1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
|
// std lib related includes
#include <tuple>
// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybind11;
// Standard Handle
#include <Standard_Handle.hxx>
// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pln.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_Curve.hxx>
#include <Geom_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Geom_Curve.hxx>
#include <Geom_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
// module includes
#include <GeomAPI.hxx>
#include <GeomAPI_ExtremaCurveCurve.hxx>
#include <GeomAPI_ExtremaCurveSurface.hxx>
#include <GeomAPI_ExtremaSurfaceSurface.hxx>
#include <GeomAPI_IntCS.hxx>
#include <GeomAPI_Interpolate.hxx>
#include <GeomAPI_IntSS.hxx>
#include <GeomAPI_PointsToBSpline.hxx>
#include <GeomAPI_PointsToBSplineSurface.hxx>
#include <GeomAPI_ProjectPointOnCurve.hxx>
#include <GeomAPI_ProjectPointOnSurf.hxx>
// template related includes
// user-defined pre
#include "OCP_specific.inc"
// user-defined inclusion per module
// Module definiiton
void register_GeomAPI(py::module &main_module) {
py::module m = static_cast<py::module>(main_module.attr("GeomAPI"));
py::object klass;
//Python trampoline classes
// classes
// Class GeomAPI from ./opencascade/GeomAPI.hxx
klass = m.attr("GeomAPI");
// default constructor
register_default_constructor<GeomAPI , shared_ptr<GeomAPI>>(m,"GeomAPI");
// nested enums
static_cast<py::class_<GeomAPI , shared_ptr<GeomAPI> >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("To2d_s",
(opencascade::handle<Geom2d_Curve> (*)( const opencascade::handle<Geom_Curve> & , const gp_Pln & ) ) static_cast<opencascade::handle<Geom2d_Curve> (*)( const opencascade::handle<Geom_Curve> & , const gp_Pln & ) >(&GeomAPI::To2d),
R"#(This function builds (in the parametric space of the plane P) a 2D curve equivalent to the 3D curve C. The 3D curve C is considered to be located in the plane P. Warning The 3D curve C must be of one of the following types: - a line - a circle - an ellipse - a hyperbola - a parabola - a Bezier curve - a BSpline curve Exceptions Standard_NoSuchObject if C is not a defined type curve.)#" , py::arg("C"), py::arg("P")
)
.def_static("To3d_s",
(opencascade::handle<Geom_Curve> (*)( const opencascade::handle<Geom2d_Curve> & , const gp_Pln & ) ) static_cast<opencascade::handle<Geom_Curve> (*)( const opencascade::handle<Geom2d_Curve> & , const gp_Pln & ) >(&GeomAPI::To3d),
R"#(Builds a 3D curve equivalent to the 2D curve C described in the parametric space defined by the local coordinate system of plane P. The resulting 3D curve is of the same nature as that of the curve C.)#" , py::arg("C"), py::arg("P")
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GeomAPI_ExtremaCurveCurve from ./opencascade/GeomAPI_ExtremaCurveCurve.hxx
klass = m.attr("GeomAPI_ExtremaCurveCurve");
// nested enums
static_cast<py::class_<GeomAPI_ExtremaCurveCurve , shared_ptr<GeomAPI_ExtremaCurveCurve> >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const opencascade::handle<Geom_Curve> &,const opencascade::handle<Geom_Curve> & >() , py::arg("C1"), py::arg("C2") )
.def(py::init< const opencascade::handle<Geom_Curve> &,const opencascade::handle<Geom_Curve> &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real >() , py::arg("C1"), py::arg("C2"), py::arg("U1min"), py::arg("U1max"), py::arg("U2min"), py::arg("U2max") )
// custom constructors
// methods
.def("Init",
(void (GeomAPI_ExtremaCurveCurve::*)( const opencascade::handle<Geom_Curve> & , const opencascade::handle<Geom_Curve> & ) ) static_cast<void (GeomAPI_ExtremaCurveCurve::*)( const opencascade::handle<Geom_Curve> & , const opencascade::handle<Geom_Curve> & ) >(&GeomAPI_ExtremaCurveCurve::Init),
R"#(Initializes this algorithm with the given arguments and computes the extrema between the curves C1 and C2)#" , py::arg("C1"), py::arg("C2")
)
.def("Init",
(void (GeomAPI_ExtremaCurveCurve::*)( const opencascade::handle<Geom_Curve> & , const opencascade::handle<Geom_Curve> & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real ) ) static_cast<void (GeomAPI_ExtremaCurveCurve::*)( const opencascade::handle<Geom_Curve> & , const opencascade::handle<Geom_Curve> & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real ) >(&GeomAPI_ExtremaCurveCurve::Init),
R"#(Initializes this algorithm with the given arguments and computes the extrema between : - the portion of the curve C1 limited by the two points of parameter (U1min,U1max), and - the portion of the curve C2 limited by the two points of parameter (U2min,U2max). Warning Use the function NbExtrema to obtain the number of solutions. If this algorithm fails, NbExtrema returns 0.)#" , py::arg("C1"), py::arg("C2"), py::arg("U1min"), py::arg("U1max"), py::arg("U2min"), py::arg("U2max")
)
.def("NbExtrema",
(Standard_Integer (GeomAPI_ExtremaCurveCurve::*)() const) static_cast<Standard_Integer (GeomAPI_ExtremaCurveCurve::*)() const>(&GeomAPI_ExtremaCurveCurve::NbExtrema),
R"#(Returns the number of extrema computed by this algorithm. Note: if this algorithm fails, NbExtrema returns 0.)#"
)
.def("Points",
(void (GeomAPI_ExtremaCurveCurve::*)( const Standard_Integer , gp_Pnt & , gp_Pnt & ) const) static_cast<void (GeomAPI_ExtremaCurveCurve::*)( const Standard_Integer , gp_Pnt & , gp_Pnt & ) const>(&GeomAPI_ExtremaCurveCurve::Points),
R"#(Returns the points P1 on the first curve and P2 on the second curve, which are the ends of the extremum of index Index computed by this algorithm. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbExtrema ], where NbExtrema is the number of extrema computed by this algorithm.)#" , py::arg("Index"), py::arg("P1"), py::arg("P2")
)
.def("Distance",
(Standard_Real (GeomAPI_ExtremaCurveCurve::*)( const Standard_Integer ) const) static_cast<Standard_Real (GeomAPI_ExtremaCurveCurve::*)( const Standard_Integer ) const>(&GeomAPI_ExtremaCurveCurve::Distance),
R"#(Computes the distance between the end points of the extremum of index Index computed by this algorithm. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbExtrema ], where NbExtrema is the number of extrema computed by this algorithm.)#" , py::arg("Index")
)
.def("IsParallel",
(Standard_Boolean (GeomAPI_ExtremaCurveCurve::*)() const) static_cast<Standard_Boolean (GeomAPI_ExtremaCurveCurve::*)() const>(&GeomAPI_ExtremaCurveCurve::IsParallel),
R"#(Returns True if the two curves are parallel.)#"
)
.def("NearestPoints",
(void (GeomAPI_ExtremaCurveCurve::*)( gp_Pnt & , gp_Pnt & ) const) static_cast<void (GeomAPI_ExtremaCurveCurve::*)( gp_Pnt & , gp_Pnt & ) const>(&GeomAPI_ExtremaCurveCurve::NearestPoints),
R"#(Returns the points P1 on the first curve and P2 on the second curve, which are the ends of the shortest extremum computed by this algorithm. Exceptions StdFail_NotDone if this algorithm fails.)#" , py::arg("P1"), py::arg("P2")
)
.def("LowerDistance",
(Standard_Real (GeomAPI_ExtremaCurveCurve::*)() const) static_cast<Standard_Real (GeomAPI_ExtremaCurveCurve::*)() const>(&GeomAPI_ExtremaCurveCurve::LowerDistance),
R"#(Computes the distance between the end points of the shortest extremum computed by this algorithm. Exceptions StdFail_NotDone if this algorithm fails.)#"
)
.def("TotalNearestPoints",
(Standard_Boolean (GeomAPI_ExtremaCurveCurve::*)( gp_Pnt & , gp_Pnt & ) ) static_cast<Standard_Boolean (GeomAPI_ExtremaCurveCurve::*)( gp_Pnt & , gp_Pnt & ) >(&GeomAPI_ExtremaCurveCurve::TotalNearestPoints),
R"#(set in <P1> and <P2> the couple solution points such a the distance [P1,P2] is the minimum. taking in account extremity points of curves.)#" , py::arg("P1"), py::arg("P2")
)
.def("TotalLowerDistanceParameters",
(Standard_Boolean (GeomAPI_ExtremaCurveCurve::*)( Standard_Real & , Standard_Real & ) ) static_cast<Standard_Boolean (GeomAPI_ExtremaCurveCurve::*)( Standard_Real & , Standard_Real & ) >(&GeomAPI_ExtremaCurveCurve::TotalLowerDistanceParameters),
R"#(set in <U1> and <U2> the parameters of the couple solution points which represents the total nearest solution.)#" , py::arg("U1"), py::arg("U2")
)
.def("TotalLowerDistance",
