1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
|
// std lib related includes
#include <tuple>
// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybind11;
// Standard Handle
#include <Standard_Handle.hxx>
// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Circ2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Trsf2d.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Vec2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Elips2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Ax2d.hxx>
#include <gp_Vec2d.hxx>
#include <gp_Trsf2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Hypr2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Lin2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Parab2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Vec2d.hxx>
#include <gp_Trsf2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
// module includes
#include <Geom2d_AxisPlacement.hxx>
#include <Geom2d_BezierCurve.hxx>
#include <Geom2d_BoundedCurve.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Geom2d_CartesianPoint.hxx>
#include <Geom2d_Circle.hxx>
#include <Geom2d_Conic.hxx>
#include <Geom2d_Curve.hxx>
#include <Geom2d_Direction.hxx>
#include <Geom2d_Ellipse.hxx>
#include <Geom2d_Geometry.hxx>
#include <Geom2d_Hyperbola.hxx>
#include <Geom2d_Line.hxx>
#include <Geom2d_OffsetCurve.hxx>
#include <Geom2d_Parabola.hxx>
#include <Geom2d_Point.hxx>
#include <Geom2d_Transformation.hxx>
#include <Geom2d_TrimmedCurve.hxx>
#include <Geom2d_UndefinedDerivative.hxx>
#include <Geom2d_UndefinedValue.hxx>
#include <Geom2d_Vector.hxx>
#include <Geom2d_VectorWithMagnitude.hxx>
// template related includes
// user-defined pre
#include "OCP_specific.inc"
// user-defined inclusion per module
// Module definiiton
void register_Geom2d(py::module &main_module) {
py::module m = static_cast<py::module>(main_module.attr("Geom2d"));
py::object klass;
//Python trampoline classes
class Py_Geom2d_Geometry : public Geom2d_Geometry{
public:
using Geom2d_Geometry::Geom2d_Geometry;
// public pure virtual
void Transform(const gp_Trsf2d & T) override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Geometry,Transform,T) };
opencascade::handle<Geom2d_Geometry> Copy() const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom2d_Geometry>,Geom2d_Geometry,Copy,) };
// protected pure virtual
// private pure virtual
};
class Py_Geom2d_Curve : public Geom2d_Curve{
public:
using Geom2d_Curve::Geom2d_Curve;
// public pure virtual
void Reverse() override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Curve,Reverse,) };
Standard_Real ReversedParameter(const Standard_Real U) const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Curve,ReversedParameter,U) };
Standard_Real FirstParameter() const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Curve,FirstParameter,) };
Standard_Real LastParameter() const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Curve,LastParameter,) };
Standard_Boolean IsClosed() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom2d_Curve,IsClosed,) };
Standard_Boolean IsPeriodic() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom2d_Curve,IsPeriodic,) };
GeomAbs_Shape Continuity() const override { PYBIND11_OVERLOAD_PURE(GeomAbs_Shape,Geom2d_Curve,Continuity,) };
Standard_Boolean IsCN(const Standard_Integer N) const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom2d_Curve,IsCN,N) };
void D0(const Standard_Real U,gp_Pnt2d & P) const override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Curve,D0,U,P) };
void D1(const Standard_Real U,gp_Pnt2d & P,gp_Vec2d & V1) const override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Curve,D1,U,P,V1) };
void D2(const Standard_Real U,gp_Pnt2d & P,gp_Vec2d & V1,gp_Vec2d & V2) const override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Curve,D2,U,P,V1,V2) };
void D3(const Standard_Real U,gp_Pnt2d & P,gp_Vec2d & V1,gp_Vec2d & V2,gp_Vec2d & V3) const override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Curve,D3,U,P,V1,V2,V3) };
gp_Vec2d DN(const Standard_Real U,const Standard_Integer N) const override { PYBIND11_OVERLOAD_PURE(gp_Vec2d,Geom2d_Curve,DN,U,N) };
void Transform(const gp_Trsf2d & T) override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Geometry,Transform,T) };
opencascade::handle<Geom2d_Geometry> Copy() const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom2d_Geometry>,Geom2d_Geometry,Copy,) };
// protected pure virtual
// private pure virtual
};
class Py_Geom2d_Point : public Geom2d_Point{
public:
using Geom2d_Point::Geom2d_Point;
// public pure virtual
gp_Pnt2d Pnt2d() const override { PYBIND11_OVERLOAD_PURE(gp_Pnt2d,Geom2d_Point,Pnt2d,) };
Standard_Real X() const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Point,X,) };
Standard_Real Y() const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Point,Y,) };
void Coord(Standard_Real & X,Standard_Real & Y) const override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Point,Coord,X,Y) };
void Transform(const gp_Trsf2d & T) override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Geometry,Transform,T) };
opencascade::handle<Geom2d_Geometry> Copy() const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom2d_Geometry>,Geom2d_Geometry,Copy,) };
// protected pure virtual
// private pure virtual
};
class Py_Geom2d_Vector : public Geom2d_Vector{
public:
using Geom2d_Vector::Geom2d_Vector;
// public pure virtual
Standard_Real Magnitude() const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Vector,Magnitude,) };
Standard_Real SquareMagnitude() const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Vector,SquareMagnitude,) };
Standard_Real Crossed(const opencascade::handle<Geom2d_Vector> & Other) const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Vector,Crossed,Other) };
void Transform(const gp_Trsf2d & T) override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Geometry,Transform,T) };
opencascade::handle<Geom2d_Geometry> Copy() const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom2d_Geometry>,Geom2d_Geometry,Copy,) };
// protected pure virtual
// private pure virtual
};
class Py_Geom2d_BoundedCurve : public Geom2d_BoundedCurve{
public:
using Geom2d_BoundedCurve::Geom2d_BoundedCurve;
// public pure virtual
gp_Pnt2d EndPoint() const override { PYBIND11_OVERLOAD_PURE(gp_Pnt2d,Geom2d_BoundedCurve,EndPoint,) };
gp_Pnt2d StartPoint() const override { PYBIND11_OVERLOAD_PURE(gp_Pnt2d,Geom2d_BoundedCurve,StartPoint,) };
void Reverse() override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Curve,Reverse,) };
Standard_Real ReversedParameter(const Standard_Real U) const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Curve,ReversedParameter,U) };
Standard_Real FirstParameter() const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Curve,FirstParameter,) };
Standard_Real LastParameter() const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Curve,LastParameter,) };
Standard_Boolean IsClosed() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom2d_Curve,IsClosed,) };
Standard_Boolean IsPeriodic() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom2d_Curve,IsPeriodic,) };
GeomAbs_Shape Continuity() const override { PYBIND11_OVERLOAD_PURE(GeomAbs_Shape,Geom2d_Curve,Continuity,) };
Standard_Boolean IsCN(const Standard_Integer N) const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom2d_Curve,IsCN,N) };
void D0(const Standard_Real U,gp_Pnt2d & P) const override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Curve,D0,U,P) };
void D1(const Standard_Real U,gp_Pnt2d & P,gp_Vec2d & V1) const override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Curve,D1,U,P,V1) };
void D2(const Standard_Real U,gp_Pnt2d & P,gp_Vec2d & V1,gp_Vec2d & V2) const override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Curve,D2,U,P,V1,V2) };
void D3(const Standard_Real U,gp_Pnt2d & P,gp_Vec2d & V1,gp_Vec2d & V2,gp_Vec2d & V3) const override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Curve,D3,U,P,V1,V2,V3) };
gp_Vec2d DN(const Standard_Real U,const Standard_Integer N) const override { PYBIND11_OVERLOAD_PURE(gp_Vec2d,Geom2d_Curve,DN,U,N) };
void Transform(const gp_Trsf2d & T) override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Geometry,Transform,T) };
opencascade::handle<Geom2d_Geometry> Copy() const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom2d_Geometry>,Geom2d_Geometry,Copy,) };
// protected pure virtual
// private pure virtual
};
class Py_Geom2d_Conic : public Geom2d_Conic{
public:
using Geom2d_Conic::Geom2d_Conic;
// public pure virtual
Standard_Real Eccentricity() const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Conic,Eccentricity,) };
Standard_Real ReversedParameter(const Standard_Real U) const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Conic,ReversedParameter,U) };
Standard_Real FirstParameter() const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Curve,FirstParameter,) };
Standard_Real LastParameter() const override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Curve,LastParameter,) };
Standard_Boolean IsClosed() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom2d_Curve,IsClosed,) };
Standard_Boolean IsPeriodic() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom2d_Curve,IsPeriodic,) };
void D0(const Standard_Real U,gp_Pnt2d & P) const override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Curve,D0,U,P) };
void D1(const Standard_Real U,gp_Pnt2d & P,gp_Vec2d & V1) const override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Curve,D1,U,P,V1) };
void D2(const Standard_Real U,gp_Pnt2d & P,gp_Vec2d & V1,gp_Vec2d & V2) const override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Curve,D2,U,P,V1,V2) };
void D3(const Standard_Real U,gp_Pnt2d & P,gp_Vec2d & V1,gp_Vec2d & V2,gp_Vec2d & V3) const override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Curve,D3,U,P,V1,V2,V3) };
gp_Vec2d DN(const Standard_Real U,const Standard_Integer N) const override { PYBIND11_OVERLOAD_PURE(gp_Vec2d,Geom2d_Curve,DN,U,N) };
void Transform(const gp_Trsf2d & T) override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Geometry,Transform,T) };
opencascade::handle<Geom2d_Geometry> Copy() const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom2d_Geometry>,Geom2d_Geometry,Copy,) };
// protected pure virtual
// private pure virtual
};
// classes
// Class Geom2d_Geometry from ./opencascade/Geom2d_Geometry.hxx
klass = m.attr("Geom2d_Geometry");
// nested enums
static_cast<py::class_<Geom2d_Geometry ,opencascade::handle<Geom2d_Geometry> ,Py_Geom2d_Geometry , Standard_Transient >>(klass)
// constructors
// custom constructors
// methods
.def("Mirror",
(void (Geom2d_Geometry::*)( const gp_Pnt2d & ) ) static_cast<void (Geom2d_Geometry::*)( const gp_Pnt2d & ) >(&Geom2d_Geometry::Mirror),
R"#(Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry and assigns the result to this geometric object.)#" , py::arg("P")
)
.def("Mirror",
(void (Geom2d_Geometry::*)( const gp_Ax2d & ) ) static_cast<void (Geom2d_Geometry::*)( const gp_Ax2d & ) >(&Geom2d_Geometry::Mirror),
R"#(Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.)#" , py::arg("A")
)
.def("Rotate",
(void (Geom2d_Geometry::*)( const gp_Pnt2d & , const Standard_Real ) ) static_cast<void (Geom2d_Geometry::*)( const gp_Pnt2d & , const Standard_Real ) >(&Geom2d_Geometry::Rotate),
R"#(Rotates a Geometry. P is the center of the rotation. Ang is the angular value of the rotation in radians.)#" , py::arg("P"), py::arg("Ang")
)
.def("Scale",
(void (Geom2d_Geometry::*)( const gp_Pnt2d & , const Standard_Real ) ) static_cast<void (Geom2d_Geometry::*)( const gp_Pnt2d & , const Standard_Real ) >(&Geom2d_Geometry::Scale),
R"#(Scales a Geometry. S is the scaling value.)#" , py::arg("P"), py::arg("S")
)
.def("Translate",
(void (Geom2d_Geometry::*)( const gp_Vec2d & ) ) static_cast<void (Geom2d_Geometry::*)( const gp_Vec2d & ) >(&Geom2d_Geometry::Translate),
R"#(Translates a Geometry. V is the vector of the translation.)#" , py::arg("V")
)
.def("Translate",
(void (Geom2d_Geometry::*)( const gp_Pnt2d & , const gp_Pnt2d & ) ) static_cast<void (Geom2d_Geometry::*)( const gp_Pnt2d & , const gp_Pnt2d & ) >(&Geom2d_Geometry::Translate),
R"#(Translates a Geometry from the point P1 to the point P2.)#" , py::arg("P1"), py::arg("P2")
)
.def("Transform",
(void (Geom2d_Geometry::*)( const gp_Trsf2d & ) ) static_cast<void (Geom2d_Geometry::*)( const gp_Trsf2d & ) >(&Geom2d_Geometry::Transform),
R"#(Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom2d). The following transformations have the same properties as the previous ones but they don't modified the object itself. A copy of the object is returned.)#" , py::arg("T")
)
.def("Mirrored",
(opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)( const gp_Pnt2d & ) const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)( const gp_Pnt2d & ) const>(&Geom2d_Geometry::Mirrored),
R"#(None)#" , py::arg("P")
)
.def("Mirrored",
(opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)( const gp_Ax2d & ) const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)( const gp_Ax2d & ) const>(&Geom2d_Geometry::Mirrored),
R"#(None)#" , py::arg("A")
)
.def("Rotated",
(opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)( const gp_Pnt2d & , const Standard_Real ) const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)( const gp_Pnt2d & , const Standard_Real ) const>(&Geom2d_Geometry::Rotated),
R"#(None)#" , py::arg("P"), py::arg("Ang")
)
.def("Scaled",
(opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)( const gp_Pnt2d & , const Standard_Real ) const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)( const gp_Pnt2d & , const Standard_Real ) const>(&Geom2d_Geometry::Scaled),
R"#(None)#" , py::arg("P"), py::arg("S")
)
.def("Transformed",
(opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)( const gp_Trsf2d & ) const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)( const gp_Trsf2d & ) const>(&Geom2d_Geometry::Transformed),
R"#(None)#" , py::arg("T")
)
.def("Translated",
(opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)( const gp_Vec2d & ) const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)( const gp_Vec2d & ) const>(&Geom2d_Geometry::Translated),
R"#(None)#" , py::arg("V")
)
.def("Translated",
(opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)( const gp_Pnt2d & , const gp_Pnt2d & ) const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)( const gp_Pnt2d & , const gp_Pnt2d & ) const>(&Geom2d_Geometry::Translated),
R"#(None)#" , py::arg("P1"), py::arg("P2")
)
.def("Copy",
(opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)() const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)() const>(&Geom2d_Geometry::Copy),
R"#(None)#"
)
.def("DumpJson",
(void (Geom2d_Geometry::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom2d_Geometry::*)( std::ostream & , Standard_Integer ) const>(&Geom2d_Geometry::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_Geometry::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_Geometry::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom2d_Geometry::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_Geometry::*)() const>(&Geom2d_Geometry::DynamicType),
R"#(None)#"
)
;
// Class Geom2d_Transformation from ./opencascade/Geom2d_Transformation.hxx
klass = m.attr("Geom2d_Transformation");
// nested enums
static_cast<py::class_<Geom2d_Transformation ,opencascade::handle<Geom2d_Transformation> , Standard_Transient >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const gp_Trsf2d & >() , py::arg("T") )
// custom constructors
// methods
.def("SetMirror",
(void (Geom2d_Transformation::*)( const gp_Pnt2d & ) ) static_cast<void (Geom2d_Transformation::*)( const gp_Pnt2d & ) >(&Geom2d_Transformation::SetMirror),
R"#(Makes the transformation into a symmetrical transformation with respect to a point P. P is the center of the symmetry.)#" , py::arg("P")
)
.def("SetMirror",
(void (Geom2d_Transformation::*)( const gp_Ax2d & ) ) static_cast<void (Geom2d_Transformation::*)( const gp_Ax2d & ) >(&Geom2d_Transformation::SetMirror),
R"#(Makes the transformation into a symmetrical transformation with respect to an axis A. A is the center of the axial symmetry.)#" , py::arg("A")
)
.def("SetRotation",
(void (Geom2d_Transformation::*)( const gp_Pnt2d & , const Standard_Real ) ) static_cast<void (Geom2d_Transformation::*)( const gp_Pnt2d & , const Standard_Real ) >(&Geom2d_Transformation::SetRotation),
R"#(Assigns to this transformation the geometric properties of a rotation at angle Ang (in radians) about point P.)#" , py::arg("P"), py::arg("Ang")
)
.def("SetScale",
(void (Geom2d_Transformation::*)( const gp_Pnt2d & , const Standard_Real ) ) static_cast<void (Geom2d_Transformation::*)( const gp_Pnt2d & , const Standard_Real ) >(&Geom2d_Transformation::SetScale),
R"#(Makes the transformation into a scale. P is the center of the scale and S is the scaling value.)#" , py::arg("P"), py::arg("S")
)
.def("SetTransformation",
(void (Geom2d_Transformation::*)( const gp_Ax2d & , const gp_Ax2d & ) ) static_cast<void (Geom2d_Transformation::*)( const gp_Ax2d & , const gp_Ax2d & ) >(&Geom2d_Transformation::SetTransformation),
R"#(Makes a transformation allowing passage from the coordinate system "FromSystem1" to the coordinate system "ToSystem2".)#" , py::arg("FromSystem1"), py::arg("ToSystem2")
)
.def("SetTransformation",
(void (Geom2d_Transformation::*)( const gp_Ax2d & ) ) static_cast<void (Geom2d_Transformation::*)( const gp_Ax2d & ) >(&Geom2d_Transformation::SetTransformation),
R"#(Makes the transformation allowing passage from the basic coordinate system {P(0.,0.,0.), VX (1.,0.,0.), VY (0.,1.,0.)} to the local coordinate system defined with the Ax2d ToSystem.)#" , py::arg("ToSystem")
)
.def("SetTranslation",
(void (Geom2d_Transformation::*)( const gp_Vec2d & ) ) static_cast<void (Geom2d_Transformation::*)( const gp_Vec2d & ) >(&Geom2d_Transformation::SetTranslation),
R"#(Makes the transformation into a translation. V is the vector of the translation.)#" , py::arg("V")
)
.def("SetTranslation",
(void (Geom2d_Transformation::*)( const gp_Pnt2d & , const gp_Pnt2d & ) ) static_cast<void (Geom2d_Transformation::*)( const gp_Pnt2d & , const gp_Pnt2d & ) >(&Geom2d_Transformation::SetTranslation),
R"#(Makes the transformation into a translation from the point P1 to the point P2.)#" , py::arg("P1"), py::arg("P2")
)
.def("SetTrsf2d",
(void (Geom2d_Transformation::*)( const gp_Trsf2d & ) ) static_cast<void (Geom2d_Transformation::*)( const gp_Trsf2d & ) >(&Geom2d_Transformation::SetTrsf2d),
R"#(Makes the transformation into a transformation T from package gp.)#" , py::arg("T")
)
.def("IsNegative",
(Standard_Boolean (Geom2d_Transformation::*)() const) static_cast<Standard_Boolean (Geom2d_Transformation::*)() const>(&Geom2d_Transformation::IsNegative),
R"#(Checks whether this transformation is an indirect transformation: returns true if the determinant of the matrix of the vectorial part of the transformation is less than 0.)#"
)
.def("Form",
(gp_TrsfForm (Geom2d_Transformation::*)() const) static_cast<gp_TrsfForm (Geom2d_Transformation::*)() const>(&Geom2d_Transformation::Form),
R"#(Returns the nature of this transformation as a value of the gp_TrsfForm enumeration. Returns the nature of the transformation. It can be Identity, Rotation, Translation, PntMirror, Ax1Mirror, Scale, CompoundTrsf)#"
)
.def("ScaleFactor",
(Standard_Real (Geom2d_Transformation::*)() const) static_cast<Standard_Real (Geom2d_Transformation::*)() const>(&Geom2d_Transformation::ScaleFactor),
R"#(Returns the scale value of the transformation.)#"
)
.def("Trsf2d",
(gp_Trsf2d (Geom2d_Transformation::*)() const) static_cast<gp_Trsf2d (Geom2d_Transformation::*)() const>(&Geom2d_Transformation::Trsf2d),
R"#(Converts this transformation into a gp_Trsf2d transformation. Returns a non persistent copy of <me>. -C++: return const&)#"
)
.def("Value",
(Standard_Real (Geom2d_Transformation::*)( const Standard_Integer , const Standard_Integer ) const) static_cast<Standard_Real (Geom2d_Transformation::*)( const Standard_Integer , const Standard_Integer ) const>(&Geom2d_Transformation::Value),
R"#(Returns the coefficients of the global matrix of transformation. It is a 2 rows X 3 columns matrix.)#" , py::arg("Row"), py::arg("Col")
)
.def("Invert",
(void (Geom2d_Transformation::*)() ) static_cast<void (Geom2d_Transformation::*)() >(&Geom2d_Transformation::Invert),
R"#(Computes the inverse of this transformation. and assigns the result to this transformatio)#"
)
.def("Inverted",
(opencascade::handle<Geom2d_Transformation> (Geom2d_Transformation::*)() const) static_cast<opencascade::handle<Geom2d_Transformation> (Geom2d_Transformation::*)() const>(&Geom2d_Transformation::Inverted),
R"#(Computes the inverse of this transformation and creates a new one. Raises ConstructionError if the transformation is singular. This means that the ScaleFactor is lower or equal to Resolution from package gp.)#"
)
.def("Multiplied",
(opencascade::handle<Geom2d_Transformation> (Geom2d_Transformation::*)( const opencascade::handle<Geom2d_Transformation> & ) const) static_cast<opencascade::handle<Geom2d_Transformation> (Geom2d_Transformation::*)( const opencascade::handle<Geom2d_Transformation> & ) const>(&Geom2d_Transformation::Multiplied),
R"#(Computes the transformation composed with Other and <me>. <me> * Other. Returns a new transformation)#" , py::arg("Other")
)
.def("Multiply",
(void (Geom2d_Transformation::*)( const opencascade::handle<Geom2d_Transformation> & ) ) static_cast<void (Geom2d_Transformation::*)( const opencascade::handle<Geom2d_Transformation> & ) >(&Geom2d_Transformation::Multiply),
R"#(Computes the transformation composed with Other and <me> . <me> = <me> * Other.)#" , py::arg("Other")
)
.def("Power",
(void (Geom2d_Transformation::*)( const Standard_Integer ) ) static_cast<void (Geom2d_Transformation::*)( const Standard_Integer ) >(&Geom2d_Transformation::Power),
R"#(Raised if N < 0 and if the transformation is not inversible)#" , py::arg("N")
