1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
|
// std lib related includes
#include <tuple>
// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybind11;
// Standard Handle
#include <Standard_Handle.hxx>
// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Geom2d_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Geom2d_BoundedCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom2dConvert_PPoint.hxx>
// module includes
#include <Geom2dConvert.hxx>
#include <Geom2dConvert_ApproxArcsSegments.hxx>
#include <Geom2dConvert_ApproxCurve.hxx>
#include <Geom2dConvert_BSplineCurveKnotSplitting.hxx>
#include <Geom2dConvert_BSplineCurveToBezierCurve.hxx>
#include <Geom2dConvert_CompCurveToBSplineCurve.hxx>
#include <Geom2dConvert_PPoint.hxx>
#include <Geom2dConvert_SequenceOfPPoint.hxx>
// template related includes
// ./opencascade/Geom2dConvert_SequenceOfPPoint.hxx
#include "NCollection_tmpl.hxx"
// user-defined pre
#include "OCP_specific.inc"
// user-defined inclusion per module
// Module definiiton
void register_Geom2dConvert(py::module &main_module) {
py::module m = static_cast<py::module>(main_module.attr("Geom2dConvert"));
py::object klass;
//Python trampoline classes
// classes
// Class Geom2dConvert from ./opencascade/Geom2dConvert.hxx
klass = m.attr("Geom2dConvert");
// default constructor
register_default_constructor<Geom2dConvert , shared_ptr<Geom2dConvert>>(m,"Geom2dConvert");
// nested enums
static_cast<py::class_<Geom2dConvert , shared_ptr<Geom2dConvert> >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("SplitBSplineCurve_s",
(opencascade::handle<Geom2d_BSplineCurve> (*)( const opencascade::handle<Geom2d_BSplineCurve> & , const Standard_Integer , const Standard_Integer , const Standard_Boolean ) ) static_cast<opencascade::handle<Geom2d_BSplineCurve> (*)( const opencascade::handle<Geom2d_BSplineCurve> & , const Standard_Integer , const Standard_Integer , const Standard_Boolean ) >(&Geom2dConvert::SplitBSplineCurve),
R"#(-- Convert a curve to BSpline by Approximation)#" , py::arg("C"), py::arg("FromK1"), py::arg("ToK2"), py::arg("SameOrientation")=static_cast<const Standard_Boolean>(Standard_True)
)
.def_static("SplitBSplineCurve_s",
(opencascade::handle<Geom2d_BSplineCurve> (*)( const opencascade::handle<Geom2d_BSplineCurve> & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Boolean ) ) static_cast<opencascade::handle<Geom2d_BSplineCurve> (*)( const opencascade::handle<Geom2d_BSplineCurve> & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Boolean ) >(&Geom2dConvert::SplitBSplineCurve),
R"#(This function computes the segment of B-spline curve between the parametric values FromU1, ToU2. If C is periodic the arc has the same orientation as C if SameOrientation = True. If C is not periodic SameOrientation is not used for the computation and C is oriented fromU1 toU2. If U1 and U2 and two parametric values we consider that U1 = U2 if Abs (U1 - U2) <= ParametricTolerance and ParametricTolerance must be greater or equal to Resolution from package gp.)#" , py::arg("C"), py::arg("FromU1"), py::arg("ToU2"), py::arg("ParametricTolerance"), py::arg("SameOrientation")=static_cast<const Standard_Boolean>(Standard_True)
)
.def_static("CurveToBSplineCurve_s",
(opencascade::handle<Geom2d_BSplineCurve> (*)( const opencascade::handle<Geom2d_Curve> & , const Convert_ParameterisationType ) ) static_cast<opencascade::handle<Geom2d_BSplineCurve> (*)( const opencascade::handle<Geom2d_Curve> & , const Convert_ParameterisationType ) >(&Geom2dConvert::CurveToBSplineCurve),
