cast<void (Geom_BSplineCurve::*)() >(&Geom_BSplineCurve::SetPeriodic),
R"#(Changes this BSpline curve into a periodic curve. To become periodic, the curve must first be closed. Next, the knot sequence must be periodic. For this, FirstUKnotIndex and LastUKnotIndex are used to compute I1 and I2, the indexes in the knots array of the knots corresponding to the first and last parameters of this BSpline curve. The period is therefore: Knots(I2) - Knots(I1). Consequently, the knots and poles tables are modified. Exceptions Standard_ConstructionError if this BSpline curve is not closed.)#"
)
.def("SetOrigin",
(void (Geom_BSplineCurve::*)( const Standard_Integer ) ) static_cast<void (Geom_BSplineCurve::*)( const Standard_Integer ) >(&Geom_BSplineCurve::SetOrigin),
R"#(Assigns the knot of index Index in the knots table as the origin of this periodic BSpline curve. As a consequence, the knots and poles tables are modified. Exceptions Standard_NoSuchObject if this curve is not periodic. Standard_DomainError if Index is outside the bounds of the knots table.)#" , py::arg("Index")
)
.def("SetOrigin",
(void (Geom_BSplineCurve::*)( const Standard_Real , const Standard_Real ) ) static_cast<void (Geom_BSplineCurve::*)( const Standard_Real , const Standard_Real ) >(&Geom_BSplineCurve::SetOrigin),
R"#(Set the origin of a periodic curve at Knot U. If U is not a knot of the BSpline a new knot is inserted. KnotVector and poles are modified. Raised if the curve is not periodic)#" , py::arg("U"), py::arg("Tol")
)
.def("SetNotPeriodic",
(void (Geom_BSplineCurve::*)() ) static_cast<void (Geom_BSplineCurve::*)() >(&Geom_BSplineCurve::SetNotPeriodic),
R"#(Changes this BSpline curve into a non-periodic curve. If this curve is already non-periodic, it is not modified. Note: the poles and knots tables are modified. Warning If this curve is periodic, as the multiplicity of the first and last knots is not modified, and is not equal to Degree + 1, where Degree is the degree of this BSpline curve, the start and end points of the curve are not its first and last poles.)#"
)
.def("SetPole",
(void (Geom_BSplineCurve::*)( const Standard_Integer , const gp_Pnt & ) ) static_cast<void (Geom_BSplineCurve::*)( const Standard_Integer , const gp_Pnt & ) >(&Geom_BSplineCurve::SetPole),
R"#(Modifies this BSpline curve by assigning P to the pole of index Index in the poles table. Exceptions Standard_OutOfRange if Index is outside the bounds of the poles table. Standard_ConstructionError if Weight is negative or null.)#" , py::arg("Index"), py::arg("P")
)
.def("SetPole",
(void (Geom_BSplineCurve::*)( const Standard_Integer , const gp_Pnt & , const Standard_Real ) ) static_cast<void (Geom_BSplineCurve::*)( const Standard_Integer , const gp_Pnt & , const Standard_Real ) >(&Geom_BSplineCurve::SetPole),
R"#(Modifies this BSpline curve by assigning P to the pole of index Index in the poles table. This syntax also allows you to modify the weight of the modified pole, which becomes Weight. In this case, if this BSpline curve is non-rational, it can become rational and vice versa. Exceptions Standard_OutOfRange if Index is outside the bounds of the poles table. Standard_ConstructionError if Weight is negative or null.)#" , py::arg("Index"), py::arg("P"), py::arg("Weight")
)
.def("SetWeight",
(void (Geom_BSplineCurve::*)( const Standard_Integer , const Standard_Real ) ) static_cast<void (Geom_BSplineCurve::*)( const Standard_Integer , const Standard_Real ) >(&Geom_BSplineCurve::SetWeight),
R"#(Changes the weight for the pole of range Index. If the curve was non rational it can become rational. If the curve was rational it can become non rational.)#" , py::arg("Index"), py::arg("Weight")
)
.def("IsCN",
(Standard_Boolean (Geom_BSplineCurve::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom_BSplineCurve::*)( const Standard_Integer ) const>(&Geom_BSplineCurve::IsCN),
R"#(Returns the continuity of the curve, the curve is at least C0. Raised if N < 0.)#" , py::arg("N")
)
.def("IsG1",
(Standard_Boolean (Geom_BSplineCurve::*)( const Standard_Real , const Standard_Real , const Standard_Real ) const) static_cast<Standard_Boolean (Geom_BSplineCurve::*)( const Standard_Real , const Standard_Real , const Standard_Real ) const>(&Geom_BSplineCurve::IsG1),
R"#(Check if curve has at least G1 continuity in interval [theTf, theTl] Returns true if IsCN(1) or angle between "left" and "right" first derivatives at knots with C0 continuity is less then theAngTol only knots in interval [theTf, theTl] is checked)#" , py::arg("theTf"), py::arg("theTl"), py::arg("theAngTol")
)
.def("IsClosed",
(Standard_Boolean (Geom_BSplineCurve::*)() const) static_cast<Standard_Boolean (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::IsClosed),
R"#(Returns true if the distance between the first point and the last point of the curve is lower or equal to Resolution from package gp. Warnings : The first and the last point can be different from the first pole and the last pole of the curve.)#"
)
.def("IsPeriodic",
(Standard_Boolean (Geom_BSplineCurve::*)() const) static_cast<Standard_Boolean (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::IsPeriodic),
R"#(Returns True if the curve is periodic.)#"
)
.def("IsRational",
(Standard_Boolean (Geom_BSplineCurve::*)() const) static_cast<Standard_Boolean (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::IsRational),
R"#(Returns True if the weights are not identical. The tolerance criterion is Epsilon of the class Real.)#"
)
.def("Continuity",
(GeomAbs_Shape (Geom_BSplineCurve::*)() const) static_cast<GeomAbs_Shape (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::Continuity),
R"#(Returns the global continuity of the curve : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, CN : the order of continuity is infinite. For a B-spline curve of degree d if a knot Ui has a multiplicity p the B-spline curve is only Cd-p continuous at Ui. So the global continuity of the curve can't be greater than Cd-p where p is the maximum multiplicity of the interior Knots. In the interior of a knot span the curve is infinitely continuously differentiable.)#"
)
.def("Degree",
(Standard_Integer (Geom_BSplineCurve::*)() const) static_cast<Standard_Integer (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::Degree),
R"#(Returns the degree of this BSpline curve. The degree of a Geom_BSplineCurve curve cannot be greater than Geom_BSplineCurve::MaxDegree(). Computation of value and derivatives)#"
)
.def("D0",
(void (Geom_BSplineCurve::*)( const Standard_Real , gp_Pnt & ) const) static_cast<void (Geom_BSplineCurve::*)( const Standard_Real , gp_Pnt & ) const>(&Geom_BSplineCurve::D0),
R"#(Returns in P the point of parameter U.)#" , py::arg("U"), py::arg("P")
)
.def("D1",
(void (Geom_BSplineCurve::*)( const Standard_Real , gp_Pnt & , gp_Vec & ) const) static_cast<void (Geom_BSplineCurve::*)( const Standard_Real , gp_Pnt & , gp_Vec & ) const>(&Geom_BSplineCurve::D1),
R"#(Raised if the continuity of the curve is not C1.)#" , py::arg("U"), py::arg("P"), py::arg("V1")
)
.def("D2",
(void (Geom_BSplineCurve::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_BSplineCurve::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const>(&Geom_BSplineCurve::D2),
R"#(Raised if the continuity of the curve is not C2.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2")
)
.def("D3",
(void (Geom_BSplineCurve::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_BSplineCurve::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_BSplineCurve::D3),
R"#(Raised if the continuity of the curve is not C3.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2"), py::arg("V3")
)
.def("DN",
(gp_Vec (Geom_BSplineCurve::*)( const Standard_Real , const Standard_Integer ) const) static_cast<gp_Vec (Geom_BSplineCurve::*)( const Standard_Real , const Standard_Integer ) const>(&Geom_BSplineCurve::DN),
R"#(For the point of parameter U of this BSpline curve, computes the vector corresponding to the Nth derivative. Warning On a point where the continuity of the curve is not the one requested, this function impacts the part defined by the parameter with a value greater than U, i.e. the part of the curve to the "right" of the singularity. Exceptions Standard_RangeError if N is less than 1.)#" , py::arg("U"), py::arg("N")
)
.def("LocalValue",
(gp_Pnt (Geom_BSplineCurve::*)( const Standard_Real , const Standard_Integer , const Standard_Integer ) const) static_cast<gp_Pnt (Geom_BSplineCurve::*)( const Standard_Real , const Standard_Integer , const Standard_Integer ) const>(&Geom_BSplineCurve::LocalValue),
R"#(Raised if FromK1 = ToK2.)#" , py::arg("U"), py::arg("FromK1"), py::arg("ToK2")
)
.def("LocalD0",
(void (Geom_BSplineCurve::*)( const Standard_Real , const Standard_Integer , const Standard_Integer , gp_Pnt & ) const) static_cast<void (Geom_BSplineCurve::*)( const Standard_Real , const Standard_Integer , const Standard_Integer , gp_Pnt & ) const>(&Geom_BSplineCurve::LocalD0),
R"#(Raised if FromK1 = ToK2.)#" , py::arg("U"), py::arg("FromK1"), py::arg("ToK2"), py::arg("P")
)
.def("LocalD1",
(void (Geom_BSplineCurve::*)( const Standard_Real , const Standard_Integer , const Standard_Integer , gp_Pnt & , gp_Vec & ) const) static_cast<void (Geom_BSplineCurve::*)( const Standard_Real , const Standard_Integer , const Standard_Integer , gp_Pnt & , gp_Vec & ) const>(&Geom_BSplineCurve::LocalD1),
R"#(Raised if the local continuity of the curve is not C1 between the knot K1 and the knot K2. Raised if FromK1 = ToK2.)#" , py::arg("U"), py::arg("FromK1"), py::arg("ToK2"), py::arg("P"), py::arg("V1")
)
.def("LocalD2",
(void (Geom_BSplineCurve::*)( const Standard_Real , const Standard_Integer , const Standard_Integer , gp_Pnt & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_BSplineCurve::*)( const Standard_Real , const Standard_Integer , const Standard_Integer , gp_Pnt & , gp_Vec & , gp_Vec & ) const>(&Geom_BSplineCurve::LocalD2),
R"#(Raised if the local continuity of the curve is not C2 between the knot K1 and the knot K2. Raised if FromK1 = ToK2.)#" , py::arg("U"), py::arg("FromK1"), py::arg("ToK2"), py::arg("P"), py::arg("V1"), py::arg("V2")
)
.def("LocalD3",
(void (Geom_BSplineCurve::*)( const Standard_Real , const Standard_Integer , const Standard_Integer , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_BSplineCurve::*)( const Standard_Real , const Standard_Integer , const Standard_Integer , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_BSplineCurve::LocalD3),
R"#(Raised if the local continuity of the curve is not C3 between the knot K1 and the knot K2. Raised if FromK1 = ToK2.)#" , py::arg("U"), py::arg("FromK1"), py::arg("ToK2"), py::arg("P"), py::arg("V1"), py::arg("V2"), py::arg("V3")
)
.def("LocalDN",
(gp_Vec (Geom_BSplineCurve::*)( const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Integer ) const) static_cast<gp_Vec (Geom_BSplineCurve::*)( const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Integer ) const>(&Geom_BSplineCurve::LocalDN),
R"#(Raised if the local continuity of the curve is not CN between the knot K1 and the knot K2. Raised if FromK1 = ToK2. Raised if N < 1.)#" , py::arg("U"), py::arg("FromK1"), py::arg("ToK2"), py::arg("N")
)
.def("EndPoint",
(gp_Pnt (Geom_BSplineCurve::*)() const) static_cast<gp_Pnt (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::EndPoint),
R"#(Returns the last point of the curve. Warnings : The last point of the curve is different from the last pole of the curve if the multiplicity of the last knot is lower than Degree.)#"
)
.def("FirstUKnotIndex",
(Standard_Integer (Geom_BSplineCurve::*)() const) static_cast<Standard_Integer (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::FirstUKnotIndex),
R"#(Returns the index in the knot array of the knot corresponding to the first or last parameter of this BSpline curve. For a BSpline curve, the first (or last) parameter (which gives the start (or end) point of the curve) is a knot value. However, if the multiplicity of the first (or last) knot is less than Degree + 1, where Degree is the degree of the curve, it is not the first (or last) knot of the curve.)#"
)
.def("FirstParameter",
(Standard_Real (Geom_BSplineCurve::*)() const) static_cast<Standard_Real (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::FirstParameter),
R"#(Returns the value of the first parameter of this BSpline curve. This is a knot value. The first parameter is the one of the start point of the BSpline curve.)#"
)
.def("Knot",
(Standard_Real (Geom_BSplineCurve::*)( const Standard_Integer ) const) static_cast<Standard_Real (Geom_BSplineCurve::*)( const Standard_Integer ) const>(&Geom_BSplineCurve::Knot),
R"#(Returns the knot of range Index. When there is a knot with a multiplicity greater than 1 the knot is not repeated. The method Multiplicity can be used to get the multiplicity of the Knot. Raised if Index < 1 or Index > NbKnots)#" , py::arg("Index")
)
.def("Knots",
(void (Geom_BSplineCurve::*)( NCollection_Array1<Standard_Real> & ) const) static_cast<void (Geom_BSplineCurve::*)( NCollection_Array1<Standard_Real> & ) const>(&Geom_BSplineCurve::Knots),
R"#(returns the knot values of the B-spline curve; Warning A knot with a multiplicity greater than 1 is not repeated in the knot table. The Multiplicity function can be used to obtain the multiplicity of each knot.)#" , py::arg("K")
)
.def("KnotSequence",
(void (Geom_BSplineCurve::*)( NCollection_Array1<Standard_Real> & ) const) static_cast<void (Geom_BSplineCurve::*)( NCollection_Array1<Standard_Real> & ) const>(&Geom_BSplineCurve::KnotSequence),
R"#(Returns K, the knots sequence of this BSpline curve. In this sequence, knots with a multiplicity greater than 1 are repeated. In the case of a non-periodic curve the length of the sequence must be equal to the sum of the NbKnots multiplicities of the knots of the curve (where NbKnots is the number of knots of this BSpline curve). This sum is also equal to : NbPoles + Degree + 1 where NbPoles is the number of poles and Degree the degree of this BSpline curve. In the case of a periodic curve, if there are k periodic knots, the period is Knot(k+1) - Knot(1). The initial sequence is built by writing knots 1 to k+1, which are repeated according to their corresponding multiplicities. If Degree is the degree of the curve, the degree of continuity of the curve at the knot of index 1 (or k+1) is equal to c = Degree + 1 - Mult(1). c knots are then inserted at the beginning and end of the initial sequence: - the c values of knots preceding the first item Knot(k+1) in the initial sequence are inserted at the beginning; the period is subtracted from these c values; - the c values of knots following the last item Knot(1) in the initial sequence are inserted at the end; the period is added to these c values. The length of the sequence must therefore be equal to: NbPoles + 2*Degree - Mult(1) + 2. Example For a non-periodic BSpline curve of degree 2 where: - the array of knots is: { k1 k2 k3 k4 }, - with associated multiplicities: { 3 1 2 3 }, the knot sequence is: K = { k1 k1 k1 k2 k3 k3 k4 k4 k4 } For a periodic BSpline curve of degree 4 , which is "C1" continuous at the first knot, and where : - the periodic knots are: { k1 k2 k3 (k4) } (3 periodic knots: the points of parameter k1 and k4 are identical, the period is p = k4 - k1), - with associated multiplicities: { 3 1 2 (3) }, the degree of continuity at knots k1 and k4 is: Degree + 1 - Mult(i) = 2. 2 supplementary knots are added at the beginning and end of the sequence: - at the beginning: the 2 knots preceding k4 minus the period; in this example, this is k3 - p both times; - at the end: the 2 knots following k1 plus the period; in this example, this is k2 + p and k3 + p. The knot sequence is therefore: K = { k3-p k3-p k1 k1 k1 k2 k3 k3 k4 k4 k4 k2+p k3+p } Exceptions Raised if K.Lower() is less than number of first knot in knot sequence with repetitions or K.Upper() is more than number of last knot in knot sequence with repetitions.)#" , py::arg("K")
)
.def("KnotDistribution",
(GeomAbs_BSplKnotDistribution (Geom_BSplineCurve::*)() const) static_cast<GeomAbs_BSplKnotDistribution (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::KnotDistribution),
R"#(Returns NonUniform or Uniform or QuasiUniform or PiecewiseBezier. If all the knots differ by a positive constant from the preceding knot the BSpline Curve can be : - Uniform if all the knots are of multiplicity 1, - QuasiUniform if all the knots are of multiplicity 1 except for the first and last knot which are of multiplicity Degree + 1, - PiecewiseBezier if the first and last knots have multiplicity Degree + 1 and if interior knots have multiplicity Degree A piecewise Bezier with only two knots is a BezierCurve. else the curve is non uniform. The tolerance criterion is Epsilon from class Real.)#"
)
.def("LastUKnotIndex",
(Standard_Integer (Geom_BSplineCurve::*)() const) static_cast<Standard_Integer (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::LastUKnotIndex),
R"#(For a BSpline curve the last parameter (which gives the end point of the curve) is a knot value but if the multiplicity of the last knot index is lower than Degree + 1 it is not the last knot of the curve. This method computes the index of the knot corresponding to the last parameter.)#"
)
.def("LastParameter",
(Standard_Real (Geom_BSplineCurve::*)() const) static_cast<Standard_Real (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::LastParameter),
R"#(Computes the parametric value of the end point of the curve. It is a knot value.)#"
)
.def("Multiplicity",
(Standard_Integer (Geom_BSplineCurve::*)( const Standard_Integer ) const) static_cast<Standard_Integer (Geom_BSplineCurve::*)( const Standard_Integer ) const>(&Geom_BSplineCurve::Multiplicity),
R"#(Returns the multiplicity of the knots of range Index. Raised if Index < 1 or Index > NbKnots)#" , py::arg("Index")
)
.def("Multiplicities",
(void (Geom_BSplineCurve::*)( NCollection_Array1<Standard_Integer> & ) const) static_cast<void (Geom_BSplineCurve::*)( NCollection_Array1<Standard_Integer> & ) const>(&Geom_BSplineCurve::Multiplicities),
R"#(Returns the multiplicity of the knots of the curve.)#" , py::arg("M")
)
.def("NbKnots",
(Standard_Integer (Geom_BSplineCurve::*)() const) static_cast<Standard_Integer (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::NbKnots),
R"#(Returns the number of knots. This method returns the number of knot without repetition of multiple knots.)#"
)
.def("NbPoles",
(Standard_Integer (Geom_BSplineCurve::*)() const) static_cast<Standard_Integer (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::NbPoles),
R"#(Returns the number of poles)#"
)
.def("Pole",
(const gp_Pnt & (Geom_BSplineCurve::*)( const Standard_Integer ) const) static_cast<const gp_Pnt & (Geom_BSplineCurve::*)( const Standard_Integer ) const>(&Geom_BSplineCurve::Pole),
R"#(Returns the pole of range Index. Raised if Index < 1 or Index > NbPoles.)#" , py::arg("Index")
)
.def("Poles",
(void (Geom_BSplineCurve::*)( NCollection_Array1<gp_Pnt> & ) const) static_cast<void (Geom_BSplineCurve::*)( NCollection_Array1<gp_Pnt> & ) const>(&Geom_BSplineCurve::Poles),
R"#(Returns the poles of the B-spline curve;)#" , py::arg("P")
)
.def("StartPoint",
(gp_Pnt (Geom_BSplineCurve::*)() const) static_cast<gp_Pnt (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::StartPoint),
R"#(Returns the start point of the curve. Warnings : This point is different from the first pole of the curve if the multiplicity of the first knot is lower than Degree.)#"
)
.def("Weight",
(Standard_Real (Geom_BSplineCurve::*)( const Standard_Integer ) const) static_cast<Standard_Real (Geom_BSplineCurve::*)( const Standard_Integer ) const>(&Geom_BSplineCurve::Weight),
R"#(Returns the weight of the pole of range Index . Raised if Index < 1 or Index > NbPoles.)#" , py::arg("Index")
)
.def("Weights",
(void (Geom_BSplineCurve::*)( NCollection_Array1<Standard_Real> & ) const) static_cast<void (Geom_BSplineCurve::*)( NCollection_Array1<Standard_Real> & ) const>(&Geom_BSplineCurve::Weights),
R"#(Returns the weights of the B-spline curve;)#" , py::arg("W")
)
.def("Weights",
(const TColStd_Array1OfReal * (Geom_BSplineCurve::*)() const) static_cast<const TColStd_Array1OfReal * (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::Weights),
R"#(Returns the weights of the B-spline curve;)#"
)
.def("Transform",
(void (Geom_BSplineCurve::*)( const gp_Trsf & ) ) static_cast<void (Geom_BSplineCurve::*)( const gp_Trsf & ) >(&Geom_BSplineCurve::Transform),
R"#(Applies the transformation T to this BSpline curve.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom_Geometry> (Geom_BSplineCurve::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::Copy),
R"#(Creates a new object which is a copy of this BSpline curve.)#"
)
.def("IsEqual",
(Standard_Boolean (Geom_BSplineCurve::*)( const opencascade::handle<Geom_BSplineCurve> & , const Standard_Real ) const) static_cast<Standard_Boolean (Geom_BSplineCurve::*)( const opencascade::handle<Geom_BSplineCurve> & , const Standard_Real ) const>(&Geom_BSplineCurve::IsEqual),
R"#(Comapare two Bspline curve on identity;)#" , py::arg("theOther"), py::arg("thePreci")
)
.def("DumpJson",
(void (Geom_BSplineCurve::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom_BSplineCurve::*)( std::ostream & , Standard_Integer ) const>(&Geom_BSplineCurve::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
.def("PeriodicNormalization",
[]( Geom_BSplineCurve &self ){
Standard_Real U;
self.PeriodicNormalization(U);
return std::make_tuple(U); },
R"#(returns the parameter normalized within the period if the curve is periodic : otherwise does not do anything)#"
)
.def("MovePoint",
[]( Geom_BSplineCurve &self , const Standard_Real U,const gp_Pnt & P,const Standard_Integer Index1,const Standard_Integer Index2 ){
Standard_Integer FirstModifiedPole;
Standard_Integer LastModifiedPole;
self.MovePoint(U,P,Index1,Index2,FirstModifiedPole,LastModifiedPole);
return std::make_tuple(FirstModifiedPole,LastModifiedPole); },
R"#(Moves the point of parameter U of this BSpline curve to P. Index1 and Index2 are the indexes in the table of poles of this BSpline curve of the first and last poles designated to be moved. FirstModifiedPole and LastModifiedPole are the indexes of the first and last poles which are effectively modified. In the event of incompatibility between Index1, Index2 and the value U: - no change is made to this BSpline curve, and - the FirstModifiedPole and LastModifiedPole are returned null. Exceptions Standard_OutOfRange if: - Index1 is greater than or equal to Index2, or - Index1 or Index2 is less than 1 or greater than the number of poles of this BSpline curve.)#" , py::arg("U"), py::arg("P"), py::arg("Index1"), py::arg("Index2")
)
.def("MovePointAndTangent",
[]( Geom_BSplineCurve &self , const Standard_Real U,const gp_Pnt & P,const gp_Vec & Tangent,const Standard_Real Tolerance,const Standard_Integer StartingCondition,const Standard_Integer EndingCondition ){
Standard_Integer ErrorStatus;
self.MovePointAndTangent(U,P,Tangent,Tolerance,StartingCondition,EndingCondition,ErrorStatus);
return std::make_tuple(ErrorStatus); },
R"#(Move a point with parameter U to P. and makes it tangent at U be Tangent. StartingCondition = -1 means first can move EndingCondition = -1 means last point can move StartingCondition = 0 means the first point cannot move EndingCondition = 0 means the last point cannot move StartingCondition = 1 means the first point and tangent cannot move EndingCondition = 1 means the last point and tangent cannot move and so forth ErrorStatus != 0 means that there are not enough degree of freedom with the constrain to deform the curve accordingly)#" , py::arg("U"), py::arg("P"), py::arg("Tangent"), py::arg("Tolerance"), py::arg("StartingCondition"), py::arg("EndingCondition")
)
.def("LocateU",
[]( Geom_BSplineCurve &self , const Standard_Real U,const Standard_Real ParametricTolerance,const Standard_Boolean WithKnotRepetition ){
Standard_Integer I1;
Standard_Integer I2;
self.LocateU(U,ParametricTolerance,I1,I2,WithKnotRepetition);
return std::make_tuple(I1,I2); },
R"#(Locates the parametric value U in the sequence of knots. If "WithKnotRepetition" is True we consider the knot's representation with repetition of multiple knot value, otherwise we consider the knot's representation with no repetition of multiple knot values. Knots (I1) <= U <= Knots (I2) . if I1 = I2 U is a knot value (the tolerance criterion ParametricTolerance is used). . if I1 < 1 => U < Knots (1) - Abs(ParametricTolerance) . if I2 > NbKnots => U > Knots (NbKnots) + Abs(ParametricTolerance))#" , py::arg("U"), py::arg("ParametricTolerance"), py::arg("WithKnotRepetition")=static_cast<const Standard_Boolean>(Standard_False)
)
.def("Resolution",
[]( Geom_BSplineCurve &self , const Standard_Real Tolerance3D ){
Standard_Real UTolerance;
self.Resolution(Tolerance3D,UTolerance);
return std::make_tuple(UTolerance); },
R"#(Computes for this BSpline curve the parametric tolerance UTolerance for a given 3D tolerance Tolerance3D. If f(t) is the equation of this BSpline curve, UTolerance ensures that: | t1 - t0| < Utolerance ===> |f(t1) - f(t0)| < Tolerance3D)#" , py::arg("Tolerance3D")
)
// static methods
.def_static("MaxDegree_s",
(Standard_Integer (*)() ) static_cast<Standard_Integer (*)() >(&Geom_BSplineCurve::MaxDegree),
R"#(Returns the value of the maximum degree of the normalized B-spline basis functions in this package.)#"
)
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_BSplineCurve::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_BSplineCurve::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Knots",
(const TColStd_Array1OfReal & (Geom_BSplineCurve::*)() const) static_cast<const TColStd_Array1OfReal & (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::Knots),
R"#(returns the knot values of the B-spline curve; Warning A knot with a multiplicity greater than 1 is not repeated in the knot table. The Multiplicity function can be used to obtain the multiplicity of each knot.)#"
, py::return_value_policy::reference_internal
)
.def("KnotSequence",
(const TColStd_Array1OfReal & (Geom_BSplineCurve::*)() const) static_cast<const TColStd_Array1OfReal & (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::KnotSequence),
R"#(returns the knots of the B-spline curve. Knots with multiplicit greater than 1 are repeated)#"
, py::return_value_policy::reference_internal
)
.def("Multiplicities",
(const TColStd_Array1OfInteger & (Geom_BSplineCurve::*)() const) static_cast<const TColStd_Array1OfInteger & (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::Multiplicities),
R"#(returns the multiplicity of the knots of the curve.)#"
, py::return_value_policy::reference_internal
)
.def("Poles",
(const TColgp_Array1OfPnt & (Geom_BSplineCurve::*)() const) static_cast<const TColgp_Array1OfPnt & (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::Poles),
R"#(Returns the poles of the B-spline curve;)#"
, py::return_value_policy::reference_internal
)
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_BSplineCurve::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_BSplineCurve::*)() const>(&Geom_BSplineCurve::DynamicType),
R"#(None)#"
)
;
// Class Geom_BSplineSurface from ./opencascade/Geom_BSplineSurface.hxx
klass = m.attr("Geom_BSplineSurface");
// nested enums
static_cast<py::class_<Geom_BSplineSurface ,opencascade::handle<Geom_BSplineSurface> , Geom_BoundedSurface >>(klass)
// constructors
.def(py::init< const NCollection_Array2<gp_Pnt> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Integer> &, const NCollection_Array1<Standard_Integer> &,const Standard_Integer,const Standard_Integer,const Standard_Boolean,const Standard_Boolean >() , py::arg("Poles"), py::arg("UKnots"), py::arg("VKnots"), py::arg("UMults"), py::arg("VMults"), py::arg("UDegree"), py::arg("VDegree"), py::arg("UPeriodic")=static_cast<const Standard_Boolean>(Standard_False), py::arg("VPeriodic")=static_cast<const Standard_Boolean>(Standard_False) )
.def(py::init< const NCollection_Array2<gp_Pnt> &, const NCollection_Array2<Standard_Real> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Integer> &, const NCollection_Array1<Standard_Integer> &,const Standard_Integer,const Standard_Integer,const Standard_Boolean,const Standard_Boolean >() , py::arg("Poles"), py::arg("Weights"), py::arg("UKnots"), py::arg("VKnots"), py::arg("UMults"), py::arg("VMults"), py::arg("UDegree"), py::arg("VDegree"), py::arg("UPeriodic")=static_cast<const Standard_Boolean>(Standard_False), py::arg("VPeriodic")=static_cast<const Standard_Boolean>(Standard_False) )
// custom constructors
// methods
.def("ExchangeUV",
(void (Geom_BSplineSurface::*)() ) static_cast<void (Geom_BSplineSurface::*)() >(&Geom_BSplineSurface::ExchangeUV),
R"#(Exchanges the u and v parametric directions on this BSpline surface. As a consequence: - the poles and weights tables are transposed, - the knots and multiplicities tables are exchanged, - degrees of continuity, and rational, periodic and uniform characteristics are exchanged, and - the orientation of the surface is inverted.)#"
)
.def("SetUPeriodic",
(void (Geom_BSplineSurface::*)() ) static_cast<void (Geom_BSplineSurface::*)() >(&Geom_BSplineSurface::SetUPeriodic),
R"#(Sets the surface U periodic. Modifies this surface to be periodic in the U parametric direction. To become periodic in a given parametric direction a surface must be closed in that parametric direction, and the knot sequence relative to that direction must be periodic. To generate this periodic sequence of knots, the functions FirstUKnotIndex and LastUKnotIndex are used to compute I1 and I2. These are the indexes, in the knot array associated with the given parametric direction, of the knots that correspond to the first and last parameters of this BSpline surface in the given parametric direction. Hence the period is: Knots(I1) - Knots(I2) As a result, the knots and poles tables are modified. Exceptions Standard_ConstructionError if the surface is not closed in the given parametric direction.)#"