)
.def("Powered",
(opencascade::handle<Geom2d_Transformation> (Geom2d_Transformation::*)( const Standard_Integer ) const) static_cast<opencascade::handle<Geom2d_Transformation> (Geom2d_Transformation::*)( const Standard_Integer ) const>(&Geom2d_Transformation::Powered),
R"#(Raised if N < 0 and if the transformation is not inversible)#" , py::arg("N")
)
.def("PreMultiply",
(void (Geom2d_Transformation::*)( const opencascade::handle<Geom2d_Transformation> & ) ) static_cast<void (Geom2d_Transformation::*)( const opencascade::handle<Geom2d_Transformation> & ) >(&Geom2d_Transformation::PreMultiply),
R"#(Computes the matrix of the transformation composed with <me> and Other. <me> = Other * <me>)#" , py::arg("Other")
)
.def("Copy",
(opencascade::handle<Geom2d_Transformation> (Geom2d_Transformation::*)() const) static_cast<opencascade::handle<Geom2d_Transformation> (Geom2d_Transformation::*)() const>(&Geom2d_Transformation::Copy),
R"#(Creates a new object, which is a copy of this transformation.)#"
)
// methods using call by reference i.s.o. return
.def("Transforms",
[]( Geom2d_Transformation &self ){
Standard_Real X;
Standard_Real Y;
self.Transforms(X,Y);
return std::make_tuple(X,Y); },
R"#(Applies the transformation <me> to the triplet {X, Y}.)#"
)
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_Transformation::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_Transformation::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
.def("__mul__",
(opencascade::handle<Geom2d_Transformation> (Geom2d_Transformation::*)( const opencascade::handle<Geom2d_Transformation> & ) const) static_cast<opencascade::handle<Geom2d_Transformation> (Geom2d_Transformation::*)( const opencascade::handle<Geom2d_Transformation> & ) const>(&Geom2d_Transformation::operator*),
py::is_operator(),
R"#(None)#" , py::arg("Other")
)
.def("__rmul__",
(opencascade::handle<Geom2d_Transformation> (Geom2d_Transformation::*)( const opencascade::handle<Geom2d_Transformation> & ) const) static_cast<opencascade::handle<Geom2d_Transformation> (Geom2d_Transformation::*)( const opencascade::handle<Geom2d_Transformation> & ) const>(&Geom2d_Transformation::operator*),
py::is_operator(),
R"#(None)#" , py::arg("Other")
)
.def("__imul__",
(void (Geom2d_Transformation::*)( const opencascade::handle<Geom2d_Transformation> & ) ) static_cast<void (Geom2d_Transformation::*)( const opencascade::handle<Geom2d_Transformation> & ) >(&Geom2d_Transformation::operator*=),
py::is_operator(),
R"#(None)#" , py::arg("Other")
)
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom2d_Transformation::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_Transformation::*)() const>(&Geom2d_Transformation::DynamicType),
R"#(None)#"
)
;
// Class Geom2d_AxisPlacement from ./opencascade/Geom2d_AxisPlacement.hxx
klass = m.attr("Geom2d_AxisPlacement");
// nested enums
static_cast<py::class_<Geom2d_AxisPlacement ,opencascade::handle<Geom2d_AxisPlacement> , Geom2d_Geometry >>(klass)
// constructors
.def(py::init< const gp_Ax2d & >() , py::arg("A") )
.def(py::init< const gp_Pnt2d &,const gp_Dir2d & >() , py::arg("P"), py::arg("V") )
// custom constructors
// methods
.def("Reverse",
(void (Geom2d_AxisPlacement::*)() ) static_cast<void (Geom2d_AxisPlacement::*)() >(&Geom2d_AxisPlacement::Reverse),
R"#(None)#"
)
.def("Reversed",
(opencascade::handle<Geom2d_AxisPlacement> (Geom2d_AxisPlacement::*)() const) static_cast<opencascade::handle<Geom2d_AxisPlacement> (Geom2d_AxisPlacement::*)() const>(&Geom2d_AxisPlacement::Reversed),
R"#(Reverses the unit vector of this axis. Note: - Reverse assigns the result to this axis, while - Reversed creates a new one.)#"
)
.def("SetAxis",
(void (Geom2d_AxisPlacement::*)( const gp_Ax2d & ) ) static_cast<void (Geom2d_AxisPlacement::*)( const gp_Ax2d & ) >(&Geom2d_AxisPlacement::SetAxis),
R"#(Changes the complete definition of the axis placement.)#" , py::arg("A")
)
.def("SetDirection",
(void (Geom2d_AxisPlacement::*)( const gp_Dir2d & ) ) static_cast<void (Geom2d_AxisPlacement::*)( const gp_Dir2d & ) >(&Geom2d_AxisPlacement::SetDirection),
R"#(Changes the "Direction" of the axis placement.)#" , py::arg("V")
)
.def("SetLocation",
(void (Geom2d_AxisPlacement::*)( const gp_Pnt2d & ) ) static_cast<void (Geom2d_AxisPlacement::*)( const gp_Pnt2d & ) >(&Geom2d_AxisPlacement::SetLocation),
R"#(Changes the "Location" point (origin) of the axis placement.)#" , py::arg("P")
)
.def("Angle",
(Standard_Real (Geom2d_AxisPlacement::*)( const opencascade::handle<Geom2d_AxisPlacement> & ) const) static_cast<Standard_Real (Geom2d_AxisPlacement::*)( const opencascade::handle<Geom2d_AxisPlacement> & ) const>(&Geom2d_AxisPlacement::Angle),
R"#(Computes the angle between the "Direction" of two axis placement in radians. The result is comprised between -Pi and Pi.)#" , py::arg("Other")
)
.def("Ax2d",
(gp_Ax2d (Geom2d_AxisPlacement::*)() const) static_cast<gp_Ax2d (Geom2d_AxisPlacement::*)() const>(&Geom2d_AxisPlacement::Ax2d),
R"#(Converts this axis into a gp_Ax2d axis.)#"
)
.def("Direction",
(gp_Dir2d (Geom2d_AxisPlacement::*)() const) static_cast<gp_Dir2d (Geom2d_AxisPlacement::*)() const>(&Geom2d_AxisPlacement::Direction),
R"#(Returns the "Direction" of <me>. -C++: return const&)#"
)
.def("Location",
(gp_Pnt2d (Geom2d_AxisPlacement::*)() const) static_cast<gp_Pnt2d (Geom2d_AxisPlacement::*)() const>(&Geom2d_AxisPlacement::Location),
R"#(Returns the "Location" point (origin) of the axis placement. -C++: return const&)#"
)
.def("Transform",
(void (Geom2d_AxisPlacement::*)( const gp_Trsf2d & ) ) static_cast<void (Geom2d_AxisPlacement::*)( const gp_Trsf2d & ) >(&Geom2d_AxisPlacement::Transform),
R"#(Applies the transformation T to this axis.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom2d_Geometry> (Geom2d_AxisPlacement::*)() const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_AxisPlacement::*)() const>(&Geom2d_AxisPlacement::Copy),
R"#(Creates a new object which is a copy of this axis.)#"
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_AxisPlacement::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_AxisPlacement::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom2d_AxisPlacement::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_AxisPlacement::*)() const>(&Geom2d_AxisPlacement::DynamicType),
R"#(None)#"
)
;
// Class Geom2d_Curve from ./opencascade/Geom2d_Curve.hxx
klass = m.attr("Geom2d_Curve");
// nested enums
static_cast<py::class_<Geom2d_Curve ,opencascade::handle<Geom2d_Curve> ,Py_Geom2d_Curve , Geom2d_Geometry >>(klass)
// constructors
// custom constructors
// methods
.def("Reverse",
(void (Geom2d_Curve::*)() ) static_cast<void (Geom2d_Curve::*)() >(&Geom2d_Curve::Reverse),
R"#(Changes the direction of parametrization of <me>. The "FirstParameter" and the "LastParameter" are not changed but the orientation of the curve is modified. If the curve is bounded the StartPoint of the initial curve becomes the EndPoint of the reversed curve and the EndPoint of the initial curve becomes the StartPoint of the reversed curve.)#"
)
.def("ReversedParameter",
(Standard_Real (Geom2d_Curve::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom2d_Curve::*)( const Standard_Real ) const>(&Geom2d_Curve::ReversedParameter),
R"#(Computes the parameter on the reversed curve for the point of parameter U on this curve. Note: The point of parameter U on this curve is identical to the point of parameter ReversedParameter(U) on the reversed curve.)#" , py::arg("U")
)
.def("TransformedParameter",
(Standard_Real (Geom2d_Curve::*)( const Standard_Real , const gp_Trsf2d & ) const) static_cast<Standard_Real (Geom2d_Curve::*)( const Standard_Real , const gp_Trsf2d & ) const>(&Geom2d_Curve::TransformedParameter),
R"#(Computes the parameter on the curve transformed by T for the point of parameter U on this curve. Note: this function generally returns U but it can be redefined (for example, on a line).)#" , py::arg("U"), py::arg("T")
)
.def("ParametricTransformation",
(Standard_Real (Geom2d_Curve::*)( const gp_Trsf2d & ) const) static_cast<Standard_Real (Geom2d_Curve::*)( const gp_Trsf2d & ) const>(&Geom2d_Curve::ParametricTransformation),
R"#(Returns the coefficient required to compute the parametric transformation of this curve when transformation T is applied. This coefficient is the ratio between the parameter of a point on this curve and the parameter of the transformed point on the new curve transformed by T. Note: this function generally returns 1. but it can be redefined (for example, on a line).)#" , py::arg("T")
)
.def("Reversed",
(opencascade::handle<Geom2d_Curve> (Geom2d_Curve::*)() const) static_cast<opencascade::handle<Geom2d_Curve> (Geom2d_Curve::*)() const>(&Geom2d_Curve::Reversed),
R"#(Creates a reversed duplicate Changes the orientation of this curve. The first and last parameters are not changed, but the parametric direction of the curve is reversed. If the curve is bounded: - the start point of the initial curve becomes the end point of the reversed curve, and - the end point of the initial curve becomes the start point of the reversed curve. - Reversed creates a new curve.)#"
)
.def("FirstParameter",
(Standard_Real (Geom2d_Curve::*)() const) static_cast<Standard_Real (Geom2d_Curve::*)() const>(&Geom2d_Curve::FirstParameter),
R"#(Returns the value of the first parameter. Warnings : It can be RealFirst or RealLast from package Standard if the curve is infinite)#"
)
.def("LastParameter",
(Standard_Real (Geom2d_Curve::*)() const) static_cast<Standard_Real (Geom2d_Curve::*)() const>(&Geom2d_Curve::LastParameter),
R"#(Value of the last parameter. Warnings : It can be RealFirst or RealLast from package Standard if the curve is infinite)#"
)
.def("IsClosed",
(Standard_Boolean (Geom2d_Curve::*)() const) static_cast<Standard_Boolean (Geom2d_Curve::*)() const>(&Geom2d_Curve::IsClosed),
R"#(Returns true if the curve is closed. Examples : Some curves such as circle are always closed, others such as line are never closed (by definition). Some Curves such as OffsetCurve can be closed or not. These curves are considered as closed if the distance between the first point and the last point of the curve is lower or equal to the Resolution from package gp which is a fixed criterion independent of the application.)#"
)
.def("IsPeriodic",
(Standard_Boolean (Geom2d_Curve::*)() const) static_cast<Standard_Boolean (Geom2d_Curve::*)() const>(&Geom2d_Curve::IsPeriodic),
R"#(Returns true if the parameter of the curve is periodic. It is possible only if the curve is closed and if the following relation is satisfied : for each parametric value U the distance between the point P(u) and the point P (u + T) is lower or equal to Resolution from package gp, T is the period and must be a constant. There are three possibilities : . the curve is never periodic by definition (SegmentLine) . the curve is always periodic by definition (Circle) . the curve can be defined as periodic (BSpline). In this case a function SetPeriodic allows you to give the shape of the curve. The general rule for this case is : if a curve can be periodic or not the default periodicity set is non periodic and you have to turn (explicitly) the curve into a periodic curve if you want the curve to be periodic.)#"
)
.def("Period",
(Standard_Real (Geom2d_Curve::*)() const) static_cast<Standard_Real (Geom2d_Curve::*)() const>(&Geom2d_Curve::Period),
R"#(Returns the period of this curve. raises if the curve is not periodic)#"
)
.def("Continuity",
(GeomAbs_Shape (Geom2d_Curve::*)() const) static_cast<GeomAbs_Shape (Geom2d_Curve::*)() const>(&Geom2d_Curve::Continuity),
R"#(It is the global continuity of the curve : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, G1 : tangency continuity all along the Curve, G2 : curvature continuity all along the Curve, CN : the order of continuity is infinite.)#"
)
.def("IsCN",
(Standard_Boolean (Geom2d_Curve::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom2d_Curve::*)( const Standard_Integer ) const>(&Geom2d_Curve::IsCN),
R"#(Returns true if the degree of continuity of this curve is at least N. Exceptions Standard_RangeError if N is less than 0.)#" , py::arg("N")
)
.def("D0",
(void (Geom2d_Curve::*)( const Standard_Real , gp_Pnt2d & ) const) static_cast<void (Geom2d_Curve::*)( const Standard_Real , gp_Pnt2d & ) const>(&Geom2d_Curve::D0),
R"#(Returns in P the point of parameter U. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve.)#" , py::arg("U"), py::arg("P")
)
.def("D1",
(void (Geom2d_Curve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_Curve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & ) const>(&Geom2d_Curve::D1),
R"#(Returns the point P of parameter U and the first derivative V1. Raised if the continuity of the curve is not C1.)#" , py::arg("U"), py::arg("P"), py::arg("V1")
)
.def("D2",
(void (Geom2d_Curve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_Curve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) const>(&Geom2d_Curve::D2),
R"#(Returns the point P of parameter U, the first and second derivatives V1 and V2. Raised if the continuity of the curve is not C2.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2")
)
.def("D3",
(void (Geom2d_Curve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_Curve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) const>(&Geom2d_Curve::D3),
R"#(Returns the point P of parameter U, the first, the second and the third derivative. Raised if the continuity of the curve is not C3.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2"), py::arg("V3")
)
.def("DN",
(gp_Vec2d (Geom2d_Curve::*)( const Standard_Real , const Standard_Integer ) const) static_cast<gp_Vec2d (Geom2d_Curve::*)( const Standard_Real , const Standard_Integer ) const>(&Geom2d_Curve::DN),
R"#(For the point of parameter U of this curve, computes the vector corresponding to the Nth derivative. Exceptions StdFail_UndefinedDerivative if: - the continuity of the curve is not "CN", or - the derivative vector cannot be computed easily; this is the case with specific types of curve (for example, a rational BSpline curve where N is greater than 3). Standard_RangeError if N is less than 1.)#" , py::arg("U"), py::arg("N")
)
.def("Value",
(gp_Pnt2d (Geom2d_Curve::*)( const Standard_Real ) const) static_cast<gp_Pnt2d (Geom2d_Curve::*)( const Standard_Real ) const>(&Geom2d_Curve::Value),
R"#(Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve.)#" , py::arg("U")
)
.def("DumpJson",
(void (Geom2d_Curve::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom2d_Curve::*)( std::ostream & , Standard_Integer ) const>(&Geom2d_Curve::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_Curve::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_Curve::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom2d_Curve::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_Curve::*)() const>(&Geom2d_Curve::DynamicType),
R"#(None)#"
)
;
// Class Geom2d_Point from ./opencascade/Geom2d_Point.hxx
klass = m.attr("Geom2d_Point");
// nested enums
static_cast<py::class_<Geom2d_Point ,opencascade::handle<Geom2d_Point> ,Py_Geom2d_Point , Geom2d_Geometry >>(klass)
// constructors
// custom constructors
// methods
.def("Pnt2d",
(gp_Pnt2d (Geom2d_Point::*)() const) static_cast<gp_Pnt2d (Geom2d_Point::*)() const>(&Geom2d_Point::Pnt2d),
R"#(returns a non persistent copy of <me>)#"
)
.def("X",
(Standard_Real (Geom2d_Point::*)() const) static_cast<Standard_Real (Geom2d_Point::*)() const>(&Geom2d_Point::X),
R"#(returns the X coordinate of <me>.)#"
)
.def("Y",
(Standard_Real (Geom2d_Point::*)() const) static_cast<Standard_Real (Geom2d_Point::*)() const>(&Geom2d_Point::Y),
R"#(returns the Y coordinate of <me>.)#"
)
.def("Distance",
(Standard_Real (Geom2d_Point::*)( const opencascade::handle<Geom2d_Point> & ) const) static_cast<Standard_Real (Geom2d_Point::*)( const opencascade::handle<Geom2d_Point> & ) const>(&Geom2d_Point::Distance),
R"#(computes the distance between <me> and <Other>.)#" , py::arg("Other")
)
.def("SquareDistance",
(Standard_Real (Geom2d_Point::*)( const opencascade::handle<Geom2d_Point> & ) const) static_cast<Standard_Real (Geom2d_Point::*)( const opencascade::handle<Geom2d_Point> & ) const>(&Geom2d_Point::SquareDistance),
R"#(computes the square distance between <me> and <Other>.)#" , py::arg("Other")
)
.def("DumpJson",
(void (Geom2d_Point::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom2d_Point::*)( std::ostream & , Standard_Integer ) const>(&Geom2d_Point::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
.def("Coord",
[]( Geom2d_Point &self ){
Standard_Real X;
Standard_Real Y;
self.Coord(X,Y);
return std::make_tuple(X,Y); },
R"#(returns the Coordinates of <me>.)#"
)
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_Point::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_Point::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom2d_Point::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_Point::*)() const>(&Geom2d_Point::DynamicType),
R"#(None)#"
)
;
// Class Geom2d_Vector from ./opencascade/Geom2d_Vector.hxx
klass = m.attr("Geom2d_Vector");
// nested enums
static_cast<py::class_<Geom2d_Vector ,opencascade::handle<Geom2d_Vector> ,Py_Geom2d_Vector , Geom2d_Geometry >>(klass)
// constructors
// custom constructors
// methods
.def("Reverse",
(void (Geom2d_Vector::*)() ) static_cast<void (Geom2d_Vector::*)() >(&Geom2d_Vector::Reverse),
R"#(Reverses the vector <me>.)#"
)
.def("Reversed",
(opencascade::handle<Geom2d_Vector> (Geom2d_Vector::*)() const) static_cast<opencascade::handle<Geom2d_Vector> (Geom2d_Vector::*)() const>(&Geom2d_Vector::Reversed),
R"#(Returns a copy of <me> reversed.)#"
)
.def("Angle",
(Standard_Real (Geom2d_Vector::*)( const opencascade::handle<Geom2d_Vector> & ) const) static_cast<Standard_Real (Geom2d_Vector::*)( const opencascade::handle<Geom2d_Vector> & ) const>(&Geom2d_Vector::Angle),
R"#(Computes the angular value, in radians, between this vector and vector Other. The result is a value between -Pi and Pi. The orientation is from this vector to vector Other. Raises VectorWithNullMagnitude if one of the two vectors is a vector with null magnitude because the angular value is indefinite.)#" , py::arg("Other")
)
.def("Magnitude",
(Standard_Real (Geom2d_Vector::*)() const) static_cast<Standard_Real (Geom2d_Vector::*)() const>(&Geom2d_Vector::Magnitude),
R"#(Returns the Magnitude of <me>.)#"
)
.def("SquareMagnitude",
(Standard_Real (Geom2d_Vector::*)() const) static_cast<Standard_Real (Geom2d_Vector::*)() const>(&Geom2d_Vector::SquareMagnitude),
R"#(Returns the square magnitude of <me>.)#"
)
.def("X",
(Standard_Real (Geom2d_Vector::*)() const) static_cast<Standard_Real (Geom2d_Vector::*)() const>(&Geom2d_Vector::X),
R"#(Returns the X coordinate of <me>.)#"
)
.def("Y",
(Standard_Real (Geom2d_Vector::*)() const) static_cast<Standard_Real (Geom2d_Vector::*)() const>(&Geom2d_Vector::Y),
R"#(Returns the Y coordinate of <me>.)#"
)
.def("Crossed",
(Standard_Real (Geom2d_Vector::*)( const opencascade::handle<Geom2d_Vector> & ) const) static_cast<Standard_Real (Geom2d_Vector::*)( const opencascade::handle<Geom2d_Vector> & ) const>(&Geom2d_Vector::Crossed),
R"#(Cross product of <me> with the vector <Other>.)#" , py::arg("Other")
)
.def("Dot",
(Standard_Real (Geom2d_Vector::*)( const opencascade::handle<Geom2d_Vector> & ) const) static_cast<Standard_Real (Geom2d_Vector::*)( const opencascade::handle<Geom2d_Vector> & ) const>(&Geom2d_Vector::Dot),
R"#(Returns the scalar product of 2 Vectors.)#" , py::arg("Other")
)
.def("Vec2d",
(gp_Vec2d (Geom2d_Vector::*)() const) static_cast<gp_Vec2d (Geom2d_Vector::*)() const>(&Geom2d_Vector::Vec2d),
R"#(Returns a non persistent copy of <me>.)#"
)
// methods using call by reference i.s.o. return
.def("Coord",
[]( Geom2d_Vector &self ){
Standard_Real X;
Standard_Real Y;
self.Coord(X,Y);
return std::make_tuple(X,Y); },
R"#(Returns the coordinates of <me>.)#"
)
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_Vector::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_Vector::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom2d_Vector::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_Vector::*)() const>(&Geom2d_Vector::DynamicType),
R"#(None)#"
)
;
// Class Geom2d_BoundedCurve from ./opencascade/Geom2d_BoundedCurve.hxx
klass = m.attr("Geom2d_BoundedCurve");
// nested enums
static_cast<py::class_<Geom2d_BoundedCurve ,opencascade::handle<Geom2d_BoundedCurve> ,Py_Geom2d_BoundedCurve , Geom2d_Curve >>(klass)
// constructors
// custom constructors
// methods
.def("EndPoint",
(gp_Pnt2d (Geom2d_BoundedCurve::*)() const) static_cast<gp_Pnt2d (Geom2d_BoundedCurve::*)() const>(&Geom2d_BoundedCurve::EndPoint),
R"#(Returns the end point of the curve. The end point is the value of the curve for the "LastParameter" of the curve.)#"
)
.def("StartPoint",
(gp_Pnt2d (Geom2d_BoundedCurve::*)() const) static_cast<gp_Pnt2d (Geom2d_BoundedCurve::*)() const>(&Geom2d_BoundedCurve::StartPoint),
R"#(Returns the start point of the curve. The start point is the value of the curve for the "FirstParameter" of the curve.)#"
)
.def("DumpJson",
(void (Geom2d_BoundedCurve::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom2d_BoundedCurve::*)( std::ostream & , Standard_Integer ) const>(&Geom2d_BoundedCurve::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_BoundedCurve::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_BoundedCurve::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom2d_BoundedCurve::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_BoundedCurve::*)() const>(&Geom2d_BoundedCurve::DynamicType),
R"#(None)#"
)
;
// Class Geom2d_CartesianPoint from ./opencascade/Geom2d_CartesianPoint.hxx
klass = m.attr("Geom2d_CartesianPoint");
// nested enums
static_cast<py::class_<Geom2d_CartesianPoint ,opencascade::handle<Geom2d_CartesianPoint> , Geom2d_Point >>(klass)
// constructors
.def(py::init< const gp_Pnt2d & >() , py::arg("P") )
.def(py::init< const Standard_Real,const Standard_Real >() , py::arg("X"), py::arg("Y") )