R"#(This function converts a non infinite curve from Geom into a B-spline curve. C must be an ellipse or a circle or a trimmed conic or a trimmed line or a Bezier curve or a trimmed Bezier curve or a BSpline curve or a trimmed BSpline curve or an Offset curve or a trimmed Offset curve. The returned B-spline is not periodic except if C is a Circle or an Ellipse. ParameterisationType applies only if the curve is a Circle or an ellipse : TgtThetaOver2, TgtThetaOver2_1, TgtThetaOver2_2, TgtThetaOver2_3, TgtThetaOver2_4, Purpose: this is the classical rational parameterisation 2 1 - t cos(theta) = ------ 2 1 + t)#" , py::arg("C"), py::arg("Parameterisation")=static_cast<const Convert_ParameterisationType>(Convert_TgtThetaOver2)
)
// static methods using call by reference i.s.o. return
.def_static("ConcatG1_s",
[](NCollection_Array1<opencascade::handle<Geom2d_BSplineCurve>> & ArrayOfCurves, const NCollection_Array1<Standard_Real> & ArrayOfToler,TColGeom2d_HArray1OfBSplineCurve& ArrayOfConcatenated,const Standard_Real ClosedTolerance ){
Standard_Boolean ClosedFlag;
opencascade::handle<TColGeom2d_HArray1OfBSplineCurve> ArrayOfConcatenated_ptr; ArrayOfConcatenated_ptr = &ArrayOfConcatenated;
Geom2dConvert::ConcatG1(ArrayOfCurves,ArrayOfToler,ArrayOfConcatenated_ptr,ClosedFlag,ClosedTolerance);
if ( ArrayOfConcatenated_ptr.get() != &ArrayOfConcatenated ) copy_if_copy_constructible(ArrayOfConcatenated, *ArrayOfConcatenated_ptr);
return std::make_tuple(ClosedFlag); },
R"#(This Method concatenates G1 the ArrayOfCurves as far as it is possible. ArrayOfCurves[0..N-1] ArrayOfToler contains the biggest tolerance of the two points shared by two consecutives curves. Its dimension: [0..N-2] ClosedFlag indicates if the ArrayOfCurves is closed. In this case ClosedTolerance contains the biggest tolerance of the two points which are at the closure. Otherwise its value is 0.0 ClosedFlag becomes False on the output if it is impossible to build closed curve.)#" , py::arg("ArrayOfCurves"), py::arg("ArrayOfToler"), py::arg("ArrayOfConcatenated"), py::arg("ClosedTolerance")
)
.def_static("ConcatC1_s",
[](NCollection_Array1<opencascade::handle<Geom2d_BSplineCurve>> & ArrayOfCurves, const NCollection_Array1<Standard_Real> & ArrayOfToler,TColStd_HArray1OfInteger& ArrayOfIndices,TColGeom2d_HArray1OfBSplineCurve& ArrayOfConcatenated,const Standard_Real ClosedTolerance ){
Standard_Boolean ClosedFlag;
opencascade::handle<TColStd_HArray1OfInteger> ArrayOfIndices_ptr; ArrayOfIndices_ptr = &ArrayOfIndices;
opencascade::handle<TColGeom2d_HArray1OfBSplineCurve> ArrayOfConcatenated_ptr; ArrayOfConcatenated_ptr = &ArrayOfConcatenated;
Geom2dConvert::ConcatC1(ArrayOfCurves,ArrayOfToler,ArrayOfIndices_ptr,ArrayOfConcatenated_ptr,ClosedFlag,ClosedTolerance);
if ( ArrayOfIndices_ptr.get() != &ArrayOfIndices ) copy_if_copy_constructible(ArrayOfIndices, *ArrayOfIndices_ptr);
if ( ArrayOfConcatenated_ptr.get() != &ArrayOfConcatenated ) copy_if_copy_constructible(ArrayOfConcatenated, *ArrayOfConcatenated_ptr);
return std::make_tuple(ClosedFlag); },
R"#(This Method concatenates C1 the ArrayOfCurves as far as it is possible. ArrayOfCurves[0..N-1] ArrayOfToler contains the biggest tolerance of the two points shared by two consecutives curves. Its dimension: [0..N-2] ClosedFlag indicates if the ArrayOfCurves is closed. In this case ClosedTolerance contains the biggest tolerance of the two points which are at the closure. Otherwise its value is 0.0 ClosedFlag becomes False on the output if it is impossible to build closed curve.)#" , py::arg("ArrayOfCurves"), py::arg("ArrayOfToler"), py::arg("ArrayOfIndices"), py::arg("ArrayOfConcatenated"), py::arg("ClosedTolerance")
