File: Geom2d.cpp

package info (click to toggle)
python-ocp 7.8.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 64,720 kB
  • sloc: cpp: 362,337; pascal: 33; python: 23; makefile: 4
file content (2829 lines) | stat: -rw-r--r-- 222,404 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829

// std lib related includes
#include <tuple>

// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

namespace py = pybind11;

// Standard Handle
#include <Standard_Handle.hxx>


// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Circ2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Trsf2d.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Vec2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Elips2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Ax2d.hxx>
#include <gp_Vec2d.hxx>
#include <gp_Trsf2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Hypr2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Lin2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Parab2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Vec2d.hxx>
#include <gp_Trsf2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>

// module includes
#include <Geom2d_AxisPlacement.hxx>
#include <Geom2d_BezierCurve.hxx>
#include <Geom2d_BoundedCurve.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Geom2d_CartesianPoint.hxx>
#include <Geom2d_Circle.hxx>
#include <Geom2d_Conic.hxx>
#include <Geom2d_Curve.hxx>
#include <Geom2d_Direction.hxx>
#include <Geom2d_Ellipse.hxx>
#include <Geom2d_Geometry.hxx>
#include <Geom2d_Hyperbola.hxx>
#include <Geom2d_Line.hxx>
#include <Geom2d_OffsetCurve.hxx>
#include <Geom2d_Parabola.hxx>
#include <Geom2d_Point.hxx>
#include <Geom2d_Transformation.hxx>
#include <Geom2d_TrimmedCurve.hxx>
#include <Geom2d_UndefinedDerivative.hxx>
#include <Geom2d_UndefinedValue.hxx>
#include <Geom2d_Vector.hxx>
#include <Geom2d_VectorWithMagnitude.hxx>

// template related includes


// user-defined pre
#include "OCP_specific.inc"

// user-defined inclusion per module

// Module definiiton
void register_Geom2d(py::module &main_module) {


py::module m = static_cast<py::module>(main_module.attr("Geom2d"));
py::object klass;

//Python trampoline classes
    class Py_Geom2d_Geometry : public Geom2d_Geometry{
    public:
        using Geom2d_Geometry::Geom2d_Geometry;


        // public pure virtual
        void Transform(const gp_Trsf2d & T) override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Geometry,Transform,T) };
        opencascade::handle<Geom2d_Geometry> Copy() const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom2d_Geometry>,Geom2d_Geometry,Copy,) };


        // protected pure virtual


        // private pure virtual

    };
    class Py_Geom2d_Curve : public Geom2d_Curve{
    public:
        using Geom2d_Curve::Geom2d_Curve;


        // public pure virtual
        void Reverse() override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Curve,Reverse,) };
        Standard_Real ReversedParameter(const Standard_Real U) const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Curve,ReversedParameter,U) };
        Standard_Real FirstParameter() const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Curve,FirstParameter,) };
        Standard_Real LastParameter() const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Curve,LastParameter,) };
        Standard_Boolean IsClosed() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom2d_Curve,IsClosed,) };
        Standard_Boolean IsPeriodic() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom2d_Curve,IsPeriodic,) };
        GeomAbs_Shape Continuity() const  override { PYBIND11_OVERLOAD_PURE(GeomAbs_Shape,Geom2d_Curve,Continuity,) };
        Standard_Boolean IsCN(const Standard_Integer N) const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom2d_Curve,IsCN,N) };
        void D0(const Standard_Real U,gp_Pnt2d & P) const  override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Curve,D0,U,P) };
        void D1(const Standard_Real U,gp_Pnt2d & P,gp_Vec2d & V1) const  override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Curve,D1,U,P,V1) };
        void D2(const Standard_Real U,gp_Pnt2d & P,gp_Vec2d & V1,gp_Vec2d & V2) const  override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Curve,D2,U,P,V1,V2) };
        void D3(const Standard_Real U,gp_Pnt2d & P,gp_Vec2d & V1,gp_Vec2d & V2,gp_Vec2d & V3) const  override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Curve,D3,U,P,V1,V2,V3) };
        gp_Vec2d DN(const Standard_Real U,const Standard_Integer N) const  override { PYBIND11_OVERLOAD_PURE(gp_Vec2d,Geom2d_Curve,DN,U,N) };

        void Transform(const gp_Trsf2d & T) override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Geometry,Transform,T) };
        opencascade::handle<Geom2d_Geometry> Copy() const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom2d_Geometry>,Geom2d_Geometry,Copy,) };

        // protected pure virtual


        // private pure virtual

    };
    class Py_Geom2d_Point : public Geom2d_Point{
    public:
        using Geom2d_Point::Geom2d_Point;


        // public pure virtual
        gp_Pnt2d Pnt2d() const  override { PYBIND11_OVERLOAD_PURE(gp_Pnt2d,Geom2d_Point,Pnt2d,) };
        Standard_Real X() const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Point,X,) };
        Standard_Real Y() const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Point,Y,) };
        void Coord(Standard_Real & X,Standard_Real & Y) const  override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Point,Coord,X,Y) };

        void Transform(const gp_Trsf2d & T) override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Geometry,Transform,T) };
        opencascade::handle<Geom2d_Geometry> Copy() const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom2d_Geometry>,Geom2d_Geometry,Copy,) };

        // protected pure virtual


        // private pure virtual

    };
    class Py_Geom2d_Vector : public Geom2d_Vector{
    public:
        using Geom2d_Vector::Geom2d_Vector;


        // public pure virtual
        Standard_Real Magnitude() const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Vector,Magnitude,) };
        Standard_Real SquareMagnitude() const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Vector,SquareMagnitude,) };
        Standard_Real Crossed(const opencascade::handle<Geom2d_Vector> & Other) const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Vector,Crossed,Other) };

        void Transform(const gp_Trsf2d & T) override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Geometry,Transform,T) };
        opencascade::handle<Geom2d_Geometry> Copy() const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom2d_Geometry>,Geom2d_Geometry,Copy,) };

        // protected pure virtual


        // private pure virtual

    };
    class Py_Geom2d_BoundedCurve : public Geom2d_BoundedCurve{
    public:
        using Geom2d_BoundedCurve::Geom2d_BoundedCurve;


        // public pure virtual
        gp_Pnt2d EndPoint() const  override { PYBIND11_OVERLOAD_PURE(gp_Pnt2d,Geom2d_BoundedCurve,EndPoint,) };
        gp_Pnt2d StartPoint() const  override { PYBIND11_OVERLOAD_PURE(gp_Pnt2d,Geom2d_BoundedCurve,StartPoint,) };

        void Reverse() override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Curve,Reverse,) };
        Standard_Real ReversedParameter(const Standard_Real U) const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Curve,ReversedParameter,U) };
        Standard_Real FirstParameter() const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Curve,FirstParameter,) };
        Standard_Real LastParameter() const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Curve,LastParameter,) };
        Standard_Boolean IsClosed() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom2d_Curve,IsClosed,) };
        Standard_Boolean IsPeriodic() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom2d_Curve,IsPeriodic,) };
        GeomAbs_Shape Continuity() const  override { PYBIND11_OVERLOAD_PURE(GeomAbs_Shape,Geom2d_Curve,Continuity,) };
        Standard_Boolean IsCN(const Standard_Integer N) const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom2d_Curve,IsCN,N) };
        void D0(const Standard_Real U,gp_Pnt2d & P) const  override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Curve,D0,U,P) };
        void D1(const Standard_Real U,gp_Pnt2d & P,gp_Vec2d & V1) const  override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Curve,D1,U,P,V1) };
        void D2(const Standard_Real U,gp_Pnt2d & P,gp_Vec2d & V1,gp_Vec2d & V2) const  override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Curve,D2,U,P,V1,V2) };
        void D3(const Standard_Real U,gp_Pnt2d & P,gp_Vec2d & V1,gp_Vec2d & V2,gp_Vec2d & V3) const  override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Curve,D3,U,P,V1,V2,V3) };
        gp_Vec2d DN(const Standard_Real U,const Standard_Integer N) const  override { PYBIND11_OVERLOAD_PURE(gp_Vec2d,Geom2d_Curve,DN,U,N) };
        void Transform(const gp_Trsf2d & T) override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Geometry,Transform,T) };
        opencascade::handle<Geom2d_Geometry> Copy() const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom2d_Geometry>,Geom2d_Geometry,Copy,) };

        // protected pure virtual


        // private pure virtual

    };
    class Py_Geom2d_Conic : public Geom2d_Conic{
    public:
        using Geom2d_Conic::Geom2d_Conic;


        // public pure virtual
        Standard_Real Eccentricity() const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Conic,Eccentricity,) };
        Standard_Real ReversedParameter(const Standard_Real U) const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Conic,ReversedParameter,U) };

        Standard_Real FirstParameter() const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Curve,FirstParameter,) };
        Standard_Real LastParameter() const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,Geom2d_Curve,LastParameter,) };
        Standard_Boolean IsClosed() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom2d_Curve,IsClosed,) };
        Standard_Boolean IsPeriodic() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Geom2d_Curve,IsPeriodic,) };
        void D0(const Standard_Real U,gp_Pnt2d & P) const  override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Curve,D0,U,P) };
        void D1(const Standard_Real U,gp_Pnt2d & P,gp_Vec2d & V1) const  override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Curve,D1,U,P,V1) };
        void D2(const Standard_Real U,gp_Pnt2d & P,gp_Vec2d & V1,gp_Vec2d & V2) const  override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Curve,D2,U,P,V1,V2) };
        void D3(const Standard_Real U,gp_Pnt2d & P,gp_Vec2d & V1,gp_Vec2d & V2,gp_Vec2d & V3) const  override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Curve,D3,U,P,V1,V2,V3) };
        gp_Vec2d DN(const Standard_Real U,const Standard_Integer N) const  override { PYBIND11_OVERLOAD_PURE(gp_Vec2d,Geom2d_Curve,DN,U,N) };
        void Transform(const gp_Trsf2d & T) override { PYBIND11_OVERLOAD_PURE(void,Geom2d_Geometry,Transform,T) };
        opencascade::handle<Geom2d_Geometry> Copy() const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Geom2d_Geometry>,Geom2d_Geometry,Copy,) };

        // protected pure virtual


        // private pure virtual

    };

// classes

    // Class Geom2d_Geometry from ./opencascade/Geom2d_Geometry.hxx
    klass = m.attr("Geom2d_Geometry");


    // nested enums

    static_cast<py::class_<Geom2d_Geometry ,opencascade::handle<Geom2d_Geometry> ,Py_Geom2d_Geometry , Standard_Transient >>(klass)
    // constructors
    // custom constructors
    // methods
        .def("Mirror",
             (void (Geom2d_Geometry::*)( const gp_Pnt2d &  ) ) static_cast<void (Geom2d_Geometry::*)( const gp_Pnt2d &  ) >(&Geom2d_Geometry::Mirror),
             R"#(Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry and assigns the result to this geometric object.)#"  , py::arg("P")
          )
        .def("Mirror",
             (void (Geom2d_Geometry::*)( const gp_Ax2d &  ) ) static_cast<void (Geom2d_Geometry::*)( const gp_Ax2d &  ) >(&Geom2d_Geometry::Mirror),
             R"#(Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.)#"  , py::arg("A")
          )
        .def("Rotate",
             (void (Geom2d_Geometry::*)( const gp_Pnt2d & ,  const Standard_Real  ) ) static_cast<void (Geom2d_Geometry::*)( const gp_Pnt2d & ,  const Standard_Real  ) >(&Geom2d_Geometry::Rotate),
             R"#(Rotates a Geometry. P is the center of the rotation. Ang is the angular value of the rotation in radians.)#"  , py::arg("P"),  py::arg("Ang")
          )
        .def("Scale",
             (void (Geom2d_Geometry::*)( const gp_Pnt2d & ,  const Standard_Real  ) ) static_cast<void (Geom2d_Geometry::*)( const gp_Pnt2d & ,  const Standard_Real  ) >(&Geom2d_Geometry::Scale),
             R"#(Scales a Geometry. S is the scaling value.)#"  , py::arg("P"),  py::arg("S")
          )
        .def("Translate",
             (void (Geom2d_Geometry::*)( const gp_Vec2d &  ) ) static_cast<void (Geom2d_Geometry::*)( const gp_Vec2d &  ) >(&Geom2d_Geometry::Translate),
             R"#(Translates a Geometry. V is the vector of the translation.)#"  , py::arg("V")
          )
        .def("Translate",
             (void (Geom2d_Geometry::*)( const gp_Pnt2d & ,  const gp_Pnt2d &  ) ) static_cast<void (Geom2d_Geometry::*)( const gp_Pnt2d & ,  const gp_Pnt2d &  ) >(&Geom2d_Geometry::Translate),
             R"#(Translates a Geometry from the point P1 to the point P2.)#"  , py::arg("P1"),  py::arg("P2")
          )
        .def("Transform",
             (void (Geom2d_Geometry::*)( const gp_Trsf2d &  ) ) static_cast<void (Geom2d_Geometry::*)( const gp_Trsf2d &  ) >(&Geom2d_Geometry::Transform),
             R"#(Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom2d). The following transformations have the same properties as the previous ones but they don't modified the object itself. A copy of the object is returned.)#"  , py::arg("T")
          )
        .def("Mirrored",
             (opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)( const gp_Pnt2d &  ) const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)( const gp_Pnt2d &  ) const>(&Geom2d_Geometry::Mirrored),
             R"#(None)#"  , py::arg("P")
          )
        .def("Mirrored",
             (opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)( const gp_Ax2d &  ) const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)( const gp_Ax2d &  ) const>(&Geom2d_Geometry::Mirrored),
             R"#(None)#"  , py::arg("A")
          )
        .def("Rotated",
             (opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)( const gp_Pnt2d & ,  const Standard_Real  ) const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)( const gp_Pnt2d & ,  const Standard_Real  ) const>(&Geom2d_Geometry::Rotated),
             R"#(None)#"  , py::arg("P"),  py::arg("Ang")
          )
        .def("Scaled",
             (opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)( const gp_Pnt2d & ,  const Standard_Real  ) const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)( const gp_Pnt2d & ,  const Standard_Real  ) const>(&Geom2d_Geometry::Scaled),
             R"#(None)#"  , py::arg("P"),  py::arg("S")
          )
        .def("Transformed",
             (opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)( const gp_Trsf2d &  ) const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)( const gp_Trsf2d &  ) const>(&Geom2d_Geometry::Transformed),
             R"#(None)#"  , py::arg("T")
          )
        .def("Translated",
             (opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)( const gp_Vec2d &  ) const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)( const gp_Vec2d &  ) const>(&Geom2d_Geometry::Translated),
             R"#(None)#"  , py::arg("V")
          )
        .def("Translated",
             (opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)( const gp_Pnt2d & ,  const gp_Pnt2d &  ) const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)( const gp_Pnt2d & ,  const gp_Pnt2d &  ) const>(&Geom2d_Geometry::Translated),
             R"#(None)#"  , py::arg("P1"),  py::arg("P2")
          )
        .def("Copy",
             (opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)() const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_Geometry::*)() const>(&Geom2d_Geometry::Copy),
             R"#(None)#" 
          )
        .def("DumpJson",
             (void (Geom2d_Geometry::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom2d_Geometry::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom2d_Geometry::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_Geometry::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_Geometry::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom2d_Geometry::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_Geometry::*)() const>(&Geom2d_Geometry::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom2d_Transformation from ./opencascade/Geom2d_Transformation.hxx
    klass = m.attr("Geom2d_Transformation");


    // nested enums

    static_cast<py::class_<Geom2d_Transformation ,opencascade::handle<Geom2d_Transformation>  , Standard_Transient >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const gp_Trsf2d & >()  , py::arg("T") )
    // custom constructors
    // methods
        .def("SetMirror",
             (void (Geom2d_Transformation::*)( const gp_Pnt2d &  ) ) static_cast<void (Geom2d_Transformation::*)( const gp_Pnt2d &  ) >(&Geom2d_Transformation::SetMirror),
             R"#(Makes the transformation into a symmetrical transformation with respect to a point P. P is the center of the symmetry.)#"  , py::arg("P")
          )
        .def("SetMirror",
             (void (Geom2d_Transformation::*)( const gp_Ax2d &  ) ) static_cast<void (Geom2d_Transformation::*)( const gp_Ax2d &  ) >(&Geom2d_Transformation::SetMirror),
             R"#(Makes the transformation into a symmetrical transformation with respect to an axis A. A is the center of the axial symmetry.)#"  , py::arg("A")
          )
        .def("SetRotation",
             (void (Geom2d_Transformation::*)( const gp_Pnt2d & ,  const Standard_Real  ) ) static_cast<void (Geom2d_Transformation::*)( const gp_Pnt2d & ,  const Standard_Real  ) >(&Geom2d_Transformation::SetRotation),
             R"#(Assigns to this transformation the geometric properties of a rotation at angle Ang (in radians) about point P.)#"  , py::arg("P"),  py::arg("Ang")
          )
        .def("SetScale",
             (void (Geom2d_Transformation::*)( const gp_Pnt2d & ,  const Standard_Real  ) ) static_cast<void (Geom2d_Transformation::*)( const gp_Pnt2d & ,  const Standard_Real  ) >(&Geom2d_Transformation::SetScale),
             R"#(Makes the transformation into a scale. P is the center of the scale and S is the scaling value.)#"  , py::arg("P"),  py::arg("S")
          )
        .def("SetTransformation",
             (void (Geom2d_Transformation::*)( const gp_Ax2d & ,  const gp_Ax2d &  ) ) static_cast<void (Geom2d_Transformation::*)( const gp_Ax2d & ,  const gp_Ax2d &  ) >(&Geom2d_Transformation::SetTransformation),
             R"#(Makes a transformation allowing passage from the coordinate system "FromSystem1" to the coordinate system "ToSystem2".)#"  , py::arg("FromSystem1"),  py::arg("ToSystem2")
          )
        .def("SetTransformation",
             (void (Geom2d_Transformation::*)( const gp_Ax2d &  ) ) static_cast<void (Geom2d_Transformation::*)( const gp_Ax2d &  ) >(&Geom2d_Transformation::SetTransformation),
             R"#(Makes the transformation allowing passage from the basic coordinate system {P(0.,0.,0.), VX (1.,0.,0.), VY (0.,1.,0.)} to the local coordinate system defined with the Ax2d ToSystem.)#"  , py::arg("ToSystem")
          )
        .def("SetTranslation",
             (void (Geom2d_Transformation::*)( const gp_Vec2d &  ) ) static_cast<void (Geom2d_Transformation::*)( const gp_Vec2d &  ) >(&Geom2d_Transformation::SetTranslation),
             R"#(Makes the transformation into a translation. V is the vector of the translation.)#"  , py::arg("V")
          )
        .def("SetTranslation",
             (void (Geom2d_Transformation::*)( const gp_Pnt2d & ,  const gp_Pnt2d &  ) ) static_cast<void (Geom2d_Transformation::*)( const gp_Pnt2d & ,  const gp_Pnt2d &  ) >(&Geom2d_Transformation::SetTranslation),
             R"#(Makes the transformation into a translation from the point P1 to the point P2.)#"  , py::arg("P1"),  py::arg("P2")
          )
        .def("SetTrsf2d",
             (void (Geom2d_Transformation::*)( const gp_Trsf2d &  ) ) static_cast<void (Geom2d_Transformation::*)( const gp_Trsf2d &  ) >(&Geom2d_Transformation::SetTrsf2d),
             R"#(Makes the transformation into a transformation T from package gp.)#"  , py::arg("T")
          )
        .def("IsNegative",
             (Standard_Boolean (Geom2d_Transformation::*)() const) static_cast<Standard_Boolean (Geom2d_Transformation::*)() const>(&Geom2d_Transformation::IsNegative),
             R"#(Checks whether this transformation is an indirect transformation: returns true if the determinant of the matrix of the vectorial part of the transformation is less than 0.)#" 
          )
        .def("Form",
             (gp_TrsfForm (Geom2d_Transformation::*)() const) static_cast<gp_TrsfForm (Geom2d_Transformation::*)() const>(&Geom2d_Transformation::Form),
             R"#(Returns the nature of this transformation as a value of the gp_TrsfForm enumeration. Returns the nature of the transformation. It can be Identity, Rotation, Translation, PntMirror, Ax1Mirror, Scale, CompoundTrsf)#" 
          )
        .def("ScaleFactor",
             (Standard_Real (Geom2d_Transformation::*)() const) static_cast<Standard_Real (Geom2d_Transformation::*)() const>(&Geom2d_Transformation::ScaleFactor),
             R"#(Returns the scale value of the transformation.)#" 
          )
        .def("Trsf2d",
             (gp_Trsf2d (Geom2d_Transformation::*)() const) static_cast<gp_Trsf2d (Geom2d_Transformation::*)() const>(&Geom2d_Transformation::Trsf2d),
             R"#(Converts this transformation into a gp_Trsf2d transformation. Returns a non persistent copy of <me>. -C++: return const&)#" 
          )
        .def("Value",
             (Standard_Real (Geom2d_Transformation::*)( const Standard_Integer ,  const Standard_Integer  ) const) static_cast<Standard_Real (Geom2d_Transformation::*)( const Standard_Integer ,  const Standard_Integer  ) const>(&Geom2d_Transformation::Value),
             R"#(Returns the coefficients of the global matrix of transformation. It is a 2 rows X 3 columns matrix.)#"  , py::arg("Row"),  py::arg("Col")
          )
        .def("Invert",
             (void (Geom2d_Transformation::*)() ) static_cast<void (Geom2d_Transformation::*)() >(&Geom2d_Transformation::Invert),
             R"#(Computes the inverse of this transformation. and assigns the result to this transformatio)#" 
          )
        .def("Inverted",
             (opencascade::handle<Geom2d_Transformation> (Geom2d_Transformation::*)() const) static_cast<opencascade::handle<Geom2d_Transformation> (Geom2d_Transformation::*)() const>(&Geom2d_Transformation::Inverted),
             R"#(Computes the inverse of this transformation and creates a new one. Raises ConstructionError if the transformation is singular. This means that the ScaleFactor is lower or equal to Resolution from package gp.)#" 
          )
        .def("Multiplied",
             (opencascade::handle<Geom2d_Transformation> (Geom2d_Transformation::*)( const opencascade::handle<Geom2d_Transformation> &  ) const) static_cast<opencascade::handle<Geom2d_Transformation> (Geom2d_Transformation::*)( const opencascade::handle<Geom2d_Transformation> &  ) const>(&Geom2d_Transformation::Multiplied),
             R"#(Computes the transformation composed with Other and <me>. <me> * Other. Returns a new transformation)#"  , py::arg("Other")
          )
        .def("Multiply",
             (void (Geom2d_Transformation::*)( const opencascade::handle<Geom2d_Transformation> &  ) ) static_cast<void (Geom2d_Transformation::*)( const opencascade::handle<Geom2d_Transformation> &  ) >(&Geom2d_Transformation::Multiply),
             R"#(Computes the transformation composed with Other and <me> . <me> = <me> * Other.)#"  , py::arg("Other")
          )
        .def("Power",
             (void (Geom2d_Transformation::*)( const Standard_Integer  ) ) static_cast<void (Geom2d_Transformation::*)( const Standard_Integer  ) >(&Geom2d_Transformation::Power),
             R"#(Raised if N < 0 and if the transformation is not inversible)#"  , py::arg("N")
          )
        .def("Powered",
             (opencascade::handle<Geom2d_Transformation> (Geom2d_Transformation::*)( const Standard_Integer  ) const) static_cast<opencascade::handle<Geom2d_Transformation> (Geom2d_Transformation::*)( const Standard_Integer  ) const>(&Geom2d_Transformation::Powered),
             R"#(Raised if N < 0 and if the transformation is not inversible)#"  , py::arg("N")
          )
        .def("PreMultiply",
             (void (Geom2d_Transformation::*)( const opencascade::handle<Geom2d_Transformation> &  ) ) static_cast<void (Geom2d_Transformation::*)( const opencascade::handle<Geom2d_Transformation> &  ) >(&Geom2d_Transformation::PreMultiply),
             R"#(Computes the matrix of the transformation composed with <me> and Other. <me> = Other * <me>)#"  , py::arg("Other")
          )
        .def("Copy",
             (opencascade::handle<Geom2d_Transformation> (Geom2d_Transformation::*)() const) static_cast<opencascade::handle<Geom2d_Transformation> (Geom2d_Transformation::*)() const>(&Geom2d_Transformation::Copy),
             R"#(Creates a new object, which is a copy of this transformation.)#" 
          )
    // methods using call by reference i.s.o. return
        .def("Transforms",
             []( Geom2d_Transformation &self   ){
                 Standard_Real  X;
                Standard_Real  Y;

                 self.Transforms(X,Y);
                 
                 return std::make_tuple(X,Y); },
             R"#(Applies the transformation <me> to the triplet {X, Y}.)#" 
          )
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_Transformation::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_Transformation::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
        .def("__mul__",
             (opencascade::handle<Geom2d_Transformation> (Geom2d_Transformation::*)( const opencascade::handle<Geom2d_Transformation> &  ) const) static_cast<opencascade::handle<Geom2d_Transformation> (Geom2d_Transformation::*)( const opencascade::handle<Geom2d_Transformation> &  ) const>(&Geom2d_Transformation::operator*),
             py::is_operator(),
             R"#(None)#"  , py::arg("Other")
          )
        .def("__rmul__",
             (opencascade::handle<Geom2d_Transformation> (Geom2d_Transformation::*)( const opencascade::handle<Geom2d_Transformation> &  ) const) static_cast<opencascade::handle<Geom2d_Transformation> (Geom2d_Transformation::*)( const opencascade::handle<Geom2d_Transformation> &  ) const>(&Geom2d_Transformation::operator*),
             py::is_operator(),
             R"#(None)#"  , py::arg("Other")
          )
        .def("__imul__",
             (void (Geom2d_Transformation::*)( const opencascade::handle<Geom2d_Transformation> &  ) ) static_cast<void (Geom2d_Transformation::*)( const opencascade::handle<Geom2d_Transformation> &  ) >(&Geom2d_Transformation::operator*=),
             py::is_operator(),
             R"#(None)#"  , py::arg("Other")
          )
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom2d_Transformation::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_Transformation::*)() const>(&Geom2d_Transformation::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom2d_AxisPlacement from ./opencascade/Geom2d_AxisPlacement.hxx
    klass = m.attr("Geom2d_AxisPlacement");


