File: GeomAPI.cpp

package info (click to toggle)
python-ocp 7.8.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 64,720 kB
  • sloc: cpp: 362,337; pascal: 33; python: 23; makefile: 4
file content (880 lines) | stat: -rw-r--r-- 77,135 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

// std lib related includes
#include <tuple>

// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

namespace py = pybind11;

// Standard Handle
#include <Standard_Handle.hxx>


// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pln.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_Curve.hxx>
#include <Geom_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Geom_Curve.hxx>
#include <Geom_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>

// module includes
#include <GeomAPI.hxx>
#include <GeomAPI_ExtremaCurveCurve.hxx>
#include <GeomAPI_ExtremaCurveSurface.hxx>
#include <GeomAPI_ExtremaSurfaceSurface.hxx>
#include <GeomAPI_IntCS.hxx>
#include <GeomAPI_Interpolate.hxx>
#include <GeomAPI_IntSS.hxx>
#include <GeomAPI_PointsToBSpline.hxx>
#include <GeomAPI_PointsToBSplineSurface.hxx>
#include <GeomAPI_ProjectPointOnCurve.hxx>
#include <GeomAPI_ProjectPointOnSurf.hxx>

// template related includes


// user-defined pre
#include "OCP_specific.inc"

// user-defined inclusion per module

// Module definiiton
void register_GeomAPI(py::module &main_module) {


py::module m = static_cast<py::module>(main_module.attr("GeomAPI"));
py::object klass;

//Python trampoline classes

// classes

    // Class GeomAPI from ./opencascade/GeomAPI.hxx
    klass = m.attr("GeomAPI");

    // default constructor
    register_default_constructor<GeomAPI , shared_ptr<GeomAPI>>(m,"GeomAPI");

    // nested enums

    static_cast<py::class_<GeomAPI , shared_ptr<GeomAPI>  >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("To2d_s",
                    (opencascade::handle<Geom2d_Curve> (*)( const opencascade::handle<Geom_Curve> & ,  const gp_Pln &  ) ) static_cast<opencascade::handle<Geom2d_Curve> (*)( const opencascade::handle<Geom_Curve> & ,  const gp_Pln &  ) >(&GeomAPI::To2d),
                    R"#(This function builds (in the parametric space of the plane P) a 2D curve equivalent to the 3D curve C. The 3D curve C is considered to be located in the plane P. Warning The 3D curve C must be of one of the following types: - a line - a circle - an ellipse - a hyperbola - a parabola - a Bezier curve - a BSpline curve Exceptions Standard_NoSuchObject if C is not a defined type curve.)#"  , py::arg("C"),  py::arg("P")
          )
        .def_static("To3d_s",
                    (opencascade::handle<Geom_Curve> (*)( const opencascade::handle<Geom2d_Curve> & ,  const gp_Pln &  ) ) static_cast<opencascade::handle<Geom_Curve> (*)( const opencascade::handle<Geom2d_Curve> & ,  const gp_Pln &  ) >(&GeomAPI::To3d),
                    R"#(Builds a 3D curve equivalent to the 2D curve C described in the parametric space defined by the local coordinate system of plane P. The resulting 3D curve is of the same nature as that of the curve C.)#"  , py::arg("C"),  py::arg("P")
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomAPI_ExtremaCurveCurve from ./opencascade/GeomAPI_ExtremaCurveCurve.hxx
    klass = m.attr("GeomAPI_ExtremaCurveCurve");


    // nested enums

    static_cast<py::class_<GeomAPI_ExtremaCurveCurve , shared_ptr<GeomAPI_ExtremaCurveCurve>  >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const opencascade::handle<Geom_Curve> &,const opencascade::handle<Geom_Curve> & >()  , py::arg("C1"),  py::arg("C2") )
        .def(py::init< const opencascade::handle<Geom_Curve> &,const opencascade::handle<Geom_Curve> &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("C1"),  py::arg("C2"),  py::arg("U1min"),  py::arg("U1max"),  py::arg("U2min"),  py::arg("U2max") )
    // custom constructors
    // methods
        .def("Init",
             (void (GeomAPI_ExtremaCurveCurve::*)( const opencascade::handle<Geom_Curve> & ,  const opencascade::handle<Geom_Curve> &  ) ) static_cast<void (GeomAPI_ExtremaCurveCurve::*)( const opencascade::handle<Geom_Curve> & ,  const opencascade::handle<Geom_Curve> &  ) >(&GeomAPI_ExtremaCurveCurve::Init),
             R"#(Initializes this algorithm with the given arguments and computes the extrema between the curves C1 and C2)#"  , py::arg("C1"),  py::arg("C2")
          )
        .def("Init",
             (void (GeomAPI_ExtremaCurveCurve::*)( const opencascade::handle<Geom_Curve> & ,  const opencascade::handle<Geom_Curve> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (GeomAPI_ExtremaCurveCurve::*)( const opencascade::handle<Geom_Curve> & ,  const opencascade::handle<Geom_Curve> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&GeomAPI_ExtremaCurveCurve::Init),
             R"#(Initializes this algorithm with the given arguments and computes the extrema between : - the portion of the curve C1 limited by the two points of parameter (U1min,U1max), and - the portion of the curve C2 limited by the two points of parameter (U2min,U2max). Warning Use the function NbExtrema to obtain the number of solutions. If this algorithm fails, NbExtrema returns 0.)#"  , py::arg("C1"),  py::arg("C2"),  py::arg("U1min"),  py::arg("U1max"),  py::arg("U2min"),  py::arg("U2max")
          )
        .def("NbExtrema",
             (Standard_Integer (GeomAPI_ExtremaCurveCurve::*)() const) static_cast<Standard_Integer (GeomAPI_ExtremaCurveCurve::*)() const>(&GeomAPI_ExtremaCurveCurve::NbExtrema),
             R"#(Returns the number of extrema computed by this algorithm. Note: if this algorithm fails, NbExtrema returns 0.)#" 
          )
        .def("Points",
             (void (GeomAPI_ExtremaCurveCurve::*)( const Standard_Integer ,  gp_Pnt & ,  gp_Pnt &  ) const) static_cast<void (GeomAPI_ExtremaCurveCurve::*)( const Standard_Integer ,  gp_Pnt & ,  gp_Pnt &  ) const>(&GeomAPI_ExtremaCurveCurve::Points),
             R"#(Returns the points P1 on the first curve and P2 on the second curve, which are the ends of the extremum of index Index computed by this algorithm. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbExtrema ], where NbExtrema is the number of extrema computed by this algorithm.)#"  , py::arg("Index"),  py::arg("P1"),  py::arg("P2")
          )
        .def("Distance",
             (Standard_Real (GeomAPI_ExtremaCurveCurve::*)( const Standard_Integer  ) const) static_cast<Standard_Real (GeomAPI_ExtremaCurveCurve::*)( const Standard_Integer  ) const>(&GeomAPI_ExtremaCurveCurve::Distance),
             R"#(Computes the distance between the end points of the extremum of index Index computed by this algorithm. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbExtrema ], where NbExtrema is the number of extrema computed by this algorithm.)#"  , py::arg("Index")
          )
        .def("IsParallel",
             (Standard_Boolean (GeomAPI_ExtremaCurveCurve::*)() const) static_cast<Standard_Boolean (GeomAPI_ExtremaCurveCurve::*)() const>(&GeomAPI_ExtremaCurveCurve::IsParallel),
             R"#(Returns True if the two curves are parallel.)#" 
          )
        .def("NearestPoints",
             (void (GeomAPI_ExtremaCurveCurve::*)( gp_Pnt & ,  gp_Pnt &  ) const) static_cast<void (GeomAPI_ExtremaCurveCurve::*)( gp_Pnt & ,  gp_Pnt &  ) const>(&GeomAPI_ExtremaCurveCurve::NearestPoints),
             R"#(Returns the points P1 on the first curve and P2 on the second curve, which are the ends of the shortest extremum computed by this algorithm. Exceptions StdFail_NotDone if this algorithm fails.)#"  , py::arg("P1"),  py::arg("P2")
          )
        .def("LowerDistance",
             (Standard_Real (GeomAPI_ExtremaCurveCurve::*)() const) static_cast<Standard_Real (GeomAPI_ExtremaCurveCurve::*)() const>(&GeomAPI_ExtremaCurveCurve::LowerDistance),
             R"#(Computes the distance between the end points of the shortest extremum computed by this algorithm. Exceptions StdFail_NotDone if this algorithm fails.)#" 
          )
        .def("TotalNearestPoints",
             (Standard_Boolean (GeomAPI_ExtremaCurveCurve::*)( gp_Pnt & ,  gp_Pnt &  ) ) static_cast<Standard_Boolean (GeomAPI_ExtremaCurveCurve::*)( gp_Pnt & ,  gp_Pnt &  ) >(&GeomAPI_ExtremaCurveCurve::TotalNearestPoints),
             R"#(set in <P1> and <P2> the couple solution points such a the distance [P1,P2] is the minimum. taking in account extremity points of curves.)#"  , py::arg("P1"),  py::arg("P2")
          )
        .def("TotalLowerDistanceParameters",
             (Standard_Boolean (GeomAPI_ExtremaCurveCurve::*)( Standard_Real & ,  Standard_Real &  ) ) static_cast<Standard_Boolean (GeomAPI_ExtremaCurveCurve::*)( Standard_Real & ,  Standard_Real &  ) >(&GeomAPI_ExtremaCurveCurve::TotalLowerDistanceParameters),
             R"#(set in <U1> and <U2> the parameters of the couple solution points which represents the total nearest solution.)#"  , py::arg("U1"),  py::arg("U2")
          )
        .def("TotalLowerDistance",
             (Standard_Real (GeomAPI_ExtremaCurveCurve::*)() ) static_cast<Standard_Real (GeomAPI_ExtremaCurveCurve::*)() >(&GeomAPI_ExtremaCurveCurve::TotalLowerDistance),
             R"#(return the distance of the total nearest couple solution point. if <myExtCC> is not done)#" 
          )
    // methods using call by reference i.s.o. return
        .def("Parameters",
             []( GeomAPI_ExtremaCurveCurve &self , const Standard_Integer Index ){
                 Standard_Real  U1;
                Standard_Real  U2;