(Standard_Real (GeomAPI_ExtremaCurveCurve::*)() ) static_cast<Standard_Real (GeomAPI_ExtremaCurveCurve::*)() >(&GeomAPI_ExtremaCurveCurve::TotalLowerDistance),
R"#(return the distance of the total nearest couple solution point. if <myExtCC> is not done)#"
)
// methods using call by reference i.s.o. return
.def("Parameters",
[]( GeomAPI_ExtremaCurveCurve &self , const Standard_Integer Index ){
Standard_Real U1;
Standard_Real U2;
self.Parameters(Index,U1,U2);
return std::make_tuple(U1,U2); },
R"#(Returns the parameters U1 of the point on the first curve and U2 of the point on the second curve, which are the ends of the extremum of index Index computed by this algorithm. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbExtrema ], where NbExtrema is the number of extrema computed by this algorithm.)#" , py::arg("Index")
)
.def("LowerDistanceParameters",
[]( GeomAPI_ExtremaCurveCurve &self ){
Standard_Real U1;
Standard_Real U2;
self.LowerDistanceParameters(U1,U2);
return std::make_tuple(U1,U2); },
R"#(Returns the parameters U1 of the point on the first curve and U2 of the point on the second curve, which are the ends of the shortest extremum computed by this algorithm. Exceptions StdFail_NotDone if this algorithm fails.)#"
)
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Extrema",
(const Extrema_ExtCC & (GeomAPI_ExtremaCurveCurve::*)() const) static_cast<const Extrema_ExtCC & (GeomAPI_ExtremaCurveCurve::*)() const>(&GeomAPI_ExtremaCurveCurve::Extrema),
R"#(return the algorithmic object from Extrema)#"
)
.def("Extrema",
(const Extrema_ExtCC & (GeomAPI_ExtremaCurveCurve::*)() const) static_cast<const Extrema_ExtCC & (GeomAPI_ExtremaCurveCurve::*)() const>(&GeomAPI_ExtremaCurveCurve::Extrema),
R"#(return the algorithmic object from Extrema)#"
)
;
// Class GeomAPI_ExtremaCurveSurface from ./opencascade/GeomAPI_ExtremaCurveSurface.hxx
klass = m.attr("GeomAPI_ExtremaCurveSurface");
// nested enums
static_cast<py::class_<GeomAPI_ExtremaCurveSurface , shared_ptr<GeomAPI_ExtremaCurveSurface> >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const opencascade::handle<Geom_Curve> &,const opencascade::handle<Geom_Surface> & >() , py::arg("Curve"), py::arg("Surface") )
.def(py::init< const opencascade::handle<Geom_Curve> &,const opencascade::handle<Geom_Surface> &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real >() , py::arg("Curve"), py::arg("Surface"), py::arg("Wmin"), py::arg("Wmax"), py::arg("Umin"), py::arg("Umax"), py::arg("Vmin"), py::arg("Vmax") )
// custom constructors
// methods
.def("Init",
(void (GeomAPI_ExtremaCurveSurface::*)( const opencascade::handle<Geom_Curve> & , const opencascade::handle<Geom_Surface> & ) ) static_cast<void (GeomAPI_ExtremaCurveSurface::*)( const opencascade::handle<Geom_Curve> & , const opencascade::handle<Geom_Surface> & ) >(&GeomAPI_ExtremaCurveSurface::Init),
R"#(Computes the extrema distances between the curve <C> and the surface <S>.)#" , py::arg("Curve"), py::arg("Surface")
)
.def("Init",
(void (GeomAPI_ExtremaCurveSurface::*)( const opencascade::handle<Geom_Curve> & , const opencascade::handle<Geom_Surface> & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real ) ) static_cast<void (GeomAPI_ExtremaCurveSurface::*)( const opencascade::handle<Geom_Curve> & , const opencascade::handle<Geom_Surface> & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real ) >(&GeomAPI_ExtremaCurveSurface::Init),
R"#(Computes the extrema distances between the curve <C> and the surface <S>. The solution point are computed in the domain [Wmin,Wmax] of the curve and in the domain [Umin,Umax] [Vmin,Vmax] of the surface. Warning Use the function NbExtrema to obtain the number of solutions. If this algorithm fails, NbExtrema returns 0.)#" , py::arg("Curve"), py::arg("Surface"), py::arg("Wmin"), py::arg("Wmax"), py::arg("Umin"), py::arg("Umax"), py::arg("Vmin"), py::arg("Vmax")
)
.def("NbExtrema",
(Standard_Integer (GeomAPI_ExtremaCurveSurface::*)() const) static_cast<Standard_Integer (GeomAPI_ExtremaCurveSurface::*)() const>(&GeomAPI_ExtremaCurveSurface::NbExtrema),
R"#(Returns the number of extrema computed by this algorithm. Note: if this algorithm fails, NbExtrema returns 0.)#"
)
.def("Points",
(void (GeomAPI_ExtremaCurveSurface::*)( const Standard_Integer , gp_Pnt & , gp_Pnt & ) const) static_cast<void (GeomAPI_ExtremaCurveSurface::*)( const Standard_Integer , gp_Pnt & , gp_Pnt & ) const>(&GeomAPI_ExtremaCurveSurface::Points),
R"#(Returns the points P1 on the curve and P2 on the surface, which are the ends of the extremum of index Index computed by this algorithm. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbExtrema ], where NbExtrema is the number of extrema computed by this algorithm.)#" , py::arg("Index"), py::arg("P1"), py::arg("P2")
)
.def("Distance",
(Standard_Real (GeomAPI_ExtremaCurveSurface::*)( const Standard_Integer ) const) static_cast<Standard_Real (GeomAPI_ExtremaCurveSurface::*)( const Standard_Integer ) const>(&GeomAPI_ExtremaCurveSurface::Distance),
R"#(Computes the distance between the end points of the extremum of index Index computed by this algorithm. Exceptions Standard_OutOfRange if index is not in the range [ 1,NbExtrema ], where NbExtrema is the number of extrema computed by this algorithm.)#" , py::arg("Index")
)
.def("IsParallel",
(Standard_Boolean (GeomAPI_ExtremaCurveSurface::*)() const) static_cast<Standard_Boolean (GeomAPI_ExtremaCurveSurface::*)() const>(&GeomAPI_ExtremaCurveSurface::IsParallel),
R"#(Returns True if the curve is on a parallel surface.)#"
)
.def("NearestPoints",
(void (GeomAPI_ExtremaCurveSurface::*)( gp_Pnt & , gp_Pnt & ) const) static_cast<void (GeomAPI_ExtremaCurveSurface::*)( gp_Pnt & , gp_Pnt & ) const>(&GeomAPI_ExtremaCurveSurface::NearestPoints),
R"#(Returns the points PC on the curve and PS on the surface, which are the ends of the shortest extremum computed by this algorithm. Exceptions - StdFail_NotDone if this algorithm fails.)#" , py::arg("PC"), py::arg("PS")
)
.def("LowerDistance",
(Standard_Real (GeomAPI_ExtremaCurveSurface::*)() const) static_cast<Standard_Real (GeomAPI_ExtremaCurveSurface::*)() const>(&GeomAPI_ExtremaCurveSurface::LowerDistance),
R"#(Computes the distance between the end points of the shortest extremum computed by this algorithm. Exceptions - StdFail_NotDone if this algorithm fails.)#"
)
// methods using call by reference i.s.o. return
.def("Parameters",
[]( GeomAPI_ExtremaCurveSurface &self , const Standard_Integer Index ){
Standard_Real W;
Standard_Real U;
Standard_Real V;
self.Parameters(Index,W,U,V);
return std::make_tuple(W,U,V); },
R"#(Returns the parameters W of the point on the curve, and (U,V) of the point on the surface, which are the ends of the extremum of index Index computed by this algorithm. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbExtrema ], where NbExtrema is the number of extrema computed by this algorithm.)#" , py::arg("Index")
)
.def("LowerDistanceParameters",
[]( GeomAPI_ExtremaCurveSurface &self ){
Standard_Real W;
Standard_Real U;
Standard_Real V;
self.LowerDistanceParameters(W,U,V);
return std::make_tuple(W,U,V); },
R"#(Returns the parameters W of the point on the curve and (U,V) of the point on the surface, which are the ends of the shortest extremum computed by this algorithm. Exceptions - StdFail_NotDone if this algorithm fails.)#"
)
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Extrema",
(const Extrema_ExtCS & (GeomAPI_ExtremaCurveSurface::*)() const) static_cast<const Extrema_ExtCS & (GeomAPI_ExtremaCurveSurface::*)() const>(&GeomAPI_ExtremaCurveSurface::Extrema),
R"#(Returns the algorithmic object from Extrema)#"
)
.def("Extrema",
(const Extrema_ExtCS & (GeomAPI_ExtremaCurveSurface::*)() const) static_cast<const Extrema_ExtCS & (GeomAPI_ExtremaCurveSurface::*)() const>(&GeomAPI_ExtremaCurveSurface::Extrema),
R"#(Returns the algorithmic object from Extrema)#"
)
;
// Class GeomAPI_ExtremaSurfaceSurface from ./opencascade/GeomAPI_ExtremaSurfaceSurface.hxx
klass = m.attr("GeomAPI_ExtremaSurfaceSurface");
// nested enums