    // nested enums

    static_cast<py::class_<Geom2d_AxisPlacement ,opencascade::handle<Geom2d_AxisPlacement>  , Geom2d_Geometry >>(klass)
    // constructors
        .def(py::init< const gp_Ax2d & >()  , py::arg("A") )
        .def(py::init< const gp_Pnt2d &,const gp_Dir2d & >()  , py::arg("P"),  py::arg("V") )
    // custom constructors
    // methods
        .def("Reverse",
             (void (Geom2d_AxisPlacement::*)() ) static_cast<void (Geom2d_AxisPlacement::*)() >(&Geom2d_AxisPlacement::Reverse),
             R"#(None)#" 
          )
        .def("Reversed",
             (opencascade::handle<Geom2d_AxisPlacement> (Geom2d_AxisPlacement::*)() const) static_cast<opencascade::handle<Geom2d_AxisPlacement> (Geom2d_AxisPlacement::*)() const>(&Geom2d_AxisPlacement::Reversed),
             R"#(Reverses the unit vector of this axis. Note: - Reverse assigns the result to this axis, while - Reversed creates a new one.)#" 
          )
        .def("SetAxis",
             (void (Geom2d_AxisPlacement::*)( const gp_Ax2d &  ) ) static_cast<void (Geom2d_AxisPlacement::*)( const gp_Ax2d &  ) >(&Geom2d_AxisPlacement::SetAxis),
             R"#(Changes the complete definition of the axis placement.)#"  , py::arg("A")
          )
        .def("SetDirection",
             (void (Geom2d_AxisPlacement::*)( const gp_Dir2d &  ) ) static_cast<void (Geom2d_AxisPlacement::*)( const gp_Dir2d &  ) >(&Geom2d_AxisPlacement::SetDirection),
             R"#(Changes the "Direction" of the axis placement.)#"  , py::arg("V")
          )
        .def("SetLocation",
             (void (Geom2d_AxisPlacement::*)( const gp_Pnt2d &  ) ) static_cast<void (Geom2d_AxisPlacement::*)( const gp_Pnt2d &  ) >(&Geom2d_AxisPlacement::SetLocation),
             R"#(Changes the "Location" point (origin) of the axis placement.)#"  , py::arg("P")
          )
        .def("Angle",
             (Standard_Real (Geom2d_AxisPlacement::*)( const opencascade::handle<Geom2d_AxisPlacement> &  ) const) static_cast<Standard_Real (Geom2d_AxisPlacement::*)( const opencascade::handle<Geom2d_AxisPlacement> &  ) const>(&Geom2d_AxisPlacement::Angle),
             R"#(Computes the angle between the "Direction" of two axis placement in radians. The result is comprised between -Pi and Pi.)#"  , py::arg("Other")
          )
        .def("Ax2d",
             (gp_Ax2d (Geom2d_AxisPlacement::*)() const) static_cast<gp_Ax2d (Geom2d_AxisPlacement::*)() const>(&Geom2d_AxisPlacement::Ax2d),
             R"#(Converts this axis into a gp_Ax2d axis.)#" 
          )
        .def("Direction",
             (gp_Dir2d (Geom2d_AxisPlacement::*)() const) static_cast<gp_Dir2d (Geom2d_AxisPlacement::*)() const>(&Geom2d_AxisPlacement::Direction),
             R"#(Returns the "Direction" of <me>. -C++: return const&)#" 
          )
        .def("Location",
             (gp_Pnt2d (Geom2d_AxisPlacement::*)() const) static_cast<gp_Pnt2d (Geom2d_AxisPlacement::*)() const>(&Geom2d_AxisPlacement::Location),
             R"#(Returns the "Location" point (origin) of the axis placement. -C++: return const&)#" 
          )
        .def("Transform",
             (void (Geom2d_AxisPlacement::*)( const gp_Trsf2d &  ) ) static_cast<void (Geom2d_AxisPlacement::*)( const gp_Trsf2d &  ) >(&Geom2d_AxisPlacement::Transform),
             R"#(Applies the transformation T to this axis.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom2d_Geometry> (Geom2d_AxisPlacement::*)() const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_AxisPlacement::*)() const>(&Geom2d_AxisPlacement::Copy),
             R"#(Creates a new object which is a copy of this axis.)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_AxisPlacement::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_AxisPlacement::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom2d_AxisPlacement::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_AxisPlacement::*)() const>(&Geom2d_AxisPlacement::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom2d_Curve from ./opencascade/Geom2d_Curve.hxx
    klass = m.attr("Geom2d_Curve");


    // nested enums

    static_cast<py::class_<Geom2d_Curve ,opencascade::handle<Geom2d_Curve> ,Py_Geom2d_Curve , Geom2d_Geometry >>(klass)
    // constructors
    // custom constructors
    // methods
        .def("Reverse",
             (void (Geom2d_Curve::*)() ) static_cast<void (Geom2d_Curve::*)() >(&Geom2d_Curve::Reverse),
             R"#(Changes the direction of parametrization of <me>. The "FirstParameter" and the "LastParameter" are not changed but the orientation of the curve is modified. If the curve is bounded the StartPoint of the initial curve becomes the EndPoint of the reversed curve and the EndPoint of the initial curve becomes the StartPoint of the reversed curve.)#" 
          )
        .def("ReversedParameter",
             (Standard_Real (Geom2d_Curve::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom2d_Curve::*)( const Standard_Real  ) const>(&Geom2d_Curve::ReversedParameter),
             R"#(Computes the parameter on the reversed curve for the point of parameter U on this curve. Note: The point of parameter U on this curve is identical to the point of parameter ReversedParameter(U) on the reversed curve.)#"  , py::arg("U")
          )
        .def("TransformedParameter",
             (Standard_Real (Geom2d_Curve::*)( const Standard_Real ,  const gp_Trsf2d &  ) const) static_cast<Standard_Real (Geom2d_Curve::*)( const Standard_Real ,  const gp_Trsf2d &  ) const>(&Geom2d_Curve::TransformedParameter),
             R"#(Computes the parameter on the curve transformed by T for the point of parameter U on this curve. Note: this function generally returns U but it can be redefined (for example, on a line).)#"  , py::arg("U"),  py::arg("T")
          )
        .def("ParametricTransformation",
             (Standard_Real (Geom2d_Curve::*)( const gp_Trsf2d &  ) const) static_cast<Standard_Real (Geom2d_Curve::*)( const gp_Trsf2d &  ) const>(&Geom2d_Curve::ParametricTransformation),
             R"#(Returns the coefficient required to compute the parametric transformation of this curve when transformation T is applied. This coefficient is the ratio between the parameter of a point on this curve and the parameter of the transformed point on the new curve transformed by T. Note: this function generally returns 1. but it can be redefined (for example, on a line).)#"  , py::arg("T")
          )
        .def("Reversed",
             (opencascade::handle<Geom2d_Curve> (Geom2d_Curve::*)() const) static_cast<opencascade::handle<Geom2d_Curve> (Geom2d_Curve::*)() const>(&Geom2d_Curve::Reversed),
             R"#(Creates a reversed duplicate Changes the orientation of this curve. The first and last parameters are not changed, but the parametric direction of the curve is reversed. If the curve is bounded: - the start point of the initial curve becomes the end point of the reversed curve, and - the end point of the initial curve becomes the start point of the reversed curve. - Reversed creates a new curve.)#" 
          )
        .def("FirstParameter",
             (Standard_Real (Geom2d_Curve::*)() const) static_cast<Standard_Real (Geom2d_Curve::*)() const>(&Geom2d_Curve::FirstParameter),
             R"#(Returns the value of the first parameter. Warnings : It can be RealFirst or RealLast from package Standard if the curve is infinite)#" 
          )
        .def("LastParameter",
             (Standard_Real (Geom2d_Curve::*)() const) static_cast<Standard_Real (Geom2d_Curve::*)() const>(&Geom2d_Curve::LastParameter),
             R"#(Value of the last parameter. Warnings : It can be RealFirst or RealLast from package Standard if the curve is infinite)#" 
          )
        .def("IsClosed",
             (Standard_Boolean (Geom2d_Curve::*)() const) static_cast<Standard_Boolean (Geom2d_Curve::*)() const>(&Geom2d_Curve::IsClosed),
             R"#(Returns true if the curve is closed. Examples : Some curves such as circle are always closed, others such as line are never closed (by definition). Some Curves such as OffsetCurve can be closed or not. These curves are considered as closed if the distance between the first point and the last point of the curve is lower or equal to the Resolution from package gp which is a fixed criterion independent of the application.)#" 
          )
        .def("IsPeriodic",
             (Standard_Boolean (Geom2d_Curve::*)() const) static_cast<Standard_Boolean (Geom2d_Curve::*)() const>(&Geom2d_Curve::IsPeriodic),
             R"#(Returns true if the parameter of the curve is periodic. It is possible only if the curve is closed and if the following relation is satisfied : for each parametric value U the distance between the point P(u) and the point P (u + T) is lower or equal to Resolution from package gp, T is the period and must be a constant. There are three possibilities : . the curve is never periodic by definition (SegmentLine) . the curve is always periodic by definition (Circle) . the curve can be defined as periodic (BSpline). In this case a function SetPeriodic allows you to give the shape of the curve. The general rule for this case is : if a curve can be periodic or not the default periodicity set is non periodic and you have to turn (explicitly) the curve into a periodic curve if you want the curve to be periodic.)#" 
          )
        .def("Period",
             (Standard_Real (Geom2d_Curve::*)() const) static_cast<Standard_Real (Geom2d_Curve::*)() const>(&Geom2d_Curve::Period),
             R"#(Returns the period of this curve. raises if the curve is not periodic)#" 
          )
        .def("Continuity",
             (GeomAbs_Shape (Geom2d_Curve::*)() const) static_cast<GeomAbs_Shape (Geom2d_Curve::*)() const>(&Geom2d_Curve::Continuity),
             R"#(It is the global continuity of the curve : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, G1 : tangency continuity all along the Curve, G2 : curvature continuity all along the Curve, CN : the order of continuity is infinite.)#" 
          )
        .def("IsCN",
             (Standard_Boolean (Geom2d_Curve::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom2d_Curve::*)( const Standard_Integer  ) const>(&Geom2d_Curve::IsCN),
             R"#(Returns true if the degree of continuity of this curve is at least N. Exceptions Standard_RangeError if N is less than 0.)#"  , py::arg("N")
          )
        .def("D0",
             (void (Geom2d_Curve::*)( const Standard_Real ,  gp_Pnt2d &  ) const) static_cast<void (Geom2d_Curve::*)( const Standard_Real ,  gp_Pnt2d &  ) const>(&Geom2d_Curve::D0),
             R"#(Returns in P the point of parameter U. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve.)#"  , py::arg("U"),  py::arg("P")
          )
        .def("D1",
             (void (Geom2d_Curve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_Curve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d &  ) const>(&Geom2d_Curve::D1),
             R"#(Returns the point P of parameter U and the first derivative V1. Raised if the continuity of the curve is not C1.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1")
          )
        .def("D2",
             (void (Geom2d_Curve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_Curve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const>(&Geom2d_Curve::D2),
             R"#(Returns the point P of parameter U, the first and second derivatives V1 and V2. Raised if the continuity of the curve is not C2.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def("D3",
             (void (Geom2d_Curve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_Curve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const>(&Geom2d_Curve::D3),
             R"#(Returns the point P of parameter U, the first, the second and the third derivative. Raised if the continuity of the curve is not C3.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3")
          )
        .def("DN",
             (gp_Vec2d (Geom2d_Curve::*)( const Standard_Real ,  const Standard_Integer  ) const) static_cast<gp_Vec2d (Geom2d_Curve::*)( const Standard_Real ,  const Standard_Integer  ) const>(&Geom2d_Curve::DN),
             R"#(For the point of parameter U of this curve, computes the vector corresponding to the Nth derivative. Exceptions StdFail_UndefinedDerivative if: - the continuity of the curve is not "CN", or - the derivative vector cannot be computed easily; this is the case with specific types of curve (for example, a rational BSpline curve where N is greater than 3). Standard_RangeError if N is less than 1.)#"  , py::arg("U"),  py::arg("N")
          )
        .def("Value",
             (gp_Pnt2d (Geom2d_Curve::*)( const Standard_Real  ) const) static_cast<gp_Pnt2d (Geom2d_Curve::*)( const Standard_Real  ) const>(&Geom2d_Curve::Value),
             R"#(Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve.)#"  , py::arg("U")
          )
        .def("DumpJson",
             (void (Geom2d_Curve::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom2d_Curve::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom2d_Curve::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_Curve::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_Curve::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom2d_Curve::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_Curve::*)() const>(&Geom2d_Curve::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom2d_Point from ./opencascade/Geom2d_Point.hxx
    klass = m.attr("Geom2d_Point");


    // nested enums

    static_cast<py::class_<Geom2d_Point ,opencascade::handle<Geom2d_Point> ,Py_Geom2d_Point , Geom2d_Geometry >>(klass)
    // constructors
    // custom constructors
    // methods
        .def("Pnt2d",
             (gp_Pnt2d (Geom2d_Point::*)() const) static_cast<gp_Pnt2d (Geom2d_Point::*)() const>(&Geom2d_Point::Pnt2d),
             R"#(returns a non persistent copy of <me>)#" 
          )
        .def("X",
             (Standard_Real (Geom2d_Point::*)() const) static_cast<Standard_Real (Geom2d_Point::*)() const>(&Geom2d_Point::X),
             R"#(returns the X coordinate of <me>.)#" 
          )
        .def("Y",
             (Standard_Real (Geom2d_Point::*)() const) static_cast<Standard_Real (Geom2d_Point::*)() const>(&Geom2d_Point::Y),
             R"#(returns the Y coordinate of <me>.)#" 
          )
        .def("Distance",
             (Standard_Real (Geom2d_Point::*)( const opencascade::handle<Geom2d_Point> &  ) const) static_cast<Standard_Real (Geom2d_Point::*)( const opencascade::handle<Geom2d_Point> &  ) const>(&Geom2d_Point::Distance),
             R"#(computes the distance between <me> and <Other>.)#"  , py::arg("Other")
          )
        .def("SquareDistance",
             (Standard_Real (Geom2d_Point::*)( const opencascade::handle<Geom2d_Point> &  ) const) static_cast<Standard_Real (Geom2d_Point::*)( const opencascade::handle<Geom2d_Point> &  ) const>(&Geom2d_Point::SquareDistance),
             R"#(computes the square distance between <me> and <Other>.)#"  , py::arg("Other")
          )
        .def("DumpJson",
             (void (Geom2d_Point::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom2d_Point::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom2d_Point::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
        .def("Coord",
             []( Geom2d_Point &self   ){
                 Standard_Real  X;
                Standard_Real  Y;

                 self.Coord(X,Y);
                 
                 return std::make_tuple(X,Y); },
             R"#(returns the Coordinates of <me>.)#" 
          )
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_Point::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_Point::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom2d_Point::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_Point::*)() const>(&Geom2d_Point::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom2d_Vector from ./opencascade/Geom2d_Vector.hxx
    klass = m.attr("Geom2d_Vector");


    // nested enums

    static_cast<py::class_<Geom2d_Vector ,opencascade::handle<Geom2d_Vector> ,Py_Geom2d_Vector , Geom2d_Geometry >>(klass)
    // constructors
    // custom constructors
    // methods
        .def("Reverse",
             (void (Geom2d_Vector::*)() ) static_cast<void (Geom2d_Vector::*)() >(&Geom2d_Vector::Reverse),
             R"#(Reverses the vector <me>.)#" 
          )
        .def("Reversed",
             (opencascade::handle<Geom2d_Vector> (Geom2d_Vector::*)() const) static_cast<opencascade::handle<Geom2d_Vector> (Geom2d_Vector::*)() const>(&Geom2d_Vector::Reversed),
             R"#(Returns a copy of <me> reversed.)#" 
          )
        .def("Angle",
             (Standard_Real (Geom2d_Vector::*)( const opencascade::handle<Geom2d_Vector> &  ) const) static_cast<Standard_Real (Geom2d_Vector::*)( const opencascade::handle<Geom2d_Vector> &  ) const>(&Geom2d_Vector::Angle),
             R"#(Computes the angular value, in radians, between this vector and vector Other. The result is a value between -Pi and Pi. The orientation is from this vector to vector Other. Raises VectorWithNullMagnitude if one of the two vectors is a vector with null magnitude because the angular value is indefinite.)#"  , py::arg("Other")
          )
        .def("Magnitude",
             (Standard_Real (Geom2d_Vector::*)() const) static_cast<Standard_Real (Geom2d_Vector::*)() const>(&Geom2d_Vector::Magnitude),
             R"#(Returns the Magnitude of <me>.)#" 
          )
        .def("SquareMagnitude",
             (Standard_Real (Geom2d_Vector::*)() const) static_cast<Standard_Real (Geom2d_Vector::*)() const>(&Geom2d_Vector::SquareMagnitude),
             R"#(Returns the square magnitude of <me>.)#" 
          )
        .def("X",
             (Standard_Real (Geom2d_Vector::*)() const) static_cast<Standard_Real (Geom2d_Vector::*)() const>(&Geom2d_Vector::X),
             R"#(Returns the X coordinate of <me>.)#" 
          )
        .def("Y",
             (Standard_Real (Geom2d_Vector::*)() const) static_cast<Standard_Real (Geom2d_Vector::*)() const>(&Geom2d_Vector::Y),
             R"#(Returns the Y coordinate of <me>.)#" 
          )
        .def("Crossed",
             (Standard_Real (Geom2d_Vector::*)( const opencascade::handle<Geom2d_Vector> &  ) const) static_cast<Standard_Real (Geom2d_Vector::*)( const opencascade::handle<Geom2d_Vector> &  ) const>(&Geom2d_Vector::Crossed),
             R"#(Cross product of <me> with the vector <Other>.)#"  , py::arg("Other")
          )
        .def("Dot",
             (Standard_Real (Geom2d_Vector::*)( const opencascade::handle<Geom2d_Vector> &  ) const) static_cast<Standard_Real (Geom2d_Vector::*)( const opencascade::handle<Geom2d_Vector> &  ) const>(&Geom2d_Vector::Dot),
             R"#(Returns the scalar product of 2 Vectors.)#"  , py::arg("Other")
          )
        .def("Vec2d",
             (gp_Vec2d (Geom2d_Vector::*)() const) static_cast<gp_Vec2d (Geom2d_Vector::*)() const>(&Geom2d_Vector::Vec2d),
             R"#(Returns a non persistent copy of <me>.)#" 
          )
    // methods using call by reference i.s.o. return
        .def("Coord",
             []( Geom2d_Vector &self   ){
                 Standard_Real  X;
                Standard_Real  Y;

                 self.Coord(X,Y);
                 
                 return std::make_tuple(X,Y); },
             R"#(Returns the coordinates of <me>.)#" 
          )
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_Vector::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_Vector::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom2d_Vector::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_Vector::*)() const>(&Geom2d_Vector::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom2d_BoundedCurve from ./opencascade/Geom2d_BoundedCurve.hxx
    klass = m.attr("Geom2d_BoundedCurve");


    // nested enums

    static_cast<py::class_<Geom2d_BoundedCurve ,opencascade::handle<Geom2d_BoundedCurve> ,Py_Geom2d_BoundedCurve , Geom2d_Curve >>(klass)
    // constructors
    // custom constructors
    // methods
        .def("EndPoint",
             (gp_Pnt2d (Geom2d_BoundedCurve::*)() const) static_cast<gp_Pnt2d (Geom2d_BoundedCurve::*)() const>(&Geom2d_BoundedCurve::EndPoint),
             R"#(Returns the end point of the curve. The end point is the value of the curve for the "LastParameter" of the curve.)#" 
          )
        .def("StartPoint",
             (gp_Pnt2d (Geom2d_BoundedCurve::*)() const) static_cast<gp_Pnt2d (Geom2d_BoundedCurve::*)() const>(&Geom2d_BoundedCurve::StartPoint),
             R"#(Returns the start point of the curve. The start point is the value of the curve for the "FirstParameter" of the curve.)#" 
          )
        .def("DumpJson",
             (void (Geom2d_BoundedCurve::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom2d_BoundedCurve::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom2d_BoundedCurve::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_BoundedCurve::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_BoundedCurve::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom2d_BoundedCurve::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_BoundedCurve::*)() const>(&Geom2d_BoundedCurve::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom2d_CartesianPoint from ./opencascade/Geom2d_CartesianPoint.hxx
    klass = m.attr("Geom2d_CartesianPoint");


