File: GeomConvert.cpp

package info (click to toggle)
python-ocp 7.8.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 64,720 kB
  • sloc: cpp: 362,337; pascal: 33; python: 23; makefile: 4
file content (964 lines) | stat: -rw-r--r-- 85,833 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964

// std lib related includes
#include <tuple>

// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

namespace py = pybind11;

// Standard Handle
#include <Standard_Handle.hxx>


// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Geom_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Geom_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_BoundedCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_Curve.hxx>
#include <Geom_Line.hxx>
#include <gp_Lin.hxx>
#include <gp_Circ.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_Curve.hxx>
#include <gp_Ax3.hxx>
#include <Geom_Surface.hxx>
#include <Geom_SurfaceOfRevolution.hxx>
#include <Geom_Circle.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom2d_Curve.hxx>
#include <Geom_Surface.hxx>

// module includes
#include <GeomConvert.hxx>
#include <GeomConvert_ApproxCurve.hxx>
#include <GeomConvert_ApproxSurface.hxx>
#include <GeomConvert_BSplineCurveKnotSplitting.hxx>
#include <GeomConvert_BSplineCurveToBezierCurve.hxx>
#include <GeomConvert_BSplineSurfaceKnotSplitting.hxx>
#include <GeomConvert_BSplineSurfaceToBezierSurface.hxx>
#include <GeomConvert_CompBezierSurfacesToBSplineSurface.hxx>
#include <GeomConvert_CompCurveToBSplineCurve.hxx>
#include <GeomConvert_ConvType.hxx>
#include <GeomConvert_CurveToAnaCurve.hxx>
#include <GeomConvert_FuncConeLSDist.hxx>
#include <GeomConvert_FuncCylinderLSDist.hxx>
#include <GeomConvert_FuncSphereLSDist.hxx>
#include <GeomConvert_SurfToAnaSurf.hxx>
#include <GeomConvert_Units.hxx>

// template related includes


// user-defined pre
#include "OCP_specific.inc"

// user-defined inclusion per module

// Module definiiton
void register_GeomConvert(py::module &main_module) {


py::module m = static_cast<py::module>(main_module.attr("GeomConvert"));
py::object klass;

//Python trampoline classes

// classes

    // Class GeomConvert from ./opencascade/GeomConvert.hxx
    klass = m.attr("GeomConvert");

    // default constructor
    register_default_constructor<GeomConvert , shared_ptr<GeomConvert>>(m,"GeomConvert");

    // nested enums

    static_cast<py::class_<GeomConvert , shared_ptr<GeomConvert>  >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("SplitBSplineCurve_s",
                    (opencascade::handle<Geom_BSplineCurve> (*)( const opencascade::handle<Geom_BSplineCurve> & ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean  ) ) static_cast<opencascade::handle<Geom_BSplineCurve> (*)( const opencascade::handle<Geom_BSplineCurve> & ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean  ) >(&GeomConvert::SplitBSplineCurve),
                    R"#(Convert a curve from Geom by an approximation method)#"  , py::arg("C"),  py::arg("FromK1"),  py::arg("ToK2"),  py::arg("SameOrientation")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def_static("SplitBSplineCurve_s",
                    (opencascade::handle<Geom_BSplineCurve> (*)( const opencascade::handle<Geom_BSplineCurve> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<opencascade::handle<Geom_BSplineCurve> (*)( const opencascade::handle<Geom_BSplineCurve> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean  ) >(&GeomConvert::SplitBSplineCurve),
                    R"#(This function computes the segment of B-spline curve between the parametric values FromU1, ToU2. If C is periodic the arc has the same orientation as C if SameOrientation = True. If C is not periodic SameOrientation is not used for the computation and C is oriented fromU1 toU2. If U1 and U2 and two parametric values we consider that U1 = U2 if Abs (U1 - U2) <= ParametricTolerance and ParametricTolerance must be greater or equal to Resolution from package gp.)#"  , py::arg("C"),  py::arg("FromU1"),  py::arg("ToU2"),  py::arg("ParametricTolerance"),  py::arg("SameOrientation")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def_static("SplitBSplineSurface_s",
                    (opencascade::handle<Geom_BSplineSurface> (*)( const opencascade::handle<Geom_BSplineSurface> & ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,  const Standard_Boolean  ) ) static_cast<opencascade::handle<Geom_BSplineSurface> (*)( const opencascade::handle<Geom_BSplineSurface> & ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,  const Standard_Boolean  ) >(&GeomConvert::SplitBSplineSurface),
                    R"#(Computes the B-spline surface patche between the knots values FromUK1, ToUK2, FromVK1, ToVK2. If S is periodic in one direction the patche has the same orientation as S in this direction if the flag is true in this direction (SameUOrientation, SameVOrientation). If S is not periodic SameUOrientation and SameVOrientation are not used for the computation and S is oriented FromUK1 ToUK2 and FromVK1 ToVK2. Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2 FromUK1 or ToUK2 are out of the bounds [FirstUKnotIndex, LastUKnotIndex] FromVK1 or ToVK2 are out of the bounds [FirstVKnotIndex, LastVKnotIndex])#"  , py::arg("S"),  py::arg("FromUK1"),  py::arg("ToUK2"),  py::arg("FromVK1"),  py::arg("ToVK2"),  py::arg("SameUOrientation")=static_cast<const Standard_Boolean>(Standard_True),  py::arg("SameVOrientation")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def_static("SplitBSplineSurface_s",
                    (opencascade::handle<Geom_BSplineSurface> (*)( const opencascade::handle<Geom_BSplineSurface> & ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,  const Standard_Boolean  ) ) static_cast<opencascade::handle<Geom_BSplineSurface> (*)( const opencascade::handle<Geom_BSplineSurface> & ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Boolean ,  const Standard_Boolean  ) >(&GeomConvert::SplitBSplineSurface),
                    R"#(This method splits a B-spline surface patche between the knots values FromK1, ToK2 in one direction. If USplit = True then the splitting direction is the U parametric direction else it is the V parametric direction. If S is periodic in the considered direction the patche has the same orientation as S in this direction if SameOrientation is True If S is not periodic in this direction SameOrientation is not used for the computation and S is oriented FromK1 ToK2. Raised if FromK1 = ToK2 or if FromK1 or ToK2 are out of the bounds [FirstUKnotIndex, LastUKnotIndex] in the considered parametric direction.)#"  , py::arg("S"),  py::arg("FromK1"),  py::arg("ToK2"),  py::arg("USplit"),  py::arg("SameOrientation")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def_static("SplitBSplineSurface_s",
                    (opencascade::handle<Geom_BSplineSurface> (*)( const opencascade::handle<Geom_BSplineSurface> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Boolean  ) ) static_cast<opencascade::handle<Geom_BSplineSurface> (*)( const opencascade::handle<Geom_BSplineSurface> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Boolean  ) >(&GeomConvert::SplitBSplineSurface),
                    R"#(This method computes the B-spline surface patche between the parametric values FromU1, ToU2, FromV1, ToV2. If S is periodic in one direction the patche has the same orientation as S in this direction if the flag is True in this direction (SameUOrientation, SameVOrientation). If S is not periodic SameUOrientation and SameVOrientation are not used for the computation and S is oriented FromU1 ToU2 and FromV1 ToV2. If U1 and U2 and two parametric values we consider that U1 = U2 if Abs (U1 - U2) <= ParametricTolerance and ParametricTolerance must be greater or equal to Resolution from package gp.)#"  , py::arg("S"),  py::arg("FromU1"),  py::arg("ToU2"),  py::arg("FromV1"),  py::arg("ToV2"),  py::arg("ParametricTolerance"),  py::arg("SameUOrientation")=static_cast<const Standard_Boolean>(Standard_True),  py::arg("SameVOrientation")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def_static("SplitBSplineSurface_s",
                    (opencascade::handle<Geom_BSplineSurface> (*)( const opencascade::handle<Geom_BSplineSurface> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<opencascade::handle<Geom_BSplineSurface> (*)( const opencascade::handle<Geom_BSplineSurface> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Real ,  const Standard_Boolean  ) >(&GeomConvert::SplitBSplineSurface),
                    R"#(This method splits the B-spline surface S in one direction between the parametric values FromParam1, ToParam2. If USplit = True then the Splitting direction is the U parametric direction else it is the V parametric direction. If S is periodic in the considered direction the patche has the same orientation as S in this direction if SameOrientation is true. If S is not periodic in the considered direction SameOrientation is not used for the computation and S is oriented FromParam1 ToParam2. If U1 and U2 and two parametric values we consider that U1 = U2 if Abs (U1 - U2) <= ParametricTolerance and ParametricTolerance must be greater or equal to Resolution from package gp.)#"  , py::arg("S"),  py::arg("FromParam1"),  py::arg("ToParam2"),  py::arg("USplit"),  py::arg("ParametricTolerance"),  py::arg("SameOrientation")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def_static("CurveToBSplineCurve_s",
                    (opencascade::handle<Geom_BSplineCurve> (*)( const opencascade::handle<Geom_Curve> & ,  const Convert_ParameterisationType  ) ) static_cast<opencascade::handle<Geom_BSplineCurve> (*)( const opencascade::handle<Geom_Curve> & ,  const Convert_ParameterisationType  ) >(&GeomConvert::CurveToBSplineCurve),
                    R"#(This function converts a non infinite curve from Geom into a B-spline curve. C must be an ellipse or a circle or a trimmed conic or a trimmed line or a Bezier curve or a trimmed Bezier curve or a BSpline curve or a trimmed BSpline curve or an OffsetCurve. The returned B-spline is not periodic except if C is a Circle or an Ellipse. If the Parameterisation is QuasiAngular than the returned curve is NOT periodic in case a periodic Geom_Circle or Geom_Ellipse. For TgtThetaOver2_1 and TgtThetaOver2_2 the method raises an exception in case of a periodic Geom_Circle or a Geom_Ellipse ParameterisationType applies only if the curve is a Circle or an ellipse : TgtThetaOver2, -- TgtThetaOver2_1, -- TgtThetaOver2_2, -- TgtThetaOver2_3, -- TgtThetaOver2_4,)#"  , py::arg("C"),  py::arg("Parameterisation")=static_cast<const Convert_ParameterisationType>(Convert_TgtThetaOver2)
          )
        .def_static("SurfaceToBSplineSurface_s",
                    (opencascade::handle<Geom_BSplineSurface> (*)( const opencascade::handle<Geom_Surface> &  ) ) static_cast<opencascade::handle<Geom_BSplineSurface> (*)( const opencascade::handle<Geom_Surface> &  ) >(&GeomConvert::SurfaceToBSplineSurface),
                    R"#(This algorithm converts a non infinite surface from Geom into a B-spline surface. S must be a trimmed plane or a trimmed cylinder or a trimmed cone or a trimmed sphere or a trimmed torus or a sphere or a torus or a Bezier surface of a trimmed Bezier surface or a trimmed swept surface with a corresponding basis curve which can be turned into a B-spline curve (see the method CurveToBSplineCurve). Raises DomainError if the type of the surface is not previously defined.)#"  , py::arg("S")
          )
    // static methods using call by reference i.s.o. return
        .def_static("ConcatG1_s",
            [](NCollection_Array1<opencascade::handle<Geom_BSplineCurve>> & ArrayOfCurves, const NCollection_Array1<Standard_Real> & ArrayOfToler,TColGeom_HArray1OfBSplineCurve& ArrayOfConcatenated,const Standard_Real ClosedTolerance ){
                Standard_Boolean  ClosedFlag;
                opencascade::handle<TColGeom_HArray1OfBSplineCurve>  ArrayOfConcatenated_ptr; ArrayOfConcatenated_ptr = &ArrayOfConcatenated;