)
.def("SetVPeriodic",
(void (Geom_BSplineSurface::*)() ) static_cast<void (Geom_BSplineSurface::*)() >(&Geom_BSplineSurface::SetVPeriodic),
R"#(Sets the surface V periodic. Modifies this surface to be periodic in the V parametric direction. To become periodic in a given parametric direction a surface must be closed in that parametric direction, and the knot sequence relative to that direction must be periodic. To generate this periodic sequence of knots, the functions FirstVKnotIndex and LastVKnotIndex are used to compute I1 and I2. These are the indexes, in the knot array associated with the given parametric direction, of the knots that correspond to the first and last parameters of this BSpline surface in the given parametric direction. Hence the period is: Knots(I1) - Knots(I2) As a result, the knots and poles tables are modified. Exceptions Standard_ConstructionError if the surface is not closed in the given parametric direction.)#"
)
.def("SetUOrigin",
(void (Geom_BSplineSurface::*)( const Standard_Integer ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer ) >(&Geom_BSplineSurface::SetUOrigin),
R"#(Assigns the knot of index Index in the knots table in the corresponding parametric direction to be the origin of this periodic BSpline surface. As a consequence, the knots and poles tables are modified. Exceptions Standard_NoSuchObject if this BSpline surface is not periodic in the given parametric direction. Standard_DomainError if Index is outside the bounds of the knots table in the given parametric direction.)#" , py::arg("Index")
)
.def("SetVOrigin",
(void (Geom_BSplineSurface::*)( const Standard_Integer ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer ) >(&Geom_BSplineSurface::SetVOrigin),
R"#(Assigns the knot of index Index in the knots table in the corresponding parametric direction to be the origin of this periodic BSpline surface. As a consequence, the knots and poles tables are modified. Exceptions Standard_NoSuchObject if this BSpline surface is not periodic in the given parametric direction. Standard_DomainError if Index is outside the bounds of the knots table in the given parametric direction.)#" , py::arg("Index")
)
.def("SetUNotPeriodic",
(void (Geom_BSplineSurface::*)() ) static_cast<void (Geom_BSplineSurface::*)() >(&Geom_BSplineSurface::SetUNotPeriodic),
R"#(Sets the surface U not periodic. Changes this BSpline surface into a non-periodic surface along U direction. If this surface is already non-periodic, it is not modified. Note: the poles and knots tables are modified.)#"
)
.def("SetVNotPeriodic",
(void (Geom_BSplineSurface::*)() ) static_cast<void (Geom_BSplineSurface::*)() >(&Geom_BSplineSurface::SetVNotPeriodic),
R"#(Sets the surface V not periodic. Changes this BSpline surface into a non-periodic surface along V direction. If this surface is already non-periodic, it is not modified. Note: the poles and knots tables are modified.)#"
)
.def("UReverse",
(void (Geom_BSplineSurface::*)() ) static_cast<void (Geom_BSplineSurface::*)() >(&Geom_BSplineSurface::UReverse),
R"#(Changes the orientation of this BSpline surface in the U parametric direction. The bounds of the surface are not changed but the given parametric direction is reversed. Hence the orientation of the surface is reversed. The knots and poles tables are modified.)#"
)
.def("VReverse",
(void (Geom_BSplineSurface::*)() ) static_cast<void (Geom_BSplineSurface::*)() >(&Geom_BSplineSurface::VReverse),
R"#(Changes the orientation of this BSpline surface in the V parametric direction. The bounds of the surface are not changed but the given parametric direction is reversed. Hence the orientation of the surface is reversed. The knots and poles tables are modified.)#"
)
.def("UReversedParameter",
(Standard_Real (Geom_BSplineSurface::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_BSplineSurface::*)( const Standard_Real ) const>(&Geom_BSplineSurface::UReversedParameter),
R"#(Computes the u parameter on the modified surface, produced by reversing its U parametric direction, for the point of u parameter U, on this BSpline surface. For a BSpline surface, these functions return respectively: - UFirst + ULast - U, where UFirst, ULast are the values of the first and last parameters of this BSpline surface, in the u parametric directions.)#" , py::arg("U")
)
.def("VReversedParameter",
(Standard_Real (Geom_BSplineSurface::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_BSplineSurface::*)( const Standard_Real ) const>(&Geom_BSplineSurface::VReversedParameter),
R"#(Computes the v parameter on the modified surface, produced by reversing its V parametric direction, for the point of v parameter V on this BSpline surface. For a BSpline surface, these functions return respectively: - VFirst + VLast - V, VFirst and VLast are the values of the first and last parameters of this BSpline surface, in the v pametric directions.)#" , py::arg("V")
)
.def("IncreaseDegree",
(void (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Integer ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Integer ) >(&Geom_BSplineSurface::IncreaseDegree),
R"#(Increases the degrees of this BSpline surface to UDegree and VDegree in the u and v parametric directions respectively. As a result, the tables of poles, weights and multiplicities are modified. The tables of knots is not changed. Note: Nothing is done if the given degree is less than or equal to the current degree in the corresponding parametric direction. Exceptions Standard_ConstructionError if UDegree or VDegree is greater than Geom_BSplineSurface::MaxDegree().)#" , py::arg("UDegree"), py::arg("VDegree")
)
.def("InsertUKnots",
(void (Geom_BSplineSurface::*)( const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const Standard_Real , const Standard_Boolean ) ) static_cast<void (Geom_BSplineSurface::*)( const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const Standard_Real , const Standard_Boolean ) >(&Geom_BSplineSurface::InsertUKnots),
R"#(Inserts into the knots table for the U parametric direction of this BSpline surface: - the values of the array Knots, with their respective multiplicities, Mults. If the knot value to insert already exists in the table, its multiplicity is: - increased by M, if Add is true (the default), or - increased to M, if Add is false. The tolerance criterion used to check the equality of the knots is the larger of the values ParametricTolerance and Standard_Real::Epsilon(val), where val is the knot value to be inserted. Warning - If a given multiplicity coefficient is null, or negative, nothing is done. - The new multiplicity of a knot is limited to the degree of this BSpline surface in the corresponding parametric direction. Exceptions Standard_ConstructionError if a knot value to insert is outside the bounds of this BSpline surface in the specified parametric direction. The comparison uses the precision criterion ParametricTolerance.)#" , py::arg("Knots"), py::arg("Mults"), py::arg("ParametricTolerance")=static_cast<const Standard_Real>(0.0), py::arg("Add")=static_cast<const Standard_Boolean>(Standard_True)
)
.def("InsertVKnots",
(void (Geom_BSplineSurface::*)( const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const Standard_Real , const Standard_Boolean ) ) static_cast<void (Geom_BSplineSurface::*)( const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const Standard_Real , const Standard_Boolean ) >(&Geom_BSplineSurface::InsertVKnots),
R"#(Inserts into the knots table for the V parametric direction of this BSpline surface: - the values of the array Knots, with their respective multiplicities, Mults. If the knot value to insert already exists in the table, its multiplicity is: - increased by M, if Add is true (the default), or - increased to M, if Add is false. The tolerance criterion used to check the equality of the knots is the larger of the values ParametricTolerance and Standard_Real::Epsilon(val), where val is the knot value to be inserted. Warning - If a given multiplicity coefficient is null, or negative, nothing is done. - The new multiplicity of a knot is limited to the degree of this BSpline surface in the corresponding parametric direction. Exceptions Standard_ConstructionError if a knot value to insert is outside the bounds of this BSpline surface in the specified parametric direction. The comparison uses the precision criterion ParametricTolerance.)#" , py::arg("Knots"), py::arg("Mults"), py::arg("ParametricTolerance")=static_cast<const Standard_Real>(0.0), py::arg("Add")=static_cast<const Standard_Boolean>(Standard_True)
)
.def("RemoveUKnot",
(Standard_Boolean (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Integer , const Standard_Real ) ) static_cast<Standard_Boolean (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Integer , const Standard_Real ) >(&Geom_BSplineSurface::RemoveUKnot),
R"#(Reduces to M the multiplicity of the knot of index Index in the U parametric direction. If M is 0, the knot is removed. With a modification of this type, the table of poles is also modified. Two different algorithms are used systematically to compute the new poles of the surface. For each pole, the distance between the pole calculated using the first algorithm and the same pole calculated using the second algorithm, is checked. If this distance is less than Tolerance it ensures that the surface is not modified by more than Tolerance. Under these conditions, the function returns true; otherwise, it returns false. A low tolerance prevents modification of the surface. A high tolerance "smoothes" the surface. Exceptions Standard_OutOfRange if Index is outside the bounds of the knots table of this BSpline surface.)#" , py::arg("Index"), py::arg("M"), py::arg("Tolerance")
)
.def("RemoveVKnot",
(Standard_Boolean (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Integer , const Standard_Real ) ) static_cast<Standard_Boolean (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Integer , const Standard_Real ) >(&Geom_BSplineSurface::RemoveVKnot),
R"#(Reduces to M the multiplicity of the knot of index Index in the V parametric direction. If M is 0, the knot is removed. With a modification of this type, the table of poles is also modified. Two different algorithms are used systematically to compute the new poles of the surface. For each pole, the distance between the pole calculated using the first algorithm and the same pole calculated using the second algorithm, is checked. If this distance is less than Tolerance it ensures that the surface is not modified by more than Tolerance. Under these conditions, the function returns true; otherwise, it returns false. A low tolerance prevents modification of the surface. A high tolerance "smoothes" the surface. Exceptions Standard_OutOfRange if Index is outside the bounds of the knots table of this BSpline surface.)#" , py::arg("Index"), py::arg("M"), py::arg("Tolerance")
)
.def("IncreaseUMultiplicity",
(void (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Integer ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Integer ) >(&Geom_BSplineSurface::IncreaseUMultiplicity),
R"#(Increases the multiplicity of the knot of range UIndex in the UKnots sequence. M is the new multiplicity. M must be greater than the previous multiplicity and lower or equal to the degree of the surface in the U parametric direction. Raised if M is not in the range [1, UDegree])#" , py::arg("UIndex"), py::arg("M")
)
.def("IncreaseUMultiplicity",
(void (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Integer , const Standard_Integer ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Integer , const Standard_Integer ) >(&Geom_BSplineSurface::IncreaseUMultiplicity),
R"#(Increases until order M the multiplicity of the set of knots FromI1,...., ToI2 in the U direction. This method can be used to make a B_spline surface into a PiecewiseBezier B_spline surface. If <me> was uniform, it can become non uniform.)#" , py::arg("FromI1"), py::arg("ToI2"), py::arg("M")
)
.def("IncrementUMultiplicity",
(void (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Integer , const Standard_Integer ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Integer , const Standard_Integer ) >(&Geom_BSplineSurface::IncrementUMultiplicity),
R"#(Increments the multiplicity of the consecutives uknots FromI1..ToI2 by step. The multiplicity of each knot FromI1,.....,ToI2 must be lower or equal to the UDegree of the B_spline.)#" , py::arg("FromI1"), py::arg("ToI2"), py::arg("Step")
)
.def("IncreaseVMultiplicity",
(void (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Integer ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Integer ) >(&Geom_BSplineSurface::IncreaseVMultiplicity),
R"#(Increases the multiplicity of a knot in the V direction. M is the new multiplicity.)#" , py::arg("VIndex"), py::arg("M")
)
.def("IncreaseVMultiplicity",
(void (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Integer , const Standard_Integer ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Integer , const Standard_Integer ) >(&Geom_BSplineSurface::IncreaseVMultiplicity),
R"#(Increases until order M the multiplicity of the set of knots FromI1,...., ToI2 in the V direction. This method can be used to make a BSplineSurface into a PiecewiseBezier B_spline surface. If <me> was uniform, it can become non-uniform.)#" , py::arg("FromI1"), py::arg("ToI2"), py::arg("M")
)
.def("IncrementVMultiplicity",
(void (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Integer , const Standard_Integer ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Integer , const Standard_Integer ) >(&Geom_BSplineSurface::IncrementVMultiplicity),
R"#(Increments the multiplicity of the consecutives vknots FromI1..ToI2 by step. The multiplicity of each knot FromI1,.....,ToI2 must be lower or equal to the VDegree of the B_spline.)#" , py::arg("FromI1"), py::arg("ToI2"), py::arg("Step")
)
.def("InsertUKnot",
(void (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Integer , const Standard_Real , const Standard_Boolean ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Integer , const Standard_Real , const Standard_Boolean ) >(&Geom_BSplineSurface::InsertUKnot),
R"#(Inserts a knot value in the sequence of UKnots. If U is a knot value this method increases the multiplicity of the knot if the previous multiplicity was lower than M else it does nothing. The tolerance criterion is ParametricTolerance. ParametricTolerance should be greater or equal than Resolution from package gp.)#" , py::arg("U"), py::arg("M"), py::arg("ParametricTolerance"), py::arg("Add")=static_cast<const Standard_Boolean>(Standard_True)
)
.def("InsertVKnot",
(void (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Integer , const Standard_Real , const Standard_Boolean ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Integer , const Standard_Real , const Standard_Boolean ) >(&Geom_BSplineSurface::InsertVKnot),
R"#(Inserts a knot value in the sequence of VKnots. If V is a knot value this method increases the multiplicity of the knot if the previous multiplicity was lower than M otherwise it does nothing. The tolerance criterion is ParametricTolerance. ParametricTolerance should be greater or equal than Resolution from package gp.)#" , py::arg("V"), py::arg("M"), py::arg("ParametricTolerance"), py::arg("Add")=static_cast<const Standard_Boolean>(Standard_True)
)
.def("Segment",
(void (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real ) >(&Geom_BSplineSurface::Segment),
R"#(Segments the surface between U1 and U2 in the U-Direction. between V1 and V2 in the V-Direction. The control points are modified, the first and the last point are not the same.)#" , py::arg("U1"), py::arg("U2"), py::arg("V1"), py::arg("V2"), py::arg("theUTolerance")=static_cast<const Standard_Real>(Precision :: PConfusion ( )), py::arg("theVTolerance")=static_cast<const Standard_Real>(Precision :: PConfusion ( ))
)
.def("CheckAndSegment",
(void (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real ) >(&Geom_BSplineSurface::CheckAndSegment),
R"#(Segments the surface between U1 and U2 in the U-Direction. between V1 and V2 in the V-Direction.)#" , py::arg("U1"), py::arg("U2"), py::arg("V1"), py::arg("V2"), py::arg("theUTolerance")=static_cast<const Standard_Real>(Precision :: PConfusion ( )), py::arg("theVTolerance")=static_cast<const Standard_Real>(Precision :: PConfusion ( ))
)
.def("SetUKnot",
(void (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Real ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Real ) >(&Geom_BSplineSurface::SetUKnot),
R"#(Substitutes the UKnots of range UIndex with K.)#" , py::arg("UIndex"), py::arg("K")
)
.def("SetUKnots",
(void (Geom_BSplineSurface::*)( const NCollection_Array1<Standard_Real> & ) ) static_cast<void (Geom_BSplineSurface::*)( const NCollection_Array1<Standard_Real> & ) >(&Geom_BSplineSurface::SetUKnots),
R"#(Changes all the U-knots of the surface. The multiplicity of the knots are not modified.)#" , py::arg("UK")
)
.def("SetUKnot",
(void (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Real , const Standard_Integer ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Real , const Standard_Integer ) >(&Geom_BSplineSurface::SetUKnot),
R"#(Changes the value of the UKnots of range UIndex and increases its multiplicity.)#" , py::arg("UIndex"), py::arg("K"), py::arg("M")
)
.def("SetVKnot",
(void (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Real ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Real ) >(&Geom_BSplineSurface::SetVKnot),
R"#(Substitutes the VKnots of range VIndex with K.)#" , py::arg("VIndex"), py::arg("K")
)
.def("SetVKnots",
(void (Geom_BSplineSurface::*)( const NCollection_Array1<Standard_Real> & ) ) static_cast<void (Geom_BSplineSurface::*)( const NCollection_Array1<Standard_Real> & ) >(&Geom_BSplineSurface::SetVKnots),
R"#(Changes all the V-knots of the surface. The multiplicity of the knots are not modified.)#" , py::arg("VK")
)
.def("SetVKnot",
(void (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Real , const Standard_Integer ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Real , const Standard_Integer ) >(&Geom_BSplineSurface::SetVKnot),
R"#(Changes the value of the VKnots of range VIndex and increases its multiplicity.)#" , py::arg("VIndex"), py::arg("K"), py::arg("M")
)
.def("SetPole",
(void (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Integer , const gp_Pnt & ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Integer , const gp_Pnt & ) >(&Geom_BSplineSurface::SetPole),
R"#(Substitutes the pole of range (UIndex, VIndex) with P. If the surface is rational the weight of range (UIndex, VIndex) is not modified.)#" , py::arg("UIndex"), py::arg("VIndex"), py::arg("P")
)
.def("SetPole",
(void (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Integer , const gp_Pnt & , const Standard_Real ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Integer , const gp_Pnt & , const Standard_Real ) >(&Geom_BSplineSurface::SetPole),
R"#(Substitutes the pole and the weight of range (UIndex, VIndex) with P and W.)#" , py::arg("UIndex"), py::arg("VIndex"), py::arg("P"), py::arg("Weight")
)
.def("SetPoleCol",
(void (Geom_BSplineSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & ) >(&Geom_BSplineSurface::SetPoleCol),
R"#(Changes a column of poles or a part of this column. Raised if Vindex < 1 or VIndex > NbVPoles.)#" , py::arg("VIndex"), py::arg("CPoles")
)
.def("SetPoleCol",
(void (Geom_BSplineSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> & ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> & ) >(&Geom_BSplineSurface::SetPoleCol),
R"#(Changes a column of poles or a part of this column with the corresponding weights. If the surface was rational it can become non rational. If the surface was non rational it can become rational. Raised if Vindex < 1 or VIndex > NbVPoles.)#" , py::arg("VIndex"), py::arg("CPoles"), py::arg("CPoleWeights")
)
.def("SetPoleRow",
(void (Geom_BSplineSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> & ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> & ) >(&Geom_BSplineSurface::SetPoleRow),
R"#(Changes a row of poles or a part of this row with the corresponding weights. If the surface was rational it can become non rational. If the surface was non rational it can become rational. Raised if Uindex < 1 or UIndex > NbUPoles.)#" , py::arg("UIndex"), py::arg("CPoles"), py::arg("CPoleWeights")
)
.def("SetPoleRow",
(void (Geom_BSplineSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & ) >(&Geom_BSplineSurface::SetPoleRow),
R"#(Changes a row of poles or a part of this row. Raised if Uindex < 1 or UIndex > NbUPoles.)#" , py::arg("UIndex"), py::arg("CPoles")
)
.def("SetWeight",
(void (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Integer , const Standard_Real ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Integer , const Standard_Real ) >(&Geom_BSplineSurface::SetWeight),
R"#(Changes the weight of the pole of range UIndex, VIndex. If the surface was non rational it can become rational. If the surface was rational it can become non rational.)#" , py::arg("UIndex"), py::arg("VIndex"), py::arg("Weight")
)
.def("SetWeightCol",
(void (Geom_BSplineSurface::*)( const Standard_Integer , const NCollection_Array1<Standard_Real> & ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer , const NCollection_Array1<Standard_Real> & ) >(&Geom_BSplineSurface::SetWeightCol),
R"#(Changes a column of weights of a part of this column.)#" , py::arg("VIndex"), py::arg("CPoleWeights")
)
.def("SetWeightRow",
(void (Geom_BSplineSurface::*)( const Standard_Integer , const NCollection_Array1<Standard_Real> & ) ) static_cast<void (Geom_BSplineSurface::*)( const Standard_Integer , const NCollection_Array1<Standard_Real> & ) >(&Geom_BSplineSurface::SetWeightRow),
R"#(Changes a row of weights or a part of this row.)#" , py::arg("UIndex"), py::arg("CPoleWeights")
)
.def("IsUClosed",
(Standard_Boolean (Geom_BSplineSurface::*)() const) static_cast<Standard_Boolean (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::IsUClosed),
R"#(Returns true if the first control points row and the last control points row are identical. The tolerance criterion is Resolution from package gp.)#"
)
.def("IsVClosed",
(Standard_Boolean (Geom_BSplineSurface::*)() const) static_cast<Standard_Boolean (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::IsVClosed),
R"#(Returns true if the first control points column and the last last control points column are identical. The tolerance criterion is Resolution from package gp.)#"
)
.def("IsCNu",
(Standard_Boolean (Geom_BSplineSurface::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom_BSplineSurface::*)( const Standard_Integer ) const>(&Geom_BSplineSurface::IsCNu),
R"#(Returns True if the order of continuity of the surface in the U direction is N. Raised if N < 0.)#" , py::arg("N")
)
.def("IsCNv",
(Standard_Boolean (Geom_BSplineSurface::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom_BSplineSurface::*)( const Standard_Integer ) const>(&Geom_BSplineSurface::IsCNv),
R"#(Returns True if the order of continuity of the surface in the V direction is N. Raised if N < 0.)#" , py::arg("N")
)
.def("IsUPeriodic",
(Standard_Boolean (Geom_BSplineSurface::*)() const) static_cast<Standard_Boolean (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::IsUPeriodic),
R"#(Returns True if the surface is closed in the U direction and if the B-spline has been turned into a periodic surface using the function SetUPeriodic.)#"
)
.def("IsURational",
(Standard_Boolean (Geom_BSplineSurface::*)() const) static_cast<Standard_Boolean (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::IsURational),
R"#(Returns False if for each row of weights all the weights are identical. The tolerance criterion is resolution from package gp. Example : |1.0, 1.0, 1.0| if Weights = |0.5, 0.5, 0.5| returns False |2.0, 2.0, 2.0|)#"
)
.def("IsVPeriodic",
(Standard_Boolean (Geom_BSplineSurface::*)() const) static_cast<Standard_Boolean (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::IsVPeriodic),
R"#(Returns True if the surface is closed in the V direction and if the B-spline has been turned into a periodic surface using the function SetVPeriodic.)#"
)
.def("IsVRational",
(Standard_Boolean (Geom_BSplineSurface::*)() const) static_cast<Standard_Boolean (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::IsVRational),
R"#(Returns False if for each column of weights all the weights are identical. The tolerance criterion is resolution from package gp. Examples : |1.0, 2.0, 0.5| if Weights = |1.0, 2.0, 0.5| returns False |1.0, 2.0, 0.5|)#"
)
.def("Continuity",
(GeomAbs_Shape (Geom_BSplineSurface::*)() const) static_cast<GeomAbs_Shape (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::Continuity),
R"#(Returns the continuity of the surface : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Surface, C2 : continuity of the second derivative all along the Surface, C3 : continuity of the third derivative all along the Surface, CN : the order of continuity is infinite. A B-spline surface is infinitely continuously differentiable for the couple of parameters U, V such that U != UKnots(i) and V != VKnots(i). The continuity of the surface at a knot value depends on the multiplicity of this knot. Example : If the surface is C1 in the V direction and C2 in the U direction this function returns Shape = C1.)#"
)
.def("FirstUKnotIndex",
(Standard_Integer (Geom_BSplineSurface::*)() const) static_cast<Standard_Integer (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::FirstUKnotIndex),
R"#(Computes the Index of the UKnots which gives the first parametric value of the surface in the U direction. The UIso curve corresponding to this value is a boundary curve of the surface.)#"
)
.def("FirstVKnotIndex",
(Standard_Integer (Geom_BSplineSurface::*)() const) static_cast<Standard_Integer (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::FirstVKnotIndex),
R"#(Computes the Index of the VKnots which gives the first parametric value of the surface in the V direction. The VIso curve corresponding to this knot is a boundary curve of the surface.)#"
)
.def("LastUKnotIndex",
(Standard_Integer (Geom_BSplineSurface::*)() const) static_cast<Standard_Integer (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::LastUKnotIndex),
R"#(Computes the Index of the UKnots which gives the last parametric value of the surface in the U direction. The UIso curve corresponding to this knot is a boundary curve of the surface.)#"
)
.def("LastVKnotIndex",
(Standard_Integer (Geom_BSplineSurface::*)() const) static_cast<Standard_Integer (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::LastVKnotIndex),
R"#(Computes the Index of the VKnots which gives the last parametric value of the surface in the V direction. The VIso curve corresponding to this knot is a boundary curve of the surface.)#"
)
.def("NbUKnots",
(Standard_Integer (Geom_BSplineSurface::*)() const) static_cast<Standard_Integer (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::NbUKnots),
R"#(Returns the number of knots in the U direction.)#"
)
.def("NbUPoles",
(Standard_Integer (Geom_BSplineSurface::*)() const) static_cast<Standard_Integer (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::NbUPoles),
R"#(Returns number of poles in the U direction.)#"
)
.def("NbVKnots",
(Standard_Integer (Geom_BSplineSurface::*)() const) static_cast<Standard_Integer (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::NbVKnots),
R"#(Returns the number of knots in the V direction.)#"
)
.def("NbVPoles",
(Standard_Integer (Geom_BSplineSurface::*)() const) static_cast<Standard_Integer (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::NbVPoles),
R"#(Returns the number of poles in the V direction.)#"
)
.def("Pole",
(const gp_Pnt & (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Integer ) const) static_cast<const gp_Pnt & (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Integer ) const>(&Geom_BSplineSurface::Pole),
R"#(Returns the pole of range (UIndex, VIndex).)#" , py::arg("UIndex"), py::arg("VIndex")
)
.def("Poles",
(void (Geom_BSplineSurface::*)( NCollection_Array2<gp_Pnt> & ) const) static_cast<void (Geom_BSplineSurface::*)( NCollection_Array2<gp_Pnt> & ) const>(&Geom_BSplineSurface::Poles),
R"#(Returns the poles of the B-spline surface.)#" , py::arg("P")
)
.def("UDegree",
(Standard_Integer (Geom_BSplineSurface::*)() const) static_cast<Standard_Integer (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::UDegree),
R"#(Returns the degree of the normalized B-splines Ni,n in the U direction.)#"
)
.def("UKnot",
(Standard_Real (Geom_BSplineSurface::*)( const Standard_Integer ) const) static_cast<Standard_Real (Geom_BSplineSurface::*)( const Standard_Integer ) const>(&Geom_BSplineSurface::UKnot),
R"#(Returns the Knot value of range UIndex. Raised if UIndex < 1 or UIndex > NbUKnots)#" , py::arg("UIndex")
)
.def("UKnotDistribution",
(GeomAbs_BSplKnotDistribution (Geom_BSplineSurface::*)() const) static_cast<GeomAbs_BSplKnotDistribution (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::UKnotDistribution),
R"#(Returns NonUniform or Uniform or QuasiUniform or PiecewiseBezier. If all the knots differ by a positive constant from the preceding knot in the U direction the B-spline surface can be : - Uniform if all the knots are of multiplicity 1, - QuasiUniform if all the knots are of multiplicity 1 except for the first and last knot which are of multiplicity Degree + 1, - PiecewiseBezier if the first and last knots have multiplicity Degree + 1 and if interior knots have multiplicity Degree otherwise the surface is non uniform in the U direction The tolerance criterion is Resolution from package gp.)#"
)
.def("UKnots",
(void (Geom_BSplineSurface::*)( NCollection_Array1<Standard_Real> & ) const) static_cast<void (Geom_BSplineSurface::*)( NCollection_Array1<Standard_Real> & ) const>(&Geom_BSplineSurface::UKnots),
R"#(Returns the knots in the U direction.)#" , py::arg("Ku")