// custom constructors
// methods
.def("SetCoord",
(void (Geom2d_CartesianPoint::*)( const Standard_Real , const Standard_Real ) ) static_cast<void (Geom2d_CartesianPoint::*)( const Standard_Real , const Standard_Real ) >(&Geom2d_CartesianPoint::SetCoord),
R"#(Set <me> to X, Y coordinates.)#" , py::arg("X"), py::arg("Y")
)
.def("SetPnt2d",
(void (Geom2d_CartesianPoint::*)( const gp_Pnt2d & ) ) static_cast<void (Geom2d_CartesianPoint::*)( const gp_Pnt2d & ) >(&Geom2d_CartesianPoint::SetPnt2d),
R"#(Set <me> to P.X(), P.Y() coordinates.)#" , py::arg("P")
)
.def("SetX",
(void (Geom2d_CartesianPoint::*)( const Standard_Real ) ) static_cast<void (Geom2d_CartesianPoint::*)( const Standard_Real ) >(&Geom2d_CartesianPoint::SetX),
R"#(Changes the X coordinate of me.)#" , py::arg("X")
)
.def("SetY",
(void (Geom2d_CartesianPoint::*)( const Standard_Real ) ) static_cast<void (Geom2d_CartesianPoint::*)( const Standard_Real ) >(&Geom2d_CartesianPoint::SetY),
R"#(Changes the Y coordinate of me.)#" , py::arg("Y")
)
.def("Pnt2d",
(gp_Pnt2d (Geom2d_CartesianPoint::*)() const) static_cast<gp_Pnt2d (Geom2d_CartesianPoint::*)() const>(&Geom2d_CartesianPoint::Pnt2d),
R"#(Returns a non persistent cartesian point with the same coordinates as <me>. -C++: return const&)#"
)
.def("X",
(Standard_Real (Geom2d_CartesianPoint::*)() const) static_cast<Standard_Real (Geom2d_CartesianPoint::*)() const>(&Geom2d_CartesianPoint::X),
R"#(Returns the X coordinate of <me>.)#"
)
.def("Y",
(Standard_Real (Geom2d_CartesianPoint::*)() const) static_cast<Standard_Real (Geom2d_CartesianPoint::*)() const>(&Geom2d_CartesianPoint::Y),
R"#(Returns the Y coordinate of <me>.)#"
)
.def("Transform",
(void (Geom2d_CartesianPoint::*)( const gp_Trsf2d & ) ) static_cast<void (Geom2d_CartesianPoint::*)( const gp_Trsf2d & ) >(&Geom2d_CartesianPoint::Transform),
R"#(None)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom2d_Geometry> (Geom2d_CartesianPoint::*)() const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_CartesianPoint::*)() const>(&Geom2d_CartesianPoint::Copy),
R"#(None)#"
)
.def("DumpJson",
(void (Geom2d_CartesianPoint::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom2d_CartesianPoint::*)( std::ostream & , Standard_Integer ) const>(&Geom2d_CartesianPoint::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
.def("Coord",
[]( Geom2d_CartesianPoint &self ){
Standard_Real X;
Standard_Real Y;
self.Coord(X,Y);
return std::make_tuple(X,Y); },
R"#(Returns the coordinates of <me>.)#"
)
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_CartesianPoint::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_CartesianPoint::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom2d_CartesianPoint::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_CartesianPoint::*)() const>(&Geom2d_CartesianPoint::DynamicType),
R"#(None)#"
)
;
// Class Geom2d_Conic from ./opencascade/Geom2d_Conic.hxx
klass = m.attr("Geom2d_Conic");
// nested enums
static_cast<py::class_<Geom2d_Conic ,opencascade::handle<Geom2d_Conic> ,Py_Geom2d_Conic , Geom2d_Curve >>(klass)
// constructors
// custom constructors
// methods
.def("SetAxis",
(void (Geom2d_Conic::*)( const gp_Ax22d & ) ) static_cast<void (Geom2d_Conic::*)( const gp_Ax22d & ) >(&Geom2d_Conic::SetAxis),
R"#(Modifies this conic, redefining its local coordinate system partially, by assigning theA as its axis)#" , py::arg("theA")
)
.def("SetXAxis",
(void (Geom2d_Conic::*)( const gp_Ax2d & ) ) static_cast<void (Geom2d_Conic::*)( const gp_Ax2d & ) >(&Geom2d_Conic::SetXAxis),
R"#(Assigns the origin and unit vector of axis theA to the origin of the local coordinate system of this conic and X Direction. The other unit vector of the local coordinate system of this conic is recomputed normal to theA, without changing the orientation of the local coordinate system (right-handed or left-handed).)#" , py::arg("theAX")
)
.def("SetYAxis",
(void (Geom2d_Conic::*)( const gp_Ax2d & ) ) static_cast<void (Geom2d_Conic::*)( const gp_Ax2d & ) >(&Geom2d_Conic::SetYAxis),
R"#(Assigns the origin and unit vector of axis theA to the origin of the local coordinate system of this conic and Y Direction. The other unit vector of the local coordinate system of this conic is recomputed normal to theA, without changing the orientation of the local coordinate system (right-handed or left-handed).)#" , py::arg("theAY")
)
.def("SetLocation",
(void (Geom2d_Conic::*)( const gp_Pnt2d & ) ) static_cast<void (Geom2d_Conic::*)( const gp_Pnt2d & ) >(&Geom2d_Conic::SetLocation),
R"#(Modifies this conic, redefining its local coordinate system partially, by assigning theP as its origin.)#" , py::arg("theP")
)
.def("XAxis",
(gp_Ax2d (Geom2d_Conic::*)() const) static_cast<gp_Ax2d (Geom2d_Conic::*)() const>(&Geom2d_Conic::XAxis),
R"#(Returns the "XAxis" of the conic. This axis defines the origin of parametrization of the conic. This axis and the "Yaxis" define the local coordinate system of the conic. -C++: return const&)#"
)
.def("YAxis",
(gp_Ax2d (Geom2d_Conic::*)() const) static_cast<gp_Ax2d (Geom2d_Conic::*)() const>(&Geom2d_Conic::YAxis),
R"#(Returns the "YAxis" of the conic. The "YAxis" is perpendicular to the "Xaxis".)#"
)
.def("Eccentricity",
(Standard_Real (Geom2d_Conic::*)() const) static_cast<Standard_Real (Geom2d_Conic::*)() const>(&Geom2d_Conic::Eccentricity),
R"#(returns the eccentricity value of the conic e. e = 0 for a circle 0 < e < 1 for an ellipse (e = 0 if MajorRadius = MinorRadius) e > 1 for a hyperbola e = 1 for a parabola)#"
)
.def("Reverse",
(void (Geom2d_Conic::*)() ) static_cast<void (Geom2d_Conic::*)() >(&Geom2d_Conic::Reverse),
R"#(Reverses the direction of parameterization of <me>. The local coordinate system of the conic is modified.)#"
)
.def("ReversedParameter",
(Standard_Real (Geom2d_Conic::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom2d_Conic::*)( const Standard_Real ) const>(&Geom2d_Conic::ReversedParameter),
R"#(Returns the parameter on the reversed curve for the point of parameter U on <me>.)#" , py::arg("U")
)
.def("Continuity",
(GeomAbs_Shape (Geom2d_Conic::*)() const) static_cast<GeomAbs_Shape (Geom2d_Conic::*)() const>(&Geom2d_Conic::Continuity),
R"#(Returns GeomAbs_CN which is the global continuity of any conic.)#"
)
.def("IsCN",
(Standard_Boolean (Geom2d_Conic::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom2d_Conic::*)( const Standard_Integer ) const>(&Geom2d_Conic::IsCN),
R"#(Returns True, the order of continuity of a conic is infinite.)#" , py::arg("N")
)
.def("DumpJson",
(void (Geom2d_Conic::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom2d_Conic::*)( std::ostream & , Standard_Integer ) const>(&Geom2d_Conic::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_Conic::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_Conic::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Location",
(const gp_Pnt2d & (Geom2d_Conic::*)() const) static_cast<const gp_Pnt2d & (Geom2d_Conic::*)() const>(&Geom2d_Conic::Location),
R"#(Returns the location point of the conic. For the circle, the ellipse and the hyperbola it is the center of the conic. For the parabola it is the vertex of the parabola.)#"
)
.def("Position",
(const gp_Ax22d & (Geom2d_Conic::*)() const) static_cast<const gp_Ax22d & (Geom2d_Conic::*)() const>(&Geom2d_Conic::Position),
R"#(Returns the local coordinates system of the conic.)#"
)
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom2d_Conic::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_Conic::*)() const>(&Geom2d_Conic::DynamicType),
R"#(None)#"
)
;
// Class Geom2d_Direction from ./opencascade/Geom2d_Direction.hxx
klass = m.attr("Geom2d_Direction");
// nested enums
static_cast<py::class_<Geom2d_Direction ,opencascade::handle<Geom2d_Direction> , Geom2d_Vector >>(klass)
// constructors
.def(py::init< const Standard_Real,const Standard_Real >() , py::arg("X"), py::arg("Y") )
.def(py::init< const gp_Dir2d & >() , py::arg("V") )
// custom constructors
// methods
.def("SetCoord",
(void (Geom2d_Direction::*)( const Standard_Real , const Standard_Real ) ) static_cast<void (Geom2d_Direction::*)( const Standard_Real , const Standard_Real ) >(&Geom2d_Direction::SetCoord),
R"#(Assigns the coordinates X and Y to this unit vector, then normalizes it. Exceptions Standard_ConstructionError if Sqrt(X*X + Y*Y) is less than or equal to gp::Resolution().)#" , py::arg("X"), py::arg("Y")
)
.def("SetDir2d",
(void (Geom2d_Direction::*)( const gp_Dir2d & ) ) static_cast<void (Geom2d_Direction::*)( const gp_Dir2d & ) >(&Geom2d_Direction::SetDir2d),
R"#(Converts the gp_Dir2d unit vector V into this unit vector.)#" , py::arg("V")
)
.def("SetX",
(void (Geom2d_Direction::*)( const Standard_Real ) ) static_cast<void (Geom2d_Direction::*)( const Standard_Real ) >(&Geom2d_Direction::SetX),
R"#(Assigns a value to the X coordinate of this unit vector, then normalizes it. Exceptions Standard_ConstructionError if the value assigned causes the magnitude of the vector to become less than or equal to gp::Resolution().)#" , py::arg("X")
)
.def("SetY",
(void (Geom2d_Direction::*)( const Standard_Real ) ) static_cast<void (Geom2d_Direction::*)( const Standard_Real ) >(&Geom2d_Direction::SetY),
R"#(Assigns a value to the Y coordinate of this unit vector, then normalizes it. Exceptions Standard_ConstructionError if the value assigned causes the magnitude of the vector to become less than or equal to gp::Resolution().)#" , py::arg("Y")
)
.def("Dir2d",
(gp_Dir2d (Geom2d_Direction::*)() const) static_cast<gp_Dir2d (Geom2d_Direction::*)() const>(&Geom2d_Direction::Dir2d),
R"#(Converts this unit vector into a gp_Dir2d unit vector.)#"
)
.def("Magnitude",
(Standard_Real (Geom2d_Direction::*)() const) static_cast<Standard_Real (Geom2d_Direction::*)() const>(&Geom2d_Direction::Magnitude),
R"#(returns 1.0)#"
)
.def("SquareMagnitude",
(Standard_Real (Geom2d_Direction::*)() const) static_cast<Standard_Real (Geom2d_Direction::*)() const>(&Geom2d_Direction::SquareMagnitude),
R"#(returns 1.0)#"
)
.def("Crossed",
(Standard_Real (Geom2d_Direction::*)( const opencascade::handle<Geom2d_Vector> & ) const) static_cast<Standard_Real (Geom2d_Direction::*)( const opencascade::handle<Geom2d_Vector> & ) const>(&Geom2d_Direction::Crossed),
R"#(Computes the cross product between <me> and <Other>.)#" , py::arg("Other")
)
.def("Transform",
(void (Geom2d_Direction::*)( const gp_Trsf2d & ) ) static_cast<void (Geom2d_Direction::*)( const gp_Trsf2d & ) >(&Geom2d_Direction::Transform),
R"#(Applies the transformation T to this unit vector, then normalizes it.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom2d_Geometry> (Geom2d_Direction::*)() const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_Direction::*)() const>(&Geom2d_Direction::Copy),
R"#(Creates a new object which is a copy of this unit vector.)#"
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_Direction::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_Direction::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
.def("__pow__",
(Standard_Real (Geom2d_Direction::*)( const opencascade::handle<Geom2d_Vector> & ) const) static_cast<Standard_Real (Geom2d_Direction::*)( const opencascade::handle<Geom2d_Vector> & ) const>(&Geom2d_Direction::operator^),
py::is_operator(),
R"#(None)#" , py::arg("Other")
)
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom2d_Direction::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_Direction::*)() const>(&Geom2d_Direction::DynamicType),
R"#(None)#"
)
;
// Class Geom2d_Line from ./opencascade/Geom2d_Line.hxx
klass = m.attr("Geom2d_Line");
// nested enums
static_cast<py::class_<Geom2d_Line ,opencascade::handle<Geom2d_Line> , Geom2d_Curve >>(klass)
// constructors
.def(py::init< const gp_Ax2d & >() , py::arg("A") )
.def(py::init< const gp_Lin2d & >() , py::arg("L") )
.def(py::init< const gp_Pnt2d &,const gp_Dir2d & >() , py::arg("P"), py::arg("V") )
// custom constructors
// methods
.def("SetLin2d",
(void (Geom2d_Line::*)( const gp_Lin2d & ) ) static_cast<void (Geom2d_Line::*)( const gp_Lin2d & ) >(&Geom2d_Line::SetLin2d),
R"#(Set <me> so that <me> has the same geometric properties as L.)#" , py::arg("L")
)
.def("SetDirection",
(void (Geom2d_Line::*)( const gp_Dir2d & ) ) static_cast<void (Geom2d_Line::*)( const gp_Dir2d & ) >(&Geom2d_Line::SetDirection),
R"#(changes the direction of the line.)#" , py::arg("V")
)
.def("SetLocation",
(void (Geom2d_Line::*)( const gp_Pnt2d & ) ) static_cast<void (Geom2d_Line::*)( const gp_Pnt2d & ) >(&Geom2d_Line::SetLocation),
R"#(Changes the "Location" point (origin) of the line.)#" , py::arg("P")
)
.def("SetPosition",
(void (Geom2d_Line::*)( const gp_Ax2d & ) ) static_cast<void (Geom2d_Line::*)( const gp_Ax2d & ) >(&Geom2d_Line::SetPosition),
R"#(Changes the "Location" and a the "Direction" of <me>.)#" , py::arg("A")
)
.def("Lin2d",
(gp_Lin2d (Geom2d_Line::*)() const) static_cast<gp_Lin2d (Geom2d_Line::*)() const>(&Geom2d_Line::Lin2d),
R"#(Returns non persistent line from gp with the same geometric properties as <me>)#"
)
.def("Reverse",
(void (Geom2d_Line::*)() ) static_cast<void (Geom2d_Line::*)() >(&Geom2d_Line::Reverse),
R"#(Changes the orientation of this line. As a result, the unit vector of the positioning axis of this line is reversed.)#"
)
.def("ReversedParameter",
(Standard_Real (Geom2d_Line::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom2d_Line::*)( const Standard_Real ) const>(&Geom2d_Line::ReversedParameter),
R"#(Computes the parameter on the reversed line for the point of parameter U on this line. For a line, the returned value is -U.)#" , py::arg("U")
)
.def("FirstParameter",
(Standard_Real (Geom2d_Line::*)() const) static_cast<Standard_Real (Geom2d_Line::*)() const>(&Geom2d_Line::FirstParameter),
R"#(Returns RealFirst from Standard.)#"
)
.def("LastParameter",
(Standard_Real (Geom2d_Line::*)() const) static_cast<Standard_Real (Geom2d_Line::*)() const>(&Geom2d_Line::LastParameter),
R"#(Returns RealLast from Standard)#"
)
.def("IsClosed",
(Standard_Boolean (Geom2d_Line::*)() const) static_cast<Standard_Boolean (Geom2d_Line::*)() const>(&Geom2d_Line::IsClosed),
R"#(Returns False)#"
)
.def("IsPeriodic",
(Standard_Boolean (Geom2d_Line::*)() const) static_cast<Standard_Boolean (Geom2d_Line::*)() const>(&Geom2d_Line::IsPeriodic),
R"#(Returns False)#"
)
.def("Continuity",
(GeomAbs_Shape (Geom2d_Line::*)() const) static_cast<GeomAbs_Shape (Geom2d_Line::*)() const>(&Geom2d_Line::Continuity),
R"#(Returns GeomAbs_CN, which is the global continuity of any line.)#"
)
.def("Distance",
(Standard_Real (Geom2d_Line::*)( const gp_Pnt2d & ) const) static_cast<Standard_Real (Geom2d_Line::*)( const gp_Pnt2d & ) const>(&Geom2d_Line::Distance),
R"#(Computes the distance between <me> and the point P.)#" , py::arg("P")
)
.def("IsCN",
(Standard_Boolean (Geom2d_Line::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom2d_Line::*)( const Standard_Integer ) const>(&Geom2d_Line::IsCN),
R"#(Returns True.)#" , py::arg("N")
)
.def("D0",
(void (Geom2d_Line::*)( const Standard_Real , gp_Pnt2d & ) const) static_cast<void (Geom2d_Line::*)( const Standard_Real , gp_Pnt2d & ) const>(&Geom2d_Line::D0),
R"#(Returns in P the point of parameter U. P (U) = O + U * Dir where O is the "Location" point of the line and Dir the direction of the line.)#" , py::arg("U"), py::arg("P")
)
.def("D1",
(void (Geom2d_Line::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_Line::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & ) const>(&Geom2d_Line::D1),
R"#(Returns the point P of parameter u and the first derivative V1.)#" , py::arg("U"), py::arg("P"), py::arg("V1")
)
.def("D2",
(void (Geom2d_Line::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_Line::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) const>(&Geom2d_Line::D2),
R"#(Returns the point P of parameter U, the first and second derivatives V1 and V2. V2 is a vector with null magnitude for a line.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2")
)
.def("D3",
(void (Geom2d_Line::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_Line::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) const>(&Geom2d_Line::D3),
R"#(V2 and V3 are vectors with null magnitude for a line.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2"), py::arg("V3")
)
.def("DN",
(gp_Vec2d (Geom2d_Line::*)( const Standard_Real , const Standard_Integer ) const) static_cast<gp_Vec2d (Geom2d_Line::*)( const Standard_Real , const Standard_Integer ) const>(&Geom2d_Line::DN),
R"#(For the point of parameter U of this line, computes the vector corresponding to the Nth derivative. Note: if N is greater than or equal to 2, the result is a vector with null magnitude. Exceptions Standard_RangeError if N is less than 1.)#" , py::arg("U"), py::arg("N")
)
.def("Transform",
(void (Geom2d_Line::*)( const gp_Trsf2d & ) ) static_cast<void (Geom2d_Line::*)( const gp_Trsf2d & ) >(&Geom2d_Line::Transform),
R"#(Applies the transformation T to this line.)#" , py::arg("T")
)
.def("TransformedParameter",
(Standard_Real (Geom2d_Line::*)( const Standard_Real , const gp_Trsf2d & ) const) static_cast<Standard_Real (Geom2d_Line::*)( const Standard_Real , const gp_Trsf2d & ) const>(&Geom2d_Line::TransformedParameter),
R"#(Computes the parameter on the line transformed by T for the point of parameter U on this line. For a line, the returned value is equal to U multiplied by the scale factor of transformation T.)#" , py::arg("U"), py::arg("T")
)
.def("ParametricTransformation",
(Standard_Real (Geom2d_Line::*)( const gp_Trsf2d & ) const) static_cast<Standard_Real (Geom2d_Line::*)( const gp_Trsf2d & ) const>(&Geom2d_Line::ParametricTransformation),
R"#(Returns the coefficient required to compute the parametric transformation of this line when transformation T is applied. This coefficient is the ratio between the parameter of a point on this line and the parameter of the transformed point on the new line transformed by T. For a line, the returned value is the scale factor of the transformation T.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom2d_Geometry> (Geom2d_Line::*)() const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_Line::*)() const>(&Geom2d_Line::Copy),
R"#(Creates a new object, which is a copy of this line.)#"
)
.def("DumpJson",
(void (Geom2d_Line::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom2d_Line::*)( std::ostream & , Standard_Integer ) const>(&Geom2d_Line::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_Line::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_Line::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Direction",
(const gp_Dir2d & (Geom2d_Line::*)() const) static_cast<const gp_Dir2d & (Geom2d_Line::*)() const>(&Geom2d_Line::Direction),
R"#(changes the direction of the line.)#"
)
.def("Location",
(const gp_Pnt2d & (Geom2d_Line::*)() const) static_cast<const gp_Pnt2d & (Geom2d_Line::*)() const>(&Geom2d_Line::Location),
R"#(Changes the "Location" point (origin) of the line.)#"
)
.def("Position",
(const gp_Ax2d & (Geom2d_Line::*)() const) static_cast<const gp_Ax2d & (Geom2d_Line::*)() const>(&Geom2d_Line::Position),
R"#(None)#"
)
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom2d_Line::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_Line::*)() const>(&Geom2d_Line::DynamicType),
R"#(None)#"
)
;
// Class Geom2d_OffsetCurve from ./opencascade/Geom2d_OffsetCurve.hxx
klass = m.attr("Geom2d_OffsetCurve");
// nested enums
static_cast<py::class_<Geom2d_OffsetCurve ,opencascade::handle<Geom2d_OffsetCurve> , Geom2d_Curve >>(klass)
// constructors
.def(py::init< const opencascade::handle<Geom2d_Curve> &,const Standard_Real,const Standard_Boolean >() , py::arg("C"), py::arg("Offset"), py::arg("isNotCheckC0")=static_cast<const Standard_Boolean>(Standard_False) )
// custom constructors
// methods
.def("Reverse",
(void (Geom2d_OffsetCurve::*)() ) static_cast<void (Geom2d_OffsetCurve::*)() >(&Geom2d_OffsetCurve::Reverse),
R"#(Changes the direction of parametrization of <me>. As a result: - the basis curve is reversed, - the start point of the initial curve becomes the end point of the reversed curve, - the end point of the initial curve becomes the start point of the reversed curve, and - the first and last parameters are recomputed.)#"
)
.def("ReversedParameter",
(Standard_Real (Geom2d_OffsetCurve::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom2d_OffsetCurve::*)( const Standard_Real ) const>(&Geom2d_OffsetCurve::ReversedParameter),
R"#(Computes the parameter on the reversed curve for the point of parameter U on this offset curve.)#" , py::arg("U")
)
.def("SetBasisCurve",
(void (Geom2d_OffsetCurve::*)( const opencascade::handle<Geom2d_Curve> & , const Standard_Boolean ) ) static_cast<void (Geom2d_OffsetCurve::*)( const opencascade::handle<Geom2d_Curve> & , const Standard_Boolean ) >(&Geom2d_OffsetCurve::SetBasisCurve),
R"#(Changes this offset curve by assigning C as the basis curve from which it is built. If isNotCheckC0 = TRUE checking if basis curve has C0-continuity is not made. Exceptions if isNotCheckC0 = false, Standard_ConstructionError if the curve C is not at least "C1" continuous.)#" , py::arg("C"), py::arg("isNotCheckC0")=static_cast<const Standard_Boolean>(Standard_False)
)
.def("SetOffsetValue",
(void (Geom2d_OffsetCurve::*)( const Standard_Real ) ) static_cast<void (Geom2d_OffsetCurve::*)( const Standard_Real ) >(&Geom2d_OffsetCurve::SetOffsetValue),
R"#(Changes this offset curve by assigning D as the offset value.)#" , py::arg("D")
)
.def("BasisCurve",
(opencascade::handle<Geom2d_Curve> (Geom2d_OffsetCurve::*)() const) static_cast<opencascade::handle<Geom2d_Curve> (Geom2d_OffsetCurve::*)() const>(&Geom2d_OffsetCurve::BasisCurve),
R"#(Returns the basis curve of this offset curve. The basis curve can be an offset curve.)#"
)
.def("Continuity",
(GeomAbs_Shape (Geom2d_OffsetCurve::*)() const) static_cast<GeomAbs_Shape (Geom2d_OffsetCurve::*)() const>(&Geom2d_OffsetCurve::Continuity),