static_cast<py::class_<GeomAPI_ExtremaSurfaceSurface , shared_ptr<GeomAPI_ExtremaSurfaceSurface> >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const opencascade::handle<Geom_Surface> &,const opencascade::handle<Geom_Surface> & >() , py::arg("S1"), py::arg("S2") )
.def(py::init< const opencascade::handle<Geom_Surface> &,const opencascade::handle<Geom_Surface> &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real >() , py::arg("S1"), py::arg("S2"), py::arg("U1min"), py::arg("U1max"), py::arg("V1min"), py::arg("V1max"), py::arg("U2min"), py::arg("U2max"), py::arg("V2min"), py::arg("V2max") )
// custom constructors
// methods
.def("Init",
(void (GeomAPI_ExtremaSurfaceSurface::*)( const opencascade::handle<Geom_Surface> & , const opencascade::handle<Geom_Surface> & ) ) static_cast<void (GeomAPI_ExtremaSurfaceSurface::*)( const opencascade::handle<Geom_Surface> & , const opencascade::handle<Geom_Surface> & ) >(&GeomAPI_ExtremaSurfaceSurface::Init),
R"#(Initializes this algorithm with the given arguments and computes the extrema distances between the surfaces <S1> and <S2>)#" , py::arg("S1"), py::arg("S2")
)
.def("Init",
(void (GeomAPI_ExtremaSurfaceSurface::*)( const opencascade::handle<Geom_Surface> & , const opencascade::handle<Geom_Surface> & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real ) ) static_cast<void (GeomAPI_ExtremaSurfaceSurface::*)( const opencascade::handle<Geom_Surface> & , const opencascade::handle<Geom_Surface> & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real ) >(&GeomAPI_ExtremaSurfaceSurface::Init),
R"#(Initializes this algorithm with the given arguments and computes the extrema distances between - the portion of the surface S1 limited by the two values of parameter (U1min,U1max) in the u parametric direction, and by the two values of parameter (V1min,V1max) in the v parametric direction, and - the portion of the surface S2 limited by the two values of parameter (U2min,U2max) in the u parametric direction, and by the two values of parameter (V2min,V2max) in the v parametric direction.)#" , py::arg("S1"), py::arg("S2"), py::arg("U1min"), py::arg("U1max"), py::arg("V1min"), py::arg("V1max"), py::arg("U2min"), py::arg("U2max"), py::arg("V2min"), py::arg("V2max")
)
.def("NbExtrema",
(Standard_Integer (GeomAPI_ExtremaSurfaceSurface::*)() const) static_cast<Standard_Integer (GeomAPI_ExtremaSurfaceSurface::*)() const>(&GeomAPI_ExtremaSurfaceSurface::NbExtrema),
R"#(Returns the number of extrema computed by this algorithm. Note: if this algorithm fails, NbExtrema returns 0.)#"
)
.def("Points",
(void (GeomAPI_ExtremaSurfaceSurface::*)( const Standard_Integer , gp_Pnt & , gp_Pnt & ) const) static_cast<void (GeomAPI_ExtremaSurfaceSurface::*)( const Standard_Integer , gp_Pnt & , gp_Pnt & ) const>(&GeomAPI_ExtremaSurfaceSurface::Points),
R"#(Returns the points P1 on the first surface and P2 on the second surface, which are the ends of the extremum of index Index computed by this algorithm. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbExtrema ], where NbExtrema is the number of extrema computed by this algorithm.)#" , py::arg("Index"), py::arg("P1"), py::arg("P2")
)
.def("Distance",
(Standard_Real (GeomAPI_ExtremaSurfaceSurface::*)( const Standard_Integer ) const) static_cast<Standard_Real (GeomAPI_ExtremaSurfaceSurface::*)( const Standard_Integer ) const>(&GeomAPI_ExtremaSurfaceSurface::Distance),
R"#(Computes the distance between the end points of the extremum of index Index computed by this algorithm. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbExtrema ], where NbExtrema is the number of extrema computed by this algorithm.)#" , py::arg("Index")
)
.def("IsParallel",
(Standard_Boolean (GeomAPI_ExtremaSurfaceSurface::*)() const) static_cast<Standard_Boolean (GeomAPI_ExtremaSurfaceSurface::*)() const>(&GeomAPI_ExtremaSurfaceSurface::IsParallel),
R"#(Returns True if the surfaces are parallel)#"
)
.def("NearestPoints",
(void (GeomAPI_ExtremaSurfaceSurface::*)( gp_Pnt & , gp_Pnt & ) const) static_cast<void (GeomAPI_ExtremaSurfaceSurface::*)( gp_Pnt & , gp_Pnt & ) const>(&GeomAPI_ExtremaSurfaceSurface::NearestPoints),
R"#(Returns the points P1 on the first surface and P2 on the second surface, which are the ends of the shortest extremum computed by this algorithm. Exceptions StdFail_NotDone if this algorithm fails.)#" , py::arg("P1"), py::arg("P2")
)
.def("LowerDistance",
(Standard_Real (GeomAPI_ExtremaSurfaceSurface::*)() const) static_cast<Standard_Real (GeomAPI_ExtremaSurfaceSurface::*)() const>(&GeomAPI_ExtremaSurfaceSurface::LowerDistance),
R"#(Computes the distance between the end points of the shortest extremum computed by this algorithm. Exceptions StdFail_NotDone if this algorithm fails.)#"
)
// methods using call by reference i.s.o. return
.def("Parameters",
[]( GeomAPI_ExtremaSurfaceSurface &self , const Standard_Integer Index ){
Standard_Real U1;
Standard_Real V1;
Standard_Real U2;
Standard_Real V2;
self.Parameters(Index,U1,V1,U2,V2);
return std::make_tuple(U1,V1,U2,V2); },
R"#(Returns the parameters (U1,V1) of the point on the first surface, and (U2,V2) of the point on the second surface, which are the ends of the extremum of index Index computed by this algorithm. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbExtrema ], where NbExtrema is the number of extrema computed by this algorithm.)#" , py::arg("Index")
)
.def("LowerDistanceParameters",
[]( GeomAPI_ExtremaSurfaceSurface &self ){
Standard_Real U1;
Standard_Real V1;
Standard_Real U2;
Standard_Real V2;
self.LowerDistanceParameters(U1,V1,U2,V2);
return std::make_tuple(U1,V1,U2,V2); },
R"#(Returns the parameters (U1,V1) of the point on the first surface and (U2,V2) of the point on the second surface, which are the ends of the shortest extremum computed by this algorithm. Exceptions - StdFail_NotDone if this algorithm fails.)#"
)
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Extrema",
(const Extrema_ExtSS & (GeomAPI_ExtremaSurfaceSurface::*)() const) static_cast<const Extrema_ExtSS & (GeomAPI_ExtremaSurfaceSurface::*)() const>(&GeomAPI_ExtremaSurfaceSurface::Extrema),
R"#(return the algorithmic object from Extrema)#"
)
.def("Extrema",
(const Extrema_ExtSS & (GeomAPI_ExtremaSurfaceSurface::*)() const) static_cast<const Extrema_ExtSS & (GeomAPI_ExtremaSurfaceSurface::*)() const>(&GeomAPI_ExtremaSurfaceSurface::Extrema),
R"#(return the algorithmic object from Extrema)#"
)
;
// Class GeomAPI_IntCS from ./opencascade/GeomAPI_IntCS.hxx
klass = m.attr("GeomAPI_IntCS");
// nested enums
static_cast<py::class_<GeomAPI_IntCS , shared_ptr<GeomAPI_IntCS> >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const opencascade::handle<Geom_Curve> &,const opencascade::handle<Geom_Surface> & >() , py::arg("C"), py::arg("S") )
// custom constructors
// methods
.def("Perform",
(void (GeomAPI_IntCS::*)( const opencascade::handle<Geom_Curve> & , const opencascade::handle<Geom_Surface> & ) ) static_cast<void (GeomAPI_IntCS::*)( const opencascade::handle<Geom_Curve> & , const opencascade::handle<Geom_Surface> & ) >(&GeomAPI_IntCS::Perform),
R"#(This function Initializes an algorithm with the curve C and the surface S and computes the intersections between C and S. Warning Use function IsDone to verify that the intersections are computed successfully.)#" , py::arg("C"), py::arg("S")
)
.def("IsDone",
(Standard_Boolean (GeomAPI_IntCS::*)() const) static_cast<Standard_Boolean (GeomAPI_IntCS::*)() const>(&GeomAPI_IntCS::IsDone),
R"#(Returns true if the intersections are successfully computed.)#"
)
.def("NbPoints",
(Standard_Integer (GeomAPI_IntCS::*)() const) static_cast<Standard_Integer (GeomAPI_IntCS::*)() const>(&GeomAPI_IntCS::NbPoints),
R"#(Returns the number of Intersection Points if IsDone returns True. else NotDone is raised.)#"
)
.def("Point",
(const gp_Pnt & (GeomAPI_IntCS::*)( const Standard_Integer ) const) static_cast<const gp_Pnt & (GeomAPI_IntCS::*)( const Standard_Integer ) const>(&GeomAPI_IntCS::Point),
R"#(Returns the Intersection Point of range <Index>in case of cross intersection. Raises NotDone if the computation has failed or if the computation has not been done raises OutOfRange if Index is not in the range <1..NbPoints>)#" , py::arg("Index")