)
.def_static("ConcatC1_s",
[](NCollection_Array1<opencascade::handle<Geom2d_BSplineCurve>> & ArrayOfCurves, const NCollection_Array1<Standard_Real> & ArrayOfToler,TColStd_HArray1OfInteger& ArrayOfIndices,TColGeom2d_HArray1OfBSplineCurve& ArrayOfConcatenated,const Standard_Real ClosedTolerance,const Standard_Real AngularTolerance ){
Standard_Boolean ClosedFlag;
opencascade::handle<TColStd_HArray1OfInteger> ArrayOfIndices_ptr; ArrayOfIndices_ptr = &ArrayOfIndices;
opencascade::handle<TColGeom2d_HArray1OfBSplineCurve> ArrayOfConcatenated_ptr; ArrayOfConcatenated_ptr = &ArrayOfConcatenated;
Geom2dConvert::ConcatC1(ArrayOfCurves,ArrayOfToler,ArrayOfIndices_ptr,ArrayOfConcatenated_ptr,ClosedFlag,ClosedTolerance,AngularTolerance);
if ( ArrayOfIndices_ptr.get() != &ArrayOfIndices ) copy_if_copy_constructible(ArrayOfIndices, *ArrayOfIndices_ptr);
if ( ArrayOfConcatenated_ptr.get() != &ArrayOfConcatenated ) copy_if_copy_constructible(ArrayOfConcatenated, *ArrayOfConcatenated_ptr);
return std::make_tuple(ClosedFlag); },
R"#(This Method concatenates C1 the ArrayOfCurves as far as it is possible. ArrayOfCurves[0..N-1] ArrayOfToler contains the biggest tolerance of the two points shared by two consecutives curves. Its dimension: [0..N-2] ClosedFlag indicates if the ArrayOfCurves is closed. In this case ClosedTolerance contains the biggest tolerance of the two points which are at the closure. Otherwise its value is 0.0 ClosedFlag becomes False on the output if it is impossible to build closed curve.)#" , py::arg("ArrayOfCurves"), py::arg("ArrayOfToler"), py::arg("ArrayOfIndices"), py::arg("ArrayOfConcatenated"), py::arg("ClosedTolerance"), py::arg("AngularTolerance")
)
.def_static("C0BSplineToC1BSplineCurve_s",
[](Geom2d_BSplineCurve& BS,const Standard_Real Tolerance ){
opencascade::handle<Geom2d_BSplineCurve> BS_ptr; BS_ptr = &BS;
Geom2dConvert::C0BSplineToC1BSplineCurve(BS_ptr,Tolerance);
if ( BS_ptr.get() != &BS ) copy_if_copy_constructible(BS, *BS_ptr);
},
R"#(This Method reduces as far as it is possible the multiplicities of the knots of the BSpline BS.(keeping the geometry). It returns a new BSpline which could still be C0. tolerance is a geometrical tolerance)#" , py::arg("BS"), py::arg("Tolerance")
)
.def_static("C0BSplineToArrayOfC1BSplineCurve_s",
[](const opencascade::handle<Geom2d_BSplineCurve> & BS,TColGeom2d_HArray1OfBSplineCurve& tabBS,const Standard_Real Tolerance ){
opencascade::handle<TColGeom2d_HArray1OfBSplineCurve> tabBS_ptr; tabBS_ptr = &tabBS;
Geom2dConvert::C0BSplineToArrayOfC1BSplineCurve(BS,tabBS_ptr,Tolerance);
if ( tabBS_ptr.get() != &tabBS ) copy_if_copy_constructible(tabBS, *tabBS_ptr);
},
R"#(This Method reduces as far as it is possible the multiplicities of the knots of the BSpline BS.(keeping the geometry). It returns an array of BSpline C1. Tolerance is a geometrical tolerance)#" , py::arg("BS"), py::arg("tabBS"), py::arg("Tolerance")
)
.def_static("C0BSplineToArrayOfC1BSplineCurve_s",
[](const opencascade::handle<Geom2d_BSplineCurve> & BS,TColGeom2d_HArray1OfBSplineCurve& tabBS,const Standard_Real AngularTolerance,const Standard_Real Tolerance ){
opencascade::handle<TColGeom2d_HArray1OfBSplineCurve> tabBS_ptr; tabBS_ptr = &tabBS;
Geom2dConvert::C0BSplineToArrayOfC1BSplineCurve(BS,tabBS_ptr,AngularTolerance,Tolerance);
if ( tabBS_ptr.get() != &tabBS ) copy_if_copy_constructible(tabBS, *tabBS_ptr);
},