                 self.Parameters(Index,U1,U2);
                 
                 return std::make_tuple(U1,U2); },
             R"#(Returns the parameters U1 of the point on the first curve and U2 of the point on the second curve, which are the ends of the extremum of index Index computed by this algorithm. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbExtrema ], where NbExtrema is the number of extrema computed by this algorithm.)#"  , py::arg("Index")
          )
        .def("LowerDistanceParameters",
             []( GeomAPI_ExtremaCurveCurve &self   ){
                 Standard_Real  U1;
                Standard_Real  U2;

                 self.LowerDistanceParameters(U1,U2);
                 
                 return std::make_tuple(U1,U2); },
             R"#(Returns the parameters U1 of the point on the first curve and U2 of the point on the second curve, which are the ends of the shortest extremum computed by this algorithm. Exceptions StdFail_NotDone if this algorithm fails.)#" 
          )
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Extrema",
             (const Extrema_ExtCC & (GeomAPI_ExtremaCurveCurve::*)() const) static_cast<const Extrema_ExtCC & (GeomAPI_ExtremaCurveCurve::*)() const>(&GeomAPI_ExtremaCurveCurve::Extrema),
             R"#(return the algorithmic object from Extrema)#"
             
         )
       .def("Extrema",
             (const Extrema_ExtCC & (GeomAPI_ExtremaCurveCurve::*)() const) static_cast<const Extrema_ExtCC & (GeomAPI_ExtremaCurveCurve::*)() const>(&GeomAPI_ExtremaCurveCurve::Extrema),
             R"#(return the algorithmic object from Extrema)#"
             
         )
;

    // Class GeomAPI_ExtremaCurveSurface from ./opencascade/GeomAPI_ExtremaCurveSurface.hxx
    klass = m.attr("GeomAPI_ExtremaCurveSurface");


    // nested enums

    static_cast<py::class_<GeomAPI_ExtremaCurveSurface , shared_ptr<GeomAPI_ExtremaCurveSurface>  >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const opencascade::handle<Geom_Curve> &,const opencascade::handle<Geom_Surface> & >()  , py::arg("Curve"),  py::arg("Surface") )
        .def(py::init< const opencascade::handle<Geom_Curve> &,const opencascade::handle<Geom_Surface> &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("Curve"),  py::arg("Surface"),  py::arg("Wmin"),  py::arg("Wmax"),  py::arg("Umin"),  py::arg("Umax"),  py::arg("Vmin"),  py::arg("Vmax") )
    // custom constructors
    // methods
        .def("Init",
             (void (GeomAPI_ExtremaCurveSurface::*)( const opencascade::handle<Geom_Curve> & ,  const opencascade::handle<Geom_Surface> &  ) ) static_cast<void (GeomAPI_ExtremaCurveSurface::*)( const opencascade::handle<Geom_Curve> & ,  const opencascade::handle<Geom_Surface> &  ) >(&GeomAPI_ExtremaCurveSurface::Init),
             R"#(Computes the extrema distances between the curve <C> and the surface <S>.)#"  , py::arg("Curve"),  py::arg("Surface")
          )
        .def("Init",
             (void (GeomAPI_ExtremaCurveSurface::*)( const opencascade::handle<Geom_Curve> & ,  const opencascade::handle<Geom_Surface> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (GeomAPI_ExtremaCurveSurface::*)( const opencascade::handle<Geom_Curve> & ,  const opencascade::handle<Geom_Surface> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&GeomAPI_ExtremaCurveSurface::Init),
             R"#(Computes the extrema distances between the curve <C> and the surface <S>. The solution point are computed in the domain [Wmin,Wmax] of the curve and in the domain [Umin,Umax] [Vmin,Vmax] of the surface. Warning Use the function NbExtrema to obtain the number of solutions. If this algorithm fails, NbExtrema returns 0.)#"  , py::arg("Curve"),  py::arg("Surface"),  py::arg("Wmin"),  py::arg("Wmax"),  py::arg("Umin"),  py::arg("Umax"),  py::arg("Vmin"),  py::arg("Vmax")
          )
        .def("NbExtrema",
             (Standard_Integer (GeomAPI_ExtremaCurveSurface::*)() const) static_cast<Standard_Integer (GeomAPI_ExtremaCurveSurface::*)() const>(&GeomAPI_ExtremaCurveSurface::NbExtrema),
             R"#(Returns the number of extrema computed by this algorithm. Note: if this algorithm fails, NbExtrema returns 0.)#" 
          )
        .def("Points",
             (void (GeomAPI_ExtremaCurveSurface::*)( const Standard_Integer ,  gp_Pnt & ,  gp_Pnt &  ) const) static_cast<void (GeomAPI_ExtremaCurveSurface::*)( const Standard_Integer ,  gp_Pnt & ,  gp_Pnt &  ) const>(&GeomAPI_ExtremaCurveSurface::Points),
             R"#(Returns the points P1 on the curve and P2 on the surface, which are the ends of the extremum of index Index computed by this algorithm. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbExtrema ], where NbExtrema is the number of extrema computed by this algorithm.)#"  , py::arg("Index"),  py::arg("P1"),  py::arg("P2")
          )
        .def("Distance",
             (Standard_Real (GeomAPI_ExtremaCurveSurface::*)( const Standard_Integer  ) const) static_cast<Standard_Real (GeomAPI_ExtremaCurveSurface::*)( const Standard_Integer  ) const>(&GeomAPI_ExtremaCurveSurface::Distance),
             R"#(Computes the distance between the end points of the extremum of index Index computed by this algorithm. Exceptions Standard_OutOfRange if index is not in the range [ 1,NbExtrema ], where NbExtrema is the number of extrema computed by this algorithm.)#"  , py::arg("Index")
          )
        .def("IsParallel",
             (Standard_Boolean (GeomAPI_ExtremaCurveSurface::*)() const) static_cast<Standard_Boolean (GeomAPI_ExtremaCurveSurface::*)() const>(&GeomAPI_ExtremaCurveSurface::IsParallel),
             R"#(Returns True if the curve is on a parallel surface.)#" 
          )
        .def("NearestPoints",
             (void (GeomAPI_ExtremaCurveSurface::*)( gp_Pnt & ,  gp_Pnt &  ) const) static_cast<void (GeomAPI_ExtremaCurveSurface::*)( gp_Pnt & ,  gp_Pnt &  ) const>(&GeomAPI_ExtremaCurveSurface::NearestPoints),
             R"#(Returns the points PC on the curve and PS on the surface, which are the ends of the shortest extremum computed by this algorithm. Exceptions - StdFail_NotDone if this algorithm fails.)#"  , py::arg("PC"),  py::arg("PS")
          )
        .def("LowerDistance",
             (Standard_Real (GeomAPI_ExtremaCurveSurface::*)() const) static_cast<Standard_Real (GeomAPI_ExtremaCurveSurface::*)() const>(&GeomAPI_ExtremaCurveSurface::LowerDistance),
             R"#(Computes the distance between the end points of the shortest extremum computed by this algorithm. Exceptions - StdFail_NotDone if this algorithm fails.)#" 
          )
    // methods using call by reference i.s.o. return
        .def("Parameters",
             []( GeomAPI_ExtremaCurveSurface &self , const Standard_Integer Index ){
                 Standard_Real  W;
                Standard_Real  U;
                Standard_Real  V;

                 self.Parameters(Index,W,U,V);
                 
                 return std::make_tuple(W,U,V); },
             R"#(Returns the parameters W of the point on the curve, and (U,V) of the point on the surface, which are the ends of the extremum of index Index computed by this algorithm. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbExtrema ], where NbExtrema is the number of extrema computed by this algorithm.)#"  , py::arg("Index")
          )
        .def("LowerDistanceParameters",
             []( GeomAPI_ExtremaCurveSurface &self   ){
                 Standard_Real  W;
                Standard_Real  U;
                Standard_Real  V;

                 self.LowerDistanceParameters(W,U,V);
                 
                 return std::make_tuple(W,U,V); },
             R"#(Returns the parameters W of the point on the curve and (U,V) of the point on the surface, which are the ends of the shortest extremum computed by this algorithm. Exceptions - StdFail_NotDone if this algorithm fails.)#" 
          )
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Extrema",
             (const Extrema_ExtCS & (GeomAPI_ExtremaCurveSurface::*)() const) static_cast<const Extrema_ExtCS & (GeomAPI_ExtremaCurveSurface::*)() const>(&GeomAPI_ExtremaCurveSurface::Extrema),
             R"#(Returns the algorithmic object from Extrema)#"
             