    // nested enums

    static_cast<py::class_<Geom2d_CartesianPoint ,opencascade::handle<Geom2d_CartesianPoint>  , Geom2d_Point >>(klass)
    // constructors
        .def(py::init< const gp_Pnt2d & >()  , py::arg("P") )
        .def(py::init< const Standard_Real,const Standard_Real >()  , py::arg("X"),  py::arg("Y") )
    // custom constructors
    // methods
        .def("SetCoord",
             (void (Geom2d_CartesianPoint::*)( const Standard_Real ,  const Standard_Real  ) ) static_cast<void (Geom2d_CartesianPoint::*)( const Standard_Real ,  const Standard_Real  ) >(&Geom2d_CartesianPoint::SetCoord),
             R"#(Set <me> to X, Y coordinates.)#"  , py::arg("X"),  py::arg("Y")
          )
        .def("SetPnt2d",
             (void (Geom2d_CartesianPoint::*)( const gp_Pnt2d &  ) ) static_cast<void (Geom2d_CartesianPoint::*)( const gp_Pnt2d &  ) >(&Geom2d_CartesianPoint::SetPnt2d),
             R"#(Set <me> to P.X(), P.Y() coordinates.)#"  , py::arg("P")
          )
        .def("SetX",
             (void (Geom2d_CartesianPoint::*)( const Standard_Real  ) ) static_cast<void (Geom2d_CartesianPoint::*)( const Standard_Real  ) >(&Geom2d_CartesianPoint::SetX),
             R"#(Changes the X coordinate of me.)#"  , py::arg("X")
          )
        .def("SetY",
             (void (Geom2d_CartesianPoint::*)( const Standard_Real  ) ) static_cast<void (Geom2d_CartesianPoint::*)( const Standard_Real  ) >(&Geom2d_CartesianPoint::SetY),
             R"#(Changes the Y coordinate of me.)#"  , py::arg("Y")
          )
        .def("Pnt2d",
             (gp_Pnt2d (Geom2d_CartesianPoint::*)() const) static_cast<gp_Pnt2d (Geom2d_CartesianPoint::*)() const>(&Geom2d_CartesianPoint::Pnt2d),
             R"#(Returns a non persistent cartesian point with the same coordinates as <me>. -C++: return const&)#" 
          )
        .def("X",
             (Standard_Real (Geom2d_CartesianPoint::*)() const) static_cast<Standard_Real (Geom2d_CartesianPoint::*)() const>(&Geom2d_CartesianPoint::X),
             R"#(Returns the X coordinate of <me>.)#" 
          )
        .def("Y",
             (Standard_Real (Geom2d_CartesianPoint::*)() const) static_cast<Standard_Real (Geom2d_CartesianPoint::*)() const>(&Geom2d_CartesianPoint::Y),
             R"#(Returns the Y coordinate of <me>.)#" 
          )
        .def("Transform",
             (void (Geom2d_CartesianPoint::*)( const gp_Trsf2d &  ) ) static_cast<void (Geom2d_CartesianPoint::*)( const gp_Trsf2d &  ) >(&Geom2d_CartesianPoint::Transform),
             R"#(None)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom2d_Geometry> (Geom2d_CartesianPoint::*)() const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_CartesianPoint::*)() const>(&Geom2d_CartesianPoint::Copy),
             R"#(None)#" 
          )
        .def("DumpJson",
             (void (Geom2d_CartesianPoint::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom2d_CartesianPoint::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom2d_CartesianPoint::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
        .def("Coord",
             []( Geom2d_CartesianPoint &self   ){
                 Standard_Real  X;
                Standard_Real  Y;

                 self.Coord(X,Y);
                 
                 return std::make_tuple(X,Y); },
             R"#(Returns the coordinates of <me>.)#" 
          )
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_CartesianPoint::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_CartesianPoint::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom2d_CartesianPoint::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_CartesianPoint::*)() const>(&Geom2d_CartesianPoint::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom2d_Conic from ./opencascade/Geom2d_Conic.hxx
    klass = m.attr("Geom2d_Conic");


    // nested enums

    static_cast<py::class_<Geom2d_Conic ,opencascade::handle<Geom2d_Conic> ,Py_Geom2d_Conic , Geom2d_Curve >>(klass)
    // constructors
    // custom constructors
    // methods
        .def("SetAxis",
             (void (Geom2d_Conic::*)( const gp_Ax22d &  ) ) static_cast<void (Geom2d_Conic::*)( const gp_Ax22d &  ) >(&Geom2d_Conic::SetAxis),
             R"#(Modifies this conic, redefining its local coordinate system partially, by assigning theA as its axis)#"  , py::arg("theA")
          )
        .def("SetXAxis",
             (void (Geom2d_Conic::*)( const gp_Ax2d &  ) ) static_cast<void (Geom2d_Conic::*)( const gp_Ax2d &  ) >(&Geom2d_Conic::SetXAxis),
             R"#(Assigns the origin and unit vector of axis theA to the origin of the local coordinate system of this conic and X Direction. The other unit vector of the local coordinate system of this conic is recomputed normal to theA, without changing the orientation of the local coordinate system (right-handed or left-handed).)#"  , py::arg("theAX")
          )
        .def("SetYAxis",
             (void (Geom2d_Conic::*)( const gp_Ax2d &  ) ) static_cast<void (Geom2d_Conic::*)( const gp_Ax2d &  ) >(&Geom2d_Conic::SetYAxis),
             R"#(Assigns the origin and unit vector of axis theA to the origin of the local coordinate system of this conic and Y Direction. The other unit vector of the local coordinate system of this conic is recomputed normal to theA, without changing the orientation of the local coordinate system (right-handed or left-handed).)#"  , py::arg("theAY")
          )
        .def("SetLocation",
             (void (Geom2d_Conic::*)( const gp_Pnt2d &  ) ) static_cast<void (Geom2d_Conic::*)( const gp_Pnt2d &  ) >(&Geom2d_Conic::SetLocation),
             R"#(Modifies this conic, redefining its local coordinate system partially, by assigning theP as its origin.)#"  , py::arg("theP")
          )
        .def("XAxis",
             (gp_Ax2d (Geom2d_Conic::*)() const) static_cast<gp_Ax2d (Geom2d_Conic::*)() const>(&Geom2d_Conic::XAxis),
             R"#(Returns the "XAxis" of the conic. This axis defines the origin of parametrization of the conic. This axis and the "Yaxis" define the local coordinate system of the conic. -C++: return const&)#" 
          )
        .def("YAxis",
             (gp_Ax2d (Geom2d_Conic::*)() const) static_cast<gp_Ax2d (Geom2d_Conic::*)() const>(&Geom2d_Conic::YAxis),
             R"#(Returns the "YAxis" of the conic. The "YAxis" is perpendicular to the "Xaxis".)#" 
          )
        .def("Eccentricity",
             (Standard_Real (Geom2d_Conic::*)() const) static_cast<Standard_Real (Geom2d_Conic::*)() const>(&Geom2d_Conic::Eccentricity),
             R"#(returns the eccentricity value of the conic e. e = 0 for a circle 0 < e < 1 for an ellipse (e = 0 if MajorRadius = MinorRadius) e > 1 for a hyperbola e = 1 for a parabola)#" 
          )
        .def("Reverse",
             (void (Geom2d_Conic::*)() ) static_cast<void (Geom2d_Conic::*)() >(&Geom2d_Conic::Reverse),
             R"#(Reverses the direction of parameterization of <me>. The local coordinate system of the conic is modified.)#" 
          )
        .def("ReversedParameter",
             (Standard_Real (Geom2d_Conic::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom2d_Conic::*)( const Standard_Real  ) const>(&Geom2d_Conic::ReversedParameter),
             R"#(Returns the parameter on the reversed curve for the point of parameter U on <me>.)#"  , py::arg("U")
          )
        .def("Continuity",
             (GeomAbs_Shape (Geom2d_Conic::*)() const) static_cast<GeomAbs_Shape (Geom2d_Conic::*)() const>(&Geom2d_Conic::Continuity),
             R"#(Returns GeomAbs_CN which is the global continuity of any conic.)#" 
          )
        .def("IsCN",
             (Standard_Boolean (Geom2d_Conic::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom2d_Conic::*)( const Standard_Integer  ) const>(&Geom2d_Conic::IsCN),
             R"#(Returns True, the order of continuity of a conic is infinite.)#"  , py::arg("N")
          )
        .def("DumpJson",
             (void (Geom2d_Conic::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom2d_Conic::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom2d_Conic::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_Conic::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_Conic::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Location",
             (const gp_Pnt2d & (Geom2d_Conic::*)() const) static_cast<const gp_Pnt2d & (Geom2d_Conic::*)() const>(&Geom2d_Conic::Location),
             R"#(Returns the location point of the conic. For the circle, the ellipse and the hyperbola it is the center of the conic. For the parabola it is the vertex of the parabola.)#"
             
         )
       .def("Position",
             (const gp_Ax22d & (Geom2d_Conic::*)() const) static_cast<const gp_Ax22d & (Geom2d_Conic::*)() const>(&Geom2d_Conic::Position),
             R"#(Returns the local coordinates system of the conic.)#"
             
         )
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom2d_Conic::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_Conic::*)() const>(&Geom2d_Conic::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom2d_Direction from ./opencascade/Geom2d_Direction.hxx
    klass = m.attr("Geom2d_Direction");


    // nested enums

    static_cast<py::class_<Geom2d_Direction ,opencascade::handle<Geom2d_Direction>  , Geom2d_Vector >>(klass)
    // constructors
        .def(py::init< const Standard_Real,const Standard_Real >()  , py::arg("X"),  py::arg("Y") )
        .def(py::init< const gp_Dir2d & >()  , py::arg("V") )
    // custom constructors
    // methods
        .def("SetCoord",
             (void (Geom2d_Direction::*)( const Standard_Real ,  const Standard_Real  ) ) static_cast<void (Geom2d_Direction::*)( const Standard_Real ,  const Standard_Real  ) >(&Geom2d_Direction::SetCoord),
             R"#(Assigns the coordinates X and Y to this unit vector, then normalizes it. Exceptions Standard_ConstructionError if Sqrt(X*X + Y*Y) is less than or equal to gp::Resolution().)#"  , py::arg("X"),  py::arg("Y")
          )
        .def("SetDir2d",
             (void (Geom2d_Direction::*)( const gp_Dir2d &  ) ) static_cast<void (Geom2d_Direction::*)( const gp_Dir2d &  ) >(&Geom2d_Direction::SetDir2d),
             R"#(Converts the gp_Dir2d unit vector V into this unit vector.)#"  , py::arg("V")
          )
        .def("SetX",
             (void (Geom2d_Direction::*)( const Standard_Real  ) ) static_cast<void (Geom2d_Direction::*)( const Standard_Real  ) >(&Geom2d_Direction::SetX),
             R"#(Assigns a value to the X coordinate of this unit vector, then normalizes it. Exceptions Standard_ConstructionError if the value assigned causes the magnitude of the vector to become less than or equal to gp::Resolution().)#"  , py::arg("X")
          )
        .def("SetY",
             (void (Geom2d_Direction::*)( const Standard_Real  ) ) static_cast<void (Geom2d_Direction::*)( const Standard_Real  ) >(&Geom2d_Direction::SetY),
             R"#(Assigns a value to the Y coordinate of this unit vector, then normalizes it. Exceptions Standard_ConstructionError if the value assigned causes the magnitude of the vector to become less than or equal to gp::Resolution().)#"  , py::arg("Y")
          )
        .def("Dir2d",
             (gp_Dir2d (Geom2d_Direction::*)() const) static_cast<gp_Dir2d (Geom2d_Direction::*)() const>(&Geom2d_Direction::Dir2d),
             R"#(Converts this unit vector into a gp_Dir2d unit vector.)#" 
          )
        .def("Magnitude",
             (Standard_Real (Geom2d_Direction::*)() const) static_cast<Standard_Real (Geom2d_Direction::*)() const>(&Geom2d_Direction::Magnitude),
             R"#(returns 1.0)#" 
          )
        .def("SquareMagnitude",
             (Standard_Real (Geom2d_Direction::*)() const) static_cast<Standard_Real (Geom2d_Direction::*)() const>(&Geom2d_Direction::SquareMagnitude),
             R"#(returns 1.0)#" 
          )
        .def("Crossed",
             (Standard_Real (Geom2d_Direction::*)( const opencascade::handle<Geom2d_Vector> &  ) const) static_cast<Standard_Real (Geom2d_Direction::*)( const opencascade::handle<Geom2d_Vector> &  ) const>(&Geom2d_Direction::Crossed),
             R"#(Computes the cross product between <me> and <Other>.)#"  , py::arg("Other")
          )
        .def("Transform",
             (void (Geom2d_Direction::*)( const gp_Trsf2d &  ) ) static_cast<void (Geom2d_Direction::*)( const gp_Trsf2d &  ) >(&Geom2d_Direction::Transform),
             R"#(Applies the transformation T to this unit vector, then normalizes it.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom2d_Geometry> (Geom2d_Direction::*)() const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_Direction::*)() const>(&Geom2d_Direction::Copy),
             R"#(Creates a new object which is a copy of this unit vector.)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_Direction::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_Direction::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
        .def("__pow__",
             (Standard_Real (Geom2d_Direction::*)( const opencascade::handle<Geom2d_Vector> &  ) const) static_cast<Standard_Real (Geom2d_Direction::*)( const opencascade::handle<Geom2d_Vector> &  ) const>(&Geom2d_Direction::operator^),
             py::is_operator(),
             R"#(None)#"  , py::arg("Other")
          )
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom2d_Direction::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_Direction::*)() const>(&Geom2d_Direction::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom2d_Line from ./opencascade/Geom2d_Line.hxx
    klass = m.attr("Geom2d_Line");


    // nested enums

    static_cast<py::class_<Geom2d_Line ,opencascade::handle<Geom2d_Line>  , Geom2d_Curve >>(klass)
    // constructors
        .def(py::init< const gp_Ax2d & >()  , py::arg("A") )
        .def(py::init< const gp_Lin2d & >()  , py::arg("L") )
        .def(py::init< const gp_Pnt2d &,const gp_Dir2d & >()  , py::arg("P"),  py::arg("V") )
    // custom constructors
    // methods
        .def("SetLin2d",
             (void (Geom2d_Line::*)( const gp_Lin2d &  ) ) static_cast<void (Geom2d_Line::*)( const gp_Lin2d &  ) >(&Geom2d_Line::SetLin2d),
             R"#(Set <me> so that <me> has the same geometric properties as L.)#"  , py::arg("L")
          )
        .def("SetDirection",
             (void (Geom2d_Line::*)( const gp_Dir2d &  ) ) static_cast<void (Geom2d_Line::*)( const gp_Dir2d &  ) >(&Geom2d_Line::SetDirection),
             R"#(changes the direction of the line.)#"  , py::arg("V")
          )
        .def("SetLocation",
             (void (Geom2d_Line::*)( const gp_Pnt2d &  ) ) static_cast<void (Geom2d_Line::*)( const gp_Pnt2d &  ) >(&Geom2d_Line::SetLocation),
             R"#(Changes the "Location" point (origin) of the line.)#"  , py::arg("P")
          )
        .def("SetPosition",
             (void (Geom2d_Line::*)( const gp_Ax2d &  ) ) static_cast<void (Geom2d_Line::*)( const gp_Ax2d &  ) >(&Geom2d_Line::SetPosition),
             R"#(Changes the "Location" and a the "Direction" of <me>.)#"  , py::arg("A")
          )
        .def("Lin2d",
             (gp_Lin2d (Geom2d_Line::*)() const) static_cast<gp_Lin2d (Geom2d_Line::*)() const>(&Geom2d_Line::Lin2d),
             R"#(Returns non persistent line from gp with the same geometric properties as <me>)#" 
          )
        .def("Reverse",
             (void (Geom2d_Line::*)() ) static_cast<void (Geom2d_Line::*)() >(&Geom2d_Line::Reverse),
             R"#(Changes the orientation of this line. As a result, the unit vector of the positioning axis of this line is reversed.)#" 
          )
        .def("ReversedParameter",
             (Standard_Real (Geom2d_Line::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom2d_Line::*)( const Standard_Real  ) const>(&Geom2d_Line::ReversedParameter),
             R"#(Computes the parameter on the reversed line for the point of parameter U on this line. For a line, the returned value is -U.)#"  , py::arg("U")
          )
        .def("FirstParameter",
             (Standard_Real (Geom2d_Line::*)() const) static_cast<Standard_Real (Geom2d_Line::*)() const>(&Geom2d_Line::FirstParameter),
             R"#(Returns RealFirst from Standard.)#" 
          )
        .def("LastParameter",
             (Standard_Real (Geom2d_Line::*)() const) static_cast<Standard_Real (Geom2d_Line::*)() const>(&Geom2d_Line::LastParameter),
             R"#(Returns RealLast from Standard)#" 
          )
        .def("IsClosed",
             (Standard_Boolean (Geom2d_Line::*)() const) static_cast<Standard_Boolean (Geom2d_Line::*)() const>(&Geom2d_Line::IsClosed),
             R"#(Returns False)#" 
          )
        .def("IsPeriodic",
             (Standard_Boolean (Geom2d_Line::*)() const) static_cast<Standard_Boolean (Geom2d_Line::*)() const>(&Geom2d_Line::IsPeriodic),
             R"#(Returns False)#" 
          )
        .def("Continuity",
             (GeomAbs_Shape (Geom2d_Line::*)() const) static_cast<GeomAbs_Shape (Geom2d_Line::*)() const>(&Geom2d_Line::Continuity),
             R"#(Returns GeomAbs_CN, which is the global continuity of any line.)#" 
          )
        .def("Distance",
             (Standard_Real (Geom2d_Line::*)( const gp_Pnt2d &  ) const) static_cast<Standard_Real (Geom2d_Line::*)( const gp_Pnt2d &  ) const>(&Geom2d_Line::Distance),
             R"#(Computes the distance between <me> and the point P.)#"  , py::arg("P")
          )
        .def("IsCN",
             (Standard_Boolean (Geom2d_Line::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom2d_Line::*)( const Standard_Integer  ) const>(&Geom2d_Line::IsCN),
             R"#(Returns True.)#"  , py::arg("N")
          )
        .def("D0",
             (void (Geom2d_Line::*)( const Standard_Real ,  gp_Pnt2d &  ) const) static_cast<void (Geom2d_Line::*)( const Standard_Real ,  gp_Pnt2d &  ) const>(&Geom2d_Line::D0),
             R"#(Returns in P the point of parameter U. P (U) = O + U * Dir where O is the "Location" point of the line and Dir the direction of the line.)#"  , py::arg("U"),  py::arg("P")
          )
        .def("D1",
             (void (Geom2d_Line::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_Line::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d &  ) const>(&Geom2d_Line::D1),
             R"#(Returns the point P of parameter u and the first derivative V1.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1")
          )
        .def("D2",
             (void (Geom2d_Line::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_Line::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const>(&Geom2d_Line::D2),
             R"#(Returns the point P of parameter U, the first and second derivatives V1 and V2. V2 is a vector with null magnitude for a line.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def("D3",
             (void (Geom2d_Line::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_Line::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const>(&Geom2d_Line::D3),
             R"#(V2 and V3 are vectors with null magnitude for a line.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3")
          )
        .def("DN",
             (gp_Vec2d (Geom2d_Line::*)( const Standard_Real ,  const Standard_Integer  ) const) static_cast<gp_Vec2d (Geom2d_Line::*)( const Standard_Real ,  const Standard_Integer  ) const>(&Geom2d_Line::DN),
             R"#(For the point of parameter U of this line, computes the vector corresponding to the Nth derivative. Note: if N is greater than or equal to 2, the result is a vector with null magnitude. Exceptions Standard_RangeError if N is less than 1.)#"  , py::arg("U"),  py::arg("N")
          )
        .def("Transform",
             (void (Geom2d_Line::*)( const gp_Trsf2d &  ) ) static_cast<void (Geom2d_Line::*)( const gp_Trsf2d &  ) >(&Geom2d_Line::Transform),
             R"#(Applies the transformation T to this line.)#"  , py::arg("T")
          )
        .def("TransformedParameter",
             (Standard_Real (Geom2d_Line::*)( const Standard_Real ,  const gp_Trsf2d &  ) const) static_cast<Standard_Real (Geom2d_Line::*)( const Standard_Real ,  const gp_Trsf2d &  ) const>(&Geom2d_Line::TransformedParameter),
             R"#(Computes the parameter on the line transformed by T for the point of parameter U on this line. For a line, the returned value is equal to U multiplied by the scale factor of transformation T.)#"  , py::arg("U"),  py::arg("T")
          )
        .def("ParametricTransformation",
             (Standard_Real (Geom2d_Line::*)( const gp_Trsf2d &  ) const) static_cast<Standard_Real (Geom2d_Line::*)( const gp_Trsf2d &  ) const>(&Geom2d_Line::ParametricTransformation),
             R"#(Returns the coefficient required to compute the parametric transformation of this line when transformation T is applied. This coefficient is the ratio between the parameter of a point on this line and the parameter of the transformed point on the new line transformed by T. For a line, the returned value is the scale factor of the transformation T.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom2d_Geometry> (Geom2d_Line::*)() const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_Line::*)() const>(&Geom2d_Line::Copy),
             R"#(Creates a new object, which is a copy of this line.)#" 
          )
        .def("DumpJson",
             (void (Geom2d_Line::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom2d_Line::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom2d_Line::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_Line::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_Line::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Direction",
             (const gp_Dir2d & (Geom2d_Line::*)() const) static_cast<const gp_Dir2d & (Geom2d_Line::*)() const>(&Geom2d_Line::Direction),
             R"#(changes the direction of the line.)#"
             
         )
       .def("Location",
             (const gp_Pnt2d & (Geom2d_Line::*)() const) static_cast<const gp_Pnt2d & (Geom2d_Line::*)() const>(&Geom2d_Line::Location),
             R"#(Changes the "Location" point (origin) of the line.)#"
             
         )
       .def("Position",
             (const gp_Ax2d & (Geom2d_Line::*)() const) static_cast<const gp_Ax2d & (Geom2d_Line::*)() const>(&Geom2d_Line::Position),
             R"#(None)#"
             
         )
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom2d_Line::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_Line::*)() const>(&Geom2d_Line::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom2d_OffsetCurve from ./opencascade/Geom2d_OffsetCurve.hxx
    klass = m.attr("Geom2d_OffsetCurve");