                GeomConvert::ConcatG1(ArrayOfCurves,ArrayOfToler,ArrayOfConcatenated_ptr,ClosedFlag,ClosedTolerance);
                if ( ArrayOfConcatenated_ptr.get() != &ArrayOfConcatenated ) copy_if_copy_constructible(ArrayOfConcatenated, *ArrayOfConcatenated_ptr);

return std::make_tuple(ClosedFlag); },
            R"#(This Method concatenates G1 the ArrayOfCurves as far as it is possible. ArrayOfCurves[0..N-1] ArrayOfToler contains the biggest tolerance of the two points shared by two consecutives curves. Its dimension: [0..N-2] ClosedFlag indicates if the ArrayOfCurves is closed. In this case ClosedTolerance contains the biggest tolerance of the two points which are at the closure. Otherwise its value is 0.0 ClosedFlag becomes False on the output if it is impossible to build closed curve.)#"  , py::arg("ArrayOfCurves"),  py::arg("ArrayOfToler"),  py::arg("ArrayOfConcatenated"),  py::arg("ClosedTolerance")
          )
        .def_static("ConcatC1_s",
            [](NCollection_Array1<opencascade::handle<Geom_BSplineCurve>> & ArrayOfCurves, const NCollection_Array1<Standard_Real> & ArrayOfToler,TColStd_HArray1OfInteger& ArrayOfIndices,TColGeom_HArray1OfBSplineCurve& ArrayOfConcatenated,const Standard_Real ClosedTolerance ){
                Standard_Boolean  ClosedFlag;
                opencascade::handle<TColStd_HArray1OfInteger>  ArrayOfIndices_ptr; ArrayOfIndices_ptr = &ArrayOfIndices;
                opencascade::handle<TColGeom_HArray1OfBSplineCurve>  ArrayOfConcatenated_ptr; ArrayOfConcatenated_ptr = &ArrayOfConcatenated;

                GeomConvert::ConcatC1(ArrayOfCurves,ArrayOfToler,ArrayOfIndices_ptr,ArrayOfConcatenated_ptr,ClosedFlag,ClosedTolerance);
                if ( ArrayOfIndices_ptr.get() != &ArrayOfIndices ) copy_if_copy_constructible(ArrayOfIndices, *ArrayOfIndices_ptr);
                if ( ArrayOfConcatenated_ptr.get() != &ArrayOfConcatenated ) copy_if_copy_constructible(ArrayOfConcatenated, *ArrayOfConcatenated_ptr);

return std::make_tuple(ClosedFlag); },
            R"#(This Method concatenates C1 the ArrayOfCurves as far as it is possible. ArrayOfCurves[0..N-1] ArrayOfToler contains the biggest tolerance of the two points shared by two consecutives curves. Its dimension: [0..N-2] ClosedFlag indicates if the ArrayOfCurves is closed. In this case ClosedTolerance contains the biggest tolerance of the two points which are at the closure. Otherwise its value is 0.0 ClosedFlag becomes False on the output if it is impossible to build closed curve.)#"  , py::arg("ArrayOfCurves"),  py::arg("ArrayOfToler"),  py::arg("ArrayOfIndices"),  py::arg("ArrayOfConcatenated"),  py::arg("ClosedTolerance")
          )
        .def_static("ConcatC1_s",
            [](NCollection_Array1<opencascade::handle<Geom_BSplineCurve>> & ArrayOfCurves, const NCollection_Array1<Standard_Real> & ArrayOfToler,TColStd_HArray1OfInteger& ArrayOfIndices,TColGeom_HArray1OfBSplineCurve& ArrayOfConcatenated,const Standard_Real ClosedTolerance,const Standard_Real AngularTolerance ){
                Standard_Boolean  ClosedFlag;
                opencascade::handle<TColStd_HArray1OfInteger>  ArrayOfIndices_ptr; ArrayOfIndices_ptr = &ArrayOfIndices;
                opencascade::handle<TColGeom_HArray1OfBSplineCurve>  ArrayOfConcatenated_ptr; ArrayOfConcatenated_ptr = &ArrayOfConcatenated;

                GeomConvert::ConcatC1(ArrayOfCurves,ArrayOfToler,ArrayOfIndices_ptr,ArrayOfConcatenated_ptr,ClosedFlag,ClosedTolerance,AngularTolerance);
                if ( ArrayOfIndices_ptr.get() != &ArrayOfIndices ) copy_if_copy_constructible(ArrayOfIndices, *ArrayOfIndices_ptr);
                if ( ArrayOfConcatenated_ptr.get() != &ArrayOfConcatenated ) copy_if_copy_constructible(ArrayOfConcatenated, *ArrayOfConcatenated_ptr);

return std::make_tuple(ClosedFlag); },
            R"#(This Method concatenates C1 the ArrayOfCurves as far as it is possible. ArrayOfCurves[0..N-1] ArrayOfToler contains the biggest tolerance of the two points shared by two consecutives curves. Its dimension: [0..N-2] ClosedFlag indicates if the ArrayOfCurves is closed. In this case ClosedTolerance contains the biggest tolerance of the two points which are at the closure. Otherwise its value is 0.0 ClosedFlag becomes False on the output if it is impossible to build closed curve.)#"  , py::arg("ArrayOfCurves"),  py::arg("ArrayOfToler"),  py::arg("ArrayOfIndices"),  py::arg("ArrayOfConcatenated"),  py::arg("ClosedTolerance"),  py::arg("AngularTolerance")
          )
        .def_static("C0BSplineToC1BSplineCurve_s",
            [](Geom_BSplineCurve& BS,const Standard_Real tolerance,const Standard_Real AngularTolerance ){
                opencascade::handle<Geom_BSplineCurve>  BS_ptr; BS_ptr = &BS;

                GeomConvert::C0BSplineToC1BSplineCurve(BS_ptr,tolerance,AngularTolerance);
                if ( BS_ptr.get() != &BS ) copy_if_copy_constructible(BS, *BS_ptr);