R"#(Continuity of the Offset curve : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, G1 : tangency continuity all along the Curve, G2 : curvature continuity all along the Curve, CN : the order of continuity is infinite. Warnings : Returns the continuity of the basis curve - 1. The offset curve must have a unique normal direction defined at any point. Value and derivatives)#"
)
.def("D0",
(void (Geom2d_OffsetCurve::*)( const Standard_Real , gp_Pnt2d & ) const) static_cast<void (Geom2d_OffsetCurve::*)( const Standard_Real , gp_Pnt2d & ) const>(&Geom2d_OffsetCurve::D0),
R"#(Warning! this should not be called if the basis curve is not at least C1. Nevertheless if used on portion where the curve is C1, it is OK)#" , py::arg("U"), py::arg("P")
)
.def("D1",
(void (Geom2d_OffsetCurve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_OffsetCurve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & ) const>(&Geom2d_OffsetCurve::D1),
R"#(Warning! this should not be called if the continuity of the basis curve is not C2. Nevertheless, it's OK to use it on portion where the curve is C2)#" , py::arg("U"), py::arg("P"), py::arg("V1")
)
.def("D2",
(void (Geom2d_OffsetCurve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_OffsetCurve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) const>(&Geom2d_OffsetCurve::D2),
R"#(Warning! This should not be called if the continuity of the basis curve is not C3. Nevertheless, it's OK to use it on portion where the curve is C3)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2")
)
.def("D3",
(void (Geom2d_OffsetCurve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_OffsetCurve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) const>(&Geom2d_OffsetCurve::D3),
R"#(Warning! This should not be called if the continuity of the basis curve is not C4. Nevertheless, it's OK to use it on portion where the curve is C4)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2"), py::arg("V3")
)
.def("DN",
(gp_Vec2d (Geom2d_OffsetCurve::*)( const Standard_Real , const Standard_Integer ) const) static_cast<gp_Vec2d (Geom2d_OffsetCurve::*)( const Standard_Real , const Standard_Integer ) const>(&Geom2d_OffsetCurve::DN),
R"#(The returned vector gives the value of the derivative for the order of derivation N. Warning! this should not be called raises UndefunedDerivative if the continuity of the basis curve is not CN+1. Nevertheless, it's OK to use it on portion where the curve is CN+1 raises RangeError if N < 1. raises NotImplemented if N > 3. The following functions compute the value and derivatives on the offset curve and returns the derivatives on the basis curve too. The computation of the value and derivatives on the basis curve are used to evaluate the offset curve Warnings : The exception UndefinedValue or UndefinedDerivative is raised if it is not possible to compute a unique offset direction.)#" , py::arg("U"), py::arg("N")
)
.def("FirstParameter",
(Standard_Real (Geom2d_OffsetCurve::*)() const) static_cast<Standard_Real (Geom2d_OffsetCurve::*)() const>(&Geom2d_OffsetCurve::FirstParameter),
R"#(Returns the value of the first parameter of this offset curve. The first parameter corresponds to the start point of the curve. Note: the first and last parameters of this offset curve are also the ones of its basis curve.)#"
)
.def("LastParameter",
(Standard_Real (Geom2d_OffsetCurve::*)() const) static_cast<Standard_Real (Geom2d_OffsetCurve::*)() const>(&Geom2d_OffsetCurve::LastParameter),
R"#(Returns the value of the last parameter of this offset curve. The last parameter corresponds to the end point. Note: the first and last parameters of this offset curve are also the ones of its basis curve.)#"
)
.def("Offset",
(Standard_Real (Geom2d_OffsetCurve::*)() const) static_cast<Standard_Real (Geom2d_OffsetCurve::*)() const>(&Geom2d_OffsetCurve::Offset),
R"#(Returns the offset value of this offset curve.)#"
)
.def("IsClosed",
(Standard_Boolean (Geom2d_OffsetCurve::*)() const) static_cast<Standard_Boolean (Geom2d_OffsetCurve::*)() const>(&Geom2d_OffsetCurve::IsClosed),
R"#(Returns True if the distance between the start point and the end point of the curve is lower or equal to Resolution from package gp.)#"
)
.def("IsCN",
(Standard_Boolean (Geom2d_OffsetCurve::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom2d_OffsetCurve::*)( const Standard_Integer ) const>(&Geom2d_OffsetCurve::IsCN),
R"#(Is the order of continuity of the curve N ? Warnings : This method answer True if the continuity of the basis curve is N + 1. We suppose in this class that a normal direction to the basis curve (used to compute the offset curve) is defined at any point on the basis curve. Raised if N < 0.)#" , py::arg("N")
)
.def("IsPeriodic",
(Standard_Boolean (Geom2d_OffsetCurve::*)() const) static_cast<Standard_Boolean (Geom2d_OffsetCurve::*)() const>(&Geom2d_OffsetCurve::IsPeriodic),
R"#(Is the parametrization of a curve is periodic ? If the basis curve is a circle or an ellipse the corresponding OffsetCurve is periodic. If the basis curve can't be periodic (for example BezierCurve) the OffsetCurve can't be periodic.)#"
)
.def("Period",
(Standard_Real (Geom2d_OffsetCurve::*)() const) static_cast<Standard_Real (Geom2d_OffsetCurve::*)() const>(&Geom2d_OffsetCurve::Period),
R"#(Returns the period of this offset curve, i.e. the period of the basis curve of this offset curve. Exceptions Standard_NoSuchObject if the basis curve is not periodic.)#"
)
.def("Transform",
(void (Geom2d_OffsetCurve::*)( const gp_Trsf2d & ) ) static_cast<void (Geom2d_OffsetCurve::*)( const gp_Trsf2d & ) >(&Geom2d_OffsetCurve::Transform),
R"#(Applies the transformation T to this offset curve. Note: the basis curve is also modified.)#" , py::arg("T")
)
.def("TransformedParameter",
(Standard_Real (Geom2d_OffsetCurve::*)( const Standard_Real , const gp_Trsf2d & ) const) static_cast<Standard_Real (Geom2d_OffsetCurve::*)( const Standard_Real , const gp_Trsf2d & ) const>(&Geom2d_OffsetCurve::TransformedParameter),
R"#(Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.)#" , py::arg("U"), py::arg("T")
)
.def("ParametricTransformation",
(Standard_Real (Geom2d_OffsetCurve::*)( const gp_Trsf2d & ) const) static_cast<Standard_Real (Geom2d_OffsetCurve::*)( const gp_Trsf2d & ) const>(&Geom2d_OffsetCurve::ParametricTransformation),
R"#(Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom2d_Geometry> (Geom2d_OffsetCurve::*)() const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_OffsetCurve::*)() const>(&Geom2d_OffsetCurve::Copy),
R"#(Creates a new object, which is a copy of this offset curve.)#"
)
.def("GetBasisCurveContinuity",
(GeomAbs_Shape (Geom2d_OffsetCurve::*)() const) static_cast<GeomAbs_Shape (Geom2d_OffsetCurve::*)() const>(&Geom2d_OffsetCurve::GetBasisCurveContinuity),
R"#(Returns continuity of the basis curve.)#"
)
.def("DumpJson",
(void (Geom2d_OffsetCurve::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom2d_OffsetCurve::*)( std::ostream & , Standard_Integer ) const>(&Geom2d_OffsetCurve::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_OffsetCurve::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_OffsetCurve::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom2d_OffsetCurve::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_OffsetCurve::*)() const>(&Geom2d_OffsetCurve::DynamicType),
R"#(None)#"
)
;
// Class Geom2d_VectorWithMagnitude from ./opencascade/Geom2d_VectorWithMagnitude.hxx
klass = m.attr("Geom2d_VectorWithMagnitude");
// nested enums
static_cast<py::class_<Geom2d_VectorWithMagnitude ,opencascade::handle<Geom2d_VectorWithMagnitude> , Geom2d_Vector >>(klass)
// constructors
.def(py::init< const gp_Vec2d & >() , py::arg("V") )
.def(py::init< const Standard_Real,const Standard_Real >() , py::arg("X"), py::arg("Y") )
.def(py::init< const gp_Pnt2d &,const gp_Pnt2d & >() , py::arg("P1"), py::arg("P2") )
// custom constructors
// methods
.def("SetCoord",
(void (Geom2d_VectorWithMagnitude::*)( const Standard_Real , const Standard_Real ) ) static_cast<void (Geom2d_VectorWithMagnitude::*)( const Standard_Real , const Standard_Real ) >(&Geom2d_VectorWithMagnitude::SetCoord),
R"#(Set <me> to X, Y coordinates.)#" , py::arg("X"), py::arg("Y")
)
.def("SetVec2d",
(void (Geom2d_VectorWithMagnitude::*)( const gp_Vec2d & ) ) static_cast<void (Geom2d_VectorWithMagnitude::*)( const gp_Vec2d & ) >(&Geom2d_VectorWithMagnitude::SetVec2d),
R"#(None)#" , py::arg("V")
)
.def("SetX",
(void (Geom2d_VectorWithMagnitude::*)( const Standard_Real ) ) static_cast<void (Geom2d_VectorWithMagnitude::*)( const Standard_Real ) >(&Geom2d_VectorWithMagnitude::SetX),
R"#(Changes the X coordinate of <me>.)#" , py::arg("X")
)
.def("SetY",
(void (Geom2d_VectorWithMagnitude::*)( const Standard_Real ) ) static_cast<void (Geom2d_VectorWithMagnitude::*)( const Standard_Real ) >(&Geom2d_VectorWithMagnitude::SetY),
R"#(Changes the Y coordinate of <me>)#" , py::arg("Y")
)
.def("Magnitude",
(Standard_Real (Geom2d_VectorWithMagnitude::*)() const) static_cast<Standard_Real (Geom2d_VectorWithMagnitude::*)() const>(&Geom2d_VectorWithMagnitude::Magnitude),
R"#(Returns the magnitude of <me>.)#"
)
.def("SquareMagnitude",
(Standard_Real (Geom2d_VectorWithMagnitude::*)() const) static_cast<Standard_Real (Geom2d_VectorWithMagnitude::*)() const>(&Geom2d_VectorWithMagnitude::SquareMagnitude),
R"#(Returns the square magnitude of <me>.)#"
)
.def("Add",
(void (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> & ) ) static_cast<void (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> & ) >(&Geom2d_VectorWithMagnitude::Add),
R"#(Adds the Vector Other to <me>.)#" , py::arg("Other")
)
.def("Added",
(opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> & ) const) static_cast<opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> & ) const>(&Geom2d_VectorWithMagnitude::Added),
R"#(Adds the vector Other to <me>.)#" , py::arg("Other")
)
.def("Crossed",
(Standard_Real (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> & ) const) static_cast<Standard_Real (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> & ) const>(&Geom2d_VectorWithMagnitude::Crossed),
R"#(Computes the cross product between <me> and Other <me> ^ Other. A new vector is returned.)#" , py::arg("Other")
)
.def("Divide",
(void (Geom2d_VectorWithMagnitude::*)( const Standard_Real ) ) static_cast<void (Geom2d_VectorWithMagnitude::*)( const Standard_Real ) >(&Geom2d_VectorWithMagnitude::Divide),
R"#(Divides <me> by a scalar.)#" , py::arg("Scalar")
)
.def("Divided",
(opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)( const Standard_Real ) const>(&Geom2d_VectorWithMagnitude::Divided),
R"#(Divides <me> by a scalar. A new vector is returned.)#" , py::arg("Scalar")
)
.def("Multiplied",
(opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)( const Standard_Real ) const>(&Geom2d_VectorWithMagnitude::Multiplied),
R"#(Computes the product of the vector <me> by a scalar. A new vector is returned.)#" , py::arg("Scalar")
)
.def("Multiply",
(void (Geom2d_VectorWithMagnitude::*)( const Standard_Real ) ) static_cast<void (Geom2d_VectorWithMagnitude::*)( const Standard_Real ) >(&Geom2d_VectorWithMagnitude::Multiply),
R"#(Computes the product of the vector <me> by a scalar.)#" , py::arg("Scalar")
)
.def("Normalize",
(void (Geom2d_VectorWithMagnitude::*)() ) static_cast<void (Geom2d_VectorWithMagnitude::*)() >(&Geom2d_VectorWithMagnitude::Normalize),
R"#(Normalizes <me>.)#"
)
.def("Normalized",
(opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)() const) static_cast<opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)() const>(&Geom2d_VectorWithMagnitude::Normalized),
R"#(Returns a copy of <me> Normalized.)#"
)
.def("Subtract",
(void (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> & ) ) static_cast<void (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> & ) >(&Geom2d_VectorWithMagnitude::Subtract),
R"#(Subtracts the Vector Other to <me>.)#" , py::arg("Other")
)
.def("Subtracted",
(opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> & ) const) static_cast<opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> & ) const>(&Geom2d_VectorWithMagnitude::Subtracted),
R"#(Subtracts the vector Other to <me>. A new vector is returned.)#" , py::arg("Other")
)
.def("Transform",
(void (Geom2d_VectorWithMagnitude::*)( const gp_Trsf2d & ) ) static_cast<void (Geom2d_VectorWithMagnitude::*)( const gp_Trsf2d & ) >(&Geom2d_VectorWithMagnitude::Transform),
R"#(Applies the transformation T to this vector.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom2d_Geometry> (Geom2d_VectorWithMagnitude::*)() const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_VectorWithMagnitude::*)() const>(&Geom2d_VectorWithMagnitude::Copy),
R"#(Creates a new object which is a copy of this vector.)#"
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_VectorWithMagnitude::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_VectorWithMagnitude::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
.def("__iadd__",
(void (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> & ) ) static_cast<void (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> & ) >(&Geom2d_VectorWithMagnitude::operator+=),
py::is_operator(),
R"#(None)#" , py::arg("Other")
)
.def("__add__",
(opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> & ) const) static_cast<opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> & ) const>(&Geom2d_VectorWithMagnitude::operator+),
py::is_operator(),
R"#(None)#" , py::arg("Other")
)
.def("__pow__",
(Standard_Real (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> & ) const) static_cast<Standard_Real (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> & ) const>(&Geom2d_VectorWithMagnitude::operator^),
py::is_operator(),
R"#(None)#" , py::arg("Other")
)
.def("__itruediv__",
(void (Geom2d_VectorWithMagnitude::*)( const Standard_Real ) ) static_cast<void (Geom2d_VectorWithMagnitude::*)( const Standard_Real ) >(&Geom2d_VectorWithMagnitude::operator/=),
py::is_operator(),
R"#(None)#" , py::arg("Scalar")
)
.def("__truediv__",
(opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)( const Standard_Real ) const>(&Geom2d_VectorWithMagnitude::operator/),
py::is_operator(),
R"#(None)#" , py::arg("Scalar")
)
.def("__imul__",
(void (Geom2d_VectorWithMagnitude::*)( const Standard_Real ) ) static_cast<void (Geom2d_VectorWithMagnitude::*)( const Standard_Real ) >(&Geom2d_VectorWithMagnitude::operator*=),
py::is_operator(),
R"#(None)#" , py::arg("Scalar")
)
.def("__isub__",
(void (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> & ) ) static_cast<void (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> & ) >(&Geom2d_VectorWithMagnitude::operator-=),
py::is_operator(),
R"#(None)#" , py::arg("Other")
)
.def("__sub__",
(opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> & ) const) static_cast<opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> & ) const>(&Geom2d_VectorWithMagnitude::operator-),
py::is_operator(),
R"#(None)#" , py::arg("Other")
)
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom2d_VectorWithMagnitude::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_VectorWithMagnitude::*)() const>(&Geom2d_VectorWithMagnitude::DynamicType),
R"#(None)#"
)
;
// Class Geom2d_BSplineCurve from ./opencascade/Geom2d_BSplineCurve.hxx
klass = m.attr("Geom2d_BSplineCurve");
// nested enums
static_cast<py::class_<Geom2d_BSplineCurve ,opencascade::handle<Geom2d_BSplineCurve> , Geom2d_BoundedCurve >>(klass)
// constructors
.def(py::init< const NCollection_Array1<gp_Pnt2d> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Integer> &,const Standard_Integer,const Standard_Boolean >() , py::arg("Poles"), py::arg("Knots"), py::arg("Multiplicities"), py::arg("Degree"), py::arg("Periodic")=static_cast<const Standard_Boolean>(Standard_False) )
.def(py::init< const NCollection_Array1<gp_Pnt2d> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Integer> &,const Standard_Integer,const Standard_Boolean >() , py::arg("Poles"), py::arg("Weights"), py::arg("Knots"), py::arg("Multiplicities"), py::arg("Degree"), py::arg("Periodic")=static_cast<const Standard_Boolean>(Standard_False) )
// custom constructors
// methods
.def("IncreaseDegree",
(void (Geom2d_BSplineCurve::*)( const Standard_Integer ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Integer ) >(&Geom2d_BSplineCurve::IncreaseDegree),
R"#(Increases the degree of this BSpline curve to Degree. As a result, the poles, weights and multiplicities tables are modified; the knots table is not changed. Nothing is done if Degree is less than or equal to the current degree. Exceptions Standard_ConstructionError if Degree is greater than Geom2d_BSplineCurve::MaxDegree().)#" , py::arg("Degree")
)
.def("IncreaseMultiplicity",
(void (Geom2d_BSplineCurve::*)( const Standard_Integer , const Standard_Integer ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Integer , const Standard_Integer ) >(&Geom2d_BSplineCurve::IncreaseMultiplicity),
R"#(Increases the multiplicity of the knot <Index> to <M>.)#" , py::arg("Index"), py::arg("M")
)
.def("IncreaseMultiplicity",
(void (Geom2d_BSplineCurve::*)( const Standard_Integer , const Standard_Integer , const Standard_Integer ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Integer , const Standard_Integer , const Standard_Integer ) >(&Geom2d_BSplineCurve::IncreaseMultiplicity),
R"#(Increases the multiplicities of the knots in [I1,I2] to <M>.)#" , py::arg("I1"), py::arg("I2"), py::arg("M")
)
.def("IncrementMultiplicity",
(void (Geom2d_BSplineCurve::*)( const Standard_Integer , const Standard_Integer , const Standard_Integer ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Integer , const Standard_Integer , const Standard_Integer ) >(&Geom2d_BSplineCurve::IncrementMultiplicity),
R"#(Increases by M the multiplicity of the knots of indexes I1 to I2 in the knots table of this BSpline curve. For each knot, the resulting multiplicity is limited to the degree of this curve. If M is negative, nothing is done. As a result, the poles and weights tables of this BSpline curve are modified. Warning It is forbidden to modify the multiplicity of the first or last knot of a non-periodic curve. Be careful as Geom2d does not protect against this. Exceptions Standard_OutOfRange if I1 or I2 is outside the bounds of the knots table.)#" , py::arg("I1"), py::arg("I2"), py::arg("M")
)
.def("InsertKnot",
(void (Geom2d_BSplineCurve::*)( const Standard_Real , const Standard_Integer , const Standard_Real ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Real , const Standard_Integer , const Standard_Real ) >(&Geom2d_BSplineCurve::InsertKnot),
R"#(Inserts a knot value in the sequence of knots. If <U> is an existing knot the multiplicity is increased by <M>.)#" , py::arg("U"), py::arg("M")=static_cast<const Standard_Integer>(1), py::arg("ParametricTolerance")=static_cast<const Standard_Real>(0.0)
)
.def("InsertKnots",
(void (Geom2d_BSplineCurve::*)( const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const Standard_Real , const Standard_Boolean ) ) static_cast<void (Geom2d_BSplineCurve::*)( const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const Standard_Real , const Standard_Boolean ) >(&Geom2d_BSplineCurve::InsertKnots),
R"#(Inserts the values of the array Knots, with the respective multiplicities given by the array Mults, into the knots table of this BSpline curve. If a value of the array Knots is an existing knot, its multiplicity is: - increased by M, if Add is true, or - increased to M, if Add is false (default value). The tolerance criterion used for knot equality is the larger of the values ParametricTolerance (defaulted to 0.) and Standard_Real::Epsilon(U), where U is the current knot value. Warning - For a value of the array Knots which is less than the first parameter or greater than the last parameter of this BSpline curve, nothing is done. - For a value of the array Mults which is negative or null, nothing is done. - The multiplicity of a knot is limited to the degree of this BSpline curve.)#" , py::arg("Knots"), py::arg("Mults"), py::arg("ParametricTolerance")=static_cast<const Standard_Real>(0.0), py::arg("Add")=static_cast<const Standard_Boolean>(Standard_False)
)
.def("RemoveKnot",
(Standard_Boolean (Geom2d_BSplineCurve::*)( const Standard_Integer , const Standard_Integer , const Standard_Real ) ) static_cast<Standard_Boolean (Geom2d_BSplineCurve::*)( const Standard_Integer , const Standard_Integer , const Standard_Real ) >(&Geom2d_BSplineCurve::RemoveKnot),
R"#(Reduces the multiplicity of the knot of index Index to M. If M is equal to 0, the knot is removed. With a modification of this type, the array of poles is also modified. Two different algorithms are systematically used to compute the new poles of the curve. If, for each pole, the distance between the pole calculated using the first algorithm and the same pole calculated using the second algorithm, is less than Tolerance, this ensures that the curve is not modified by more than Tolerance. Under these conditions, true is returned; otherwise, false is returned. A low tolerance is used to prevent modification of the curve. A high tolerance is used to "smooth" the curve. Exceptions Standard_OutOfRange if Index is outside the bounds of the knots table.)#" , py::arg("Index"), py::arg("M"), py::arg("Tolerance")
)
.def("InsertPoleAfter",
(void (Geom2d_BSplineCurve::*)( const Standard_Integer , const gp_Pnt2d & , const Standard_Real ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Integer , const gp_Pnt2d & , const Standard_Real ) >(&Geom2d_BSplineCurve::InsertPoleAfter),
R"#(The new pole is inserted after the pole of range Index. If the curve was non rational it can become rational.)#" , py::arg("Index"), py::arg("P"), py::arg("Weight")=static_cast<const Standard_Real>(1.0)
)
.def("InsertPoleBefore",
(void (Geom2d_BSplineCurve::*)( const Standard_Integer , const gp_Pnt2d & , const Standard_Real ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Integer , const gp_Pnt2d & , const Standard_Real ) >(&Geom2d_BSplineCurve::InsertPoleBefore),