         )
       .def("Extrema",
             (const Extrema_ExtCS & (GeomAPI_ExtremaCurveSurface::*)() const) static_cast<const Extrema_ExtCS & (GeomAPI_ExtremaCurveSurface::*)() const>(&GeomAPI_ExtremaCurveSurface::Extrema),
             R"#(Returns the algorithmic object from Extrema)#"
             
         )
;

    // Class GeomAPI_ExtremaSurfaceSurface from ./opencascade/GeomAPI_ExtremaSurfaceSurface.hxx
    klass = m.attr("GeomAPI_ExtremaSurfaceSurface");


    // nested enums

    static_cast<py::class_<GeomAPI_ExtremaSurfaceSurface , shared_ptr<GeomAPI_ExtremaSurfaceSurface>  >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const opencascade::handle<Geom_Surface> &,const opencascade::handle<Geom_Surface> & >()  , py::arg("S1"),  py::arg("S2") )
        .def(py::init< const opencascade::handle<Geom_Surface> &,const opencascade::handle<Geom_Surface> &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("S1"),  py::arg("S2"),  py::arg("U1min"),  py::arg("U1max"),  py::arg("V1min"),  py::arg("V1max"),  py::arg("U2min"),  py::arg("U2max"),  py::arg("V2min"),  py::arg("V2max") )
    // custom constructors
    // methods
        .def("Init",
             (void (GeomAPI_ExtremaSurfaceSurface::*)( const opencascade::handle<Geom_Surface> & ,  const opencascade::handle<Geom_Surface> &  ) ) static_cast<void (GeomAPI_ExtremaSurfaceSurface::*)( const opencascade::handle<Geom_Surface> & ,  const opencascade::handle<Geom_Surface> &  ) >(&GeomAPI_ExtremaSurfaceSurface::Init),
             R"#(Initializes this algorithm with the given arguments and computes the extrema distances between the surfaces <S1> and <S2>)#"  , py::arg("S1"),  py::arg("S2")
          )
        .def("Init",
             (void (GeomAPI_ExtremaSurfaceSurface::*)( const opencascade::handle<Geom_Surface> & ,  const opencascade::handle<Geom_Surface> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (GeomAPI_ExtremaSurfaceSurface::*)( const opencascade::handle<Geom_Surface> & ,  const opencascade::handle<Geom_Surface> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&GeomAPI_ExtremaSurfaceSurface::Init),
             R"#(Initializes this algorithm with the given arguments and computes the extrema distances between - the portion of the surface S1 limited by the two values of parameter (U1min,U1max) in the u parametric direction, and by the two values of parameter (V1min,V1max) in the v parametric direction, and - the portion of the surface S2 limited by the two values of parameter (U2min,U2max) in the u parametric direction, and by the two values of parameter (V2min,V2max) in the v parametric direction.)#"  , py::arg("S1"),  py::arg("S2"),  py::arg("U1min"),  py::arg("U1max"),  py::arg("V1min"),  py::arg("V1max"),  py::arg("U2min"),  py::arg("U2max"),  py::arg("V2min"),  py::arg("V2max")
          )
        .def("NbExtrema",
             (Standard_Integer (GeomAPI_ExtremaSurfaceSurface::*)() const) static_cast<Standard_Integer (GeomAPI_ExtremaSurfaceSurface::*)() const>(&GeomAPI_ExtremaSurfaceSurface::NbExtrema),
             R"#(Returns the number of extrema computed by this algorithm. Note: if this algorithm fails, NbExtrema returns 0.)#" 
          )
        .def("Points",
             (void (GeomAPI_ExtremaSurfaceSurface::*)( const Standard_Integer ,  gp_Pnt & ,  gp_Pnt &  ) const) static_cast<void (GeomAPI_ExtremaSurfaceSurface::*)( const Standard_Integer ,  gp_Pnt & ,  gp_Pnt &  ) const>(&GeomAPI_ExtremaSurfaceSurface::Points),
             R"#(Returns the points P1 on the first surface and P2 on the second surface, which are the ends of the extremum of index Index computed by this algorithm. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbExtrema ], where NbExtrema is the number of extrema computed by this algorithm.)#"  , py::arg("Index"),  py::arg("P1"),  py::arg("P2")
          )
        .def("Distance",
             (Standard_Real (GeomAPI_ExtremaSurfaceSurface::*)( const Standard_Integer  ) const) static_cast<Standard_Real (GeomAPI_ExtremaSurfaceSurface::*)( const Standard_Integer  ) const>(&GeomAPI_ExtremaSurfaceSurface::Distance),
             R"#(Computes the distance between the end points of the extremum of index Index computed by this algorithm. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbExtrema ], where NbExtrema is the number of extrema computed by this algorithm.)#"  , py::arg("Index")
          )
        .def("IsParallel",
             (Standard_Boolean (GeomAPI_ExtremaSurfaceSurface::*)() const) static_cast<Standard_Boolean (GeomAPI_ExtremaSurfaceSurface::*)() const>(&GeomAPI_ExtremaSurfaceSurface::IsParallel),
             R"#(Returns True if the surfaces are parallel)#" 
          )
        .def("NearestPoints",
             (void (GeomAPI_ExtremaSurfaceSurface::*)( gp_Pnt & ,  gp_Pnt &  ) const) static_cast<void (GeomAPI_ExtremaSurfaceSurface::*)( gp_Pnt & ,  gp_Pnt &  ) const>(&GeomAPI_ExtremaSurfaceSurface::NearestPoints),
             R"#(Returns the points P1 on the first surface and P2 on the second surface, which are the ends of the shortest extremum computed by this algorithm. Exceptions StdFail_NotDone if this algorithm fails.)#"  , py::arg("P1"),  py::arg("P2")
          )
        .def("LowerDistance",
             (Standard_Real (GeomAPI_ExtremaSurfaceSurface::*)() const) static_cast<Standard_Real (GeomAPI_ExtremaSurfaceSurface::*)() const>(&GeomAPI_ExtremaSurfaceSurface::LowerDistance),
             R"#(Computes the distance between the end points of the shortest extremum computed by this algorithm. Exceptions StdFail_NotDone if this algorithm fails.)#" 
          )
    // methods using call by reference i.s.o. return
        .def("Parameters",
             []( GeomAPI_ExtremaSurfaceSurface &self , const Standard_Integer Index ){
                 Standard_Real  U1;
                Standard_Real  V1;
                Standard_Real  U2;
                Standard_Real  V2;

                 self.Parameters(Index,U1,V1,U2,V2);
                 
                 return std::make_tuple(U1,V1,U2,V2); },
             R"#(Returns the parameters (U1,V1) of the point on the first surface, and (U2,V2) of the point on the second surface, which are the ends of the extremum of index Index computed by this algorithm. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbExtrema ], where NbExtrema is the number of extrema computed by this algorithm.)#"  , py::arg("Index")
          )
        .def("LowerDistanceParameters",
             []( GeomAPI_ExtremaSurfaceSurface &self   ){
                 Standard_Real  U1;
                Standard_Real  V1;
                Standard_Real  U2;
                Standard_Real  V2;

                 self.LowerDistanceParameters(U1,V1,U2,V2);
                 
                 return std::make_tuple(U1,V1,U2,V2); },
             R"#(Returns the parameters (U1,V1) of the point on the first surface and (U2,V2) of the point on the second surface, which are the ends of the shortest extremum computed by this algorithm. Exceptions - StdFail_NotDone if this algorithm fails.)#" 
          )
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Extrema",
             (const Extrema_ExtSS & (GeomAPI_ExtremaSurfaceSurface::*)() const) static_cast<const Extrema_ExtSS & (GeomAPI_ExtremaSurfaceSurface::*)() const>(&GeomAPI_ExtremaSurfaceSurface::Extrema),
             R"#(return the algorithmic object from Extrema)#"
             
         )
       .def("Extrema",
             (const Extrema_ExtSS & (GeomAPI_ExtremaSurfaceSurface::*)() const) static_cast<const Extrema_ExtSS & (GeomAPI_ExtremaSurfaceSurface::*)() const>(&GeomAPI_ExtremaSurfaceSurface::Extrema),
             R"#(return the algorithmic object from Extrema)#"
             
         )
;

    // Class GeomAPI_IntCS from ./opencascade/GeomAPI_IntCS.hxx
    klass = m.attr("GeomAPI_IntCS");