)
.def("UKnotSequence",
(void (Geom_BSplineSurface::*)( NCollection_Array1<Standard_Real> & ) const) static_cast<void (Geom_BSplineSurface::*)( NCollection_Array1<Standard_Real> & ) const>(&Geom_BSplineSurface::UKnotSequence),
R"#(Returns the uknots sequence. In this sequence the knots with a multiplicity greater than 1 are repeated. Example : Ku = {k1, k1, k1, k2, k3, k3, k4, k4, k4})#" , py::arg("Ku")
)
.def("UMultiplicity",
(Standard_Integer (Geom_BSplineSurface::*)( const Standard_Integer ) const) static_cast<Standard_Integer (Geom_BSplineSurface::*)( const Standard_Integer ) const>(&Geom_BSplineSurface::UMultiplicity),
R"#(Returns the multiplicity value of knot of range UIndex in the u direction. Raised if UIndex < 1 or UIndex > NbUKnots.)#" , py::arg("UIndex")
)
.def("UMultiplicities",
(void (Geom_BSplineSurface::*)( NCollection_Array1<Standard_Integer> & ) const) static_cast<void (Geom_BSplineSurface::*)( NCollection_Array1<Standard_Integer> & ) const>(&Geom_BSplineSurface::UMultiplicities),
R"#(Returns the multiplicities of the knots in the U direction.)#" , py::arg("Mu")
)
.def("VDegree",
(Standard_Integer (Geom_BSplineSurface::*)() const) static_cast<Standard_Integer (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::VDegree),
R"#(Returns the degree of the normalized B-splines Ni,d in the V direction.)#"
)
.def("VKnot",
(Standard_Real (Geom_BSplineSurface::*)( const Standard_Integer ) const) static_cast<Standard_Real (Geom_BSplineSurface::*)( const Standard_Integer ) const>(&Geom_BSplineSurface::VKnot),
R"#(Returns the Knot value of range VIndex. Raised if VIndex < 1 or VIndex > NbVKnots)#" , py::arg("VIndex")
)
.def("VKnotDistribution",
(GeomAbs_BSplKnotDistribution (Geom_BSplineSurface::*)() const) static_cast<GeomAbs_BSplKnotDistribution (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::VKnotDistribution),
R"#(Returns NonUniform or Uniform or QuasiUniform or PiecewiseBezier. If all the knots differ by a positive constant from the preceding knot in the V direction the B-spline surface can be : - Uniform if all the knots are of multiplicity 1, - QuasiUniform if all the knots are of multiplicity 1 except for the first and last knot which are of multiplicity Degree + 1, - PiecewiseBezier if the first and last knots have multiplicity Degree + 1 and if interior knots have multiplicity Degree otherwise the surface is non uniform in the V direction. The tolerance criterion is Resolution from package gp.)#"
)
.def("VKnots",
(void (Geom_BSplineSurface::*)( NCollection_Array1<Standard_Real> & ) const) static_cast<void (Geom_BSplineSurface::*)( NCollection_Array1<Standard_Real> & ) const>(&Geom_BSplineSurface::VKnots),
R"#(Returns the knots in the V direction.)#" , py::arg("Kv")
)
.def("VKnotSequence",
(void (Geom_BSplineSurface::*)( NCollection_Array1<Standard_Real> & ) const) static_cast<void (Geom_BSplineSurface::*)( NCollection_Array1<Standard_Real> & ) const>(&Geom_BSplineSurface::VKnotSequence),
R"#(Returns the vknots sequence. In this sequence the knots with a multiplicity greater than 1 are repeated. Example : Kv = {k1, k1, k1, k2, k3, k3, k4, k4, k4})#" , py::arg("Kv")
)
.def("VMultiplicity",
(Standard_Integer (Geom_BSplineSurface::*)( const Standard_Integer ) const) static_cast<Standard_Integer (Geom_BSplineSurface::*)( const Standard_Integer ) const>(&Geom_BSplineSurface::VMultiplicity),
R"#(Returns the multiplicity value of knot of range VIndex in the v direction. Raised if VIndex < 1 or VIndex > NbVKnots)#" , py::arg("VIndex")
)
.def("VMultiplicities",
(void (Geom_BSplineSurface::*)( NCollection_Array1<Standard_Integer> & ) const) static_cast<void (Geom_BSplineSurface::*)( NCollection_Array1<Standard_Integer> & ) const>(&Geom_BSplineSurface::VMultiplicities),
R"#(Returns the multiplicities of the knots in the V direction.)#" , py::arg("Mv")
)
.def("Weight",
(Standard_Real (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Integer ) const) static_cast<Standard_Real (Geom_BSplineSurface::*)( const Standard_Integer , const Standard_Integer ) const>(&Geom_BSplineSurface::Weight),
R"#(Returns the weight value of range UIndex, VIndex.)#" , py::arg("UIndex"), py::arg("VIndex")
)
.def("Weights",
(void (Geom_BSplineSurface::*)( NCollection_Array2<Standard_Real> & ) const) static_cast<void (Geom_BSplineSurface::*)( NCollection_Array2<Standard_Real> & ) const>(&Geom_BSplineSurface::Weights),
R"#(Returns the weights of the B-spline surface.)#" , py::arg("W")
)
.def("Weights",
(const TColStd_Array2OfReal * (Geom_BSplineSurface::*)() const) static_cast<const TColStd_Array2OfReal * (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::Weights),
R"#(Returns the weights of the B-spline surface. value and derivatives computation)#"
)
.def("D0",
(void (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & ) const) static_cast<void (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & ) const>(&Geom_BSplineSurface::D0),
R"#(None)#" , py::arg("U"), py::arg("V"), py::arg("P")
)
.def("D1",
(void (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const>(&Geom_BSplineSurface::D1),
R"#(Raised if the continuity of the surface is not C1.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V")
)
.def("D2",
(void (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_BSplineSurface::D2),
R"#(Raised if the continuity of the surface is not C2.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V"), py::arg("D2U"), py::arg("D2V"), py::arg("D2UV")
)
.def("D3",
(void (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_BSplineSurface::D3),
R"#(Raised if the continuity of the surface is not C3.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V"), py::arg("D2U"), py::arg("D2V"), py::arg("D2UV"), py::arg("D3U"), py::arg("D3V"), py::arg("D3UUV"), py::arg("D3UVV")
)
.def("DN",
(gp_Vec (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer ) const) static_cast<gp_Vec (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer ) const>(&Geom_BSplineSurface::DN),
R"#(Nu is the order of derivation in the U parametric direction and Nv is the order of derivation in the V parametric direction.)#" , py::arg("U"), py::arg("V"), py::arg("Nu"), py::arg("Nv")
)
.def("LocalD0",
(void (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , gp_Pnt & ) const) static_cast<void (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , gp_Pnt & ) const>(&Geom_BSplineSurface::LocalD0),
R"#(Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2.)#" , py::arg("U"), py::arg("V"), py::arg("FromUK1"), py::arg("ToUK2"), py::arg("FromVK1"), py::arg("ToVK2"), py::arg("P")
)
.def("LocalD1",
(void (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , gp_Pnt & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , gp_Pnt & , gp_Vec & , gp_Vec & ) const>(&Geom_BSplineSurface::LocalD1),
R"#(Raised if the local continuity of the surface is not C1 between the knots FromUK1, ToUK2 and FromVK1, ToVK2. Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2.)#" , py::arg("U"), py::arg("V"), py::arg("FromUK1"), py::arg("ToUK2"), py::arg("FromVK1"), py::arg("ToVK2"), py::arg("P"), py::arg("D1U"), py::arg("D1V")
)
.def("LocalD2",
(void (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_BSplineSurface::LocalD2),
R"#(Raised if the local continuity of the surface is not C2 between the knots FromUK1, ToUK2 and FromVK1, ToVK2. Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2.)#" , py::arg("U"), py::arg("V"), py::arg("FromUK1"), py::arg("ToUK2"), py::arg("FromVK1"), py::arg("ToVK2"), py::arg("P"), py::arg("D1U"), py::arg("D1V"), py::arg("D2U"), py::arg("D2V"), py::arg("D2UV")
)
.def("LocalD3",
(void (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_BSplineSurface::LocalD3),
R"#(Raised if the local continuity of the surface is not C3 between the knots FromUK1, ToUK2 and FromVK1, ToVK2. Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2.)#" , py::arg("U"), py::arg("V"), py::arg("FromUK1"), py::arg("ToUK2"), py::arg("FromVK1"), py::arg("ToVK2"), py::arg("P"), py::arg("D1U"), py::arg("D1V"), py::arg("D2U"), py::arg("D2V"), py::arg("D2UV"), py::arg("D3U"), py::arg("D3V"), py::arg("D3UUV"), py::arg("D3UVV")
)
.def("LocalDN",
(gp_Vec (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer ) const) static_cast<gp_Vec (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer ) const>(&Geom_BSplineSurface::LocalDN),
R"#(Raised if the local continuity of the surface is not CNu between the knots FromUK1, ToUK2 and CNv between the knots FromVK1, ToVK2. Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2.)#" , py::arg("U"), py::arg("V"), py::arg("FromUK1"), py::arg("ToUK2"), py::arg("FromVK1"), py::arg("ToVK2"), py::arg("Nu"), py::arg("Nv")
)
.def("LocalValue",
(gp_Pnt (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer ) const) static_cast<gp_Pnt (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer ) const>(&Geom_BSplineSurface::LocalValue),
R"#(Computes the point of parameter U, V on the BSpline surface patch defines between the knots UK1 UK2, VK1, VK2. U can be out of the bounds [Knot UK1, Knot UK2] and V can be outof the bounds [Knot VK1, Knot VK2] but for the computation we only use the definition of the surface between these knot values. Raises if FromUK1 = ToUK2 or FromVK1 = ToVK2.)#" , py::arg("U"), py::arg("V"), py::arg("FromUK1"), py::arg("ToUK2"), py::arg("FromVK1"), py::arg("ToVK2")
)
.def("UIso",
(opencascade::handle<Geom_Curve> (Geom_BSplineSurface::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_BSplineSurface::*)( const Standard_Real ) const>(&Geom_BSplineSurface::UIso),
R"#(Computes the U isoparametric curve. A B-spline curve is returned.)#" , py::arg("U")
)
.def("VIso",
(opencascade::handle<Geom_Curve> (Geom_BSplineSurface::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_BSplineSurface::*)( const Standard_Real ) const>(&Geom_BSplineSurface::VIso),
R"#(Computes the V isoparametric curve. A B-spline curve is returned.)#" , py::arg("V")
)
.def("UIso",
(opencascade::handle<Geom_Curve> (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Boolean ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Boolean ) const>(&Geom_BSplineSurface::UIso),
R"#(Computes the U isoparametric curve. If CheckRational=False, no try to make it non-rational. A B-spline curve is returned.)#" , py::arg("U"), py::arg("CheckRational")
)
.def("VIso",
(opencascade::handle<Geom_Curve> (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Boolean ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_BSplineSurface::*)( const Standard_Real , const Standard_Boolean ) const>(&Geom_BSplineSurface::VIso),
R"#(Computes the V isoparametric curve. If CheckRational=False, no try to make it non-rational. A B-spline curve is returned. transformations)#" , py::arg("V"), py::arg("CheckRational")
)
.def("Transform",
(void (Geom_BSplineSurface::*)( const gp_Trsf & ) ) static_cast<void (Geom_BSplineSurface::*)( const gp_Trsf & ) >(&Geom_BSplineSurface::Transform),
R"#(Applies the transformation T to this BSpline surface.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom_Geometry> (Geom_BSplineSurface::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::Copy),
R"#(Creates a new object which is a copy of this BSpline surface.)#"
)
.def("DumpJson",
(void (Geom_BSplineSurface::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom_BSplineSurface::*)( std::ostream & , Standard_Integer ) const>(&Geom_BSplineSurface::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
.def("PeriodicNormalization",
[]( Geom_BSplineSurface &self ){
Standard_Real U;
Standard_Real V;
self.PeriodicNormalization(U,V);
return std::make_tuple(U,V); },
R"#(returns the parameter normalized within the period if the surface is periodic : otherwise does not do anything)#"
)
.def("LocateU",
[]( Geom_BSplineSurface &self , const Standard_Real U,const Standard_Real ParametricTolerance,const Standard_Boolean WithKnotRepetition ){
Standard_Integer I1;
Standard_Integer I2;
self.LocateU(U,ParametricTolerance,I1,I2,WithKnotRepetition);
return std::make_tuple(I1,I2); },
R"#(Locates the parametric value U in the sequence of UKnots. If "WithKnotRepetition" is True we consider the knot's representation with repetition of multiple knot value, otherwise we consider the knot's representation with no repetition of multiple knot values. UKnots (I1) <= U <= UKnots (I2) . if I1 = I2 U is a knot value (the tolerance criterion ParametricTolerance is used). . if I1 < 1 => U < UKnots(1) - Abs(ParametricTolerance) . if I2 > NbUKnots => U > UKnots(NbUKnots)+Abs(ParametricTolerance))#" , py::arg("U"), py::arg("ParametricTolerance"), py::arg("WithKnotRepetition")=static_cast<const Standard_Boolean>(Standard_False)
)
.def("LocateV",
[]( Geom_BSplineSurface &self , const Standard_Real V,const Standard_Real ParametricTolerance,const Standard_Boolean WithKnotRepetition ){
Standard_Integer I1;
Standard_Integer I2;
self.LocateV(V,ParametricTolerance,I1,I2,WithKnotRepetition);
return std::make_tuple(I1,I2); },
R"#(Locates the parametric value V in the sequence of knots. If "WithKnotRepetition" is True we consider the knot's representation with repetition of multiple knot value, otherwise we consider the knot's representation with no repetition of multiple knot values. VKnots (I1) <= V <= VKnots (I2) . if I1 = I2 V is a knot value (the tolerance criterion ParametricTolerance is used). . if I1 < 1 => V < VKnots(1) - Abs(ParametricTolerance) . if I2 > NbVKnots => V > VKnots(NbVKnots)+Abs(ParametricTolerance) poles insertion and removing The following methods are available only if the surface is Uniform or QuasiUniform in the considered direction The knot repartition is modified.)#" , py::arg("V"), py::arg("ParametricTolerance"), py::arg("WithKnotRepetition")=static_cast<const Standard_Boolean>(Standard_False)
)
.def("MovePoint",
[]( Geom_BSplineSurface &self , const Standard_Real U,const Standard_Real V,const gp_Pnt & P,const Standard_Integer UIndex1,const Standard_Integer UIndex2,const Standard_Integer VIndex1,const Standard_Integer VIndex2 ){
Standard_Integer UFirstIndex;
Standard_Integer ULastIndex;
Standard_Integer VFirstIndex;
Standard_Integer VLastIndex;
self.MovePoint(U,V,P,UIndex1,UIndex2,VIndex1,VIndex2,UFirstIndex,ULastIndex,VFirstIndex,VLastIndex);
return std::make_tuple(UFirstIndex,ULastIndex,VFirstIndex,VLastIndex); },
R"#(Move a point with parameter U and V to P. given u,v as parameters) to reach a new position UIndex1, UIndex2, VIndex1, VIndex2: indicates the poles which can be moved if Problem in BSplineBasis calculation, no change for the curve and UFirstIndex, VLastIndex = 0 VFirstIndex, VLastIndex = 0)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("UIndex1"), py::arg("UIndex2"), py::arg("VIndex1"), py::arg("VIndex2")
)
.def("Bounds",
[]( Geom_BSplineSurface &self ){
Standard_Real U1;
Standard_Real U2;
Standard_Real V1;
Standard_Real V2;
self.Bounds(U1,U2,V1,V2);
return std::make_tuple(U1,U2,V1,V2); },
R"#(Returns the parametric bounds of the surface. Warnings : These parametric values are the bounds of the array of knots UKnots and VKnots only if the first knots and the last knots have a multiplicity equal to UDegree + 1 or VDegree + 1)#"
)
.def("Resolution",
[]( Geom_BSplineSurface &self , const Standard_Real Tolerance3D ){
Standard_Real UTolerance;
Standard_Real VTolerance;
self.Resolution(Tolerance3D,UTolerance,VTolerance);
return std::make_tuple(UTolerance,VTolerance); },
R"#(Computes two tolerance values for this BSpline surface, based on the given tolerance in 3D space Tolerance3D. The tolerances computed are: - UTolerance in the u parametric direction, and - VTolerance in the v parametric direction. If f(u,v) is the equation of this BSpline surface, UTolerance and VTolerance guarantee that : | u1 - u0 | < UTolerance and | v1 - v0 | < VTolerance ====> |f (u1,v1) - f (u0,v0)| < Tolerance3D)#" , py::arg("Tolerance3D")
)
// static methods
.def_static("MaxDegree_s",
(Standard_Integer (*)() ) static_cast<Standard_Integer (*)() >(&Geom_BSplineSurface::MaxDegree),
R"#(Returns the value of the maximum degree of the normalized B-spline basis functions in the u and v directions.)#"
)
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_BSplineSurface::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_BSplineSurface::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Poles",
(const TColgp_Array2OfPnt & (Geom_BSplineSurface::*)() const) static_cast<const TColgp_Array2OfPnt & (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::Poles),
R"#(Returns the poles of the B-spline surface.)#"
, py::return_value_policy::reference_internal
)
.def("UKnots",
(const TColStd_Array1OfReal & (Geom_BSplineSurface::*)() const) static_cast<const TColStd_Array1OfReal & (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::UKnots),
R"#(Returns the knots in the U direction.)#"
, py::return_value_policy::reference_internal
)
.def("UKnotSequence",
(const TColStd_Array1OfReal & (Geom_BSplineSurface::*)() const) static_cast<const TColStd_Array1OfReal & (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::UKnotSequence),
R"#(Returns the uknots sequence. In this sequence the knots with a multiplicity greater than 1 are repeated. Example : Ku = {k1, k1, k1, k2, k3, k3, k4, k4, k4})#"
, py::return_value_policy::reference_internal
)
.def("UMultiplicities",
(const TColStd_Array1OfInteger & (Geom_BSplineSurface::*)() const) static_cast<const TColStd_Array1OfInteger & (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::UMultiplicities),
R"#(Returns the multiplicities of the knots in the U direction.)#"
, py::return_value_policy::reference_internal
)
.def("VKnots",
(const TColStd_Array1OfReal & (Geom_BSplineSurface::*)() const) static_cast<const TColStd_Array1OfReal & (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::VKnots),
R"#(Returns the knots in the V direction.)#"
, py::return_value_policy::reference_internal
)
.def("VKnotSequence",
(const TColStd_Array1OfReal & (Geom_BSplineSurface::*)() const) static_cast<const TColStd_Array1OfReal & (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::VKnotSequence),
R"#(Returns the vknots sequence. In this sequence the knots with a multiplicity greater than 1 are repeated. Example : Ku = {k1, k1, k1, k2, k3, k3, k4, k4, k4})#"
, py::return_value_policy::reference_internal
)
.def("VMultiplicities",
(const TColStd_Array1OfInteger & (Geom_BSplineSurface::*)() const) static_cast<const TColStd_Array1OfInteger & (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::VMultiplicities),
R"#(Returns the multiplicities of the knots in the V direction.)#"
, py::return_value_policy::reference_internal
)
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_BSplineSurface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_BSplineSurface::*)() const>(&Geom_BSplineSurface::DynamicType),
R"#(None)#"
)
;
// Class Geom_BezierCurve from ./opencascade/Geom_BezierCurve.hxx
klass = m.attr("Geom_BezierCurve");
// nested enums
static_cast<py::class_<Geom_BezierCurve ,opencascade::handle<Geom_BezierCurve> , Geom_BoundedCurve >>(klass)
// constructors
.def(py::init< const NCollection_Array1<gp_Pnt> & >() , py::arg("CurvePoles") )
.def(py::init< const NCollection_Array1<gp_Pnt> &, const NCollection_Array1<Standard_Real> & >() , py::arg("CurvePoles"), py::arg("PoleWeights") )
// custom constructors
// methods
.def("Increase",
(void (Geom_BezierCurve::*)( const Standard_Integer ) ) static_cast<void (Geom_BezierCurve::*)( const Standard_Integer ) >(&Geom_BezierCurve::Increase),
R"#(Increases the degree of a bezier curve. Degree is the new degree of <me>. Raises ConstructionError if Degree is greater than MaxDegree or lower than 2 or lower than the initial degree of <me>.)#" , py::arg("Degree")
)
.def("InsertPoleAfter",
(void (Geom_BezierCurve::*)( const Standard_Integer , const gp_Pnt & ) ) static_cast<void (Geom_BezierCurve::*)( const Standard_Integer , const gp_Pnt & ) >(&Geom_BezierCurve::InsertPoleAfter),
R"#(Inserts a pole P after the pole of range Index. If the curve <me> is rational the weight value for the new pole of range Index is 1.0. raised if Index is not in the range [1, NbPoles])#" , py::arg("Index"), py::arg("P")
)
.def("InsertPoleAfter",
(void (Geom_BezierCurve::*)( const Standard_Integer , const gp_Pnt & , const Standard_Real ) ) static_cast<void (Geom_BezierCurve::*)( const Standard_Integer , const gp_Pnt & , const Standard_Real ) >(&Geom_BezierCurve::InsertPoleAfter),
R"#(Inserts a pole with its weight in the set of poles after the pole of range Index. If the curve was non rational it can become rational if all the weights are not identical. Raised if Index is not in the range [1, NbPoles])#" , py::arg("Index"), py::arg("P"), py::arg("Weight")
)
.def("InsertPoleBefore",
(void (Geom_BezierCurve::*)( const Standard_Integer , const gp_Pnt & ) ) static_cast<void (Geom_BezierCurve::*)( const Standard_Integer , const gp_Pnt & ) >(&Geom_BezierCurve::InsertPoleBefore),
R"#(Inserts a pole P before the pole of range Index. If the curve <me> is rational the weight value for the new pole of range Index is 1.0. Raised if Index is not in the range [1, NbPoles])#" , py::arg("Index"), py::arg("P")
)
.def("InsertPoleBefore",
(void (Geom_BezierCurve::*)( const Standard_Integer , const gp_Pnt & , const Standard_Real ) ) static_cast<void (Geom_BezierCurve::*)( const Standard_Integer , const gp_Pnt & , const Standard_Real ) >(&Geom_BezierCurve::InsertPoleBefore),
R"#(Inserts a pole with its weight in the set of poles after the pole of range Index. If the curve was non rational it can become rational if all the weights are not identical. Raised if Index is not in the range [1, NbPoles])#" , py::arg("Index"), py::arg("P"), py::arg("Weight")
)
.def("RemovePole",
(void (Geom_BezierCurve::*)( const Standard_Integer ) ) static_cast<void (Geom_BezierCurve::*)( const Standard_Integer ) >(&Geom_BezierCurve::RemovePole),
R"#(Removes the pole of range Index. If the curve was rational it can become non rational. Raised if Index is not in the range [1, NbPoles] Raised if Degree is lower than 2.)#" , py::arg("Index")
)
.def("Reverse",
(void (Geom_BezierCurve::*)() ) static_cast<void (Geom_BezierCurve::*)() >(&Geom_BezierCurve::Reverse),
R"#(Reverses the direction of parametrization of <me> Value (NewU) = Value (1 - OldU))#"
)
.def("ReversedParameter",
(Standard_Real (Geom_BezierCurve::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_BezierCurve::*)( const Standard_Real ) const>(&Geom_BezierCurve::ReversedParameter),
R"#(Returns the parameter on the reversed curve for the point of parameter U on <me>.)#" , py::arg("U")
)
.def("Segment",
(void (Geom_BezierCurve::*)( const Standard_Real , const Standard_Real ) ) static_cast<void (Geom_BezierCurve::*)( const Standard_Real , const Standard_Real ) >(&Geom_BezierCurve::Segment),
R"#(Segments the curve between U1 and U2 which can be out of the bounds of the curve. The curve is oriented from U1 to U2. The control points are modified, the first and the last point are not the same but the parametrization range is [0, 1] else it could not be a Bezier curve. Warnings : Even if <me> is not closed it can become closed after the segmentation for example if U1 or U2 are out of the bounds of the curve <me> or if the curve makes loop. After the segmentation the length of a curve can be null.)#" , py::arg("U1"), py::arg("U2")
)
.def("SetPole",
(void (Geom_BezierCurve::*)( const Standard_Integer , const gp_Pnt & ) ) static_cast<void (Geom_BezierCurve::*)( const Standard_Integer , const gp_Pnt & ) >(&Geom_BezierCurve::SetPole),
R"#(Substitutes the pole of range index with P. If the curve <me> is rational the weight of range Index is not modified. raiseD if Index is not in the range [1, NbPoles])#" , py::arg("Index"), py::arg("P")
)
.def("SetPole",
(void (Geom_BezierCurve::*)( const Standard_Integer , const gp_Pnt & , const Standard_Real ) ) static_cast<void (Geom_BezierCurve::*)( const Standard_Integer , const gp_Pnt & , const Standard_Real ) >(&Geom_BezierCurve::SetPole),
R"#(Substitutes the pole and the weights of range Index. If the curve <me> is not rational it can become rational if all the weights are not identical. If the curve was rational it can become non rational if all the weights are identical. Raised if Index is not in the range [1, NbPoles] Raised if Weight <= Resolution from package gp)#" , py::arg("Index"), py::arg("P"), py::arg("Weight")
)
.def("SetWeight",
(void (Geom_BezierCurve::*)( const Standard_Integer , const Standard_Real ) ) static_cast<void (Geom_BezierCurve::*)( const Standard_Integer , const Standard_Real ) >(&Geom_BezierCurve::SetWeight),
R"#(Changes the weight of the pole of range Index. If the curve <me> is not rational it can become rational if all the weights are not identical. If the curve was rational it can become non rational if all the weights are identical. Raised if Index is not in the range [1, NbPoles] Raised if Weight <= Resolution from package gp)#" , py::arg("Index"), py::arg("Weight")
)
.def("IsClosed",
(Standard_Boolean (Geom_BezierCurve::*)() const) static_cast<Standard_Boolean (Geom_BezierCurve::*)() const>(&Geom_BezierCurve::IsClosed),
R"#(Returns True if the distance between the first point and the last point of the curve is lower or equal to the Resolution from package gp.)#"
)
.def("IsCN",
(Standard_Boolean (Geom_BezierCurve::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom_BezierCurve::*)( const Standard_Integer ) const>(&Geom_BezierCurve::IsCN),
R"#(Continuity of the curve, returns True.)#" , py::arg("N")
)
.def("IsPeriodic",
(Standard_Boolean (Geom_BezierCurve::*)() const) static_cast<Standard_Boolean (Geom_BezierCurve::*)() const>(&Geom_BezierCurve::IsPeriodic),
R"#(Returns True if the parametrization of a curve is periodic. (P(u) = P(u + T) T = constante))#"
)
.def("IsRational",
(Standard_Boolean (Geom_BezierCurve::*)() const) static_cast<Standard_Boolean (Geom_BezierCurve::*)() const>(&Geom_BezierCurve::IsRational),
R"#(Returns false if all the weights are identical. The tolerance criterion is Resolution from package gp.)#"
)
.def("Continuity",
(GeomAbs_Shape (Geom_BezierCurve::*)() const) static_cast<GeomAbs_Shape (Geom_BezierCurve::*)() const>(&Geom_BezierCurve::Continuity),
R"#(a Bezier curve is CN)#"
)
.def("Degree",
(Standard_Integer (Geom_BezierCurve::*)() const) static_cast<Standard_Integer (Geom_BezierCurve::*)() const>(&Geom_BezierCurve::Degree),
R"#(Returns the polynomial degree of the curve. it is the number of poles - 1 point P and derivatives (V1, V2, V3) computation The Bezier Curve has a Polynomial representation so the parameter U can be out of the bounds of the curve.)#"
)
.def("D0",
(void (Geom_BezierCurve::*)( const Standard_Real , gp_Pnt & ) const) static_cast<void (Geom_BezierCurve::*)( const Standard_Real , gp_Pnt & ) const>(&Geom_BezierCurve::D0),
R"#(None)#" , py::arg("U"), py::arg("P")
)
.def("D1",
(void (Geom_BezierCurve::*)( const Standard_Real , gp_Pnt & , gp_Vec & ) const) static_cast<void (Geom_BezierCurve::*)( const Standard_Real , gp_Pnt & , gp_Vec & ) const>(&Geom_BezierCurve::D1),
R"#(None)#" , py::arg("U"), py::arg("P"), py::arg("V1")
)
.def("D2",
(void (Geom_BezierCurve::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_BezierCurve::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const>(&Geom_BezierCurve::D2),
R"#(None)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2")
)
.def("D3",
(void (Geom_BezierCurve::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_BezierCurve::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_BezierCurve::D3),
R"#(For this Bezier curve, computes - the point P of parameter U, or - the point P and one or more of the following values: - V1, the first derivative vector, - V2, the second derivative vector, - V3, the third derivative vector. Note: the parameter U can be outside the bounds of the curve.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2"), py::arg("V3")
)
.def("DN",
(gp_Vec (Geom_BezierCurve::*)( const Standard_Real , const Standard_Integer ) const) static_cast<gp_Vec (Geom_BezierCurve::*)( const Standard_Real , const Standard_Integer ) const>(&Geom_BezierCurve::DN),
R"#(For the point of parameter U of this Bezier curve, computes the vector corresponding to the Nth derivative. Note: the parameter U can be outside the bounds of the curve. Exceptions Standard_RangeError if N is less than 1.)#" , py::arg("U"), py::arg("N")
)
.def("StartPoint",
(gp_Pnt (Geom_BezierCurve::*)() const) static_cast<gp_Pnt (Geom_BezierCurve::*)() const>(&Geom_BezierCurve::StartPoint),
R"#(Returns Value (U=0.), it is the first control point of the curve.)#"
)
.def("EndPoint",
(gp_Pnt (Geom_BezierCurve::*)() const) static_cast<gp_Pnt (Geom_BezierCurve::*)() const>(&Geom_BezierCurve::EndPoint),
R"#(Returns Value (U=1.), it is the last control point of the Bezier curve.)#"
)
.def("FirstParameter",
(Standard_Real (Geom_BezierCurve::*)() const) static_cast<Standard_Real (Geom_BezierCurve::*)() const>(&Geom_BezierCurve::FirstParameter),
R"#(Returns the value of the first parameter of this Bezier curve. This is 0.0, which gives the start point of this Bezier curve)#"
)
.def("LastParameter",
(Standard_Real (Geom_BezierCurve::*)() const) static_cast<Standard_Real (Geom_BezierCurve::*)() const>(&Geom_BezierCurve::LastParameter),
R"#(Returns the value of the last parameter of this Bezier curve. This is 1.0, which gives the end point of this Bezier curve.)#"
)
.def("NbPoles",
(Standard_Integer (Geom_BezierCurve::*)() const) static_cast<Standard_Integer (Geom_BezierCurve::*)() const>(&Geom_BezierCurve::NbPoles),
R"#(Returns the number of poles of this Bezier curve.)#"
)
.def("Pole",
(const gp_Pnt & (Geom_BezierCurve::*)( const Standard_Integer ) const) static_cast<const gp_Pnt & (Geom_BezierCurve::*)( const Standard_Integer ) const>(&Geom_BezierCurve::Pole),
R"#(Returns the pole of range Index. Raised if Index is not in the range [1, NbPoles])#" , py::arg("Index")
)
.def("Poles",