    // nested enums

    static_cast<py::class_<Geom2d_OffsetCurve ,opencascade::handle<Geom2d_OffsetCurve>  , Geom2d_Curve >>(klass)
    // constructors
        .def(py::init< const opencascade::handle<Geom2d_Curve> &,const Standard_Real,const Standard_Boolean >()  , py::arg("C"),  py::arg("Offset"),  py::arg("isNotCheckC0")=static_cast<const Standard_Boolean>(Standard_False) )
    // custom constructors
    // methods
        .def("Reverse",
             (void (Geom2d_OffsetCurve::*)() ) static_cast<void (Geom2d_OffsetCurve::*)() >(&Geom2d_OffsetCurve::Reverse),
             R"#(Changes the direction of parametrization of <me>. As a result: - the basis curve is reversed, - the start point of the initial curve becomes the end point of the reversed curve, - the end point of the initial curve becomes the start point of the reversed curve, and - the first and last parameters are recomputed.)#" 
          )
        .def("ReversedParameter",
             (Standard_Real (Geom2d_OffsetCurve::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom2d_OffsetCurve::*)( const Standard_Real  ) const>(&Geom2d_OffsetCurve::ReversedParameter),
             R"#(Computes the parameter on the reversed curve for the point of parameter U on this offset curve.)#"  , py::arg("U")
          )
        .def("SetBasisCurve",
             (void (Geom2d_OffsetCurve::*)( const opencascade::handle<Geom2d_Curve> & ,  const Standard_Boolean  ) ) static_cast<void (Geom2d_OffsetCurve::*)( const opencascade::handle<Geom2d_Curve> & ,  const Standard_Boolean  ) >(&Geom2d_OffsetCurve::SetBasisCurve),
             R"#(Changes this offset curve by assigning C as the basis curve from which it is built. If isNotCheckC0 = TRUE checking if basis curve has C0-continuity is not made. Exceptions if isNotCheckC0 = false, Standard_ConstructionError if the curve C is not at least "C1" continuous.)#"  , py::arg("C"),  py::arg("isNotCheckC0")=static_cast<const Standard_Boolean>(Standard_False)
          )
        .def("SetOffsetValue",
             (void (Geom2d_OffsetCurve::*)( const Standard_Real  ) ) static_cast<void (Geom2d_OffsetCurve::*)( const Standard_Real  ) >(&Geom2d_OffsetCurve::SetOffsetValue),
             R"#(Changes this offset curve by assigning D as the offset value.)#"  , py::arg("D")
          )
        .def("BasisCurve",
             (opencascade::handle<Geom2d_Curve> (Geom2d_OffsetCurve::*)() const) static_cast<opencascade::handle<Geom2d_Curve> (Geom2d_OffsetCurve::*)() const>(&Geom2d_OffsetCurve::BasisCurve),
             R"#(Returns the basis curve of this offset curve. The basis curve can be an offset curve.)#" 
          )
        .def("Continuity",
             (GeomAbs_Shape (Geom2d_OffsetCurve::*)() const) static_cast<GeomAbs_Shape (Geom2d_OffsetCurve::*)() const>(&Geom2d_OffsetCurve::Continuity),
             R"#(Continuity of the Offset curve : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, G1 : tangency continuity all along the Curve, G2 : curvature continuity all along the Curve, CN : the order of continuity is infinite. Warnings : Returns the continuity of the basis curve - 1. The offset curve must have a unique normal direction defined at any point. Value and derivatives)#" 
          )
        .def("D0",
             (void (Geom2d_OffsetCurve::*)( const Standard_Real ,  gp_Pnt2d &  ) const) static_cast<void (Geom2d_OffsetCurve::*)( const Standard_Real ,  gp_Pnt2d &  ) const>(&Geom2d_OffsetCurve::D0),
             R"#(Warning! this should not be called if the basis curve is not at least C1. Nevertheless if used on portion where the curve is C1, it is OK)#"  , py::arg("U"),  py::arg("P")
          )
        .def("D1",
             (void (Geom2d_OffsetCurve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_OffsetCurve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d &  ) const>(&Geom2d_OffsetCurve::D1),
             R"#(Warning! this should not be called if the continuity of the basis curve is not C2. Nevertheless, it's OK to use it on portion where the curve is C2)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1")
          )
        .def("D2",
             (void (Geom2d_OffsetCurve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_OffsetCurve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const>(&Geom2d_OffsetCurve::D2),
             R"#(Warning! This should not be called if the continuity of the basis curve is not C3. Nevertheless, it's OK to use it on portion where the curve is C3)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def("D3",
             (void (Geom2d_OffsetCurve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_OffsetCurve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const>(&Geom2d_OffsetCurve::D3),
             R"#(Warning! This should not be called if the continuity of the basis curve is not C4. Nevertheless, it's OK to use it on portion where the curve is C4)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3")
          )
        .def("DN",
             (gp_Vec2d (Geom2d_OffsetCurve::*)( const Standard_Real ,  const Standard_Integer  ) const) static_cast<gp_Vec2d (Geom2d_OffsetCurve::*)( const Standard_Real ,  const Standard_Integer  ) const>(&Geom2d_OffsetCurve::DN),
             R"#(The returned vector gives the value of the derivative for the order of derivation N. Warning! this should not be called raises UndefunedDerivative if the continuity of the basis curve is not CN+1. Nevertheless, it's OK to use it on portion where the curve is CN+1 raises RangeError if N < 1. raises NotImplemented if N > 3. The following functions compute the value and derivatives on the offset curve and returns the derivatives on the basis curve too. The computation of the value and derivatives on the basis curve are used to evaluate the offset curve Warnings : The exception UndefinedValue or UndefinedDerivative is raised if it is not possible to compute a unique offset direction.)#"  , py::arg("U"),  py::arg("N")
          )
        .def("FirstParameter",
             (Standard_Real (Geom2d_OffsetCurve::*)() const) static_cast<Standard_Real (Geom2d_OffsetCurve::*)() const>(&Geom2d_OffsetCurve::FirstParameter),
             R"#(Returns the value of the first parameter of this offset curve. The first parameter corresponds to the start point of the curve. Note: the first and last parameters of this offset curve are also the ones of its basis curve.)#" 
          )
        .def("LastParameter",
             (Standard_Real (Geom2d_OffsetCurve::*)() const) static_cast<Standard_Real (Geom2d_OffsetCurve::*)() const>(&Geom2d_OffsetCurve::LastParameter),
             R"#(Returns the value of the last parameter of this offset curve. The last parameter corresponds to the end point. Note: the first and last parameters of this offset curve are also the ones of its basis curve.)#" 
          )
        .def("Offset",
             (Standard_Real (Geom2d_OffsetCurve::*)() const) static_cast<Standard_Real (Geom2d_OffsetCurve::*)() const>(&Geom2d_OffsetCurve::Offset),
             R"#(Returns the offset value of this offset curve.)#" 
          )
        .def("IsClosed",
             (Standard_Boolean (Geom2d_OffsetCurve::*)() const) static_cast<Standard_Boolean (Geom2d_OffsetCurve::*)() const>(&Geom2d_OffsetCurve::IsClosed),
             R"#(Returns True if the distance between the start point and the end point of the curve is lower or equal to Resolution from package gp.)#" 
          )
        .def("IsCN",
             (Standard_Boolean (Geom2d_OffsetCurve::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom2d_OffsetCurve::*)( const Standard_Integer  ) const>(&Geom2d_OffsetCurve::IsCN),
             R"#(Is the order of continuity of the curve N ? Warnings : This method answer True if the continuity of the basis curve is N + 1. We suppose in this class that a normal direction to the basis curve (used to compute the offset curve) is defined at any point on the basis curve. Raised if N < 0.)#"  , py::arg("N")
          )
        .def("IsPeriodic",
             (Standard_Boolean (Geom2d_OffsetCurve::*)() const) static_cast<Standard_Boolean (Geom2d_OffsetCurve::*)() const>(&Geom2d_OffsetCurve::IsPeriodic),
             R"#(Is the parametrization of a curve is periodic ? If the basis curve is a circle or an ellipse the corresponding OffsetCurve is periodic. If the basis curve can't be periodic (for example BezierCurve) the OffsetCurve can't be periodic.)#" 
          )
        .def("Period",
             (Standard_Real (Geom2d_OffsetCurve::*)() const) static_cast<Standard_Real (Geom2d_OffsetCurve::*)() const>(&Geom2d_OffsetCurve::Period),
             R"#(Returns the period of this offset curve, i.e. the period of the basis curve of this offset curve. Exceptions Standard_NoSuchObject if the basis curve is not periodic.)#" 
          )
        .def("Transform",
             (void (Geom2d_OffsetCurve::*)( const gp_Trsf2d &  ) ) static_cast<void (Geom2d_OffsetCurve::*)( const gp_Trsf2d &  ) >(&Geom2d_OffsetCurve::Transform),
             R"#(Applies the transformation T to this offset curve. Note: the basis curve is also modified.)#"  , py::arg("T")
          )
        .def("TransformedParameter",
             (Standard_Real (Geom2d_OffsetCurve::*)( const Standard_Real ,  const gp_Trsf2d &  ) const) static_cast<Standard_Real (Geom2d_OffsetCurve::*)( const Standard_Real ,  const gp_Trsf2d &  ) const>(&Geom2d_OffsetCurve::TransformedParameter),
             R"#(Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.)#"  , py::arg("U"),  py::arg("T")
          )
        .def("ParametricTransformation",
             (Standard_Real (Geom2d_OffsetCurve::*)( const gp_Trsf2d &  ) const) static_cast<Standard_Real (Geom2d_OffsetCurve::*)( const gp_Trsf2d &  ) const>(&Geom2d_OffsetCurve::ParametricTransformation),
             R"#(Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom2d_Geometry> (Geom2d_OffsetCurve::*)() const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_OffsetCurve::*)() const>(&Geom2d_OffsetCurve::Copy),
             R"#(Creates a new object, which is a copy of this offset curve.)#" 
          )
        .def("GetBasisCurveContinuity",
             (GeomAbs_Shape (Geom2d_OffsetCurve::*)() const) static_cast<GeomAbs_Shape (Geom2d_OffsetCurve::*)() const>(&Geom2d_OffsetCurve::GetBasisCurveContinuity),
             R"#(Returns continuity of the basis curve.)#" 
          )
        .def("DumpJson",
             (void (Geom2d_OffsetCurve::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom2d_OffsetCurve::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom2d_OffsetCurve::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_OffsetCurve::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_OffsetCurve::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom2d_OffsetCurve::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_OffsetCurve::*)() const>(&Geom2d_OffsetCurve::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom2d_VectorWithMagnitude from ./opencascade/Geom2d_VectorWithMagnitude.hxx
    klass = m.attr("Geom2d_VectorWithMagnitude");


    // nested enums

    static_cast<py::class_<Geom2d_VectorWithMagnitude ,opencascade::handle<Geom2d_VectorWithMagnitude>  , Geom2d_Vector >>(klass)
    // constructors
        .def(py::init< const gp_Vec2d & >()  , py::arg("V") )
        .def(py::init< const Standard_Real,const Standard_Real >()  , py::arg("X"),  py::arg("Y") )
        .def(py::init< const gp_Pnt2d &,const gp_Pnt2d & >()  , py::arg("P1"),  py::arg("P2") )
    // custom constructors
    // methods
        .def("SetCoord",
             (void (Geom2d_VectorWithMagnitude::*)( const Standard_Real ,  const Standard_Real  ) ) static_cast<void (Geom2d_VectorWithMagnitude::*)( const Standard_Real ,  const Standard_Real  ) >(&Geom2d_VectorWithMagnitude::SetCoord),
             R"#(Set <me> to X, Y coordinates.)#"  , py::arg("X"),  py::arg("Y")
          )
        .def("SetVec2d",
             (void (Geom2d_VectorWithMagnitude::*)( const gp_Vec2d &  ) ) static_cast<void (Geom2d_VectorWithMagnitude::*)( const gp_Vec2d &  ) >(&Geom2d_VectorWithMagnitude::SetVec2d),
             R"#(None)#"  , py::arg("V")
          )
        .def("SetX",
             (void (Geom2d_VectorWithMagnitude::*)( const Standard_Real  ) ) static_cast<void (Geom2d_VectorWithMagnitude::*)( const Standard_Real  ) >(&Geom2d_VectorWithMagnitude::SetX),
             R"#(Changes the X coordinate of <me>.)#"  , py::arg("X")
          )
        .def("SetY",
             (void (Geom2d_VectorWithMagnitude::*)( const Standard_Real  ) ) static_cast<void (Geom2d_VectorWithMagnitude::*)( const Standard_Real  ) >(&Geom2d_VectorWithMagnitude::SetY),
             R"#(Changes the Y coordinate of <me>)#"  , py::arg("Y")
          )
        .def("Magnitude",
             (Standard_Real (Geom2d_VectorWithMagnitude::*)() const) static_cast<Standard_Real (Geom2d_VectorWithMagnitude::*)() const>(&Geom2d_VectorWithMagnitude::Magnitude),
             R"#(Returns the magnitude of <me>.)#" 
          )
        .def("SquareMagnitude",
             (Standard_Real (Geom2d_VectorWithMagnitude::*)() const) static_cast<Standard_Real (Geom2d_VectorWithMagnitude::*)() const>(&Geom2d_VectorWithMagnitude::SquareMagnitude),
             R"#(Returns the square magnitude of <me>.)#" 
          )
        .def("Add",
             (void (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> &  ) ) static_cast<void (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> &  ) >(&Geom2d_VectorWithMagnitude::Add),
             R"#(Adds the Vector Other to <me>.)#"  , py::arg("Other")
          )
        .def("Added",
             (opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> &  ) const) static_cast<opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> &  ) const>(&Geom2d_VectorWithMagnitude::Added),
             R"#(Adds the vector Other to <me>.)#"  , py::arg("Other")
          )
        .def("Crossed",
             (Standard_Real (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> &  ) const) static_cast<Standard_Real (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> &  ) const>(&Geom2d_VectorWithMagnitude::Crossed),
             R"#(Computes the cross product between <me> and Other <me> ^ Other. A new vector is returned.)#"  , py::arg("Other")
          )
        .def("Divide",
             (void (Geom2d_VectorWithMagnitude::*)( const Standard_Real  ) ) static_cast<void (Geom2d_VectorWithMagnitude::*)( const Standard_Real  ) >(&Geom2d_VectorWithMagnitude::Divide),
             R"#(Divides <me> by a scalar.)#"  , py::arg("Scalar")
          )
        .def("Divided",
             (opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)( const Standard_Real  ) const>(&Geom2d_VectorWithMagnitude::Divided),
             R"#(Divides <me> by a scalar. A new vector is returned.)#"  , py::arg("Scalar")
          )
        .def("Multiplied",
             (opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)( const Standard_Real  ) const>(&Geom2d_VectorWithMagnitude::Multiplied),
             R"#(Computes the product of the vector <me> by a scalar. A new vector is returned.)#"  , py::arg("Scalar")
          )
        .def("Multiply",
             (void (Geom2d_VectorWithMagnitude::*)( const Standard_Real  ) ) static_cast<void (Geom2d_VectorWithMagnitude::*)( const Standard_Real  ) >(&Geom2d_VectorWithMagnitude::Multiply),
             R"#(Computes the product of the vector <me> by a scalar.)#"  , py::arg("Scalar")
          )
        .def("Normalize",
             (void (Geom2d_VectorWithMagnitude::*)() ) static_cast<void (Geom2d_VectorWithMagnitude::*)() >(&Geom2d_VectorWithMagnitude::Normalize),
             R"#(Normalizes <me>.)#" 
          )
        .def("Normalized",
             (opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)() const) static_cast<opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)() const>(&Geom2d_VectorWithMagnitude::Normalized),
             R"#(Returns a copy of <me> Normalized.)#" 
          )
        .def("Subtract",
             (void (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> &  ) ) static_cast<void (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> &  ) >(&Geom2d_VectorWithMagnitude::Subtract),
             R"#(Subtracts the Vector Other to <me>.)#"  , py::arg("Other")
          )
        .def("Subtracted",
             (opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> &  ) const) static_cast<opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> &  ) const>(&Geom2d_VectorWithMagnitude::Subtracted),
             R"#(Subtracts the vector Other to <me>. A new vector is returned.)#"  , py::arg("Other")
          )
        .def("Transform",
             (void (Geom2d_VectorWithMagnitude::*)( const gp_Trsf2d &  ) ) static_cast<void (Geom2d_VectorWithMagnitude::*)( const gp_Trsf2d &  ) >(&Geom2d_VectorWithMagnitude::Transform),
             R"#(Applies the transformation T to this vector.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom2d_Geometry> (Geom2d_VectorWithMagnitude::*)() const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_VectorWithMagnitude::*)() const>(&Geom2d_VectorWithMagnitude::Copy),
             R"#(Creates a new object which is a copy of this vector.)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_VectorWithMagnitude::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_VectorWithMagnitude::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
        .def("__iadd__",
             (void (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> &  ) ) static_cast<void (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> &  ) >(&Geom2d_VectorWithMagnitude::operator+=),
             py::is_operator(),
             R"#(None)#"  , py::arg("Other")
          )
        .def("__add__",
             (opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> &  ) const) static_cast<opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> &  ) const>(&Geom2d_VectorWithMagnitude::operator+),
             py::is_operator(),
             R"#(None)#"  , py::arg("Other")
          )
        .def("__pow__",
             (Standard_Real (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> &  ) const) static_cast<Standard_Real (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> &  ) const>(&Geom2d_VectorWithMagnitude::operator^),
             py::is_operator(),
             R"#(None)#"  , py::arg("Other")
          )
        .def("__itruediv__",
             (void (Geom2d_VectorWithMagnitude::*)( const Standard_Real  ) ) static_cast<void (Geom2d_VectorWithMagnitude::*)( const Standard_Real  ) >(&Geom2d_VectorWithMagnitude::operator/=),
             py::is_operator(),
             R"#(None)#"  , py::arg("Scalar")
          )
        .def("__truediv__",
             (opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)( const Standard_Real  ) const>(&Geom2d_VectorWithMagnitude::operator/),
             py::is_operator(),
             R"#(None)#"  , py::arg("Scalar")
          )
        .def("__imul__",
             (void (Geom2d_VectorWithMagnitude::*)( const Standard_Real  ) ) static_cast<void (Geom2d_VectorWithMagnitude::*)( const Standard_Real  ) >(&Geom2d_VectorWithMagnitude::operator*=),
             py::is_operator(),
             R"#(None)#"  , py::arg("Scalar")
          )
        .def("__isub__",
             (void (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> &  ) ) static_cast<void (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> &  ) >(&Geom2d_VectorWithMagnitude::operator-=),
             py::is_operator(),
             R"#(None)#"  , py::arg("Other")
          )
        .def("__sub__",
             (opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> &  ) const) static_cast<opencascade::handle<Geom2d_VectorWithMagnitude> (Geom2d_VectorWithMagnitude::*)( const opencascade::handle<Geom2d_Vector> &  ) const>(&Geom2d_VectorWithMagnitude::operator-),
             py::is_operator(),
             R"#(None)#"  , py::arg("Other")
          )
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom2d_VectorWithMagnitude::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_VectorWithMagnitude::*)() const>(&Geom2d_VectorWithMagnitude::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom2d_BSplineCurve from ./opencascade/Geom2d_BSplineCurve.hxx
    klass = m.attr("Geom2d_BSplineCurve");