)
.def("NbSegments",
(Standard_Integer (GeomAPI_IntCS::*)() const) static_cast<Standard_Integer (GeomAPI_IntCS::*)() const>(&GeomAPI_IntCS::NbSegments),
R"#(Returns the number of computed intersection segments in case of tangential intersection. Exceptions StdFail_NotDone if the intersection algorithm fails or is not initialized.)#"
)
.def("Segment",
(opencascade::handle<Geom_Curve> (GeomAPI_IntCS::*)( const Standard_Integer ) const) static_cast<opencascade::handle<Geom_Curve> (GeomAPI_IntCS::*)( const Standard_Integer ) const>(&GeomAPI_IntCS::Segment),
R"#(Returns the computed intersection segment of index Index in case of tangential intersection. Intersection segment is a portion of the initial curve tangent to surface. Exceptions StdFail_NotDone if intersection algorithm fails or is not initialized. Standard_OutOfRange if Index is not in the range [ 1,NbSegments ], where NbSegments is the number of computed intersection segments.)#" , py::arg("Index")
)
// methods using call by reference i.s.o. return
.def("Parameters",
[]( GeomAPI_IntCS &self , const Standard_Integer Index ){
Standard_Real U;
Standard_Real V;
Standard_Real W;
self.Parameters(Index,U,V,W);
return std::make_tuple(U,V,W); },
R"#(Returns parameter W on the curve and (parameters U,V) on the surface of the computed intersection point of index Index in case of cross intersection. Exceptions StdFail_NotDone if intersection algorithm fails or is not initialized. Standard_OutOfRange if Index is not in the range [ 1,NbPoints ], where NbPoints is the number of computed intersection points.)#" , py::arg("Index")
)
.def("Parameters",
[]( GeomAPI_IntCS &self , const Standard_Integer Index ){
Standard_Real U1;
Standard_Real V1;
Standard_Real U2;
Standard_Real V2;
self.Parameters(Index,U1,V1,U2,V2);
return std::make_tuple(U1,V1,U2,V2); },
R"#(Returns the parameters of the first (U1,V1) and the last (U2,V2) points of curve's segment on the surface in case of tangential intersection. Index is the number of computed intersection segments. Exceptions StdFail_NotDone if intersection algorithm fails or is not initialized. Standard_OutOfRange if Index is not in the range [ 1,NbSegments ], where NbSegments is the number of computed intersection segments.)#" , py::arg("Index")
)
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GeomAPI_IntSS from ./opencascade/GeomAPI_IntSS.hxx
klass = m.attr("GeomAPI_IntSS");
// nested enums
static_cast<py::class_<GeomAPI_IntSS , shared_ptr<GeomAPI_IntSS> >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const opencascade::handle<Geom_Surface> &,const opencascade::handle<Geom_Surface> &,const Standard_Real >() , py::arg("S1"), py::arg("S2"), py::arg("Tol") )
// custom constructors
// methods
.def("Perform",
(void (GeomAPI_IntSS::*)( const opencascade::handle<Geom_Surface> & , const opencascade::handle<Geom_Surface> & , const Standard_Real ) ) static_cast<void (GeomAPI_IntSS::*)( const opencascade::handle<Geom_Surface> & , const opencascade::handle<Geom_Surface> & , const Standard_Real ) >(&GeomAPI_IntSS::Perform),
R"#(Initializes an algorithm with the given arguments and computes the intersection curves between the two surfaces S1 and S2. Parameter Tol defines the precision of curves computation. For most cases the value 1.0e-7 is recommended to use. Warning Use function IsDone to verify that the intersections are successfully computed.)#" , py::arg("S1"), py::arg("S2"), py::arg("Tol")
)
.def("IsDone",
(Standard_Boolean (GeomAPI_IntSS::*)() const) static_cast<Standard_Boolean (GeomAPI_IntSS::*)() const>(&GeomAPI_IntSS::IsDone),
R"#(Returns True if the intersection was successful.)#"
)
.def("NbLines",
(Standard_Integer (GeomAPI_IntSS::*)() const) static_cast<Standard_Integer (GeomAPI_IntSS::*)() const>(&GeomAPI_IntSS::NbLines),
R"#(Returns the number of computed intersection curves. Exceptions StdFail_NotDone if the computation fails.)#"
)
.def("Line",
(const opencascade::handle<Geom_Curve> & (GeomAPI_IntSS::*)( const Standard_Integer ) const) static_cast<const opencascade::handle<Geom_Curve> & (GeomAPI_IntSS::*)( const Standard_Integer ) const>(&GeomAPI_IntSS::Line),
R"#(Returns the computed intersection curve of index Index. Exceptions StdFail_NotDone if the computation fails. Standard_OutOfRange if Index is out of range [1, NbLines] where NbLines is the number of computed intersection curves.)#" , py::arg("Index")
)
.def("Perform",
(void (GeomAPI_IntSS::*)( const opencascade::handle<Geom_Surface> & , const opencascade::handle<Geom_Surface> & , const Standard_Real ) ) static_cast<void (GeomAPI_IntSS::*)( const opencascade::handle<Geom_Surface> & , const opencascade::handle<Geom_Surface> & , const Standard_Real ) >(&GeomAPI_IntSS::Perform),
R"#(Initializes an algorithm with the given arguments and computes the intersection curves between the two surfaces S1 and S2. Parameter Tol defines the precision of curves computation. For most cases the value 1.0e-7 is recommended to use. Warning Use function IsDone to verify that the intersections are successfully computed.)#" , py::arg("S1"), py::arg("S2"), py::arg("Tol")
)
.def("IsDone",
(Standard_Boolean (GeomAPI_IntSS::*)() const) static_cast<Standard_Boolean (GeomAPI_IntSS::*)() const>(&GeomAPI_IntSS::IsDone),
R"#(Returns True if the intersection was successful.)#"
)
.def("NbLines",
(Standard_Integer (GeomAPI_IntSS::*)() const) static_cast<Standard_Integer (GeomAPI_IntSS::*)() const>(&GeomAPI_IntSS::NbLines),
R"#(Returns the number of computed intersection curves. Exceptions StdFail_NotDone if the computation fails.)#"
)
.def("Line",
(const opencascade::handle<Geom_Curve> & (GeomAPI_IntSS::*)( const Standard_Integer ) const) static_cast<const opencascade::handle<Geom_Curve> & (GeomAPI_IntSS::*)( const Standard_Integer ) const>(&GeomAPI_IntSS::Line),
R"#(Returns the computed intersection curve of index Index. Exceptions StdFail_NotDone if the computation fails. Standard_OutOfRange if Index is out of range [1, NbLines] where NbLines is the number of computed intersection curves.)#" , py::arg("I")
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GeomAPI_Interpolate from ./opencascade/GeomAPI_Interpolate.hxx
klass = m.attr("GeomAPI_Interpolate");
// nested enums
static_cast<py::class_<GeomAPI_Interpolate , shared_ptr<GeomAPI_Interpolate> >>(klass)
// constructors
.def(py::init< const opencascade::handle<TColgp_HArray1OfPnt> &,const Standard_Boolean,const Standard_Real >() , py::arg("Points"), py::arg("PeriodicFlag"), py::arg("Tolerance") )
.def(py::init< const opencascade::handle<TColgp_HArray1OfPnt> &,const opencascade::handle<TColStd_HArray1OfReal> &,const Standard_Boolean,const Standard_Real >() , py::arg("Points"), py::arg("Parameters"), py::arg("PeriodicFlag"), py::arg("Tolerance") )
// custom constructors
// methods
.def("Load",
(void (GeomAPI_Interpolate::*)( const gp_Vec & , const gp_Vec & , const Standard_Boolean ) ) static_cast<void (GeomAPI_Interpolate::*)( const gp_Vec & , const gp_Vec & , const Standard_Boolean ) >(&GeomAPI_Interpolate::Load),
R"#(Assigns this constrained BSpline curve to be tangential to vectors InitialTangent and FinalTangent at its first and last points respectively (i.e. the first and last points of the table of points through which the curve passes, as defined at the time of initialization).)#" , py::arg("InitialTangent"), py::arg("FinalTangent"), py::arg("Scale")=static_cast<const Standard_Boolean>(Standard_True)
)
.def("Load",
(void (GeomAPI_Interpolate::*)( const NCollection_Array1<gp_Vec> & , const opencascade::handle<TColStd_HArray1OfBoolean> & , const Standard_Boolean ) ) static_cast<void (GeomAPI_Interpolate::*)( const NCollection_Array1<gp_Vec> & , const opencascade::handle<TColStd_HArray1OfBoolean> & , const Standard_Boolean ) >(&GeomAPI_Interpolate::Load),