(void (Geom_BezierCurve::*)( NCollection_Array1<gp_Pnt> & ) const) static_cast<void (Geom_BezierCurve::*)( NCollection_Array1<gp_Pnt> & ) const>(&Geom_BezierCurve::Poles),
R"#(Returns all the poles of the curve.)#" , py::arg("P")
)
.def("Weight",
(Standard_Real (Geom_BezierCurve::*)( const Standard_Integer ) const) static_cast<Standard_Real (Geom_BezierCurve::*)( const Standard_Integer ) const>(&Geom_BezierCurve::Weight),
R"#(Returns the weight of range Index. Raised if Index is not in the range [1, NbPoles])#" , py::arg("Index")
)
.def("Weights",
(void (Geom_BezierCurve::*)( NCollection_Array1<Standard_Real> & ) const) static_cast<void (Geom_BezierCurve::*)( NCollection_Array1<Standard_Real> & ) const>(&Geom_BezierCurve::Weights),
R"#(Returns all the weights of the curve.)#" , py::arg("W")
)
.def("Weights",
(const TColStd_Array1OfReal * (Geom_BezierCurve::*)() const) static_cast<const TColStd_Array1OfReal * (Geom_BezierCurve::*)() const>(&Geom_BezierCurve::Weights),
R"#(Returns all the weights of the curve.)#"
)
.def("Transform",
(void (Geom_BezierCurve::*)( const gp_Trsf & ) ) static_cast<void (Geom_BezierCurve::*)( const gp_Trsf & ) >(&Geom_BezierCurve::Transform),
R"#(Applies the transformation T to this Bezier curve.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom_Geometry> (Geom_BezierCurve::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_BezierCurve::*)() const>(&Geom_BezierCurve::Copy),
R"#(Creates a new object which is a copy of this Bezier curve.)#"
)
.def("DumpJson",
(void (Geom_BezierCurve::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom_BezierCurve::*)( std::ostream & , Standard_Integer ) const>(&Geom_BezierCurve::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
.def("Resolution",
[]( Geom_BezierCurve &self , const Standard_Real Tolerance3D ){
Standard_Real UTolerance;
self.Resolution(Tolerance3D,UTolerance);
return std::make_tuple(UTolerance); },
R"#(Computes for this Bezier curve the parametric tolerance UTolerance for a given 3D tolerance Tolerance3D. If f(t) is the equation of this Bezier curve, UTolerance ensures that: |t1-t0| < UTolerance ===> |f(t1)-f(t0)| < Tolerance3D)#" , py::arg("Tolerance3D")
)
// static methods
.def_static("MaxDegree_s",
(Standard_Integer (*)() ) static_cast<Standard_Integer (*)() >(&Geom_BezierCurve::MaxDegree),
R"#(Returns the value of the maximum polynomial degree of any Geom_BezierCurve curve. This value is 25.)#"
)
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_BezierCurve::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_BezierCurve::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Poles",
(const TColgp_Array1OfPnt & (Geom_BezierCurve::*)() const) static_cast<const TColgp_Array1OfPnt & (Geom_BezierCurve::*)() const>(&Geom_BezierCurve::Poles),
R"#(Returns all the poles of the curve.)#"
, py::return_value_policy::reference_internal
)
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_BezierCurve::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_BezierCurve::*)() const>(&Geom_BezierCurve::DynamicType),
R"#(None)#"
)
;
// Class Geom_BezierSurface from ./opencascade/Geom_BezierSurface.hxx
klass = m.attr("Geom_BezierSurface");
// nested enums
static_cast<py::class_<Geom_BezierSurface ,opencascade::handle<Geom_BezierSurface> , Geom_BoundedSurface >>(klass)
// constructors
.def(py::init< const NCollection_Array2<gp_Pnt> & >() , py::arg("SurfacePoles") )
.def(py::init< const NCollection_Array2<gp_Pnt> &, const NCollection_Array2<Standard_Real> & >() , py::arg("SurfacePoles"), py::arg("PoleWeights") )
// custom constructors
// methods
.def("ExchangeUV",
(void (Geom_BezierSurface::*)() ) static_cast<void (Geom_BezierSurface::*)() >(&Geom_BezierSurface::ExchangeUV),
R"#(Exchanges the direction U and V on a Bezier surface As a consequence: - the poles and weights tables are transposed, - degrees, rational characteristics and so on are exchanged between the two parametric directions, and - the orientation of the surface is reversed.)#"
)
.def("Increase",
(void (Geom_BezierSurface::*)( const Standard_Integer , const Standard_Integer ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer , const Standard_Integer ) >(&Geom_BezierSurface::Increase),
R"#(Increases the degree of this Bezier surface in the two parametric directions.)#" , py::arg("UDeg"), py::arg("VDeg")
)
.def("InsertPoleColAfter",
(void (Geom_BezierSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & ) >(&Geom_BezierSurface::InsertPoleColAfter),
R"#(Inserts a column of poles. If the surface is rational the weights values associated with CPoles are equal defaulted to 1.)#" , py::arg("VIndex"), py::arg("CPoles")
)
.def("InsertPoleColAfter",
(void (Geom_BezierSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> & ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> & ) >(&Geom_BezierSurface::InsertPoleColAfter),
R"#(Inserts a column of poles and weights. If the surface was non-rational it can become rational.)#" , py::arg("VIndex"), py::arg("CPoles"), py::arg("CPoleWeights")
)
.def("InsertPoleColBefore",
(void (Geom_BezierSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & ) >(&Geom_BezierSurface::InsertPoleColBefore),
R"#(Inserts a column of poles. If the surface is rational the weights values associated with CPoles are equal defaulted to 1.)#" , py::arg("VIndex"), py::arg("CPoles")
)
.def("InsertPoleColBefore",
(void (Geom_BezierSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> & ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> & ) >(&Geom_BezierSurface::InsertPoleColBefore),
R"#(Inserts a column of poles and weights. If the surface was non-rational it can become rational.)#" , py::arg("VIndex"), py::arg("CPoles"), py::arg("CPoleWeights")
)
.def("InsertPoleRowAfter",
(void (Geom_BezierSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & ) >(&Geom_BezierSurface::InsertPoleRowAfter),
R"#(Inserts a row of poles. If the surface is rational the weights values associated with CPoles are equal defaulted to 1.)#" , py::arg("UIndex"), py::arg("CPoles")
)
.def("InsertPoleRowAfter",
(void (Geom_BezierSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> & ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> & ) >(&Geom_BezierSurface::InsertPoleRowAfter),
R"#(Inserts a row of poles and weights. If the surface was non-rational it can become rational.)#" , py::arg("UIndex"), py::arg("CPoles"), py::arg("CPoleWeights")
)
.def("InsertPoleRowBefore",
(void (Geom_BezierSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & ) >(&Geom_BezierSurface::InsertPoleRowBefore),
R"#(Inserts a row of poles. If the surface is rational the weights values associated with CPoles are equal defaulted to 1.)#" , py::arg("UIndex"), py::arg("CPoles")
)
.def("InsertPoleRowBefore",
(void (Geom_BezierSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> & ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> & ) >(&Geom_BezierSurface::InsertPoleRowBefore),
R"#(Inserts a row of poles and weights. If the surface was non-rational it can become rational.)#" , py::arg("UIndex"), py::arg("CPoles"), py::arg("CPoleWeights")
)
.def("RemovePoleCol",
(void (Geom_BezierSurface::*)( const Standard_Integer ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer ) >(&Geom_BezierSurface::RemovePoleCol),
R"#(Removes a column of poles. If the surface was rational it can become non-rational.)#" , py::arg("VIndex")
)
.def("RemovePoleRow",
(void (Geom_BezierSurface::*)( const Standard_Integer ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer ) >(&Geom_BezierSurface::RemovePoleRow),
R"#(Removes a row of poles. If the surface was rational it can become non-rational.)#" , py::arg("UIndex")
)
.def("Segment",
(void (Geom_BezierSurface::*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real ) >(&Geom_BezierSurface::Segment),
R"#(Modifies this Bezier surface by segmenting it between U1 and U2 in the u parametric direction, and between V1 and V2 in the v parametric direction. U1, U2, V1, and V2 can be outside the bounds of this surface. - U1 and U2 isoparametric Bezier curves, segmented between V1 and V2, become the two bounds of the surface in the v parametric direction (0. and 1. u isoparametric curves). - V1 and V2 isoparametric Bezier curves, segmented between U1 and U2, become the two bounds of the surface in the u parametric direction (0. and 1. v isoparametric curves). The poles and weights tables are modified, but the degree of this surface in the u and v parametric directions does not change. U1 can be greater than U2, and V1 can be greater than V2. In these cases, the corresponding parametric direction is inverted. The orientation of the surface is inverted if one (and only one) parametric direction is inverted.)#" , py::arg("U1"), py::arg("U2"), py::arg("V1"), py::arg("V2")
)
.def("SetPole",
(void (Geom_BezierSurface::*)( const Standard_Integer , const Standard_Integer , const gp_Pnt & ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer , const Standard_Integer , const gp_Pnt & ) >(&Geom_BezierSurface::SetPole),
R"#(Modifies a pole value. If the surface is rational the weight of range (UIndex, VIndex) is not modified.)#" , py::arg("UIndex"), py::arg("VIndex"), py::arg("P")
)
.def("SetPole",
(void (Geom_BezierSurface::*)( const Standard_Integer , const Standard_Integer , const gp_Pnt & , const Standard_Real ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer , const Standard_Integer , const gp_Pnt & , const Standard_Real ) >(&Geom_BezierSurface::SetPole),
R"#(Substitutes the pole and the weight of range UIndex, VIndex. If the surface <me> is not rational it can become rational. if the surface was rational it can become non-rational.)#" , py::arg("UIndex"), py::arg("VIndex"), py::arg("P"), py::arg("Weight")
)
.def("SetPoleCol",
(void (Geom_BezierSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & ) >(&Geom_BezierSurface::SetPoleCol),
R"#(Modifies a column of poles. The length of CPoles can be lower but not greater than NbUPoles so you can modify just a part of the column. Raised if VIndex < 1 or VIndex > NbVPoles)#" , py::arg("VIndex"), py::arg("CPoles")
)
.def("SetPoleCol",
(void (Geom_BezierSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> & ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> & ) >(&Geom_BezierSurface::SetPoleCol),
R"#(Modifies a column of poles. If the surface was rational it can become non-rational If the surface was non-rational it can become rational. The length of CPoles can be lower but not greater than NbUPoles so you can modify just a part of the column. Raised if VIndex < 1 or VIndex > NbVPoles)#" , py::arg("VIndex"), py::arg("CPoles"), py::arg("CPoleWeights")
)
.def("SetPoleRow",
(void (Geom_BezierSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & ) >(&Geom_BezierSurface::SetPoleRow),
R"#(Modifies a row of poles. The length of CPoles can be lower but not greater than NbVPoles so you can modify just a part of the row. Raised if UIndex < 1 or UIndex > NbUPoles)#" , py::arg("UIndex"), py::arg("CPoles")
)
.def("SetPoleRow",
(void (Geom_BezierSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> & ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer , const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> & ) >(&Geom_BezierSurface::SetPoleRow),
R"#(Modifies a row of poles and weights. If the surface was rational it can become non-rational. If the surface was non-rational it can become rational. The length of CPoles can be lower but not greater than NbVPoles so you can modify just a part of the row. Raised if UIndex < 1 or UIndex > NbUPoles)#" , py::arg("UIndex"), py::arg("CPoles"), py::arg("CPoleWeights")
)
.def("SetWeight",
(void (Geom_BezierSurface::*)( const Standard_Integer , const Standard_Integer , const Standard_Real ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer , const Standard_Integer , const Standard_Real ) >(&Geom_BezierSurface::SetWeight),
R"#(Modifies the weight of the pole of range UIndex, VIndex. If the surface was non-rational it can become rational. If the surface was rational it can become non-rational.)#" , py::arg("UIndex"), py::arg("VIndex"), py::arg("Weight")
)
.def("SetWeightCol",
(void (Geom_BezierSurface::*)( const Standard_Integer , const NCollection_Array1<Standard_Real> & ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer , const NCollection_Array1<Standard_Real> & ) >(&Geom_BezierSurface::SetWeightCol),
R"#(Modifies a column of weights. If the surface was rational it can become non-rational. If the surface was non-rational it can become rational. The length of CPoleWeights can be lower but not greater than NbUPoles. Raised if VIndex < 1 or VIndex > NbVPoles)#" , py::arg("VIndex"), py::arg("CPoleWeights")
)
.def("SetWeightRow",
(void (Geom_BezierSurface::*)( const Standard_Integer , const NCollection_Array1<Standard_Real> & ) ) static_cast<void (Geom_BezierSurface::*)( const Standard_Integer , const NCollection_Array1<Standard_Real> & ) >(&Geom_BezierSurface::SetWeightRow),
R"#(Modifies a row of weights. If the surface was rational it can become non-rational. If the surface was non-rational it can become rational. The length of CPoleWeights can be lower but not greater than NbVPoles. Raised if UIndex < 1 or UIndex > NbUPoles)#" , py::arg("UIndex"), py::arg("CPoleWeights")
)
.def("UReverse",
(void (Geom_BezierSurface::*)() ) static_cast<void (Geom_BezierSurface::*)() >(&Geom_BezierSurface::UReverse),
R"#(Changes the orientation of this Bezier surface in the u parametric direction. The bounds of the surface are not changed, but the given parametric direction is reversed. Hence, the orientation of the surface is reversed.)#"
)
.def("UReversedParameter",
(Standard_Real (Geom_BezierSurface::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_BezierSurface::*)( const Standard_Real ) const>(&Geom_BezierSurface::UReversedParameter),
R"#(Computes the u (or v) parameter on the modified surface, produced by reversing its u (or v) parametric direction, for any point of u parameter U (or of v parameter V) on this Bezier surface. In the case of a Bezier surface, these functions return respectively: - 1.-U, or 1.-V.)#" , py::arg("U")
)
.def("VReverse",
(void (Geom_BezierSurface::*)() ) static_cast<void (Geom_BezierSurface::*)() >(&Geom_BezierSurface::VReverse),
R"#(Changes the orientation of this Bezier surface in the v parametric direction. The bounds of the surface are not changed, but the given parametric direction is reversed. Hence, the orientation of the surface is reversed.)#"
)
.def("VReversedParameter",
(Standard_Real (Geom_BezierSurface::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_BezierSurface::*)( const Standard_Real ) const>(&Geom_BezierSurface::VReversedParameter),
R"#(Computes the u (or v) parameter on the modified surface, produced by reversing its u (or v) parametric direction, for any point of u parameter U (or of v parameter V) on this Bezier surface. In the case of a Bezier surface, these functions return respectively: - 1.-U, or 1.-V.)#" , py::arg("V")
)
.def("Continuity",
(GeomAbs_Shape (Geom_BezierSurface::*)() const) static_cast<GeomAbs_Shape (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::Continuity),
R"#(Returns the continuity of the surface CN : the order of continuity is infinite.)#"
)
.def("D0",
(void (Geom_BezierSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & ) const) static_cast<void (Geom_BezierSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & ) const>(&Geom_BezierSurface::D0),
R"#(None)#" , py::arg("U"), py::arg("V"), py::arg("P")
)
.def("D1",
(void (Geom_BezierSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_BezierSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const>(&Geom_BezierSurface::D1),
R"#(None)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V")
)
.def("D2",
(void (Geom_BezierSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_BezierSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_BezierSurface::D2),
R"#(None)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V"), py::arg("D2U"), py::arg("D2V"), py::arg("D2UV")
)
.def("D3",
(void (Geom_BezierSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_BezierSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_BezierSurface::D3),
R"#(Computes P, the point of parameters (U, V) of this Bezier surface, and - one or more of the following sets of vectors: - D1U and D1V, the first derivative vectors at this point, - D2U, D2V and D2UV, the second derivative vectors at this point, - D3U, D3V, D3UUV and D3UVV, the third derivative vectors at this point. Note: The parameters U and V can be outside the bounds of the surface.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V"), py::arg("D2U"), py::arg("D2V"), py::arg("D2UV"), py::arg("D3U"), py::arg("D3V"), py::arg("D3UUV"), py::arg("D3UVV")
)
.def("DN",
(gp_Vec (Geom_BezierSurface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer ) const) static_cast<gp_Vec (Geom_BezierSurface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer ) const>(&Geom_BezierSurface::DN),
R"#(Computes the derivative of order Nu in the u parametric direction, and Nv in the v parametric direction, at the point of parameters (U, V) of this Bezier surface. Note: The parameters U and V can be outside the bounds of the surface. Exceptions Standard_RangeError if: - Nu + Nv is less than 1, or Nu or Nv is negative.)#" , py::arg("U"), py::arg("V"), py::arg("Nu"), py::arg("Nv")
)
.def("NbUPoles",
(Standard_Integer (Geom_BezierSurface::*)() const) static_cast<Standard_Integer (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::NbUPoles),
R"#(Returns the number of poles in the U direction.)#"
)
.def("NbVPoles",
(Standard_Integer (Geom_BezierSurface::*)() const) static_cast<Standard_Integer (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::NbVPoles),
R"#(Returns the number of poles in the V direction.)#"
)
.def("Pole",
(const gp_Pnt & (Geom_BezierSurface::*)( const Standard_Integer , const Standard_Integer ) const) static_cast<const gp_Pnt & (Geom_BezierSurface::*)( const Standard_Integer , const Standard_Integer ) const>(&Geom_BezierSurface::Pole),
R"#(Returns the pole of range UIndex, VIndex Raised if UIndex < 1 or UIndex > NbUPoles, or VIndex < 1 or VIndex > NbVPoles.)#" , py::arg("UIndex"), py::arg("VIndex")
)
.def("Poles",
(void (Geom_BezierSurface::*)( NCollection_Array2<gp_Pnt> & ) const) static_cast<void (Geom_BezierSurface::*)( NCollection_Array2<gp_Pnt> & ) const>(&Geom_BezierSurface::Poles),
R"#(Returns the poles of the Bezier surface.)#" , py::arg("P")
)
.def("UDegree",
(Standard_Integer (Geom_BezierSurface::*)() const) static_cast<Standard_Integer (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::UDegree),
R"#(Returns the degree of the surface in the U direction it is NbUPoles - 1)#"
)
.def("UIso",
(opencascade::handle<Geom_Curve> (Geom_BezierSurface::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_BezierSurface::*)( const Standard_Real ) const>(&Geom_BezierSurface::UIso),
R"#(Computes the U isoparametric curve. For a Bezier surface the UIso curve is a Bezier curve.)#" , py::arg("U")
)
.def("VDegree",
(Standard_Integer (Geom_BezierSurface::*)() const) static_cast<Standard_Integer (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::VDegree),
R"#(Returns the degree of the surface in the V direction it is NbVPoles - 1)#"
)
.def("VIso",
(opencascade::handle<Geom_Curve> (Geom_BezierSurface::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_BezierSurface::*)( const Standard_Real ) const>(&Geom_BezierSurface::VIso),
R"#(Computes the V isoparametric curve. For a Bezier surface the VIso curve is a Bezier curve.)#" , py::arg("V")
)
.def("Weight",
(Standard_Real (Geom_BezierSurface::*)( const Standard_Integer , const Standard_Integer ) const) static_cast<Standard_Real (Geom_BezierSurface::*)( const Standard_Integer , const Standard_Integer ) const>(&Geom_BezierSurface::Weight),
R"#(Returns the weight of range UIndex, VIndex)#" , py::arg("UIndex"), py::arg("VIndex")
)
.def("Weights",
(void (Geom_BezierSurface::*)( NCollection_Array2<Standard_Real> & ) const) static_cast<void (Geom_BezierSurface::*)( NCollection_Array2<Standard_Real> & ) const>(&Geom_BezierSurface::Weights),
R"#(Returns the weights of the Bezier surface.)#" , py::arg("W")
)
.def("Weights",
(const TColStd_Array2OfReal * (Geom_BezierSurface::*)() const) static_cast<const TColStd_Array2OfReal * (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::Weights),
R"#(Returns the weights of the Bezier surface.)#"
)
.def("IsUClosed",
(Standard_Boolean (Geom_BezierSurface::*)() const) static_cast<Standard_Boolean (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::IsUClosed),
R"#(Returns True if the first control points row and the last control points row are identical. The tolerance criterion is Resolution from package gp.)#"
)
.def("IsVClosed",
(Standard_Boolean (Geom_BezierSurface::*)() const) static_cast<Standard_Boolean (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::IsVClosed),
R"#(Returns True if the first control points column and the last control points column are identical. The tolerance criterion is Resolution from package gp.)#"
)
.def("IsCNu",
(Standard_Boolean (Geom_BezierSurface::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom_BezierSurface::*)( const Standard_Integer ) const>(&Geom_BezierSurface::IsCNu),
R"#(Returns True, a Bezier surface is always CN)#" , py::arg("N")
)
.def("IsCNv",
(Standard_Boolean (Geom_BezierSurface::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom_BezierSurface::*)( const Standard_Integer ) const>(&Geom_BezierSurface::IsCNv),
R"#(Returns True, a BezierSurface is always CN)#" , py::arg("N")
)
.def("IsUPeriodic",
(Standard_Boolean (Geom_BezierSurface::*)() const) static_cast<Standard_Boolean (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::IsUPeriodic),
R"#(Returns False.)#"
)
.def("IsVPeriodic",
(Standard_Boolean (Geom_BezierSurface::*)() const) static_cast<Standard_Boolean (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::IsVPeriodic),
R"#(Returns False.)#"
)
.def("IsURational",
(Standard_Boolean (Geom_BezierSurface::*)() const) static_cast<Standard_Boolean (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::IsURational),
R"#(Returns False if the weights are identical in the U direction, The tolerance criterion is Resolution from package gp. Example : |1.0, 1.0, 1.0| if Weights = |0.5, 0.5, 0.5| returns False |2.0, 2.0, 2.0|)#"
)
.def("IsVRational",
(Standard_Boolean (Geom_BezierSurface::*)() const) static_cast<Standard_Boolean (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::IsVRational),
R"#(Returns False if the weights are identical in the V direction, The tolerance criterion is Resolution from package gp. Example : |1.0, 2.0, 0.5| if Weights = |1.0, 2.0, 0.5| returns False |1.0, 2.0, 0.5|)#"
)
.def("Transform",
(void (Geom_BezierSurface::*)( const gp_Trsf & ) ) static_cast<void (Geom_BezierSurface::*)( const gp_Trsf & ) >(&Geom_BezierSurface::Transform),
R"#(Applies the transformation T to this Bezier surface.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom_Geometry> (Geom_BezierSurface::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::Copy),
R"#(Creates a new object which is a copy of this Bezier surface.)#"
)
.def("DumpJson",
(void (Geom_BezierSurface::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom_BezierSurface::*)( std::ostream & , Standard_Integer ) const>(&Geom_BezierSurface::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
.def("Bounds",
[]( Geom_BezierSurface &self ){
Standard_Real U1;
Standard_Real U2;
Standard_Real V1;
Standard_Real V2;
self.Bounds(U1,U2,V1,V2);
return std::make_tuple(U1,U2,V1,V2); },
R"#(Returns the parametric bounds U1, U2, V1 and V2 of this Bezier surface. In the case of a Bezier surface, this function returns U1 = 0, V1 = 0, U2 = 1, V2 = 1.)#"
)
.def("Resolution",
[]( Geom_BezierSurface &self , const Standard_Real Tolerance3D ){
Standard_Real UTolerance;
Standard_Real VTolerance;
self.Resolution(Tolerance3D,UTolerance,VTolerance);
return std::make_tuple(UTolerance,VTolerance); },
R"#(Computes two tolerance values for this Bezier surface, based on the given tolerance in 3D space Tolerance3D. The tolerances computed are: - UTolerance in the u parametric direction, and - VTolerance in the v parametric direction. If f(u,v) is the equation of this Bezier surface, UTolerance and VTolerance guarantee that: | u1 - u0 | < UTolerance and | v1 - v0 | < VTolerance ====> |f (u1,v1) - f (u0,v0)| < Tolerance3D)#" , py::arg("Tolerance3D")
)
// static methods
.def_static("MaxDegree_s",
(Standard_Integer (*)() ) static_cast<Standard_Integer (*)() >(&Geom_BezierSurface::MaxDegree),
R"#(Returns the value of the maximum polynomial degree of a Bezier surface. This value is 25.)#"
)
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_BezierSurface::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_BezierSurface::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Poles",
(const TColgp_Array2OfPnt & (Geom_BezierSurface::*)() const) static_cast<const TColgp_Array2OfPnt & (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::Poles),
R"#(Returns the poles of the Bezier surface.)#"
, py::return_value_policy::reference_internal
)
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_BezierSurface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_BezierSurface::*)() const>(&Geom_BezierSurface::DynamicType),
R"#(None)#"
)
;
// Class Geom_Circle from ./opencascade/Geom_Circle.hxx
klass = m.attr("Geom_Circle");
// nested enums
static_cast<py::class_<Geom_Circle ,opencascade::handle<Geom_Circle> , Geom_Conic >>(klass)
// constructors
.def(py::init< const gp_Circ & >() , py::arg("C") )
.def(py::init< const gp_Ax2 &,const Standard_Real >() , py::arg("A2"), py::arg("Radius") )
// custom constructors
// methods
.def("SetCirc",
(void (Geom_Circle::*)( const gp_Circ & ) ) static_cast<void (Geom_Circle::*)( const gp_Circ & ) >(&Geom_Circle::SetCirc),
R"#(Set <me> so that <me> has the same geometric properties as C.)#" , py::arg("C")
)
.def("SetRadius",
(void (Geom_Circle::*)( const Standard_Real ) ) static_cast<void (Geom_Circle::*)( const Standard_Real ) >(&Geom_Circle::SetRadius),
R"#(Assigns the value R to the radius of this circle. Note: it is possible to have a circle with a radius equal to 0.0. Exceptions - Standard_ConstructionError if R is negative.)#" , py::arg("R")
)
.def("Circ",
(gp_Circ (Geom_Circle::*)() const) static_cast<gp_Circ (Geom_Circle::*)() const>(&Geom_Circle::Circ),
R"#(returns the non transient circle from gp with the same geometric properties as <me>.)#"
)
.def("Radius",
(Standard_Real (Geom_Circle::*)() const) static_cast<Standard_Real (Geom_Circle::*)() const>(&Geom_Circle::Radius),
R"#(Returns the radius of this circle.)#"
)
.def("ReversedParameter",
(Standard_Real (Geom_Circle::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_Circle::*)( const Standard_Real ) const>(&Geom_Circle::ReversedParameter),
R"#(Computes the parameter on the reversed circle for the point of parameter U on this circle. For a circle, the returned value is: 2.*Pi - U.)#" , py::arg("U")
)
.def("Eccentricity",
(Standard_Real (Geom_Circle::*)() const) static_cast<Standard_Real (Geom_Circle::*)() const>(&Geom_Circle::Eccentricity),
R"#(Returns the eccentricity e = 0 for a circle.)#"
)
.def("FirstParameter",
(Standard_Real (Geom_Circle::*)() const) static_cast<Standard_Real (Geom_Circle::*)() const>(&Geom_Circle::FirstParameter),
R"#(Returns the value of the first parameter of this circle. This is 0.0, which gives the start point of this circle, or The start point and end point of a circle are coincident.)#"
)
.def("LastParameter",
(Standard_Real (Geom_Circle::*)() const) static_cast<Standard_Real (Geom_Circle::*)() const>(&Geom_Circle::LastParameter),
R"#(Returns the value of the last parameter of this circle. This is 2.*Pi, which gives the end point of this circle. The start point and end point of a circle are coincident.)#"
)
.def("IsClosed",
(Standard_Boolean (Geom_Circle::*)() const) static_cast<Standard_Boolean (Geom_Circle::*)() const>(&Geom_Circle::IsClosed),
R"#(returns True.)#"
)
.def("IsPeriodic",
(Standard_Boolean (Geom_Circle::*)() const) static_cast<Standard_Boolean (Geom_Circle::*)() const>(&Geom_Circle::IsPeriodic),
R"#(returns True.)#"
)
.def("D0",
(void (Geom_Circle::*)( const Standard_Real , gp_Pnt & ) const) static_cast<void (Geom_Circle::*)( const Standard_Real , gp_Pnt & ) const>(&Geom_Circle::D0),
R"#(Returns in P the point of parameter U. P = C + R * Cos (U) * XDir + R * Sin (U) * YDir where C is the center of the circle , XDir the XDirection and YDir the YDirection of the circle's local coordinate system.)#" , py::arg("U"), py::arg("P")
)
.def("D1",
(void (Geom_Circle::*)( const Standard_Real , gp_Pnt & , gp_Vec & ) const) static_cast<void (Geom_Circle::*)( const Standard_Real , gp_Pnt & , gp_Vec & ) const>(&Geom_Circle::D1),
R"#(Returns the point P of parameter U and the first derivative V1.)#" , py::arg("U"), py::arg("P"), py::arg("V1")
)
.def("D2",
(void (Geom_Circle::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_Circle::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const>(&Geom_Circle::D2),
R"#(Returns the point P of parameter U, the first and second derivatives V1 and V2.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2")
)
.def("D3",
(void (Geom_Circle::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_Circle::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_Circle::D3),
R"#(Returns the point P of parameter u, the first second and third derivatives V1 V2 and V3.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2"), py::arg("V3")
)
.def("DN",
(gp_Vec (Geom_Circle::*)( const Standard_Real , const Standard_Integer ) const) static_cast<gp_Vec (Geom_Circle::*)( const Standard_Real , const Standard_Integer ) const>(&Geom_Circle::DN),
R"#(The returned vector gives the value of the derivative for the order of derivation N. Raised if N < 1.)#" , py::arg("U"), py::arg("N")
)
.def("Transform",
(void (Geom_Circle::*)( const gp_Trsf & ) ) static_cast<void (Geom_Circle::*)( const gp_Trsf & ) >(&Geom_Circle::Transform),