 },
            R"#(This Method reduces as far as it is possible the multiplicities of the knots of the BSpline BS.(keeping the geometry). It returns a new BSpline which could still be C0. tolerance is a geometrical tolerance. The Angular toleranceis in radians and measures the angle of the tangents on the left and on the right to decide if the curve is G1 or not at a given point)#"  , py::arg("BS"),  py::arg("tolerance"),  py::arg("AngularTolerance")=static_cast<const Standard_Real>(1.0e-7)
          )
        .def_static("C0BSplineToArrayOfC1BSplineCurve_s",
            [](const opencascade::handle<Geom_BSplineCurve> & BS,TColGeom_HArray1OfBSplineCurve& tabBS,const Standard_Real tolerance ){
                opencascade::handle<TColGeom_HArray1OfBSplineCurve>  tabBS_ptr; tabBS_ptr = &tabBS;

                GeomConvert::C0BSplineToArrayOfC1BSplineCurve(BS,tabBS_ptr,tolerance);
                if ( tabBS_ptr.get() != &tabBS ) copy_if_copy_constructible(tabBS, *tabBS_ptr);

 },
            R"#(This Method reduces as far as it is possible the multiplicities of the knots of the BSpline BS.(keeping the geometry). It returns an array of BSpline C1. tolerance is a geometrical tolerance.)#"  , py::arg("BS"),  py::arg("tabBS"),  py::arg("tolerance")
          )
        .def_static("C0BSplineToArrayOfC1BSplineCurve_s",
            [](const opencascade::handle<Geom_BSplineCurve> & BS,TColGeom_HArray1OfBSplineCurve& tabBS,const Standard_Real AngularTolerance,const Standard_Real tolerance ){
                opencascade::handle<TColGeom_HArray1OfBSplineCurve>  tabBS_ptr; tabBS_ptr = &tabBS;

                GeomConvert::C0BSplineToArrayOfC1BSplineCurve(BS,tabBS_ptr,AngularTolerance,tolerance);
                if ( tabBS_ptr.get() != &tabBS ) copy_if_copy_constructible(tabBS, *tabBS_ptr);

 },
            R"#(This Method reduces as far as it is possible the multiplicities of the knots of the BSpline BS.(keeping the geometry). It returns an array of BSpline C1. tolerance is a geometrical tolerance : it allows for the maximum deformation The Angular tolerance is in radians and measures the angle of the tangents on the left and on the right to decide if the curve is C1 or not at a given point)#"  , py::arg("BS"),  py::arg("tabBS"),  py::arg("AngularTolerance"),  py::arg("tolerance")
          )
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomConvert_ApproxCurve from ./opencascade/GeomConvert_ApproxCurve.hxx
    klass = m.attr("GeomConvert_ApproxCurve");


    // nested enums

    static_cast<py::class_<GeomConvert_ApproxCurve , shared_ptr<GeomConvert_ApproxCurve>  >>(klass)
    // constructors
        .def(py::init< const opencascade::handle<Geom_Curve> &,const Standard_Real,const GeomAbs_Shape,const Standard_Integer,const Standard_Integer >()  , py::arg("Curve"),  py::arg("Tol3d"),  py::arg("Order"),  py::arg("MaxSegments"),  py::arg("MaxDegree") )
        .def(py::init< const opencascade::handle<Adaptor3d_Curve> &,const Standard_Real,const GeomAbs_Shape,const Standard_Integer,const Standard_Integer >()  , py::arg("Curve"),  py::arg("Tol3d"),  py::arg("Order"),  py::arg("MaxSegments"),  py::arg("MaxDegree") )
    // custom constructors
    // methods
        .def("Curve",
             (opencascade::handle<Geom_BSplineCurve> (GeomConvert_ApproxCurve::*)() const) static_cast<opencascade::handle<Geom_BSplineCurve> (GeomConvert_ApproxCurve::*)() const>(&GeomConvert_ApproxCurve::Curve),
             R"#(Returns the BSpline curve resulting from the approximation algorithm.)#" 
          )
        .def("IsDone",
             (Standard_Boolean (GeomConvert_ApproxCurve::*)() const) static_cast<Standard_Boolean (GeomConvert_ApproxCurve::*)() const>(&GeomConvert_ApproxCurve::IsDone),
             R"#(returns Standard_True if the approximation has been done within required tolerance)#" 
          )
        .def("HasResult",
             (Standard_Boolean (GeomConvert_ApproxCurve::*)() const) static_cast<Standard_Boolean (GeomConvert_ApproxCurve::*)() const>(&GeomConvert_ApproxCurve::HasResult),
             R"#(Returns Standard_True if the approximation did come out with a result that is not NECESSARELY within the required tolerance)#" 
          )
        .def("MaxError",
             (Standard_Real (GeomConvert_ApproxCurve::*)() const) static_cast<Standard_Real (GeomConvert_ApproxCurve::*)() const>(&GeomConvert_ApproxCurve::MaxError),
             R"#(Returns the greatest distance between a point on the source conic and the BSpline curve resulting from the approximation. (>0 when an approximation has been done, 0 if no approximation))#" 
          )
        .def("Dump",
             (void (GeomConvert_ApproxCurve::*)( std::ostream &  ) const) static_cast<void (GeomConvert_ApproxCurve::*)( std::ostream &  ) const>(&GeomConvert_ApproxCurve::Dump),
             R"#(Print on the stream o information about the object)#"  , py::arg("o")
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomConvert_ApproxSurface from ./opencascade/GeomConvert_ApproxSurface.hxx
    klass = m.attr("GeomConvert_ApproxSurface");


    // nested enums

    static_cast<py::class_<GeomConvert_ApproxSurface , shared_ptr<GeomConvert_ApproxSurface>  >>(klass)
    // constructors
        .def(py::init< const opencascade::handle<Geom_Surface> &,const Standard_Real,const GeomAbs_Shape,const GeomAbs_Shape,const Standard_Integer,const Standard_Integer,const Standard_Integer,const Standard_Integer >()  , py::arg("Surf"),  py::arg("Tol3d"),  py::arg("UContinuity"),  py::arg("VContinuity"),  py::arg("MaxDegU"),  py::arg("MaxDegV"),  py::arg("MaxSegments"),  py::arg("PrecisCode") )
        .def(py::init< const opencascade::handle<Adaptor3d_Surface> &,const Standard_Real,const GeomAbs_Shape,const GeomAbs_Shape,const Standard_Integer,const Standard_Integer,const Standard_Integer,const Standard_Integer >()  , py::arg("Surf"),  py::arg("Tol3d"),  py::arg("UContinuity"),  py::arg("VContinuity"),  py::arg("MaxDegU"),  py::arg("MaxDegV"),  py::arg("MaxSegments"),  py::arg("PrecisCode") )
    // custom constructors
    // methods
        .def("Surface",
             (opencascade::handle<Geom_BSplineSurface> (GeomConvert_ApproxSurface::*)() const) static_cast<opencascade::handle<Geom_BSplineSurface> (GeomConvert_ApproxSurface::*)() const>(&GeomConvert_ApproxSurface::Surface),
             R"#(Returns the BSpline surface resulting from the approximation algorithm.)#" 
          )
        .def("IsDone",
             (Standard_Boolean (GeomConvert_ApproxSurface::*)() const) static_cast<Standard_Boolean (GeomConvert_ApproxSurface::*)() const>(&GeomConvert_ApproxSurface::IsDone),
             R"#(Returns Standard_True if the approximation has be done)#" 
          )
        .def("HasResult",
             (Standard_Boolean (GeomConvert_ApproxSurface::*)() const) static_cast<Standard_Boolean (GeomConvert_ApproxSurface::*)() const>(&GeomConvert_ApproxSurface::HasResult),
             R"#(Returns true if the approximation did come out with a result that is not NECESSARILY within the required tolerance or a result that is not recognized with the wished continuities.)#" 
          )
        .def("MaxError",
             (Standard_Real (GeomConvert_ApproxSurface::*)() const) static_cast<Standard_Real (GeomConvert_ApproxSurface::*)() const>(&GeomConvert_ApproxSurface::MaxError),
             R"#(Returns the greatest distance between a point on the source conic surface and the BSpline surface resulting from the approximation (>0 when an approximation has been done, 0 if no approximation ))#" 
          )
        .def("Dump",
             (void (GeomConvert_ApproxSurface::*)( std::ostream &  ) const) static_cast<void (GeomConvert_ApproxSurface::*)( std::ostream &  ) const>(&GeomConvert_ApproxSurface::Dump),
             R"#(Prints on the stream o information on the current state of the object.)#"  , py::arg("o")
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomConvert_BSplineCurveKnotSplitting from ./opencascade/GeomConvert_BSplineCurveKnotSplitting.hxx
    klass = m.attr("GeomConvert_BSplineCurveKnotSplitting");