R"#(Assigns this constrained BSpline curve to be tangential to vectors defined in the table Tangents, which is parallel to the table of points through which the curve passes, as defined at the time of initialization. Vectors in the table Tangents are defined only if the flag given in the parallel table TangentFlags is true: only these vectors are set as tangency constraints.)#" , py::arg("Tangents"), py::arg("TangentFlags"), py::arg("Scale")=static_cast<const Standard_Boolean>(Standard_True)
)
.def("Perform",
(void (GeomAPI_Interpolate::*)() ) static_cast<void (GeomAPI_Interpolate::*)() >(&GeomAPI_Interpolate::Perform),
R"#(Computes the constrained BSpline curve. Use the function IsDone to verify that the computation is successful, and then the function Curve to obtain the result.)#"
)
.def("IsDone",
(Standard_Boolean (GeomAPI_Interpolate::*)() const) static_cast<Standard_Boolean (GeomAPI_Interpolate::*)() const>(&GeomAPI_Interpolate::IsDone),
R"#(Returns true if the constrained BSpline curve is successfully constructed. Note: in this case, the result is given by the function Curve.)#"
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Curve",
(const opencascade::handle<Geom_BSplineCurve> & (GeomAPI_Interpolate::*)() const) static_cast<const opencascade::handle<Geom_BSplineCurve> & (GeomAPI_Interpolate::*)() const>(&GeomAPI_Interpolate::Curve),
R"#(Returns the computed BSpline curve. Raises StdFail_NotDone if the interpolation fails.)#"
)
;
// Class GeomAPI_PointsToBSpline from ./opencascade/GeomAPI_PointsToBSpline.hxx
klass = m.attr("GeomAPI_PointsToBSpline");
// nested enums
static_cast<py::class_<GeomAPI_PointsToBSpline , shared_ptr<GeomAPI_PointsToBSpline> >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const NCollection_Array1<gp_Pnt> &,const Standard_Integer,const Standard_Integer,const GeomAbs_Shape,const Standard_Real >() , py::arg("Points"), py::arg("DegMin")=static_cast<const Standard_Integer>(3), py::arg("DegMax")=static_cast<const Standard_Integer>(8), py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2), py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3) )
.def(py::init< const NCollection_Array1<gp_Pnt> &,const Approx_ParametrizationType,const Standard_Integer,const Standard_Integer,const GeomAbs_Shape,const Standard_Real >() , py::arg("Points"), py::arg("ParType"), py::arg("DegMin")=static_cast<const Standard_Integer>(3), py::arg("DegMax")=static_cast<const Standard_Integer>(8), py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2), py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3) )
.def(py::init< const NCollection_Array1<gp_Pnt> &, const NCollection_Array1<Standard_Real> &,const Standard_Integer,const Standard_Integer,const GeomAbs_Shape,const Standard_Real >() , py::arg("Points"), py::arg("Parameters"), py::arg("DegMin")=static_cast<const Standard_Integer>(3), py::arg("DegMax")=static_cast<const Standard_Integer>(8), py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2), py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3) )
.def(py::init< const NCollection_Array1<gp_Pnt> &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Integer,const GeomAbs_Shape,const Standard_Real >() , py::arg("Points"), py::arg("Weight1"), py::arg("Weight2"), py::arg("Weight3"), py::arg("DegMax")=static_cast<const Standard_Integer>(8), py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2), py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3) )
// custom constructors
// methods
.def("Init",
(void (GeomAPI_PointsToBSpline::*)( const NCollection_Array1<gp_Pnt> & , const Standard_Integer , const Standard_Integer , const GeomAbs_Shape , const Standard_Real ) ) static_cast<void (GeomAPI_PointsToBSpline::*)( const NCollection_Array1<gp_Pnt> & , const Standard_Integer , const Standard_Integer , const GeomAbs_Shape , const Standard_Real ) >(&GeomAPI_PointsToBSpline::Init),
R"#(Approximate a BSpline Curve passing through an array of Point. The resulting BSpline will have the following properties: 1- his degree will be in the range [Degmin,Degmax] 2- his continuity will be at least <Continuity> 3- the distance from the point <Points> to the BSpline will be lower to Tol3D)#" , py::arg("Points"), py::arg("DegMin")=static_cast<const Standard_Integer>(3), py::arg("DegMax")=static_cast<const Standard_Integer>(8), py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2), py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3)
)
.def("Init",
(void (GeomAPI_PointsToBSpline::*)( const NCollection_Array1<gp_Pnt> & , const Approx_ParametrizationType , const Standard_Integer , const Standard_Integer , const GeomAbs_Shape , const Standard_Real ) ) static_cast<void (GeomAPI_PointsToBSpline::*)( const NCollection_Array1<gp_Pnt> & , const Approx_ParametrizationType , const Standard_Integer , const Standard_Integer , const GeomAbs_Shape , const Standard_Real ) >(&GeomAPI_PointsToBSpline::Init),
R"#(Approximate a BSpline Curve passing through an array of Point. The resulting BSpline will have the following properties: 1- his degree will be in the range [Degmin,Degmax] 2- his continuity will be at least <Continuity> 3- the distance from the point <Points> to the BSpline will be lower to Tol3D)#" , py::arg("Points"), py::arg("ParType"), py::arg("DegMin")=static_cast<const Standard_Integer>(3), py::arg("DegMax")=static_cast<const Standard_Integer>(8), py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2), py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3)
)
.def("Init",
(void (GeomAPI_PointsToBSpline::*)( const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> & , const Standard_Integer , const Standard_Integer , const GeomAbs_Shape , const Standard_Real ) ) static_cast<void (GeomAPI_PointsToBSpline::*)( const NCollection_Array1<gp_Pnt> & , const NCollection_Array1<Standard_Real> & , const Standard_Integer , const Standard_Integer , const GeomAbs_Shape , const Standard_Real ) >(&GeomAPI_PointsToBSpline::Init),
R"#(Approximate a BSpline Curve passing through an array of Point, which parameters are given by the array <Parameters>. The resulting BSpline will have the following properties: 1- his degree will be in the range [Degmin,Degmax] 2- his continuity will be at least <Continuity> 3- the distance from the point <Points> to the BSpline will be lower to Tol3D)#" , py::arg("Points"), py::arg("Parameters"), py::arg("DegMin")=static_cast<const Standard_Integer>(3), py::arg("DegMax")=static_cast<const Standard_Integer>(8), py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2), py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3)
)
.def("Init",
(void (GeomAPI_PointsToBSpline::*)( const NCollection_Array1<gp_Pnt> & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Integer , const GeomAbs_Shape , const Standard_Real ) ) static_cast<void (GeomAPI_PointsToBSpline::*)( const NCollection_Array1<gp_Pnt> & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Integer , const GeomAbs_Shape , const Standard_Real ) >(&GeomAPI_PointsToBSpline::Init),
R"#(Approximate a BSpline Curve passing through an array of Point using variational smoothing algorithm, which tries to minimize additional criterium: Weight1*CurveLength + Weight2*Curvature + Weight3*Torsion)#" , py::arg("Points"), py::arg("Weight1"), py::arg("Weight2"), py::arg("Weight3"), py::arg("DegMax")=static_cast<const Standard_Integer>(8), py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2), py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3)
)
.def("IsDone",
(Standard_Boolean (GeomAPI_PointsToBSpline::*)() const) static_cast<Standard_Boolean (GeomAPI_PointsToBSpline::*)() const>(&GeomAPI_PointsToBSpline::IsDone),
R"#(None)#"
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Curve",
(const opencascade::handle<Geom_BSplineCurve> & (GeomAPI_PointsToBSpline::*)() const) static_cast<const opencascade::handle<Geom_BSplineCurve> & (GeomAPI_PointsToBSpline::*)() const>(&GeomAPI_PointsToBSpline::Curve),
R"#(Returns the computed BSpline curve. Raises StdFail_NotDone if the curve is not built.)#"
)
;
// Class GeomAPI_PointsToBSplineSurface from ./opencascade/GeomAPI_PointsToBSplineSurface.hxx
klass = m.attr("GeomAPI_PointsToBSplineSurface");
// nested enums