R"#(Applies the transformation T to this circle.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom_Geometry> (Geom_Circle::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Circle::*)() const>(&Geom_Circle::Copy),
R"#(Creates a new object which is a copy of this circle.)#"
)
.def("DumpJson",
(void (Geom_Circle::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom_Circle::*)( std::ostream & , Standard_Integer ) const>(&Geom_Circle::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_Circle::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Circle::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_Circle::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Circle::*)() const>(&Geom_Circle::DynamicType),
R"#(None)#"
)
;
// Class Geom_ConicalSurface from ./opencascade/Geom_ConicalSurface.hxx
klass = m.attr("Geom_ConicalSurface");
// nested enums
static_cast<py::class_<Geom_ConicalSurface ,opencascade::handle<Geom_ConicalSurface> , Geom_ElementarySurface >>(klass)
// constructors
.def(py::init< const gp_Ax3 &,const Standard_Real,const Standard_Real >() , py::arg("A3"), py::arg("Ang"), py::arg("Radius") )
.def(py::init< const gp_Cone & >() , py::arg("C") )
// custom constructors
// methods
.def("SetCone",
(void (Geom_ConicalSurface::*)( const gp_Cone & ) ) static_cast<void (Geom_ConicalSurface::*)( const gp_Cone & ) >(&Geom_ConicalSurface::SetCone),
R"#(Set <me> so that <me> has the same geometric properties as C.)#" , py::arg("C")
)
.def("SetRadius",
(void (Geom_ConicalSurface::*)( const Standard_Real ) ) static_cast<void (Geom_ConicalSurface::*)( const Standard_Real ) >(&Geom_ConicalSurface::SetRadius),
R"#(Changes the radius of the conical surface in the placement plane (Z = 0, V = 0). The local coordinate system is not modified. Raised if R < 0.0)#" , py::arg("R")
)
.def("SetSemiAngle",
(void (Geom_ConicalSurface::*)( const Standard_Real ) ) static_cast<void (Geom_ConicalSurface::*)( const Standard_Real ) >(&Geom_ConicalSurface::SetSemiAngle),
R"#(Changes the semi angle of the conical surface. Semi-angle can be negative. Its absolute value Abs(Ang) is in range ]0,PI/2[. Raises ConstructionError if Abs(Ang) < Resolution from gp or Abs(Ang) >= PI/2 - Resolution)#" , py::arg("Ang")
)
.def("Cone",
(gp_Cone (Geom_ConicalSurface::*)() const) static_cast<gp_Cone (Geom_ConicalSurface::*)() const>(&Geom_ConicalSurface::Cone),
R"#(Returns a non transient cone with the same geometric properties as <me>.)#"
)
.def("UReversedParameter",
(Standard_Real (Geom_ConicalSurface::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_ConicalSurface::*)( const Standard_Real ) const>(&Geom_ConicalSurface::UReversedParameter),
R"#(Eeturn 2.PI - U.)#" , py::arg("U")
)
.def("VReversedParameter",
(Standard_Real (Geom_ConicalSurface::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_ConicalSurface::*)( const Standard_Real ) const>(&Geom_ConicalSurface::VReversedParameter),
R"#(Computes the u (or v) parameter on the modified surface, when reversing its u (or v) parametric direction, for any point of u parameter U (or of v parameter V) on this cone. In the case of a cone, these functions return respectively: - 2.*Pi - U, -V.)#" , py::arg("V")
)
.def("VReverse",
(void (Geom_ConicalSurface::*)() ) static_cast<void (Geom_ConicalSurface::*)() >(&Geom_ConicalSurface::VReverse),
R"#(Changes the orientation of this cone in the v parametric direction. The bounds of the surface are not changed but the v parametric direction is reversed. As a consequence, for a cone: - the "main Direction" of the local coordinate system is reversed, and - the half-angle at the apex is inverted.)#"
)
.def("ParametricTransformation",
(gp_GTrsf2d (Geom_ConicalSurface::*)( const gp_Trsf & ) const) static_cast<gp_GTrsf2d (Geom_ConicalSurface::*)( const gp_Trsf & ) const>(&Geom_ConicalSurface::ParametricTransformation),
R"#(Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns a scale centered on the U axis with T.ScaleFactor)#" , py::arg("T")
)
.def("Apex",
(gp_Pnt (Geom_ConicalSurface::*)() const) static_cast<gp_Pnt (Geom_ConicalSurface::*)() const>(&Geom_ConicalSurface::Apex),
R"#(Computes the apex of this cone. It is on the negative side of the axis of revolution of this cone if the half-angle at the apex is positive, and on the positive side of the "main Axis" if the half-angle is negative.)#"
)
.def("RefRadius",
(Standard_Real (Geom_ConicalSurface::*)() const) static_cast<Standard_Real (Geom_ConicalSurface::*)() const>(&Geom_ConicalSurface::RefRadius),
R"#(Returns the reference radius of this cone. The reference radius is the radius of the circle formed by the intersection of this cone and its reference plane (i.e. the plane defined by the origin, "X Direction" and "Y Direction" of the local coordinate system of this cone). If the apex of this cone is on the origin of the local coordinate system of this cone, the returned value is 0.)#"
)
.def("SemiAngle",
(Standard_Real (Geom_ConicalSurface::*)() const) static_cast<Standard_Real (Geom_ConicalSurface::*)() const>(&Geom_ConicalSurface::SemiAngle),
R"#(Returns the semi-angle at the apex of this cone. Attention! Semi-angle can be negative.)#"
)
.def("IsUClosed",
(Standard_Boolean (Geom_ConicalSurface::*)() const) static_cast<Standard_Boolean (Geom_ConicalSurface::*)() const>(&Geom_ConicalSurface::IsUClosed),
R"#(returns True.)#"
)
.def("IsVClosed",
(Standard_Boolean (Geom_ConicalSurface::*)() const) static_cast<Standard_Boolean (Geom_ConicalSurface::*)() const>(&Geom_ConicalSurface::IsVClosed),
R"#(returns False.)#"
)
.def("IsUPeriodic",
(Standard_Boolean (Geom_ConicalSurface::*)() const) static_cast<Standard_Boolean (Geom_ConicalSurface::*)() const>(&Geom_ConicalSurface::IsUPeriodic),
R"#(Returns True.)#"
)
.def("IsVPeriodic",
(Standard_Boolean (Geom_ConicalSurface::*)() const) static_cast<Standard_Boolean (Geom_ConicalSurface::*)() const>(&Geom_ConicalSurface::IsVPeriodic),
R"#(Returns False.)#"
)
.def("UIso",
(opencascade::handle<Geom_Curve> (Geom_ConicalSurface::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_ConicalSurface::*)( const Standard_Real ) const>(&Geom_ConicalSurface::UIso),
R"#(Builds the U isoparametric line of this cone. The origin of this line is on the reference plane of this cone (i.e. the plane defined by the origin, "X Direction" and "Y Direction" of the local coordinate system of this cone).)#" , py::arg("U")
)
.def("VIso",
(opencascade::handle<Geom_Curve> (Geom_ConicalSurface::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_ConicalSurface::*)( const Standard_Real ) const>(&Geom_ConicalSurface::VIso),
R"#(Builds the V isoparametric circle of this cone. It is the circle on this cone, located in the plane of Z coordinate V*cos(Semi-Angle) in the local coordinate system of this cone. The "Axis" of this circle is the axis of revolution of this cone. Its starting point is defined by the "X Direction" of this cone. Warning If the V isoparametric circle is close to the apex of this cone, the radius of the circle becomes very small. It is possible to have a circle with radius equal to 0.0.)#" , py::arg("V")
)
.def("D0",
(void (Geom_ConicalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & ) const) static_cast<void (Geom_ConicalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & ) const>(&Geom_ConicalSurface::D0),
R"#(Computes the point P (U, V) on the surface. where Loc is the origin of the placement plane (XAxis, YAxis) XDir is the direction of the XAxis and YDir the direction of the YAxis.)#" , py::arg("U"), py::arg("V"), py::arg("P")
)
.def("D1",
(void (Geom_ConicalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_ConicalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const>(&Geom_ConicalSurface::D1),
R"#(Computes the current point and the first derivatives in the directions U and V.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V")
)
.def("D2",
(void (Geom_ConicalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_ConicalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_ConicalSurface::D2),
R"#(Computes the current point, the first and the second derivatives in the directions U and V.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V"), py::arg("D2U"), py::arg("D2V"), py::arg("D2UV")
)
.def("D3",
(void (Geom_ConicalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_ConicalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_ConicalSurface::D3),
R"#(Computes the current point, the first,the second and the third derivatives in the directions U and V.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V"), py::arg("D2U"), py::arg("D2V"), py::arg("D2UV"), py::arg("D3U"), py::arg("D3V"), py::arg("D3UUV"), py::arg("D3UVV")
)
.def("DN",
(gp_Vec (Geom_ConicalSurface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer ) const) static_cast<gp_Vec (Geom_ConicalSurface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer ) const>(&Geom_ConicalSurface::DN),
R"#(Computes the derivative of order Nu in the u parametric direction, and Nv in the v parametric direction at the point of parameters (U, V) of this cone. Exceptions Standard_RangeError if: - Nu + Nv is less than 1, - Nu or Nv is negative.)#" , py::arg("U"), py::arg("V"), py::arg("Nu"), py::arg("Nv")
)
.def("Transform",
(void (Geom_ConicalSurface::*)( const gp_Trsf & ) ) static_cast<void (Geom_ConicalSurface::*)( const gp_Trsf & ) >(&Geom_ConicalSurface::Transform),
R"#(Applies the transformation T to this cone.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom_Geometry> (Geom_ConicalSurface::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_ConicalSurface::*)() const>(&Geom_ConicalSurface::Copy),
R"#(Creates a new object which is a copy of this cone.)#"
)
.def("DumpJson",
(void (Geom_ConicalSurface::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom_ConicalSurface::*)( std::ostream & , Standard_Integer ) const>(&Geom_ConicalSurface::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
.def("TransformParameters",
[]( Geom_ConicalSurface &self , const gp_Trsf & T ){
Standard_Real U;
Standard_Real V;
self.TransformParameters(U,V,T);
return std::make_tuple(U,V); },
R"#(Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method multiplies V by T.ScaleFactor())#" , py::arg("T")
)
.def("Bounds",
[]( Geom_ConicalSurface &self ){
Standard_Real U1;
Standard_Real U2;
Standard_Real V1;
Standard_Real V2;
self.Bounds(U1,U2,V1,V2);
return std::make_tuple(U1,U2,V1,V2); },
R"#(The conical surface is infinite in the V direction so V1 = Realfirst from Standard and V2 = RealLast. U1 = 0 and U2 = 2*PI.)#"
)
.def("Coefficients",
[]( Geom_ConicalSurface &self ){
Standard_Real A1;
Standard_Real A2;
Standard_Real A3;
Standard_Real B1;
Standard_Real B2;
Standard_Real B3;
Standard_Real C1;
Standard_Real C2;
Standard_Real C3;
Standard_Real D;
self.Coefficients(A1,A2,A3,B1,B2,B3,C1,C2,C3,D);
return std::make_tuple(A1,A2,A3,B1,B2,B3,C1,C2,C3,D); },
R"#(Returns the coefficients of the implicit equation of the quadric in the absolute cartesian coordinate system : These coefficients are normalized.)#"
)
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_ConicalSurface::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_ConicalSurface::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_ConicalSurface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_ConicalSurface::*)() const>(&Geom_ConicalSurface::DynamicType),
R"#(None)#"
)
;
// Class Geom_CylindricalSurface from ./opencascade/Geom_CylindricalSurface.hxx
klass = m.attr("Geom_CylindricalSurface");
// nested enums
static_cast<py::class_<Geom_CylindricalSurface ,opencascade::handle<Geom_CylindricalSurface> , Geom_ElementarySurface >>(klass)
// constructors
.def(py::init< const gp_Ax3 &,const Standard_Real >() , py::arg("A3"), py::arg("Radius") )
.def(py::init< const gp_Cylinder & >() , py::arg("C") )
// custom constructors
// methods
.def("SetCylinder",
(void (Geom_CylindricalSurface::*)( const gp_Cylinder & ) ) static_cast<void (Geom_CylindricalSurface::*)( const gp_Cylinder & ) >(&Geom_CylindricalSurface::SetCylinder),
R"#(Set <me> so that <me> has the same geometric properties as C.)#" , py::arg("C")
)
.def("SetRadius",
(void (Geom_CylindricalSurface::*)( const Standard_Real ) ) static_cast<void (Geom_CylindricalSurface::*)( const Standard_Real ) >(&Geom_CylindricalSurface::SetRadius),
R"#(Changes the radius of the cylinder. Raised if R < 0.0)#" , py::arg("R")
)
.def("Cylinder",
(gp_Cylinder (Geom_CylindricalSurface::*)() const) static_cast<gp_Cylinder (Geom_CylindricalSurface::*)() const>(&Geom_CylindricalSurface::Cylinder),
R"#(returns a non transient cylinder with the same geometric properties as <me>.)#"
)
.def("UReversedParameter",
(Standard_Real (Geom_CylindricalSurface::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_CylindricalSurface::*)( const Standard_Real ) const>(&Geom_CylindricalSurface::UReversedParameter),
R"#(Return the parameter on the Ureversed surface for the point of parameter U on <me>. Return 2.PI - U.)#" , py::arg("U")
)
.def("VReversedParameter",
(Standard_Real (Geom_CylindricalSurface::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_CylindricalSurface::*)( const Standard_Real ) const>(&Geom_CylindricalSurface::VReversedParameter),
R"#(Return the parameter on the Vreversed surface for the point of parameter V on <me>. Return -V)#" , py::arg("V")
)
.def("ParametricTransformation",
(gp_GTrsf2d (Geom_CylindricalSurface::*)( const gp_Trsf & ) const) static_cast<gp_GTrsf2d (Geom_CylindricalSurface::*)( const gp_Trsf & ) const>(&Geom_CylindricalSurface::ParametricTransformation),
R"#(Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns a scale centered on the U axis with T.ScaleFactor)#" , py::arg("T")
)
.def("Radius",
(Standard_Real (Geom_CylindricalSurface::*)() const) static_cast<Standard_Real (Geom_CylindricalSurface::*)() const>(&Geom_CylindricalSurface::Radius),
R"#(Returns the radius of this cylinder.)#"
)
.def("IsUClosed",
(Standard_Boolean (Geom_CylindricalSurface::*)() const) static_cast<Standard_Boolean (Geom_CylindricalSurface::*)() const>(&Geom_CylindricalSurface::IsUClosed),
R"#(Returns True.)#"
)
.def("IsVClosed",
(Standard_Boolean (Geom_CylindricalSurface::*)() const) static_cast<Standard_Boolean (Geom_CylindricalSurface::*)() const>(&Geom_CylindricalSurface::IsVClosed),
R"#(Returns False.)#"
)
.def("IsUPeriodic",
(Standard_Boolean (Geom_CylindricalSurface::*)() const) static_cast<Standard_Boolean (Geom_CylindricalSurface::*)() const>(&Geom_CylindricalSurface::IsUPeriodic),
R"#(Returns True.)#"
)
.def("IsVPeriodic",
(Standard_Boolean (Geom_CylindricalSurface::*)() const) static_cast<Standard_Boolean (Geom_CylindricalSurface::*)() const>(&Geom_CylindricalSurface::IsVPeriodic),
R"#(Returns False.)#"
)
.def("UIso",
(opencascade::handle<Geom_Curve> (Geom_CylindricalSurface::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_CylindricalSurface::*)( const Standard_Real ) const>(&Geom_CylindricalSurface::UIso),
R"#(The UIso curve is a Line. The location point of this line is on the placement plane (XAxis, YAxis) of the surface. This line is parallel to the axis of symmetry of the surface.)#" , py::arg("U")
)
.def("VIso",
(opencascade::handle<Geom_Curve> (Geom_CylindricalSurface::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_CylindricalSurface::*)( const Standard_Real ) const>(&Geom_CylindricalSurface::VIso),
R"#(The VIso curve is a circle. The start point of this circle (U = 0) is defined with the "XAxis" of the surface. The center of the circle is on the symmetry axis.)#" , py::arg("V")
)
.def("D0",
(void (Geom_CylindricalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & ) const) static_cast<void (Geom_CylindricalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & ) const>(&Geom_CylindricalSurface::D0),
R"#(Computes the point P (U, V) on the surface. P (U, V) = Loc + Radius * (cos (U) * XDir + sin (U) * YDir) + V * ZDir where Loc is the origin of the placement plane (XAxis, YAxis) XDir is the direction of the XAxis and YDir the direction of the YAxis.)#" , py::arg("U"), py::arg("V"), py::arg("P")
)
.def("D1",
(void (Geom_CylindricalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_CylindricalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const>(&Geom_CylindricalSurface::D1),
R"#(Computes the current point and the first derivatives in the directions U and V.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V")
)
.def("D2",
(void (Geom_CylindricalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_CylindricalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_CylindricalSurface::D2),
R"#(Computes the current point, the first and the second derivatives in the directions U and V.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V"), py::arg("D2U"), py::arg("D2V"), py::arg("D2UV")
)
.def("D3",
(void (Geom_CylindricalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_CylindricalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_CylindricalSurface::D3),
R"#(Computes the current point, the first, the second and the third derivatives in the directions U and V.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V"), py::arg("D2U"), py::arg("D2V"), py::arg("D2UV"), py::arg("D3U"), py::arg("D3V"), py::arg("D3UUV"), py::arg("D3UVV")
)
.def("DN",
(gp_Vec (Geom_CylindricalSurface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer ) const) static_cast<gp_Vec (Geom_CylindricalSurface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer ) const>(&Geom_CylindricalSurface::DN),
R"#(Computes the derivative of order Nu in the direction u and Nv in the direction v. Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.)#" , py::arg("U"), py::arg("V"), py::arg("Nu"), py::arg("Nv")
)
.def("Transform",
(void (Geom_CylindricalSurface::*)( const gp_Trsf & ) ) static_cast<void (Geom_CylindricalSurface::*)( const gp_Trsf & ) >(&Geom_CylindricalSurface::Transform),
R"#(Applies the transformation T to this cylinder.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom_Geometry> (Geom_CylindricalSurface::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_CylindricalSurface::*)() const>(&Geom_CylindricalSurface::Copy),
R"#(Creates a new object which is a copy of this cylinder.)#"
)
.def("DumpJson",
(void (Geom_CylindricalSurface::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom_CylindricalSurface::*)( std::ostream & , Standard_Integer ) const>(&Geom_CylindricalSurface::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
.def("TransformParameters",
[]( Geom_CylindricalSurface &self , const gp_Trsf & T ){
Standard_Real U;
Standard_Real V;
self.TransformParameters(U,V,T);
return std::make_tuple(U,V); },
R"#(Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method multiplies V by T.ScaleFactor())#" , py::arg("T")
)
.def("Bounds",
[]( Geom_CylindricalSurface &self ){
Standard_Real U1;
Standard_Real U2;
Standard_Real V1;
Standard_Real V2;
self.Bounds(U1,U2,V1,V2);
return std::make_tuple(U1,U2,V1,V2); },
R"#(The CylindricalSurface is infinite in the V direction so V1 = Realfirst, V2 = RealLast from package Standard. U1 = 0 and U2 = 2*PI.)#"
)
.def("Coefficients",
[]( Geom_CylindricalSurface &self ){
Standard_Real A1;
Standard_Real A2;
Standard_Real A3;
Standard_Real B1;
Standard_Real B2;
Standard_Real B3;
Standard_Real C1;
Standard_Real C2;
Standard_Real C3;
Standard_Real D;
self.Coefficients(A1,A2,A3,B1,B2,B3,C1,C2,C3,D);
return std::make_tuple(A1,A2,A3,B1,B2,B3,C1,C2,C3,D); },
R"#(Returns the coefficients of the implicit equation of the quadric in the absolute cartesian coordinate system : These coefficients are normalized.)#"
)
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_CylindricalSurface::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_CylindricalSurface::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_CylindricalSurface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_CylindricalSurface::*)() const>(&Geom_CylindricalSurface::DynamicType),
R"#(None)#"
)
;
// Class Geom_Ellipse from ./opencascade/Geom_Ellipse.hxx
klass = m.attr("Geom_Ellipse");
// nested enums
static_cast<py::class_<Geom_Ellipse ,opencascade::handle<Geom_Ellipse> , Geom_Conic >>(klass)
// constructors
.def(py::init< const gp_Elips & >() , py::arg("E") )
.def(py::init< const gp_Ax2 &,const Standard_Real,const Standard_Real >() , py::arg("A2"), py::arg("MajorRadius"), py::arg("MinorRadius") )
// custom constructors
// methods
.def("SetElips",
(void (Geom_Ellipse::*)( const gp_Elips & ) ) static_cast<void (Geom_Ellipse::*)( const gp_Elips & ) >(&Geom_Ellipse::SetElips),
R"#(Converts the gp_Elips ellipse E into this ellipse.)#" , py::arg("E")
)
.def("SetMajorRadius",
(void (Geom_Ellipse::*)( const Standard_Real ) ) static_cast<void (Geom_Ellipse::*)( const Standard_Real ) >(&Geom_Ellipse::SetMajorRadius),
R"#(Assigns a value to the major radius of this ellipse. ConstructionError raised if MajorRadius < MinorRadius.)#" , py::arg("MajorRadius")
)
.def("SetMinorRadius",
(void (Geom_Ellipse::*)( const Standard_Real ) ) static_cast<void (Geom_Ellipse::*)( const Standard_Real ) >(&Geom_Ellipse::SetMinorRadius),
R"#(Assigns a value to the minor radius of this ellipse. ConstructionError raised if MajorRadius < MinorRadius or if MinorRadius < 0.)#" , py::arg("MinorRadius")
)
.def("Elips",
(gp_Elips (Geom_Ellipse::*)() const) static_cast<gp_Elips (Geom_Ellipse::*)() const>(&Geom_Ellipse::Elips),
R"#(returns the non transient ellipse from gp with the same)#"
)
.def("ReversedParameter",
(Standard_Real (Geom_Ellipse::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_Ellipse::*)( const Standard_Real ) const>(&Geom_Ellipse::ReversedParameter),
R"#(Computes the parameter on the reversed ellipse for the point of parameter U on this ellipse. For an ellipse, the returned value is: 2.*Pi - U.)#" , py::arg("U")
)
.def("Directrix1",
(gp_Ax1 (Geom_Ellipse::*)() const) static_cast<gp_Ax1 (Geom_Ellipse::*)() const>(&Geom_Ellipse::Directrix1),
R"#(This directrix is the line normal to the XAxis of the ellipse in the local plane (Z = 0) at a distance d = MajorRadius / e from the center of the ellipse, where e is the eccentricity of the ellipse. This line is parallel to the "YAxis". The intersection point between directrix1 and the "XAxis" is the "Location" point of the directrix1. This point is on the positive side of the "XAxis". Raised if Eccentricity = 0.0. (The ellipse degenerates into a circle))#"
)
.def("Directrix2",
(gp_Ax1 (Geom_Ellipse::*)() const) static_cast<gp_Ax1 (Geom_Ellipse::*)() const>(&Geom_Ellipse::Directrix2),
R"#(This line is obtained by the symmetrical transformation of "Directrix1" with respect to the "YAxis" of the ellipse.)#"
)
.def("Eccentricity",
(Standard_Real (Geom_Ellipse::*)() const) static_cast<Standard_Real (Geom_Ellipse::*)() const>(&Geom_Ellipse::Eccentricity),
R"#(Returns the eccentricity of the ellipse between 0.0 and 1.0 If f is the distance between the center of the ellipse and the Focus1 then the eccentricity e = f / MajorRadius. Returns 0 if MajorRadius = 0)#"
)
.def("Focal",
(Standard_Real (Geom_Ellipse::*)() const) static_cast<Standard_Real (Geom_Ellipse::*)() const>(&Geom_Ellipse::Focal),
R"#(Computes the focal distance. It is the distance between the the two focus of the ellipse.)#"
)
.def("Focus1",
(gp_Pnt (Geom_Ellipse::*)() const) static_cast<gp_Pnt (Geom_Ellipse::*)() const>(&Geom_Ellipse::Focus1),
R"#(Returns the first focus of the ellipse. This focus is on the positive side of the "XAxis" of the ellipse.)#"
)
.def("Focus2",
(gp_Pnt (Geom_Ellipse::*)() const) static_cast<gp_Pnt (Geom_Ellipse::*)() const>(&Geom_Ellipse::Focus2),
R"#(Returns the second focus of the ellipse. This focus is on the negative side of the "XAxis" of the ellipse.)#"
)
.def("MajorRadius",
(Standard_Real (Geom_Ellipse::*)() const) static_cast<Standard_Real (Geom_Ellipse::*)() const>(&Geom_Ellipse::MajorRadius),
R"#(Returns the major radius of this ellipse.)#"
)
.def("MinorRadius",
(Standard_Real (Geom_Ellipse::*)() const) static_cast<Standard_Real (Geom_Ellipse::*)() const>(&Geom_Ellipse::MinorRadius),
R"#(Returns the minor radius of this ellipse.)#"
)
.def("Parameter",
(Standard_Real (Geom_Ellipse::*)() const) static_cast<Standard_Real (Geom_Ellipse::*)() const>(&Geom_Ellipse::Parameter),
R"#(Returns p = (1 - e * e) * MajorRadius where e is the eccentricity of the ellipse. Returns 0 if MajorRadius = 0)#"
)
.def("FirstParameter",
(Standard_Real (Geom_Ellipse::*)() const) static_cast<Standard_Real (Geom_Ellipse::*)() const>(&Geom_Ellipse::FirstParameter),
R"#(Returns the value of the first parameter of this ellipse. This is respectively: - 0.0, which gives the start point of this ellipse, or The start point and end point of an ellipse are coincident.)#"
)
.def("LastParameter",
(Standard_Real (Geom_Ellipse::*)() const) static_cast<Standard_Real (Geom_Ellipse::*)() const>(&Geom_Ellipse::LastParameter),
R"#(Returns the value of the last parameter of this ellipse. This is respectively: - 2.*Pi, which gives the end point of this ellipse. The start point and end point of an ellipse are coincident.)#"
)
.def("IsClosed",
(Standard_Boolean (Geom_Ellipse::*)() const) static_cast<Standard_Boolean (Geom_Ellipse::*)() const>(&Geom_Ellipse::IsClosed),
R"#(return True.)#"
)
.def("IsPeriodic",
(Standard_Boolean (Geom_Ellipse::*)() const) static_cast<Standard_Boolean (Geom_Ellipse::*)() const>(&Geom_Ellipse::IsPeriodic),
R"#(return True.)#"
)
.def("D0",
(void (Geom_Ellipse::*)( const Standard_Real , gp_Pnt & ) const) static_cast<void (Geom_Ellipse::*)( const Standard_Real , gp_Pnt & ) const>(&Geom_Ellipse::D0),
R"#(Returns in P the point of parameter U. P = C + MajorRadius * Cos (U) * XDir + MinorRadius * Sin (U) * YDir where C is the center of the ellipse , XDir the direction of the "XAxis" and "YDir" the "YAxis" of the ellipse.)#" , py::arg("U"), py::arg("P")
)
.def("D1",
(void (Geom_Ellipse::*)( const Standard_Real , gp_Pnt & , gp_Vec & ) const) static_cast<void (Geom_Ellipse::*)( const Standard_Real , gp_Pnt & , gp_Vec & ) const>(&Geom_Ellipse::D1),
R"#(None)#" , py::arg("U"), py::arg("P"), py::arg("V1")
)
.def("D2",
(void (Geom_Ellipse::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_Ellipse::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const>(&Geom_Ellipse::D2),
R"#(Returns the point P of parameter U. The vectors V1 and V2 are the first and second derivatives at this point.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2")
)
.def("D3",
(void (Geom_Ellipse::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_Ellipse::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_Ellipse::D3),
R"#(Returns the point P of parameter U, the first second and third derivatives V1 V2 and V3.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2"), py::arg("V3")
)
.def("DN",
(gp_Vec (Geom_Ellipse::*)( const Standard_Real , const Standard_Integer ) const) static_cast<gp_Vec (Geom_Ellipse::*)( const Standard_Real , const Standard_Integer ) const>(&Geom_Ellipse::DN),
R"#(For the point of parameter U of this ellipse, computes the vector corresponding to the Nth derivative. Exceptions Standard_RangeError if N is less than 1.)#" , py::arg("U"), py::arg("N")
)
.def("Transform",
(void (Geom_Ellipse::*)( const gp_Trsf & ) ) static_cast<void (Geom_Ellipse::*)( const gp_Trsf & ) >(&Geom_Ellipse::Transform),
R"#(Applies the transformation T to this ellipse.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom_Geometry> (Geom_Ellipse::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Ellipse::*)() const>(&Geom_Ellipse::Copy),
R"#(Creates a new object which is a copy of this ellipse.)#"
)
.def("DumpJson",
(void (Geom_Ellipse::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom_Ellipse::*)( std::ostream & , Standard_Integer ) const>(&Geom_Ellipse::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_Ellipse::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Ellipse::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_Ellipse::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Ellipse::*)() const>(&Geom_Ellipse::DynamicType),
R"#(None)#"
)
;
// Class Geom_Hyperbola from ./opencascade/Geom_Hyperbola.hxx
klass = m.attr("Geom_Hyperbola");
// nested enums
static_cast<py::class_<Geom_Hyperbola ,opencascade::handle<Geom_Hyperbola> , Geom_Conic >>(klass)
// constructors
.def(py::init< const gp_Hypr & >() , py::arg("H") )
.def(py::init< const gp_Ax2 &,const Standard_Real,const Standard_Real >() , py::arg("A2"), py::arg("MajorRadius"), py::arg("MinorRadius") )
// custom constructors
// methods
.def("SetHypr",
(void (Geom_Hyperbola::*)( const gp_Hypr & ) ) static_cast<void (Geom_Hyperbola::*)( const gp_Hypr & ) >(&Geom_Hyperbola::SetHypr),
R"#(Converts the gp_Hypr hyperbola H into this hyperbola.)#" , py::arg("H")
)
.def("SetMajorRadius",
(void (Geom_Hyperbola::*)( const Standard_Real ) ) static_cast<void (Geom_Hyperbola::*)( const Standard_Real ) >(&Geom_Hyperbola::SetMajorRadius),
R"#(Assigns a value to the major radius of this hyperbola. Exceptions Standard_ConstructionError if: - MajorRadius is less than 0.0, or - MinorRadius is less than 0.0.Raised if MajorRadius < 0.0)#" , py::arg("MajorRadius")
)
.def("SetMinorRadius",
(void (Geom_Hyperbola::*)( const Standard_Real ) ) static_cast<void (Geom_Hyperbola::*)( const Standard_Real ) >(&Geom_Hyperbola::SetMinorRadius),
R"#(Assigns a value to the minor radius of this hyperbola. Exceptions Standard_ConstructionError if: - MajorRadius is less than 0.0, or - MinorRadius is less than 0.0.Raised if MajorRadius < 0.0)#" , py::arg("MinorRadius")
)
.def("Hypr",
(gp_Hypr (Geom_Hyperbola::*)() const) static_cast<gp_Hypr (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::Hypr),
R"#(returns the non transient parabola from gp with the same geometric properties as <me>.)#"
)
.def("ReversedParameter",
(Standard_Real (Geom_Hyperbola::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_Hyperbola::*)( const Standard_Real ) const>(&Geom_Hyperbola::ReversedParameter),
R"#(Computes the parameter on the reversed hyperbola, for the point of parameter U on this hyperbola. For a hyperbola, the returned value is: -U.)#" , py::arg("U")