R"#(This Method reduces as far as it is possible the multiplicities of the knots of the BSpline BS.(keeping the geometry). It returns an array of BSpline C1. tolerance is a geometrical tolerance)#" , py::arg("BS"), py::arg("tabBS"), py::arg("AngularTolerance"), py::arg("Tolerance")
)
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class Geom2dConvert_ApproxArcsSegments from ./opencascade/Geom2dConvert_ApproxArcsSegments.hxx
klass = m.attr("Geom2dConvert_ApproxArcsSegments");
// nested enums
py::enum_<Geom2dConvert_ApproxArcsSegments::Status>(klass, "Status_e", R"#(None)#")
.value("StatusOK", Geom2dConvert_ApproxArcsSegments::Status::StatusOK)
.value("StatusNotDone", Geom2dConvert_ApproxArcsSegments::Status::StatusNotDone)
.value("StatusError", Geom2dConvert_ApproxArcsSegments::Status::StatusError).export_values();
static_cast<py::class_<Geom2dConvert_ApproxArcsSegments , shared_ptr<Geom2dConvert_ApproxArcsSegments> >>(klass)
// constructors
.def(py::init< const Adaptor2d_Curve2d &,const Standard_Real,const Standard_Real >() , py::arg("theCurve"), py::arg("theTolerance"), py::arg("theAngleTol") )
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("GetResult",
(const TColGeom2d_SequenceOfCurve & (Geom2dConvert_ApproxArcsSegments::*)() const) static_cast<const TColGeom2d_SequenceOfCurve & (Geom2dConvert_ApproxArcsSegments::*)() const>(&Geom2dConvert_ApproxArcsSegments::GetResult),
R"#(Get the result curve after approximation.)#"
)
;
// Class Geom2dConvert_ApproxCurve from ./opencascade/Geom2dConvert_ApproxCurve.hxx
klass = m.attr("Geom2dConvert_ApproxCurve");
// nested enums
static_cast<py::class_<Geom2dConvert_ApproxCurve , shared_ptr<Geom2dConvert_ApproxCurve> >>(klass)
// constructors
.def(py::init< const opencascade::handle<Geom2d_Curve> &,const Standard_Real,const GeomAbs_Shape,const Standard_Integer,const Standard_Integer >() , py::arg("Curve"), py::arg("Tol2d"), py::arg("Order"), py::arg("MaxSegments"), py::arg("MaxDegree") )
.def(py::init< const opencascade::handle<Adaptor2d_Curve2d> &,const Standard_Real,const GeomAbs_Shape,const Standard_Integer,const Standard_Integer >() , py::arg("Curve"), py::arg("Tol2d"), py::arg("Order"), py::arg("MaxSegments"), py::arg("MaxDegree") )
// custom constructors
// methods
.def("Curve",
(opencascade::handle<Geom2d_BSplineCurve> (Geom2dConvert_ApproxCurve::*)() const) static_cast<opencascade::handle<Geom2d_BSplineCurve> (Geom2dConvert_ApproxCurve::*)() const>(&Geom2dConvert_ApproxCurve::Curve),
R"#(Returns the 2D BSpline curve resulting from the approximation algorithm.)#"
)
.def("IsDone",
(Standard_Boolean (Geom2dConvert_ApproxCurve::*)() const) static_cast<Standard_Boolean (Geom2dConvert_ApproxCurve::*)() const>(&Geom2dConvert_ApproxCurve::IsDone),
R"#(returns Standard_True if the approximation has been done with within required tolerance)#"
)
.def("HasResult",
(Standard_Boolean (Geom2dConvert_ApproxCurve::*)() const) static_cast<Standard_Boolean (Geom2dConvert_ApproxCurve::*)() const>(&Geom2dConvert_ApproxCurve::HasResult),
R"#(returns Standard_True if the approximation did come out with a result that is not NECESSARELY within the required tolerance)#"
)
.def("MaxError",
(Standard_Real (Geom2dConvert_ApproxCurve::*)() const) static_cast<Standard_Real (Geom2dConvert_ApproxCurve::*)() const>(&Geom2dConvert_ApproxCurve::MaxError),
R"#(Returns the greatest distance between a point on the source conic and the BSpline curve resulting from the approximation. (>0 when an approximation has been done, 0 if no approximation))#"
)
.def("Dump",
(void (Geom2dConvert_ApproxCurve::*)( std::ostream & ) const) static_cast<void (Geom2dConvert_ApproxCurve::*)( std::ostream & ) const>(&Geom2dConvert_ApproxCurve::Dump),