static_cast<py::class_<GeomAPI_PointsToBSplineSurface , shared_ptr<GeomAPI_PointsToBSplineSurface> >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const NCollection_Array2<gp_Pnt> &,const Standard_Integer,const Standard_Integer,const GeomAbs_Shape,const Standard_Real >() , py::arg("Points"), py::arg("DegMin")=static_cast<const Standard_Integer>(3), py::arg("DegMax")=static_cast<const Standard_Integer>(8), py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2), py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3) )
.def(py::init< const NCollection_Array2<gp_Pnt> &,const Approx_ParametrizationType,const Standard_Integer,const Standard_Integer,const GeomAbs_Shape,const Standard_Real >() , py::arg("Points"), py::arg("ParType"), py::arg("DegMin")=static_cast<const Standard_Integer>(3), py::arg("DegMax")=static_cast<const Standard_Integer>(8), py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2), py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3) )
.def(py::init< const NCollection_Array2<gp_Pnt> &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Integer,const GeomAbs_Shape,const Standard_Real >() , py::arg("Points"), py::arg("Weight1"), py::arg("Weight2"), py::arg("Weight3"), py::arg("DegMax")=static_cast<const Standard_Integer>(8), py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2), py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3) )
.def(py::init< const NCollection_Array2<Standard_Real> &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Integer,const Standard_Integer,const GeomAbs_Shape,const Standard_Real >() , py::arg("ZPoints"), py::arg("X0"), py::arg("dX"), py::arg("Y0"), py::arg("dY"), py::arg("DegMin")=static_cast<const Standard_Integer>(3), py::arg("DegMax")=static_cast<const Standard_Integer>(8), py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2), py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3) )
// custom constructors
// methods
.def("Init",
(void (GeomAPI_PointsToBSplineSurface::*)( const NCollection_Array2<gp_Pnt> & , const Standard_Integer , const Standard_Integer , const GeomAbs_Shape , const Standard_Real ) ) static_cast<void (GeomAPI_PointsToBSplineSurface::*)( const NCollection_Array2<gp_Pnt> & , const Standard_Integer , const Standard_Integer , const GeomAbs_Shape , const Standard_Real ) >(&GeomAPI_PointsToBSplineSurface::Init),
R"#(Approximates a BSpline Surface passing through an array of Point. The resulting BSpline will have the following properties: 1- his degree will be in the range [Degmin,Degmax] 2- his continuity will be at least <Continuity> 3- the distance from the point <Points> to the BSpline will be lower to Tol3D.)#" , py::arg("Points"), py::arg("DegMin")=static_cast<const Standard_Integer>(3), py::arg("DegMax")=static_cast<const Standard_Integer>(8), py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2), py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3)
)
.def("Interpolate",
(void (GeomAPI_PointsToBSplineSurface::*)( const NCollection_Array2<gp_Pnt> & , const Standard_Boolean ) ) static_cast<void (GeomAPI_PointsToBSplineSurface::*)( const NCollection_Array2<gp_Pnt> & , const Standard_Boolean ) >(&GeomAPI_PointsToBSplineSurface::Interpolate),
R"#(Interpolates a BSpline Surface passing through an array of Point. The resulting BSpline will have the following properties: 1- his degree will be 3. 2- his continuity will be C2.)#" , py::arg("Points"), py::arg("thePeriodic")=static_cast<const Standard_Boolean>(Standard_False)
)
.def("Interpolate",
(void (GeomAPI_PointsToBSplineSurface::*)( const NCollection_Array2<gp_Pnt> & , const Approx_ParametrizationType , const Standard_Boolean ) ) static_cast<void (GeomAPI_PointsToBSplineSurface::*)( const NCollection_Array2<gp_Pnt> & , const Approx_ParametrizationType , const Standard_Boolean ) >(&GeomAPI_PointsToBSplineSurface::Interpolate),
R"#(Interpolates a BSpline Surface passing through an array of Point. The resulting BSpline will have the following properties: 1- his degree will be 3. 2- his continuity will be C2.)#" , py::arg("Points"), py::arg("ParType"), py::arg("thePeriodic")=static_cast<const Standard_Boolean>(Standard_False)
)
.def("Init",
(void (GeomAPI_PointsToBSplineSurface::*)( const NCollection_Array2<Standard_Real> & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer , const GeomAbs_Shape , const Standard_Real ) ) static_cast<void (GeomAPI_PointsToBSplineSurface::*)( const NCollection_Array2<Standard_Real> & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer , const GeomAbs_Shape , const Standard_Real ) >(&GeomAPI_PointsToBSplineSurface::Init),
R"#(Approximates a BSpline Surface passing through an array of Points.)#" , py::arg("ZPoints"), py::arg("X0"), py::arg("dX"), py::arg("Y0"), py::arg("dY"), py::arg("DegMin")=static_cast<const Standard_Integer>(3), py::arg("DegMax")=static_cast<const Standard_Integer>(8), py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2), py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3)
)
.def("Interpolate",
(void (GeomAPI_PointsToBSplineSurface::*)( const NCollection_Array2<Standard_Real> & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real ) ) static_cast<void (GeomAPI_PointsToBSplineSurface::*)( const NCollection_Array2<Standard_Real> & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real ) >(&GeomAPI_PointsToBSplineSurface::Interpolate),
R"#(Interpolates a BSpline Surface passing through an array of Points.)#" , py::arg("ZPoints"), py::arg("X0"), py::arg("dX"), py::arg("Y0"), py::arg("dY")
)
.def("Init",
(void (GeomAPI_PointsToBSplineSurface::*)( const NCollection_Array2<gp_Pnt> & , const Approx_ParametrizationType , const Standard_Integer , const Standard_Integer , const GeomAbs_Shape , const Standard_Real , const Standard_Boolean ) ) static_cast<void (GeomAPI_PointsToBSplineSurface::*)( const NCollection_Array2<gp_Pnt> & , const Approx_ParametrizationType , const Standard_Integer , const Standard_Integer , const GeomAbs_Shape , const Standard_Real , const Standard_Boolean ) >(&GeomAPI_PointsToBSplineSurface::Init),
R"#(Approximates a BSpline Surface passing through an array of Point. The resulting BSpline will have the following properties: 1- his degree will be in the range [Degmin,Degmax] 2- his continuity will be at least <Continuity> 3- the distance from the point <Points> to the BSpline will be lower to Tol3D.)#" , py::arg("Points"), py::arg("ParType"), py::arg("DegMin")=static_cast<const Standard_Integer>(3), py::arg("DegMax")=static_cast<const Standard_Integer>(8), py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2), py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3), py::arg("thePeriodic")=static_cast<const Standard_Boolean>(Standard_False)
)
.def("Init",
(void (GeomAPI_PointsToBSplineSurface::*)( const NCollection_Array2<gp_Pnt> & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Integer , const GeomAbs_Shape , const Standard_Real ) ) static_cast<void (GeomAPI_PointsToBSplineSurface::*)( const NCollection_Array2<gp_Pnt> & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Integer , const GeomAbs_Shape , const Standard_Real ) >(&GeomAPI_PointsToBSplineSurface::Init),
R"#(Approximates a BSpline Surface passing through an array of point using variational smoothing algorithm, which tries to minimize additional criterium: Weight1*CurveLength + Weight2*Curvature + Weight3*Torsion.)#" , py::arg("Points"), py::arg("Weight1"), py::arg("Weight2"), py::arg("Weight3"), py::arg("DegMax")=static_cast<const Standard_Integer>(8), py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C2), py::arg("Tol3D")=static_cast<const Standard_Real>(1.0e-3)
)
.def("IsDone",
(Standard_Boolean (GeomAPI_PointsToBSplineSurface::*)() const) static_cast<Standard_Boolean (GeomAPI_PointsToBSplineSurface::*)() const>(&GeomAPI_PointsToBSplineSurface::IsDone),
R"#(None)#"
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Surface",
(const opencascade::handle<Geom_BSplineSurface> & (GeomAPI_PointsToBSplineSurface::*)() const) static_cast<const opencascade::handle<Geom_BSplineSurface> & (GeomAPI_PointsToBSplineSurface::*)() const>(&GeomAPI_PointsToBSplineSurface::Surface),