)
.def("FirstParameter",
(Standard_Real (Geom_Hyperbola::*)() const) static_cast<Standard_Real (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::FirstParameter),
R"#(Returns RealFirst from Standard.)#"
)
.def("LastParameter",
(Standard_Real (Geom_Hyperbola::*)() const) static_cast<Standard_Real (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::LastParameter),
R"#(returns RealLast from Standard.)#"
)
.def("IsClosed",
(Standard_Boolean (Geom_Hyperbola::*)() const) static_cast<Standard_Boolean (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::IsClosed),
R"#(Returns False.)#"
)
.def("IsPeriodic",
(Standard_Boolean (Geom_Hyperbola::*)() const) static_cast<Standard_Boolean (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::IsPeriodic),
R"#(return False for an hyperbola.)#"
)
.def("Asymptote1",
(gp_Ax1 (Geom_Hyperbola::*)() const) static_cast<gp_Ax1 (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::Asymptote1),
R"#(In the local coordinate system of the hyperbola the equation of the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the equation of the first asymptote is Y = (B/A)*X. Raises ConstructionError if MajorRadius = 0.0)#"
)
.def("Asymptote2",
(gp_Ax1 (Geom_Hyperbola::*)() const) static_cast<gp_Ax1 (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::Asymptote2),
R"#(In the local coordinate system of the hyperbola the equation of the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the equation of the first asymptote is Y = -(B/A)*X. Raises ConstructionError if MajorRadius = 0.0)#"
)
.def("ConjugateBranch1",
(gp_Hypr (Geom_Hyperbola::*)() const) static_cast<gp_Hypr (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::ConjugateBranch1),
R"#(This branch of hyperbola is on the positive side of the YAxis of <me>.)#"
)
.def("ConjugateBranch2",
(gp_Hypr (Geom_Hyperbola::*)() const) static_cast<gp_Hypr (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::ConjugateBranch2),
R"#(This branch of hyperbola is on the negative side of the YAxis of <me>. Note: The diagram given under the class purpose indicates where these two branches of hyperbola are positioned in relation to this branch of hyperbola.)#"
)
.def("Directrix1",
(gp_Ax1 (Geom_Hyperbola::*)() const) static_cast<gp_Ax1 (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::Directrix1),
R"#(This directrix is the line normal to the XAxis of the hyperbola in the local plane (Z = 0) at a distance d = MajorRadius / e from the center of the hyperbola, where e is the eccentricity of the hyperbola. This line is parallel to the YAxis. The intersection point between directrix1 and the XAxis is the location point of the directrix1. This point is on the positive side of the XAxis.)#"
)
.def("Directrix2",
(gp_Ax1 (Geom_Hyperbola::*)() const) static_cast<gp_Ax1 (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::Directrix2),
R"#(This line is obtained by the symmetrical transformation of "directrix1" with respect to the YAxis of the hyperbola.)#"
)
.def("Eccentricity",
(Standard_Real (Geom_Hyperbola::*)() const) static_cast<Standard_Real (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::Eccentricity),
R"#(Returns the eccentricity of the hyperbola (e > 1). If f is the distance between the location of the hyperbola and the Focus1 then the eccentricity e = f / MajorRadius. raised if MajorRadius = 0.0)#"
)
.def("Focal",
(Standard_Real (Geom_Hyperbola::*)() const) static_cast<Standard_Real (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::Focal),
R"#(Computes the focal distance. It is the distance between the two focus of the hyperbola.)#"
)
.def("Focus1",
(gp_Pnt (Geom_Hyperbola::*)() const) static_cast<gp_Pnt (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::Focus1),
R"#(Returns the first focus of the hyperbola. This focus is on the positive side of the XAxis of the hyperbola.)#"
)
.def("Focus2",
(gp_Pnt (Geom_Hyperbola::*)() const) static_cast<gp_Pnt (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::Focus2),
R"#(Returns the second focus of the hyperbola. This focus is on the negative side of the XAxis of the hyperbola.)#"
)
.def("MajorRadius",
(Standard_Real (Geom_Hyperbola::*)() const) static_cast<Standard_Real (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::MajorRadius),
R"#(Returns the major or minor radius of this hyperbola. The major radius is also the distance between the center of the hyperbola and the apex of the main branch (located on the "X Axis" of the hyperbola).)#"
)
.def("MinorRadius",
(Standard_Real (Geom_Hyperbola::*)() const) static_cast<Standard_Real (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::MinorRadius),
R"#(Returns the major or minor radius of this hyperbola. The minor radius is also the distance between the center of the hyperbola and the apex of a conjugate branch (located on the "Y Axis" of the hyperbola).)#"
)
.def("OtherBranch",
(gp_Hypr (Geom_Hyperbola::*)() const) static_cast<gp_Hypr (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::OtherBranch),
R"#(Computes the "other" branch of this hyperbola. This is the symmetrical branch with respect to the center of this hyperbola. Note: The diagram given under the class purpose indicates where the "other" branch is positioned in relation to this branch of the hyperbola.)#"
)
.def("Parameter",
(Standard_Real (Geom_Hyperbola::*)() const) static_cast<Standard_Real (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::Parameter),
R"#(Returns p = (e * e - 1) * MajorRadius where e is the eccentricity of the hyperbola. raised if MajorRadius = 0.0)#"
)
.def("D0",
(void (Geom_Hyperbola::*)( const Standard_Real , gp_Pnt & ) const) static_cast<void (Geom_Hyperbola::*)( const Standard_Real , gp_Pnt & ) const>(&Geom_Hyperbola::D0),
R"#(Returns in P the point of parameter U. P = C + MajorRadius * Cosh (U) * XDir + MinorRadius * Sinh (U) * YDir where C is the center of the hyperbola , XDir the XDirection and YDir the YDirection of the hyperbola's local coordinate system.)#" , py::arg("U"), py::arg("P")
)
.def("D1",
(void (Geom_Hyperbola::*)( const Standard_Real , gp_Pnt & , gp_Vec & ) const) static_cast<void (Geom_Hyperbola::*)( const Standard_Real , gp_Pnt & , gp_Vec & ) const>(&Geom_Hyperbola::D1),
R"#(Returns the point P of parameter U and the first derivative V1.)#" , py::arg("U"), py::arg("P"), py::arg("V1")
)
.def("D2",
(void (Geom_Hyperbola::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_Hyperbola::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const>(&Geom_Hyperbola::D2),
R"#(Returns the point P of parameter U, the first and second derivatives V1 and V2.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2")
)
.def("D3",
(void (Geom_Hyperbola::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_Hyperbola::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_Hyperbola::D3),
R"#(Returns the point P of parameter U, the first second and third derivatives V1 V2 and V3.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2"), py::arg("V3")
)
.def("DN",
(gp_Vec (Geom_Hyperbola::*)( const Standard_Real , const Standard_Integer ) const) static_cast<gp_Vec (Geom_Hyperbola::*)( const Standard_Real , const Standard_Integer ) const>(&Geom_Hyperbola::DN),
R"#(The returned vector gives the value of the derivative for the order of derivation N. Raised if N < 1.)#" , py::arg("U"), py::arg("N")
)
.def("Transform",
(void (Geom_Hyperbola::*)( const gp_Trsf & ) ) static_cast<void (Geom_Hyperbola::*)( const gp_Trsf & ) >(&Geom_Hyperbola::Transform),
R"#(Applies the transformation T to this hyperbola.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom_Geometry> (Geom_Hyperbola::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::Copy),
R"#(Creates a new object which is a copy of this hyperbola.)#"
)
.def("DumpJson",
(void (Geom_Hyperbola::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom_Hyperbola::*)( std::ostream & , Standard_Integer ) const>(&Geom_Hyperbola::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_Hyperbola::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Hyperbola::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_Hyperbola::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Hyperbola::*)() const>(&Geom_Hyperbola::DynamicType),
R"#(None)#"
)
;
// Class Geom_Parabola from ./opencascade/Geom_Parabola.hxx
klass = m.attr("Geom_Parabola");
// nested enums
static_cast<py::class_<Geom_Parabola ,opencascade::handle<Geom_Parabola> , Geom_Conic >>(klass)
// constructors
.def(py::init< const gp_Parab & >() , py::arg("Prb") )
.def(py::init< const gp_Ax2 &,const Standard_Real >() , py::arg("A2"), py::arg("Focal") )
.def(py::init< const gp_Ax1 &,const gp_Pnt & >() , py::arg("D"), py::arg("F") )
// custom constructors
// methods
.def("SetFocal",
(void (Geom_Parabola::*)( const Standard_Real ) ) static_cast<void (Geom_Parabola::*)( const Standard_Real ) >(&Geom_Parabola::SetFocal),
R"#(Assigns the value Focal to the focal distance of this parabola. Exceptions Standard_ConstructionError if Focal is negative.)#" , py::arg("Focal")
)
.def("SetParab",
(void (Geom_Parabola::*)( const gp_Parab & ) ) static_cast<void (Geom_Parabola::*)( const gp_Parab & ) >(&Geom_Parabola::SetParab),
R"#(Converts the gp_Parab parabola Prb into this parabola.)#" , py::arg("Prb")
)
.def("Parab",
(gp_Parab (Geom_Parabola::*)() const) static_cast<gp_Parab (Geom_Parabola::*)() const>(&Geom_Parabola::Parab),
R"#(Returns the non transient parabola from gp with the same geometric properties as <me>.)#"
)
.def("ReversedParameter",
(Standard_Real (Geom_Parabola::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_Parabola::*)( const Standard_Real ) const>(&Geom_Parabola::ReversedParameter),
R"#(Computes the parameter on the reversed parabola, for the point of parameter U on this parabola. For a parabola, the returned value is: -U.)#" , py::arg("U")
)
.def("FirstParameter",
(Standard_Real (Geom_Parabola::*)() const) static_cast<Standard_Real (Geom_Parabola::*)() const>(&Geom_Parabola::FirstParameter),
R"#(Returns the value of the first or last parameter of this parabola. This is, respectively: - Standard_Real::RealFirst(), or - Standard_Real::RealLast().)#"
)
.def("LastParameter",
(Standard_Real (Geom_Parabola::*)() const) static_cast<Standard_Real (Geom_Parabola::*)() const>(&Geom_Parabola::LastParameter),
R"#(Returns the value of the first or last parameter of this parabola. This is, respectively: - Standard_Real::RealFirst(), or - Standard_Real::RealLast().)#"
)
.def("IsClosed",
(Standard_Boolean (Geom_Parabola::*)() const) static_cast<Standard_Boolean (Geom_Parabola::*)() const>(&Geom_Parabola::IsClosed),
R"#(Returns False)#"
)
.def("IsPeriodic",
(Standard_Boolean (Geom_Parabola::*)() const) static_cast<Standard_Boolean (Geom_Parabola::*)() const>(&Geom_Parabola::IsPeriodic),
R"#(Returns False)#"
)
.def("Directrix",
(gp_Ax1 (Geom_Parabola::*)() const) static_cast<gp_Ax1 (Geom_Parabola::*)() const>(&Geom_Parabola::Directrix),
R"#(Computes the directrix of this parabola. This is a line normal to the axis of symmetry, in the plane of this parabola, located on the negative side of its axis of symmetry, at a distance from the apex equal to the focal length. The directrix is returned as an axis (gp_Ax1 object), where the origin is located on the "X Axis" of this parabola.)#"
)
.def("Eccentricity",
(Standard_Real (Geom_Parabola::*)() const) static_cast<Standard_Real (Geom_Parabola::*)() const>(&Geom_Parabola::Eccentricity),
R"#(Returns 1. (which is the eccentricity of any parabola).)#"
)
.def("Focus",
(gp_Pnt (Geom_Parabola::*)() const) static_cast<gp_Pnt (Geom_Parabola::*)() const>(&Geom_Parabola::Focus),
R"#(Computes the focus of this parabola. The focus is on the positive side of the "X Axis" of the local coordinate system of the parabola.)#"
)
.def("Focal",
(Standard_Real (Geom_Parabola::*)() const) static_cast<Standard_Real (Geom_Parabola::*)() const>(&Geom_Parabola::Focal),
R"#(Computes the focal distance of this parabola The focal distance is the distance between the apex and the focus of the parabola.)#"
)
.def("Parameter",
(Standard_Real (Geom_Parabola::*)() const) static_cast<Standard_Real (Geom_Parabola::*)() const>(&Geom_Parabola::Parameter),
R"#(Computes the parameter of this parabola which is the distance between its focus and its directrix. This distance is twice the focal length. If P is the parameter of the parabola, the equation of the parabola in its local coordinate system is: Y**2 = 2.*P*X.)#"
)
.def("D0",
(void (Geom_Parabola::*)( const Standard_Real , gp_Pnt & ) const) static_cast<void (Geom_Parabola::*)( const Standard_Real , gp_Pnt & ) const>(&Geom_Parabola::D0),
R"#(Returns in P the point of parameter U. If U = 0 the returned point is the origin of the XAxis and the YAxis of the parabola and it is the vertex of the parabola. P = S + F * (U * U * XDir + * U * YDir) where S is the vertex of the parabola, XDir the XDirection and YDir the YDirection of the parabola's local coordinate system.)#" , py::arg("U"), py::arg("P")
)
.def("D1",
(void (Geom_Parabola::*)( const Standard_Real , gp_Pnt & , gp_Vec & ) const) static_cast<void (Geom_Parabola::*)( const Standard_Real , gp_Pnt & , gp_Vec & ) const>(&Geom_Parabola::D1),
R"#(Returns the point P of parameter U and the first derivative V1.)#" , py::arg("U"), py::arg("P"), py::arg("V1")
)
.def("D2",
(void (Geom_Parabola::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_Parabola::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const>(&Geom_Parabola::D2),
R"#(Returns the point P of parameter U, the first and second derivatives V1 and V2.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2")
)
.def("D3",
(void (Geom_Parabola::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_Parabola::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_Parabola::D3),
R"#(Returns the point P of parameter U, the first second and third derivatives V1 V2 and V3.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2"), py::arg("V3")
)
.def("DN",
(gp_Vec (Geom_Parabola::*)( const Standard_Real , const Standard_Integer ) const) static_cast<gp_Vec (Geom_Parabola::*)( const Standard_Real , const Standard_Integer ) const>(&Geom_Parabola::DN),
R"#(For the point of parameter U of this parabola, computes the vector corresponding to the Nth derivative. Exceptions Standard_RangeError if N is less than 1.)#" , py::arg("U"), py::arg("N")
)
.def("Transform",
(void (Geom_Parabola::*)( const gp_Trsf & ) ) static_cast<void (Geom_Parabola::*)( const gp_Trsf & ) >(&Geom_Parabola::Transform),
R"#(Applies the transformation T to this parabola.)#" , py::arg("T")
)
.def("TransformedParameter",
(Standard_Real (Geom_Parabola::*)( const Standard_Real , const gp_Trsf & ) const) static_cast<Standard_Real (Geom_Parabola::*)( const Standard_Real , const gp_Trsf & ) const>(&Geom_Parabola::TransformedParameter),
R"#(Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.)#" , py::arg("U"), py::arg("T")
)
.def("ParametricTransformation",
(Standard_Real (Geom_Parabola::*)( const gp_Trsf & ) const) static_cast<Standard_Real (Geom_Parabola::*)( const gp_Trsf & ) const>(&Geom_Parabola::ParametricTransformation),
R"#(Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom_Geometry> (Geom_Parabola::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Parabola::*)() const>(&Geom_Parabola::Copy),
R"#(Creates a new object which is a copy of this parabola.)#"
)
.def("DumpJson",
(void (Geom_Parabola::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom_Parabola::*)( std::ostream & , Standard_Integer ) const>(&Geom_Parabola::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_Parabola::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Parabola::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_Parabola::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Parabola::*)() const>(&Geom_Parabola::DynamicType),
R"#(None)#"
)
;
// Class Geom_Plane from ./opencascade/Geom_Plane.hxx
klass = m.attr("Geom_Plane");
// nested enums
static_cast<py::class_<Geom_Plane ,opencascade::handle<Geom_Plane> , Geom_ElementarySurface >>(klass)
// constructors
.def(py::init< const gp_Ax3 & >() , py::arg("A3") )
.def(py::init< const gp_Pln & >() , py::arg("Pl") )
.def(py::init< const gp_Pnt &,const gp_Dir & >() , py::arg("P"), py::arg("V") )
.def(py::init< const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real >() , py::arg("A"), py::arg("B"), py::arg("C"), py::arg("D") )
// custom constructors
// methods
.def("SetPln",
(void (Geom_Plane::*)( const gp_Pln & ) ) static_cast<void (Geom_Plane::*)( const gp_Pln & ) >(&Geom_Plane::SetPln),
R"#(Set <me> so that <me> has the same geometric properties as Pl.)#" , py::arg("Pl")
)
.def("Pln",
(gp_Pln (Geom_Plane::*)() const) static_cast<gp_Pln (Geom_Plane::*)() const>(&Geom_Plane::Pln),
R"#(Converts this plane into a gp_Pln plane.)#"
)
.def("UReverse",
(void (Geom_Plane::*)() ) static_cast<void (Geom_Plane::*)() >(&Geom_Plane::UReverse),
R"#(Changes the orientation of this plane in the u (or v) parametric direction. The bounds of the plane are not changed but the given parametric direction is reversed. Hence the orientation of the surface is reversed.)#"
)
.def("UReversedParameter",
(Standard_Real (Geom_Plane::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_Plane::*)( const Standard_Real ) const>(&Geom_Plane::UReversedParameter),
R"#(Computes the u parameter on the modified plane, produced when reversing the u parametric of this plane, for any point of u parameter U on this plane. In the case of a plane, these methods return - -U.)#" , py::arg("U")
)
.def("VReverse",
(void (Geom_Plane::*)() ) static_cast<void (Geom_Plane::*)() >(&Geom_Plane::VReverse),
R"#(Changes the orientation of this plane in the u (or v) parametric direction. The bounds of the plane are not changed but the given parametric direction is reversed. Hence the orientation of the surface is reversed.)#"
)
.def("VReversedParameter",
(Standard_Real (Geom_Plane::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_Plane::*)( const Standard_Real ) const>(&Geom_Plane::VReversedParameter),
R"#(Computes the v parameter on the modified plane, produced when reversing the v parametric of this plane, for any point of v parameter V on this plane. In the case of a plane, these methods return -V.)#" , py::arg("V")
)
.def("ParametricTransformation",
(gp_GTrsf2d (Geom_Plane::*)( const gp_Trsf & ) const) static_cast<gp_GTrsf2d (Geom_Plane::*)( const gp_Trsf & ) const>(&Geom_Plane::ParametricTransformation),
R"#(Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns a scale centered on the origin with T.ScaleFactor)#" , py::arg("T")
)
.def("IsUClosed",
(Standard_Boolean (Geom_Plane::*)() const) static_cast<Standard_Boolean (Geom_Plane::*)() const>(&Geom_Plane::IsUClosed),
R"#(return False)#"
)
.def("IsVClosed",
(Standard_Boolean (Geom_Plane::*)() const) static_cast<Standard_Boolean (Geom_Plane::*)() const>(&Geom_Plane::IsVClosed),
R"#(return False)#"
)
.def("IsUPeriodic",
(Standard_Boolean (Geom_Plane::*)() const) static_cast<Standard_Boolean (Geom_Plane::*)() const>(&Geom_Plane::IsUPeriodic),
R"#(return False.)#"
)
.def("IsVPeriodic",
(Standard_Boolean (Geom_Plane::*)() const) static_cast<Standard_Boolean (Geom_Plane::*)() const>(&Geom_Plane::IsVPeriodic),
R"#(return False.)#"
)
.def("UIso",
(opencascade::handle<Geom_Curve> (Geom_Plane::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_Plane::*)( const Standard_Real ) const>(&Geom_Plane::UIso),
R"#(Computes the U isoparametric curve. This is a Line parallel to the YAxis of the plane.)#" , py::arg("U")
)
.def("VIso",
(opencascade::handle<Geom_Curve> (Geom_Plane::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_Plane::*)( const Standard_Real ) const>(&Geom_Plane::VIso),
R"#(Computes the V isoparametric curve. This is a Line parallel to the XAxis of the plane.)#" , py::arg("V")
)
.def("D0",
(void (Geom_Plane::*)( const Standard_Real , const Standard_Real , gp_Pnt & ) const) static_cast<void (Geom_Plane::*)( const Standard_Real , const Standard_Real , gp_Pnt & ) const>(&Geom_Plane::D0),
R"#(Computes the point P (U, V) on <me>. where O is the "Location" point of the plane, XDir the "XDirection" and YDir the "YDirection" of the plane's local coordinate system.)#" , py::arg("U"), py::arg("V"), py::arg("P")
)
.def("D1",
(void (Geom_Plane::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_Plane::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const>(&Geom_Plane::D1),
R"#(Computes the current point and the first derivatives in the directions U and V.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V")
)
.def("D2",
(void (Geom_Plane::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_Plane::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_Plane::D2),
R"#(Computes the current point, the first and the second derivatives in the directions U and V.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V"), py::arg("D2U"), py::arg("D2V"), py::arg("D2UV")
)
.def("D3",
(void (Geom_Plane::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_Plane::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_Plane::D3),
R"#(Computes the current point, the first,the second and the third derivatives in the directions U and V.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V"), py::arg("D2U"), py::arg("D2V"), py::arg("D2UV"), py::arg("D3U"), py::arg("D3V"), py::arg("D3UUV"), py::arg("D3UVV")
)
.def("DN",
(gp_Vec (Geom_Plane::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer ) const) static_cast<gp_Vec (Geom_Plane::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer ) const>(&Geom_Plane::DN),
R"#(Computes the derivative of order Nu in the direction u and Nv in the direction v. Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.)#" , py::arg("U"), py::arg("V"), py::arg("Nu"), py::arg("Nv")
)
.def("Transform",
(void (Geom_Plane::*)( const gp_Trsf & ) ) static_cast<void (Geom_Plane::*)( const gp_Trsf & ) >(&Geom_Plane::Transform),
R"#(Applies the transformation T to this plane.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom_Geometry> (Geom_Plane::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_Plane::*)() const>(&Geom_Plane::Copy),
R"#(Creates a new object which is a copy of this plane.)#"
)
.def("DumpJson",
(void (Geom_Plane::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom_Plane::*)( std::ostream & , Standard_Integer ) const>(&Geom_Plane::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
.def("TransformParameters",
[]( Geom_Plane &self , const gp_Trsf & T ){
Standard_Real U;
Standard_Real V;
self.TransformParameters(U,V,T);
return std::make_tuple(U,V); },
R"#(Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method multiplies U and V by T.ScaleFactor())#" , py::arg("T")
)
.def("Bounds",
[]( Geom_Plane &self ){
Standard_Real U1;
Standard_Real U2;
Standard_Real V1;
Standard_Real V2;
self.Bounds(U1,U2,V1,V2);
return std::make_tuple(U1,U2,V1,V2); },
R"#(Returns the parametric bounds U1, U2, V1 and V2 of this plane. Because a plane is an infinite surface, the following is always true: - U1 = V1 = Standard_Real::RealFirst() - U2 = V2 = Standard_Real::RealLast().)#"
)
.def("Coefficients",
[]( Geom_Plane &self ){
Standard_Real A;
Standard_Real B;
Standard_Real C;
Standard_Real D;
self.Coefficients(A,B,C,D);
return std::make_tuple(A,B,C,D); },
R"#(Computes the normalized coefficients of the plane's cartesian equation:)#"
)
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_Plane::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_Plane::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_Plane::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_Plane::*)() const>(&Geom_Plane::DynamicType),
R"#(None)#"
)
;
// Class Geom_RectangularTrimmedSurface from ./opencascade/Geom_RectangularTrimmedSurface.hxx
klass = m.attr("Geom_RectangularTrimmedSurface");
// nested enums
static_cast<py::class_<Geom_RectangularTrimmedSurface ,opencascade::handle<Geom_RectangularTrimmedSurface> , Geom_BoundedSurface >>(klass)
// constructors
.def(py::init< const opencascade::handle<Geom_Surface> &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Boolean,const Standard_Boolean >() , py::arg("S"), py::arg("U1"), py::arg("U2"), py::arg("V1"), py::arg("V2"), py::arg("USense")=static_cast<const Standard_Boolean>(Standard_True), py::arg("VSense")=static_cast<const Standard_Boolean>(Standard_True) )
.def(py::init< const opencascade::handle<Geom_Surface> &,const Standard_Real,const Standard_Real,const Standard_Boolean,const Standard_Boolean >() , py::arg("S"), py::arg("Param1"), py::arg("Param2"), py::arg("UTrim"), py::arg("Sense")=static_cast<const Standard_Boolean>(Standard_True) )
// custom constructors
// methods
.def("SetTrim",
(void (Geom_RectangularTrimmedSurface::*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Boolean ) ) static_cast<void (Geom_RectangularTrimmedSurface::*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Boolean ) >(&Geom_RectangularTrimmedSurface::SetTrim),
R"#(Modifies this patch by changing the trim values applied to the original surface The u parametric direction of this patch is oriented from U1 to U2. The v parametric direction of this patch is oriented from V1 to V2. USense and VSense are used for the construction only if the surface is periodic in the corresponding parametric direction, and define the available part of the surface; by default in this case, this patch has the same orientation as the basis surface. Raised if The BasisSurface is not periodic in the UDirection and U1 or U2 are out of the bounds of the BasisSurface. The BasisSurface is not periodic in the VDirection and V1 or V2 are out of the bounds of the BasisSurface. U1 = U2 or V1 = V2)#" , py::arg("U1"), py::arg("U2"), py::arg("V1"), py::arg("V2"), py::arg("USense")=static_cast<const Standard_Boolean>(Standard_True), py::arg("VSense")=static_cast<const Standard_Boolean>(Standard_True)
)
.def("SetTrim",
(void (Geom_RectangularTrimmedSurface::*)( const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Boolean ) ) static_cast<void (Geom_RectangularTrimmedSurface::*)( const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Boolean ) >(&Geom_RectangularTrimmedSurface::SetTrim),
R"#(Modifies this patch by changing the trim values applied to the original surface The basis surface is trimmed only in one parametric direction: if UTrim is true, the surface is trimmed in the u parametric direction; if it is false, it is trimmed in the v parametric direction. In the "trimmed" direction, this patch is oriented from Param1 to Param2. If the basis surface is periodic in the "trimmed" direction, Sense defines its available part. By default in this case, this patch has the same orientation as the basis surface in this parametric direction. If the basis surface is closed or periodic in the other parametric direction (i.e. not the "trimmed" direction), this patch has the same characteristics as the basis surface in that parametric direction. Raised if The BasisSurface is not periodic in the considered direction and Param1 or Param2 are out of the bounds of the BasisSurface. Param1 = Param2)#" , py::arg("Param1"), py::arg("Param2"), py::arg("UTrim"), py::arg("Sense")=static_cast<const Standard_Boolean>(Standard_True)
)
.def("BasisSurface",
(opencascade::handle<Geom_Surface> (Geom_RectangularTrimmedSurface::*)() const) static_cast<opencascade::handle<Geom_Surface> (Geom_RectangularTrimmedSurface::*)() const>(&Geom_RectangularTrimmedSurface::BasisSurface),
R"#(Returns the Basis surface of <me>.)#"
)
.def("UReverse",
(void (Geom_RectangularTrimmedSurface::*)() ) static_cast<void (Geom_RectangularTrimmedSurface::*)() >(&Geom_RectangularTrimmedSurface::UReverse),
R"#(Changes the orientation of this patch in the u parametric direction. The bounds of the surface are not changed, but the given parametric direction is reversed. Hence the orientation of the surface is reversed.)#"
)
.def("UReversedParameter",
(Standard_Real (Geom_RectangularTrimmedSurface::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_RectangularTrimmedSurface::*)( const Standard_Real ) const>(&Geom_RectangularTrimmedSurface::UReversedParameter),
R"#(Computes the u parameter on the modified surface, produced by when reversing its u parametric direction, for any point of u parameter U on this patch.)#" , py::arg("U")
)
.def("VReverse",
(void (Geom_RectangularTrimmedSurface::*)() ) static_cast<void (Geom_RectangularTrimmedSurface::*)() >(&Geom_RectangularTrimmedSurface::VReverse),
R"#(Changes the orientation of this patch in the v parametric direction. The bounds of the surface are not changed, but the given parametric direction is reversed. Hence the orientation of the surface is reversed.)#"
)
.def("VReversedParameter",
(Standard_Real (Geom_RectangularTrimmedSurface::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_RectangularTrimmedSurface::*)( const Standard_Real ) const>(&Geom_RectangularTrimmedSurface::VReversedParameter),
R"#(Computes the v parameter on the modified surface, produced by when reversing its v parametric direction, for any point of v parameter V on this patch.)#" , py::arg("V")
)
.def("Continuity",
(GeomAbs_Shape (Geom_RectangularTrimmedSurface::*)() const) static_cast<GeomAbs_Shape (Geom_RectangularTrimmedSurface::*)() const>(&Geom_RectangularTrimmedSurface::Continuity),
R"#(Returns the continuity of the surface : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Surface, C2 : continuity of the second derivative all along the Surface, C3 : continuity of the third derivative all along the Surface, CN : the order of continuity is infinite.)#"
)
.def("IsUClosed",
(Standard_Boolean (Geom_RectangularTrimmedSurface::*)() const) static_cast<Standard_Boolean (Geom_RectangularTrimmedSurface::*)() const>(&Geom_RectangularTrimmedSurface::IsUClosed),
R"#(Returns true if this patch is closed in the given parametric direction.)#"
)
.def("IsVClosed",
(Standard_Boolean (Geom_RectangularTrimmedSurface::*)() const) static_cast<Standard_Boolean (Geom_RectangularTrimmedSurface::*)() const>(&Geom_RectangularTrimmedSurface::IsVClosed),