R"#(Print on the stream o information about the object)#" , py::arg("o")
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class Geom2dConvert_BSplineCurveKnotSplitting from ./opencascade/Geom2dConvert_BSplineCurveKnotSplitting.hxx
klass = m.attr("Geom2dConvert_BSplineCurveKnotSplitting");
// nested enums
static_cast<py::class_<Geom2dConvert_BSplineCurveKnotSplitting , shared_ptr<Geom2dConvert_BSplineCurveKnotSplitting> >>(klass)
// constructors
.def(py::init< const opencascade::handle<Geom2d_BSplineCurve> &,const Standard_Integer >() , py::arg("BasisCurve"), py::arg("ContinuityRange") )
// custom constructors
// methods
.def("NbSplits",
(Standard_Integer (Geom2dConvert_BSplineCurveKnotSplitting::*)() const) static_cast<Standard_Integer (Geom2dConvert_BSplineCurveKnotSplitting::*)() const>(&Geom2dConvert_BSplineCurveKnotSplitting::NbSplits),
R"#(Returns the number of points at which the analysed BSpline curve should be split, in order to obtain arcs with the continuity required by this framework. All these points correspond to knot values. Note that the first and last points of the curve, which bound the first and last arcs, are counted among these splitting points.)#"
)
.def("Splitting",
(void (Geom2dConvert_BSplineCurveKnotSplitting::*)( NCollection_Array1<Standard_Integer> & ) const) static_cast<void (Geom2dConvert_BSplineCurveKnotSplitting::*)( NCollection_Array1<Standard_Integer> & ) const>(&Geom2dConvert_BSplineCurveKnotSplitting::Splitting),
R"#(Loads the SplitValues table with the split knots values computed in this framework. Each value in the table is an index in the knots table of the BSpline curve analysed by this algorithm. The values in SplitValues are given in ascending order and comprise the indices of the knots which give the first and last points of the curve. Use two consecutive values from the table as arguments of the global function SplitBSplineCurve (provided by the package Geom2dConvert) to split the curve. Exceptions Standard_DimensionError if the array SplitValues was not created with the following bounds: - 1, and - the number of split points computed in this framework (as given by the function NbSplits).)#" , py::arg("SplitValues")
)
.def("SplitValue",
(Standard_Integer (Geom2dConvert_BSplineCurveKnotSplitting::*)( const Standard_Integer ) const) static_cast<Standard_Integer (Geom2dConvert_BSplineCurveKnotSplitting::*)( const Standard_Integer ) const>(&Geom2dConvert_BSplineCurveKnotSplitting::SplitValue),
R"#(Returns the split knot of index Index to the split knots table computed in this framework. The returned value is an index in the knots table of the BSpline curve analysed by this algorithm. Notes: - If Index is equal to 1, the corresponding knot gives the first point of the curve. - If Index is equal to the number of split knots computed in this framework, the corresponding point is the last point of the curve. Exceptions Standard_RangeError if Index is less than 1 or greater than the number of split knots computed in this framework.)#" , py::arg("Index")
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class Geom2dConvert_BSplineCurveToBezierCurve from ./opencascade/Geom2dConvert_BSplineCurveToBezierCurve.hxx
klass = m.attr("Geom2dConvert_BSplineCurveToBezierCurve");
// nested enums
static_cast<py::class_<Geom2dConvert_BSplineCurveToBezierCurve , shared_ptr<Geom2dConvert_BSplineCurveToBezierCurve> >>(klass)
// constructors
.def(py::init< const opencascade::handle<Geom2d_BSplineCurve> & >() , py::arg("BasisCurve") )