    // nested enums

    static_cast<py::class_<Geom2d_BSplineCurve ,opencascade::handle<Geom2d_BSplineCurve>  , Geom2d_BoundedCurve >>(klass)
    // constructors
        .def(py::init<  const NCollection_Array1<gp_Pnt2d> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Integer> &,const Standard_Integer,const Standard_Boolean >()  , py::arg("Poles"),  py::arg("Knots"),  py::arg("Multiplicities"),  py::arg("Degree"),  py::arg("Periodic")=static_cast<const Standard_Boolean>(Standard_False) )
        .def(py::init<  const NCollection_Array1<gp_Pnt2d> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Integer> &,const Standard_Integer,const Standard_Boolean >()  , py::arg("Poles"),  py::arg("Weights"),  py::arg("Knots"),  py::arg("Multiplicities"),  py::arg("Degree"),  py::arg("Periodic")=static_cast<const Standard_Boolean>(Standard_False) )
    // custom constructors
    // methods
        .def("IncreaseDegree",
             (void (Geom2d_BSplineCurve::*)( const Standard_Integer  ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Integer  ) >(&Geom2d_BSplineCurve::IncreaseDegree),
             R"#(Increases the degree of this BSpline curve to Degree. As a result, the poles, weights and multiplicities tables are modified; the knots table is not changed. Nothing is done if Degree is less than or equal to the current degree. Exceptions Standard_ConstructionError if Degree is greater than Geom2d_BSplineCurve::MaxDegree().)#"  , py::arg("Degree")
          )
        .def("IncreaseMultiplicity",
             (void (Geom2d_BSplineCurve::*)( const Standard_Integer ,  const Standard_Integer  ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Integer ,  const Standard_Integer  ) >(&Geom2d_BSplineCurve::IncreaseMultiplicity),
             R"#(Increases the multiplicity of the knot <Index> to <M>.)#"  , py::arg("Index"),  py::arg("M")
          )
        .def("IncreaseMultiplicity",
             (void (Geom2d_BSplineCurve::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) >(&Geom2d_BSplineCurve::IncreaseMultiplicity),
             R"#(Increases the multiplicities of the knots in [I1,I2] to <M>.)#"  , py::arg("I1"),  py::arg("I2"),  py::arg("M")
          )
        .def("IncrementMultiplicity",
             (void (Geom2d_BSplineCurve::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) >(&Geom2d_BSplineCurve::IncrementMultiplicity),
             R"#(Increases by M the multiplicity of the knots of indexes I1 to I2 in the knots table of this BSpline curve. For each knot, the resulting multiplicity is limited to the degree of this curve. If M is negative, nothing is done. As a result, the poles and weights tables of this BSpline curve are modified. Warning It is forbidden to modify the multiplicity of the first or last knot of a non-periodic curve. Be careful as Geom2d does not protect against this. Exceptions Standard_OutOfRange if I1 or I2 is outside the bounds of the knots table.)#"  , py::arg("I1"),  py::arg("I2"),  py::arg("M")
          )
        .def("InsertKnot",
             (void (Geom2d_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Real  ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Real  ) >(&Geom2d_BSplineCurve::InsertKnot),
             R"#(Inserts a knot value in the sequence of knots. If <U> is an existing knot the multiplicity is increased by <M>.)#"  , py::arg("U"),  py::arg("M")=static_cast<const Standard_Integer>(1),  py::arg("ParametricTolerance")=static_cast<const Standard_Real>(0.0)
          )
        .def("InsertKnots",
             (void (Geom2d_BSplineCurve::*)(  const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<void (Geom2d_BSplineCurve::*)(  const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  const Standard_Real ,  const Standard_Boolean  ) >(&Geom2d_BSplineCurve::InsertKnots),
             R"#(Inserts the values of the array Knots, with the respective multiplicities given by the array Mults, into the knots table of this BSpline curve. If a value of the array Knots is an existing knot, its multiplicity is: - increased by M, if Add is true, or - increased to M, if Add is false (default value). The tolerance criterion used for knot equality is the larger of the values ParametricTolerance (defaulted to 0.) and Standard_Real::Epsilon(U), where U is the current knot value. Warning - For a value of the array Knots which is less than the first parameter or greater than the last parameter of this BSpline curve, nothing is done. - For a value of the array Mults which is negative or null, nothing is done. - The multiplicity of a knot is limited to the degree of this BSpline curve.)#"  , py::arg("Knots"),  py::arg("Mults"),  py::arg("ParametricTolerance")=static_cast<const Standard_Real>(0.0),  py::arg("Add")=static_cast<const Standard_Boolean>(Standard_False)
          )
        .def("RemoveKnot",
             (Standard_Boolean (Geom2d_BSplineCurve::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Real  ) ) static_cast<Standard_Boolean (Geom2d_BSplineCurve::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Real  ) >(&Geom2d_BSplineCurve::RemoveKnot),
             R"#(Reduces the multiplicity of the knot of index Index to M. If M is equal to 0, the knot is removed. With a modification of this type, the array of poles is also modified. Two different algorithms are systematically used to compute the new poles of the curve. If, for each pole, the distance between the pole calculated using the first algorithm and the same pole calculated using the second algorithm, is less than Tolerance, this ensures that the curve is not modified by more than Tolerance. Under these conditions, true is returned; otherwise, false is returned. A low tolerance is used to prevent modification of the curve. A high tolerance is used to "smooth" the curve. Exceptions Standard_OutOfRange if Index is outside the bounds of the knots table.)#"  , py::arg("Index"),  py::arg("M"),  py::arg("Tolerance")
          )
        .def("InsertPoleAfter",
             (void (Geom2d_BSplineCurve::*)( const Standard_Integer ,  const gp_Pnt2d & ,  const Standard_Real  ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Integer ,  const gp_Pnt2d & ,  const Standard_Real  ) >(&Geom2d_BSplineCurve::InsertPoleAfter),
             R"#(The new pole is inserted after the pole of range Index. If the curve was non rational it can become rational.)#"  , py::arg("Index"),  py::arg("P"),  py::arg("Weight")=static_cast<const Standard_Real>(1.0)
          )
        .def("InsertPoleBefore",
             (void (Geom2d_BSplineCurve::*)( const Standard_Integer ,  const gp_Pnt2d & ,  const Standard_Real  ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Integer ,  const gp_Pnt2d & ,  const Standard_Real  ) >(&Geom2d_BSplineCurve::InsertPoleBefore),
             R"#(The new pole is inserted before the pole of range Index. If the curve was non rational it can become rational.)#"  , py::arg("Index"),  py::arg("P"),  py::arg("Weight")=static_cast<const Standard_Real>(1.0)
          )
        .def("RemovePole",
             (void (Geom2d_BSplineCurve::*)( const Standard_Integer  ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Integer  ) >(&Geom2d_BSplineCurve::RemovePole),
             R"#(Removes the pole of range Index If the curve was rational it can become non rational.)#"  , py::arg("Index")
          )
        .def("Reverse",
             (void (Geom2d_BSplineCurve::*)() ) static_cast<void (Geom2d_BSplineCurve::*)() >(&Geom2d_BSplineCurve::Reverse),
             R"#(Reverses the orientation of this BSpline curve. As a result - the knots and poles tables are modified; - the start point of the initial curve becomes the end point of the reversed curve; - the end point of the initial curve becomes the start point of the reversed curve.)#" 
          )
        .def("ReversedParameter",
             (Standard_Real (Geom2d_BSplineCurve::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom2d_BSplineCurve::*)( const Standard_Real  ) const>(&Geom2d_BSplineCurve::ReversedParameter),
             R"#(Computes the parameter on the reversed curve for the point of parameter U on this BSpline curve. The returned value is: UFirst + ULast - U, where UFirst and ULast are the values of the first and last parameters of this BSpline curve.)#"  , py::arg("U")
          )
        .def("Segment",
             (void (Geom2d_BSplineCurve::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&Geom2d_BSplineCurve::Segment),
             R"#(Modifies this BSpline curve by segmenting it between U1 and U2. Either of these values can be outside the bounds of the curve, but U2 must be greater than U1. All data structure tables of this BSpline curve are modified, but the knots located between U1 and U2 are retained. The degree of the curve is not modified.)#"  , py::arg("U1"),  py::arg("U2"),  py::arg("theTolerance")=static_cast<const Standard_Real>(Precision :: PConfusion ( ))
          )
        .def("SetKnot",
             (void (Geom2d_BSplineCurve::*)( const Standard_Integer ,  const Standard_Real  ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Integer ,  const Standard_Real  ) >(&Geom2d_BSplineCurve::SetKnot),
             R"#(Modifies this BSpline curve by assigning the value K to the knot of index Index in the knots table. This is a relatively local modification because K must be such that: Knots(Index - 1) < K < Knots(Index + 1) Exceptions Standard_ConstructionError if: - K is not such that: Knots(Index - 1) < K < Knots(Index + 1) - M is greater than the degree of this BSpline curve or lower than the previous multiplicity of knot of index Index in the knots table. Standard_OutOfRange if Index is outside the bounds of the knots table.)#"  , py::arg("Index"),  py::arg("K")
          )
        .def("SetKnots",
             (void (Geom2d_BSplineCurve::*)(  const NCollection_Array1<Standard_Real> &  ) ) static_cast<void (Geom2d_BSplineCurve::*)(  const NCollection_Array1<Standard_Real> &  ) >(&Geom2d_BSplineCurve::SetKnots),
             R"#(Modifies this BSpline curve by assigning the array K to its knots table. The multiplicity of the knots is not modified. Exceptions Standard_ConstructionError if the values in the array K are not in ascending order. Standard_OutOfRange if the bounds of the array K are not respectively 1 and the number of knots of this BSpline curve.)#"  , py::arg("K")
          )
        .def("SetKnot",
             (void (Geom2d_BSplineCurve::*)( const Standard_Integer ,  const Standard_Real ,  const Standard_Integer  ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Integer ,  const Standard_Real ,  const Standard_Integer  ) >(&Geom2d_BSplineCurve::SetKnot),
             R"#(Modifies this BSpline curve by assigning the value K to the knot of index Index in the knots table. This is a relatively local modification because K must be such that: Knots(Index - 1) < K < Knots(Index + 1) The second syntax allows you also to increase the multiplicity of the knot to M (but it is not possible to decrease the multiplicity of the knot with this function). Exceptions Standard_ConstructionError if: - K is not such that: Knots(Index - 1) < K < Knots(Index + 1) - M is greater than the degree of this BSpline curve or lower than the previous multiplicity of knot of index Index in the knots table. Standard_OutOfRange if Index is outside the bounds of the knots table.)#"  , py::arg("Index"),  py::arg("K"),  py::arg("M")
          )
        .def("SetPeriodic",
             (void (Geom2d_BSplineCurve::*)() ) static_cast<void (Geom2d_BSplineCurve::*)() >(&Geom2d_BSplineCurve::SetPeriodic),
             R"#(Changes this BSpline curve into a periodic curve. To become periodic, the curve must first be closed. Next, the knot sequence must be periodic. For this, FirstUKnotIndex and LastUKnotIndex are used to compute I1 and I2, the indexes in the knots array of the knots corresponding to the first and last parameters of this BSpline curve. The period is therefore Knot(I2) - Knot(I1). Consequently, the knots and poles tables are modified. Exceptions Standard_ConstructionError if this BSpline curve is not closed.)#" 
          )
        .def("SetOrigin",
             (void (Geom2d_BSplineCurve::*)( const Standard_Integer  ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Integer  ) >(&Geom2d_BSplineCurve::SetOrigin),
             R"#(Assigns the knot of index Index in the knots table as the origin of this periodic BSpline curve. As a consequence, the knots and poles tables are modified. Exceptions Standard_NoSuchObject if this curve is not periodic. Standard_DomainError if Index is outside the bounds of the knots table.)#"  , py::arg("Index")
          )
        .def("SetNotPeriodic",
             (void (Geom2d_BSplineCurve::*)() ) static_cast<void (Geom2d_BSplineCurve::*)() >(&Geom2d_BSplineCurve::SetNotPeriodic),
             R"#(Changes this BSpline curve into a non-periodic curve. If this curve is already non-periodic, it is not modified. Note that the poles and knots tables are modified. Warning If this curve is periodic, as the multiplicity of the first and last knots is not modified, and is not equal to Degree + 1, where Degree is the degree of this BSpline curve, the start and end points of the curve are not its first and last poles.)#" 
          )
        .def("SetPole",
             (void (Geom2d_BSplineCurve::*)( const Standard_Integer ,  const gp_Pnt2d &  ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Integer ,  const gp_Pnt2d &  ) >(&Geom2d_BSplineCurve::SetPole),
             R"#(Modifies this BSpline curve by assigning P to the pole of index Index in the poles table. Exceptions Standard_OutOfRange if Index is outside the bounds of the poles table. Standard_ConstructionError if Weight is negative or null.)#"  , py::arg("Index"),  py::arg("P")
          )
        .def("SetPole",
             (void (Geom2d_BSplineCurve::*)( const Standard_Integer ,  const gp_Pnt2d & ,  const Standard_Real  ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Integer ,  const gp_Pnt2d & ,  const Standard_Real  ) >(&Geom2d_BSplineCurve::SetPole),
             R"#(Modifies this BSpline curve by assigning P to the pole of index Index in the poles table. The second syntax also allows you to modify the weight of the modified pole, which becomes Weight. In this case, if this BSpline curve is non-rational, it can become rational and vice versa. Exceptions Standard_OutOfRange if Index is outside the bounds of the poles table. Standard_ConstructionError if Weight is negative or null.)#"  , py::arg("Index"),  py::arg("P"),  py::arg("Weight")
          )
        .def("SetWeight",
             (void (Geom2d_BSplineCurve::*)( const Standard_Integer ,  const Standard_Real  ) ) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Integer ,  const Standard_Real  ) >(&Geom2d_BSplineCurve::SetWeight),
             R"#(Assigns the weight Weight to the pole of index Index of the poles table. If the curve was non rational it can become rational. If the curve was rational it can become non rational. Exceptions Standard_OutOfRange if Index is outside the bounds of the poles table. Standard_ConstructionError if Weight is negative or null.)#"  , py::arg("Index"),  py::arg("Weight")
          )
        .def("IsCN",
             (Standard_Boolean (Geom2d_BSplineCurve::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom2d_BSplineCurve::*)( const Standard_Integer  ) const>(&Geom2d_BSplineCurve::IsCN),
             R"#(Returns true if the degree of continuity of this BSpline curve is at least N. A BSpline curve is at least GeomAbs_C0. Exceptions Standard_RangeError if N is negative.)#"  , py::arg("N")
          )
        .def("IsG1",
             (Standard_Boolean (Geom2d_BSplineCurve::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) const) static_cast<Standard_Boolean (Geom2d_BSplineCurve::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) const>(&Geom2d_BSplineCurve::IsG1),
             R"#(Check if curve has at least G1 continuity in interval [theTf, theTl] Returns true if IsCN(1) or angle between "left" and "right" first derivatives at knots with C0 continuity is less then theAngTol only knots in interval [theTf, theTl] is checked)#"  , py::arg("theTf"),  py::arg("theTl"),  py::arg("theAngTol")
          )
        .def("IsClosed",
             (Standard_Boolean (Geom2d_BSplineCurve::*)() const) static_cast<Standard_Boolean (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::IsClosed),
             R"#(Returns true if the distance between the first point and the last point of the curve is lower or equal to Resolution from package gp. Warnings : The first and the last point can be different from the first pole and the last pole of the curve.)#" 
          )
        .def("IsPeriodic",
             (Standard_Boolean (Geom2d_BSplineCurve::*)() const) static_cast<Standard_Boolean (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::IsPeriodic),
             R"#(Returns True if the curve is periodic.)#" 
          )
        .def("IsRational",
             (Standard_Boolean (Geom2d_BSplineCurve::*)() const) static_cast<Standard_Boolean (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::IsRational),
             R"#(Returns True if the weights are not identical. The tolerance criterion is Epsilon of the class Real.)#" 
          )
        .def("Continuity",
             (GeomAbs_Shape (Geom2d_BSplineCurve::*)() const) static_cast<GeomAbs_Shape (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::Continuity),
             R"#(Returns the global continuity of the curve : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, CN : the order of continuity is infinite. For a B-spline curve of degree d if a knot Ui has a multiplicity p the B-spline curve is only Cd-p continuous at Ui. So the global continuity of the curve can't be greater than Cd-p where p is the maximum multiplicity of the interior Knots. In the interior of a knot span the curve is infinitely continuously differentiable.)#" 
          )
        .def("Degree",
             (Standard_Integer (Geom2d_BSplineCurve::*)() const) static_cast<Standard_Integer (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::Degree),
             R"#(Returns the degree of this BSpline curve. In this class the degree of the basis normalized B-spline functions cannot be greater than "MaxDegree" Computation of value and derivatives)#" 
          )
        .def("D0",
             (void (Geom2d_BSplineCurve::*)( const Standard_Real ,  gp_Pnt2d &  ) const) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Real ,  gp_Pnt2d &  ) const>(&Geom2d_BSplineCurve::D0),
             R"#(None)#"  , py::arg("U"),  py::arg("P")
          )
        .def("D1",
             (void (Geom2d_BSplineCurve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d &  ) const>(&Geom2d_BSplineCurve::D1),
             R"#(Raised if the continuity of the curve is not C1.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1")
          )
        .def("D2",
             (void (Geom2d_BSplineCurve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const>(&Geom2d_BSplineCurve::D2),
             R"#(Raised if the continuity of the curve is not C2.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def("D3",
             (void (Geom2d_BSplineCurve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const>(&Geom2d_BSplineCurve::D3),
             R"#(For this BSpline curve, computes - the point P of parameter U, or - the point P and one or more of the following values: - V1, the first derivative vector, - V2, the second derivative vector, - V3, the third derivative vector. Warning On a point where the continuity of the curve is not the one requested, these functions impact the part defined by the parameter with a value greater than U, i.e. the part of the curve to the "right" of the singularity. Raises UndefinedDerivative if the continuity of the curve is not C3.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3")
          )
        .def("DN",
             (gp_Vec2d (Geom2d_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer  ) const) static_cast<gp_Vec2d (Geom2d_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer  ) const>(&Geom2d_BSplineCurve::DN),
             R"#(For the point of parameter U of this BSpline curve, computes the vector corresponding to the Nth derivative. Warning On a point where the continuity of the curve is not the one requested, this function impacts the part defined by the parameter with a value greater than U, i.e. the part of the curve to the "right" of the singularity. Raises UndefinedDerivative if the continuity of the curve is not CN. RangeError if N < 1. The following functions computes the point of parameter U and the derivatives at this point on the B-spline curve arc defined between the knot FromK1 and the knot ToK2. U can be out of bounds [Knot (FromK1), Knot (ToK2)] but for the computation we only use the definition of the curve between these two knots. This method is useful to compute local derivative, if the order of continuity of the whole curve is not greater enough. Inside the parametric domain Knot (FromK1), Knot (ToK2) the evaluations are the same as if we consider the whole definition of the curve. Of course the evaluations are different outside this parametric domain.)#"  , py::arg("U"),  py::arg("N")
          )
        .def("LocalValue",
             (gp_Pnt2d (Geom2d_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const) static_cast<gp_Pnt2d (Geom2d_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const>(&Geom2d_BSplineCurve::LocalValue),
             R"#(Raised if FromK1 = ToK2.)#"  , py::arg("U"),  py::arg("FromK1"),  py::arg("ToK2")
          )
        .def("LocalD0",
             (void (Geom2d_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  gp_Pnt2d &  ) const) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  gp_Pnt2d &  ) const>(&Geom2d_BSplineCurve::LocalD0),
             R"#(Raised if FromK1 = ToK2.)#"  , py::arg("U"),  py::arg("FromK1"),  py::arg("ToK2"),  py::arg("P")
          )
        .def("LocalD1",
             (void (Geom2d_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  gp_Pnt2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  gp_Pnt2d & ,  gp_Vec2d &  ) const>(&Geom2d_BSplineCurve::LocalD1),
             R"#(Raised if the local continuity of the curve is not C1 between the knot K1 and the knot K2. Raised if FromK1 = ToK2.)#"  , py::arg("U"),  py::arg("FromK1"),  py::arg("ToK2"),  py::arg("P"),  py::arg("V1")
          )
        .def("LocalD2",
             (void (Geom2d_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const>(&Geom2d_BSplineCurve::LocalD2),
             R"#(Raised if the local continuity of the curve is not C2 between the knot K1 and the knot K2. Raised if FromK1 = ToK2.)#"  , py::arg("U"),  py::arg("FromK1"),  py::arg("ToK2"),  py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def("LocalD3",
             (void (Geom2d_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const>(&Geom2d_BSplineCurve::LocalD3),
             R"#(Raised if the local continuity of the curve is not C3 between the knot K1 and the knot K2. Raised if FromK1 = ToK2.)#"  , py::arg("U"),  py::arg("FromK1"),  py::arg("ToK2"),  py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3")
          )
        .def("LocalDN",
             (gp_Vec2d (Geom2d_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) const) static_cast<gp_Vec2d (Geom2d_BSplineCurve::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) const>(&Geom2d_BSplineCurve::LocalDN),
             R"#(Raised if the local continuity of the curve is not CN between the knot K1 and the knot K2. Raised if FromK1 = ToK2. Raised if N < 1.)#"  , py::arg("U"),  py::arg("FromK1"),  py::arg("ToK2"),  py::arg("N")
          )
        .def("EndPoint",
             (gp_Pnt2d (Geom2d_BSplineCurve::*)() const) static_cast<gp_Pnt2d (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::EndPoint),
             R"#(Returns the last point of the curve. Warnings : The last point of the curve is different from the last pole of the curve if the multiplicity of the last knot is lower than Degree.)#" 
          )
        .def("FirstUKnotIndex",
             (Standard_Integer (Geom2d_BSplineCurve::*)() const) static_cast<Standard_Integer (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::FirstUKnotIndex),
             R"#(For a B-spline curve the first parameter (which gives the start point of the curve) is a knot value but if the multiplicity of the first knot index is lower than Degree + 1 it is not the first knot of the curve. This method computes the index of the knot corresponding to the first parameter.)#" 
          )
        .def("FirstParameter",
             (Standard_Real (Geom2d_BSplineCurve::*)() const) static_cast<Standard_Real (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::FirstParameter),
             R"#(Computes the parametric value of the start point of the curve. It is a knot value.)#" 
          )
        .def("Knot",
             (Standard_Real (Geom2d_BSplineCurve::*)( const Standard_Integer  ) const) static_cast<Standard_Real (Geom2d_BSplineCurve::*)( const Standard_Integer  ) const>(&Geom2d_BSplineCurve::Knot),
             R"#(Returns the knot of range Index. When there is a knot with a multiplicity greater than 1 the knot is not repeated. The method Multiplicity can be used to get the multiplicity of the Knot. Raised if Index < 1 or Index > NbKnots)#"  , py::arg("Index")
          )
        .def("Knots",
             (void (Geom2d_BSplineCurve::*)( NCollection_Array1<Standard_Real> &  ) const) static_cast<void (Geom2d_BSplineCurve::*)( NCollection_Array1<Standard_Real> &  ) const>(&Geom2d_BSplineCurve::Knots),
             R"#(returns the knot values of the B-spline curve;)#"  , py::arg("K")
          )
        .def("KnotSequence",
             (void (Geom2d_BSplineCurve::*)( NCollection_Array1<Standard_Real> &  ) const) static_cast<void (Geom2d_BSplineCurve::*)( NCollection_Array1<Standard_Real> &  ) const>(&Geom2d_BSplineCurve::KnotSequence),
             R"#(Returns the knots sequence. In this sequence the knots with a multiplicity greater than 1 are repeated. Example : K = {k1, k1, k1, k2, k3, k3, k4, k4, k4})#"  , py::arg("K")
          )
        .def("KnotDistribution",
             (GeomAbs_BSplKnotDistribution (Geom2d_BSplineCurve::*)() const) static_cast<GeomAbs_BSplKnotDistribution (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::KnotDistribution),
             R"#(Returns NonUniform or Uniform or QuasiUniform or PiecewiseBezier. If all the knots differ by a positive constant from the preceding knot the BSpline Curve can be : - Uniform if all the knots are of multiplicity 1, - QuasiUniform if all the knots are of multiplicity 1 except for the first and last knot which are of multiplicity Degree + 1, - PiecewiseBezier if the first and last knots have multiplicity Degree + 1 and if interior knots have multiplicity Degree A piecewise Bezier with only two knots is a BezierCurve. else the curve is non uniform. The tolerance criterion is Epsilon from class Real.)#" 
          )
        .def("LastUKnotIndex",
             (Standard_Integer (Geom2d_BSplineCurve::*)() const) static_cast<Standard_Integer (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::LastUKnotIndex),
             R"#(For a BSpline curve the last parameter (which gives the end point of the curve) is a knot value but if the multiplicity of the last knot index is lower than Degree + 1 it is not the last knot of the curve. This method computes the index of the knot corresponding to the last parameter.)#" 
          )
        .def("LastParameter",
             (Standard_Real (Geom2d_BSplineCurve::*)() const) static_cast<Standard_Real (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::LastParameter),
             R"#(Computes the parametric value of the end point of the curve. It is a knot value.)#" 
          )
        .def("Multiplicity",
             (Standard_Integer (Geom2d_BSplineCurve::*)( const Standard_Integer  ) const) static_cast<Standard_Integer (Geom2d_BSplineCurve::*)( const Standard_Integer  ) const>(&Geom2d_BSplineCurve::Multiplicity),
             R"#(Returns the multiplicity of the knots of range Index. Raised if Index < 1 or Index > NbKnots)#"  , py::arg("Index")
          )
        .def("Multiplicities",
             (void (Geom2d_BSplineCurve::*)( NCollection_Array1<Standard_Integer> &  ) const) static_cast<void (Geom2d_BSplineCurve::*)( NCollection_Array1<Standard_Integer> &  ) const>(&Geom2d_BSplineCurve::Multiplicities),
             R"#(Returns the multiplicity of the knots of the curve.)#"  , py::arg("M")
          )
        .def("NbKnots",
             (Standard_Integer (Geom2d_BSplineCurve::*)() const) static_cast<Standard_Integer (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::NbKnots),
             R"#(Returns the number of knots. This method returns the number of knot without repetition of multiple knots.)#" 
          )
        .def("NbPoles",
             (Standard_Integer (Geom2d_BSplineCurve::*)() const) static_cast<Standard_Integer (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::NbPoles),
             R"#(Returns the number of poles)#" 
          )
        .def("Pole",
             (const gp_Pnt2d & (Geom2d_BSplineCurve::*)( const Standard_Integer  ) const) static_cast<const gp_Pnt2d & (Geom2d_BSplineCurve::*)( const Standard_Integer  ) const>(&Geom2d_BSplineCurve::Pole),
             R"#(Returns the pole of range Index. Raised if Index < 1 or Index > NbPoles.)#"  , py::arg("Index")
          )
        .def("Poles",
             (void (Geom2d_BSplineCurve::*)( NCollection_Array1<gp_Pnt2d> &  ) const) static_cast<void (Geom2d_BSplineCurve::*)( NCollection_Array1<gp_Pnt2d> &  ) const>(&Geom2d_BSplineCurve::Poles),
             R"#(Returns the poles of the B-spline curve;)#"  , py::arg("P")
          )
        .def("StartPoint",
             (gp_Pnt2d (Geom2d_BSplineCurve::*)() const) static_cast<gp_Pnt2d (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::StartPoint),
             R"#(Returns the start point of the curve. Warnings : This point is different from the first pole of the curve if the multiplicity of the first knot is lower than Degree.)#" 
          )
        .def("Weight",
             (Standard_Real (Geom2d_BSplineCurve::*)( const Standard_Integer  ) const) static_cast<Standard_Real (Geom2d_BSplineCurve::*)( const Standard_Integer  ) const>(&Geom2d_BSplineCurve::Weight),
             R"#(Returns the weight of the pole of range Index . Raised if Index < 1 or Index > NbPoles.)#"  , py::arg("Index")
          )
        .def("Weights",
             (void (Geom2d_BSplineCurve::*)( NCollection_Array1<Standard_Real> &  ) const) static_cast<void (Geom2d_BSplineCurve::*)( NCollection_Array1<Standard_Real> &  ) const>(&Geom2d_BSplineCurve::Weights),
             R"#(Returns the weights of the B-spline curve;)#"  , py::arg("W")
          )
        .def("Weights",
             (const TColStd_Array1OfReal * (Geom2d_BSplineCurve::*)() const) static_cast<const TColStd_Array1OfReal * (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::Weights),
             R"#(Returns the weights of the B-spline curve;)#" 
          )
        .def("Transform",
             (void (Geom2d_BSplineCurve::*)( const gp_Trsf2d &  ) ) static_cast<void (Geom2d_BSplineCurve::*)( const gp_Trsf2d &  ) >(&Geom2d_BSplineCurve::Transform),
             R"#(Applies the transformation T to this BSpline curve.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom2d_Geometry> (Geom2d_BSplineCurve::*)() const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::Copy),
             R"#(Creates a new object which is a copy of this BSpline curve.)#" 
          )
        .def("DumpJson",
             (void (Geom2d_BSplineCurve::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom2d_BSplineCurve::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom2d_BSplineCurve::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
        .def("PeriodicNormalization",
             []( Geom2d_BSplineCurve &self   ){
                 Standard_Real  U;