R"#(The new pole is inserted before the pole of range Index. If the curve was non rational it can become rational.)#" , py::arg("Index"), py::arg("P"), py::arg("Weight")=static_cast<const Standard_Real>(1.0)
)
.def("RemovePole",
(void (Geom2d_BSplineCurve::*)( const Standard_Integer ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Integer ) >(&Geom2d_BSplineCurve::RemovePole),
R"#(Removes the pole of range Index If the curve was rational it can become non rational.)#" , py::arg("Index")
)
.def("Reverse",
(void (Geom2d_BSplineCurve::*)() ) static_cast<void (Geom2d_BSplineCurve::*)() >(&Geom2d_BSplineCurve::Reverse),
R"#(Reverses the orientation of this BSpline curve. As a result - the knots and poles tables are modified; - the start point of the initial curve becomes the end point of the reversed curve; - the end point of the initial curve becomes the start point of the reversed curve.)#"
)
.def("ReversedParameter",
(Standard_Real (Geom2d_BSplineCurve::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom2d_BSplineCurve::*)( const Standard_Real ) const>(&Geom2d_BSplineCurve::ReversedParameter),
R"#(Computes the parameter on the reversed curve for the point of parameter U on this BSpline curve. The returned value is: UFirst + ULast - U, where UFirst and ULast are the values of the first and last parameters of this BSpline curve.)#" , py::arg("U")
)
.def("Segment",
(void (Geom2d_BSplineCurve::*)( const Standard_Real , const Standard_Real , const Standard_Real ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Real , const Standard_Real , const Standard_Real ) >(&Geom2d_BSplineCurve::Segment),
R"#(Modifies this BSpline curve by segmenting it between U1 and U2. Either of these values can be outside the bounds of the curve, but U2 must be greater than U1. All data structure tables of this BSpline curve are modified, but the knots located between U1 and U2 are retained. The degree of the curve is not modified.)#" , py::arg("U1"), py::arg("U2"), py::arg("theTolerance")=static_cast<const Standard_Real>(Precision :: PConfusion ( ))
)
.def("SetKnot",
(void (Geom2d_BSplineCurve::*)( const Standard_Integer , const Standard_Real ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Integer , const Standard_Real ) >(&Geom2d_BSplineCurve::SetKnot),
R"#(Modifies this BSpline curve by assigning the value K to the knot of index Index in the knots table. This is a relatively local modification because K must be such that: Knots(Index - 1) < K < Knots(Index + 1) Exceptions Standard_ConstructionError if: - K is not such that: Knots(Index - 1) < K < Knots(Index + 1) - M is greater than the degree of this BSpline curve or lower than the previous multiplicity of knot of index Index in the knots table. Standard_OutOfRange if Index is outside the bounds of the knots table.)#" , py::arg("Index"), py::arg("K")
)
.def("SetKnots",
(void (Geom2d_BSplineCurve::*)( const NCollection_Array1<Standard_Real> & ) ) static_cast<void (Geom2d_BSplineCurve::*)( const NCollection_Array1<Standard_Real> & ) >(&Geom2d_BSplineCurve::SetKnots),
R"#(Modifies this BSpline curve by assigning the array K to its knots table. The multiplicity of the knots is not modified. Exceptions Standard_ConstructionError if the values in the array K are not in ascending order. Standard_OutOfRange if the bounds of the array K are not respectively 1 and the number of knots of this BSpline curve.)#" , py::arg("K")
)
.def("SetKnot",
(void (Geom2d_BSplineCurve::*)( const Standard_Integer , const Standard_Real , const Standard_Integer ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Integer , const Standard_Real , const Standard_Integer ) >(&Geom2d_BSplineCurve::SetKnot),
R"#(Modifies this BSpline curve by assigning the value K to the knot of index Index in the knots table. This is a relatively local modification because K must be such that: Knots(Index - 1) < K < Knots(Index + 1) The second syntax allows you also to increase the multiplicity of the knot to M (but it is not possible to decrease the multiplicity of the knot with this function). Exceptions Standard_ConstructionError if: - K is not such that: Knots(Index - 1) < K < Knots(Index + 1) - M is greater than the degree of this BSpline curve or lower than the previous multiplicity of knot of index Index in the knots table. Standard_OutOfRange if Index is outside the bounds of the knots table.)#" , py::arg("Index"), py::arg("K"), py::arg("M")
)
.def("SetPeriodic",
(void (Geom2d_BSplineCurve::*)() ) static_cast<void (Geom2d_BSplineCurve::*)() >(&Geom2d_BSplineCurve::SetPeriodic),
R"#(Changes this BSpline curve into a periodic curve. To become periodic, the curve must first be closed. Next, the knot sequence must be periodic. For this, FirstUKnotIndex and LastUKnotIndex are used to compute I1 and I2, the indexes in the knots array of the knots corresponding to the first and last parameters of this BSpline curve. The period is therefore Knot(I2) - Knot(I1). Consequently, the knots and poles tables are modified. Exceptions Standard_ConstructionError if this BSpline curve is not closed.)#"
)
.def("SetOrigin",
(void (Geom2d_BSplineCurve::*)( const Standard_Integer ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Integer ) >(&Geom2d_BSplineCurve::SetOrigin),
R"#(Assigns the knot of index Index in the knots table as the origin of this periodic BSpline curve. As a consequence, the knots and poles tables are modified. Exceptions Standard_NoSuchObject if this curve is not periodic. Standard_DomainError if Index is outside the bounds of the knots table.)#" , py::arg("Index")
)
.def("SetNotPeriodic",
(void (Geom2d_BSplineCurve::*)() ) static_cast<void (Geom2d_BSplineCurve::*)() >(&Geom2d_BSplineCurve::SetNotPeriodic),
R"#(Changes this BSpline curve into a non-periodic curve. If this curve is already non-periodic, it is not modified. Note that the poles and knots tables are modified. Warning If this curve is periodic, as the multiplicity of the first and last knots is not modified, and is not equal to Degree + 1, where Degree is the degree of this BSpline curve, the start and end points of the curve are not its first and last poles.)#"
)
.def("SetPole",
(void (Geom2d_BSplineCurve::*)( const Standard_Integer , const gp_Pnt2d & ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Integer , const gp_Pnt2d & ) >(&Geom2d_BSplineCurve::SetPole),
R"#(Modifies this BSpline curve by assigning P to the pole of index Index in the poles table. Exceptions Standard_OutOfRange if Index is outside the bounds of the poles table. Standard_ConstructionError if Weight is negative or null.)#" , py::arg("Index"), py::arg("P")
)
.def("SetPole",
(void (Geom2d_BSplineCurve::*)( const Standard_Integer , const gp_Pnt2d & , const Standard_Real ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Integer , const gp_Pnt2d & , const Standard_Real ) >(&Geom2d_BSplineCurve::SetPole),
R"#(Modifies this BSpline curve by assigning P to the pole of index Index in the poles table. The second syntax also allows you to modify the weight of the modified pole, which becomes Weight. In this case, if this BSpline curve is non-rational, it can become rational and vice versa. Exceptions Standard_OutOfRange if Index is outside the bounds of the poles table. Standard_ConstructionError if Weight is negative or null.)#" , py::arg("Index"), py::arg("P"), py::arg("Weight")
)
.def("SetWeight",
(void (Geom2d_BSplineCurve::*)( const Standard_Integer , const Standard_Real ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Integer , const Standard_Real ) >(&Geom2d_BSplineCurve::SetWeight),
R"#(Assigns the weight Weight to the pole of index Index of the poles table. If the curve was non rational it can become rational. If the curve was rational it can become non rational. Exceptions Standard_OutOfRange if Index is outside the bounds of the poles table. Standard_ConstructionError if Weight is negative or null.)#" , py::arg("Index"), py::arg("Weight")
)
.def("IsCN",
(Standard_Boolean (Geom2d_BSplineCurve::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom2d_BSplineCurve::*)( const Standard_Integer ) const>(&Geom2d_BSplineCurve::IsCN),
R"#(Returns true if the degree of continuity of this BSpline curve is at least N. A BSpline curve is at least GeomAbs_C0. Exceptions Standard_RangeError if N is negative.)#" , py::arg("N")
)
.def("IsG1",
(Standard_Boolean (Geom2d_BSplineCurve::*)( const Standard_Real , const Standard_Real , const Standard_Real ) const) static_cast<Standard_Boolean (Geom2d_BSplineCurve::*)( const Standard_Real , const Standard_Real , const Standard_Real ) const>(&Geom2d_BSplineCurve::IsG1),
R"#(Check if curve has at least G1 continuity in interval [theTf, theTl] Returns true if IsCN(1) or angle between "left" and "right" first derivatives at knots with C0 continuity is less then theAngTol only knots in interval [theTf, theTl] is checked)#" , py::arg("theTf"), py::arg("theTl"), py::arg("theAngTol")
)
.def("IsClosed",
(Standard_Boolean (Geom2d_BSplineCurve::*)() const) static_cast<Standard_Boolean (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::IsClosed),
R"#(Returns true if the distance between the first point and the last point of the curve is lower or equal to Resolution from package gp. Warnings : The first and the last point can be different from the first pole and the last pole of the curve.)#"
)
.def("IsPeriodic",
(Standard_Boolean (Geom2d_BSplineCurve::*)() const) static_cast<Standard_Boolean (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::IsPeriodic),
R"#(Returns True if the curve is periodic.)#"
)
.def("IsRational",
(Standard_Boolean (Geom2d_BSplineCurve::*)() const) static_cast<Standard_Boolean (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::IsRational),
R"#(Returns True if the weights are not identical. The tolerance criterion is Epsilon of the class Real.)#"
)
.def("Continuity",
(GeomAbs_Shape (Geom2d_BSplineCurve::*)() const) static_cast<GeomAbs_Shape (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::Continuity),
R"#(Returns the global continuity of the curve : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, CN : the order of continuity is infinite. For a B-spline curve of degree d if a knot Ui has a multiplicity p the B-spline curve is only Cd-p continuous at Ui. So the global continuity of the curve can't be greater than Cd-p where p is the maximum multiplicity of the interior Knots. In the interior of a knot span the curve is infinitely continuously differentiable.)#"
)
.def("Degree",
(Standard_Integer (Geom2d_BSplineCurve::*)() const) static_cast<Standard_Integer (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::Degree),
R"#(Returns the degree of this BSpline curve. In this class the degree of the basis normalized B-spline functions cannot be greater than "MaxDegree" Computation of value and derivatives)#"
)
.def("D0",
(void (Geom2d_BSplineCurve::*)( const Standard_Real , gp_Pnt2d & ) const) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Real , gp_Pnt2d & ) const>(&Geom2d_BSplineCurve::D0),
R"#(None)#" , py::arg("U"), py::arg("P")
)
.def("D1",
(void (Geom2d_BSplineCurve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & ) const>(&Geom2d_BSplineCurve::D1),
R"#(Raised if the continuity of the curve is not C1.)#" , py::arg("U"), py::arg("P"), py::arg("V1")
)
.def("D2",
(void (Geom2d_BSplineCurve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) const>(&Geom2d_BSplineCurve::D2),
R"#(Raised if the continuity of the curve is not C2.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2")
)
.def("D3",
(void (Geom2d_BSplineCurve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) const>(&Geom2d_BSplineCurve::D3),
R"#(For this BSpline curve, computes - the point P of parameter U, or - the point P and one or more of the following values: - V1, the first derivative vector, - V2, the second derivative vector, - V3, the third derivative vector. Warning On a point where the continuity of the curve is not the one requested, these functions impact the part defined by the parameter with a value greater than U, i.e. the part of the curve to the "right" of the singularity. Raises UndefinedDerivative if the continuity of the curve is not C3.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2"), py::arg("V3")
)
.def("DN",
(gp_Vec2d (Geom2d_BSplineCurve::*)( const Standard_Real , const Standard_Integer ) const) static_cast<gp_Vec2d (Geom2d_BSplineCurve::*)( const Standard_Real , const Standard_Integer ) const>(&Geom2d_BSplineCurve::DN),
R"#(For the point of parameter U of this BSpline curve, computes the vector corresponding to the Nth derivative. Warning On a point where the continuity of the curve is not the one requested, this function impacts the part defined by the parameter with a value greater than U, i.e. the part of the curve to the "right" of the singularity. Raises UndefinedDerivative if the continuity of the curve is not CN. RangeError if N < 1. The following functions computes the point of parameter U and the derivatives at this point on the B-spline curve arc defined between the knot FromK1 and the knot ToK2. U can be out of bounds [Knot (FromK1), Knot (ToK2)] but for the computation we only use the definition of the curve between these two knots. This method is useful to compute local derivative, if the order of continuity of the whole curve is not greater enough. Inside the parametric domain Knot (FromK1), Knot (ToK2) the evaluations are the same as if we consider the whole definition of the curve. Of course the evaluations are different outside this parametric domain.)#" , py::arg("U"), py::arg("N")
)
.def("LocalValue",
(gp_Pnt2d (Geom2d_BSplineCurve::*)( const Standard_Real , const Standard_Integer , const Standard_Integer ) const) static_cast<gp_Pnt2d (Geom2d_BSplineCurve::*)( const Standard_Real , const Standard_Integer , const Standard_Integer ) const>(&Geom2d_BSplineCurve::LocalValue),
R"#(Raised if FromK1 = ToK2.)#" , py::arg("U"), py::arg("FromK1"), py::arg("ToK2")
)
.def("LocalD0",
(void (Geom2d_BSplineCurve::*)( const Standard_Real , const Standard_Integer , const Standard_Integer , gp_Pnt2d & ) const) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Real , const Standard_Integer , const Standard_Integer , gp_Pnt2d & ) const>(&Geom2d_BSplineCurve::LocalD0),
R"#(Raised if FromK1 = ToK2.)#" , py::arg("U"), py::arg("FromK1"), py::arg("ToK2"), py::arg("P")
)
.def("LocalD1",
(void (Geom2d_BSplineCurve::*)( const Standard_Real , const Standard_Integer , const Standard_Integer , gp_Pnt2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Real , const Standard_Integer , const Standard_Integer , gp_Pnt2d & , gp_Vec2d & ) const>(&Geom2d_BSplineCurve::LocalD1),
R"#(Raised if the local continuity of the curve is not C1 between the knot K1 and the knot K2. Raised if FromK1 = ToK2.)#" , py::arg("U"), py::arg("FromK1"), py::arg("ToK2"), py::arg("P"), py::arg("V1")
)
.def("LocalD2",
(void (Geom2d_BSplineCurve::*)( const Standard_Real , const Standard_Integer , const Standard_Integer , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Real , const Standard_Integer , const Standard_Integer , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) const>(&Geom2d_BSplineCurve::LocalD2),
R"#(Raised if the local continuity of the curve is not C2 between the knot K1 and the knot K2. Raised if FromK1 = ToK2.)#" , py::arg("U"), py::arg("FromK1"), py::arg("ToK2"), py::arg("P"), py::arg("V1"), py::arg("V2")
)
.def("LocalD3",
(void (Geom2d_BSplineCurve::*)( const Standard_Real , const Standard_Integer , const Standard_Integer , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Real , const Standard_Integer , const Standard_Integer , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) const>(&Geom2d_BSplineCurve::LocalD3),
R"#(Raised if the local continuity of the curve is not C3 between the knot K1 and the knot K2. Raised if FromK1 = ToK2.)#" , py::arg("U"), py::arg("FromK1"), py::arg("ToK2"), py::arg("P"), py::arg("V1"), py::arg("V2"), py::arg("V3")
)
.def("LocalDN",
(gp_Vec2d (Geom2d_BSplineCurve::*)( const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Integer ) const) static_cast<gp_Vec2d (Geom2d_BSplineCurve::*)( const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Integer ) const>(&Geom2d_BSplineCurve::LocalDN),
R"#(Raised if the local continuity of the curve is not CN between the knot K1 and the knot K2. Raised if FromK1 = ToK2. Raised if N < 1.)#" , py::arg("U"), py::arg("FromK1"), py::arg("ToK2"), py::arg("N")
)
.def("EndPoint",
(gp_Pnt2d (Geom2d_BSplineCurve::*)() const) static_cast<gp_Pnt2d (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::EndPoint),
R"#(Returns the last point of the curve. Warnings : The last point of the curve is different from the last pole of the curve if the multiplicity of the last knot is lower than Degree.)#"
)
.def("FirstUKnotIndex",
(Standard_Integer (Geom2d_BSplineCurve::*)() const) static_cast<Standard_Integer (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::FirstUKnotIndex),
R"#(For a B-spline curve the first parameter (which gives the start point of the curve) is a knot value but if the multiplicity of the first knot index is lower than Degree + 1 it is not the first knot of the curve. This method computes the index of the knot corresponding to the first parameter.)#"
)
.def("FirstParameter",
(Standard_Real (Geom2d_BSplineCurve::*)() const) static_cast<Standard_Real (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::FirstParameter),
R"#(Computes the parametric value of the start point of the curve. It is a knot value.)#"
)
.def("Knot",
(Standard_Real (Geom2d_BSplineCurve::*)( const Standard_Integer ) const) static_cast<Standard_Real (Geom2d_BSplineCurve::*)( const Standard_Integer ) const>(&Geom2d_BSplineCurve::Knot),
R"#(Returns the knot of range Index. When there is a knot with a multiplicity greater than 1 the knot is not repeated. The method Multiplicity can be used to get the multiplicity of the Knot. Raised if Index < 1 or Index > NbKnots)#" , py::arg("Index")
)
.def("Knots",
(void (Geom2d_BSplineCurve::*)( NCollection_Array1<Standard_Real> & ) const) static_cast<void (Geom2d_BSplineCurve::*)( NCollection_Array1<Standard_Real> & ) const>(&Geom2d_BSplineCurve::Knots),
R"#(returns the knot values of the B-spline curve;)#" , py::arg("K")
)
.def("KnotSequence",
(void (Geom2d_BSplineCurve::*)( NCollection_Array1<Standard_Real> & ) const) static_cast<void (Geom2d_BSplineCurve::*)( NCollection_Array1<Standard_Real> & ) const>(&Geom2d_BSplineCurve::KnotSequence),
R"#(Returns the knots sequence. In this sequence the knots with a multiplicity greater than 1 are repeated. Example : K = {k1, k1, k1, k2, k3, k3, k4, k4, k4})#" , py::arg("K")
)
.def("KnotDistribution",
(GeomAbs_BSplKnotDistribution (Geom2d_BSplineCurve::*)() const) static_cast<GeomAbs_BSplKnotDistribution (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::KnotDistribution),
R"#(Returns NonUniform or Uniform or QuasiUniform or PiecewiseBezier. If all the knots differ by a positive constant from the preceding knot the BSpline Curve can be : - Uniform if all the knots are of multiplicity 1, - QuasiUniform if all the knots are of multiplicity 1 except for the first and last knot which are of multiplicity Degree + 1, - PiecewiseBezier if the first and last knots have multiplicity Degree + 1 and if interior knots have multiplicity Degree A piecewise Bezier with only two knots is a BezierCurve. else the curve is non uniform. The tolerance criterion is Epsilon from class Real.)#"
)
.def("LastUKnotIndex",
(Standard_Integer (Geom2d_BSplineCurve::*)() const) static_cast<Standard_Integer (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::LastUKnotIndex),
R"#(For a BSpline curve the last parameter (which gives the end point of the curve) is a knot value but if the multiplicity of the last knot index is lower than Degree + 1 it is not the last knot of the curve. This method computes the index of the knot corresponding to the last parameter.)#"
)
.def("LastParameter",
(Standard_Real (Geom2d_BSplineCurve::*)() const) static_cast<Standard_Real (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::LastParameter),
R"#(Computes the parametric value of the end point of the curve. It is a knot value.)#"
)
.def("Multiplicity",
(Standard_Integer (Geom2d_BSplineCurve::*)( const Standard_Integer ) const) static_cast<Standard_Integer (Geom2d_BSplineCurve::*)( const Standard_Integer ) const>(&Geom2d_BSplineCurve::Multiplicity),
R"#(Returns the multiplicity of the knots of range Index. Raised if Index < 1 or Index > NbKnots)#" , py::arg("Index")
)
.def("Multiplicities",
(void (Geom2d_BSplineCurve::*)( NCollection_Array1<Standard_Integer> & ) const) static_cast<void (Geom2d_BSplineCurve::*)( NCollection_Array1<Standard_Integer> & ) const>(&Geom2d_BSplineCurve::Multiplicities),
R"#(Returns the multiplicity of the knots of the curve.)#" , py::arg("M")
)
.def("NbKnots",
(Standard_Integer (Geom2d_BSplineCurve::*)() const) static_cast<Standard_Integer (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::NbKnots),
R"#(Returns the number of knots. This method returns the number of knot without repetition of multiple knots.)#"
)
.def("NbPoles",
(Standard_Integer (Geom2d_BSplineCurve::*)() const) static_cast<Standard_Integer (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::NbPoles),
R"#(Returns the number of poles)#"
)
.def("Pole",
(const gp_Pnt2d & (Geom2d_BSplineCurve::*)( const Standard_Integer ) const) static_cast<const gp_Pnt2d & (Geom2d_BSplineCurve::*)( const Standard_Integer ) const>(&Geom2d_BSplineCurve::Pole),
R"#(Returns the pole of range Index. Raised if Index < 1 or Index > NbPoles.)#" , py::arg("Index")
)
.def("Poles",
(void (Geom2d_BSplineCurve::*)( NCollection_Array1<gp_Pnt2d> & ) const) static_cast<void (Geom2d_BSplineCurve::*)( NCollection_Array1<gp_Pnt2d> & ) const>(&Geom2d_BSplineCurve::Poles),
R"#(Returns the poles of the B-spline curve;)#" , py::arg("P")
)
.def("StartPoint",