R"#(Returns the approximate BSpline Surface)#"
)
;
// Class GeomAPI_ProjectPointOnCurve from ./opencascade/GeomAPI_ProjectPointOnCurve.hxx
klass = m.attr("GeomAPI_ProjectPointOnCurve");
// nested enums
static_cast<py::class_<GeomAPI_ProjectPointOnCurve , shared_ptr<GeomAPI_ProjectPointOnCurve> >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const gp_Pnt &,const opencascade::handle<Geom_Curve> & >() , py::arg("P"), py::arg("Curve") )
.def(py::init< const gp_Pnt &,const opencascade::handle<Geom_Curve> &,const Standard_Real,const Standard_Real >() , py::arg("P"), py::arg("Curve"), py::arg("Umin"), py::arg("Usup") )
// custom constructors
// methods
.def("Init",
(void (GeomAPI_ProjectPointOnCurve::*)( const gp_Pnt & , const opencascade::handle<Geom_Curve> & ) ) static_cast<void (GeomAPI_ProjectPointOnCurve::*)( const gp_Pnt & , const opencascade::handle<Geom_Curve> & ) >(&GeomAPI_ProjectPointOnCurve::Init),
R"#(Init the projection of a point <P> on a curve <Curve>)#" , py::arg("P"), py::arg("Curve")
)
.def("Init",
(void (GeomAPI_ProjectPointOnCurve::*)( const gp_Pnt & , const opencascade::handle<Geom_Curve> & , const Standard_Real , const Standard_Real ) ) static_cast<void (GeomAPI_ProjectPointOnCurve::*)( const gp_Pnt & , const opencascade::handle<Geom_Curve> & , const Standard_Real , const Standard_Real ) >(&GeomAPI_ProjectPointOnCurve::Init),
R"#(Init the projection of a point <P> on a curve <Curve> limited by the two points of parameter Umin and Usup.)#" , py::arg("P"), py::arg("Curve"), py::arg("Umin"), py::arg("Usup")
)
.def("Init",
(void (GeomAPI_ProjectPointOnCurve::*)( const opencascade::handle<Geom_Curve> & , const Standard_Real , const Standard_Real ) ) static_cast<void (GeomAPI_ProjectPointOnCurve::*)( const opencascade::handle<Geom_Curve> & , const Standard_Real , const Standard_Real ) >(&GeomAPI_ProjectPointOnCurve::Init),
R"#(Init the projection of a point <P> on a curve <Curve> limited by the two points of parameter Umin and Usup.)#" , py::arg("Curve"), py::arg("Umin"), py::arg("Usup")
)
.def("Perform",
(void (GeomAPI_ProjectPointOnCurve::*)( const gp_Pnt & ) ) static_cast<void (GeomAPI_ProjectPointOnCurve::*)( const gp_Pnt & ) >(&GeomAPI_ProjectPointOnCurve::Perform),
R"#(Performs the projection of a point on the current curve.)#" , py::arg("P")
)
.def("NbPoints",
(Standard_Integer (GeomAPI_ProjectPointOnCurve::*)() const) static_cast<Standard_Integer (GeomAPI_ProjectPointOnCurve::*)() const>(&GeomAPI_ProjectPointOnCurve::NbPoints),
R"#(Returns the number of computed orthogonal projection points. Note: if this algorithm fails, NbPoints returns 0.)#"
)
.def("Point",
(gp_Pnt (GeomAPI_ProjectPointOnCurve::*)( const Standard_Integer ) const) static_cast<gp_Pnt (GeomAPI_ProjectPointOnCurve::*)( const Standard_Integer ) const>(&GeomAPI_ProjectPointOnCurve::Point),
R"#(Returns the orthogonal projection on the curve. Index is a number of a computed point. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbPoints ], where NbPoints is the number of solution points.)#" , py::arg("Index")
)
.def("Parameter",
(Standard_Real (GeomAPI_ProjectPointOnCurve::*)( const Standard_Integer ) const) static_cast<Standard_Real (GeomAPI_ProjectPointOnCurve::*)( const Standard_Integer ) const>(&GeomAPI_ProjectPointOnCurve::Parameter),
R"#(Returns the parameter on the curve of the point, which is the orthogonal projection. Index is a number of a computed point. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbPoints ], where NbPoints is the number of solution points.)#" , py::arg("Index")
)
.def("Distance",
(Standard_Real (GeomAPI_ProjectPointOnCurve::*)( const Standard_Integer ) const) static_cast<Standard_Real (GeomAPI_ProjectPointOnCurve::*)( const Standard_Integer ) const>(&GeomAPI_ProjectPointOnCurve::Distance),
R"#(Computes the distance between the point and its orthogonal projection on the curve. Index is a number of a computed point. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbPoints ], where NbPoints is the number of solution points.)#" , py::arg("Index")
)
.def("NearestPoint",
(gp_Pnt (GeomAPI_ProjectPointOnCurve::*)() const) static_cast<gp_Pnt (GeomAPI_ProjectPointOnCurve::*)() const>(&GeomAPI_ProjectPointOnCurve::NearestPoint),
R"#(Returns the nearest orthogonal projection of the point on the curve. Exceptions: StdFail_NotDone if this algorithm fails.)#"
)
.def("LowerDistanceParameter",
(Standard_Real (GeomAPI_ProjectPointOnCurve::*)() const) static_cast<Standard_Real (GeomAPI_ProjectPointOnCurve::*)() const>(&GeomAPI_ProjectPointOnCurve::LowerDistanceParameter),
R"#(Returns the parameter on the curve of the nearest orthogonal projection of the point. Exceptions: StdFail_NotDone if this algorithm fails.)#"
)
.def("LowerDistance",
(Standard_Real (GeomAPI_ProjectPointOnCurve::*)() const) static_cast<Standard_Real (GeomAPI_ProjectPointOnCurve::*)() const>(&GeomAPI_ProjectPointOnCurve::LowerDistance),
R"#(Computes the distance between the point and its nearest orthogonal projection on the curve. Exceptions: StdFail_NotDone if this algorithm fails.)#"
)
// methods using call by reference i.s.o. return
.def("Parameter",
[]( GeomAPI_ProjectPointOnCurve &self , const Standard_Integer Index ){
Standard_Real U;
self.Parameter(Index,U);
return std::make_tuple(U); },
R"#(Returns the parameter on the curve of the point, which is the orthogonal projection. Index is a number of a computed point. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbPoints ], where NbPoints is the number of solution points.-)#" , py::arg("Index")
)
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Extrema",
(const Extrema_ExtPC & (GeomAPI_ProjectPointOnCurve::*)() const) static_cast<const Extrema_ExtPC & (GeomAPI_ProjectPointOnCurve::*)() const>(&GeomAPI_ProjectPointOnCurve::Extrema),
R"#(return the algorithmic object from Extrema)#"
)
.def("Extrema",
(const Extrema_ExtPC & (GeomAPI_ProjectPointOnCurve::*)() const) static_cast<const Extrema_ExtPC & (GeomAPI_ProjectPointOnCurve::*)() const>(&GeomAPI_ProjectPointOnCurve::Extrema),
R"#(return the algorithmic object from Extrema)#"
)
;
// Class GeomAPI_ProjectPointOnSurf from ./opencascade/GeomAPI_ProjectPointOnSurf.hxx
klass = m.attr("GeomAPI_ProjectPointOnSurf");
// nested enums
static_cast<py::class_<GeomAPI_ProjectPointOnSurf , shared_ptr<GeomAPI_ProjectPointOnSurf> >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const gp_Pnt &,const opencascade::handle<Geom_Surface> &,const Extrema_ExtAlgo >() , py::arg("P"), py::arg("Surface"), py::arg("Algo")=static_cast<const Extrema_ExtAlgo>(Extrema_ExtAlgo_Grad) )
.def(py::init< const gp_Pnt &,const opencascade::handle<Geom_Surface> &,const Standard_Real,const Extrema_ExtAlgo >() , py::arg("P"), py::arg("Surface"), py::arg("Tolerance"), py::arg("Algo")=static_cast<const Extrema_ExtAlgo>(Extrema_ExtAlgo_Grad) )
.def(py::init< const gp_Pnt &,const opencascade::handle<Geom_Surface> &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Extrema_ExtAlgo >() , py::arg("P"), py::arg("Surface"), py::arg("Umin"), py::arg("Usup"), py::arg("Vmin"), py::arg("Vsup"), py::arg("Tolerance"), py::arg("Algo")=static_cast<const Extrema_ExtAlgo>(Extrema_ExtAlgo_Grad) )
.def(py::init< const gp_Pnt &,const opencascade::handle<Geom_Surface> &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Extrema_ExtAlgo >() , py::arg("P"), py::arg("Surface"), py::arg("Umin"), py::arg("Usup"), py::arg("Vmin"), py::arg("Vsup"), py::arg("Algo")=static_cast<const Extrema_ExtAlgo>(Extrema_ExtAlgo_Grad) )
// custom constructors
// methods
.def("Init",
(void (GeomAPI_ProjectPointOnSurf::*)( const gp_Pnt & , const opencascade::handle<Geom_Surface> & , const Standard_Real , const Extrema_ExtAlgo ) ) static_cast<void (GeomAPI_ProjectPointOnSurf::*)( const gp_Pnt & , const opencascade::handle<Geom_Surface> & , const Standard_Real , const Extrema_ExtAlgo ) >(&GeomAPI_ProjectPointOnSurf::Init),
R"#(None)#" , py::arg("P"), py::arg("Surface"), py::arg("Tolerance"), py::arg("Algo")=static_cast<const Extrema_ExtAlgo>(Extrema_ExtAlgo_Grad)
)
.def("Init",