.def(py::init< const opencascade::handle<Geom2d_BSplineCurve> &,const Standard_Real,const Standard_Real,const Standard_Real >() , py::arg("BasisCurve"), py::arg("U1"), py::arg("U2"), py::arg("ParametricTolerance") )
// custom constructors
// methods
.def("Arc",
(opencascade::handle<Geom2d_BezierCurve> (Geom2dConvert_BSplineCurveToBezierCurve::*)( const Standard_Integer ) ) static_cast<opencascade::handle<Geom2d_BezierCurve> (Geom2dConvert_BSplineCurveToBezierCurve::*)( const Standard_Integer ) >(&Geom2dConvert_BSplineCurveToBezierCurve::Arc),
R"#(Constructs and returns the Bezier curve of index Index to the table of adjacent Bezier arcs computed by this algorithm. This Bezier curve has the same orientation as the BSpline curve analyzed in this framework. Exceptions Standard_OutOfRange if Index is less than 1 or greater than the number of adjacent Bezier arcs computed by this algorithm.)#" , py::arg("Index")
)
.def("Arcs",
(void (Geom2dConvert_BSplineCurveToBezierCurve::*)( NCollection_Array1<opencascade::handle<Geom2d_BezierCurve>> & ) ) static_cast<void (Geom2dConvert_BSplineCurveToBezierCurve::*)( NCollection_Array1<opencascade::handle<Geom2d_BezierCurve>> & ) >(&Geom2dConvert_BSplineCurveToBezierCurve::Arcs),
R"#(Constructs all the Bezier curves whose data is computed by this algorithm and loads these curves into the Curves table. The Bezier curves have the same orientation as the BSpline curve analyzed in this framework. Exceptions Standard_DimensionError if the Curves array was not created with the following bounds: - 1 , and - the number of adjacent Bezier arcs computed by this algorithm (as given by the function NbArcs).)#" , py::arg("Curves")
)
.def("Knots",
(void (Geom2dConvert_BSplineCurveToBezierCurve::*)( NCollection_Array1<Standard_Real> & ) const) static_cast<void (Geom2dConvert_BSplineCurveToBezierCurve::*)( NCollection_Array1<Standard_Real> & ) const>(&Geom2dConvert_BSplineCurveToBezierCurve::Knots),
R"#(This methode returns the bspline's knots associated to the converted arcs Raises DimensionError if the length of Curves is not equal to NbArcs + 1)#" , py::arg("TKnots")
)
.def("NbArcs",
(Standard_Integer (Geom2dConvert_BSplineCurveToBezierCurve::*)() const) static_cast<Standard_Integer (Geom2dConvert_BSplineCurveToBezierCurve::*)() const>(&Geom2dConvert_BSplineCurveToBezierCurve::NbArcs),
R"#(Returns the number of BezierCurve arcs. If at the creation time you have decomposed the basis curve between the parametric values UFirst, ULast the number of BezierCurve arcs depends on the number of knots included inside the interval [UFirst, ULast]. If you have decomposed the whole basis B-spline curve the number of BezierCurve arcs NbArcs is equal to the number of knots less one.)#"
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class Geom2dConvert_CompCurveToBSplineCurve from ./opencascade/Geom2dConvert_CompCurveToBSplineCurve.hxx
klass = m.attr("Geom2dConvert_CompCurveToBSplineCurve");
// nested enums
static_cast<py::class_<Geom2dConvert_CompCurveToBSplineCurve , shared_ptr<Geom2dConvert_CompCurveToBSplineCurve> >>(klass)
// constructors
.def(py::init< const Convert_ParameterisationType >() , py::arg("Parameterisation")=static_cast<const Convert_ParameterisationType>(Convert_TgtThetaOver2) )
.def(py::init< const opencascade::handle<Geom2d_BoundedCurve> &,const Convert_ParameterisationType >() , py::arg("BasisCurve"), py::arg("Parameterisation")=static_cast<const Convert_ParameterisationType>(Convert_TgtThetaOver2) )
// custom constructors
// methods
.def("Add",