(gp_Pnt2d (Geom2d_BSplineCurve::*)() const) static_cast<gp_Pnt2d (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::StartPoint),
R"#(Returns the start point of the curve. Warnings : This point is different from the first pole of the curve if the multiplicity of the first knot is lower than Degree.)#"
)
.def("Weight",
(Standard_Real (Geom2d_BSplineCurve::*)( const Standard_Integer ) const) static_cast<Standard_Real (Geom2d_BSplineCurve::*)( const Standard_Integer ) const>(&Geom2d_BSplineCurve::Weight),
R"#(Returns the weight of the pole of range Index . Raised if Index < 1 or Index > NbPoles.)#" , py::arg("Index")
)
.def("Weights",
(void (Geom2d_BSplineCurve::*)( NCollection_Array1<Standard_Real> & ) const) static_cast<void (Geom2d_BSplineCurve::*)( NCollection_Array1<Standard_Real> & ) const>(&Geom2d_BSplineCurve::Weights),
R"#(Returns the weights of the B-spline curve;)#" , py::arg("W")
)
.def("Weights",
(const TColStd_Array1OfReal * (Geom2d_BSplineCurve::*)() const) static_cast<const TColStd_Array1OfReal * (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::Weights),
R"#(Returns the weights of the B-spline curve;)#"
)
.def("Transform",
(void (Geom2d_BSplineCurve::*)( const gp_Trsf2d & ) ) static_cast<void (Geom2d_BSplineCurve::*)( const gp_Trsf2d & ) >(&Geom2d_BSplineCurve::Transform),
R"#(Applies the transformation T to this BSpline curve.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom2d_Geometry> (Geom2d_BSplineCurve::*)() const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::Copy),
R"#(Creates a new object which is a copy of this BSpline curve.)#"
)
.def("DumpJson",
(void (Geom2d_BSplineCurve::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom2d_BSplineCurve::*)( std::ostream & , Standard_Integer ) const>(&Geom2d_BSplineCurve::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
.def("PeriodicNormalization",
[]( Geom2d_BSplineCurve &self ){
Standard_Real U;
self.PeriodicNormalization(U);
return std::make_tuple(U); },
R"#(Computes the parameter normalized within the "first" period of this BSpline curve, if it is periodic: the returned value is in the range Param1 and Param1 + Period, where: - Param1 is the "first parameter", and - Period the period of this BSpline curve. Note: If this curve is not periodic, U is not modified.)#"
)
.def("MovePoint",
[]( Geom2d_BSplineCurve &self , const Standard_Real U,const gp_Pnt2d & P,const Standard_Integer Index1,const Standard_Integer Index2 ){
Standard_Integer FirstModifiedPole;
Standard_Integer LastModifiedPole;
self.MovePoint(U,P,Index1,Index2,FirstModifiedPole,LastModifiedPole);
return std::make_tuple(FirstModifiedPole,LastModifiedPole); },
R"#(Moves the point of parameter U of this BSpline curve to P. Index1 and Index2 are the indexes in the table of poles of this BSpline curve of the first and last poles designated to be moved. FirstModifiedPole and LastModifiedPole are the indexes of the first and last poles, which are effectively modified. In the event of incompatibility between Index1, Index2 and the value U: - no change is made to this BSpline curve, and - the FirstModifiedPole and LastModifiedPole are returned null. Exceptions Standard_OutOfRange if: - Index1 is greater than or equal to Index2, or - Index1 or Index2 is less than 1 or greater than the number of poles of this BSpline curve.)#" , py::arg("U"), py::arg("P"), py::arg("Index1"), py::arg("Index2")
)
.def("MovePointAndTangent",
[]( Geom2d_BSplineCurve &self , const Standard_Real U,const gp_Pnt2d & P,const gp_Vec2d & Tangent,const Standard_Real Tolerance,const Standard_Integer StartingCondition,const Standard_Integer EndingCondition ){
Standard_Integer ErrorStatus;
self.MovePointAndTangent(U,P,Tangent,Tolerance,StartingCondition,EndingCondition,ErrorStatus);
return std::make_tuple(ErrorStatus); },
R"#(Move a point with parameter U to P. and makes it tangent at U be Tangent. StartingCondition = -1 means first can move EndingCondition = -1 means last point can move StartingCondition = 0 means the first point cannot move EndingCondition = 0 means the last point cannot move StartingCondition = 1 means the first point and tangent cannot move EndingCondition = 1 means the last point and tangent cannot move and so forth ErrorStatus != 0 means that there are not enough degree of freedom with the constrain to deform the curve accordingly)#" , py::arg("U"), py::arg("P"), py::arg("Tangent"), py::arg("Tolerance"), py::arg("StartingCondition"), py::arg("EndingCondition")
)
.def("LocateU",
[]( Geom2d_BSplineCurve &self , const Standard_Real U,const Standard_Real ParametricTolerance,const Standard_Boolean WithKnotRepetition ){
Standard_Integer I1;
Standard_Integer I2;
self.LocateU(U,ParametricTolerance,I1,I2,WithKnotRepetition);
return std::make_tuple(I1,I2); },
R"#(Locates the parametric value U in the sequence of knots. If "WithKnotRepetition" is True we consider the knot's representation with repetition of multiple knot value, otherwise we consider the knot's representation with no repetition of multiple knot values. Knots (I1) <= U <= Knots (I2) . if I1 = I2 U is a knot value (the tolerance criterion ParametricTolerance is used). . if I1 < 1 => U < Knots (1) - Abs(ParametricTolerance) . if I2 > NbKnots => U > Knots (NbKnots) + Abs(ParametricTolerance))#" , py::arg("U"), py::arg("ParametricTolerance"), py::arg("WithKnotRepetition")=static_cast<const Standard_Boolean>(Standard_False)
)
.def("Resolution",
[]( Geom2d_BSplineCurve &self , const Standard_Real ToleranceUV ){
Standard_Real UTolerance;
self.Resolution(ToleranceUV,UTolerance);
return std::make_tuple(UTolerance); },
R"#(Computes for this BSpline curve the parametric tolerance UTolerance for a given tolerance Tolerance3D (relative to dimensions in the plane). If f(t) is the equation of this BSpline curve, UTolerance ensures that: | t1 - t0| < Utolerance ===> |f(t1) - f(t0)| < ToleranceUV)#" , py::arg("ToleranceUV")
)
// static methods
.def_static("MaxDegree_s",
(Standard_Integer (*)() ) static_cast<Standard_Integer (*)() >(&Geom2d_BSplineCurve::MaxDegree),
R"#(Returns the value of the maximum degree of the normalized B-spline basis functions in this package.)#"
)
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_BSplineCurve::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_BSplineCurve::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Knots",
(const TColStd_Array1OfReal & (Geom2d_BSplineCurve::*)() const) static_cast<const TColStd_Array1OfReal & (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::Knots),
R"#(returns the knot values of the B-spline curve;)#"
, py::return_value_policy::reference_internal
)
.def("KnotSequence",
(const TColStd_Array1OfReal & (Geom2d_BSplineCurve::*)() const) static_cast<const TColStd_Array1OfReal & (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::KnotSequence),
R"#(Returns the knots sequence. In this sequence the knots with a multiplicity greater than 1 are repeated. Example : K = {k1, k1, k1, k2, k3, k3, k4, k4, k4})#"
, py::return_value_policy::reference_internal
)
.def("Multiplicities",
(const TColStd_Array1OfInteger & (Geom2d_BSplineCurve::*)() const) static_cast<const TColStd_Array1OfInteger & (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::Multiplicities),
R"#(returns the multiplicity of the knots of the curve.)#"
, py::return_value_policy::reference_internal
)
.def("Poles",
(const TColgp_Array1OfPnt2d & (Geom2d_BSplineCurve::*)() const) static_cast<const TColgp_Array1OfPnt2d & (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::Poles),
R"#(Returns the poles of the B-spline curve;)#"
, py::return_value_policy::reference_internal
)
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom2d_BSplineCurve::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::DynamicType),
R"#(None)#"
)
;
// Class Geom2d_BezierCurve from ./opencascade/Geom2d_BezierCurve.hxx
klass = m.attr("Geom2d_BezierCurve");
// nested enums
static_cast<py::class_<Geom2d_BezierCurve ,opencascade::handle<Geom2d_BezierCurve> , Geom2d_BoundedCurve >>(klass)
// constructors
.def(py::init< const NCollection_Array1<gp_Pnt2d> & >() , py::arg("CurvePoles") )
.def(py::init< const NCollection_Array1<gp_Pnt2d> &, const NCollection_Array1<Standard_Real> & >() , py::arg("CurvePoles"), py::arg("PoleWeights") )
// custom constructors
// methods
.def("Increase",
(void (Geom2d_BezierCurve::*)( const Standard_Integer ) ) static_cast<void (Geom2d_BezierCurve::*)( const Standard_Integer ) >(&Geom2d_BezierCurve::Increase),
R"#(Increases the degree of a bezier curve. Degree is the new degree of <me>. raises ConstructionError if Degree is greater than MaxDegree or lower than 2 or lower than the initial degree of <me>.)#" , py::arg("Degree")
)
.def("InsertPoleAfter",
(void (Geom2d_BezierCurve::*)( const Standard_Integer , const gp_Pnt2d & , const Standard_Real ) ) static_cast<void (Geom2d_BezierCurve::*)( const Standard_Integer , const gp_Pnt2d & , const Standard_Real ) >(&Geom2d_BezierCurve::InsertPoleAfter),
R"#(Inserts a pole with its weight in the set of poles after the pole of range Index. If the curve was non rational it can become rational if all the weights are not identical. Raised if Index is not in the range [0, NbPoles])#" , py::arg("Index"), py::arg("P"), py::arg("Weight")=static_cast<const Standard_Real>(1.0)
)
.def("InsertPoleBefore",
(void (Geom2d_BezierCurve::*)( const Standard_Integer , const gp_Pnt2d & , const Standard_Real ) ) static_cast<void (Geom2d_BezierCurve::*)( const Standard_Integer , const gp_Pnt2d & , const Standard_Real ) >(&Geom2d_BezierCurve::InsertPoleBefore),
R"#(Inserts a pole with its weight in the set of poles after the pole of range Index. If the curve was non rational it can become rational if all the weights are not identical. Raised if Index is not in the range [1, NbPoles+1])#" , py::arg("Index"), py::arg("P"), py::arg("Weight")=static_cast<const Standard_Real>(1.0)
)
.def("RemovePole",
(void (Geom2d_BezierCurve::*)( const Standard_Integer ) ) static_cast<void (Geom2d_BezierCurve::*)( const Standard_Integer ) >(&Geom2d_BezierCurve::RemovePole),
R"#(Removes the pole of range Index. If the curve was rational it can become non rational. Raised if Index is not in the range [1, NbPoles])#" , py::arg("Index")
)
.def("Reverse",
(void (Geom2d_BezierCurve::*)() ) static_cast<void (Geom2d_BezierCurve::*)() >(&Geom2d_BezierCurve::Reverse),
R"#(Reverses the direction of parametrization of <me> Value (NewU) = Value (1 - OldU))#"
)
.def("ReversedParameter",
(Standard_Real (Geom2d_BezierCurve::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom2d_BezierCurve::*)( const Standard_Real ) const>(&Geom2d_BezierCurve::ReversedParameter),
R"#(Returns the parameter on the reversed curve for the point of parameter U on <me>.)#" , py::arg("U")
)
.def("Segment",
(void (Geom2d_BezierCurve::*)( const Standard_Real , const Standard_Real ) ) static_cast<void (Geom2d_BezierCurve::*)( const Standard_Real , const Standard_Real ) >(&Geom2d_BezierCurve::Segment),
R"#(Segments the curve between U1 and U2 which can be out of the bounds of the curve. The curve is oriented from U1 to U2. The control points are modified, the first and the last point are not the same but the parametrization range is [0, 1] else it could not be a Bezier curve. Warnings : Even if <me> is not closed it can become closed after the segmentation for example if U1 or U2 are out of the bounds of the curve <me> or if the curve makes loop. After the segmentation the length of a curve can be null.)#" , py::arg("U1"), py::arg("U2")
)
.def("SetPole",
(void (Geom2d_BezierCurve::*)( const Standard_Integer , const gp_Pnt2d & ) ) static_cast<void (Geom2d_BezierCurve::*)( const Standard_Integer , const gp_Pnt2d & ) >(&Geom2d_BezierCurve::SetPole),
R"#(Substitutes the pole of range index with P. If the curve <me> is rational the weight of range Index is not modified. raiseD if Index is not in the range [1, NbPoles])#" , py::arg("Index"), py::arg("P")
)
.def("SetPole",
(void (Geom2d_BezierCurve::*)( const Standard_Integer , const gp_Pnt2d & , const Standard_Real ) ) static_cast<void (Geom2d_BezierCurve::*)( const Standard_Integer , const gp_Pnt2d & , const Standard_Real ) >(&Geom2d_BezierCurve::SetPole),
R"#(Substitutes the pole and the weights of range Index. If the curve <me> is not rational it can become rational if all the weights are not identical. If the curve was rational it can become non rational if all the weights are identical. Raised if Index is not in the range [1, NbPoles] Raised if Weight <= Resolution from package gp)#" , py::arg("Index"), py::arg("P"), py::arg("Weight")
)
.def("SetWeight",
(void (Geom2d_BezierCurve::*)( const Standard_Integer , const Standard_Real ) ) static_cast<void (Geom2d_BezierCurve::*)( const Standard_Integer , const Standard_Real ) >(&Geom2d_BezierCurve::SetWeight),
R"#(Changes the weight of the pole of range Index. If the curve <me> is not rational it can become rational if all the weights are not identical. If the curve was rational it can become non rational if all the weights are identical. Raised if Index is not in the range [1, NbPoles] Raised if Weight <= Resolution from package gp)#" , py::arg("Index"), py::arg("Weight")
)
.def("IsClosed",
(Standard_Boolean (Geom2d_BezierCurve::*)() const) static_cast<Standard_Boolean (Geom2d_BezierCurve::*)() const>(&Geom2d_BezierCurve::IsClosed),
R"#(Returns True if the distance between the first point and the last point of the curve is lower or equal to the Resolution from package gp.)#"
)
.def("IsCN",
(Standard_Boolean (Geom2d_BezierCurve::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom2d_BezierCurve::*)( const Standard_Integer ) const>(&Geom2d_BezierCurve::IsCN),
R"#(Continuity of the curve, returns True.)#" , py::arg("N")
)
.def("IsPeriodic",
(Standard_Boolean (Geom2d_BezierCurve::*)() const) static_cast<Standard_Boolean (Geom2d_BezierCurve::*)() const>(&Geom2d_BezierCurve::IsPeriodic),
R"#(Returns False. A BezierCurve cannot be periodic in this package)#"
)
.def("IsRational",
(Standard_Boolean (Geom2d_BezierCurve::*)() const) static_cast<Standard_Boolean (Geom2d_BezierCurve::*)() const>(&Geom2d_BezierCurve::IsRational),
R"#(Returns false if all the weights are identical. The tolerance criterion is Resolution from package gp.)#"
)
.def("Continuity",
(GeomAbs_Shape (Geom2d_BezierCurve::*)() const) static_cast<GeomAbs_Shape (Geom2d_BezierCurve::*)() const>(&Geom2d_BezierCurve::Continuity),
R"#(Returns GeomAbs_CN, which is the continuity of any Bezier curve.)#"
)
.def("Degree",
(Standard_Integer (Geom2d_BezierCurve::*)() const) static_cast<Standard_Integer (Geom2d_BezierCurve::*)() const>(&Geom2d_BezierCurve::Degree),
R"#(Returns the polynomial degree of the curve. It is the number of poles less one. In this package the Degree of a Bezier curve cannot be greater than "MaxDegree".)#"
)
.def("D0",
(void (Geom2d_BezierCurve::*)( const Standard_Real , gp_Pnt2d & ) const) static_cast<void (Geom2d_BezierCurve::*)( const Standard_Real , gp_Pnt2d & ) const>(&Geom2d_BezierCurve::D0),
R"#(None)#" , py::arg("U"), py::arg("P")
)
.def("D1",
(void (Geom2d_BezierCurve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_BezierCurve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & ) const>(&Geom2d_BezierCurve::D1),
R"#(None)#" , py::arg("U"), py::arg("P"), py::arg("V1")
)
.def("D2",
(void (Geom2d_BezierCurve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_BezierCurve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) const>(&Geom2d_BezierCurve::D2),
R"#(None)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2")
)
.def("D3",
(void (Geom2d_BezierCurve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_BezierCurve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) const>(&Geom2d_BezierCurve::D3),
R"#(None)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2"), py::arg("V3")
)
.def("DN",
(gp_Vec2d (Geom2d_BezierCurve::*)( const Standard_Real , const Standard_Integer ) const) static_cast<gp_Vec2d (Geom2d_BezierCurve::*)( const Standard_Real , const Standard_Integer ) const>(&Geom2d_BezierCurve::DN),
R"#(For this Bezier curve, computes - the point P of parameter U, or - the point P and one or more of the following values: - V1, the first derivative vector, - V2, the second derivative vector, - V3, the third derivative vector. Note: the parameter U can be outside the bounds of the curve. Raises RangeError if N < 1.)#" , py::arg("U"), py::arg("N")
)
.def("EndPoint",
(gp_Pnt2d (Geom2d_BezierCurve::*)() const) static_cast<gp_Pnt2d (Geom2d_BezierCurve::*)() const>(&Geom2d_BezierCurve::EndPoint),
R"#(Returns the end point or start point of this Bezier curve.)#"
)
.def("FirstParameter",
(Standard_Real (Geom2d_BezierCurve::*)() const) static_cast<Standard_Real (Geom2d_BezierCurve::*)() const>(&Geom2d_BezierCurve::FirstParameter),
R"#(Returns the value of the first parameter of this Bezier curve. This is 0.0, which gives the start point of this Bezier curve.)#"
)
.def("LastParameter",
(Standard_Real (Geom2d_BezierCurve::*)() const) static_cast<Standard_Real (Geom2d_BezierCurve::*)() const>(&Geom2d_BezierCurve::LastParameter),
R"#(Returns the value of the last parameter of this Bezier curve. This is 1.0, which gives the end point of this Bezier curve.)#"
)
.def("NbPoles",
(Standard_Integer (Geom2d_BezierCurve::*)() const) static_cast<Standard_Integer (Geom2d_BezierCurve::*)() const>(&Geom2d_BezierCurve::NbPoles),
R"#(Returns the number of poles for this Bezier curve.)#"
)
.def("Pole",
(const gp_Pnt2d & (Geom2d_BezierCurve::*)( const Standard_Integer ) const) static_cast<const gp_Pnt2d & (Geom2d_BezierCurve::*)( const Standard_Integer ) const>(&Geom2d_BezierCurve::Pole),
R"#(Returns the pole of range Index. Raised if Index is not in the range [1, NbPoles])#" , py::arg("Index")
)
.def("Poles",
(void (Geom2d_BezierCurve::*)( NCollection_Array1<gp_Pnt2d> & ) const) static_cast<void (Geom2d_BezierCurve::*)( NCollection_Array1<gp_Pnt2d> & ) const>(&Geom2d_BezierCurve::Poles),
R"#(Returns all the poles of the curve.)#" , py::arg("P")
)
.def("StartPoint",
(gp_Pnt2d (Geom2d_BezierCurve::*)() const) static_cast<gp_Pnt2d (Geom2d_BezierCurve::*)() const>(&Geom2d_BezierCurve::StartPoint),
R"#(Returns Value (U=1), it is the first control point of the curve.)#"
)
.def("Weight",
(Standard_Real (Geom2d_BezierCurve::*)( const Standard_Integer ) const) static_cast<Standard_Real (Geom2d_BezierCurve::*)( const Standard_Integer ) const>(&Geom2d_BezierCurve::Weight),
R"#(Returns the weight of range Index. Raised if Index is not in the range [1, NbPoles])#" , py::arg("Index")
)
.def("Weights",
(void (Geom2d_BezierCurve::*)( NCollection_Array1<Standard_Real> & ) const) static_cast<void (Geom2d_BezierCurve::*)( NCollection_Array1<Standard_Real> & ) const>(&Geom2d_BezierCurve::Weights),
R"#(Returns all the weights of the curve.)#" , py::arg("W")
)
.def("Weights",
(const TColStd_Array1OfReal * (Geom2d_BezierCurve::*)() const) static_cast<const TColStd_Array1OfReal * (Geom2d_BezierCurve::*)() const>(&Geom2d_BezierCurve::Weights),
R"#(Returns all the weights of the curve.)#"
)
.def("Transform",
(void (Geom2d_BezierCurve::*)( const gp_Trsf2d & ) ) static_cast<void (Geom2d_BezierCurve::*)( const gp_Trsf2d & ) >(&Geom2d_BezierCurve::Transform),
R"#(Applies the transformation T to this Bezier curve.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom2d_Geometry> (Geom2d_BezierCurve::*)() const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_BezierCurve::*)() const>(&Geom2d_BezierCurve::Copy),
R"#(Creates a new object which is a copy of this Bezier curve.)#"
)
.def("DumpJson",
(void (Geom2d_BezierCurve::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom2d_BezierCurve::*)( std::ostream & , Standard_Integer ) const>(&Geom2d_BezierCurve::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
.def("Resolution",
[]( Geom2d_BezierCurve &self , const Standard_Real ToleranceUV ){
Standard_Real UTolerance;
self.Resolution(ToleranceUV,UTolerance);
return std::make_tuple(UTolerance); },
R"#(Computes for this Bezier curve the parametric tolerance UTolerance for a given tolerance Tolerance3D (relative to dimensions in the plane). If f(t) is the equation of this Bezier curve, UTolerance ensures that | t1 - t0| < Utolerance ===> |f(t1) - f(t0)| < ToleranceUV)#" , py::arg("ToleranceUV")
)
// static methods
.def_static("MaxDegree_s",
(Standard_Integer (*)() ) static_cast<Standard_Integer (*)() >(&Geom2d_BezierCurve::MaxDegree),
R"#(Returns the value of the maximum polynomial degree of a BezierCurve. This value is 25.)#"
)
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_BezierCurve::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_BezierCurve::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Poles",
(const TColgp_Array1OfPnt2d & (Geom2d_BezierCurve::*)() const) static_cast<const TColgp_Array1OfPnt2d & (Geom2d_BezierCurve::*)() const>(&Geom2d_BezierCurve::Poles),
R"#(Returns all the poles of the curve.)#"
, py::return_value_policy::reference_internal
)
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom2d_BezierCurve::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_BezierCurve::*)() const>(&Geom2d_BezierCurve::DynamicType),
R"#(None)#"
)
;
// Class Geom2d_Circle from ./opencascade/Geom2d_Circle.hxx
klass = m.attr("Geom2d_Circle");
// nested enums
static_cast<py::class_<Geom2d_Circle ,opencascade::handle<Geom2d_Circle> , Geom2d_Conic >>(klass)
// constructors
.def(py::init< const gp_Circ2d & >() , py::arg("C") )
.def(py::init< const gp_Ax2d &,const Standard_Real,const Standard_Boolean >() , py::arg("A"), py::arg("Radius"), py::arg("Sense")=static_cast<const Standard_Boolean>(Standard_True) )
.def(py::init< const gp_Ax22d &,const Standard_Real >() , py::arg("A"), py::arg("Radius") )
// custom constructors
// methods
.def("SetCirc2d",
(void (Geom2d_Circle::*)( const gp_Circ2d & ) ) static_cast<void (Geom2d_Circle::*)( const gp_Circ2d & ) >(&Geom2d_Circle::SetCirc2d),
R"#(Converts the gp_Circ2d circle C into this circle.)#" , py::arg("C")
)
.def("SetRadius",