R"#(Returns true if this patch is closed in the given parametric direction.)#"
)
.def("IsCNu",
(Standard_Boolean (Geom_RectangularTrimmedSurface::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom_RectangularTrimmedSurface::*)( const Standard_Integer ) const>(&Geom_RectangularTrimmedSurface::IsCNu),
R"#(Returns true if the order of derivation in the U parametric direction is N. Raised if N < 0.)#" , py::arg("N")
)
.def("IsCNv",
(Standard_Boolean (Geom_RectangularTrimmedSurface::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom_RectangularTrimmedSurface::*)( const Standard_Integer ) const>(&Geom_RectangularTrimmedSurface::IsCNv),
R"#(Returns true if the order of derivation in the V parametric direction is N. Raised if N < 0.)#" , py::arg("N")
)
.def("IsUPeriodic",
(Standard_Boolean (Geom_RectangularTrimmedSurface::*)() const) static_cast<Standard_Boolean (Geom_RectangularTrimmedSurface::*)() const>(&Geom_RectangularTrimmedSurface::IsUPeriodic),
R"#(Returns true if this patch is periodic and not trimmed in the given parametric direction.)#"
)
.def("UPeriod",
(Standard_Real (Geom_RectangularTrimmedSurface::*)() const) static_cast<Standard_Real (Geom_RectangularTrimmedSurface::*)() const>(&Geom_RectangularTrimmedSurface::UPeriod),
R"#(Returns the period of this patch in the u parametric direction. raises if the surface is not uperiodic.)#"
)
.def("IsVPeriodic",
(Standard_Boolean (Geom_RectangularTrimmedSurface::*)() const) static_cast<Standard_Boolean (Geom_RectangularTrimmedSurface::*)() const>(&Geom_RectangularTrimmedSurface::IsVPeriodic),
R"#(Returns true if this patch is periodic and not trimmed in the given parametric direction.)#"
)
.def("VPeriod",
(Standard_Real (Geom_RectangularTrimmedSurface::*)() const) static_cast<Standard_Real (Geom_RectangularTrimmedSurface::*)() const>(&Geom_RectangularTrimmedSurface::VPeriod),
R"#(Returns the period of this patch in the v parametric direction. raises if the surface is not vperiodic. value and derivatives)#"
)
.def("UIso",
(opencascade::handle<Geom_Curve> (Geom_RectangularTrimmedSurface::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_RectangularTrimmedSurface::*)( const Standard_Real ) const>(&Geom_RectangularTrimmedSurface::UIso),
R"#(computes the U isoparametric curve.)#" , py::arg("U")
)
.def("VIso",
(opencascade::handle<Geom_Curve> (Geom_RectangularTrimmedSurface::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_RectangularTrimmedSurface::*)( const Standard_Real ) const>(&Geom_RectangularTrimmedSurface::VIso),
R"#(Computes the V isoparametric curve.)#" , py::arg("V")
)
.def("D0",
(void (Geom_RectangularTrimmedSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & ) const) static_cast<void (Geom_RectangularTrimmedSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & ) const>(&Geom_RectangularTrimmedSurface::D0),
R"#(Can be raised if the basis surface is an OffsetSurface.)#" , py::arg("U"), py::arg("V"), py::arg("P")
)
.def("D1",
(void (Geom_RectangularTrimmedSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_RectangularTrimmedSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const>(&Geom_RectangularTrimmedSurface::D1),
R"#(The returned derivatives have the same orientation as the derivatives of the basis surface even if the trimmed surface has not the same parametric orientation. Warning! UndefinedDerivative raised if the continuity of the surface is not C1.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V")
)
.def("D2",
(void (Geom_RectangularTrimmedSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_RectangularTrimmedSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_RectangularTrimmedSurface::D2),
R"#(The returned derivatives have the same orientation as the derivatives of the basis surface even if the trimmed surface has not the same parametric orientation. Warning! UndefinedDerivative raised if the continuity of the surface is not C2.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V"), py::arg("D2U"), py::arg("D2V"), py::arg("D2UV")
)
.def("D3",
(void (Geom_RectangularTrimmedSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_RectangularTrimmedSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_RectangularTrimmedSurface::D3),
R"#(The returned derivatives have the same orientation as the derivatives of the basis surface even if the trimmed surface has not the same parametric orientation. Warning UndefinedDerivative raised if the continuity of the surface is not C3.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V"), py::arg("D2U"), py::arg("D2V"), py::arg("D2UV"), py::arg("D3U"), py::arg("D3V"), py::arg("D3UUV"), py::arg("D3UVV")
)
.def("DN",
(gp_Vec (Geom_RectangularTrimmedSurface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer ) const) static_cast<gp_Vec (Geom_RectangularTrimmedSurface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer ) const>(&Geom_RectangularTrimmedSurface::DN),
R"#(The returned derivative has the same orientation as the derivative of the basis surface even if the trimmed surface has not the same parametric orientation. Warning! UndefinedDerivative raised if the continuity of the surface is not CNu in the U parametric direction and CNv in the V parametric direction. RangeError Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.)#" , py::arg("U"), py::arg("V"), py::arg("Nu"), py::arg("Nv")
)
.def("Transform",
(void (Geom_RectangularTrimmedSurface::*)( const gp_Trsf & ) ) static_cast<void (Geom_RectangularTrimmedSurface::*)( const gp_Trsf & ) >(&Geom_RectangularTrimmedSurface::Transform),
R"#(Applies the transformation T to this patch. Warning As a consequence, the basis surface included in the data structure of this patch is also modified.)#" , py::arg("T")
)
.def("ParametricTransformation",
(gp_GTrsf2d (Geom_RectangularTrimmedSurface::*)( const gp_Trsf & ) const) static_cast<gp_GTrsf2d (Geom_RectangularTrimmedSurface::*)( const gp_Trsf & ) const>(&Geom_RectangularTrimmedSurface::ParametricTransformation),
R"#(Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method calls the basis surface method.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom_Geometry> (Geom_RectangularTrimmedSurface::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_RectangularTrimmedSurface::*)() const>(&Geom_RectangularTrimmedSurface::Copy),
R"#(Creates a new object which is a copy of this patch.)#"
)
.def("DumpJson",
(void (Geom_RectangularTrimmedSurface::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom_RectangularTrimmedSurface::*)( std::ostream & , Standard_Integer ) const>(&Geom_RectangularTrimmedSurface::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
.def("Bounds",
[]( Geom_RectangularTrimmedSurface &self ){
Standard_Real U1;
Standard_Real U2;
Standard_Real V1;
Standard_Real V2;
self.Bounds(U1,U2,V1,V2);
return std::make_tuple(U1,U2,V1,V2); },
R"#(Returns the parametric bounds U1, U2, V1 and V2 of this patch.)#"
)
.def("TransformParameters",
[]( Geom_RectangularTrimmedSurface &self , const gp_Trsf & T ){
Standard_Real U;
Standard_Real V;
self.TransformParameters(U,V,T);
return std::make_tuple(U,V); },
R"#(Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method calls the basis surface method.)#" , py::arg("T")
)
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_RectangularTrimmedSurface::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_RectangularTrimmedSurface::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_RectangularTrimmedSurface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_RectangularTrimmedSurface::*)() const>(&Geom_RectangularTrimmedSurface::DynamicType),
R"#(None)#"
)
;
// Class Geom_SphericalSurface from ./opencascade/Geom_SphericalSurface.hxx
klass = m.attr("Geom_SphericalSurface");
// nested enums
static_cast<py::class_<Geom_SphericalSurface ,opencascade::handle<Geom_SphericalSurface> , Geom_ElementarySurface >>(klass)
// constructors
.def(py::init< const gp_Ax3 &,const Standard_Real >() , py::arg("A3"), py::arg("Radius") )
.def(py::init< const gp_Sphere & >() , py::arg("S") )
// custom constructors
// methods
.def("SetRadius",
(void (Geom_SphericalSurface::*)( const Standard_Real ) ) static_cast<void (Geom_SphericalSurface::*)( const Standard_Real ) >(&Geom_SphericalSurface::SetRadius),
R"#(Assigns the value R to the radius of this sphere. Exceptions Standard_ConstructionError if R is less than 0.0.)#" , py::arg("R")
)
.def("SetSphere",
(void (Geom_SphericalSurface::*)( const gp_Sphere & ) ) static_cast<void (Geom_SphericalSurface::*)( const gp_Sphere & ) >(&Geom_SphericalSurface::SetSphere),
R"#(Converts the gp_Sphere S into this sphere.)#" , py::arg("S")
)
.def("Sphere",
(gp_Sphere (Geom_SphericalSurface::*)() const) static_cast<gp_Sphere (Geom_SphericalSurface::*)() const>(&Geom_SphericalSurface::Sphere),
R"#(Returns a non persistent sphere with the same geometric properties as <me>.)#"
)
.def("UReversedParameter",
(Standard_Real (Geom_SphericalSurface::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_SphericalSurface::*)( const Standard_Real ) const>(&Geom_SphericalSurface::UReversedParameter),
R"#(Computes the u parameter on the modified surface, when reversing its u parametric direction, for any point of u parameter U on this sphere. In the case of a sphere, these functions returns 2.PI - U.)#" , py::arg("U")
)
.def("VReversedParameter",
(Standard_Real (Geom_SphericalSurface::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_SphericalSurface::*)( const Standard_Real ) const>(&Geom_SphericalSurface::VReversedParameter),
R"#(Computes the v parameter on the modified surface, when reversing its v parametric direction, for any point of v parameter V on this sphere. In the case of a sphere, these functions returns -U.)#" , py::arg("V")
)
.def("Area",
(Standard_Real (Geom_SphericalSurface::*)() const) static_cast<Standard_Real (Geom_SphericalSurface::*)() const>(&Geom_SphericalSurface::Area),
R"#(Computes the aera of the spherical surface.)#"
)
.def("Radius",
(Standard_Real (Geom_SphericalSurface::*)() const) static_cast<Standard_Real (Geom_SphericalSurface::*)() const>(&Geom_SphericalSurface::Radius),
R"#(Computes the coefficients of the implicit equation of this quadric in the absolute Cartesian coordinate system: A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) + 2.(C1.X + C2.Y + C3.Z) + D = 0.0 An implicit normalization is applied (i.e. A1 = A2 = 1. in the local coordinate system of this sphere).)#"
)
.def("Volume",
(Standard_Real (Geom_SphericalSurface::*)() const) static_cast<Standard_Real (Geom_SphericalSurface::*)() const>(&Geom_SphericalSurface::Volume),
R"#(Computes the volume of the spherical surface.)#"
)
.def("IsUClosed",
(Standard_Boolean (Geom_SphericalSurface::*)() const) static_cast<Standard_Boolean (Geom_SphericalSurface::*)() const>(&Geom_SphericalSurface::IsUClosed),
R"#(Returns True.)#"
)
.def("IsVClosed",
(Standard_Boolean (Geom_SphericalSurface::*)() const) static_cast<Standard_Boolean (Geom_SphericalSurface::*)() const>(&Geom_SphericalSurface::IsVClosed),
R"#(Returns False.)#"
)
.def("IsUPeriodic",
(Standard_Boolean (Geom_SphericalSurface::*)() const) static_cast<Standard_Boolean (Geom_SphericalSurface::*)() const>(&Geom_SphericalSurface::IsUPeriodic),
R"#(Returns True.)#"
)
.def("IsVPeriodic",
(Standard_Boolean (Geom_SphericalSurface::*)() const) static_cast<Standard_Boolean (Geom_SphericalSurface::*)() const>(&Geom_SphericalSurface::IsVPeriodic),
R"#(Returns False.)#"
)
.def("UIso",
(opencascade::handle<Geom_Curve> (Geom_SphericalSurface::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_SphericalSurface::*)( const Standard_Real ) const>(&Geom_SphericalSurface::UIso),
R"#(Computes the U isoparametric curve. The U isoparametric curves of the surface are defined by the section of the spherical surface with plane obtained by rotation of the plane (Location, XAxis, ZAxis) around ZAxis. This plane defines the origin of parametrization u. For a SphericalSurface the UIso curve is a Circle. Warnings : The radius of this circle can be zero.)#" , py::arg("U")
)
.def("VIso",
(opencascade::handle<Geom_Curve> (Geom_SphericalSurface::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_SphericalSurface::*)( const Standard_Real ) const>(&Geom_SphericalSurface::VIso),
R"#(Computes the V isoparametric curve. The V isoparametric curves of the surface are defined by the section of the spherical surface with plane parallel to the plane (Location, XAxis, YAxis). This plane defines the origin of parametrization V. Be careful if V is close to PI/2 or 3*PI/2 the radius of the circle becomes tiny. It is not forbidden in this toolkit to create circle with radius = 0.0 For a SphericalSurface the VIso curve is a Circle. Warnings : The radius of this circle can be zero.)#" , py::arg("V")
)
.def("D0",
(void (Geom_SphericalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & ) const) static_cast<void (Geom_SphericalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & ) const>(&Geom_SphericalSurface::D0),
R"#(Computes the point P (U, V) on the surface. P (U, V) = Loc + Radius * Sin (V) * Zdir + Radius * Cos (V) * (cos (U) * XDir + sin (U) * YDir) where Loc is the origin of the placement plane (XAxis, YAxis) XDir is the direction of the XAxis and YDir the direction of the YAxis and ZDir the direction of the ZAxis.)#" , py::arg("U"), py::arg("V"), py::arg("P")
)
.def("D1",
(void (Geom_SphericalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_SphericalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const>(&Geom_SphericalSurface::D1),
R"#(Computes the current point and the first derivatives in the directions U and V.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V")
)
.def("D2",
(void (Geom_SphericalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_SphericalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_SphericalSurface::D2),
R"#(Computes the current point, the first and the second derivatives in the directions U and V.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V"), py::arg("D2U"), py::arg("D2V"), py::arg("D2UV")
)
.def("D3",
(void (Geom_SphericalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_SphericalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_SphericalSurface::D3),
R"#(Computes the current point, the first,the second and the third derivatives in the directions U and V.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V"), py::arg("D2U"), py::arg("D2V"), py::arg("D2UV"), py::arg("D3U"), py::arg("D3V"), py::arg("D3UUV"), py::arg("D3UVV")
)
.def("DN",
(gp_Vec (Geom_SphericalSurface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer ) const) static_cast<gp_Vec (Geom_SphericalSurface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer ) const>(&Geom_SphericalSurface::DN),
R"#(Computes the derivative of order Nu in the direction u and Nv in the direction v. Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.)#" , py::arg("U"), py::arg("V"), py::arg("Nu"), py::arg("Nv")
)
.def("Transform",
(void (Geom_SphericalSurface::*)( const gp_Trsf & ) ) static_cast<void (Geom_SphericalSurface::*)( const gp_Trsf & ) >(&Geom_SphericalSurface::Transform),
R"#(Applies the transformation T to this sphere.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom_Geometry> (Geom_SphericalSurface::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_SphericalSurface::*)() const>(&Geom_SphericalSurface::Copy),
R"#(Creates a new object which is a copy of this sphere.)#"
)
.def("DumpJson",
(void (Geom_SphericalSurface::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom_SphericalSurface::*)( std::ostream & , Standard_Integer ) const>(&Geom_SphericalSurface::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
.def("Bounds",
[]( Geom_SphericalSurface &self ){
Standard_Real U1;
Standard_Real U2;
Standard_Real V1;
Standard_Real V2;
self.Bounds(U1,U2,V1,V2);
return std::make_tuple(U1,U2,V1,V2); },
R"#(Returns the parametric bounds U1, U2, V1 and V2 of this sphere. For a sphere: U1 = 0, U2 = 2*PI, V1 = -PI/2, V2 = PI/2.)#"
)
.def("Coefficients",
[]( Geom_SphericalSurface &self ){
Standard_Real A1;
Standard_Real A2;
Standard_Real A3;
Standard_Real B1;
Standard_Real B2;
Standard_Real B3;
Standard_Real C1;
Standard_Real C2;
Standard_Real C3;
Standard_Real D;
self.Coefficients(A1,A2,A3,B1,B2,B3,C1,C2,C3,D);
return std::make_tuple(A1,A2,A3,B1,B2,B3,C1,C2,C3,D); },
R"#(Returns the coefficients of the implicit equation of the quadric in the absolute cartesian coordinates system : These coefficients are normalized. A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) + 2.(C1.X + C2.Y + C3.Z) + D = 0.0)#"
)
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_SphericalSurface::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_SphericalSurface::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_SphericalSurface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_SphericalSurface::*)() const>(&Geom_SphericalSurface::DynamicType),
R"#(None)#"
)
;
// Class Geom_SurfaceOfLinearExtrusion from ./opencascade/Geom_SurfaceOfLinearExtrusion.hxx
klass = m.attr("Geom_SurfaceOfLinearExtrusion");
// nested enums
static_cast<py::class_<Geom_SurfaceOfLinearExtrusion ,opencascade::handle<Geom_SurfaceOfLinearExtrusion> , Geom_SweptSurface >>(klass)
// constructors
.def(py::init< const opencascade::handle<Geom_Curve> &,const gp_Dir & >() , py::arg("C"), py::arg("V") )
// custom constructors
// methods
.def("SetDirection",
(void (Geom_SurfaceOfLinearExtrusion::*)( const gp_Dir & ) ) static_cast<void (Geom_SurfaceOfLinearExtrusion::*)( const gp_Dir & ) >(&Geom_SurfaceOfLinearExtrusion::SetDirection),
R"#(Assigns V as the "direction of extrusion" for this surface of linear extrusion.)#" , py::arg("V")
)
.def("SetBasisCurve",
(void (Geom_SurfaceOfLinearExtrusion::*)( const opencascade::handle<Geom_Curve> & ) ) static_cast<void (Geom_SurfaceOfLinearExtrusion::*)( const opencascade::handle<Geom_Curve> & ) >(&Geom_SurfaceOfLinearExtrusion::SetBasisCurve),
R"#(Modifies this surface of linear extrusion by redefining its "basis curve" (the "extruded curve").)#" , py::arg("C")
)
.def("UReverse",
(void (Geom_SurfaceOfLinearExtrusion::*)() ) static_cast<void (Geom_SurfaceOfLinearExtrusion::*)() >(&Geom_SurfaceOfLinearExtrusion::UReverse),
R"#(Changes the orientation of this surface of linear extrusion in the u parametric direction. The bounds of the surface are not changed, but the given parametric direction is reversed. Hence the orientation of the surface is reversed. In the case of a surface of linear extrusion: - UReverse reverses the basis curve, and - VReverse reverses the direction of linear extrusion.)#"
)
.def("UReversedParameter",
(Standard_Real (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real ) const>(&Geom_SurfaceOfLinearExtrusion::UReversedParameter),
R"#(Computes the u parameter on the modified surface, produced by reversing its u parametric direction, for any point of u parameter U on this surface of linear extrusion. In the case of an extruded surface: - UReverseParameter returns the reversed parameter given by the function ReversedParameter called with U on the basis curve,)#" , py::arg("U")
)
.def("VReverse",
(void (Geom_SurfaceOfLinearExtrusion::*)() ) static_cast<void (Geom_SurfaceOfLinearExtrusion::*)() >(&Geom_SurfaceOfLinearExtrusion::VReverse),
R"#(Changes the orientation of this surface of linear extrusion in the v parametric direction. The bounds of the surface are not changed, but the given parametric direction is reversed. Hence the orientation of the surface is reversed. In the case of a surface of linear extrusion: - UReverse reverses the basis curve, and - VReverse reverses the direction of linear extrusion.)#"
)
.def("VReversedParameter",
(Standard_Real (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real ) const>(&Geom_SurfaceOfLinearExtrusion::VReversedParameter),
R"#(Computes the v parameter on the modified surface, produced by reversing its u v parametric direction, for any point of v parameter V on this surface of linear extrusion. In the case of an extruded surface VReverse returns -V.)#" , py::arg("V")
)
.def("IsUClosed",
(Standard_Boolean (Geom_SurfaceOfLinearExtrusion::*)() const) static_cast<Standard_Boolean (Geom_SurfaceOfLinearExtrusion::*)() const>(&Geom_SurfaceOfLinearExtrusion::IsUClosed),
R"#(IsUClosed returns true if the "basis curve" of this surface of linear extrusion is closed.)#"
)
.def("IsVClosed",
(Standard_Boolean (Geom_SurfaceOfLinearExtrusion::*)() const) static_cast<Standard_Boolean (Geom_SurfaceOfLinearExtrusion::*)() const>(&Geom_SurfaceOfLinearExtrusion::IsVClosed),
R"#(IsVClosed always returns false.)#"
)
.def("IsCNu",
(Standard_Boolean (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Integer ) const>(&Geom_SurfaceOfLinearExtrusion::IsCNu),
R"#(IsCNu returns true if the degree of continuity for the "basis curve" of this surface of linear extrusion is at least N. Raises RangeError if N < 0.)#" , py::arg("N")
)
.def("IsCNv",
(Standard_Boolean (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Integer ) const>(&Geom_SurfaceOfLinearExtrusion::IsCNv),
R"#(IsCNv always returns true.)#" , py::arg("N")
)
.def("IsUPeriodic",
(Standard_Boolean (Geom_SurfaceOfLinearExtrusion::*)() const) static_cast<Standard_Boolean (Geom_SurfaceOfLinearExtrusion::*)() const>(&Geom_SurfaceOfLinearExtrusion::IsUPeriodic),
R"#(IsUPeriodic returns true if the "basis curve" of this surface of linear extrusion is periodic.)#"
)
.def("IsVPeriodic",
(Standard_Boolean (Geom_SurfaceOfLinearExtrusion::*)() const) static_cast<Standard_Boolean (Geom_SurfaceOfLinearExtrusion::*)() const>(&Geom_SurfaceOfLinearExtrusion::IsVPeriodic),
R"#(IsVPeriodic always returns false.)#"
)
.def("UIso",
(opencascade::handle<Geom_Curve> (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real ) const>(&Geom_SurfaceOfLinearExtrusion::UIso),
R"#(Computes the U isoparametric curve of this surface of linear extrusion. This is the line parallel to the direction of extrusion, passing through the point of parameter U of the basis curve.)#" , py::arg("U")
)
.def("VIso",
(opencascade::handle<Geom_Curve> (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real ) const>(&Geom_SurfaceOfLinearExtrusion::VIso),
R"#(Computes the V isoparametric curve of this surface of linear extrusion. This curve is obtained by translating the extruded curve in the direction of extrusion, with the magnitude V.)#" , py::arg("V")
)
.def("D0",
(void (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real , const Standard_Real , gp_Pnt & ) const) static_cast<void (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real , const Standard_Real , gp_Pnt & ) const>(&Geom_SurfaceOfLinearExtrusion::D0),
R"#(Computes the point P (U, V) on the surface. The parameter U is the parameter on the extruded curve. The parametrization V is a linear parametrization, and the direction of parametrization is the direction of extrusion. If the point is on the extruded curve, V = 0.0)#" , py::arg("U"), py::arg("V"), py::arg("P")
)
.def("D1",
(void (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const>(&Geom_SurfaceOfLinearExtrusion::D1),
R"#(Computes the current point and the first derivatives in the directions U and V. Raises UndefinedDerivative if the continuity of the surface is not C1.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V")
)
.def("D2",
(void (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_SurfaceOfLinearExtrusion::D2),
R"#(--- Purpose ; Computes the current point, the first and the second derivatives in the directions U and V. Raises UndefinedDerivative if the continuity of the surface is not C2.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V"), py::arg("D2U"), py::arg("D2V"), py::arg("D2UV")
)
.def("D3",
(void (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_SurfaceOfLinearExtrusion::D3),
R"#(Computes the current point, the first,the second and the third derivatives in the directions U and V. Raises UndefinedDerivative if the continuity of the surface is not C3.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V"), py::arg("D2U"), py::arg("D2V"), py::arg("D2UV"), py::arg("D3U"), py::arg("D3V"), py::arg("D3UUV"), py::arg("D3UVV")
)
.def("DN",
(gp_Vec (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer ) const) static_cast<gp_Vec (Geom_SurfaceOfLinearExtrusion::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer ) const>(&Geom_SurfaceOfLinearExtrusion::DN),
R"#(Computes the derivative of order Nu in the direction u and Nv in the direction v. Raises UndefinedDerivative if the continuity of the surface is not CNu in the u direction and CNv in the v direction. Raises RangeError if Nu + Nv < 1 or Nu < 0 or Nv < 0.)#" , py::arg("U"), py::arg("V"), py::arg("Nu"), py::arg("Nv")
)
.def("Transform",
(void (Geom_SurfaceOfLinearExtrusion::*)( const gp_Trsf & ) ) static_cast<void (Geom_SurfaceOfLinearExtrusion::*)( const gp_Trsf & ) >(&Geom_SurfaceOfLinearExtrusion::Transform),
R"#(Applies the transformation T to this surface of linear extrusion.)#" , py::arg("T")
)
.def("ParametricTransformation",
(gp_GTrsf2d (Geom_SurfaceOfLinearExtrusion::*)( const gp_Trsf & ) const) static_cast<gp_GTrsf2d (Geom_SurfaceOfLinearExtrusion::*)( const gp_Trsf & ) const>(&Geom_SurfaceOfLinearExtrusion::ParametricTransformation),
R"#(Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns a scale U by BasisCurve()->ParametricTransformation(T) V by T.ScaleFactor())#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom_Geometry> (Geom_SurfaceOfLinearExtrusion::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_SurfaceOfLinearExtrusion::*)() const>(&Geom_SurfaceOfLinearExtrusion::Copy),
R"#(Creates a new object which is a copy of this surface of linear extrusion.)#"
)
.def("DumpJson",
(void (Geom_SurfaceOfLinearExtrusion::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom_SurfaceOfLinearExtrusion::*)( std::ostream & , Standard_Integer ) const>(&Geom_SurfaceOfLinearExtrusion::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
.def("Bounds",
[]( Geom_SurfaceOfLinearExtrusion &self ){
Standard_Real U1;
Standard_Real U2;
Standard_Real V1;
Standard_Real V2;
self.Bounds(U1,U2,V1,V2);
return std::make_tuple(U1,U2,V1,V2); },
R"#(Returns the parametric bounds U1, U2, V1 and V2 of this surface of linear extrusion. A surface of linear extrusion is infinite in the v parametric direction, so: - V1 = Standard_Real::RealFirst() - V2 = Standard_Real::RealLast().)#"
)
.def("TransformParameters",
[]( Geom_SurfaceOfLinearExtrusion &self , const gp_Trsf & T ){
Standard_Real U;
Standard_Real V;
self.TransformParameters(U,V,T);
return std::make_tuple(U,V); },
R"#(Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method multiplies: U by BasisCurve()->ParametricTransformation(T) V by T.ScaleFactor())#" , py::arg("T")
)
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_SurfaceOfLinearExtrusion::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_SurfaceOfLinearExtrusion::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_SurfaceOfLinearExtrusion::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_SurfaceOfLinearExtrusion::*)() const>(&Geom_SurfaceOfLinearExtrusion::DynamicType),
R"#(None)#"
)
;
// Class Geom_SurfaceOfRevolution from ./opencascade/Geom_SurfaceOfRevolution.hxx
klass = m.attr("Geom_SurfaceOfRevolution");
// nested enums
static_cast<py::class_<Geom_SurfaceOfRevolution ,opencascade::handle<Geom_SurfaceOfRevolution> , Geom_SweptSurface >>(klass)
// constructors
.def(py::init< const opencascade::handle<Geom_Curve> &,const gp_Ax1 & >() , py::arg("C"), py::arg("A1") )
// custom constructors
// methods
.def("SetAxis",
(void (Geom_SurfaceOfRevolution::*)( const gp_Ax1 & ) ) static_cast<void (Geom_SurfaceOfRevolution::*)( const gp_Ax1 & ) >(&Geom_SurfaceOfRevolution::SetAxis),
R"#(Changes the axis of revolution. Warnings : It is not checked that the axis is in the plane of the revolved curve.)#" , py::arg("A1")
)
.def("SetDirection",
(void (Geom_SurfaceOfRevolution::*)( const gp_Dir & ) ) static_cast<void (Geom_SurfaceOfRevolution::*)( const gp_Dir & ) >(&Geom_SurfaceOfRevolution::SetDirection),
R"#(Changes the direction of the revolution axis. Warnings : It is not checked that the axis is in the plane of the revolved curve.)#" , py::arg("V")
)
.def("SetBasisCurve",
(void (Geom_SurfaceOfRevolution::*)( const opencascade::handle<Geom_Curve> & ) ) static_cast<void (Geom_SurfaceOfRevolution::*)( const opencascade::handle<Geom_Curve> & ) >(&Geom_SurfaceOfRevolution::SetBasisCurve),
R"#(Changes the revolved curve of the surface. Warnings : It is not checked that the curve C is planar and that the surface axis is in the plane of the curve. It is not checked that the revolved curve C doesn't self-intersects.)#" , py::arg("C")
)
.def("SetLocation",
(void (Geom_SurfaceOfRevolution::*)( const gp_Pnt & ) ) static_cast<void (Geom_SurfaceOfRevolution::*)( const gp_Pnt & ) >(&Geom_SurfaceOfRevolution::SetLocation),
R"#(Changes the location point of the revolution axis. Warnings : It is not checked that the axis is in the plane of the revolved curve.)#" , py::arg("P")
)
.def("Axis",
(gp_Ax1 (Geom_SurfaceOfRevolution::*)() const) static_cast<gp_Ax1 (Geom_SurfaceOfRevolution::*)() const>(&Geom_SurfaceOfRevolution::Axis),
R"#(Returns the revolution axis of the surface.)#"
)
.def("ReferencePlane",
(gp_Ax2 (Geom_SurfaceOfRevolution::*)() const) static_cast<gp_Ax2 (Geom_SurfaceOfRevolution::*)() const>(&Geom_SurfaceOfRevolution::ReferencePlane),
R"#(Computes the position of the reference plane of the surface defined by the basis curve and the symmetry axis. The location point is the location point of the revolution's axis, the XDirection of the plane is given by the revolution's axis and the orientation of the normal to the plane is given by the sense of revolution.)#"
)
.def("UReverse",
(void (Geom_SurfaceOfRevolution::*)() ) static_cast<void (Geom_SurfaceOfRevolution::*)() >(&Geom_SurfaceOfRevolution::UReverse),