    // nested enums

    static_cast<py::class_<GeomAPI_IntCS , shared_ptr<GeomAPI_IntCS>  >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const opencascade::handle<Geom_Curve> &,const opencascade::handle<Geom_Surface> & >()  , py::arg("C"),  py::arg("S") )
    // custom constructors
    // methods
        .def("Perform",
             (void (GeomAPI_IntCS::*)( const opencascade::handle<Geom_Curve> & ,  const opencascade::handle<Geom_Surface> &  ) ) static_cast<void (GeomAPI_IntCS::*)( const opencascade::handle<Geom_Curve> & ,  const opencascade::handle<Geom_Surface> &  ) >(&GeomAPI_IntCS::Perform),
             R"#(This function Initializes an algorithm with the curve C and the surface S and computes the intersections between C and S. Warning Use function IsDone to verify that the intersections are computed successfully.)#"  , py::arg("C"),  py::arg("S")
          )
        .def("IsDone",
             (Standard_Boolean (GeomAPI_IntCS::*)() const) static_cast<Standard_Boolean (GeomAPI_IntCS::*)() const>(&GeomAPI_IntCS::IsDone),
             R"#(Returns true if the intersections are successfully computed.)#" 
          )
        .def("NbPoints",
             (Standard_Integer (GeomAPI_IntCS::*)() const) static_cast<Standard_Integer (GeomAPI_IntCS::*)() const>(&GeomAPI_IntCS::NbPoints),
             R"#(Returns the number of Intersection Points if IsDone returns True. else NotDone is raised.)#" 
          )
        .def("Point",
             (const gp_Pnt & (GeomAPI_IntCS::*)( const Standard_Integer  ) const) static_cast<const gp_Pnt & (GeomAPI_IntCS::*)( const Standard_Integer  ) const>(&GeomAPI_IntCS::Point),
             R"#(Returns the Intersection Point of range <Index>in case of cross intersection. Raises NotDone if the computation has failed or if the computation has not been done raises OutOfRange if Index is not in the range <1..NbPoints>)#"  , py::arg("Index")
          )
        .def("NbSegments",
             (Standard_Integer (GeomAPI_IntCS::*)() const) static_cast<Standard_Integer (GeomAPI_IntCS::*)() const>(&GeomAPI_IntCS::NbSegments),
             R"#(Returns the number of computed intersection segments in case of tangential intersection. Exceptions StdFail_NotDone if the intersection algorithm fails or is not initialized.)#" 
          )
        .def("Segment",
             (opencascade::handle<Geom_Curve> (GeomAPI_IntCS::*)( const Standard_Integer  ) const) static_cast<opencascade::handle<Geom_Curve> (GeomAPI_IntCS::*)( const Standard_Integer  ) const>(&GeomAPI_IntCS::Segment),
             R"#(Returns the computed intersection segment of index Index in case of tangential intersection. Intersection segment is a portion of the initial curve tangent to surface. Exceptions StdFail_NotDone if intersection algorithm fails or is not initialized. Standard_OutOfRange if Index is not in the range [ 1,NbSegments ], where NbSegments is the number of computed intersection segments.)#"  , py::arg("Index")
          )
    // methods using call by reference i.s.o. return
        .def("Parameters",
             []( GeomAPI_IntCS &self , const Standard_Integer Index ){
                 Standard_Real  U;
                Standard_Real  V;
                Standard_Real  W;

                 self.Parameters(Index,U,V,W);
                 
                 return std::make_tuple(U,V,W); },
             R"#(Returns parameter W on the curve and (parameters U,V) on the surface of the computed intersection point of index Index in case of cross intersection. Exceptions StdFail_NotDone if intersection algorithm fails or is not initialized. Standard_OutOfRange if Index is not in the range [ 1,NbPoints ], where NbPoints is the number of computed intersection points.)#"  , py::arg("Index")
          )
        .def("Parameters",
             []( GeomAPI_IntCS &self , const Standard_Integer Index ){
                 Standard_Real  U1;
                Standard_Real  V1;
                Standard_Real  U2;
                Standard_Real  V2;

                 self.Parameters(Index,U1,V1,U2,V2);
                 
                 return std::make_tuple(U1,V1,U2,V2); },
             R"#(Returns the parameters of the first (U1,V1) and the last (U2,V2) points of curve's segment on the surface in case of tangential intersection. Index is the number of computed intersection segments. Exceptions StdFail_NotDone if intersection algorithm fails or is not initialized. Standard_OutOfRange if Index is not in the range [ 1,NbSegments ], where NbSegments is the number of computed intersection segments.)#"  , py::arg("Index")
          )
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomAPI_IntSS from ./opencascade/GeomAPI_IntSS.hxx
    klass = m.attr("GeomAPI_IntSS");


    // nested enums

    static_cast<py::class_<GeomAPI_IntSS , shared_ptr<GeomAPI_IntSS>  >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const opencascade::handle<Geom_Surface> &,const opencascade::handle<Geom_Surface> &,const Standard_Real >()  , py::arg("S1"),  py::arg("S2"),  py::arg("Tol") )
    // custom constructors
    // methods
        .def("Perform",
             (void (GeomAPI_IntSS::*)( const opencascade::handle<Geom_Surface> & ,  const opencascade::handle<Geom_Surface> & ,  const Standard_Real  ) ) static_cast<void (GeomAPI_IntSS::*)( const opencascade::handle<Geom_Surface> & ,  const opencascade::handle<Geom_Surface> & ,  const Standard_Real  ) >(&GeomAPI_IntSS::Perform),
             R"#(Initializes an algorithm with the given arguments and computes the intersection curves between the two surfaces S1 and S2. Parameter Tol defines the precision of curves computation. For most cases the value 1.0e-7 is recommended to use. Warning Use function IsDone to verify that the intersections are successfully computed.)#"  , py::arg("S1"),  py::arg("S2"),  py::arg("Tol")
          )
        .def("IsDone",
             (Standard_Boolean (GeomAPI_IntSS::*)() const) static_cast<Standard_Boolean (GeomAPI_IntSS::*)() const>(&GeomAPI_IntSS::IsDone),
             R"#(Returns True if the intersection was successful.)#" 
          )
        .def("NbLines",
             (Standard_Integer (GeomAPI_IntSS::*)() const) static_cast<Standard_Integer (GeomAPI_IntSS::*)() const>(&GeomAPI_IntSS::NbLines),
             R"#(Returns the number of computed intersection curves. Exceptions StdFail_NotDone if the computation fails.)#" 
          )
        .def("Line",
             (const opencascade::handle<Geom_Curve> & (GeomAPI_IntSS::*)( const Standard_Integer  ) const) static_cast<const opencascade::handle<Geom_Curve> & (GeomAPI_IntSS::*)( const Standard_Integer  ) const>(&GeomAPI_IntSS::Line),
             R"#(Returns the computed intersection curve of index Index. Exceptions StdFail_NotDone if the computation fails. Standard_OutOfRange if Index is out of range [1, NbLines] where NbLines is the number of computed intersection curves.)#"  , py::arg("Index")
          )
        .def("Perform",
             (void (GeomAPI_IntSS::*)( const opencascade::handle<Geom_Surface> & ,  const opencascade::handle<Geom_Surface> & ,  const Standard_Real  ) ) static_cast<void (GeomAPI_IntSS::*)( const opencascade::handle<Geom_Surface> & ,  const opencascade::handle<Geom_Surface> & ,  const Standard_Real  ) >(&GeomAPI_IntSS::Perform),
             R"#(Initializes an algorithm with the given arguments and computes the intersection curves between the two surfaces S1 and S2. Parameter Tol defines the precision of curves computation. For most cases the value 1.0e-7 is recommended to use. Warning Use function IsDone to verify that the intersections are successfully computed.)#"  , py::arg("S1"),  py::arg("S2"),  py::arg("Tol")
          )
        .def("IsDone",
             (Standard_Boolean (GeomAPI_IntSS::*)() const) static_cast<Standard_Boolean (GeomAPI_IntSS::*)() const>(&GeomAPI_IntSS::IsDone),
             R"#(Returns True if the intersection was successful.)#" 
          )
        .def("NbLines",
             (Standard_Integer (GeomAPI_IntSS::*)() const) static_cast<Standard_Integer (GeomAPI_IntSS::*)() const>(&GeomAPI_IntSS::NbLines),
             R"#(Returns the number of computed intersection curves. Exceptions StdFail_NotDone if the computation fails.)#" 
          )
        .def("Line",
             (const opencascade::handle<Geom_Curve> & (GeomAPI_IntSS::*)( const Standard_Integer  ) const) static_cast<const opencascade::handle<Geom_Curve> & (GeomAPI_IntSS::*)( const Standard_Integer  ) const>(&GeomAPI_IntSS::Line),
             R"#(Returns the computed intersection curve of index Index. Exceptions StdFail_NotDone if the computation fails. Standard_OutOfRange if Index is out of range [1, NbLines] where NbLines is the number of computed intersection curves.)#"  , py::arg("I")
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomAPI_Interpolate from ./opencascade/GeomAPI_Interpolate.hxx
    klass = m.attr("GeomAPI_Interpolate");