(void (Geom2d_Circle::*)( const Standard_Real ) ) static_cast<void (Geom2d_Circle::*)( const Standard_Real ) >(&Geom2d_Circle::SetRadius),
R"#(None)#" , py::arg("R")
)
.def("Circ2d",
(gp_Circ2d (Geom2d_Circle::*)() const) static_cast<gp_Circ2d (Geom2d_Circle::*)() const>(&Geom2d_Circle::Circ2d),
R"#(Returns the non persistent circle from gp with the same geometric properties as <me>.)#"
)
.def("Radius",
(Standard_Real (Geom2d_Circle::*)() const) static_cast<Standard_Real (Geom2d_Circle::*)() const>(&Geom2d_Circle::Radius),
R"#(Returns the radius of this circle.)#"
)
.def("ReversedParameter",
(Standard_Real (Geom2d_Circle::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom2d_Circle::*)( const Standard_Real ) const>(&Geom2d_Circle::ReversedParameter),
R"#(Computes the parameter on the reversed circle for the point of parameter U on this circle. For a circle, the returned value is: 2.*Pi - U.)#" , py::arg("U")
)
.def("Eccentricity",
(Standard_Real (Geom2d_Circle::*)() const) static_cast<Standard_Real (Geom2d_Circle::*)() const>(&Geom2d_Circle::Eccentricity),
R"#(Returns 0., which is the eccentricity of any circle.)#"
)
.def("FirstParameter",
(Standard_Real (Geom2d_Circle::*)() const) static_cast<Standard_Real (Geom2d_Circle::*)() const>(&Geom2d_Circle::FirstParameter),
R"#(Returns 0.0)#"
)
.def("LastParameter",
(Standard_Real (Geom2d_Circle::*)() const) static_cast<Standard_Real (Geom2d_Circle::*)() const>(&Geom2d_Circle::LastParameter),
R"#(Returns 2*PI.)#"
)
.def("IsClosed",
(Standard_Boolean (Geom2d_Circle::*)() const) static_cast<Standard_Boolean (Geom2d_Circle::*)() const>(&Geom2d_Circle::IsClosed),
R"#(returns True.)#"
)
.def("IsPeriodic",
(Standard_Boolean (Geom2d_Circle::*)() const) static_cast<Standard_Boolean (Geom2d_Circle::*)() const>(&Geom2d_Circle::IsPeriodic),
R"#(returns True. The period of a circle is 2.*Pi.)#"
)
.def("D0",
(void (Geom2d_Circle::*)( const Standard_Real , gp_Pnt2d & ) const) static_cast<void (Geom2d_Circle::*)( const Standard_Real , gp_Pnt2d & ) const>(&Geom2d_Circle::D0),
R"#(Returns in P the point of parameter U. P = C + R * Cos (U) * XDir + R * Sin (U) * YDir where C is the center of the circle , XDir the XDirection and YDir the YDirection of the circle's local coordinate system.)#" , py::arg("U"), py::arg("P")
)
.def("D1",
(void (Geom2d_Circle::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_Circle::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & ) const>(&Geom2d_Circle::D1),
R"#(Returns the point P of parameter U and the first derivative V1.)#" , py::arg("U"), py::arg("P"), py::arg("V1")
)
.def("D2",
(void (Geom2d_Circle::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_Circle::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) const>(&Geom2d_Circle::D2),
R"#(Returns the point P of parameter U, the first and second derivatives V1 and V2.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2")
)
.def("D3",
(void (Geom2d_Circle::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_Circle::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) const>(&Geom2d_Circle::D3),
R"#(Returns the point P of parameter u, the first second and third derivatives V1 V2 and V3.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2"), py::arg("V3")
)
.def("DN",
(gp_Vec2d (Geom2d_Circle::*)( const Standard_Real , const Standard_Integer ) const) static_cast<gp_Vec2d (Geom2d_Circle::*)( const Standard_Real , const Standard_Integer ) const>(&Geom2d_Circle::DN),
R"#(For the point of parameter U of this circle, computes the vector corresponding to the Nth derivative. Exceptions: Standard_RangeError if N is less than 1.)#" , py::arg("U"), py::arg("N")
)
.def("Transform",
(void (Geom2d_Circle::*)( const gp_Trsf2d & ) ) static_cast<void (Geom2d_Circle::*)( const gp_Trsf2d & ) >(&Geom2d_Circle::Transform),
R"#(Applies the transformation T to this circle.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom2d_Geometry> (Geom2d_Circle::*)() const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_Circle::*)() const>(&Geom2d_Circle::Copy),
R"#(Creates a new object which is a copy of this circle.)#"
)
.def("DumpJson",
(void (Geom2d_Circle::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom2d_Circle::*)( std::ostream & , Standard_Integer ) const>(&Geom2d_Circle::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_Circle::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_Circle::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom2d_Circle::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_Circle::*)() const>(&Geom2d_Circle::DynamicType),
R"#(None)#"
)
;
// Class Geom2d_Ellipse from ./opencascade/Geom2d_Ellipse.hxx
klass = m.attr("Geom2d_Ellipse");
// nested enums
static_cast<py::class_<Geom2d_Ellipse ,opencascade::handle<Geom2d_Ellipse> , Geom2d_Conic >>(klass)
// constructors
.def(py::init< const gp_Elips2d & >() , py::arg("E") )
.def(py::init< const gp_Ax2d &,const Standard_Real,const Standard_Real,const Standard_Boolean >() , py::arg("MajorAxis"), py::arg("MajorRadius"), py::arg("MinorRadius"), py::arg("Sense")=static_cast<const Standard_Boolean>(Standard_True) )
.def(py::init< const gp_Ax22d &,const Standard_Real,const Standard_Real >() , py::arg("Axis"), py::arg("MajorRadius"), py::arg("MinorRadius") )
// custom constructors
// methods
.def("SetElips2d",
(void (Geom2d_Ellipse::*)( const gp_Elips2d & ) ) static_cast<void (Geom2d_Ellipse::*)( const gp_Elips2d & ) >(&Geom2d_Ellipse::SetElips2d),
R"#(Converts the gp_Elips2d ellipse E into this ellipse.)#" , py::arg("E")
)
.def("SetMajorRadius",
(void (Geom2d_Ellipse::*)( const Standard_Real ) ) static_cast<void (Geom2d_Ellipse::*)( const Standard_Real ) >(&Geom2d_Ellipse::SetMajorRadius),
R"#(Assigns a value to the major radius of this ellipse. Exceptions Standard_ConstructionError if: - the major radius of this ellipse becomes less than the minor radius, or - MinorRadius is less than 0.)#" , py::arg("MajorRadius")
)
.def("SetMinorRadius",
(void (Geom2d_Ellipse::*)( const Standard_Real ) ) static_cast<void (Geom2d_Ellipse::*)( const Standard_Real ) >(&Geom2d_Ellipse::SetMinorRadius),
R"#(Assigns a value to the minor radius of this ellipse. Exceptions Standard_ConstructionError if: - the major radius of this ellipse becomes less than the minor radius, or - MinorRadius is less than 0.)#" , py::arg("MinorRadius")
)
.def("Elips2d",
(gp_Elips2d (Geom2d_Ellipse::*)() const) static_cast<gp_Elips2d (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::Elips2d),
R"#(Converts this ellipse into a gp_Elips2d ellipse.)#"
)
.def("ReversedParameter",
(Standard_Real (Geom2d_Ellipse::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom2d_Ellipse::*)( const Standard_Real ) const>(&Geom2d_Ellipse::ReversedParameter),
R"#(Computes the parameter on the reversed ellipse for the point of parameter U on this ellipse. For an ellipse, the returned value is: 2.*Pi - U.)#" , py::arg("U")
)
.def("Directrix1",
(gp_Ax2d (Geom2d_Ellipse::*)() const) static_cast<gp_Ax2d (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::Directrix1),
R"#(Computes the directrices of this ellipse. This directrix is the line normal to the XAxis of the ellipse in the local plane (Z = 0) at a distance d = MajorRadius / e from the center of the ellipse, where e is the eccentricity of the ellipse. This line is parallel to the "YAxis". The intersection point between directrix1 and the "XAxis" is the "Location" point of the directrix1. This point is on the positive side of the "XAxis". Raises ConstructionError if Eccentricity = 0.0. (The ellipse degenerates into a circle))#"
)
.def("Directrix2",
(gp_Ax2d (Geom2d_Ellipse::*)() const) static_cast<gp_Ax2d (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::Directrix2),
R"#(This line is obtained by the symmetrical transformation of "Directrix1" with respect to the "YAxis" of the ellipse. Raises ConstructionError if Eccentricity = 0.0. (The ellipse degenerates into a circle).)#"
)
.def("Eccentricity",
(Standard_Real (Geom2d_Ellipse::*)() const) static_cast<Standard_Real (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::Eccentricity),
R"#(Returns the eccentricity of the ellipse between 0.0 and 1.0 If f is the distance between the center of the ellipse and the Focus1 then the eccentricity e = f / MajorRadius. Returns 0 if MajorRadius = 0)#"
)
.def("Focal",
(Standard_Real (Geom2d_Ellipse::*)() const) static_cast<Standard_Real (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::Focal),
R"#(Computes the focal distance. The focal distance is the distance between the center and a focus of the ellipse.)#"
)
.def("Focus1",
(gp_Pnt2d (Geom2d_Ellipse::*)() const) static_cast<gp_Pnt2d (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::Focus1),
R"#(Returns the first focus of the ellipse. This focus is on the positive side of the "XAxis" of the ellipse.)#"
)
.def("Focus2",
(gp_Pnt2d (Geom2d_Ellipse::*)() const) static_cast<gp_Pnt2d (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::Focus2),
R"#(Returns the second focus of the ellipse. This focus is on the negative side of the "XAxis" of the ellipse.)#"
)
.def("MajorRadius",
(Standard_Real (Geom2d_Ellipse::*)() const) static_cast<Standard_Real (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::MajorRadius),
R"#(Returns the major radius of this ellipse.)#"
)
.def("MinorRadius",
(Standard_Real (Geom2d_Ellipse::*)() const) static_cast<Standard_Real (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::MinorRadius),
R"#(Returns the minor radius of this ellipse.)#"
)
.def("Parameter",
(Standard_Real (Geom2d_Ellipse::*)() const) static_cast<Standard_Real (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::Parameter),
R"#(Computes the parameter of this ellipse. This value is given by the formula p = (1 - e * e) * MajorRadius where e is the eccentricity of the ellipse. Returns 0 if MajorRadius = 0)#"
)
.def("FirstParameter",
(Standard_Real (Geom2d_Ellipse::*)() const) static_cast<Standard_Real (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::FirstParameter),
R"#(Returns the value of the first parameter of this ellipse. This is 0.0, which gives the start point of this ellipse. The start point and end point of an ellipse are coincident.)#"
)
.def("LastParameter",
(Standard_Real (Geom2d_Ellipse::*)() const) static_cast<Standard_Real (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::LastParameter),
R"#(Returns the value of the last parameter of this ellipse. This is 2.*Pi, which gives the end point of this ellipse. The start point and end point of an ellipse are coincident.)#"
)
.def("IsClosed",
(Standard_Boolean (Geom2d_Ellipse::*)() const) static_cast<Standard_Boolean (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::IsClosed),
R"#(return True.)#"
)
.def("IsPeriodic",
(Standard_Boolean (Geom2d_Ellipse::*)() const) static_cast<Standard_Boolean (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::IsPeriodic),
R"#(return True.)#"
)
.def("D0",
(void (Geom2d_Ellipse::*)( const Standard_Real , gp_Pnt2d & ) const) static_cast<void (Geom2d_Ellipse::*)( const Standard_Real , gp_Pnt2d & ) const>(&Geom2d_Ellipse::D0),
R"#(Returns in P the point of parameter U. P = C + MajorRadius * Cos (U) * XDir + MinorRadius * Sin (U) * YDir where C is the center of the ellipse , XDir the direction of the "XAxis" and "YDir" the "YAxis" of the ellipse.)#" , py::arg("U"), py::arg("P")
)
.def("D1",
(void (Geom2d_Ellipse::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_Ellipse::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & ) const>(&Geom2d_Ellipse::D1),
R"#(None)#" , py::arg("U"), py::arg("P"), py::arg("V1")
)
.def("D2",
(void (Geom2d_Ellipse::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_Ellipse::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) const>(&Geom2d_Ellipse::D2),
R"#(Returns the point P of parameter U. The vectors V1 and V2 are the first and second derivatives at this point.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2")
)
.def("D3",
(void (Geom2d_Ellipse::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_Ellipse::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) const>(&Geom2d_Ellipse::D3),
R"#(Returns the point P of parameter U, the first second and third derivatives V1 V2 and V3.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2"), py::arg("V3")
)
.def("DN",
(gp_Vec2d (Geom2d_Ellipse::*)( const Standard_Real , const Standard_Integer ) const) static_cast<gp_Vec2d (Geom2d_Ellipse::*)( const Standard_Real , const Standard_Integer ) const>(&Geom2d_Ellipse::DN),
R"#(For the point of parameter U of this ellipse, computes the vector corresponding to the Nth derivative. Exceptions Standard_RangeError if N is less than 1.)#" , py::arg("U"), py::arg("N")
)
.def("Transform",
(void (Geom2d_Ellipse::*)( const gp_Trsf2d & ) ) static_cast<void (Geom2d_Ellipse::*)( const gp_Trsf2d & ) >(&Geom2d_Ellipse::Transform),
R"#(Applies the transformation T to this ellipse.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom2d_Geometry> (Geom2d_Ellipse::*)() const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::Copy),
R"#(Creates a new object which is a copy of this ellipse.)#"
)
.def("DumpJson",
(void (Geom2d_Ellipse::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom2d_Ellipse::*)( std::ostream & , Standard_Integer ) const>(&Geom2d_Ellipse::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_Ellipse::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_Ellipse::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom2d_Ellipse::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::DynamicType),
R"#(None)#"
)
;
// Class Geom2d_Hyperbola from ./opencascade/Geom2d_Hyperbola.hxx
klass = m.attr("Geom2d_Hyperbola");
// nested enums
static_cast<py::class_<Geom2d_Hyperbola ,opencascade::handle<Geom2d_Hyperbola> , Geom2d_Conic >>(klass)
// constructors
.def(py::init< const gp_Hypr2d & >() , py::arg("H") )
.def(py::init< const gp_Ax2d &,const Standard_Real,const Standard_Real,const Standard_Boolean >() , py::arg("MajorAxis"), py::arg("MajorRadius"), py::arg("MinorRadius"), py::arg("Sense")=static_cast<const Standard_Boolean>(Standard_True) )
.def(py::init< const gp_Ax22d &,const Standard_Real,const Standard_Real >() , py::arg("Axis"), py::arg("MajorRadius"), py::arg("MinorRadius") )
// custom constructors
// methods
.def("SetHypr2d",
(void (Geom2d_Hyperbola::*)( const gp_Hypr2d & ) ) static_cast<void (Geom2d_Hyperbola::*)( const gp_Hypr2d & ) >(&Geom2d_Hyperbola::SetHypr2d),
R"#(Converts the gp_Hypr2d hyperbola H into this hyperbola.)#" , py::arg("H")
)
.def("SetMajorRadius",
(void (Geom2d_Hyperbola::*)( const Standard_Real ) ) static_cast<void (Geom2d_Hyperbola::*)( const Standard_Real ) >(&Geom2d_Hyperbola::SetMajorRadius),
R"#(Assigns a value to the major or minor radius of this hyperbola. Exceptions Standard_ConstructionError if: - MajorRadius is less than 0.0, - MinorRadius is less than 0.0.)#" , py::arg("MajorRadius")
)
.def("SetMinorRadius",
(void (Geom2d_Hyperbola::*)( const Standard_Real ) ) static_cast<void (Geom2d_Hyperbola::*)( const Standard_Real ) >(&Geom2d_Hyperbola::SetMinorRadius),
R"#(Assigns a value to the major or minor radius of this hyperbola. Exceptions Standard_ConstructionError if: - MajorRadius is less than 0.0, - MinorRadius is less than 0.0.)#" , py::arg("MinorRadius")
)
.def("Hypr2d",
(gp_Hypr2d (Geom2d_Hyperbola::*)() const) static_cast<gp_Hypr2d (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::Hypr2d),
R"#(Converts this hyperbola into a gp_Hypr2d one.)#"
)
.def("ReversedParameter",
(Standard_Real (Geom2d_Hyperbola::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom2d_Hyperbola::*)( const Standard_Real ) const>(&Geom2d_Hyperbola::ReversedParameter),
R"#(Computes the parameter on the reversed hyperbola, for the point of parameter U on this hyperbola. For a hyperbola, the returned value is -U.)#" , py::arg("U")
)
.def("FirstParameter",
(Standard_Real (Geom2d_Hyperbola::*)() const) static_cast<Standard_Real (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::FirstParameter),
R"#(Returns RealFirst from Standard.)#"
)
.def("LastParameter",
(Standard_Real (Geom2d_Hyperbola::*)() const) static_cast<Standard_Real (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::LastParameter),
R"#(returns RealLast from Standard.)#"
)
.def("IsClosed",
(Standard_Boolean (Geom2d_Hyperbola::*)() const) static_cast<Standard_Boolean (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::IsClosed),
R"#(Returns False.)#"
)
.def("IsPeriodic",
(Standard_Boolean (Geom2d_Hyperbola::*)() const) static_cast<Standard_Boolean (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::IsPeriodic),
R"#(return False for an hyperbola.)#"
)
.def("Asymptote1",
(gp_Ax2d (Geom2d_Hyperbola::*)() const) static_cast<gp_Ax2d (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::Asymptote1),
R"#(In the local coordinate system of the hyperbola the equation of the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the equation of the first asymptote is Y = (B/A)*X where A is the major radius of the hyperbola and B is the minor radius of the hyperbola. Raised if MajorRadius = 0.0)#"
)
.def("Asymptote2",
(gp_Ax2d (Geom2d_Hyperbola::*)() const) static_cast<gp_Ax2d (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::Asymptote2),
R"#(In the local coordinate system of the hyperbola the equation of the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the equation of the first asymptote is Y = -(B/A)*X. where A is the major radius of the hyperbola and B is the minor radius of the hyperbola. raised if MajorRadius = 0.0)#"
)
.def("ConjugateBranch1",
(gp_Hypr2d (Geom2d_Hyperbola::*)() const) static_cast<gp_Hypr2d (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::ConjugateBranch1),
R"#(Computes the first conjugate branch relative to this hyperbola. Note: The diagram given under the class purpose indicates where these two branches of hyperbola are positioned in relation to this branch of hyperbola.)#"
)
.def("ConjugateBranch2",
(gp_Hypr2d (Geom2d_Hyperbola::*)() const) static_cast<gp_Hypr2d (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::ConjugateBranch2),
R"#(Computes the second conjugate branch relative to this hyperbola. Note: The diagram given under the class purpose indicates where these two branches of hyperbola are positioned in relation to this branch of hyperbola.)#"
)
.def("Directrix1",
(gp_Ax2d (Geom2d_Hyperbola::*)() const) static_cast<gp_Ax2d (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::Directrix1),
R"#(This directrix is the line normal to the XAxis of the hyperbola in the local plane (Z = 0) at a distance d = MajorRadius / e from the center of the hyperbola, where e is the eccentricity of the hyperbola. This line is parallel to the "YAxis". The intersection point between directrix1 and the "XAxis" is the location point of the directrix1. This point is on the positive side of the "XAxis".)#"
)
.def("Directrix2",
(gp_Ax2d (Geom2d_Hyperbola::*)() const) static_cast<gp_Ax2d (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::Directrix2),
R"#(This line is obtained by the symmetrical transformation of "Directrix1" with respect to the "YAxis" of the hyperbola.)#"
)
.def("Eccentricity",
(Standard_Real (Geom2d_Hyperbola::*)() const) static_cast<Standard_Real (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::Eccentricity),
R"#(Returns the eccentricity of the hyperbola (e > 1). If f is the distance between the location of the hyperbola and the Focus1 then the eccentricity e = f / MajorRadius. raised if MajorRadius = 0.0)#"
)
.def("Focal",
(Standard_Real (Geom2d_Hyperbola::*)() const) static_cast<Standard_Real (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::Focal),
R"#(Computes the focal distance. It is the distance between the two focus of the hyperbola.)#"
)
.def("Focus1",
(gp_Pnt2d (Geom2d_Hyperbola::*)() const) static_cast<gp_Pnt2d (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::Focus1),
R"#(Returns the first focus of the hyperbola. This focus is on the positive side of the "XAxis" of the hyperbola.)#"
)
.def("Focus2",
(gp_Pnt2d (Geom2d_Hyperbola::*)() const) static_cast<gp_Pnt2d (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::Focus2),
R"#(Returns the second focus of the hyperbola. This focus is on the negative side of the "XAxis" of the hyperbola.)#"
)
.def("MajorRadius",
(Standard_Real (Geom2d_Hyperbola::*)() const) static_cast<Standard_Real (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::MajorRadius),
R"#(Returns the major or minor radius of this hyperbola. The major radius is also the distance between the center of the hyperbola and the apex of the main branch (located on the "X Axis" of the hyperbola).)#"
)
.def("MinorRadius",
(Standard_Real (Geom2d_Hyperbola::*)() const) static_cast<Standard_Real (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::MinorRadius),
R"#(Returns the major or minor radius of this hyperbola. The minor radius is also the distance between the center of the hyperbola and the apex of a conjugate branch (located on the "Y Axis" of the hyperbola).)#"
)
.def("OtherBranch",
(gp_Hypr2d (Geom2d_Hyperbola::*)() const) static_cast<gp_Hypr2d (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::OtherBranch),
R"#(Computes the "other" branch of this hyperbola. This is a symmetrical branch with respect to the center of this hyperbola. Note: The diagram given under the class purpose indicates where the "other" branch is positioned in relation to this branch of the hyperbola. ^ YAxis | FirstConjugateBranch | Other | Main ---------------------------- C ------------------------------------------>XAxis Branch | Branch | | SecondConjugateBranch | Warning The major radius can be less than the minor radius.)#"
)
.def("Parameter",
(Standard_Real (Geom2d_Hyperbola::*)() const) static_cast<Standard_Real (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::Parameter),