    // nested enums

    static_cast<py::class_<GeomConvert_BSplineCurveKnotSplitting , shared_ptr<GeomConvert_BSplineCurveKnotSplitting>  >>(klass)
    // constructors
        .def(py::init< const opencascade::handle<Geom_BSplineCurve> &,const Standard_Integer >()  , py::arg("BasisCurve"),  py::arg("ContinuityRange") )
    // custom constructors
    // methods
        .def("NbSplits",
             (Standard_Integer (GeomConvert_BSplineCurveKnotSplitting::*)() const) static_cast<Standard_Integer (GeomConvert_BSplineCurveKnotSplitting::*)() const>(&GeomConvert_BSplineCurveKnotSplitting::NbSplits),
             R"#(Returns the number of points at which the analyzed BSpline curve should be split, in order to obtain arcs with the continuity required by this framework. All these points correspond to knot values. Note that the first and last points of the curve, which bound the first and last arcs, are counted among these splitting points.)#" 
          )
        .def("Splitting",
             (void (GeomConvert_BSplineCurveKnotSplitting::*)( NCollection_Array1<Standard_Integer> &  ) const) static_cast<void (GeomConvert_BSplineCurveKnotSplitting::*)( NCollection_Array1<Standard_Integer> &  ) const>(&GeomConvert_BSplineCurveKnotSplitting::Splitting),
             R"#(Loads the SplitValues table with the split knots values computed in this framework. Each value in the table is an index in the knots table of the BSpline curve analyzed by this algorithm. The values in SplitValues are given in ascending order and comprise the indices of the knots which give the first and last points of the curve. Use two consecutive values from the table as arguments of the global function SplitBSplineCurve (provided by the package GeomConvert) to split the curve. Exceptions Standard_DimensionError if the array SplitValues was not created with the following bounds: - 1, and - the number of split points computed in this framework (as given by the function NbSplits).)#"  , py::arg("SplitValues")
          )
        .def("SplitValue",
             (Standard_Integer (GeomConvert_BSplineCurveKnotSplitting::*)( const Standard_Integer  ) const) static_cast<Standard_Integer (GeomConvert_BSplineCurveKnotSplitting::*)( const Standard_Integer  ) const>(&GeomConvert_BSplineCurveKnotSplitting::SplitValue),
             R"#(Returns the split knot of index Index to the split knots table computed in this framework. The returned value is an index in the knots table of the BSpline curve analyzed by this algorithm. Notes: - If Index is equal to 1, the corresponding knot gives the first point of the curve. - If Index is equal to the number of split knots computed in this framework, the corresponding point is the last point of the curve. Exceptions Standard_RangeError if Index is less than 1 or greater than the number of split knots computed in this framework.)#"  , py::arg("Index")
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomConvert_BSplineCurveToBezierCurve from ./opencascade/GeomConvert_BSplineCurveToBezierCurve.hxx
    klass = m.attr("GeomConvert_BSplineCurveToBezierCurve");


    // nested enums

    static_cast<py::class_<GeomConvert_BSplineCurveToBezierCurve , shared_ptr<GeomConvert_BSplineCurveToBezierCurve>  >>(klass)
    // constructors
        .def(py::init< const opencascade::handle<Geom_BSplineCurve> & >()  , py::arg("BasisCurve") )
        .def(py::init< const opencascade::handle<Geom_BSplineCurve> &,const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("BasisCurve"),  py::arg("U1"),  py::arg("U2"),  py::arg("ParametricTolerance") )
    // custom constructors
    // methods
        .def("Arc",
             (opencascade::handle<Geom_BezierCurve> (GeomConvert_BSplineCurveToBezierCurve::*)( const Standard_Integer  ) ) static_cast<opencascade::handle<Geom_BezierCurve> (GeomConvert_BSplineCurveToBezierCurve::*)( const Standard_Integer  ) >(&GeomConvert_BSplineCurveToBezierCurve::Arc),
             R"#(Constructs and returns the Bezier curve of index Index to the table of adjacent Bezier arcs computed by this algorithm. This Bezier curve has the same orientation as the BSpline curve analyzed in this framework. Exceptions Standard_OutOfRange if Index is less than 1 or greater than the number of adjacent Bezier arcs computed by this algorithm.)#"  , py::arg("Index")
          )
        .def("Arcs",
             (void (GeomConvert_BSplineCurveToBezierCurve::*)( NCollection_Array1<opencascade::handle<Geom_BezierCurve>> &  ) ) static_cast<void (GeomConvert_BSplineCurveToBezierCurve::*)( NCollection_Array1<opencascade::handle<Geom_BezierCurve>> &  ) >(&GeomConvert_BSplineCurveToBezierCurve::Arcs),
             R"#(Constructs all the Bezier curves whose data is computed by this algorithm and loads these curves into the Curves table. The Bezier curves have the same orientation as the BSpline curve analyzed in this framework. Exceptions Standard_DimensionError if the Curves array was not created with the following bounds: - 1 , and - the number of adjacent Bezier arcs computed by this algorithm (as given by the function NbArcs).)#"  , py::arg("Curves")
          )
        .def("Knots",
             (void (GeomConvert_BSplineCurveToBezierCurve::*)( NCollection_Array1<Standard_Real> &  ) const) static_cast<void (GeomConvert_BSplineCurveToBezierCurve::*)( NCollection_Array1<Standard_Real> &  ) const>(&GeomConvert_BSplineCurveToBezierCurve::Knots),
             R"#(This methode returns the bspline's knots associated to the converted arcs Raised if the length of Curves is not equal to NbArcs + 1.)#"  , py::arg("TKnots")
          )
        .def("NbArcs",
             (Standard_Integer (GeomConvert_BSplineCurveToBezierCurve::*)() const) static_cast<Standard_Integer (GeomConvert_BSplineCurveToBezierCurve::*)() const>(&GeomConvert_BSplineCurveToBezierCurve::NbArcs),
             R"#(Returns the number of BezierCurve arcs. If at the creation time you have decomposed the basis curve between the parametric values UFirst, ULast the number of BezierCurve arcs depends on the number of knots included inside the interval [UFirst, ULast]. If you have decomposed the whole basis B-spline curve the number of BezierCurve arcs NbArcs is equal to the number of knots less one.)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomConvert_BSplineSurfaceKnotSplitting from ./opencascade/GeomConvert_BSplineSurfaceKnotSplitting.hxx
    klass = m.attr("GeomConvert_BSplineSurfaceKnotSplitting");


    // nested enums

    static_cast<py::class_<GeomConvert_BSplineSurfaceKnotSplitting , shared_ptr<GeomConvert_BSplineSurfaceKnotSplitting>  >>(klass)
    // constructors
        .def(py::init< const opencascade::handle<Geom_BSplineSurface> &,const Standard_Integer,const Standard_Integer >()  , py::arg("BasisSurface"),  py::arg("UContinuityRange"),  py::arg("VContinuityRange") )
    // custom constructors
    // methods
        .def("NbUSplits",
             (Standard_Integer (GeomConvert_BSplineSurfaceKnotSplitting::*)() const) static_cast<Standard_Integer (GeomConvert_BSplineSurfaceKnotSplitting::*)() const>(&GeomConvert_BSplineSurfaceKnotSplitting::NbUSplits),
             R"#(Returns the number of u-isoparametric curves along which the analysed BSpline surface should be split in order to obtain patches with the continuity required by this framework. The parameters which define these curves are knot values in the corresponding parametric direction. Note that the four curves which bound the surface are counted among these splitting curves.)#" 
          )
        .def("NbVSplits",
             (Standard_Integer (GeomConvert_BSplineSurfaceKnotSplitting::*)() const) static_cast<Standard_Integer (GeomConvert_BSplineSurfaceKnotSplitting::*)() const>(&GeomConvert_BSplineSurfaceKnotSplitting::NbVSplits),
             R"#(Returns the number of v-isoparametric curves along which the analysed BSpline surface should be split in order to obtain patches with the continuity required by this framework. The parameters which define these curves are knot values in the corresponding parametric direction. Note that the four curves which bound the surface are counted among these splitting curves.)#" 
          )
        .def("Splitting",
             (void (GeomConvert_BSplineSurfaceKnotSplitting::*)( NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<Standard_Integer> &  ) const) static_cast<void (GeomConvert_BSplineSurfaceKnotSplitting::*)( NCollection_Array1<Standard_Integer> & ,  NCollection_Array1<Standard_Integer> &  ) const>(&GeomConvert_BSplineSurfaceKnotSplitting::Splitting),
             R"#(Loads the USplit and VSplit tables with the split knots values computed in this framework. Each value in these tables is an index in the knots table corresponding to the u or v parametric direction of the BSpline surface analysed by this algorithm. The USplit and VSplit values are given in ascending order and comprise the indices of the knots which give the first and last isoparametric curves of the surface in the corresponding parametric direction. Use two consecutive values from the USplit table and two consecutive values from the VSplit table as arguments of the global function SplitBSplineSurface (provided by the package GeomConvert) to split the surface. Exceptions Standard_DimensionError if: - the array USplit was not created with the following bounds: - 1 , and - the number of split knots in the u parametric direction computed in this framework (as given by the function NbUSplits); or - the array VSplit was not created with the following bounds: - 1 , and - the number of split knots in the v parametric direction computed in this framework (as given by the function NbVSplits).)#"  , py::arg("USplit"),  py::arg("VSplit")
          )
        .def("USplitValue",
             (Standard_Integer (GeomConvert_BSplineSurfaceKnotSplitting::*)( const Standard_Integer  ) const) static_cast<Standard_Integer (GeomConvert_BSplineSurfaceKnotSplitting::*)( const Standard_Integer  ) const>(&GeomConvert_BSplineSurfaceKnotSplitting::USplitValue),
             R"#(Returns the split knot of index UIndex to the split knots table for the u parametric direction computed in this framework. The returned value is an index in the knots table relative to the u parametric direction of the BSpline surface analysed by this algorithm. Note: If UIndex is equal to 1, or to the number of split knots for the u parametric direction computed in this framework, the corresponding knot gives the parameter of one of the bounding curves of the surface. Exceptions Standard_RangeError if UIndex is less than 1 or greater than the number of split knots for the u parametric direction computed in this framework.)#"  , py::arg("UIndex")
          )
        .def("VSplitValue",
             (Standard_Integer (GeomConvert_BSplineSurfaceKnotSplitting::*)( const Standard_Integer  ) const) static_cast<Standard_Integer (GeomConvert_BSplineSurfaceKnotSplitting::*)( const Standard_Integer  ) const>(&GeomConvert_BSplineSurfaceKnotSplitting::VSplitValue),
             R"#(Returns the split knot of index VIndex to the split knots table for the v parametric direction computed in this framework. The returned value is an index in the knots table relative to the v parametric direction of the BSpline surface analysed by this algorithm. Note: If UIndex is equal to 1, or to the number of split knots for the v parametric direction computed in this framework, the corresponding knot gives the parameter of one of the bounding curves of the surface. Exceptions Standard_RangeError if VIndex is less than 1 or greater than the number of split knots for the v parametric direction computed in this framework.)#"  , py::arg("VIndex")
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomConvert_BSplineSurfaceToBezierSurface from ./opencascade/GeomConvert_BSplineSurfaceToBezierSurface.hxx
    klass = m.attr("GeomConvert_BSplineSurfaceToBezierSurface");