    // nested enums

    static_cast<py::class_<GeomAPI_Interpolate , shared_ptr<GeomAPI_Interpolate>  >>(klass)
    // constructors
        .def(py::init< const opencascade::handle<TColgp_HArray1OfPnt> &,const Standard_Boolean,const Standard_Real >()  , py::arg("Points"),  py::arg("PeriodicFlag"),  py::arg("Tolerance") )
        .def(py::init< const opencascade::handle<TColgp_HArray1OfPnt> &,const opencascade::handle<TColStd_HArray1OfReal> &,const Standard_Boolean,const Standard_Real >()  , py::arg("Points"),  py::arg("Parameters"),  py::arg("PeriodicFlag"),  py::arg("Tolerance") )
    // custom constructors
    // methods
        .def("Load",
             (void (GeomAPI_Interpolate::*)( const gp_Vec & ,  const gp_Vec & ,  const Standard_Boolean  ) ) static_cast<void (GeomAPI_Interpolate::*)( const gp_Vec & ,  const gp_Vec & ,  const Standard_Boolean  ) >(&GeomAPI_Interpolate::Load),
             R"#(Assigns this constrained BSpline curve to be tangential to vectors InitialTangent and FinalTangent at its first and last points respectively (i.e. the first and last points of the table of points through which the curve passes, as defined at the time of initialization).)#"  , py::arg("InitialTangent"),  py::arg("FinalTangent"),  py::arg("Scale")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def("Load",
             (void (GeomAPI_Interpolate::*)(  const NCollection_Array1<gp_Vec> & ,  const opencascade::handle<TColStd_HArray1OfBoolean> & ,  const Standard_Boolean  ) ) static_cast<void (GeomAPI_Interpolate::*)(  const NCollection_Array1<gp_Vec> & ,  const opencascade::handle<TColStd_HArray1OfBoolean> & ,  const Standard_Boolean  ) >(&GeomAPI_Interpolate::Load),
             R"#(Assigns this constrained BSpline curve to be tangential to vectors defined in the table Tangents, which is parallel to the table of points through which the curve passes, as defined at the time of initialization. Vectors in the table Tangents are defined only if the flag given in the parallel table TangentFlags is true: only these vectors are set as tangency constraints.)#"  , py::arg("Tangents"),  py::arg("TangentFlags"),  py::arg("Scale")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def("Perform",
             (void (GeomAPI_Interpolate::*)() ) static_cast<void (GeomAPI_Interpolate::*)() >(&GeomAPI_Interpolate::Perform),
             R"#(Computes the constrained BSpline curve. Use the function IsDone to verify that the computation is successful, and then the function Curve to obtain the result.)#" 
          )
        .def("IsDone",
             (Standard_Boolean (GeomAPI_Interpolate::*)() const) static_cast<Standard_Boolean (GeomAPI_Interpolate::*)() const>(&GeomAPI_Interpolate::IsDone),
             R"#(Returns true if the constrained BSpline curve is successfully constructed. Note: in this case, the result is given by the function Curve.)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Curve",
             (const opencascade::handle<Geom_BSplineCurve> & (GeomAPI_Interpolate::*)() const) static_cast<const opencascade::handle<Geom_BSplineCurve> & (GeomAPI_Interpolate::*)() const>(&GeomAPI_Interpolate::Curve),
             R"#(Returns the computed BSpline curve. Raises StdFail_NotDone if the interpolation fails.)#"
             
         )
;

    // Class GeomAPI_PointsToBSpline from ./opencascade/GeomAPI_PointsToBSpline.hxx
    klass = m.attr("GeomAPI_PointsToBSpline");


    // nested enums

    static_cast<py::class_<GeomAPI_PointsToBSpline , shared_ptr<GeomAPI_PointsToBSpline>  >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init<  const NCollection_Array1<gp_Pnt> &,const Standard_Integer,const Standard_Integer,const GeomAbs_Shape,const Standard_Real >()  , py::arg("Points"),  py::arg("DegMin")=static_cast<const Standard_Integer>(3),  py::arg("DegMax")=static_cast<const Standard_Integer>(8),  py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2),  py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3) )
        .def(py::init<  const NCollection_Array1<gp_Pnt> &,const Approx_ParametrizationType,const Standard_Integer,const Standard_Integer,const GeomAbs_Shape,const Standard_Real >()  , py::arg("Points"),  py::arg("ParType"),  py::arg("DegMin")=static_cast<const Standard_Integer>(3),  py::arg("DegMax")=static_cast<const Standard_Integer>(8),  py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2),  py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3) )
        .def(py::init<  const NCollection_Array1<gp_Pnt> &, const NCollection_Array1<Standard_Real> &,const Standard_Integer,const Standard_Integer,const GeomAbs_Shape,const Standard_Real >()  , py::arg("Points"),  py::arg("Parameters"),  py::arg("DegMin")=static_cast<const Standard_Integer>(3),  py::arg("DegMax")=static_cast<const Standard_Integer>(8),  py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2),  py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3) )
        .def(py::init<  const NCollection_Array1<gp_Pnt> &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Integer,const GeomAbs_Shape,const Standard_Real >()  , py::arg("Points"),  py::arg("Weight1"),  py::arg("Weight2"),  py::arg("Weight3"),  py::arg("DegMax")=static_cast<const Standard_Integer>(8),  py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2),  py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3) )
    // custom constructors
    // methods
        .def("Init",
             (void (GeomAPI_PointsToBSpline::*)(  const NCollection_Array1<gp_Pnt> & ,  const Standard_Integer ,  const Standard_Integer ,  const GeomAbs_Shape ,  const Standard_Real  ) ) static_cast<void (GeomAPI_PointsToBSpline::*)(  const NCollection_Array1<gp_Pnt> & ,  const Standard_Integer ,  const Standard_Integer ,  const GeomAbs_Shape ,  const Standard_Real  ) >(&GeomAPI_PointsToBSpline::Init),
             R"#(Approximate a BSpline Curve passing through an array of Point. The resulting BSpline will have the following properties: 1- his degree will be in the range [Degmin,Degmax] 2- his continuity will be at least <Continuity> 3- the distance from the point <Points> to the BSpline will be lower to Tol3D)#"  , py::arg("Points"),  py::arg("DegMin")=static_cast<const Standard_Integer>(3),  py::arg("DegMax")=static_cast<const Standard_Integer>(8),  py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2),  py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3)
          )
        .def("Init",
             (void (GeomAPI_PointsToBSpline::*)(  const NCollection_Array1<gp_Pnt> & ,  const Approx_ParametrizationType ,  const Standard_Integer ,  const Standard_Integer ,  const GeomAbs_Shape ,  const Standard_Real  ) ) static_cast<void (GeomAPI_PointsToBSpline::*)(  const NCollection_Array1<gp_Pnt> & ,  const Approx_ParametrizationType ,  const Standard_Integer ,  const Standard_Integer ,  const GeomAbs_Shape ,  const Standard_Real  ) >(&GeomAPI_PointsToBSpline::Init),
             R"#(Approximate a BSpline Curve passing through an array of Point. The resulting BSpline will have the following properties: 1- his degree will be in the range [Degmin,Degmax] 2- his continuity will be at least <Continuity> 3- the distance from the point <Points> to the BSpline will be lower to Tol3D)#"  , py::arg("Points"),  py::arg("ParType"),  py::arg("DegMin")=static_cast<const Standard_Integer>(3),  py::arg("DegMax")=static_cast<const Standard_Integer>(8),  py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2),  py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3)
          )
        .def("Init",
             (void (GeomAPI_PointsToBSpline::*)(  const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> & ,  const Standard_Integer ,  const Standard_Integer ,  const GeomAbs_Shape ,  const Standard_Real  ) ) static_cast<void (GeomAPI_PointsToBSpline::*)(  const NCollection_Array1<gp_Pnt> & ,   const NCollection_Array1<Standard_Real> & ,  const Standard_Integer ,  const Standard_Integer ,  const GeomAbs_Shape ,  const Standard_Real  ) >(&GeomAPI_PointsToBSpline::Init),
             R"#(Approximate a BSpline Curve passing through an array of Point, which parameters are given by the array <Parameters>. The resulting BSpline will have the following properties: 1- his degree will be in the range [Degmin,Degmax] 2- his continuity will be at least <Continuity> 3- the distance from the point <Points> to the BSpline will be lower to Tol3D)#"  , py::arg("Points"),  py::arg("Parameters"),  py::arg("DegMin")=static_cast<const Standard_Integer>(3),  py::arg("DegMax")=static_cast<const Standard_Integer>(8),  py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2),  py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3)
          )
        .def("Init",
             (void (GeomAPI_PointsToBSpline::*)(  const NCollection_Array1<gp_Pnt> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const GeomAbs_Shape ,  const Standard_Real  ) ) static_cast<void (GeomAPI_PointsToBSpline::*)(  const NCollection_Array1<gp_Pnt> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const GeomAbs_Shape ,  const Standard_Real  ) >(&GeomAPI_PointsToBSpline::Init),
             R"#(Approximate a BSpline Curve passing through an array of Point using variational smoothing algorithm, which tries to minimize additional criterium: Weight1*CurveLength + Weight2*Curvature + Weight3*Torsion)#"  , py::arg("Points"),  py::arg("Weight1"),  py::arg("Weight2"),  py::arg("Weight3"),  py::arg("DegMax")=static_cast<const Standard_Integer>(8),  py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2),  py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3)
          )
        .def("IsDone",
             (Standard_Boolean (GeomAPI_PointsToBSpline::*)() const) static_cast<Standard_Boolean (GeomAPI_PointsToBSpline::*)() const>(&GeomAPI_PointsToBSpline::IsDone),
             R"#(None)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Curve",
             (const opencascade::handle<Geom_BSplineCurve> & (GeomAPI_PointsToBSpline::*)() const) static_cast<const opencascade::handle<Geom_BSplineCurve> & (GeomAPI_PointsToBSpline::*)() const>(&GeomAPI_PointsToBSpline::Curve),
             R"#(Returns the computed BSpline curve. Raises StdFail_NotDone if the curve is not built.)#"
             
         )
;

    // Class GeomAPI_PointsToBSplineSurface from ./opencascade/GeomAPI_PointsToBSplineSurface.hxx
    klass = m.attr("GeomAPI_PointsToBSplineSurface");