                 self.PeriodicNormalization(U);
                 
                 return std::make_tuple(U); },
             R"#(Computes the parameter normalized within the "first" period of this BSpline curve, if it is periodic: the returned value is in the range Param1 and Param1 + Period, where: - Param1 is the "first parameter", and - Period the period of this BSpline curve. Note: If this curve is not periodic, U is not modified.)#" 
          )
        .def("MovePoint",
             []( Geom2d_BSplineCurve &self , const Standard_Real U,const gp_Pnt2d & P,const Standard_Integer Index1,const Standard_Integer Index2 ){
                 Standard_Integer  FirstModifiedPole;
                Standard_Integer  LastModifiedPole;

                 self.MovePoint(U,P,Index1,Index2,FirstModifiedPole,LastModifiedPole);
                 
                 return std::make_tuple(FirstModifiedPole,LastModifiedPole); },
             R"#(Moves the point of parameter U of this BSpline curve to P. Index1 and Index2 are the indexes in the table of poles of this BSpline curve of the first and last poles designated to be moved. FirstModifiedPole and LastModifiedPole are the indexes of the first and last poles, which are effectively modified. In the event of incompatibility between Index1, Index2 and the value U: - no change is made to this BSpline curve, and - the FirstModifiedPole and LastModifiedPole are returned null. Exceptions Standard_OutOfRange if: - Index1 is greater than or equal to Index2, or - Index1 or Index2 is less than 1 or greater than the number of poles of this BSpline curve.)#"  , py::arg("U"),  py::arg("P"),  py::arg("Index1"),  py::arg("Index2")
          )
        .def("MovePointAndTangent",
             []( Geom2d_BSplineCurve &self , const Standard_Real U,const gp_Pnt2d & P,const gp_Vec2d & Tangent,const Standard_Real Tolerance,const Standard_Integer StartingCondition,const Standard_Integer EndingCondition ){
                 Standard_Integer  ErrorStatus;

                 self.MovePointAndTangent(U,P,Tangent,Tolerance,StartingCondition,EndingCondition,ErrorStatus);
                 
                 return std::make_tuple(ErrorStatus); },
             R"#(Move a point with parameter U to P. and makes it tangent at U be Tangent. StartingCondition = -1 means first can move EndingCondition = -1 means last point can move StartingCondition = 0 means the first point cannot move EndingCondition = 0 means the last point cannot move StartingCondition = 1 means the first point and tangent cannot move EndingCondition = 1 means the last point and tangent cannot move and so forth ErrorStatus != 0 means that there are not enough degree of freedom with the constrain to deform the curve accordingly)#"  , py::arg("U"),  py::arg("P"),  py::arg("Tangent"),  py::arg("Tolerance"),  py::arg("StartingCondition"),  py::arg("EndingCondition")
          )
        .def("LocateU",
             []( Geom2d_BSplineCurve &self , const Standard_Real U,const Standard_Real ParametricTolerance,const Standard_Boolean WithKnotRepetition ){
                 Standard_Integer  I1;
                Standard_Integer  I2;

                 self.LocateU(U,ParametricTolerance,I1,I2,WithKnotRepetition);
                 
                 return std::make_tuple(I1,I2); },
             R"#(Locates the parametric value U in the sequence of knots. If "WithKnotRepetition" is True we consider the knot's representation with repetition of multiple knot value, otherwise we consider the knot's representation with no repetition of multiple knot values. Knots (I1) <= U <= Knots (I2) . if I1 = I2 U is a knot value (the tolerance criterion ParametricTolerance is used). . if I1 < 1 => U < Knots (1) - Abs(ParametricTolerance) . if I2 > NbKnots => U > Knots (NbKnots) + Abs(ParametricTolerance))#"  , py::arg("U"),  py::arg("ParametricTolerance"),  py::arg("WithKnotRepetition")=static_cast<const Standard_Boolean>(Standard_False)
          )
        .def("Resolution",
             []( Geom2d_BSplineCurve &self , const Standard_Real ToleranceUV ){
                 Standard_Real  UTolerance;

                 self.Resolution(ToleranceUV,UTolerance);
                 
                 return std::make_tuple(UTolerance); },
             R"#(Computes for this BSpline curve the parametric tolerance UTolerance for a given tolerance Tolerance3D (relative to dimensions in the plane). If f(t) is the equation of this BSpline curve, UTolerance ensures that: | t1 - t0| < Utolerance ===> |f(t1) - f(t0)| < ToleranceUV)#"  , py::arg("ToleranceUV")
          )
    // static methods
        .def_static("MaxDegree_s",
                    (Standard_Integer (*)() ) static_cast<Standard_Integer (*)() >(&Geom2d_BSplineCurve::MaxDegree),
                    R"#(Returns the value of the maximum degree of the normalized B-spline basis functions in this package.)#" 
          )
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_BSplineCurve::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_BSplineCurve::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Knots",
             (const TColStd_Array1OfReal & (Geom2d_BSplineCurve::*)() const) static_cast<const TColStd_Array1OfReal & (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::Knots),
             R"#(returns the knot values of the B-spline curve;)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("KnotSequence",
             (const TColStd_Array1OfReal & (Geom2d_BSplineCurve::*)() const) static_cast<const TColStd_Array1OfReal & (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::KnotSequence),
             R"#(Returns the knots sequence. In this sequence the knots with a multiplicity greater than 1 are repeated. Example : K = {k1, k1, k1, k2, k3, k3, k4, k4, k4})#"
             
             , py::return_value_policy::reference_internal
         )
       .def("Multiplicities",
             (const TColStd_Array1OfInteger & (Geom2d_BSplineCurve::*)() const) static_cast<const TColStd_Array1OfInteger & (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::Multiplicities),
             R"#(returns the multiplicity of the knots of the curve.)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("Poles",
             (const TColgp_Array1OfPnt2d & (Geom2d_BSplineCurve::*)() const) static_cast<const TColgp_Array1OfPnt2d & (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::Poles),
             R"#(Returns the poles of the B-spline curve;)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom2d_BSplineCurve::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_BSplineCurve::*)() const>(&Geom2d_BSplineCurve::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom2d_BezierCurve from ./opencascade/Geom2d_BezierCurve.hxx
    klass = m.attr("Geom2d_BezierCurve");


    // nested enums

    static_cast<py::class_<Geom2d_BezierCurve ,opencascade::handle<Geom2d_BezierCurve>  , Geom2d_BoundedCurve >>(klass)
    // constructors
        .def(py::init<  const NCollection_Array1<gp_Pnt2d> & >()  , py::arg("CurvePoles") )
        .def(py::init<  const NCollection_Array1<gp_Pnt2d> &, const NCollection_Array1<Standard_Real> & >()  , py::arg("CurvePoles"),  py::arg("PoleWeights") )
    // custom constructors
    // methods
        .def("Increase",
             (void (Geom2d_BezierCurve::*)( const Standard_Integer  ) ) static_cast<void (Geom2d_BezierCurve::*)( const Standard_Integer  ) >(&Geom2d_BezierCurve::Increase),
             R"#(Increases the degree of a bezier curve. Degree is the new degree of <me>. raises ConstructionError if Degree is greater than MaxDegree or lower than 2 or lower than the initial degree of <me>.)#"  , py::arg("Degree")
          )
        .def("InsertPoleAfter",
             (void (Geom2d_BezierCurve::*)( const Standard_Integer ,  const gp_Pnt2d & ,  const Standard_Real  ) ) static_cast<void (Geom2d_BezierCurve::*)( const Standard_Integer ,  const gp_Pnt2d & ,  const Standard_Real  ) >(&Geom2d_BezierCurve::InsertPoleAfter),
             R"#(Inserts a pole with its weight in the set of poles after the pole of range Index. If the curve was non rational it can become rational if all the weights are not identical. Raised if Index is not in the range [0, NbPoles])#"  , py::arg("Index"),  py::arg("P"),  py::arg("Weight")=static_cast<const Standard_Real>(1.0)
          )
        .def("InsertPoleBefore",
             (void (Geom2d_BezierCurve::*)( const Standard_Integer ,  const gp_Pnt2d & ,  const Standard_Real  ) ) static_cast<void (Geom2d_BezierCurve::*)( const Standard_Integer ,  const gp_Pnt2d & ,  const Standard_Real  ) >(&Geom2d_BezierCurve::InsertPoleBefore),
             R"#(Inserts a pole with its weight in the set of poles after the pole of range Index. If the curve was non rational it can become rational if all the weights are not identical. Raised if Index is not in the range [1, NbPoles+1])#"  , py::arg("Index"),  py::arg("P"),  py::arg("Weight")=static_cast<const Standard_Real>(1.0)
          )
        .def("RemovePole",
             (void (Geom2d_BezierCurve::*)( const Standard_Integer  ) ) static_cast<void (Geom2d_BezierCurve::*)( const Standard_Integer  ) >(&Geom2d_BezierCurve::RemovePole),
             R"#(Removes the pole of range Index. If the curve was rational it can become non rational. Raised if Index is not in the range [1, NbPoles])#"  , py::arg("Index")
          )
        .def("Reverse",
             (void (Geom2d_BezierCurve::*)() ) static_cast<void (Geom2d_BezierCurve::*)() >(&Geom2d_BezierCurve::Reverse),
             R"#(Reverses the direction of parametrization of <me> Value (NewU) = Value (1 - OldU))#" 
          )
        .def("ReversedParameter",
             (Standard_Real (Geom2d_BezierCurve::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom2d_BezierCurve::*)( const Standard_Real  ) const>(&Geom2d_BezierCurve::ReversedParameter),
             R"#(Returns the parameter on the reversed curve for the point of parameter U on <me>.)#"  , py::arg("U")
          )
        .def("Segment",
             (void (Geom2d_BezierCurve::*)( const Standard_Real ,  const Standard_Real  ) ) static_cast<void (Geom2d_BezierCurve::*)( const Standard_Real ,  const Standard_Real  ) >(&Geom2d_BezierCurve::Segment),
             R"#(Segments the curve between U1 and U2 which can be out of the bounds of the curve. The curve is oriented from U1 to U2. The control points are modified, the first and the last point are not the same but the parametrization range is [0, 1] else it could not be a Bezier curve. Warnings : Even if <me> is not closed it can become closed after the segmentation for example if U1 or U2 are out of the bounds of the curve <me> or if the curve makes loop. After the segmentation the length of a curve can be null.)#"  , py::arg("U1"),  py::arg("U2")
          )
        .def("SetPole",
             (void (Geom2d_BezierCurve::*)( const Standard_Integer ,  const gp_Pnt2d &  ) ) static_cast<void (Geom2d_BezierCurve::*)( const Standard_Integer ,  const gp_Pnt2d &  ) >(&Geom2d_BezierCurve::SetPole),
             R"#(Substitutes the pole of range index with P. If the curve <me> is rational the weight of range Index is not modified. raiseD if Index is not in the range [1, NbPoles])#"  , py::arg("Index"),  py::arg("P")
          )
        .def("SetPole",
             (void (Geom2d_BezierCurve::*)( const Standard_Integer ,  const gp_Pnt2d & ,  const Standard_Real  ) ) static_cast<void (Geom2d_BezierCurve::*)( const Standard_Integer ,  const gp_Pnt2d & ,  const Standard_Real  ) >(&Geom2d_BezierCurve::SetPole),
             R"#(Substitutes the pole and the weights of range Index. If the curve <me> is not rational it can become rational if all the weights are not identical. If the curve was rational it can become non rational if all the weights are identical. Raised if Index is not in the range [1, NbPoles] Raised if Weight <= Resolution from package gp)#"  , py::arg("Index"),  py::arg("P"),  py::arg("Weight")
          )
        .def("SetWeight",
             (void (Geom2d_BezierCurve::*)( const Standard_Integer ,  const Standard_Real  ) ) static_cast<void (Geom2d_BezierCurve::*)( const Standard_Integer ,  const Standard_Real  ) >(&Geom2d_BezierCurve::SetWeight),
             R"#(Changes the weight of the pole of range Index. If the curve <me> is not rational it can become rational if all the weights are not identical. If the curve was rational it can become non rational if all the weights are identical. Raised if Index is not in the range [1, NbPoles] Raised if Weight <= Resolution from package gp)#"  , py::arg("Index"),  py::arg("Weight")
          )
        .def("IsClosed",
             (Standard_Boolean (Geom2d_BezierCurve::*)() const) static_cast<Standard_Boolean (Geom2d_BezierCurve::*)() const>(&Geom2d_BezierCurve::IsClosed),
             R"#(Returns True if the distance between the first point and the last point of the curve is lower or equal to the Resolution from package gp.)#" 
          )
        .def("IsCN",
             (Standard_Boolean (Geom2d_BezierCurve::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom2d_BezierCurve::*)( const Standard_Integer  ) const>(&Geom2d_BezierCurve::IsCN),
             R"#(Continuity of the curve, returns True.)#"  , py::arg("N")
          )
        .def("IsPeriodic",
             (Standard_Boolean (Geom2d_BezierCurve::*)() const) static_cast<Standard_Boolean (Geom2d_BezierCurve::*)() const>(&Geom2d_BezierCurve::IsPeriodic),
             R"#(Returns False. A BezierCurve cannot be periodic in this package)#" 
          )
        .def("IsRational",
             (Standard_Boolean (Geom2d_BezierCurve::*)() const) static_cast<Standard_Boolean (Geom2d_BezierCurve::*)() const>(&Geom2d_BezierCurve::IsRational),
             R"#(Returns false if all the weights are identical. The tolerance criterion is Resolution from package gp.)#" 
          )
        .def("Continuity",
             (GeomAbs_Shape (Geom2d_BezierCurve::*)() const) static_cast<GeomAbs_Shape (Geom2d_BezierCurve::*)() const>(&Geom2d_BezierCurve::Continuity),
             R"#(Returns GeomAbs_CN, which is the continuity of any Bezier curve.)#" 
          )
        .def("Degree",
             (Standard_Integer (Geom2d_BezierCurve::*)() const) static_cast<Standard_Integer (Geom2d_BezierCurve::*)() const>(&Geom2d_BezierCurve::Degree),
             R"#(Returns the polynomial degree of the curve. It is the number of poles less one. In this package the Degree of a Bezier curve cannot be greater than "MaxDegree".)#" 
          )
        .def("D0",
             (void (Geom2d_BezierCurve::*)( const Standard_Real ,  gp_Pnt2d &  ) const) static_cast<void (Geom2d_BezierCurve::*)( const Standard_Real ,  gp_Pnt2d &  ) const>(&Geom2d_BezierCurve::D0),
             R"#(None)#"  , py::arg("U"),  py::arg("P")
          )
        .def("D1",
             (void (Geom2d_BezierCurve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_BezierCurve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d &  ) const>(&Geom2d_BezierCurve::D1),
             R"#(None)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1")
          )
        .def("D2",
             (void (Geom2d_BezierCurve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_BezierCurve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const>(&Geom2d_BezierCurve::D2),
             R"#(None)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def("D3",
             (void (Geom2d_BezierCurve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_BezierCurve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const>(&Geom2d_BezierCurve::D3),
             R"#(None)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3")
          )
        .def("DN",
             (gp_Vec2d (Geom2d_BezierCurve::*)( const Standard_Real ,  const Standard_Integer  ) const) static_cast<gp_Vec2d (Geom2d_BezierCurve::*)( const Standard_Real ,  const Standard_Integer  ) const>(&Geom2d_BezierCurve::DN),
             R"#(For this Bezier curve, computes - the point P of parameter U, or - the point P and one or more of the following values: - V1, the first derivative vector, - V2, the second derivative vector, - V3, the third derivative vector. Note: the parameter U can be outside the bounds of the curve. Raises RangeError if N < 1.)#"  , py::arg("U"),  py::arg("N")
          )
        .def("EndPoint",
             (gp_Pnt2d (Geom2d_BezierCurve::*)() const) static_cast<gp_Pnt2d (Geom2d_BezierCurve::*)() const>(&Geom2d_BezierCurve::EndPoint),
             R"#(Returns the end point or start point of this Bezier curve.)#" 
          )
        .def("FirstParameter",
             (Standard_Real (Geom2d_BezierCurve::*)() const) static_cast<Standard_Real (Geom2d_BezierCurve::*)() const>(&Geom2d_BezierCurve::FirstParameter),
             R"#(Returns the value of the first parameter of this Bezier curve. This is 0.0, which gives the start point of this Bezier curve.)#" 
          )
        .def("LastParameter",
             (Standard_Real (Geom2d_BezierCurve::*)() const) static_cast<Standard_Real (Geom2d_BezierCurve::*)() const>(&Geom2d_BezierCurve::LastParameter),
             R"#(Returns the value of the last parameter of this Bezier curve. This is 1.0, which gives the end point of this Bezier curve.)#" 
          )
        .def("NbPoles",
             (Standard_Integer (Geom2d_BezierCurve::*)() const) static_cast<Standard_Integer (Geom2d_BezierCurve::*)() const>(&Geom2d_BezierCurve::NbPoles),
             R"#(Returns the number of poles for this Bezier curve.)#" 
          )
        .def("Pole",
             (const gp_Pnt2d & (Geom2d_BezierCurve::*)( const Standard_Integer  ) const) static_cast<const gp_Pnt2d & (Geom2d_BezierCurve::*)( const Standard_Integer  ) const>(&Geom2d_BezierCurve::Pole),
             R"#(Returns the pole of range Index. Raised if Index is not in the range [1, NbPoles])#"  , py::arg("Index")
          )
        .def("Poles",
             (void (Geom2d_BezierCurve::*)( NCollection_Array1<gp_Pnt2d> &  ) const) static_cast<void (Geom2d_BezierCurve::*)( NCollection_Array1<gp_Pnt2d> &  ) const>(&Geom2d_BezierCurve::Poles),
             R"#(Returns all the poles of the curve.)#"  , py::arg("P")
          )
        .def("StartPoint",
             (gp_Pnt2d (Geom2d_BezierCurve::*)() const) static_cast<gp_Pnt2d (Geom2d_BezierCurve::*)() const>(&Geom2d_BezierCurve::StartPoint),
             R"#(Returns Value (U=1), it is the first control point of the curve.)#" 
          )
        .def("Weight",
             (Standard_Real (Geom2d_BezierCurve::*)( const Standard_Integer  ) const) static_cast<Standard_Real (Geom2d_BezierCurve::*)( const Standard_Integer  ) const>(&Geom2d_BezierCurve::Weight),
             R"#(Returns the weight of range Index. Raised if Index is not in the range [1, NbPoles])#"  , py::arg("Index")
          )
        .def("Weights",
             (void (Geom2d_BezierCurve::*)( NCollection_Array1<Standard_Real> &  ) const) static_cast<void (Geom2d_BezierCurve::*)( NCollection_Array1<Standard_Real> &  ) const>(&Geom2d_BezierCurve::Weights),
             R"#(Returns all the weights of the curve.)#"  , py::arg("W")
          )
        .def("Weights",
             (const TColStd_Array1OfReal * (Geom2d_BezierCurve::*)() const) static_cast<const TColStd_Array1OfReal * (Geom2d_BezierCurve::*)() const>(&Geom2d_BezierCurve::Weights),
             R"#(Returns all the weights of the curve.)#" 
          )
        .def("Transform",
             (void (Geom2d_BezierCurve::*)( const gp_Trsf2d &  ) ) static_cast<void (Geom2d_BezierCurve::*)( const gp_Trsf2d &  ) >(&Geom2d_BezierCurve::Transform),
             R"#(Applies the transformation T to this Bezier curve.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom2d_Geometry> (Geom2d_BezierCurve::*)() const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_BezierCurve::*)() const>(&Geom2d_BezierCurve::Copy),
             R"#(Creates a new object which is a copy of this Bezier curve.)#" 
          )
        .def("DumpJson",
             (void (Geom2d_BezierCurve::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom2d_BezierCurve::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom2d_BezierCurve::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
        .def("Resolution",
             []( Geom2d_BezierCurve &self , const Standard_Real ToleranceUV ){
                 Standard_Real  UTolerance;

                 self.Resolution(ToleranceUV,UTolerance);
                 
                 return std::make_tuple(UTolerance); },
             R"#(Computes for this Bezier curve the parametric tolerance UTolerance for a given tolerance Tolerance3D (relative to dimensions in the plane). If f(t) is the equation of this Bezier curve, UTolerance ensures that | t1 - t0| < Utolerance ===> |f(t1) - f(t0)| < ToleranceUV)#"  , py::arg("ToleranceUV")
          )
    // static methods
        .def_static("MaxDegree_s",
                    (Standard_Integer (*)() ) static_cast<Standard_Integer (*)() >(&Geom2d_BezierCurve::MaxDegree),
                    R"#(Returns the value of the maximum polynomial degree of a BezierCurve. This value is 25.)#" 
          )
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_BezierCurve::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_BezierCurve::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Poles",
             (const TColgp_Array1OfPnt2d & (Geom2d_BezierCurve::*)() const) static_cast<const TColgp_Array1OfPnt2d & (Geom2d_BezierCurve::*)() const>(&Geom2d_BezierCurve::Poles),
             R"#(Returns all the poles of the curve.)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom2d_BezierCurve::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_BezierCurve::*)() const>(&Geom2d_BezierCurve::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom2d_Circle from ./opencascade/Geom2d_Circle.hxx
    klass = m.attr("Geom2d_Circle");