    // nested enums

    static_cast<py::class_<GeomConvert_BSplineSurfaceToBezierSurface , shared_ptr<GeomConvert_BSplineSurfaceToBezierSurface>  >>(klass)
    // constructors
        .def(py::init< const opencascade::handle<Geom_BSplineSurface> & >()  , py::arg("BasisSurface") )
        .def(py::init< const opencascade::handle<Geom_BSplineSurface> &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("BasisSurface"),  py::arg("U1"),  py::arg("U2"),  py::arg("V1"),  py::arg("V2"),  py::arg("ParametricTolerance") )
    // custom constructors
    // methods
        .def("Patch",
             (opencascade::handle<Geom_BezierSurface> (GeomConvert_BSplineSurfaceToBezierSurface::*)( const Standard_Integer ,  const Standard_Integer  ) ) static_cast<opencascade::handle<Geom_BezierSurface> (GeomConvert_BSplineSurfaceToBezierSurface::*)( const Standard_Integer ,  const Standard_Integer  ) >(&GeomConvert_BSplineSurfaceToBezierSurface::Patch),
             R"#(Constructs and returns the Bezier surface of indices (UIndex, VIndex) to the patch grid computed on the BSpline surface analyzed by this algorithm. This Bezier surface has the same orientation as the BSpline surface analyzed in this framework. UIndex is an index common to a row in the patch grid. A row in the grid corresponds to a series of adjacent patches, all limited by the same two u-isoparametric curves of the surface. VIndex is an index common to a column in the patch grid. A column in the grid corresponds to a series of adjacent patches, all limited by the same two v-isoparametric curves of the surface. Exceptions Standard_OutOfRange if: - UIndex is less than 1 or greater than the number of rows in the patch grid computed on the BSpline surface analyzed by this algorithm (as returned by the function NbUPatches); or if - VIndex is less than 1 or greater than the number of columns in the patch grid computed on the BSpline surface analyzed by this algorithm (as returned by the function NbVPatches).)#"  , py::arg("UIndex"),  py::arg("VIndex")
          )
        .def("Patches",
             (void (GeomConvert_BSplineSurfaceToBezierSurface::*)( NCollection_Array2<opencascade::handle<Geom_BezierSurface>> &  ) ) static_cast<void (GeomConvert_BSplineSurfaceToBezierSurface::*)( NCollection_Array2<opencascade::handle<Geom_BezierSurface>> &  ) >(&GeomConvert_BSplineSurfaceToBezierSurface::Patches),
             R"#(Constructs all the Bezier surfaces whose data is computed by this algorithm, and loads them into the Surfaces table. These Bezier surfaces have the same orientation as the BSpline surface analyzed in this framework. The Surfaces array is organised in the same way as the patch grid computed on the BSpline surface analyzed by this algorithm. A row in the array corresponds to a series of adjacent patches, all limited by the same two u-isoparametric curves of the surface. A column in the array corresponds to a series of adjacent patches, all limited by the same two v-isoparametric curves of the surface. Exceptions Standard_DimensionError if the Surfaces array was not created with the following bounds: - 1, and the number of adjacent patch series in the u parametric direction of the patch grid computed on the BSpline surface, analyzed by this algorithm (as given by the function NbUPatches) as row bounds, - 1, and the number of adjacent patch series in the v parametric direction of the patch grid computed on the BSpline surface, analyzed by this algorithm (as given by the function NbVPatches) as column bounds.)#"  , py::arg("Surfaces")
          )
        .def("UKnots",
             (void (GeomConvert_BSplineSurfaceToBezierSurface::*)( NCollection_Array1<Standard_Real> &  ) const) static_cast<void (GeomConvert_BSplineSurfaceToBezierSurface::*)( NCollection_Array1<Standard_Real> &  ) const>(&GeomConvert_BSplineSurfaceToBezierSurface::UKnots),
             R"#(This methode returns the bspline's u-knots associated to the converted Patches Raised if the length of Curves is not equal to NbUPatches + 1.)#"  , py::arg("TKnots")
          )
        .def("VKnots",
             (void (GeomConvert_BSplineSurfaceToBezierSurface::*)( NCollection_Array1<Standard_Real> &  ) const) static_cast<void (GeomConvert_BSplineSurfaceToBezierSurface::*)( NCollection_Array1<Standard_Real> &  ) const>(&GeomConvert_BSplineSurfaceToBezierSurface::VKnots),
             R"#(This methode returns the bspline's v-knots associated to the converted Patches Raised if the length of Curves is not equal to NbVPatches + 1.)#"  , py::arg("TKnots")
          )
        .def("NbUPatches",
             (Standard_Integer (GeomConvert_BSplineSurfaceToBezierSurface::*)() const) static_cast<Standard_Integer (GeomConvert_BSplineSurfaceToBezierSurface::*)() const>(&GeomConvert_BSplineSurfaceToBezierSurface::NbUPatches),
             R"#(Returns the number of Bezier surfaces in the U direction. If at the creation time you have decomposed the basis Surface between the parametric values UFirst, ULast the number of Bezier surfaces in the U direction depends on the number of knots included inside the interval [UFirst, ULast]. If you have decomposed the whole basis B-spline surface the number of Bezier surfaces NbUPatches is equal to the number of UKnots less one.)#" 
          )
        .def("NbVPatches",
             (Standard_Integer (GeomConvert_BSplineSurfaceToBezierSurface::*)() const) static_cast<Standard_Integer (GeomConvert_BSplineSurfaceToBezierSurface::*)() const>(&GeomConvert_BSplineSurfaceToBezierSurface::NbVPatches),
             R"#(Returns the number of Bezier surfaces in the V direction. If at the creation time you have decomposed the basis surface between the parametric values VFirst, VLast the number of Bezier surfaces in the V direction depends on the number of knots included inside the interval [VFirst, VLast]. If you have decomposed the whole basis B-spline surface the number of Bezier surfaces NbVPatches is equal to the number of VKnots less one.)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomConvert_CompBezierSurfacesToBSplineSurface from ./opencascade/GeomConvert_CompBezierSurfacesToBSplineSurface.hxx
    klass = m.attr("GeomConvert_CompBezierSurfacesToBSplineSurface");