    // nested enums

    static_cast<py::class_<GeomAPI_PointsToBSplineSurface , shared_ptr<GeomAPI_PointsToBSplineSurface>  >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init<  const NCollection_Array2<gp_Pnt> &,const Standard_Integer,const Standard_Integer,const GeomAbs_Shape,const Standard_Real >()  , py::arg("Points"),  py::arg("DegMin")=static_cast<const Standard_Integer>(3),  py::arg("DegMax")=static_cast<const Standard_Integer>(8),  py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2),  py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3) )
        .def(py::init<  const NCollection_Array2<gp_Pnt> &,const Approx_ParametrizationType,const Standard_Integer,const Standard_Integer,const GeomAbs_Shape,const Standard_Real >()  , py::arg("Points"),  py::arg("ParType"),  py::arg("DegMin")=static_cast<const Standard_Integer>(3),  py::arg("DegMax")=static_cast<const Standard_Integer>(8),  py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2),  py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3) )
        .def(py::init<  const NCollection_Array2<gp_Pnt> &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Integer,const GeomAbs_Shape,const Standard_Real >()  , py::arg("Points"),  py::arg("Weight1"),  py::arg("Weight2"),  py::arg("Weight3"),  py::arg("DegMax")=static_cast<const Standard_Integer>(8),  py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2),  py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3) )
        .def(py::init<  const NCollection_Array2<Standard_Real> &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Integer,const Standard_Integer,const GeomAbs_Shape,const Standard_Real >()  , py::arg("ZPoints"),  py::arg("X0"),  py::arg("dX"),  py::arg("Y0"),  py::arg("dY"),  py::arg("DegMin")=static_cast<const Standard_Integer>(3),  py::arg("DegMax")=static_cast<const Standard_Integer>(8),  py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2),  py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3) )
    // custom constructors
    // methods
        .def("Init",
             (void (GeomAPI_PointsToBSplineSurface::*)(  const NCollection_Array2<gp_Pnt> & ,  const Standard_Integer ,  const Standard_Integer ,  const GeomAbs_Shape ,  const Standard_Real  ) ) static_cast<void (GeomAPI_PointsToBSplineSurface::*)(  const NCollection_Array2<gp_Pnt> & ,  const Standard_Integer ,  const Standard_Integer ,  const GeomAbs_Shape ,  const Standard_Real  ) >(&GeomAPI_PointsToBSplineSurface::Init),
             R"#(Approximates a BSpline Surface passing through an array of Point. The resulting BSpline will have the following properties: 1- his degree will be in the range [Degmin,Degmax] 2- his continuity will be at least <Continuity> 3- the distance from the point <Points> to the BSpline will be lower to Tol3D.)#"  , py::arg("Points"),  py::arg("DegMin")=static_cast<const Standard_Integer>(3),  py::arg("DegMax")=static_cast<const Standard_Integer>(8),  py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2),  py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3)
          )
        .def("Interpolate",
             (void (GeomAPI_PointsToBSplineSurface::*)(  const NCollection_Array2<gp_Pnt> & ,  const Standard_Boolean  ) ) static_cast<void (GeomAPI_PointsToBSplineSurface::*)(  const NCollection_Array2<gp_Pnt> & ,  const Standard_Boolean  ) >(&GeomAPI_PointsToBSplineSurface::Interpolate),
             R"#(Interpolates a BSpline Surface passing through an array of Point. The resulting BSpline will have the following properties: 1- his degree will be 3. 2- his continuity will be C2.)#"  , py::arg("Points"),  py::arg("thePeriodic")=static_cast<const Standard_Boolean>(Standard_False)
          )
        .def("Interpolate",
             (void (GeomAPI_PointsToBSplineSurface::*)(  const NCollection_Array2<gp_Pnt> & ,  const Approx_ParametrizationType ,  const Standard_Boolean  ) ) static_cast<void (GeomAPI_PointsToBSplineSurface::*)(  const NCollection_Array2<gp_Pnt> & ,  const Approx_ParametrizationType ,  const Standard_Boolean  ) >(&GeomAPI_PointsToBSplineSurface::Interpolate),
             R"#(Interpolates a BSpline Surface passing through an array of Point. The resulting BSpline will have the following properties: 1- his degree will be 3. 2- his continuity will be C2.)#"  , py::arg("Points"),  py::arg("ParType"),  py::arg("thePeriodic")=static_cast<const Standard_Boolean>(Standard_False)
          )
        .def("Init",
             (void (GeomAPI_PointsToBSplineSurface::*)(  const NCollection_Array2<Standard_Real> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const GeomAbs_Shape ,  const Standard_Real  ) ) static_cast<void (GeomAPI_PointsToBSplineSurface::*)(  const NCollection_Array2<Standard_Real> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const GeomAbs_Shape ,  const Standard_Real  ) >(&GeomAPI_PointsToBSplineSurface::Init),
             R"#(Approximates a BSpline Surface passing through an array of Points.)#"  , py::arg("ZPoints"),  py::arg("X0"),  py::arg("dX"),  py::arg("Y0"),  py::arg("dY"),  py::arg("DegMin")=static_cast<const Standard_Integer>(3),  py::arg("DegMax")=static_cast<const Standard_Integer>(8),  py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2),  py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3)
          )
        .def("Interpolate",
             (void (GeomAPI_PointsToBSplineSurface::*)(  const NCollection_Array2<Standard_Real> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (GeomAPI_PointsToBSplineSurface::*)(  const NCollection_Array2<Standard_Real> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&GeomAPI_PointsToBSplineSurface::Interpolate),
             R"#(Interpolates a BSpline Surface passing through an array of Points.)#"  , py::arg("ZPoints"),  py::arg("X0"),  py::arg("dX"),  py::arg("Y0"),  py::arg("dY")
          )
        .def("Init",
             (void (GeomAPI_PointsToBSplineSurface::*)(  const NCollection_Array2<gp_Pnt> & ,  const Approx_ParametrizationType ,  const Standard_Integer ,  const Standard_Integer ,  const GeomAbs_Shape ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<void (GeomAPI_PointsToBSplineSurface::*)(  const NCollection_Array2<gp_Pnt> & ,  const Approx_ParametrizationType ,  const Standard_Integer ,  const Standard_Integer ,  const GeomAbs_Shape ,  const Standard_Real ,  const Standard_Boolean  ) >(&GeomAPI_PointsToBSplineSurface::Init),
             R"#(Approximates a BSpline Surface passing through an array of Point. The resulting BSpline will have the following properties: 1- his degree will be in the range [Degmin,Degmax] 2- his continuity will be at least <Continuity> 3- the distance from the point <Points> to the BSpline will be lower to Tol3D.)#"  , py::arg("Points"),  py::arg("ParType"),  py::arg("DegMin")=static_cast<const Standard_Integer>(3),  py::arg("DegMax")=static_cast<const Standard_Integer>(8),  py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2),  py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3),  py::arg("thePeriodic")=static_cast<const Standard_Boolean>(Standard_False)
          )
        .def("Init",
             (void (GeomAPI_PointsToBSplineSurface::*)(  const NCollection_Array2<gp_Pnt> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const GeomAbs_Shape ,  const Standard_Real  ) ) static_cast<void (GeomAPI_PointsToBSplineSurface::*)(  const NCollection_Array2<gp_Pnt> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const GeomAbs_Shape ,  const Standard_Real  ) >(&GeomAPI_PointsToBSplineSurface::Init),
             R"#(Approximates a BSpline Surface passing through an array of point using variational smoothing algorithm, which tries to minimize additional criterium: Weight1*CurveLength + Weight2*Curvature + Weight3*Torsion.)#"  , py::arg("Points"),  py::arg("Weight1"),  py::arg("Weight2"),  py::arg("Weight3"),  py::arg("DegMax")=static_cast<const Standard_Integer>(8),  py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2),  py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3)
          )
        .def("IsDone",
             (Standard_Boolean (GeomAPI_PointsToBSplineSurface::*)() const) static_cast<Standard_Boolean (GeomAPI_PointsToBSplineSurface::*)() const>(&GeomAPI_PointsToBSplineSurface::IsDone),
             R"#(None)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Surface",
             (const opencascade::handle<Geom_BSplineSurface> & (GeomAPI_PointsToBSplineSurface::*)() const) static_cast<const opencascade::handle<Geom_BSplineSurface> & (GeomAPI_PointsToBSplineSurface::*)() const>(&GeomAPI_PointsToBSplineSurface::Surface),
             R"#(Returns the approximate BSpline Surface)#"
             
         )
;

    // Class GeomAPI_ProjectPointOnCurve from ./opencascade/GeomAPI_ProjectPointOnCurve.hxx
    klass = m.attr("GeomAPI_ProjectPointOnCurve");