    // nested enums

    static_cast<py::class_<Geom2d_Circle ,opencascade::handle<Geom2d_Circle>  , Geom2d_Conic >>(klass)
    // constructors
        .def(py::init< const gp_Circ2d & >()  , py::arg("C") )
        .def(py::init< const gp_Ax2d &,const Standard_Real,const Standard_Boolean >()  , py::arg("A"),  py::arg("Radius"),  py::arg("Sense")=static_cast<const Standard_Boolean>(Standard_True) )
        .def(py::init< const gp_Ax22d &,const Standard_Real >()  , py::arg("A"),  py::arg("Radius") )
    // custom constructors
    // methods
        .def("SetCirc2d",
             (void (Geom2d_Circle::*)( const gp_Circ2d &  ) ) static_cast<void (Geom2d_Circle::*)( const gp_Circ2d &  ) >(&Geom2d_Circle::SetCirc2d),
             R"#(Converts the gp_Circ2d circle C into this circle.)#"  , py::arg("C")
          )
        .def("SetRadius",
             (void (Geom2d_Circle::*)( const Standard_Real  ) ) static_cast<void (Geom2d_Circle::*)( const Standard_Real  ) >(&Geom2d_Circle::SetRadius),
             R"#(None)#"  , py::arg("R")
          )
        .def("Circ2d",
             (gp_Circ2d (Geom2d_Circle::*)() const) static_cast<gp_Circ2d (Geom2d_Circle::*)() const>(&Geom2d_Circle::Circ2d),
             R"#(Returns the non persistent circle from gp with the same geometric properties as <me>.)#" 
          )
        .def("Radius",
             (Standard_Real (Geom2d_Circle::*)() const) static_cast<Standard_Real (Geom2d_Circle::*)() const>(&Geom2d_Circle::Radius),
             R"#(Returns the radius of this circle.)#" 
          )
        .def("ReversedParameter",
             (Standard_Real (Geom2d_Circle::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom2d_Circle::*)( const Standard_Real  ) const>(&Geom2d_Circle::ReversedParameter),
             R"#(Computes the parameter on the reversed circle for the point of parameter U on this circle. For a circle, the returned value is: 2.*Pi - U.)#"  , py::arg("U")
          )
        .def("Eccentricity",
             (Standard_Real (Geom2d_Circle::*)() const) static_cast<Standard_Real (Geom2d_Circle::*)() const>(&Geom2d_Circle::Eccentricity),
             R"#(Returns 0., which is the eccentricity of any circle.)#" 
          )
        .def("FirstParameter",
             (Standard_Real (Geom2d_Circle::*)() const) static_cast<Standard_Real (Geom2d_Circle::*)() const>(&Geom2d_Circle::FirstParameter),
             R"#(Returns 0.0)#" 
          )
        .def("LastParameter",
             (Standard_Real (Geom2d_Circle::*)() const) static_cast<Standard_Real (Geom2d_Circle::*)() const>(&Geom2d_Circle::LastParameter),
             R"#(Returns 2*PI.)#" 
          )
        .def("IsClosed",
             (Standard_Boolean (Geom2d_Circle::*)() const) static_cast<Standard_Boolean (Geom2d_Circle::*)() const>(&Geom2d_Circle::IsClosed),
             R"#(returns True.)#" 
          )
        .def("IsPeriodic",
             (Standard_Boolean (Geom2d_Circle::*)() const) static_cast<Standard_Boolean (Geom2d_Circle::*)() const>(&Geom2d_Circle::IsPeriodic),
             R"#(returns True. The period of a circle is 2.*Pi.)#" 
          )
        .def("D0",
             (void (Geom2d_Circle::*)( const Standard_Real ,  gp_Pnt2d &  ) const) static_cast<void (Geom2d_Circle::*)( const Standard_Real ,  gp_Pnt2d &  ) const>(&Geom2d_Circle::D0),
             R"#(Returns in P the point of parameter U. P = C + R * Cos (U) * XDir + R * Sin (U) * YDir where C is the center of the circle , XDir the XDirection and YDir the YDirection of the circle's local coordinate system.)#"  , py::arg("U"),  py::arg("P")
          )
        .def("D1",
             (void (Geom2d_Circle::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_Circle::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d &  ) const>(&Geom2d_Circle::D1),
             R"#(Returns the point P of parameter U and the first derivative V1.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1")
          )
        .def("D2",
             (void (Geom2d_Circle::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_Circle::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const>(&Geom2d_Circle::D2),
             R"#(Returns the point P of parameter U, the first and second derivatives V1 and V2.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def("D3",
             (void (Geom2d_Circle::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_Circle::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const>(&Geom2d_Circle::D3),
             R"#(Returns the point P of parameter u, the first second and third derivatives V1 V2 and V3.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3")
          )
        .def("DN",
             (gp_Vec2d (Geom2d_Circle::*)( const Standard_Real ,  const Standard_Integer  ) const) static_cast<gp_Vec2d (Geom2d_Circle::*)( const Standard_Real ,  const Standard_Integer  ) const>(&Geom2d_Circle::DN),
             R"#(For the point of parameter U of this circle, computes the vector corresponding to the Nth derivative. Exceptions: Standard_RangeError if N is less than 1.)#"  , py::arg("U"),  py::arg("N")
          )
        .def("Transform",
             (void (Geom2d_Circle::*)( const gp_Trsf2d &  ) ) static_cast<void (Geom2d_Circle::*)( const gp_Trsf2d &  ) >(&Geom2d_Circle::Transform),
             R"#(Applies the transformation T to this circle.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom2d_Geometry> (Geom2d_Circle::*)() const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_Circle::*)() const>(&Geom2d_Circle::Copy),
             R"#(Creates a new object which is a copy of this circle.)#" 
          )
        .def("DumpJson",
             (void (Geom2d_Circle::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom2d_Circle::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom2d_Circle::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_Circle::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_Circle::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom2d_Circle::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_Circle::*)() const>(&Geom2d_Circle::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom2d_Ellipse from ./opencascade/Geom2d_Ellipse.hxx
    klass = m.attr("Geom2d_Ellipse");


    // nested enums

    static_cast<py::class_<Geom2d_Ellipse ,opencascade::handle<Geom2d_Ellipse>  , Geom2d_Conic >>(klass)
    // constructors
        .def(py::init< const gp_Elips2d & >()  , py::arg("E") )
        .def(py::init< const gp_Ax2d &,const Standard_Real,const Standard_Real,const Standard_Boolean >()  , py::arg("MajorAxis"),  py::arg("MajorRadius"),  py::arg("MinorRadius"),  py::arg("Sense")=static_cast<const Standard_Boolean>(Standard_True) )
        .def(py::init< const gp_Ax22d &,const Standard_Real,const Standard_Real >()  , py::arg("Axis"),  py::arg("MajorRadius"),  py::arg("MinorRadius") )
    // custom constructors
    // methods
        .def("SetElips2d",
             (void (Geom2d_Ellipse::*)( const gp_Elips2d &  ) ) static_cast<void (Geom2d_Ellipse::*)( const gp_Elips2d &  ) >(&Geom2d_Ellipse::SetElips2d),
             R"#(Converts the gp_Elips2d ellipse E into this ellipse.)#"  , py::arg("E")
          )
        .def("SetMajorRadius",
             (void (Geom2d_Ellipse::*)( const Standard_Real  ) ) static_cast<void (Geom2d_Ellipse::*)( const Standard_Real  ) >(&Geom2d_Ellipse::SetMajorRadius),
             R"#(Assigns a value to the major radius of this ellipse. Exceptions Standard_ConstructionError if: - the major radius of this ellipse becomes less than the minor radius, or - MinorRadius is less than 0.)#"  , py::arg("MajorRadius")
          )
        .def("SetMinorRadius",
             (void (Geom2d_Ellipse::*)( const Standard_Real  ) ) static_cast<void (Geom2d_Ellipse::*)( const Standard_Real  ) >(&Geom2d_Ellipse::SetMinorRadius),
             R"#(Assigns a value to the minor radius of this ellipse. Exceptions Standard_ConstructionError if: - the major radius of this ellipse becomes less than the minor radius, or - MinorRadius is less than 0.)#"  , py::arg("MinorRadius")
          )
        .def("Elips2d",
             (gp_Elips2d (Geom2d_Ellipse::*)() const) static_cast<gp_Elips2d (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::Elips2d),
             R"#(Converts this ellipse into a gp_Elips2d ellipse.)#" 
          )
        .def("ReversedParameter",
             (Standard_Real (Geom2d_Ellipse::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom2d_Ellipse::*)( const Standard_Real  ) const>(&Geom2d_Ellipse::ReversedParameter),
             R"#(Computes the parameter on the reversed ellipse for the point of parameter U on this ellipse. For an ellipse, the returned value is: 2.*Pi - U.)#"  , py::arg("U")
          )
        .def("Directrix1",
             (gp_Ax2d (Geom2d_Ellipse::*)() const) static_cast<gp_Ax2d (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::Directrix1),
             R"#(Computes the directrices of this ellipse. This directrix is the line normal to the XAxis of the ellipse in the local plane (Z = 0) at a distance d = MajorRadius / e from the center of the ellipse, where e is the eccentricity of the ellipse. This line is parallel to the "YAxis". The intersection point between directrix1 and the "XAxis" is the "Location" point of the directrix1. This point is on the positive side of the "XAxis". Raises ConstructionError if Eccentricity = 0.0. (The ellipse degenerates into a circle))#" 
          )
        .def("Directrix2",
             (gp_Ax2d (Geom2d_Ellipse::*)() const) static_cast<gp_Ax2d (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::Directrix2),
             R"#(This line is obtained by the symmetrical transformation of "Directrix1" with respect to the "YAxis" of the ellipse. Raises ConstructionError if Eccentricity = 0.0. (The ellipse degenerates into a circle).)#" 
          )
        .def("Eccentricity",
             (Standard_Real (Geom2d_Ellipse::*)() const) static_cast<Standard_Real (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::Eccentricity),
             R"#(Returns the eccentricity of the ellipse between 0.0 and 1.0 If f is the distance between the center of the ellipse and the Focus1 then the eccentricity e = f / MajorRadius. Returns 0 if MajorRadius = 0)#" 
          )
        .def("Focal",
             (Standard_Real (Geom2d_Ellipse::*)() const) static_cast<Standard_Real (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::Focal),
             R"#(Computes the focal distance. The focal distance is the distance between the center and a focus of the ellipse.)#" 
          )
        .def("Focus1",
             (gp_Pnt2d (Geom2d_Ellipse::*)() const) static_cast<gp_Pnt2d (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::Focus1),
             R"#(Returns the first focus of the ellipse. This focus is on the positive side of the "XAxis" of the ellipse.)#" 
          )
        .def("Focus2",
             (gp_Pnt2d (Geom2d_Ellipse::*)() const) static_cast<gp_Pnt2d (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::Focus2),
             R"#(Returns the second focus of the ellipse. This focus is on the negative side of the "XAxis" of the ellipse.)#" 
          )
        .def("MajorRadius",
             (Standard_Real (Geom2d_Ellipse::*)() const) static_cast<Standard_Real (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::MajorRadius),
             R"#(Returns the major radius of this ellipse.)#" 
          )
        .def("MinorRadius",
             (Standard_Real (Geom2d_Ellipse::*)() const) static_cast<Standard_Real (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::MinorRadius),
             R"#(Returns the minor radius of this ellipse.)#" 
          )
        .def("Parameter",
             (Standard_Real (Geom2d_Ellipse::*)() const) static_cast<Standard_Real (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::Parameter),
             R"#(Computes the parameter of this ellipse. This value is given by the formula p = (1 - e * e) * MajorRadius where e is the eccentricity of the ellipse. Returns 0 if MajorRadius = 0)#" 
          )
        .def("FirstParameter",
             (Standard_Real (Geom2d_Ellipse::*)() const) static_cast<Standard_Real (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::FirstParameter),
             R"#(Returns the value of the first parameter of this ellipse. This is 0.0, which gives the start point of this ellipse. The start point and end point of an ellipse are coincident.)#" 
          )
        .def("LastParameter",
             (Standard_Real (Geom2d_Ellipse::*)() const) static_cast<Standard_Real (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::LastParameter),
             R"#(Returns the value of the last parameter of this ellipse. This is 2.*Pi, which gives the end point of this ellipse. The start point and end point of an ellipse are coincident.)#" 
          )
        .def("IsClosed",
             (Standard_Boolean (Geom2d_Ellipse::*)() const) static_cast<Standard_Boolean (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::IsClosed),
             R"#(return True.)#" 
          )
        .def("IsPeriodic",
             (Standard_Boolean (Geom2d_Ellipse::*)() const) static_cast<Standard_Boolean (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::IsPeriodic),
             R"#(return True.)#" 
          )
        .def("D0",
             (void (Geom2d_Ellipse::*)( const Standard_Real ,  gp_Pnt2d &  ) const) static_cast<void (Geom2d_Ellipse::*)( const Standard_Real ,  gp_Pnt2d &  ) const>(&Geom2d_Ellipse::D0),
             R"#(Returns in P the point of parameter U. P = C + MajorRadius * Cos (U) * XDir + MinorRadius * Sin (U) * YDir where C is the center of the ellipse , XDir the direction of the "XAxis" and "YDir" the "YAxis" of the ellipse.)#"  , py::arg("U"),  py::arg("P")
          )
        .def("D1",
             (void (Geom2d_Ellipse::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_Ellipse::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d &  ) const>(&Geom2d_Ellipse::D1),
             R"#(None)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1")
          )
        .def("D2",
             (void (Geom2d_Ellipse::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_Ellipse::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const>(&Geom2d_Ellipse::D2),
             R"#(Returns the point P of parameter U. The vectors V1 and V2 are the first and second derivatives at this point.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def("D3",
             (void (Geom2d_Ellipse::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_Ellipse::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const>(&Geom2d_Ellipse::D3),
             R"#(Returns the point P of parameter U, the first second and third derivatives V1 V2 and V3.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3")
          )
        .def("DN",
             (gp_Vec2d (Geom2d_Ellipse::*)( const Standard_Real ,  const Standard_Integer  ) const) static_cast<gp_Vec2d (Geom2d_Ellipse::*)( const Standard_Real ,  const Standard_Integer  ) const>(&Geom2d_Ellipse::DN),
             R"#(For the point of parameter U of this ellipse, computes the vector corresponding to the Nth derivative. Exceptions Standard_RangeError if N is less than 1.)#"  , py::arg("U"),  py::arg("N")
          )
        .def("Transform",
             (void (Geom2d_Ellipse::*)( const gp_Trsf2d &  ) ) static_cast<void (Geom2d_Ellipse::*)( const gp_Trsf2d &  ) >(&Geom2d_Ellipse::Transform),
             R"#(Applies the transformation T to this ellipse.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom2d_Geometry> (Geom2d_Ellipse::*)() const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::Copy),
             R"#(Creates a new object which is a copy of this ellipse.)#" 
          )
        .def("DumpJson",
             (void (Geom2d_Ellipse::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom2d_Ellipse::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom2d_Ellipse::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_Ellipse::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_Ellipse::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom2d_Ellipse::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_Ellipse::*)() const>(&Geom2d_Ellipse::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom2d_Hyperbola from ./opencascade/Geom2d_Hyperbola.hxx
    klass = m.attr("Geom2d_Hyperbola");


    // nested enums

    static_cast<py::class_<Geom2d_Hyperbola ,opencascade::handle<Geom2d_Hyperbola>  , Geom2d_Conic >>(klass)
    // constructors
        .def(py::init< const gp_Hypr2d & >()  , py::arg("H") )
        .def(py::init< const gp_Ax2d &,const Standard_Real,const Standard_Real,const Standard_Boolean >()  , py::arg("MajorAxis"),  py::arg("MajorRadius"),  py::arg("MinorRadius"),  py::arg("Sense")=static_cast<const Standard_Boolean>(Standard_True) )
        .def(py::init< const gp_Ax22d &,const Standard_Real,const Standard_Real >()  , py::arg("Axis"),  py::arg("MajorRadius"),  py::arg("MinorRadius") )
    // custom constructors
    // methods
        .def("SetHypr2d",
             (void (Geom2d_Hyperbola::*)( const gp_Hypr2d &  ) ) static_cast<void (Geom2d_Hyperbola::*)( const gp_Hypr2d &  ) >(&Geom2d_Hyperbola::SetHypr2d),
             R"#(Converts the gp_Hypr2d hyperbola H into this hyperbola.)#"  , py::arg("H")
          )
        .def("SetMajorRadius",
             (void (Geom2d_Hyperbola::*)( const Standard_Real  ) ) static_cast<void (Geom2d_Hyperbola::*)( const Standard_Real  ) >(&Geom2d_Hyperbola::SetMajorRadius),
             R"#(Assigns a value to the major or minor radius of this hyperbola. Exceptions Standard_ConstructionError if: - MajorRadius is less than 0.0, - MinorRadius is less than 0.0.)#"  , py::arg("MajorRadius")
          )
        .def("SetMinorRadius",
             (void (Geom2d_Hyperbola::*)( const Standard_Real  ) ) static_cast<void (Geom2d_Hyperbola::*)( const Standard_Real  ) >(&Geom2d_Hyperbola::SetMinorRadius),
             R"#(Assigns a value to the major or minor radius of this hyperbola. Exceptions Standard_ConstructionError if: - MajorRadius is less than 0.0, - MinorRadius is less than 0.0.)#"  , py::arg("MinorRadius")
          )
        .def("Hypr2d",
             (gp_Hypr2d (Geom2d_Hyperbola::*)() const) static_cast<gp_Hypr2d (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::Hypr2d),
             R"#(Converts this hyperbola into a gp_Hypr2d one.)#" 
          )
        .def("ReversedParameter",
             (Standard_Real (Geom2d_Hyperbola::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom2d_Hyperbola::*)( const Standard_Real  ) const>(&Geom2d_Hyperbola::ReversedParameter),
             R"#(Computes the parameter on the reversed hyperbola, for the point of parameter U on this hyperbola. For a hyperbola, the returned value is -U.)#"  , py::arg("U")
          )
        .def("FirstParameter",
             (Standard_Real (Geom2d_Hyperbola::*)() const) static_cast<Standard_Real (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::FirstParameter),
             R"#(Returns RealFirst from Standard.)#" 
          )
        .def("LastParameter",
             (Standard_Real (Geom2d_Hyperbola::*)() const) static_cast<Standard_Real (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::LastParameter),
             R"#(returns RealLast from Standard.)#" 
          )
        .def("IsClosed",
             (Standard_Boolean (Geom2d_Hyperbola::*)() const) static_cast<Standard_Boolean (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::IsClosed),
             R"#(Returns False.)#" 
          )
        .def("IsPeriodic",
             (Standard_Boolean (Geom2d_Hyperbola::*)() const) static_cast<Standard_Boolean (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::IsPeriodic),
             R"#(return False for an hyperbola.)#" 
          )
        .def("Asymptote1",
             (gp_Ax2d (Geom2d_Hyperbola::*)() const) static_cast<gp_Ax2d (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::Asymptote1),
             R"#(In the local coordinate system of the hyperbola the equation of the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the equation of the first asymptote is Y = (B/A)*X where A is the major radius of the hyperbola and B is the minor radius of the hyperbola. Raised if MajorRadius = 0.0)#" 
          )
        .def("Asymptote2",
             (gp_Ax2d (Geom2d_Hyperbola::*)() const) static_cast<gp_Ax2d (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::Asymptote2),
             R"#(In the local coordinate system of the hyperbola the equation of the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the equation of the first asymptote is Y = -(B/A)*X. where A is the major radius of the hyperbola and B is the minor radius of the hyperbola. raised if MajorRadius = 0.0)#" 
          )
        .def("ConjugateBranch1",
             (gp_Hypr2d (Geom2d_Hyperbola::*)() const) static_cast<gp_Hypr2d (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::ConjugateBranch1),
             R"#(Computes the first conjugate branch relative to this hyperbola. Note: The diagram given under the class purpose indicates where these two branches of hyperbola are positioned in relation to this branch of hyperbola.)#" 
          )
        .def("ConjugateBranch2",
             (gp_Hypr2d (Geom2d_Hyperbola::*)() const) static_cast<gp_Hypr2d (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::ConjugateBranch2),
             R"#(Computes the second conjugate branch relative to this hyperbola. Note: The diagram given under the class purpose indicates where these two branches of hyperbola are positioned in relation to this branch of hyperbola.)#" 
          )
        .def("Directrix1",
             (gp_Ax2d (Geom2d_Hyperbola::*)() const) static_cast<gp_Ax2d (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::Directrix1),
             R"#(This directrix is the line normal to the XAxis of the hyperbola in the local plane (Z = 0) at a distance d = MajorRadius / e from the center of the hyperbola, where e is the eccentricity of the hyperbola. This line is parallel to the "YAxis". The intersection point between directrix1 and the "XAxis" is the location point of the directrix1. This point is on the positive side of the "XAxis".)#" 
          )
        .def("Directrix2",
             (gp_Ax2d (Geom2d_Hyperbola::*)() const) static_cast<gp_Ax2d (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::Directrix2),
             R"#(This line is obtained by the symmetrical transformation of "Directrix1" with respect to the "YAxis" of the hyperbola.)#" 
          )
        .def("Eccentricity",
             (Standard_Real (Geom2d_Hyperbola::*)() const) static_cast<Standard_Real (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::Eccentricity),
             R"#(Returns the eccentricity of the hyperbola (e > 1). If f is the distance between the location of the hyperbola and the Focus1 then the eccentricity e = f / MajorRadius. raised if MajorRadius = 0.0)#" 
          )
        .def("Focal",
             (Standard_Real (Geom2d_Hyperbola::*)() const) static_cast<Standard_Real (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::Focal),
             R"#(Computes the focal distance. It is the distance between the two focus of the hyperbola.)#" 
          )
        .def("Focus1",
             (gp_Pnt2d (Geom2d_Hyperbola::*)() const) static_cast<gp_Pnt2d (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::Focus1),
             R"#(Returns the first focus of the hyperbola. This focus is on the positive side of the "XAxis" of the hyperbola.)#" 
          )
        .def("Focus2",
             (gp_Pnt2d (Geom2d_Hyperbola::*)() const) static_cast<gp_Pnt2d (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::Focus2),
             R"#(Returns the second focus of the hyperbola. This focus is on the negative side of the "XAxis" of the hyperbola.)#" 
          )
        .def("MajorRadius",
             (Standard_Real (Geom2d_Hyperbola::*)() const) static_cast<Standard_Real (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::MajorRadius),
             R"#(Returns the major or minor radius of this hyperbola. The major radius is also the distance between the center of the hyperbola and the apex of the main branch (located on the "X Axis" of the hyperbola).)#" 
          )
        .def("MinorRadius",
             (Standard_Real (Geom2d_Hyperbola::*)() const) static_cast<Standard_Real (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::MinorRadius),
             R"#(Returns the major or minor radius of this hyperbola. The minor radius is also the distance between the center of the hyperbola and the apex of a conjugate branch (located on the "Y Axis" of the hyperbola).)#" 
          )
        .def("OtherBranch",
             (gp_Hypr2d (Geom2d_Hyperbola::*)() const) static_cast<gp_Hypr2d (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::OtherBranch),
             R"#(Computes the "other" branch of this hyperbola. This is a symmetrical branch with respect to the center of this hyperbola. Note: The diagram given under the class purpose indicates where the "other" branch is positioned in relation to this branch of the hyperbola. ^ YAxis | FirstConjugateBranch | Other | Main ---------------------------- C ------------------------------------------&gtXAxis Branch | Branch | | SecondConjugateBranch | Warning The major radius can be less than the minor radius.)#" 
          )
        .def("Parameter",
             (Standard_Real (Geom2d_Hyperbola::*)() const) static_cast<Standard_Real (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::Parameter),
             R"#(Computes the parameter of this hyperbola. The parameter is: p = (e*e - 1) * MajorRadius where e is the eccentricity of this hyperbola and MajorRadius its major radius. Exceptions Standard_DomainError if the major radius of this hyperbola is null.)#" 
          )
        .def("D0",
             (void (Geom2d_Hyperbola::*)( const Standard_Real ,  gp_Pnt2d &  ) const) static_cast<void (Geom2d_Hyperbola::*)( const Standard_Real ,  gp_Pnt2d &  ) const>(&Geom2d_Hyperbola::D0),
             R"#(Returns in P the point of parameter U. P = C + MajorRadius * Cosh (U) * XDir + MinorRadius * Sinh (U) * YDir where C is the center of the hyperbola , XDir the XDirection and YDir the YDirection of the hyperbola's local coordinate system.)#"  , py::arg("U"),  py::arg("P")
          )
        .def("D1",
             (void (Geom2d_Hyperbola::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_Hyperbola::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d &  ) const>(&Geom2d_Hyperbola::D1),
             R"#(Returns the point P of parameter U and the first derivative V1.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1")
          )
        .def("D2",
             (void (Geom2d_Hyperbola::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_Hyperbola::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const>(&Geom2d_Hyperbola::D2),
             R"#(Returns the point P of parameter U, the first and second derivatives V1 and V2.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def("D3",
             (void (Geom2d_Hyperbola::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_Hyperbola::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const>(&Geom2d_Hyperbola::D3),
             R"#(Returns the point P of parameter U, the first second and third derivatives V1 V2 and V3.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3")
          )
        .def("DN",
             (gp_Vec2d (Geom2d_Hyperbola::*)( const Standard_Real ,  const Standard_Integer  ) const) static_cast<gp_Vec2d (Geom2d_Hyperbola::*)( const Standard_Real ,  const Standard_Integer  ) const>(&Geom2d_Hyperbola::DN),
             R"#(For the point of parameter U of this hyperbola, computes the vector corresponding to the Nth derivative. Exceptions Standard_RangeError if N is less than 1.)#"  , py::arg("U"),  py::arg("N")
          )
        .def("Transform",
             (void (Geom2d_Hyperbola::*)( const gp_Trsf2d &  ) ) static_cast<void (Geom2d_Hyperbola::*)( const gp_Trsf2d &  ) >(&Geom2d_Hyperbola::Transform),
             R"#(Applies the transformation T to this hyperbola.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom2d_Geometry> (Geom2d_Hyperbola::*)() const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::Copy),
             R"#(Creates a new object which is a copy of this hyperbola.)#" 
          )
        .def("DumpJson",
             (void (Geom2d_Hyperbola::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom2d_Hyperbola::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom2d_Hyperbola::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_Hyperbola::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_Hyperbola::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom2d_Hyperbola::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_Hyperbola::*)() const>(&Geom2d_Hyperbola::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom2d_Parabola from ./opencascade/Geom2d_Parabola.hxx
    klass = m.attr("Geom2d_Parabola");