(Standard_Boolean (Geom2dConvert_CompCurveToBSplineCurve::*)( const opencascade::handle<Geom2d_BoundedCurve> & , const Standard_Real , const Standard_Boolean ) ) static_cast<Standard_Boolean (Geom2dConvert_CompCurveToBSplineCurve::*)( const opencascade::handle<Geom2d_BoundedCurve> & , const Standard_Real , const Standard_Boolean ) >(&Geom2dConvert_CompCurveToBSplineCurve::Add),
R"#(Append a curve in the BSpline Return False if the curve is not G0 with the BSplineCurve. Tolerance is used to check continuity and decrease Multiplicty at the common Knot After is useful if BasisCurve is a closed curve .)#" , py::arg("NewCurve"), py::arg("Tolerance"), py::arg("After")=static_cast<const Standard_Boolean>(Standard_False)
)
.def("BSplineCurve",
(opencascade::handle<Geom2d_BSplineCurve> (Geom2dConvert_CompCurveToBSplineCurve::*)() const) static_cast<opencascade::handle<Geom2d_BSplineCurve> (Geom2dConvert_CompCurveToBSplineCurve::*)() const>(&Geom2dConvert_CompCurveToBSplineCurve::BSplineCurve),
R"#(None)#"
)
.def("Clear",
(void (Geom2dConvert_CompCurveToBSplineCurve::*)() ) static_cast<void (Geom2dConvert_CompCurveToBSplineCurve::*)() >(&Geom2dConvert_CompCurveToBSplineCurve::Clear),
R"#(Clear result curve)#"
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class Geom2dConvert_PPoint from ./opencascade/Geom2dConvert_PPoint.hxx
klass = m.attr("Geom2dConvert_PPoint");
// nested enums
static_cast<py::class_<Geom2dConvert_PPoint , shared_ptr<Geom2dConvert_PPoint> >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const Standard_Real,const gp_XY &,const gp_XY & >() , py::arg("theParameter"), py::arg("thePoint"), py::arg("theD1") )
.def(py::init< const Standard_Real,const Adaptor2d_Curve2d & >() , py::arg("theParameter"), py::arg("theAdaptor") )
// custom constructors
// methods
.def("Dist",
(Standard_Real (Geom2dConvert_PPoint::*)( const Geom2dConvert_PPoint & ) const) static_cast<Standard_Real (Geom2dConvert_PPoint::*)( const Geom2dConvert_PPoint & ) const>(&Geom2dConvert_PPoint::Dist),
R"#(Compute the distance betwwen two 2d points.)#" , py::arg("theOth")
)
.def("Parameter",
(Standard_Real (Geom2dConvert_PPoint::*)() const) static_cast<Standard_Real (Geom2dConvert_PPoint::*)() const>(&Geom2dConvert_PPoint::Parameter),
R"#(Query the parmeter value.)#"
)
.def("SetD1",
(void (Geom2dConvert_PPoint::*)( const gp_XY & ) ) static_cast<void (Geom2dConvert_PPoint::*)( const gp_XY & ) >(&Geom2dConvert_PPoint::SetD1),
R"#(Change the value of the derivative at the point.)#" , py::arg("theD1")
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Point",
(const gp_XY & (Geom2dConvert_PPoint::*)() const) static_cast<const gp_XY & (Geom2dConvert_PPoint::*)() const>(&Geom2dConvert_PPoint::Point),
R"#(Query the point location.)#"
)
.def("D1",
(const gp_XY & (Geom2dConvert_PPoint::*)() const) static_cast<const gp_XY & (Geom2dConvert_PPoint::*)() const>(&Geom2dConvert_PPoint::D1),
R"#(Query the first derivatives.)#"
)
;
// functions
// ./opencascade/Geom2dConvert.hxx
// ./opencascade/Geom2dConvert_ApproxArcsSegments.hxx
// ./opencascade/Geom2dConvert_ApproxCurve.hxx
// ./opencascade/Geom2dConvert_BSplineCurveKnotSplitting.hxx
// ./opencascade/Geom2dConvert_BSplineCurveToBezierCurve.hxx
// ./opencascade/Geom2dConvert_CompCurveToBSplineCurve.hxx
// ./opencascade/Geom2dConvert_PPoint.hxx
// ./opencascade/Geom2dConvert_SequenceOfPPoint.hxx
// Additional functions
// operators
// register typdefs
register_template_NCollection_Sequence<Geom2dConvert_PPoint>(m,"Geom2dConvert_SequenceOfPPoint");
// exceptions
// user-defined post-inclusion per module in the body
};
// user-defined post-inclusion per module
// user-defined post
|