    // nested enums

    static_cast<py::class_<GeomConvert_CompBezierSurfacesToBSplineSurface , shared_ptr<GeomConvert_CompBezierSurfacesToBSplineSurface>  >>(klass)
    // constructors
        .def(py::init<  const NCollection_Array2<opencascade::handle<Geom_BezierSurface>> & >()  , py::arg("Beziers") )
        .def(py::init<  const NCollection_Array2<opencascade::handle<Geom_BezierSurface>> &,const Standard_Real,const Standard_Boolean >()  , py::arg("Beziers"),  py::arg("Tolerance"),  py::arg("RemoveKnots")=static_cast<const Standard_Boolean>(Standard_True) )
        .def(py::init<  const NCollection_Array2<opencascade::handle<Geom_BezierSurface>> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Real> &,const GeomAbs_Shape,const GeomAbs_Shape,const Standard_Real >()  , py::arg("Beziers"),  py::arg("UKnots"),  py::arg("VKnots"),  py::arg("UContinuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C0),  py::arg("VContinuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C0),  py::arg("Tolerance")=static_cast<const Standard_Real>(1.0e-4) )
    // custom constructors
    // methods
        .def("NbUKnots",
             (Standard_Integer (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const) static_cast<Standard_Integer (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const>(&GeomConvert_CompBezierSurfacesToBSplineSurface::NbUKnots),
             R"#(Returns the number of knots in the U direction of the BSpline surface whose data is computed in this framework.)#" 
          )
        .def("NbUPoles",
             (Standard_Integer (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const) static_cast<Standard_Integer (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const>(&GeomConvert_CompBezierSurfacesToBSplineSurface::NbUPoles),
             R"#(Returns number of poles in the U direction of the BSpline surface whose data is computed in this framework.)#" 
          )
        .def("NbVKnots",
             (Standard_Integer (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const) static_cast<Standard_Integer (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const>(&GeomConvert_CompBezierSurfacesToBSplineSurface::NbVKnots),
             R"#(Returns the number of knots in the V direction of the BSpline surface whose data is computed in this framework.)#" 
          )
        .def("NbVPoles",
             (Standard_Integer (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const) static_cast<Standard_Integer (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const>(&GeomConvert_CompBezierSurfacesToBSplineSurface::NbVPoles),
             R"#(Returns the number of poles in the V direction of the BSpline surface whose data is computed in this framework.)#" 
          )
        .def("UDegree",
             (Standard_Integer (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const) static_cast<Standard_Integer (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const>(&GeomConvert_CompBezierSurfacesToBSplineSurface::UDegree),
             R"#(Returns the degree for the u parametric direction of the BSpline surface whose data is computed in this framework.)#" 
          )
        .def("VDegree",
             (Standard_Integer (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const) static_cast<Standard_Integer (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const>(&GeomConvert_CompBezierSurfacesToBSplineSurface::VDegree),
             R"#(Returns the degree for the v parametric direction of the BSpline surface whose data is computed in this framework.)#" 
          )
        .def("IsDone",
             (Standard_Boolean (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const) static_cast<Standard_Boolean (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const>(&GeomConvert_CompBezierSurfacesToBSplineSurface::IsDone),
             R"#(Returns true if the conversion was successful. Unless an exception was raised at the time of construction, the conversion of the Bezier surface grid assigned to this algorithm is always carried out. IsDone returns false if the constraints defined at the time of construction cannot be respected. This occurs when there is an incompatibility between a required degree of continuity on the BSpline surface, and the maximum tolerance accepted for local deformations of the surface. In such a case the computed data does not satisfy all the initial constraints.)#" 
          )
        .def("NbUKnots",
             (Standard_Integer (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const) static_cast<Standard_Integer (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const>(&GeomConvert_CompBezierSurfacesToBSplineSurface::NbUKnots),
             R"#(Returns the number of knots in the U direction of the BSpline surface whose data is computed in this framework.)#" 
          )
        .def("NbUPoles",
             (Standard_Integer (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const) static_cast<Standard_Integer (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const>(&GeomConvert_CompBezierSurfacesToBSplineSurface::NbUPoles),
             R"#(Returns number of poles in the U direction of the BSpline surface whose data is computed in this framework.)#" 
          )
        .def("NbVKnots",
             (Standard_Integer (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const) static_cast<Standard_Integer (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const>(&GeomConvert_CompBezierSurfacesToBSplineSurface::NbVKnots),
             R"#(Returns the number of knots in the V direction of the BSpline surface whose data is computed in this framework.)#" 
          )
        .def("NbVPoles",
             (Standard_Integer (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const) static_cast<Standard_Integer (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const>(&GeomConvert_CompBezierSurfacesToBSplineSurface::NbVPoles),
             R"#(Returns the number of poles in the V direction of the BSpline surface whose data is computed in this framework.)#" 
          )
        .def("UDegree",
             (Standard_Integer (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const) static_cast<Standard_Integer (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const>(&GeomConvert_CompBezierSurfacesToBSplineSurface::UDegree),
             R"#(Returns the degree for the u parametric direction of the BSpline surface whose data is computed in this framework.)#" 
          )
        .def("VDegree",
             (Standard_Integer (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const) static_cast<Standard_Integer (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const>(&GeomConvert_CompBezierSurfacesToBSplineSurface::VDegree),
             R"#(Returns the degree for the v parametric direction of the BSpline surface whose data is computed in this framework.)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Poles",
             (const opencascade::handle<TColgp_HArray2OfPnt> & (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const) static_cast<const opencascade::handle<TColgp_HArray2OfPnt> & (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const>(&GeomConvert_CompBezierSurfacesToBSplineSurface::Poles),
             R"#(Returns the table of poles of the BSpline surface whose data is computed in this framework.)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("UKnots",
             (const opencascade::handle<TColStd_HArray1OfReal> & (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const) static_cast<const opencascade::handle<TColStd_HArray1OfReal> & (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const>(&GeomConvert_CompBezierSurfacesToBSplineSurface::UKnots),
             R"#(Returns the knots table for the u parametric direction of the BSpline surface whose data is computed in this framework.)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("VKnots",
             (const opencascade::handle<TColStd_HArray1OfReal> & (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const) static_cast<const opencascade::handle<TColStd_HArray1OfReal> & (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const>(&GeomConvert_CompBezierSurfacesToBSplineSurface::VKnots),
             R"#(Returns the knots table for the v parametric direction of the BSpline surface whose data is computed in this framework.)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("UMultiplicities",
             (const opencascade::handle<TColStd_HArray1OfInteger> & (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const) static_cast<const opencascade::handle<TColStd_HArray1OfInteger> & (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const>(&GeomConvert_CompBezierSurfacesToBSplineSurface::UMultiplicities),
             R"#(Returns the multiplicities table for the u parametric direction of the knots of the BSpline surface whose data is computed in this framework.)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("VMultiplicities",
             (const opencascade::handle<TColStd_HArray1OfInteger> & (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const) static_cast<const opencascade::handle<TColStd_HArray1OfInteger> & (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const>(&GeomConvert_CompBezierSurfacesToBSplineSurface::VMultiplicities),
             R"#(-- Returns the multiplicities table for the v parametric direction of the knots of the BSpline surface whose data is computed in this framework.)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("Poles",
             (const opencascade::handle<TColgp_HArray2OfPnt> & (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const) static_cast<const opencascade::handle<TColgp_HArray2OfPnt> & (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const>(&GeomConvert_CompBezierSurfacesToBSplineSurface::Poles),
             R"#(Returns the table of poles of the BSpline surface whose data is computed in this framework.)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("UKnots",
             (const opencascade::handle<TColStd_HArray1OfReal> & (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const) static_cast<const opencascade::handle<TColStd_HArray1OfReal> & (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const>(&GeomConvert_CompBezierSurfacesToBSplineSurface::UKnots),
             R"#(Returns the knots table for the u parametric direction of the BSpline surface whose data is computed in this framework.)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("VKnots",
             (const opencascade::handle<TColStd_HArray1OfReal> & (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const) static_cast<const opencascade::handle<TColStd_HArray1OfReal> & (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const>(&GeomConvert_CompBezierSurfacesToBSplineSurface::VKnots),
             R"#(Returns the knots table for the v parametric direction of the BSpline surface whose data is computed in this framework.)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("UMultiplicities",
             (const opencascade::handle<TColStd_HArray1OfInteger> & (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const) static_cast<const opencascade::handle<TColStd_HArray1OfInteger> & (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const>(&GeomConvert_CompBezierSurfacesToBSplineSurface::UMultiplicities),
             R"#(Returns the multiplicities table for the u parametric direction of the knots of the BSpline surface whose data is computed in this framework.)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("VMultiplicities",
             (const opencascade::handle<TColStd_HArray1OfInteger> & (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const) static_cast<const opencascade::handle<TColStd_HArray1OfInteger> & (GeomConvert_CompBezierSurfacesToBSplineSurface::*)() const>(&GeomConvert_CompBezierSurfacesToBSplineSurface::VMultiplicities),
             R"#(-- Returns the multiplicities table for the v parametric direction of the knots of the BSpline surface whose data is computed in this framework.)#"
             