    // nested enums

    static_cast<py::class_<Geom2d_Parabola ,opencascade::handle<Geom2d_Parabola>  , Geom2d_Conic >>(klass)
    // constructors
        .def(py::init< const gp_Parab2d & >()  , py::arg("Prb") )
        .def(py::init< const gp_Ax2d &,const Standard_Real,const Standard_Boolean >()  , py::arg("MirrorAxis"),  py::arg("Focal"),  py::arg("Sense")=static_cast<const Standard_Boolean>(Standard_True) )
        .def(py::init< const gp_Ax22d &,const Standard_Real >()  , py::arg("Axis"),  py::arg("Focal") )
        .def(py::init< const gp_Ax2d &,const gp_Pnt2d & >()  , py::arg("D"),  py::arg("F") )
    // custom constructors
    // methods
        .def("SetFocal",
             (void (Geom2d_Parabola::*)( const Standard_Real  ) ) static_cast<void (Geom2d_Parabola::*)( const Standard_Real  ) >(&Geom2d_Parabola::SetFocal),
             R"#(Assigns the value Focal to the focal length of this parabola. Exceptions Standard_ConstructionError if Focal is negative.)#"  , py::arg("Focal")
          )
        .def("SetParab2d",
             (void (Geom2d_Parabola::*)( const gp_Parab2d &  ) ) static_cast<void (Geom2d_Parabola::*)( const gp_Parab2d &  ) >(&Geom2d_Parabola::SetParab2d),
             R"#(Converts the gp_Parab2d parabola Prb into this parabola.)#"  , py::arg("Prb")
          )
        .def("Parab2d",
             (gp_Parab2d (Geom2d_Parabola::*)() const) static_cast<gp_Parab2d (Geom2d_Parabola::*)() const>(&Geom2d_Parabola::Parab2d),
             R"#(Returns the non persistent parabola from gp with the same geometric properties as <me>.)#" 
          )
        .def("ReversedParameter",
             (Standard_Real (Geom2d_Parabola::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom2d_Parabola::*)( const Standard_Real  ) const>(&Geom2d_Parabola::ReversedParameter),
             R"#(Computes the parameter on the reversed parabola for the point of parameter U on this parabola. For a parabola, the returned value is -U.)#"  , py::arg("U")
          )
        .def("FirstParameter",
             (Standard_Real (Geom2d_Parabola::*)() const) static_cast<Standard_Real (Geom2d_Parabola::*)() const>(&Geom2d_Parabola::FirstParameter),
             R"#(Returns RealFirst from Standard.)#" 
          )
        .def("LastParameter",
             (Standard_Real (Geom2d_Parabola::*)() const) static_cast<Standard_Real (Geom2d_Parabola::*)() const>(&Geom2d_Parabola::LastParameter),
             R"#(Returns RealLast from Standard.)#" 
          )
        .def("IsClosed",
             (Standard_Boolean (Geom2d_Parabola::*)() const) static_cast<Standard_Boolean (Geom2d_Parabola::*)() const>(&Geom2d_Parabola::IsClosed),
             R"#(Returns False)#" 
          )
        .def("IsPeriodic",
             (Standard_Boolean (Geom2d_Parabola::*)() const) static_cast<Standard_Boolean (Geom2d_Parabola::*)() const>(&Geom2d_Parabola::IsPeriodic),
             R"#(Returns False)#" 
          )
        .def("Directrix",
             (gp_Ax2d (Geom2d_Parabola::*)() const) static_cast<gp_Ax2d (Geom2d_Parabola::*)() const>(&Geom2d_Parabola::Directrix),
             R"#(The directrix is parallel to the "YAxis" of the parabola. The "Location" point of the directrix is the intersection point between the directrix and the symmetry axis ("XAxis") of the parabola.)#" 
          )
        .def("Eccentricity",
             (Standard_Real (Geom2d_Parabola::*)() const) static_cast<Standard_Real (Geom2d_Parabola::*)() const>(&Geom2d_Parabola::Eccentricity),
             R"#(Returns the eccentricity e = 1.0)#" 
          )
        .def("Focus",
             (gp_Pnt2d (Geom2d_Parabola::*)() const) static_cast<gp_Pnt2d (Geom2d_Parabola::*)() const>(&Geom2d_Parabola::Focus),
             R"#(Computes the focus of this parabola The focus is on the positive side of the "X Axis" of the local coordinate system of the parabola.)#" 
          )
        .def("Focal",
             (Standard_Real (Geom2d_Parabola::*)() const) static_cast<Standard_Real (Geom2d_Parabola::*)() const>(&Geom2d_Parabola::Focal),
             R"#(Computes the focal length of this parabola. The focal length is the distance between the apex and the focus of the parabola.)#" 
          )
        .def("Parameter",
             (Standard_Real (Geom2d_Parabola::*)() const) static_cast<Standard_Real (Geom2d_Parabola::*)() const>(&Geom2d_Parabola::Parameter),
             R"#(Computes the parameter of this parabola, which is the distance between its focus and its directrix. This distance is twice the focal length. If P is the parameter of the parabola, the equation of the parabola in its local coordinate system is: Y**2 = 2.*P*X.)#" 
          )
        .def("D0",
             (void (Geom2d_Parabola::*)( const Standard_Real ,  gp_Pnt2d &  ) const) static_cast<void (Geom2d_Parabola::*)( const Standard_Real ,  gp_Pnt2d &  ) const>(&Geom2d_Parabola::D0),
             R"#(Returns in P the point of parameter U. If U = 0 the returned point is the origin of the XAxis and the YAxis of the parabola and it is the vertex of the parabola. P = S + F * (U * U * XDir + * U * YDir) where S is the vertex of the parabola, XDir the XDirection and YDir the YDirection of the parabola's local coordinate system.)#"  , py::arg("U"),  py::arg("P")
          )
        .def("D1",
             (void (Geom2d_Parabola::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_Parabola::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d &  ) const>(&Geom2d_Parabola::D1),
             R"#(Returns the point P of parameter U and the first derivative V1.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1")
          )
        .def("D2",
             (void (Geom2d_Parabola::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_Parabola::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const>(&Geom2d_Parabola::D2),
             R"#(Returns the point P of parameter U, the first and second derivatives V1 and V2.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def("D3",
             (void (Geom2d_Parabola::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_Parabola::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const>(&Geom2d_Parabola::D3),
             R"#(Returns the point P of parameter U, the first second and third derivatives V1 V2 and V3.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3")
          )
        .def("DN",
             (gp_Vec2d (Geom2d_Parabola::*)( const Standard_Real ,  const Standard_Integer  ) const) static_cast<gp_Vec2d (Geom2d_Parabola::*)( const Standard_Real ,  const Standard_Integer  ) const>(&Geom2d_Parabola::DN),
             R"#(For the point of parameter U of this parabola, computes the vector corresponding to the Nth derivative. Exceptions Standard_RangeError if N is less than 1.)#"  , py::arg("U"),  py::arg("N")
          )
        .def("Transform",
             (void (Geom2d_Parabola::*)( const gp_Trsf2d &  ) ) static_cast<void (Geom2d_Parabola::*)( const gp_Trsf2d &  ) >(&Geom2d_Parabola::Transform),
             R"#(Applies the transformation T to this parabola.)#"  , py::arg("T")
          )
        .def("TransformedParameter",
             (Standard_Real (Geom2d_Parabola::*)( const Standard_Real ,  const gp_Trsf2d &  ) const) static_cast<Standard_Real (Geom2d_Parabola::*)( const Standard_Real ,  const gp_Trsf2d &  ) const>(&Geom2d_Parabola::TransformedParameter),
             R"#(Computes the parameter on the transformed parabola, for the point of parameter U on this parabola. For a parabola, the returned value is equal to U multiplied by the scale factor of transformation T.)#"  , py::arg("U"),  py::arg("T")
          )
        .def("ParametricTransformation",
             (Standard_Real (Geom2d_Parabola::*)( const gp_Trsf2d &  ) const) static_cast<Standard_Real (Geom2d_Parabola::*)( const gp_Trsf2d &  ) const>(&Geom2d_Parabola::ParametricTransformation),
             R"#(Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom2d_Geometry> (Geom2d_Parabola::*)() const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_Parabola::*)() const>(&Geom2d_Parabola::Copy),
             R"#(Creates a new object, which is a copy of this parabola.)#" 
          )
        .def("DumpJson",
             (void (Geom2d_Parabola::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom2d_Parabola::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom2d_Parabola::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_Parabola::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_Parabola::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom2d_Parabola::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_Parabola::*)() const>(&Geom2d_Parabola::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Geom2d_TrimmedCurve from ./opencascade/Geom2d_TrimmedCurve.hxx
    klass = m.attr("Geom2d_TrimmedCurve");


    // nested enums

    static_cast<py::class_<Geom2d_TrimmedCurve ,opencascade::handle<Geom2d_TrimmedCurve>  , Geom2d_BoundedCurve >>(klass)
    // constructors
        .def(py::init< const opencascade::handle<Geom2d_Curve> &,const Standard_Real,const Standard_Real,const Standard_Boolean,const Standard_Boolean >()  , py::arg("C"),  py::arg("U1"),  py::arg("U2"),  py::arg("Sense")=static_cast<const Standard_Boolean>(Standard_True),  py::arg("theAdjustPeriodic")=static_cast<const Standard_Boolean>(Standard_True) )
    // custom constructors
    // methods
        .def("Reverse",
             (void (Geom2d_TrimmedCurve::*)() ) static_cast<void (Geom2d_TrimmedCurve::*)() >(&Geom2d_TrimmedCurve::Reverse),
             R"#(Changes the direction of parametrization of <me>. The first and the last parametric values are modified. The "StartPoint" of the initial curve becomes the "EndPoint" of the reversed curve and the "EndPoint" of the initial curve becomes the "StartPoint" of the reversed curve. Example - If the trimmed curve is defined by: - a basis curve whose parameter range is [ 0.,1. ], and - the two trim values U1 (first parameter) and U2 (last parameter), the reversed trimmed curve is defined by: - the reversed basis curve, whose parameter range is still [ 0.,1. ], and - the two trim values 1. - U2 (first parameter) and 1. - U1 (last parameter).)#" 
          )
        .def("ReversedParameter",
             (Standard_Real (Geom2d_TrimmedCurve::*)( const Standard_Real  ) const) static_cast<Standard_Real (Geom2d_TrimmedCurve::*)( const Standard_Real  ) const>(&Geom2d_TrimmedCurve::ReversedParameter),
             R"#(Returns the parameter on the reversed curve for the point of parameter U on <me>.)#"  , py::arg("U")
          )
        .def("SetTrim",
             (void (Geom2d_TrimmedCurve::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Boolean  ) ) static_cast<void (Geom2d_TrimmedCurve::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Boolean  ) >(&Geom2d_TrimmedCurve::SetTrim),
             R"#(Changes this trimmed curve, by redefining the parameter values U1 and U2, which limit its basis curve. Note: If the basis curve is periodic, the trimmed curve has the same orientation as the basis curve if Sense is true (default value) or the opposite orientation if Sense is false. Warning If the basis curve is periodic and theAdjustPeriodic is True, the bounds of the trimmed curve may be different from U1 and U2 if the parametric origin of the basis curve is within the arc of the trimmed curve. In this case, the modified parameter will be equal to U1 or U2 plus or minus the period. If theAdjustPeriodic is False, parameters U1 and U2 will stay unchanged. Exceptions Standard_ConstructionError if: - the basis curve is not periodic, and either U1 or U2 are outside the bounds of the basis curve, or - U1 is equal to U2.)#"  , py::arg("U1"),  py::arg("U2"),  py::arg("Sense")=static_cast<const Standard_Boolean>(Standard_True),  py::arg("theAdjustPeriodic")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def("BasisCurve",
             (opencascade::handle<Geom2d_Curve> (Geom2d_TrimmedCurve::*)() const) static_cast<opencascade::handle<Geom2d_Curve> (Geom2d_TrimmedCurve::*)() const>(&Geom2d_TrimmedCurve::BasisCurve),
             R"#(Returns the basis curve. Warning This function does not return a constant reference. Consequently, any modification of the returned value directly modifies the trimmed curve.)#" 
          )
        .def("Continuity",
             (GeomAbs_Shape (Geom2d_TrimmedCurve::*)() const) static_cast<GeomAbs_Shape (Geom2d_TrimmedCurve::*)() const>(&Geom2d_TrimmedCurve::Continuity),
             R"#(Returns the global continuity of the basis curve of this trimmed curve. C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, CN : the order of continuity is infinite.)#" 
          )
        .def("IsCN",
             (Standard_Boolean (Geom2d_TrimmedCurve::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Geom2d_TrimmedCurve::*)( const Standard_Integer  ) const>(&Geom2d_TrimmedCurve::IsCN),
             R"#(--- Purpose Returns True if the order of continuity of the trimmed curve is N. A trimmed curve is at least "C0" continuous. Warnings : The continuity of the trimmed curve can be greater than the continuity of the basis curve because you consider only a part of the basis curve. Raised if N < 0.)#"  , py::arg("N")
          )
        .def("EndPoint",
             (gp_Pnt2d (Geom2d_TrimmedCurve::*)() const) static_cast<gp_Pnt2d (Geom2d_TrimmedCurve::*)() const>(&Geom2d_TrimmedCurve::EndPoint),
             R"#(Returns the end point of <me>. This point is the evaluation of the curve for the "LastParameter".)#" 
          )
        .def("FirstParameter",
             (Standard_Real (Geom2d_TrimmedCurve::*)() const) static_cast<Standard_Real (Geom2d_TrimmedCurve::*)() const>(&Geom2d_TrimmedCurve::FirstParameter),
             R"#(Returns the value of the first parameter of <me>. The first parameter is the parameter of the "StartPoint" of the trimmed curve.)#" 
          )
        .def("IsClosed",
             (Standard_Boolean (Geom2d_TrimmedCurve::*)() const) static_cast<Standard_Boolean (Geom2d_TrimmedCurve::*)() const>(&Geom2d_TrimmedCurve::IsClosed),
             R"#(Returns True if the distance between the StartPoint and the EndPoint is lower or equal to Resolution from package gp.)#" 
          )
        .def("IsPeriodic",
             (Standard_Boolean (Geom2d_TrimmedCurve::*)() const) static_cast<Standard_Boolean (Geom2d_TrimmedCurve::*)() const>(&Geom2d_TrimmedCurve::IsPeriodic),
             R"#(Always returns FALSE (independently of the type of basis curve).)#" 
          )
        .def("Period",
             (Standard_Real (Geom2d_TrimmedCurve::*)() const) static_cast<Standard_Real (Geom2d_TrimmedCurve::*)() const>(&Geom2d_TrimmedCurve::Period),
             R"#(Returns the period of the basis curve of this trimmed curve. Exceptions Standard_NoSuchObject if the basis curve is not periodic.)#" 
          )
        .def("LastParameter",
             (Standard_Real (Geom2d_TrimmedCurve::*)() const) static_cast<Standard_Real (Geom2d_TrimmedCurve::*)() const>(&Geom2d_TrimmedCurve::LastParameter),
             R"#(Returns the value of the last parameter of <me>. The last parameter is the parameter of the "EndPoint" of the trimmed curve.)#" 
          )
        .def("StartPoint",
             (gp_Pnt2d (Geom2d_TrimmedCurve::*)() const) static_cast<gp_Pnt2d (Geom2d_TrimmedCurve::*)() const>(&Geom2d_TrimmedCurve::StartPoint),
             R"#(Returns the start point of <me>. This point is the evaluation of the curve from the "FirstParameter". value and derivatives Warnings : The returned derivatives have the same orientation as the derivatives of the basis curve.)#" 
          )
        .def("D0",
             (void (Geom2d_TrimmedCurve::*)( const Standard_Real ,  gp_Pnt2d &  ) const) static_cast<void (Geom2d_TrimmedCurve::*)( const Standard_Real ,  gp_Pnt2d &  ) const>(&Geom2d_TrimmedCurve::D0),
             R"#(If the basis curve is an OffsetCurve sometimes it is not possible to do the evaluation of the curve at the parameter U (see class OffsetCurve).)#"  , py::arg("U"),  py::arg("P")
          )
        .def("D1",
             (void (Geom2d_TrimmedCurve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_TrimmedCurve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d &  ) const>(&Geom2d_TrimmedCurve::D1),
             R"#(Raised if the continuity of the curve is not C1.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1")
          )
        .def("D2",
             (void (Geom2d_TrimmedCurve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_TrimmedCurve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const>(&Geom2d_TrimmedCurve::D2),
             R"#(Raised if the continuity of the curve is not C2.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def("D3",
             (void (Geom2d_TrimmedCurve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const) static_cast<void (Geom2d_TrimmedCurve::*)( const Standard_Real ,  gp_Pnt2d & ,  gp_Vec2d & ,  gp_Vec2d & ,  gp_Vec2d &  ) const>(&Geom2d_TrimmedCurve::D3),
             R"#(Raised if the continuity of the curve is not C3.)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3")
          )
        .def("DN",
             (gp_Vec2d (Geom2d_TrimmedCurve::*)( const Standard_Real ,  const Standard_Integer  ) const) static_cast<gp_Vec2d (Geom2d_TrimmedCurve::*)( const Standard_Real ,  const Standard_Integer  ) const>(&Geom2d_TrimmedCurve::DN),
             R"#(For the point of parameter U of this trimmed curve, computes the vector corresponding to the Nth derivative. Warning The returned derivative vector has the same orientation as the derivative vector of the basis curve, even if the trimmed curve does not have the same orientation as the basis curve. Exceptions Standard_RangeError if N is less than 1. geometric transformations)#"  , py::arg("U"),  py::arg("N")
          )
        .def("Transform",
             (void (Geom2d_TrimmedCurve::*)( const gp_Trsf2d &  ) ) static_cast<void (Geom2d_TrimmedCurve::*)( const gp_Trsf2d &  ) >(&Geom2d_TrimmedCurve::Transform),
             R"#(Applies the transformation T to this trimmed curve. Warning The basis curve is also modified.)#"  , py::arg("T")
          )
        .def("TransformedParameter",
             (Standard_Real (Geom2d_TrimmedCurve::*)( const Standard_Real ,  const gp_Trsf2d &  ) const) static_cast<Standard_Real (Geom2d_TrimmedCurve::*)( const Standard_Real ,  const gp_Trsf2d &  ) const>(&Geom2d_TrimmedCurve::TransformedParameter),
             R"#(Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.)#"  , py::arg("U"),  py::arg("T")
          )
        .def("ParametricTransformation",
             (Standard_Real (Geom2d_TrimmedCurve::*)( const gp_Trsf2d &  ) const) static_cast<Standard_Real (Geom2d_TrimmedCurve::*)( const gp_Trsf2d &  ) const>(&Geom2d_TrimmedCurve::ParametricTransformation),
             R"#(Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.)#"  , py::arg("T")
          )
        .def("Copy",
             (opencascade::handle<Geom2d_Geometry> (Geom2d_TrimmedCurve::*)() const) static_cast<opencascade::handle<Geom2d_Geometry> (Geom2d_TrimmedCurve::*)() const>(&Geom2d_TrimmedCurve::Copy),
             R"#(Creates a new object, which is a copy of this trimmed curve.)#" 
          )
        .def("DumpJson",
             (void (Geom2d_TrimmedCurve::*)( std::ostream & ,  Standard_Integer  ) const) static_cast<void (Geom2d_TrimmedCurve::*)( std::ostream & ,  Standard_Integer  ) const>(&Geom2d_TrimmedCurve::DumpJson),
             R"#(Dumps the content of me into the stream)#"  , py::arg("theOStream"),  py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Geom2d_TrimmedCurve::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Geom2d_TrimmedCurve::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Geom2d_TrimmedCurve::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Geom2d_TrimmedCurve::*)() const>(&Geom2d_TrimmedCurve::DynamicType),
             R"#(None)#"
             
         )
;

// functions
// ./opencascade/Geom2d_AxisPlacement.hxx
// ./opencascade/Geom2d_BSplineCurve.hxx
// ./opencascade/Geom2d_BezierCurve.hxx
// ./opencascade/Geom2d_BoundedCurve.hxx
// ./opencascade/Geom2d_CartesianPoint.hxx
// ./opencascade/Geom2d_Circle.hxx
// ./opencascade/Geom2d_Conic.hxx
// ./opencascade/Geom2d_Curve.hxx
// ./opencascade/Geom2d_Direction.hxx
// ./opencascade/Geom2d_Ellipse.hxx
// ./opencascade/Geom2d_Geometry.hxx
// ./opencascade/Geom2d_Hyperbola.hxx
// ./opencascade/Geom2d_Line.hxx
// ./opencascade/Geom2d_OffsetCurve.hxx
// ./opencascade/Geom2d_Parabola.hxx
// ./opencascade/Geom2d_Point.hxx
// ./opencascade/Geom2d_Transformation.hxx
// ./opencascade/Geom2d_TrimmedCurve.hxx
// ./opencascade/Geom2d_UndefinedDerivative.hxx
// ./opencascade/Geom2d_UndefinedValue.hxx
// ./opencascade/Geom2d_Vector.hxx
// ./opencascade/Geom2d_VectorWithMagnitude.hxx

// Additional functions

// operators

// register typdefs


// exceptions
register_occ_exception<Geom2d_UndefinedDerivative>(m, "Geom2d_UndefinedDerivative");
register_occ_exception<Geom2d_UndefinedValue>(m, "Geom2d_UndefinedValue");

// user-defined post-inclusion per module in the body

};

// user-defined post-inclusion per module

// user-defined post