(void (GeomAPI_ProjectPointOnSurf::*)( const gp_Pnt & , const opencascade::handle<Geom_Surface> & , const Extrema_ExtAlgo ) ) static_cast<void (GeomAPI_ProjectPointOnSurf::*)( const gp_Pnt & , const opencascade::handle<Geom_Surface> & , const Extrema_ExtAlgo ) >(&GeomAPI_ProjectPointOnSurf::Init),
R"#(Init the projection of a point <P> on a surface <Surface>. The solution are computed in the domain [Umin,Usup] [Vmin,Vsup] of the surface.)#" , py::arg("P"), py::arg("Surface"), py::arg("Algo")=static_cast<const Extrema_ExtAlgo>(Extrema_ExtAlgo_Grad)
)
.def("Init",
(void (GeomAPI_ProjectPointOnSurf::*)( const gp_Pnt & , const opencascade::handle<Geom_Surface> & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Extrema_ExtAlgo ) ) static_cast<void (GeomAPI_ProjectPointOnSurf::*)( const gp_Pnt & , const opencascade::handle<Geom_Surface> & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Extrema_ExtAlgo ) >(&GeomAPI_ProjectPointOnSurf::Init),
R"#(None)#" , py::arg("P"), py::arg("Surface"), py::arg("Umin"), py::arg("Usup"), py::arg("Vmin"), py::arg("Vsup"), py::arg("Tolerance"), py::arg("Algo")=static_cast<const Extrema_ExtAlgo>(Extrema_ExtAlgo_Grad)
)
.def("Init",
(void (GeomAPI_ProjectPointOnSurf::*)( const gp_Pnt & , const opencascade::handle<Geom_Surface> & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Extrema_ExtAlgo ) ) static_cast<void (GeomAPI_ProjectPointOnSurf::*)( const gp_Pnt & , const opencascade::handle<Geom_Surface> & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Extrema_ExtAlgo ) >(&GeomAPI_ProjectPointOnSurf::Init),
R"#(Init the projection for many points on a surface <Surface>. The solutions will be computed in the domain [Umin,Usup] [Vmin,Vsup] of the surface.)#" , py::arg("P"), py::arg("Surface"), py::arg("Umin"), py::arg("Usup"), py::arg("Vmin"), py::arg("Vsup"), py::arg("Algo")=static_cast<const Extrema_ExtAlgo>(Extrema_ExtAlgo_Grad)
)
.def("Init",
(void (GeomAPI_ProjectPointOnSurf::*)( const opencascade::handle<Geom_Surface> & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Extrema_ExtAlgo ) ) static_cast<void (GeomAPI_ProjectPointOnSurf::*)( const opencascade::handle<Geom_Surface> & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Extrema_ExtAlgo ) >(&GeomAPI_ProjectPointOnSurf::Init),
R"#(None)#" , py::arg("Surface"), py::arg("Umin"), py::arg("Usup"), py::arg("Vmin"), py::arg("Vsup"), py::arg("Tolerance"), py::arg("Algo")=static_cast<const Extrema_ExtAlgo>(Extrema_ExtAlgo_Grad)
)
.def("Init",
(void (GeomAPI_ProjectPointOnSurf::*)( const opencascade::handle<Geom_Surface> & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Extrema_ExtAlgo ) ) static_cast<void (GeomAPI_ProjectPointOnSurf::*)( const opencascade::handle<Geom_Surface> & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Extrema_ExtAlgo ) >(&GeomAPI_ProjectPointOnSurf::Init),
R"#(None)#" , py::arg("Surface"), py::arg("Umin"), py::arg("Usup"), py::arg("Vmin"), py::arg("Vsup"), py::arg("Algo")=static_cast<const Extrema_ExtAlgo>(Extrema_ExtAlgo_Grad)
)
.def("SetExtremaAlgo",
(void (GeomAPI_ProjectPointOnSurf::*)( const Extrema_ExtAlgo ) ) static_cast<void (GeomAPI_ProjectPointOnSurf::*)( const Extrema_ExtAlgo ) >(&GeomAPI_ProjectPointOnSurf::SetExtremaAlgo),
R"#(Sets the Extrema search algorithm - Grad or Tree. By default the Extrema is initialized with Grad algorithm.)#" , py::arg("theAlgo")
)
.def("SetExtremaFlag",
(void (GeomAPI_ProjectPointOnSurf::*)( const Extrema_ExtFlag ) ) static_cast<void (GeomAPI_ProjectPointOnSurf::*)( const Extrema_ExtFlag ) >(&GeomAPI_ProjectPointOnSurf::SetExtremaFlag),
R"#(Sets the Extrema search flag - MIN or MAX or MINMAX. By default the Extrema is set to search the MinMax solutions.)#" , py::arg("theExtFlag")
)
.def("Perform",
(void (GeomAPI_ProjectPointOnSurf::*)( const gp_Pnt & ) ) static_cast<void (GeomAPI_ProjectPointOnSurf::*)( const gp_Pnt & ) >(&GeomAPI_ProjectPointOnSurf::Perform),
R"#(Performs the projection of a point on the current surface.)#" , py::arg("P")
)
.def("IsDone",
(Standard_Boolean (GeomAPI_ProjectPointOnSurf::*)() const) static_cast<Standard_Boolean (GeomAPI_ProjectPointOnSurf::*)() const>(&GeomAPI_ProjectPointOnSurf::IsDone),
R"#(None)#"
)
.def("NbPoints",
(Standard_Integer (GeomAPI_ProjectPointOnSurf::*)() const) static_cast<Standard_Integer (GeomAPI_ProjectPointOnSurf::*)() const>(&GeomAPI_ProjectPointOnSurf::NbPoints),
R"#(Returns the number of computed orthogonal projection points. Note: if projection fails, NbPoints returns 0.)#"
)
.def("Point",
(gp_Pnt (GeomAPI_ProjectPointOnSurf::*)( const Standard_Integer ) const) static_cast<gp_Pnt (GeomAPI_ProjectPointOnSurf::*)( const Standard_Integer ) const>(&GeomAPI_ProjectPointOnSurf::Point),
R"#(Returns the orthogonal projection on the surface. Index is a number of a computed point. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbPoints ], where NbPoints is the number of solution points.)#" , py::arg("Index")
)
.def("Distance",
(Standard_Real (GeomAPI_ProjectPointOnSurf::*)( const Standard_Integer ) const) static_cast<Standard_Real (GeomAPI_ProjectPointOnSurf::*)( const Standard_Integer ) const>(&GeomAPI_ProjectPointOnSurf::Distance),
R"#(Computes the distance between the point and its orthogonal projection on the surface. Index is a number of a computed point. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbPoints ], where NbPoints is the number of solution points.)#" , py::arg("Index")
)
.def("NearestPoint",
(gp_Pnt (GeomAPI_ProjectPointOnSurf::*)() const) static_cast<gp_Pnt (GeomAPI_ProjectPointOnSurf::*)() const>(&GeomAPI_ProjectPointOnSurf::NearestPoint),
R"#(Returns the nearest orthogonal projection of the point on the surface. Exceptions StdFail_NotDone if projection fails.)#"
)
.def("LowerDistance",
(Standard_Real (GeomAPI_ProjectPointOnSurf::*)() const) static_cast<Standard_Real (GeomAPI_ProjectPointOnSurf::*)() const>(&GeomAPI_ProjectPointOnSurf::LowerDistance),
R"#(Computes the distance between the point and its nearest orthogonal projection on the surface. Exceptions StdFail_NotDone if projection fails.)#"
)
// methods using call by reference i.s.o. return
.def("Parameters",
[]( GeomAPI_ProjectPointOnSurf &self , const Standard_Integer Index ){
Standard_Real U;
Standard_Real V;
self.Parameters(Index,U,V);
return std::make_tuple(U,V); },
R"#(Returns the parameters (U,V) on the surface of the orthogonal projection. Index is a number of a computed point. Exceptions Standard_OutOfRange if Index is not in the range [ 1,NbPoints ], where NbPoints is the number of solution points.)#" , py::arg("Index")
)
.def("LowerDistanceParameters",
[]( GeomAPI_ProjectPointOnSurf &self ){
Standard_Real U;
Standard_Real V;
self.LowerDistanceParameters(U,V);
return std::make_tuple(U,V); },
R"#(Returns the parameters (U,V) on the surface of the nearest computed orthogonal projection of the point. Exceptions StdFail_NotDone if projection fails.)#"
)
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Extrema",
(const Extrema_ExtPS & (GeomAPI_ProjectPointOnSurf::*)() const) static_cast<const Extrema_ExtPS & (GeomAPI_ProjectPointOnSurf::*)() const>(&GeomAPI_ProjectPointOnSurf::Extrema),
R"#(return the algorithmic object from Extrema)#"
)
.def("Extrema",
(const Extrema_ExtPS & (GeomAPI_ProjectPointOnSurf::*)() const) static_cast<const Extrema_ExtPS & (GeomAPI_ProjectPointOnSurf::*)() const>(&GeomAPI_ProjectPointOnSurf::Extrema),
R"#(return the algorithmic object from Extrema)#"
)
;
// functions
// ./opencascade/GeomAPI.hxx
// ./opencascade/GeomAPI_ExtremaCurveCurve.hxx
// ./opencascade/GeomAPI_ExtremaCurveSurface.hxx
// ./opencascade/GeomAPI_ExtremaSurfaceSurface.hxx
// ./opencascade/GeomAPI_IntCS.hxx
// ./opencascade/GeomAPI_IntSS.hxx
// ./opencascade/GeomAPI_Interpolate.hxx
// ./opencascade/GeomAPI_PointsToBSpline.hxx
// ./opencascade/GeomAPI_PointsToBSplineSurface.hxx
// ./opencascade/GeomAPI_ProjectPointOnCurve.hxx
// ./opencascade/GeomAPI_ProjectPointOnSurf.hxx
// Additional functions
// operators
// register typdefs
// exceptions
// user-defined post-inclusion per module in the body
};
// user-defined post-inclusion per module
// user-defined post
|