R"#(Computes the parameter of this hyperbola. The parameter is: p = (e*e - 1) * MajorRadius where e is the eccentricity of this hyperbola and MajorRadius its major radius. Exceptions Standard_DomainError if the major radius of this hyperbola is null.)#"
)
.def("D0",
(void (Geom2d_Hyperbola::*)( const Standard_Real , gp_Pnt2d & ) const) static_cast<void (Geom2d_Hyperbola::*)( const Standard_Real , gp_Pnt2d & ) const>(&Geom2d_Hyperbola::D0),
R"#(Returns in P the point of parameter U. P = C + MajorRadius * Cosh (U) * XDir + MinorRadius * Sinh (U) * YDir where C is the center of the hyperbola , XDir the XDirection and YDir the YDirection of the hyperbola's local coordinate system.)#" , py::arg("U"), py::arg("P")
)
.def("D1",
(void (Geom2d_Hyperbola::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_Hyperbola::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & ) const>(&Geom2d_Hyperbola::D1),
R"#(Returns the point P of parameter U and the first derivative V1.)#" , py::arg("U"), py::arg("P"), py::arg("V1")
)
.def("D2",
(void (Geom2d_Hyperbola::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_Hyperbola::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) const>(&Geom2d_Hyperbola::D2),
R"#(Returns the point P of parameter U, the first and second derivatives V1 and V2.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2")
)
.def("D3",
(void (Geom2d_Hyperbola::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_Hyperbola::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) const>(&Geom2d_Hyperbola::D3),
R"#(Returns the point P of parameter U, the first second and third derivatives V1 V2 and V3.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2"), py::arg("V3")
)
.def("DN",
(gp_Vec2d (Geom2d_Hyperbola::*)( const Standard_Real , const Standard_Integer ) const) static_cast<gp_Vec2d (Geom2d_Hyperbola::*)( const Standard_Real , const Standard_Integer ) const>(&Geom2d_Hyperbola::DN),
R"#(For the point of parameter U of this hyperbola, computes the vector corresponding to the Nth derivative. Exceptions Standard_RangeError if N is less than 1.)#" , py::arg("U"), py::arg("N")
)
.def("Transform",
(void (Geom2d_Hyperbola::*)( const gp_Trsf2d & ) ) static_cast<void (Geom2d_Hyperbola::*)( const gp_Trsf2d & ) >(&Geom2d_Hyperbola::Transform),
R"#(Applies the transformation T to this hyperbola.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom2d_Geometry> (Geom2d_Hyperbola::*)() const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::Copy),
R"#(Creates a new object which is a copy of this hyperbola.)#"
)
.def("DumpJson",
(void (Geom2d_Hyperbola::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom2d_Hyperbola::*)( std::ostream & , Standard_Integer ) const>(&Geom2d_Hyperbola::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_Hyperbola::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_Hyperbola::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom2d_Hyperbola::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::DynamicType),
R"#(None)#"
)
;
// Class Geom2d_Parabola from ./opencascade/Geom2d_Parabola.hxx
klass = m.attr("Geom2d_Parabola");
// nested enums
static_cast<py::class_<Geom2d_Parabola ,opencascade::handle<Geom2d_Parabola> , Geom2d_Conic >>(klass)
// constructors
.def(py::init< const gp_Parab2d & >() , py::arg("Prb") )
.def(py::init< const gp_Ax2d &,const Standard_Real,const Standard_Boolean >() , py::arg("MirrorAxis"), py::arg("Focal"), py::arg("Sense")=static_cast<const Standard_Boolean>(Standard_True) )
.def(py::init< const gp_Ax22d &,const Standard_Real >() , py::arg("Axis"), py::arg("Focal") )
.def(py::init< const gp_Ax2d &,const gp_Pnt2d & >() , py::arg("D"), py::arg("F") )
// custom constructors
// methods
.def("SetFocal",
(void (Geom2d_Parabola::*)( const Standard_Real ) ) static_cast<void (Geom2d_Parabola::*)( const Standard_Real ) >(&Geom2d_Parabola::SetFocal),
R"#(Assigns the value Focal to the focal length of this parabola. Exceptions Standard_ConstructionError if Focal is negative.)#" , py::arg("Focal")
)
.def("SetParab2d",
(void (Geom2d_Parabola::*)( const gp_Parab2d & ) ) static_cast<void (Geom2d_Parabola::*)( const gp_Parab2d & ) >(&Geom2d_Parabola::SetParab2d),
R"#(Converts the gp_Parab2d parabola Prb into this parabola.)#" , py::arg("Prb")
)
.def("Parab2d",
(gp_Parab2d (Geom2d_Parabola::*)() const) static_cast<gp_Parab2d (Geom2d_Parabola::*)() const>(&Geom2d_Parabola::Parab2d),
R"#(Returns the non persistent parabola from gp with the same geometric properties as <me>.)#"
)
.def("ReversedParameter",
(Standard_Real (Geom2d_Parabola::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom2d_Parabola::*)( const Standard_Real ) const>(&Geom2d_Parabola::ReversedParameter),
R"#(Computes the parameter on the reversed parabola for the point of parameter U on this parabola. For a parabola, the returned value is -U.)#" , py::arg("U")
)
.def("FirstParameter",
(Standard_Real (Geom2d_Parabola::*)() const) static_cast<Standard_Real (Geom2d_Parabola::*)() const>(&Geom2d_Parabola::FirstParameter),
R"#(Returns RealFirst from Standard.)#"
)
.def("LastParameter",
(Standard_Real (Geom2d_Parabola::*)() const) static_cast<Standard_Real (Geom2d_Parabola::*)() const>(&Geom2d_Parabola::LastParameter),
R"#(Returns RealLast from Standard.)#"
)
.def("IsClosed",
(Standard_Boolean (Geom2d_Parabola::*)() const) static_cast<Standard_Boolean (Geom2d_Parabola::*)() const>(&Geom2d_Parabola::IsClosed),
R"#(Returns False)#"
)
.def("IsPeriodic",
(Standard_Boolean (Geom2d_Parabola::*)() const) static_cast<Standard_Boolean (Geom2d_Parabola::*)() const>(&Geom2d_Parabola::IsPeriodic),
R"#(Returns False)#"
)
.def("Directrix",
(gp_Ax2d (Geom2d_Parabola::*)() const) static_cast<gp_Ax2d (Geom2d_Parabola::*)() const>(&Geom2d_Parabola::Directrix),
R"#(The directrix is parallel to the "YAxis" of the parabola. The "Location" point of the directrix is the intersection point between the directrix and the symmetry axis ("XAxis") of the parabola.)#"
)
.def("Eccentricity",
(Standard_Real (Geom2d_Parabola::*)() const) static_cast<Standard_Real (Geom2d_Parabola::*)() const>(&Geom2d_Parabola::Eccentricity),
R"#(Returns the eccentricity e = 1.0)#"
)
.def("Focus",
(gp_Pnt2d (Geom2d_Parabola::*)() const) static_cast<gp_Pnt2d (Geom2d_Parabola::*)() const>(&Geom2d_Parabola::Focus),
R"#(Computes the focus of this parabola The focus is on the positive side of the "X Axis" of the local coordinate system of the parabola.)#"
)
.def("Focal",
(Standard_Real (Geom2d_Parabola::*)() const) static_cast<Standard_Real (Geom2d_Parabola::*)() const>(&Geom2d_Parabola::Focal),
R"#(Computes the focal length of this parabola. The focal length is the distance between the apex and the focus of the parabola.)#"
)
.def("Parameter",
(Standard_Real (Geom2d_Parabola::*)() const) static_cast<Standard_Real (Geom2d_Parabola::*)() const>(&Geom2d_Parabola::Parameter),
R"#(Computes the parameter of this parabola, which is the distance between its focus and its directrix. This distance is twice the focal length. If P is the parameter of the parabola, the equation of the parabola in its local coordinate system is: Y**2 = 2.*P*X.)#"
)
.def("D0",
(void (Geom2d_Parabola::*)( const Standard_Real , gp_Pnt2d & ) const) static_cast<void (Geom2d_Parabola::*)( const Standard_Real , gp_Pnt2d & ) const>(&Geom2d_Parabola::D0),
R"#(Returns in P the point of parameter U. If U = 0 the returned point is the origin of the XAxis and the YAxis of the parabola and it is the vertex of the parabola. P = S + F * (U * U * XDir + * U * YDir) where S is the vertex of the parabola, XDir the XDirection and YDir the YDirection of the parabola's local coordinate system.)#" , py::arg("U"), py::arg("P")
)
.def("D1",
(void (Geom2d_Parabola::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_Parabola::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & ) const>(&Geom2d_Parabola::D1),
R"#(Returns the point P of parameter U and the first derivative V1.)#" , py::arg("U"), py::arg("P"), py::arg("V1")
)
.def("D2",
(void (Geom2d_Parabola::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_Parabola::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) const>(&Geom2d_Parabola::D2),
R"#(Returns the point P of parameter U, the first and second derivatives V1 and V2.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2")
)
.def("D3",
(void (Geom2d_Parabola::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_Parabola::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) const>(&Geom2d_Parabola::D3),
R"#(Returns the point P of parameter U, the first second and third derivatives V1 V2 and V3.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2"), py::arg("V3")
)
.def("DN",
(gp_Vec2d (Geom2d_Parabola::*)( const Standard_Real , const Standard_Integer ) const) static_cast<gp_Vec2d (Geom2d_Parabola::*)( const Standard_Real , const Standard_Integer ) const>(&Geom2d_Parabola::DN),
R"#(For the point of parameter U of this parabola, computes the vector corresponding to the Nth derivative. Exceptions Standard_RangeError if N is less than 1.)#" , py::arg("U"), py::arg("N")
)
.def("Transform",
(void (Geom2d_Parabola::*)( const gp_Trsf2d & ) ) static_cast<void (Geom2d_Parabola::*)( const gp_Trsf2d & ) >(&Geom2d_Parabola::Transform),
R"#(Applies the transformation T to this parabola.)#" , py::arg("T")
)
.def("TransformedParameter",
(Standard_Real (Geom2d_Parabola::*)( const Standard_Real , const gp_Trsf2d & ) const) static_cast<Standard_Real (Geom2d_Parabola::*)( const Standard_Real , const gp_Trsf2d & ) const>(&Geom2d_Parabola::TransformedParameter),
R"#(Computes the parameter on the transformed parabola, for the point of parameter U on this parabola. For a parabola, the returned value is equal to U multiplied by the scale factor of transformation T.)#" , py::arg("U"), py::arg("T")
)
.def("ParametricTransformation",
(Standard_Real (Geom2d_Parabola::*)( const gp_Trsf2d & ) const) static_cast<Standard_Real (Geom2d_Parabola::*)( const gp_Trsf2d & ) const>(&Geom2d_Parabola::ParametricTransformation),
R"#(Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom2d_Geometry> (Geom2d_Parabola::*)() const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_Parabola::*)() const>(&Geom2d_Parabola::Copy),
R"#(Creates a new object, which is a copy of this parabola.)#"
)
.def("DumpJson",
(void (Geom2d_Parabola::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom2d_Parabola::*)( std::ostream & , Standard_Integer ) const>(&Geom2d_Parabola::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_Parabola::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_Parabola::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom2d_Parabola::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_Parabola::*)() const>(&Geom2d_Parabola::DynamicType),
R"#(None)#"
)
;
// Class Geom2d_TrimmedCurve from ./opencascade/Geom2d_TrimmedCurve.hxx
klass = m.attr("Geom2d_TrimmedCurve");
// nested enums
static_cast<py::class_<Geom2d_TrimmedCurve ,opencascade::handle<Geom2d_TrimmedCurve> , Geom2d_BoundedCurve >>(klass)
// constructors
.def(py::init< const opencascade::handle<Geom2d_Curve> &,const Standard_Real,const Standard_Real,const Standard_Boolean,const Standard_Boolean >() , py::arg("C"), py::arg("U1"), py::arg("U2"), py::arg("Sense")=static_cast<const Standard_Boolean>(Standard_True), py::arg("theAdjustPeriodic")=static_cast<const Standard_Boolean>(Standard_True) )
// custom constructors
// methods
.def("Reverse",
(void (Geom2d_TrimmedCurve::*)() ) static_cast<void (Geom2d_TrimmedCurve::*)() >(&Geom2d_TrimmedCurve::Reverse),
R"#(Changes the direction of parametrization of <me>. The first and the last parametric values are modified. The "StartPoint" of the initial curve becomes the "EndPoint" of the reversed curve and the "EndPoint" of the initial curve becomes the "StartPoint" of the reversed curve. Example - If the trimmed curve is defined by: - a basis curve whose parameter range is [ 0.,1. ], and - the two trim values U1 (first parameter) and U2 (last parameter), the reversed trimmed curve is defined by: - the reversed basis curve, whose parameter range is still [ 0.,1. ], and - the two trim values 1. - U2 (first parameter) and 1. - U1 (last parameter).)#"
)
.def("ReversedParameter",
(Standard_Real (Geom2d_TrimmedCurve::*)( const Standard_Real ) const) static_cast<Standard_Real (Geom2d_TrimmedCurve::*)( const Standard_Real ) const>(&Geom2d_TrimmedCurve::ReversedParameter),
R"#(Returns the parameter on the reversed curve for the point of parameter U on <me>.)#" , py::arg("U")
)
.def("SetTrim",
(void (Geom2d_TrimmedCurve::*)( const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Boolean ) ) static_cast<void (Geom2d_TrimmedCurve::*)( const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Boolean ) >(&Geom2d_TrimmedCurve::SetTrim),
R"#(Changes this trimmed curve, by redefining the parameter values U1 and U2, which limit its basis curve. Note: If the basis curve is periodic, the trimmed curve has the same orientation as the basis curve if Sense is true (default value) or the opposite orientation if Sense is false. Warning If the basis curve is periodic and theAdjustPeriodic is True, the bounds of the trimmed curve may be different from U1 and U2 if the parametric origin of the basis curve is within the arc of the trimmed curve. In this case, the modified parameter will be equal to U1 or U2 plus or minus the period. If theAdjustPeriodic is False, parameters U1 and U2 will stay unchanged. Exceptions Standard_ConstructionError if: - the basis curve is not periodic, and either U1 or U2 are outside the bounds of the basis curve, or - U1 is equal to U2.)#" , py::arg("U1"), py::arg("U2"), py::arg("Sense")=static_cast<const Standard_Boolean>(Standard_True), py::arg("theAdjustPeriodic")=static_cast<const Standard_Boolean>(Standard_True)
)
.def("BasisCurve",
(opencascade::handle<Geom2d_Curve> (Geom2d_TrimmedCurve::*)() const) static_cast<opencascade::handle<Geom2d_Curve> (Geom2d_TrimmedCurve::*)() const>(&Geom2d_TrimmedCurve::BasisCurve),
R"#(Returns the basis curve. Warning This function does not return a constant reference. Consequently, any modification of the returned value directly modifies the trimmed curve.)#"
)
.def("Continuity",
(GeomAbs_Shape (Geom2d_TrimmedCurve::*)() const) static_cast<GeomAbs_Shape (Geom2d_TrimmedCurve::*)() const>(&Geom2d_TrimmedCurve::Continuity),
R"#(Returns the global continuity of the basis curve of this trimmed curve. C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, CN : the order of continuity is infinite.)#"
)
.def("IsCN",
(Standard_Boolean (Geom2d_TrimmedCurve::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Geom2d_TrimmedCurve::*)( const Standard_Integer ) const>(&Geom2d_TrimmedCurve::IsCN),
R"#(--- Purpose Returns True if the order of continuity of the trimmed curve is N. A trimmed curve is at least "C0" continuous. Warnings : The continuity of the trimmed curve can be greater than the continuity of the basis curve because you consider only a part of the basis curve. Raised if N < 0.)#" , py::arg("N")
)
.def("EndPoint",
(gp_Pnt2d (Geom2d_TrimmedCurve::*)() const) static_cast<gp_Pnt2d (Geom2d_TrimmedCurve::*)() const>(&Geom2d_TrimmedCurve::EndPoint),
R"#(Returns the end point of <me>. This point is the evaluation of the curve for the "LastParameter".)#"
)
.def("FirstParameter",
(Standard_Real (Geom2d_TrimmedCurve::*)() const) static_cast<Standard_Real (Geom2d_TrimmedCurve::*)() const>(&Geom2d_TrimmedCurve::FirstParameter),
R"#(Returns the value of the first parameter of <me>. The first parameter is the parameter of the "StartPoint" of the trimmed curve.)#"
)
.def("IsClosed",
(Standard_Boolean (Geom2d_TrimmedCurve::*)() const) static_cast<Standard_Boolean (Geom2d_TrimmedCurve::*)() const>(&Geom2d_TrimmedCurve::IsClosed),
R"#(Returns True if the distance between the StartPoint and the EndPoint is lower or equal to Resolution from package gp.)#"
)
.def("IsPeriodic",
(Standard_Boolean (Geom2d_TrimmedCurve::*)() const) static_cast<Standard_Boolean (Geom2d_TrimmedCurve::*)() const>(&Geom2d_TrimmedCurve::IsPeriodic),
R"#(Always returns FALSE (independently of the type of basis curve).)#"
)
.def("Period",
(Standard_Real (Geom2d_TrimmedCurve::*)() const) static_cast<Standard_Real (Geom2d_TrimmedCurve::*)() const>(&Geom2d_TrimmedCurve::Period),
R"#(Returns the period of the basis curve of this trimmed curve. Exceptions Standard_NoSuchObject if the basis curve is not periodic.)#"
)
.def("LastParameter",
(Standard_Real (Geom2d_TrimmedCurve::*)() const) static_cast<Standard_Real (Geom2d_TrimmedCurve::*)() const>(&Geom2d_TrimmedCurve::LastParameter),
R"#(Returns the value of the last parameter of <me>. The last parameter is the parameter of the "EndPoint" of the trimmed curve.)#"
)
.def("StartPoint",
(gp_Pnt2d (Geom2d_TrimmedCurve::*)() const) static_cast<gp_Pnt2d (Geom2d_TrimmedCurve::*)() const>(&Geom2d_TrimmedCurve::StartPoint),
R"#(Returns the start point of <me>. This point is the evaluation of the curve from the "FirstParameter". value and derivatives Warnings : The returned derivatives have the same orientation as the derivatives of the basis curve.)#"
)
.def("D0",
(void (Geom2d_TrimmedCurve::*)( const Standard_Real , gp_Pnt2d & ) const) static_cast<void (Geom2d_TrimmedCurve::*)( const Standard_Real , gp_Pnt2d & ) const>(&Geom2d_TrimmedCurve::D0),
R"#(If the basis curve is an OffsetCurve sometimes it is not possible to do the evaluation of the curve at the parameter U (see class OffsetCurve).)#" , py::arg("U"), py::arg("P")
)
.def("D1",
(void (Geom2d_TrimmedCurve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_TrimmedCurve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & ) const>(&Geom2d_TrimmedCurve::D1),
R"#(Raised if the continuity of the curve is not C1.)#" , py::arg("U"), py::arg("P"), py::arg("V1")
)
.def("D2",
(void (Geom2d_TrimmedCurve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_TrimmedCurve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & ) const>(&Geom2d_TrimmedCurve::D2),
R"#(Raised if the continuity of the curve is not C2.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2")
)
.def("D3",
(void (Geom2d_TrimmedCurve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) const) static_cast<void (Geom2d_TrimmedCurve::*)( const Standard_Real , gp_Pnt2d & , gp_Vec2d & , gp_Vec2d & , gp_Vec2d & ) const>(&Geom2d_TrimmedCurve::D3),
R"#(Raised if the continuity of the curve is not C3.)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2"), py::arg("V3")
)
.def("DN",
(gp_Vec2d (Geom2d_TrimmedCurve::*)( const Standard_Real , const Standard_Integer ) const) static_cast<gp_Vec2d (Geom2d_TrimmedCurve::*)( const Standard_Real , const Standard_Integer ) const>(&Geom2d_TrimmedCurve::DN),
R"#(For the point of parameter U of this trimmed curve, computes the vector corresponding to the Nth derivative. Warning The returned derivative vector has the same orientation as the derivative vector of the basis curve, even if the trimmed curve does not have the same orientation as the basis curve. Exceptions Standard_RangeError if N is less than 1. geometric transformations)#" , py::arg("U"), py::arg("N")
)
.def("Transform",
(void (Geom2d_TrimmedCurve::*)( const gp_Trsf2d & ) ) static_cast<void (Geom2d_TrimmedCurve::*)( const gp_Trsf2d & ) >(&Geom2d_TrimmedCurve::Transform),
R"#(Applies the transformation T to this trimmed curve. Warning The basis curve is also modified.)#" , py::arg("T")
)
.def("TransformedParameter",
(Standard_Real (Geom2d_TrimmedCurve::*)( const Standard_Real , const gp_Trsf2d & ) const) static_cast<Standard_Real (Geom2d_TrimmedCurve::*)( const Standard_Real , const gp_Trsf2d & ) const>(&Geom2d_TrimmedCurve::TransformedParameter),
R"#(Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.)#" , py::arg("U"), py::arg("T")
)
.def("ParametricTransformation",
(Standard_Real (Geom2d_TrimmedCurve::*)( const gp_Trsf2d & ) const) static_cast<Standard_Real (Geom2d_TrimmedCurve::*)( const gp_Trsf2d & ) const>(&Geom2d_TrimmedCurve::ParametricTransformation),
R"#(Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.)#" , py::arg("T")
)
.def("Copy",
(opencascade::handle<Geom2d_Geometry> (Geom2d_TrimmedCurve::*)() const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_TrimmedCurve::*)() const>(&Geom2d_TrimmedCurve::Copy),
R"#(Creates a new object, which is a copy of this trimmed curve.)#"
)
.def("DumpJson",
(void (Geom2d_TrimmedCurve::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Geom2d_TrimmedCurve::*)( std::ostream & , Standard_Integer ) const>(&Geom2d_TrimmedCurve::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_TrimmedCurve::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_TrimmedCurve::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Geom2d_TrimmedCurve::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_TrimmedCurve::*)() const>(&Geom2d_TrimmedCurve::DynamicType),
R"#(None)#"
)
;
// functions
// ./opencascade/Geom2d_AxisPlacement.hxx
// ./opencascade/Geom2d_BSplineCurve.hxx
// ./opencascade/Geom2d_BezierCurve.hxx
// ./opencascade/Geom2d_BoundedCurve.hxx
// ./opencascade/Geom2d_CartesianPoint.hxx
// ./opencascade/Geom2d_Circle.hxx
// ./opencascade/Geom2d_Conic.hxx
// ./opencascade/Geom2d_Curve.hxx
// ./opencascade/Geom2d_Direction.hxx
// ./opencascade/Geom2d_Ellipse.hxx
// ./opencascade/Geom2d_Geometry.hxx
// ./opencascade/Geom2d_Hyperbola.hxx
// ./opencascade/Geom2d_Line.hxx
// ./opencascade/Geom2d_OffsetCurve.hxx
// ./opencascade/Geom2d_Parabola.hxx
// ./opencascade/Geom2d_Point.hxx
// ./opencascade/Geom2d_Transformation.hxx
// ./opencascade/Geom2d_TrimmedCurve.hxx
// ./opencascade/Geom2d_UndefinedDerivative.hxx
// ./opencascade/Geom2d_UndefinedValue.hxx
// ./opencascade/Geom2d_Vector.hxx
// ./opencascade/Geom2d_VectorWithMagnitude.hxx
// Additional functions
// operators
// register typdefs
// exceptions
register_occ_exception<Geom2d_UndefinedDerivative>(m, "Geom2d_UndefinedDerivative");
register_occ_exception<Geom2d_UndefinedValue>(m, "Geom2d_UndefinedValue");
// user-defined post-inclusion per module in the body
};
// user-defined post-inclusion per module
// user-defined post
|