             , py::return_value_policy::reference_internal
         )
;

    // Class GeomConvert_CompCurveToBSplineCurve from ./opencascade/GeomConvert_CompCurveToBSplineCurve.hxx
    klass = m.attr("GeomConvert_CompCurveToBSplineCurve");


    // nested enums

    static_cast<py::class_<GeomConvert_CompCurveToBSplineCurve , shared_ptr<GeomConvert_CompCurveToBSplineCurve>  >>(klass)
    // constructors
        .def(py::init< const Convert_ParameterisationType >()  , py::arg("Parameterisation")=static_cast<const Convert_ParameterisationType>(Convert_TgtThetaOver2) )
        .def(py::init< const opencascade::handle<Geom_BoundedCurve> &,const Convert_ParameterisationType >()  , py::arg("BasisCurve"),  py::arg("Parameterisation")=static_cast<const Convert_ParameterisationType>(Convert_TgtThetaOver2) )
    // custom constructors
    // methods
        .def("Add",
             (Standard_Boolean (GeomConvert_CompCurveToBSplineCurve::*)( const opencascade::handle<Geom_BoundedCurve> & ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Boolean ,  const Standard_Integer  ) ) static_cast<Standard_Boolean (GeomConvert_CompCurveToBSplineCurve::*)( const opencascade::handle<Geom_BoundedCurve> & ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Boolean ,  const Standard_Integer  ) >(&GeomConvert_CompCurveToBSplineCurve::Add),
             R"#(Append a curve in the BSpline Return False if the curve is not G0 with the BSplineCurve. Tolerance is used to check continuity and decrease Multiplicity at the common Knot until MinM if MinM = 0, the common Knot can be removed)#"  , py::arg("NewCurve"),  py::arg("Tolerance"),  py::arg("After")=static_cast<const Standard_Boolean>(Standard_False),  py::arg("WithRatio")=static_cast<const Standard_Boolean>(Standard_True),  py::arg("MinM")=static_cast<const Standard_Integer>(0)
          )
        .def("BSplineCurve",
             (opencascade::handle<Geom_BSplineCurve> (GeomConvert_CompCurveToBSplineCurve::*)() const) static_cast<opencascade::handle<Geom_BSplineCurve> (GeomConvert_CompCurveToBSplineCurve::*)() const>(&GeomConvert_CompCurveToBSplineCurve::BSplineCurve),
             R"#(None)#" 
          )
        .def("Clear",
             (void (GeomConvert_CompCurveToBSplineCurve::*)() ) static_cast<void (GeomConvert_CompCurveToBSplineCurve::*)() >(&GeomConvert_CompCurveToBSplineCurve::Clear),
             R"#(Clear a result curve)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomConvert_CurveToAnaCurve from ./opencascade/GeomConvert_CurveToAnaCurve.hxx
    klass = m.attr("GeomConvert_CurveToAnaCurve");


    // nested enums

    static_cast<py::class_<GeomConvert_CurveToAnaCurve , shared_ptr<GeomConvert_CurveToAnaCurve>  >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const opencascade::handle<Geom_Curve> & >()  , py::arg("C") )
    // custom constructors
    // methods
        .def("Init",
             (void (GeomConvert_CurveToAnaCurve::*)( const opencascade::handle<Geom_Curve> &  ) ) static_cast<void (GeomConvert_CurveToAnaCurve::*)( const opencascade::handle<Geom_Curve> &  ) >(&GeomConvert_CurveToAnaCurve::Init),
             R"#(None)#"  , py::arg("C")
          )
        .def("ConvertToAnalytical",
             (Standard_Boolean (GeomConvert_CurveToAnaCurve::*)( const Standard_Real ,  opencascade::handle<Geom_Curve> & ,  const Standard_Real ,  const Standard_Real ,  Standard_Real & ,  Standard_Real &  ) ) static_cast<Standard_Boolean (GeomConvert_CurveToAnaCurve::*)( const Standard_Real ,  opencascade::handle<Geom_Curve> & ,  const Standard_Real ,  const Standard_Real ,  Standard_Real & ,  Standard_Real &  ) >(&GeomConvert_CurveToAnaCurve::ConvertToAnalytical),
             R"#(Converts me to analytical if possible with given tolerance. The new first and last parameters are returned to newF, newL)#"  , py::arg("theTol"),  py::arg("theResultCurve"),  py::arg("F"),  py::arg("L"),  py::arg("newF"),  py::arg("newL")
          )
        .def("Gap",
             (Standard_Real (GeomConvert_CurveToAnaCurve::*)() const) static_cast<Standard_Real (GeomConvert_CurveToAnaCurve::*)() const>(&GeomConvert_CurveToAnaCurve::Gap),
             R"#(Returns maximal deviation of converted surface from the original one computed by last call to ConvertToAnalytical)#" 
          )
        .def("GetConvType",
             (GeomConvert_ConvType (GeomConvert_CurveToAnaCurve::*)() const) static_cast<GeomConvert_ConvType (GeomConvert_CurveToAnaCurve::*)() const>(&GeomConvert_CurveToAnaCurve::GetConvType),
             R"#(Returns conversion type)#" 
          )
        .def("SetConvType",
             (void (GeomConvert_CurveToAnaCurve::*)( const GeomConvert_ConvType  ) ) static_cast<void (GeomConvert_CurveToAnaCurve::*)( const GeomConvert_ConvType  ) >(&GeomConvert_CurveToAnaCurve::SetConvType),
             R"#(Sets type of convertion)#"  , py::arg("theConvType")
          )
        .def("GetTarget",
             (GeomAbs_CurveType (GeomConvert_CurveToAnaCurve::*)() const) static_cast<GeomAbs_CurveType (GeomConvert_CurveToAnaCurve::*)() const>(&GeomConvert_CurveToAnaCurve::GetTarget),
             R"#(Returns target curve type)#" 
          )
        .def("SetTarget",
             (void (GeomConvert_CurveToAnaCurve::*)( const GeomAbs_CurveType  ) ) static_cast<void (GeomConvert_CurveToAnaCurve::*)( const GeomAbs_CurveType  ) >(&GeomConvert_CurveToAnaCurve::SetTarget),
             R"#(Sets target curve type)#"  , py::arg("theTarget")
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("ComputeCurve_s",
                    (opencascade::handle<Geom_Curve> (*)( const opencascade::handle<Geom_Curve> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  Standard_Real & ,  Standard_Real & ,  Standard_Real & ,  const GeomConvert_ConvType ,  const GeomAbs_CurveType  ) ) static_cast<opencascade::handle<Geom_Curve> (*)( const opencascade::handle<Geom_Curve> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  Standard_Real & ,  Standard_Real & ,  Standard_Real & ,  const GeomConvert_ConvType ,  const GeomAbs_CurveType  ) >(&GeomConvert_CurveToAnaCurve::ComputeCurve),
                    R"#(None)#"  , py::arg("curve"),  py::arg("tolerance"),  py::arg("c1"),  py::arg("c2"),  py::arg("cf"),  py::arg("cl"),  py::arg("theGap"),  py::arg("theCurvType")=static_cast<const GeomConvert_ConvType>(GeomConvert_MinGap),  py::arg("theTarget")=static_cast<const GeomAbs_CurveType>(GeomAbs_Line)
          )
        .def_static("ComputeCircle_s",
                    (opencascade::handle<Geom_Curve> (*)( const opencascade::handle<Geom_Curve> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  Standard_Real & ,  Standard_Real & ,  Standard_Real &  ) ) static_cast<opencascade::handle<Geom_Curve> (*)( const opencascade::handle<Geom_Curve> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  Standard_Real & ,  Standard_Real & ,  Standard_Real &  ) >(&GeomConvert_CurveToAnaCurve::ComputeCircle),
                    R"#(Tries to convert the given curve to circle with given tolerance. Returns NULL curve if conversion is not possible.)#"  , py::arg("curve"),  py::arg("tolerance"),  py::arg("c1"),  py::arg("c2"),  py::arg("cf"),  py::arg("cl"),  py::arg("Deviation")
          )
        .def_static("ComputeEllipse_s",
                    (opencascade::handle<Geom_Curve> (*)( const opencascade::handle<Geom_Curve> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  Standard_Real & ,  Standard_Real & ,  Standard_Real &  ) ) static_cast<opencascade::handle<Geom_Curve> (*)( const opencascade::handle<Geom_Curve> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  Standard_Real & ,  Standard_Real & ,  Standard_Real &  ) >(&GeomConvert_CurveToAnaCurve::ComputeEllipse),
                    R"#(Tries to convert the given curve to ellipse with given tolerance. Returns NULL curve if conversion is not possible.)#"  , py::arg("curve"),  py::arg("tolerance"),  py::arg("c1"),  py::arg("c2"),  py::arg("cf"),  py::arg("cl"),  py::arg("Deviation")
          )
        .def_static("ComputeLine_s",
                    (opencascade::handle<Geom_Line> (*)( const opencascade::handle<Geom_Curve> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  Standard_Real & ,  Standard_Real & ,  Standard_Real &  ) ) static_cast<opencascade::handle<Geom_Line> (*)( const opencascade::handle<Geom_Curve> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  Standard_Real & ,  Standard_Real & ,  Standard_Real &  ) >(&GeomConvert_CurveToAnaCurve::ComputeLine),
                    R"#(Tries to convert the given curve to line with given tolerance. Returns NULL curve if conversion is not possible.)#"  , py::arg("curve"),  py::arg("tolerance"),  py::arg("c1"),  py::arg("c2"),  py::arg("cf"),  py::arg("cl"),  py::arg("Deviation")
          )
        .def_static("IsLinear_s",
                    (Standard_Boolean (*)(  const NCollection_Array1<gp_Pnt> & ,  const Standard_Real ,  Standard_Real &  ) ) static_cast<Standard_Boolean (*)(  const NCollection_Array1<gp_Pnt> & ,  const Standard_Real ,  Standard_Real &  ) >(&GeomConvert_CurveToAnaCurve::IsLinear),
                    R"#(Returns true if the set of points is linear with given tolerance)#"  , py::arg("aPoints"),  py::arg("tolerance"),  py::arg("Deviation")
          )
        .def_static("GetLine_s",
                    (gp_Lin (*)( const gp_Pnt & ,  const gp_Pnt & ,  Standard_Real & ,  Standard_Real &  ) ) static_cast<gp_Lin (*)( const gp_Pnt & ,  const gp_Pnt & ,  Standard_Real & ,  Standard_Real &  ) >(&GeomConvert_CurveToAnaCurve::GetLine),
                    R"#(Creates line on two points. Resulting parameters returned)#"  , py::arg("P1"),  py::arg("P2"),  py::arg("cf"),  py::arg("cl")
          )
        .def_static("GetCircle_s",
                    (Standard_Boolean (*)( gp_Circ & ,  const gp_Pnt & ,  const gp_Pnt & ,  const gp_Pnt &  ) ) static_cast<Standard_Boolean (*)( gp_Circ & ,  const gp_Pnt & ,  const gp_Pnt & ,  const gp_Pnt &  ) >(&GeomConvert_CurveToAnaCurve::GetCircle),
                    R"#(Creates circle on points. Returns true if OK.)#"  , py::arg("Circ"),  py::arg("P0"),  py::arg("P1"),  py::arg("P2")
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomConvert_FuncConeLSDist from ./opencascade/GeomConvert_FuncConeLSDist.hxx
    klass = m.attr("GeomConvert_FuncConeLSDist");