R"#(Changes the orientation of this surface of revolution in the u parametric direction. The bounds of the surface are not changed but the given parametric direction is reversed. Hence the orientation of the surface is reversed. As a consequence: - UReverse reverses the direction of the axis of revolution of this surface,)#"
)
.def("UReversedParameter",
(Standard_Real (Geom_SurfaceOfRevolution::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_SurfaceOfRevolution::*)( const Standard_Real ) const>(&Geom_SurfaceOfRevolution::UReversedParameter),
R"#(Computes the u parameter on the modified surface, when reversing its u parametric direction, for any point of u parameter U on this surface of revolution. In the case of a revolved surface: - UReversedParameter returns 2.*Pi - U)#" , py::arg("U")
)
.def("VReverse",
(void (Geom_SurfaceOfRevolution::*)() ) static_cast<void (Geom_SurfaceOfRevolution::*)() >(&Geom_SurfaceOfRevolution::VReverse),
R"#(Changes the orientation of this surface of revolution in the v parametric direction. The bounds of the surface are not changed but the given parametric direction is reversed. Hence the orientation of the surface is reversed. As a consequence: - VReverse reverses the meridian of this surface of revolution.)#"
)
.def("VReversedParameter",
(Standard_Real (Geom_SurfaceOfRevolution::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_SurfaceOfRevolution::*)( const Standard_Real ) const>(&Geom_SurfaceOfRevolution::VReversedParameter),
R"#(Computes the v parameter on the modified surface, when reversing its v parametric direction, for any point of v parameter V on this surface of revolution. In the case of a revolved surface: - VReversedParameter returns the reversed parameter given by the function ReversedParameter called with V on the meridian.)#" , py::arg("V")
)
.def("ParametricTransformation",
(gp_GTrsf2d (Geom_SurfaceOfRevolution::*)( const gp_Trsf & ) const) static_cast<gp_GTrsf2d (Geom_SurfaceOfRevolution::*)( const gp_Trsf & ) const>(&Geom_SurfaceOfRevolution::ParametricTransformation),
R"#(Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns a scale centered on the U axis with BasisCurve()->ParametricTransformation(T))#" , py::arg("T")
)
.def("IsUClosed",
(Standard_Boolean (Geom_SurfaceOfRevolution::*)() const) static_cast<Standard_Boolean (Geom_SurfaceOfRevolution::*)() const>(&Geom_SurfaceOfRevolution::IsUClosed),
R"#(IsUClosed always returns true.)#"
)
.def("IsVClosed",
(Standard_Boolean (Geom_SurfaceOfRevolution::*)() const) static_cast<Standard_Boolean (Geom_SurfaceOfRevolution::*)() const>(&Geom_SurfaceOfRevolution::IsVClosed),
R"#(IsVClosed returns true if the meridian of this surface of revolution is closed.)#"
)
.def("IsCNu",
(Standard_Boolean (Geom_SurfaceOfRevolution::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom_SurfaceOfRevolution::*)( const Standard_Integer ) const>(&Geom_SurfaceOfRevolution::IsCNu),
R"#(IsCNu always returns true.)#" , py::arg("N")
)
.def("IsCNv",
(Standard_Boolean (Geom_SurfaceOfRevolution::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom_SurfaceOfRevolution::*)( const Standard_Integer ) const>(&Geom_SurfaceOfRevolution::IsCNv),
R"#(IsCNv returns true if the degree of continuity of the meridian of this surface of revolution is at least N. Raised if N < 0.)#" , py::arg("N")
)
.def("IsUPeriodic",
(Standard_Boolean (Geom_SurfaceOfRevolution::*)() const) static_cast<Standard_Boolean (Geom_SurfaceOfRevolution::*)() const>(&Geom_SurfaceOfRevolution::IsUPeriodic),
R"#(Returns True.)#"
)
.def("IsVPeriodic",
(Standard_Boolean (Geom_SurfaceOfRevolution::*)() const) static_cast<Standard_Boolean (Geom_SurfaceOfRevolution::*)() const>(&Geom_SurfaceOfRevolution::IsVPeriodic),
R"#(IsVPeriodic returns true if the meridian of this surface of revolution is periodic.)#"
)
.def("UIso",
(opencascade::handle<Geom_Curve> (Geom_SurfaceOfRevolution::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_SurfaceOfRevolution::*)( const Standard_Real ) const>(&Geom_SurfaceOfRevolution::UIso),
R"#(Computes the U isoparametric curve of this surface of revolution. It is the curve obtained by rotating the meridian through an angle U about the axis of revolution.)#" , py::arg("U")
)
.def("VIso",
(opencascade::handle<Geom_Curve> (Geom_SurfaceOfRevolution::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_SurfaceOfRevolution::*)( const Standard_Real ) const>(&Geom_SurfaceOfRevolution::VIso),
R"#(Computes the U isoparametric curve of this surface of revolution. It is the curve obtained by rotating the meridian through an angle U about the axis of revolution.)#" , py::arg("V")
)
.def("D0",
(void (Geom_SurfaceOfRevolution::*)( const Standard_Real , const Standard_Real , gp_Pnt & ) const) static_cast<void (Geom_SurfaceOfRevolution::*)( const Standard_Real , const Standard_Real , gp_Pnt & ) const>(&Geom_SurfaceOfRevolution::D0),
R"#(Computes the point P (U, V) on the surface. U is the angle of the rotation around the revolution axis. The direction of this axis gives the sense of rotation. V is the parameter of the revolved curve.)#" , py::arg("U"), py::arg("V"), py::arg("P")
)
.def("D1",
(void (Geom_SurfaceOfRevolution::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_SurfaceOfRevolution::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const>(&Geom_SurfaceOfRevolution::D1),
R"#(Computes the current point and the first derivatives in the directions U and V. Raised if the continuity of the surface is not C1.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V")
)
.def("D2",
(void (Geom_SurfaceOfRevolution::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_SurfaceOfRevolution::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_SurfaceOfRevolution::D2),
R"#(Computes the current point, the first and the second derivatives in the directions U and V. Raised if the continuity of the surface is not C2.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V"), py::arg("D2U"), py::arg("D2V"), py::arg("D2UV")
)
.def("D3",
(void (Geom_SurfaceOfRevolution::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_SurfaceOfRevolution::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_SurfaceOfRevolution::D3),
R"#(Computes the current point, the first,the second and the third derivatives in the directions U and V. Raised if the continuity of the surface is not C3.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V"), py::arg("D2U"), py::arg("D2V"), py::arg("D2UV"), py::arg("D3U"), py::arg("D3V"), py::arg("D3UUV"), py::arg("D3UVV")
)
.def("DN",
(gp_Vec (Geom_SurfaceOfRevolution::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer ) const) static_cast<gp_Vec (Geom_SurfaceOfRevolution::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer ) const>(&Geom_SurfaceOfRevolution::DN),
R"#(Computes the derivative of order Nu in the direction u and Nv in the direction v.)#" , py::arg("U"), py::arg("V"), py::arg("Nu"), py::arg("Nv")
)
.def("Transform",
(void (Geom_SurfaceOfRevolution::*)( const gp_Trsf & ) ) static_cast<void (Geom_SurfaceOfRevolution::*)( const gp_Trsf & ) >(&Geom_SurfaceOfRevolution::Transform),
R"#(Applies the transformation T to this surface of revolution.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom_Geometry> (Geom_SurfaceOfRevolution::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_SurfaceOfRevolution::*)() const>(&Geom_SurfaceOfRevolution::Copy),
R"#(Creates a new object which is a copy of this surface of revolution.)#"
)
.def("DumpJson",
(void (Geom_SurfaceOfRevolution::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom_SurfaceOfRevolution::*)( std::ostream & , Standard_Integer ) const>(&Geom_SurfaceOfRevolution::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
.def("TransformParameters",
[]( Geom_SurfaceOfRevolution &self , const gp_Trsf & T ){
Standard_Real U;
Standard_Real V;
self.TransformParameters(U,V,T);
return std::make_tuple(U,V); },
R"#(Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method multiplies V by BasisCurve()->ParametricTransformation(T))#" , py::arg("T")
)
.def("Bounds",
[]( Geom_SurfaceOfRevolution &self ){
Standard_Real U1;
Standard_Real U2;
Standard_Real V1;
Standard_Real V2;
self.Bounds(U1,U2,V1,V2);
return std::make_tuple(U1,U2,V1,V2); },
R"#(Returns the parametric bounds U1, U2 , V1 and V2 of this surface. A surface of revolution is always complete, so U1 = 0, U2 = 2*PI.)#"
)
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_SurfaceOfRevolution::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_SurfaceOfRevolution::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Location",
(const gp_Pnt & (Geom_SurfaceOfRevolution::*)() const) static_cast<const gp_Pnt & (Geom_SurfaceOfRevolution::*)() const>(&Geom_SurfaceOfRevolution::Location),
R"#(Returns the location point of the axis of revolution.)#"
)
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_SurfaceOfRevolution::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_SurfaceOfRevolution::*)() const>(&Geom_SurfaceOfRevolution::DynamicType),
R"#(None)#"
)
;
// Class Geom_ToroidalSurface from ./opencascade/Geom_ToroidalSurface.hxx
klass = m.attr("Geom_ToroidalSurface");
// nested enums
static_cast<py::class_<Geom_ToroidalSurface ,opencascade::handle<Geom_ToroidalSurface> , Geom_ElementarySurface >>(klass)
// constructors
.def(py::init< const gp_Ax3 &,const Standard_Real,const Standard_Real >() , py::arg("A3"), py::arg("MajorRadius"), py::arg("MinorRadius") )
.def(py::init< const gp_Torus & >() , py::arg("T") )
// custom constructors
// methods
.def("SetMajorRadius",
(void (Geom_ToroidalSurface::*)( const Standard_Real ) ) static_cast<void (Geom_ToroidalSurface::*)( const Standard_Real ) >(&Geom_ToroidalSurface::SetMajorRadius),
R"#(Modifies this torus by changing its major radius. Exceptions Standard_ConstructionError if: - MajorRadius is negative, or - MajorRadius - r is less than or equal to gp::Resolution(), where r is the minor radius of this torus.)#" , py::arg("MajorRadius")
)
.def("SetMinorRadius",
(void (Geom_ToroidalSurface::*)( const Standard_Real ) ) static_cast<void (Geom_ToroidalSurface::*)( const Standard_Real ) >(&Geom_ToroidalSurface::SetMinorRadius),
R"#(Modifies this torus by changing its minor radius. Exceptions Standard_ConstructionError if: - MinorRadius is negative, or - R - MinorRadius is less than or equal to gp::Resolution(), where R is the major radius of this torus.)#" , py::arg("MinorRadius")
)
.def("SetTorus",
(void (Geom_ToroidalSurface::*)( const gp_Torus & ) ) static_cast<void (Geom_ToroidalSurface::*)( const gp_Torus & ) >(&Geom_ToroidalSurface::SetTorus),
R"#(Converts the gp_Torus torus T into this torus.)#" , py::arg("T")
)
.def("Torus",
(gp_Torus (Geom_ToroidalSurface::*)() const) static_cast<gp_Torus (Geom_ToroidalSurface::*)() const>(&Geom_ToroidalSurface::Torus),
R"#(Returns the non transient torus with the same geometric properties as <me>.)#"
)
.def("UReversedParameter",
(Standard_Real (Geom_ToroidalSurface::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_ToroidalSurface::*)( const Standard_Real ) const>(&Geom_ToroidalSurface::UReversedParameter),
R"#(Return the parameter on the Ureversed surface for the point of parameter U on <me>. Return 2.PI - U.)#" , py::arg("U")
)
.def("VReversedParameter",
(Standard_Real (Geom_ToroidalSurface::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_ToroidalSurface::*)( const Standard_Real ) const>(&Geom_ToroidalSurface::VReversedParameter),
R"#(Return the parameter on the Ureversed surface for the point of parameter U on <me>. Return 2.PI - U.)#" , py::arg("U")
)
.def("Area",
(Standard_Real (Geom_ToroidalSurface::*)() const) static_cast<Standard_Real (Geom_ToroidalSurface::*)() const>(&Geom_ToroidalSurface::Area),
R"#(Computes the aera of the surface.)#"
)
.def("Coefficients",
(void (Geom_ToroidalSurface::*)( NCollection_Array1<Standard_Real> & ) const) static_cast<void (Geom_ToroidalSurface::*)( NCollection_Array1<Standard_Real> & ) const>(&Geom_ToroidalSurface::Coefficients),
R"#(Returns the coefficients of the implicit equation of the surface in the absolute cartesian coordinate system : Coef(1) * X**4 + Coef(2) * Y**4 + Coef(3) * Z**4 + Coef(4) * X**3 * Y + Coef(5) * X**3 * Z + Coef(6) * Y**3 * X + Coef(7) * Y**3 * Z + Coef(8) * Z**3 * X + Coef(9) * Z**3 * Y + Coef(10) * X**2 * Y**2 + Coef(11) * X**2 * Z**2 + Coef(12) * Y**2 * Z**2 + Coef(13) * X**3 + Coef(14) * Y**3 + Coef(15) * Z**3 + Coef(16) * X**2 * Y + Coef(17) * X**2 * Z + Coef(18) * Y**2 * X + Coef(19) * Y**2 * Z + Coef(20) * Z**2 * X + Coef(21) * Z**2 * Y + Coef(22) * X**2 + Coef(23) * Y**2 + Coef(24) * Z**2 + Coef(25) * X * Y + Coef(26) * X * Z + Coef(27) * Y * Z + Coef(28) * X + Coef(29) * Y + Coef(30) * Z + Coef(31) = 0.0 Raised if the length of Coef is lower than 31.)#" , py::arg("Coef")
)
.def("MajorRadius",
(Standard_Real (Geom_ToroidalSurface::*)() const) static_cast<Standard_Real (Geom_ToroidalSurface::*)() const>(&Geom_ToroidalSurface::MajorRadius),
R"#(Returns the major radius, or the minor radius, of this torus.)#"
)
.def("MinorRadius",
(Standard_Real (Geom_ToroidalSurface::*)() const) static_cast<Standard_Real (Geom_ToroidalSurface::*)() const>(&Geom_ToroidalSurface::MinorRadius),
R"#(Returns the major radius, or the minor radius, of this torus.)#"
)
.def("Volume",
(Standard_Real (Geom_ToroidalSurface::*)() const) static_cast<Standard_Real (Geom_ToroidalSurface::*)() const>(&Geom_ToroidalSurface::Volume),
R"#(Computes the volume.)#"
)
.def("IsUClosed",
(Standard_Boolean (Geom_ToroidalSurface::*)() const) static_cast<Standard_Boolean (Geom_ToroidalSurface::*)() const>(&Geom_ToroidalSurface::IsUClosed),
R"#(Returns True.)#"
)
.def("IsVClosed",
(Standard_Boolean (Geom_ToroidalSurface::*)() const) static_cast<Standard_Boolean (Geom_ToroidalSurface::*)() const>(&Geom_ToroidalSurface::IsVClosed),
R"#(Returns True.)#"
)
.def("IsUPeriodic",
(Standard_Boolean (Geom_ToroidalSurface::*)() const) static_cast<Standard_Boolean (Geom_ToroidalSurface::*)() const>(&Geom_ToroidalSurface::IsUPeriodic),
R"#(Returns True.)#"
)
.def("IsVPeriodic",
(Standard_Boolean (Geom_ToroidalSurface::*)() const) static_cast<Standard_Boolean (Geom_ToroidalSurface::*)() const>(&Geom_ToroidalSurface::IsVPeriodic),
R"#(Returns True.)#"
)
.def("UIso",
(opencascade::handle<Geom_Curve> (Geom_ToroidalSurface::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_ToroidalSurface::*)( const Standard_Real ) const>(&Geom_ToroidalSurface::UIso),
R"#(Computes the U isoparametric curve.)#" , py::arg("U")
)
.def("VIso",
(opencascade::handle<Geom_Curve> (Geom_ToroidalSurface::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom_Curve> (Geom_ToroidalSurface::*)( const Standard_Real ) const>(&Geom_ToroidalSurface::VIso),
R"#(Computes the V isoparametric curve.)#" , py::arg("V")
)
.def("D0",
(void (Geom_ToroidalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & ) const) static_cast<void (Geom_ToroidalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & ) const>(&Geom_ToroidalSurface::D0),
R"#(Computes the point P (U, V) on the surface. P (U, V) = Loc + MinorRadius * Sin (V) * Zdir + (MajorRadius + MinorRadius * Cos(V)) * (cos (U) * XDir + sin (U) * YDir) where Loc is the origin of the placement plane (XAxis, YAxis) XDir is the direction of the XAxis and YDir the direction of the YAxis and ZDir the direction of the ZAxis.)#" , py::arg("U"), py::arg("V"), py::arg("P")
)
.def("D1",
(void (Geom_ToroidalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_ToroidalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const>(&Geom_ToroidalSurface::D1),
R"#(Computes the current point and the first derivatives in the directions U and V.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V")
)
.def("D2",
(void (Geom_ToroidalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_ToroidalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_ToroidalSurface::D2),
R"#(Computes the current point, the first and the second derivatives in the directions U and V.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V"), py::arg("D2U"), py::arg("D2V"), py::arg("D2UV")
)
.def("D3",
(void (Geom_ToroidalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_ToroidalSurface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_ToroidalSurface::D3),
R"#(Computes the current point, the first,the second and the third derivatives in the directions U and V.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V"), py::arg("D2U"), py::arg("D2V"), py::arg("D2UV"), py::arg("D3U"), py::arg("D3V"), py::arg("D3UUV"), py::arg("D3UVV")
)
.def("DN",
(gp_Vec (Geom_ToroidalSurface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer ) const) static_cast<gp_Vec (Geom_ToroidalSurface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer ) const>(&Geom_ToroidalSurface::DN),
R"#(Computes the derivative of order Nu in the direction u and Nv in the direction v. Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.)#" , py::arg("U"), py::arg("V"), py::arg("Nu"), py::arg("Nv")
)
.def("Transform",
(void (Geom_ToroidalSurface::*)( const gp_Trsf & ) ) static_cast<void (Geom_ToroidalSurface::*)( const gp_Trsf & ) >(&Geom_ToroidalSurface::Transform),
R"#(Applies the transformation T to this torus.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom_Geometry> (Geom_ToroidalSurface::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_ToroidalSurface::*)() const>(&Geom_ToroidalSurface::Copy),
R"#(Creates a new object which is a copy of this torus.)#"
)
.def("DumpJson",
(void (Geom_ToroidalSurface::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom_ToroidalSurface::*)( std::ostream & , Standard_Integer ) const>(&Geom_ToroidalSurface::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
.def("Bounds",
[]( Geom_ToroidalSurface &self ){
Standard_Real U1;
Standard_Real U2;
Standard_Real V1;
Standard_Real V2;
self.Bounds(U1,U2,V1,V2);
return std::make_tuple(U1,U2,V1,V2); },
R"#(Returns the parametric bounds U1, U2, V1 and V2 of this torus. For a torus: U1 = V1 = 0 and U2 = V2 = 2*PI .)#"
)
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_ToroidalSurface::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_ToroidalSurface::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_ToroidalSurface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_ToroidalSurface::*)() const>(&Geom_ToroidalSurface::DynamicType),
R"#(None)#"
)
;
// Class Geom_TrimmedCurve from ./opencascade/Geom_TrimmedCurve.hxx
klass = m.attr("Geom_TrimmedCurve");
// nested enums
static_cast<py::class_<Geom_TrimmedCurve ,opencascade::handle<Geom_TrimmedCurve> , Geom_BoundedCurve >>(klass)
// constructors
.def(py::init< const opencascade::handle<Geom_Curve> &,const Standard_Real,const Standard_Real,const Standard_Boolean,const Standard_Boolean >() , py::arg("C"), py::arg("U1"), py::arg("U2"), py::arg("Sense")=static_cast<const Standard_Boolean>(Standard_True), py::arg("theAdjustPeriodic")=static_cast<const Standard_Boolean>(Standard_True) )
// custom constructors
// methods
.def("Reverse",
(void (Geom_TrimmedCurve::*)() ) static_cast<void (Geom_TrimmedCurve::*)() >(&Geom_TrimmedCurve::Reverse),
R"#(Changes the orientation of this trimmed curve. As a result: - the basis curve is reversed, - the start point of the initial curve becomes the end point of the reversed curve, - the end point of the initial curve becomes the start point of the reversed curve, - the first and last parameters are recomputed. If the trimmed curve was defined by: - a basis curve whose parameter range is [ 0., 1. ], - the two trim values U1 (first parameter) and U2 (last parameter), the reversed trimmed curve is defined by: - the reversed basis curve, whose parameter range is still [ 0., 1. ], - the two trim values 1. - U2 (first parameter) and 1. - U1 (last parameter).)#"
)
.def("ReversedParameter",
(Standard_Real (Geom_TrimmedCurve::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom_TrimmedCurve::*)( const Standard_Real ) const>(&Geom_TrimmedCurve::ReversedParameter),
R"#(Computes the parameter on the reversed curve for the point of parameter U on this trimmed curve.)#" , py::arg("U")
)
.def("SetTrim",
(void (Geom_TrimmedCurve::*)( const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Boolean ) ) static_cast<void (Geom_TrimmedCurve::*)( const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Boolean ) >(&Geom_TrimmedCurve::SetTrim),
R"#(Changes this trimmed curve, by redefining the parameter values U1 and U2 which limit its basis curve. Note: If the basis curve is periodic, the trimmed curve has the same orientation as the basis curve if Sense is true (default value) or the opposite orientation if Sense is false. Warning If the basis curve is periodic and theAdjustPeriodic is True, the bounds of the trimmed curve may be different from U1 and U2 if the parametric origin of the basis curve is within the arc of the trimmed curve. In this case, the modified parameter will be equal to U1 or U2 plus or minus the period. When theAdjustPeriodic is False, parameters U1 and U2 will be the same, without adjustment into the first period. Exceptions Standard_ConstructionError if: - the basis curve is not periodic, and either U1 or U2 are outside the bounds of the basis curve, or - U1 is equal to U2.)#" , py::arg("U1"), py::arg("U2"), py::arg("Sense")=static_cast<const Standard_Boolean>(Standard_True), py::arg("theAdjustPeriodic")=static_cast<const Standard_Boolean>(Standard_True)
)
.def("BasisCurve",
(opencascade::handle<Geom_Curve> (Geom_TrimmedCurve::*)() const) static_cast<opencascade::handle<Geom_Curve> (Geom_TrimmedCurve::*)() const>(&Geom_TrimmedCurve::BasisCurve),
R"#(Returns the basis curve. Warning This function does not return a constant reference. Consequently, any modification of the returned value directly modifies the trimmed curve.)#"
)
.def("Continuity",
(GeomAbs_Shape (Geom_TrimmedCurve::*)() const) static_cast<GeomAbs_Shape (Geom_TrimmedCurve::*)() const>(&Geom_TrimmedCurve::Continuity),
R"#(Returns the continuity of the curve : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, CN : the order of continuity is infinite.)#"
)
.def("IsCN",
(Standard_Boolean (Geom_TrimmedCurve::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom_TrimmedCurve::*)( const Standard_Integer ) const>(&Geom_TrimmedCurve::IsCN),
R"#(Returns true if the degree of continuity of the basis curve of this trimmed curve is at least N. A trimmed curve is at least "C0" continuous. Warnings : The continuity of the trimmed curve can be greater than the continuity of the basis curve because you consider only a part of the basis curve. Raised if N < 0.)#" , py::arg("N")
)
.def("EndPoint",
(gp_Pnt (Geom_TrimmedCurve::*)() const) static_cast<gp_Pnt (Geom_TrimmedCurve::*)() const>(&Geom_TrimmedCurve::EndPoint),
R"#(Returns the end point of <me>. This point is the evaluation of the curve for the "LastParameter".)#"
)
.def("FirstParameter",
(Standard_Real (Geom_TrimmedCurve::*)() const) static_cast<Standard_Real (Geom_TrimmedCurve::*)() const>(&Geom_TrimmedCurve::FirstParameter),
R"#(Returns the value of the first parameter of <me>. The first parameter is the parameter of the "StartPoint" of the trimmed curve.)#"
)
.def("IsClosed",
(Standard_Boolean (Geom_TrimmedCurve::*)() const) static_cast<Standard_Boolean (Geom_TrimmedCurve::*)() const>(&Geom_TrimmedCurve::IsClosed),
R"#(Returns True if the distance between the StartPoint and the EndPoint is lower or equal to Resolution from package gp.)#"
)
.def("IsPeriodic",
(Standard_Boolean (Geom_TrimmedCurve::*)() const) static_cast<Standard_Boolean (Geom_TrimmedCurve::*)() const>(&Geom_TrimmedCurve::IsPeriodic),
R"#(Always returns FALSE (independently of the type of basis curve).)#"
)
.def("Period",
(Standard_Real (Geom_TrimmedCurve::*)() const) static_cast<Standard_Real (Geom_TrimmedCurve::*)() const>(&Geom_TrimmedCurve::Period),
R"#(Returns the period of the basis curve of this trimmed curve. Exceptions Standard_NoSuchObject if the basis curve is not periodic.)#"
)
.def("LastParameter",
(Standard_Real (Geom_TrimmedCurve::*)() const) static_cast<Standard_Real (Geom_TrimmedCurve::*)() const>(&Geom_TrimmedCurve::LastParameter),
R"#(Returns the value of the last parameter of <me>. The last parameter is the parameter of the "EndPoint" of the trimmed curve.)#"
)
.def("StartPoint",
(gp_Pnt (Geom_TrimmedCurve::*)() const) static_cast<gp_Pnt (Geom_TrimmedCurve::*)() const>(&Geom_TrimmedCurve::StartPoint),
R"#(Returns the start point of <me>. This point is the evaluation of the curve from the "FirstParameter". value and derivatives Warnings : The returned derivatives have the same orientation as the derivatives of the basis curve even if the trimmed curve has not the same orientation as the basis curve.)#"
)
.def("D0",
(void (Geom_TrimmedCurve::*)( const Standard_Real , gp_Pnt & ) const) static_cast<void (Geom_TrimmedCurve::*)( const Standard_Real , gp_Pnt & ) const>(&Geom_TrimmedCurve::D0),
R"#(Returns in P the point of parameter U.)#" , py::arg("U"), py::arg("P")
)
.def("D1",
(void (Geom_TrimmedCurve::*)( const Standard_Real , gp_Pnt & , gp_Vec & ) const) static_cast<void (Geom_TrimmedCurve::*)( const Standard_Real , gp_Pnt & , gp_Vec & ) const>(&Geom_TrimmedCurve::D1),
R"#(Raised if the continuity of the curve is not C1.)#" , py::arg("U"), py::arg("P"), py::arg("V1")
)
.def("D2",
(void (Geom_TrimmedCurve::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_TrimmedCurve::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const>(&Geom_TrimmedCurve::D2),
R"#(Raised if the continuity of the curve is not C2.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2")
)
.def("D3",
(void (Geom_TrimmedCurve::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (Geom_TrimmedCurve::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&Geom_TrimmedCurve::D3),
R"#(Raised if the continuity of the curve is not C3.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2"), py::arg("V3")
)
.def("DN",
(gp_Vec (Geom_TrimmedCurve::*)( const Standard_Real , const Standard_Integer ) const) static_cast<gp_Vec (Geom_TrimmedCurve::*)( const Standard_Real , const Standard_Integer ) const>(&Geom_TrimmedCurve::DN),
R"#(N is the order of derivation. Raised if the continuity of the curve is not CN. Raised if N < 1. geometric transformations)#" , py::arg("U"), py::arg("N")
)
.def("Transform",
(void (Geom_TrimmedCurve::*)( const gp_Trsf & ) ) static_cast<void (Geom_TrimmedCurve::*)( const gp_Trsf & ) >(&Geom_TrimmedCurve::Transform),
R"#(Applies the transformation T to this trimmed curve. Warning The basis curve is also modified.)#" , py::arg("T")
)
.def("TransformedParameter",
(Standard_Real (Geom_TrimmedCurve::*)( const Standard_Real , const gp_Trsf & ) const) static_cast<Standard_Real (Geom_TrimmedCurve::*)( const Standard_Real , const gp_Trsf & ) const>(&Geom_TrimmedCurve::TransformedParameter),
R"#(Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.)#" , py::arg("U"), py::arg("T")
)
.def("ParametricTransformation",
(Standard_Real (Geom_TrimmedCurve::*)( const gp_Trsf & ) const) static_cast<Standard_Real (Geom_TrimmedCurve::*)( const gp_Trsf & ) const>(&Geom_TrimmedCurve::ParametricTransformation),
R"#(Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom_Geometry> (Geom_TrimmedCurve::*)() const) static_cast<opencascade::handle<Geom_Geometry> (Geom_TrimmedCurve::*)() const>(&Geom_TrimmedCurve::Copy),
R"#(Creates a new object which is a copy of this trimmed curve.)#"
)
.def("DumpJson",
(void (Geom_TrimmedCurve::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom_TrimmedCurve::*)( std::ostream & , Standard_Integer ) const>(&Geom_TrimmedCurve::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom_TrimmedCurve::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom_TrimmedCurve::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom_TrimmedCurve::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom_TrimmedCurve::*)() const>(&Geom_TrimmedCurve::DynamicType),
R"#(None)#"
)
;
// functions
// ./opencascade/Geom_Axis1Placement.hxx
// ./opencascade/Geom_Axis2Placement.hxx
// ./opencascade/Geom_AxisPlacement.hxx
// ./opencascade/Geom_BSplineCurve.hxx
// ./opencascade/Geom_BSplineSurface.hxx
// ./opencascade/Geom_BezierCurve.hxx
// ./opencascade/Geom_BezierSurface.hxx
// ./opencascade/Geom_BoundedCurve.hxx
// ./opencascade/Geom_BoundedSurface.hxx
// ./opencascade/Geom_CartesianPoint.hxx
// ./opencascade/Geom_Circle.hxx
// ./opencascade/Geom_Conic.hxx
// ./opencascade/Geom_ConicalSurface.hxx
// ./opencascade/Geom_Curve.hxx
// ./opencascade/Geom_CylindricalSurface.hxx
// ./opencascade/Geom_Direction.hxx
// ./opencascade/Geom_ElementarySurface.hxx
// ./opencascade/Geom_Ellipse.hxx
// ./opencascade/Geom_Geometry.hxx
// ./opencascade/Geom_HSequenceOfBSplineSurface.hxx
// ./opencascade/Geom_Hyperbola.hxx
// ./opencascade/Geom_Line.hxx
// ./opencascade/Geom_OffsetCurve.hxx
// ./opencascade/Geom_OffsetSurface.hxx
// ./opencascade/Geom_OsculatingSurface.hxx
// ./opencascade/Geom_Parabola.hxx
// ./opencascade/Geom_Plane.hxx
// ./opencascade/Geom_Point.hxx
// ./opencascade/Geom_RectangularTrimmedSurface.hxx
// ./opencascade/Geom_SequenceOfBSplineSurface.hxx
// ./opencascade/Geom_SphericalSurface.hxx
// ./opencascade/Geom_Surface.hxx
// ./opencascade/Geom_SurfaceOfLinearExtrusion.hxx
// ./opencascade/Geom_SurfaceOfRevolution.hxx
// ./opencascade/Geom_SweptSurface.hxx
// ./opencascade/Geom_ToroidalSurface.hxx
// ./opencascade/Geom_Transformation.hxx
// ./opencascade/Geom_TrimmedCurve.hxx
// ./opencascade/Geom_UndefinedDerivative.hxx
// ./opencascade/Geom_UndefinedValue.hxx
// ./opencascade/Geom_Vector.hxx
// ./opencascade/Geom_VectorWithMagnitude.hxx
// Additional functions
// operators
// register typdefs
register_template_NCollection_Sequence<opencascade::handle<Geom_BSplineSurface>>(m,"Geom_SequenceOfBSplineSurface");
// exceptions
register_occ_exception<Geom_UndefinedDerivative>(m, "Geom_UndefinedDerivative");
register_occ_exception<Geom_UndefinedValue>(m, "Geom_UndefinedValue");
// user-defined post-inclusion per module in the body
};
// user-defined post-inclusion per module
// user-defined post
|