    // nested enums

    static_cast<py::class_<GeomAPI_ProjectPointOnCurve , shared_ptr<GeomAPI_ProjectPointOnCurve>  >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const gp_Pnt &,const opencascade::handle<Geom_Curve> & >()  , py::arg("P"),  py::arg("Curve") )
        .def(py::init< const gp_Pnt &,const opencascade::handle<Geom_Curve> &,const Standard_Real,const Standard_Real >()  , py::arg("P"),  py::arg("Curve"),  py::arg("Umin"),  py::arg("Usup") )
    // custom constructors
    // methods
        .def("Init",
             (void (GeomAPI_ProjectPointOnCurve::*)( const gp_Pnt & ,  const opencascade::handle<Geom_Curve> &  ) ) static_cast<void (GeomAPI_ProjectPointOnCurve::*)( const gp_Pnt & ,  const opencascade::handle<Geom_Curve> &  ) >(&GeomAPI_ProjectPointOnCurve::Init),
             R"#(Init the projection of a point <P> on a curve <Curve>)#"  , py::arg("P"),  py::arg("Curve")
          )
        .def("Init",
             (void (GeomAPI_ProjectPointOnCurve::*)( const gp_Pnt & ,  const opencascade::handle<Geom_Curve> & ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (GeomAPI_ProjectPointOnCurve::*)( const gp_Pnt & ,  const opencascade::handle<Geom_Curve> & ,  const Standard_Real ,  const Standard_Real  ) >(&GeomAPI_ProjectPointOnCurve::Init),
             R"#(Init the projection of a point <P> on a curve <Curve> limited by the two points of parameter Umin and Usup.)#"  , py::arg("P"),  py::arg("Curve"),  py::arg("Umin"),  py::arg("Usup")
          )
        .def("Init",
             (void (GeomAPI_ProjectPointOnCurve::*)( const opencascade::handle<Geom_Curve> & ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (GeomAPI_ProjectPointOnCurve::*)( const opencascade::handle<Geom_Curve> & ,  const Standard_Real ,  const Standard_Real  ) >(&GeomAPI_ProjectPointOnCurve::Init),
             R"#(Init the projection of a point <P> on a curve <Curve> limited by the two points of parameter Umin and Usup.)#"  , py::arg("Curve"),  py::arg("Umin"),  py::arg("Usup")
          )
        .def("Perform",
             (void (GeomAPI_ProjectPointOnCurve::*)( const gp_Pnt &  ) ) static_cast<void (GeomAPI_ProjectPointOnCurve::*)( const gp_Pnt &  ) >(&GeomAPI_ProjectPointOnCurve::Perform),
             R"#(Performs the projection of a point on the current curve.)#"  , py::arg("P")
          )
        .def("NbPoints",
             (Standard_Integer (GeomAPI_ProjectPointOnCurve::*)() const) static_cast<Standard_Integer (GeomAPI_ProjectPointOnCurve::*)() const>(&GeomAPI_ProjectPointOnCurve::NbPoints),
             R"#(Returns the number of computed orthogonal projection points. Note: if this algorithm fails, NbPoints returns 0.)#" 
          )
        .def("Point",
             (gp_Pnt (GeomAPI_ProjectPointOnCurve::*)( const Standard_Integer  ) const) static_cast<gp_Pnt (GeomAPI_ProjectPointOnCurve::*)( const Standard_Integer  ) const>(&GeomAPI_ProjectPointOnCurve::Point),
             R"#(Returns the orthogonal projection on the curve. Index is a number of a computed point. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbPoints ], where NbPoints is the number of solution points.)#"  , py::arg("Index")
          )
        .def("Parameter",
             (Standard_Real (GeomAPI_ProjectPointOnCurve::*)( const Standard_Integer  ) const) static_cast<Standard_Real (GeomAPI_ProjectPointOnCurve::*)( const Standard_Integer  ) const>(&GeomAPI_ProjectPointOnCurve::Parameter),
             R"#(Returns the parameter on the curve of the point, which is the orthogonal projection. Index is a number of a computed point. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbPoints ], where NbPoints is the number of solution points.)#"  , py::arg("Index")
          )
        .def("Distance",
             (Standard_Real (GeomAPI_ProjectPointOnCurve::*)( const Standard_Integer  ) const) static_cast<Standard_Real (GeomAPI_ProjectPointOnCurve::*)( const Standard_Integer  ) const>(&GeomAPI_ProjectPointOnCurve::Distance),
             R"#(Computes the distance between the point and its orthogonal projection on the curve. Index is a number of a computed point. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbPoints ], where NbPoints is the number of solution points.)#"  , py::arg("Index")
          )
        .def("NearestPoint",
             (gp_Pnt (GeomAPI_ProjectPointOnCurve::*)() const) static_cast<gp_Pnt (GeomAPI_ProjectPointOnCurve::*)() const>(&GeomAPI_ProjectPointOnCurve::NearestPoint),
             R"#(Returns the nearest orthogonal projection of the point on the curve. Exceptions: StdFail_NotDone if this algorithm fails.)#" 
          )
        .def("LowerDistanceParameter",
             (Standard_Real (GeomAPI_ProjectPointOnCurve::*)() const) static_cast<Standard_Real (GeomAPI_ProjectPointOnCurve::*)() const>(&GeomAPI_ProjectPointOnCurve::LowerDistanceParameter),
             R"#(Returns the parameter on the curve of the nearest orthogonal projection of the point. Exceptions: StdFail_NotDone if this algorithm fails.)#" 
          )
        .def("LowerDistance",
             (Standard_Real (GeomAPI_ProjectPointOnCurve::*)() const) static_cast<Standard_Real (GeomAPI_ProjectPointOnCurve::*)() const>(&GeomAPI_ProjectPointOnCurve::LowerDistance),
             R"#(Computes the distance between the point and its nearest orthogonal projection on the curve. Exceptions: StdFail_NotDone if this algorithm fails.)#" 
          )
    // methods using call by reference i.s.o. return
        .def("Parameter",
             []( GeomAPI_ProjectPointOnCurve &self , const Standard_Integer Index ){
                 Standard_Real  U;

                 self.Parameter(Index,U);
                 
                 return std::make_tuple(U); },
             R"#(Returns the parameter on the curve of the point, which is the orthogonal projection. Index is a number of a computed point. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbPoints ], where NbPoints is the number of solution points.-)#"  , py::arg("Index")
          )
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Extrema",
             (const Extrema_ExtPC & (GeomAPI_ProjectPointOnCurve::*)() const) static_cast<const Extrema_ExtPC & (GeomAPI_ProjectPointOnCurve::*)() const>(&GeomAPI_ProjectPointOnCurve::Extrema),
             R"#(return the algorithmic object from Extrema)#"
             
         )
       .def("Extrema",
             (const Extrema_ExtPC & (GeomAPI_ProjectPointOnCurve::*)() const) static_cast<const Extrema_ExtPC & (GeomAPI_ProjectPointOnCurve::*)() const>(&GeomAPI_ProjectPointOnCurve::Extrema),
             R"#(return the algorithmic object from Extrema)#"
             
         )
;

    // Class GeomAPI_ProjectPointOnSurf from ./opencascade/GeomAPI_ProjectPointOnSurf.hxx
    klass = m.attr("GeomAPI_ProjectPointOnSurf");


    // nested enums

    static_cast<py::class_<GeomAPI_ProjectPointOnSurf , shared_ptr<GeomAPI_ProjectPointOnSurf>  >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const gp_Pnt &,const opencascade::handle<Geom_Surface> &,const Extrema_ExtAlgo >()  , py::arg("P"),  py::arg("Surface"),  py::arg("Algo")=static_cast<const Extrema_ExtAlgo>(Extrema_ExtAlgo_Grad) )
        .def(py::init< const gp_Pnt &,const opencascade::handle<Geom_Surface> &,const Standard_Real,const Extrema_ExtAlgo >()  , py::arg("P"),  py::arg("Surface"),  py::arg("Tolerance"),  py::arg("Algo")=static_cast<const Extrema_ExtAlgo>(Extrema_ExtAlgo_Grad) )
        .def(py::init< const gp_Pnt &,const opencascade::handle<Geom_Surface> &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Extrema_ExtAlgo >()  , py::arg("P"),  py::arg("Surface"),  py::arg("Umin"),  py::arg("Usup"),  py::arg("Vmin"),  py::arg("Vsup"),  py::arg("Tolerance"),  py::arg("Algo")=static_cast<const Extrema_ExtAlgo>(Extrema_ExtAlgo_Grad) )
        .def(py::init< const gp_Pnt &,const opencascade::handle<Geom_Surface> &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Extrema_ExtAlgo >()  , py::arg("P"),  py::arg("Surface"),  py::arg("Umin"),  py::arg("Usup"),  py::arg("Vmin"),  py::arg("Vsup"),  py::arg("Algo")=static_cast<const Extrema_ExtAlgo>(Extrema_ExtAlgo_Grad) )
    // custom constructors
    // methods
        .def("Init",
             (void (GeomAPI_ProjectPointOnSurf::*)( const gp_Pnt & ,  const opencascade::handle<Geom_Surface> & ,  const Standard_Real ,  const Extrema_ExtAlgo  ) ) static_cast<void (GeomAPI_ProjectPointOnSurf::*)( const gp_Pnt & ,  const opencascade::handle<Geom_Surface> & ,  const Standard_Real ,  const Extrema_ExtAlgo  ) >(&GeomAPI_ProjectPointOnSurf::Init),
             R"#(None)#"  , py::arg("P"),  py::arg("Surface"),  py::arg("Tolerance"),  py::arg("Algo")=static_cast<const Extrema_ExtAlgo>(Extrema_ExtAlgo_Grad)
          )
        .def("Init",
             (void (GeomAPI_ProjectPointOnSurf::*)( const gp_Pnt & ,  const opencascade::handle<Geom_Surface> & ,  const Extrema_ExtAlgo  ) ) static_cast<void (GeomAPI_ProjectPointOnSurf::*)( const gp_Pnt & ,  const opencascade::handle<Geom_Surface> & ,  const Extrema_ExtAlgo  ) >(&GeomAPI_ProjectPointOnSurf::Init),
             R"#(Init the projection of a point <P> on a surface <Surface>. The solution are computed in the domain [Umin,Usup] [Vmin,Vsup] of the surface.)#"  , py::arg("P"),  py::arg("Surface"),  py::arg("Algo")=static_cast<const Extrema_ExtAlgo>(Extrema_ExtAlgo_Grad)
          )
        .def("Init",
             (void (GeomAPI_ProjectPointOnSurf::*)( const gp_Pnt & ,  const opencascade::handle<Geom_Surface> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Extrema_ExtAlgo  ) ) static_cast<void (GeomAPI_ProjectPointOnSurf::*)( const gp_Pnt & ,  const opencascade::handle<Geom_Surface> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Extrema_ExtAlgo  ) >(&GeomAPI_ProjectPointOnSurf::Init),
             R"#(None)#"  , py::arg("P"),  py::arg("Surface"),  py::arg("Umin"),  py::arg("Usup"),  py::arg("Vmin"),  py::arg("Vsup"),  py::arg("Tolerance"),  py::arg("Algo")=static_cast<const Extrema_ExtAlgo>(Extrema_ExtAlgo_Grad)
          )
        .def("Init",
             (void (GeomAPI_ProjectPointOnSurf::*)( const gp_Pnt & ,  const opencascade::handle<Geom_Surface> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Extrema_ExtAlgo  ) ) static_cast<void (GeomAPI_ProjectPointOnSurf::*)( const gp_Pnt & ,  const opencascade::handle<Geom_Surface> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Extrema_ExtAlgo  ) >(&GeomAPI_ProjectPointOnSurf::Init),
             R"#(Init the projection for many points on a surface <Surface>. The solutions will be computed in the domain [Umin,Usup] [Vmin,Vsup] of the surface.)#"  , py::arg("P"),  py::arg("Surface"),  py::arg("Umin"),  py::arg("Usup"),  py::arg("Vmin"),  py::arg("Vsup"),  py::arg("Algo")=static_cast<const Extrema_ExtAlgo>(Extrema_ExtAlgo_Grad)
          )
        .def("Init",
             (void (GeomAPI_ProjectPointOnSurf::*)( const opencascade::handle<Geom_Surface> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Extrema_ExtAlgo  ) ) static_cast<void (GeomAPI_ProjectPointOnSurf::*)( const opencascade::handle<Geom_Surface> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Extrema_ExtAlgo  ) >(&GeomAPI_ProjectPointOnSurf::Init),
             R"#(None)#"  , py::arg("Surface"),  py::arg("Umin"),  py::arg("Usup"),  py::arg("Vmin"),  py::arg("Vsup"),  py::arg("Tolerance"),  py::arg("Algo")=static_cast<const Extrema_ExtAlgo>(Extrema_ExtAlgo_Grad)
          )
        .def("Init",
             (void (GeomAPI_ProjectPointOnSurf::*)( const opencascade::handle<Geom_Surface> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Extrema_ExtAlgo  ) ) static_cast<void (GeomAPI_ProjectPointOnSurf::*)( const opencascade::handle<Geom_Surface> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Extrema_ExtAlgo  ) >(&GeomAPI_ProjectPointOnSurf::Init),
             R"#(None)#"  , py::arg("Surface"),  py::arg("Umin"),  py::arg("Usup"),  py::arg("Vmin"),  py::arg("Vsup"),  py::arg("Algo")=static_cast<const Extrema_ExtAlgo>(Extrema_ExtAlgo_Grad)
          )
        .def("SetExtremaAlgo",
             (void (GeomAPI_ProjectPointOnSurf::*)( const Extrema_ExtAlgo  ) ) static_cast<void (GeomAPI_ProjectPointOnSurf::*)( const Extrema_ExtAlgo  ) >(&GeomAPI_ProjectPointOnSurf::SetExtremaAlgo),
             R"#(Sets the Extrema search algorithm - Grad or Tree. By default the Extrema is initialized with Grad algorithm.)#"  , py::arg("theAlgo")
          )
        .def("SetExtremaFlag",
             (void (GeomAPI_ProjectPointOnSurf::*)( const Extrema_ExtFlag  ) ) static_cast<void (GeomAPI_ProjectPointOnSurf::*)( const Extrema_ExtFlag  ) >(&GeomAPI_ProjectPointOnSurf::SetExtremaFlag),
             R"#(Sets the Extrema search flag - MIN or MAX or MINMAX. By default the Extrema is set to search the MinMax solutions.)#"  , py::arg("theExtFlag")
          )
        .def("Perform",
             (void (GeomAPI_ProjectPointOnSurf::*)( const gp_Pnt &  ) ) static_cast<void (GeomAPI_ProjectPointOnSurf::*)( const gp_Pnt &  ) >(&GeomAPI_ProjectPointOnSurf::Perform),
             R"#(Performs the projection of a point on the current surface.)#"  , py::arg("P")
          )
        .def("IsDone",
             (Standard_Boolean (GeomAPI_ProjectPointOnSurf::*)() const) static_cast<Standard_Boolean (GeomAPI_ProjectPointOnSurf::*)() const>(&GeomAPI_ProjectPointOnSurf::IsDone),
             R"#(None)#" 
          )
        .def("NbPoints",
             (Standard_Integer (GeomAPI_ProjectPointOnSurf::*)() const) static_cast<Standard_Integer (GeomAPI_ProjectPointOnSurf::*)() const>(&GeomAPI_ProjectPointOnSurf::NbPoints),
             R"#(Returns the number of computed orthogonal projection points. Note: if projection fails, NbPoints returns 0.)#" 
          )
        .def("Point",
             (gp_Pnt (GeomAPI_ProjectPointOnSurf::*)( const Standard_Integer  ) const) static_cast<gp_Pnt (GeomAPI_ProjectPointOnSurf::*)( const Standard_Integer  ) const>(&GeomAPI_ProjectPointOnSurf::Point),
             R"#(Returns the orthogonal projection on the surface. Index is a number of a computed point. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbPoints ], where NbPoints is the number of solution points.)#"  , py::arg("Index")
          )
        .def("Distance",
             (Standard_Real (GeomAPI_ProjectPointOnSurf::*)( const Standard_Integer  ) const) static_cast<Standard_Real (GeomAPI_ProjectPointOnSurf::*)( const Standard_Integer  ) const>(&GeomAPI_ProjectPointOnSurf::Distance),
             R"#(Computes the distance between the point and its orthogonal projection on the surface. Index is a number of a computed point. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbPoints ], where NbPoints is the number of solution points.)#"  , py::arg("Index")
          )
        .def("NearestPoint",
             (gp_Pnt (GeomAPI_ProjectPointOnSurf::*)() const) static_cast<gp_Pnt (GeomAPI_ProjectPointOnSurf::*)() const>(&GeomAPI_ProjectPointOnSurf::NearestPoint),
             R"#(Returns the nearest orthogonal projection of the point on the surface. Exceptions StdFail_NotDone if projection fails.)#" 
          )
        .def("LowerDistance",
             (Standard_Real (GeomAPI_ProjectPointOnSurf::*)() const) static_cast<Standard_Real (GeomAPI_ProjectPointOnSurf::*)() const>(&GeomAPI_ProjectPointOnSurf::LowerDistance),
             R"#(Computes the distance between the point and its nearest orthogonal projection on the surface. Exceptions StdFail_NotDone if projection fails.)#" 
          )
    // methods using call by reference i.s.o. return
        .def("Parameters",
             []( GeomAPI_ProjectPointOnSurf &self , const Standard_Integer Index ){
                 Standard_Real  U;
                Standard_Real  V;

                 self.Parameters(Index,U,V);
                 
                 return std::make_tuple(U,V); },
             R"#(Returns the parameters (U,V) on the surface of the orthogonal projection. Index is a number of a computed point. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbPoints ], where NbPoints is the number of solution points.)#"  , py::arg("Index")
          )
        .def("LowerDistanceParameters",
             []( GeomAPI_ProjectPointOnSurf &self   ){
                 Standard_Real  U;
                Standard_Real  V;

                 self.LowerDistanceParameters(U,V);
                 
                 return std::make_tuple(U,V); },
             R"#(Returns the parameters (U,V) on the surface of the nearest computed orthogonal projection of the point. Exceptions StdFail_NotDone if projection fails.)#" 
          )
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Extrema",
             (const Extrema_ExtPS & (GeomAPI_ProjectPointOnSurf::*)() const) static_cast<const Extrema_ExtPS & (GeomAPI_ProjectPointOnSurf::*)() const>(&GeomAPI_ProjectPointOnSurf::Extrema),
             R"#(return the algorithmic object from Extrema)#"
             
         )
       .def("Extrema",
             (const Extrema_ExtPS & (GeomAPI_ProjectPointOnSurf::*)() const) static_cast<const Extrema_ExtPS & (GeomAPI_ProjectPointOnSurf::*)() const>(&GeomAPI_ProjectPointOnSurf::Extrema),
             R"#(return the algorithmic object from Extrema)#"
             
         )
;

// functions
// ./opencascade/GeomAPI.hxx
// ./opencascade/GeomAPI_ExtremaCurveCurve.hxx
// ./opencascade/GeomAPI_ExtremaCurveSurface.hxx
// ./opencascade/GeomAPI_ExtremaSurfaceSurface.hxx
// ./opencascade/GeomAPI_IntCS.hxx
// ./opencascade/GeomAPI_IntSS.hxx
// ./opencascade/GeomAPI_Interpolate.hxx
// ./opencascade/GeomAPI_PointsToBSpline.hxx
// ./opencascade/GeomAPI_PointsToBSplineSurface.hxx
// ./opencascade/GeomAPI_ProjectPointOnCurve.hxx
// ./opencascade/GeomAPI_ProjectPointOnSurf.hxx

// Additional functions

// operators

// register typdefs


// exceptions

// user-defined post-inclusion per module in the body

};

// user-defined post-inclusion per module

// user-defined post