    // nested enums

    static_cast<py::class_<GeomConvert_FuncConeLSDist , shared_ptr<GeomConvert_FuncConeLSDist>  , math_MultipleVarFunction >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const opencascade::handle<TColgp_HArray1OfXYZ> &,const gp_Dir & >()  , py::arg("thePoints"),  py::arg("theDir") )
    // custom constructors
    // methods
        .def("SetPoints",
             (void (GeomConvert_FuncConeLSDist::*)( const opencascade::handle<TColgp_HArray1OfXYZ> &  ) ) static_cast<void (GeomConvert_FuncConeLSDist::*)( const opencascade::handle<TColgp_HArray1OfXYZ> &  ) >(&GeomConvert_FuncConeLSDist::SetPoints),
             R"#(None)#"  , py::arg("thePoints")
          )
        .def("SetDir",
             (void (GeomConvert_FuncConeLSDist::*)( const gp_Dir &  ) ) static_cast<void (GeomConvert_FuncConeLSDist::*)( const gp_Dir &  ) >(&GeomConvert_FuncConeLSDist::SetDir),
             R"#(None)#"  , py::arg("theDir")
          )
        .def("NbVariables",
             (Standard_Integer (GeomConvert_FuncConeLSDist::*)() const) static_cast<Standard_Integer (GeomConvert_FuncConeLSDist::*)() const>(&GeomConvert_FuncConeLSDist::NbVariables),
             R"#(Number of variables.)#" 
          )
        .def("Value",
             (Standard_Boolean (GeomConvert_FuncConeLSDist::*)(  const math_VectorBase<double> & ,  Standard_Real &  ) ) static_cast<Standard_Boolean (GeomConvert_FuncConeLSDist::*)(  const math_VectorBase<double> & ,  Standard_Real &  ) >(&GeomConvert_FuncConeLSDist::Value),
             R"#(Value.)#"  , py::arg("X"),  py::arg("F")
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomConvert_FuncCylinderLSDist from ./opencascade/GeomConvert_FuncCylinderLSDist.hxx
    klass = m.attr("GeomConvert_FuncCylinderLSDist");


    // nested enums

    static_cast<py::class_<GeomConvert_FuncCylinderLSDist , shared_ptr<GeomConvert_FuncCylinderLSDist>  , math_MultipleVarFunctionWithGradient >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const opencascade::handle<TColgp_HArray1OfXYZ> &,const gp_Dir & >()  , py::arg("thePoints"),  py::arg("theDir") )
    // custom constructors
    // methods
        .def("SetPoints",
             (void (GeomConvert_FuncCylinderLSDist::*)( const opencascade::handle<TColgp_HArray1OfXYZ> &  ) ) static_cast<void (GeomConvert_FuncCylinderLSDist::*)( const opencascade::handle<TColgp_HArray1OfXYZ> &  ) >(&GeomConvert_FuncCylinderLSDist::SetPoints),
             R"#(None)#"  , py::arg("thePoints")
          )
        .def("SetDir",
             (void (GeomConvert_FuncCylinderLSDist::*)( const gp_Dir &  ) ) static_cast<void (GeomConvert_FuncCylinderLSDist::*)( const gp_Dir &  ) >(&GeomConvert_FuncCylinderLSDist::SetDir),
             R"#(None)#"  , py::arg("theDir")
          )
        .def("NbVariables",
             (Standard_Integer (GeomConvert_FuncCylinderLSDist::*)() const) static_cast<Standard_Integer (GeomConvert_FuncCylinderLSDist::*)() const>(&GeomConvert_FuncCylinderLSDist::NbVariables),
             R"#(Number of variables.)#" 
          )
        .def("Value",
             (Standard_Boolean (GeomConvert_FuncCylinderLSDist::*)(  const math_VectorBase<double> & ,  Standard_Real &  ) ) static_cast<Standard_Boolean (GeomConvert_FuncCylinderLSDist::*)(  const math_VectorBase<double> & ,  Standard_Real &  ) >(&GeomConvert_FuncCylinderLSDist::Value),
             R"#(Value.)#"  , py::arg("X"),  py::arg("F")
          )
        .def("Gradient",
             (Standard_Boolean (GeomConvert_FuncCylinderLSDist::*)(  const math_VectorBase<double> & ,  math_VectorBase<double> &  ) ) static_cast<Standard_Boolean (GeomConvert_FuncCylinderLSDist::*)(  const math_VectorBase<double> & ,  math_VectorBase<double> &  ) >(&GeomConvert_FuncCylinderLSDist::Gradient),
             R"#(Gradient.)#"  , py::arg("X"),  py::arg("G")
          )
        .def("Values",
             (Standard_Boolean (GeomConvert_FuncCylinderLSDist::*)(  const math_VectorBase<double> & ,  Standard_Real & ,  math_VectorBase<double> &  ) ) static_cast<Standard_Boolean (GeomConvert_FuncCylinderLSDist::*)(  const math_VectorBase<double> & ,  Standard_Real & ,  math_VectorBase<double> &  ) >(&GeomConvert_FuncCylinderLSDist::Values),
             R"#(Value and gradient.)#"  , py::arg("X"),  py::arg("F"),  py::arg("G")
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomConvert_FuncSphereLSDist from ./opencascade/GeomConvert_FuncSphereLSDist.hxx
    klass = m.attr("GeomConvert_FuncSphereLSDist");


    // nested enums

    static_cast<py::class_<GeomConvert_FuncSphereLSDist , shared_ptr<GeomConvert_FuncSphereLSDist>  , math_MultipleVarFunctionWithGradient >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const opencascade::handle<TColgp_HArray1OfXYZ> & >()  , py::arg("thePoints") )
    // custom constructors
    // methods
        .def("SetPoints",
             (void (GeomConvert_FuncSphereLSDist::*)( const opencascade::handle<TColgp_HArray1OfXYZ> &  ) ) static_cast<void (GeomConvert_FuncSphereLSDist::*)( const opencascade::handle<TColgp_HArray1OfXYZ> &  ) >(&GeomConvert_FuncSphereLSDist::SetPoints),
             R"#(None)#"  , py::arg("thePoints")
          )
        .def("NbVariables",
             (Standard_Integer (GeomConvert_FuncSphereLSDist::*)() const) static_cast<Standard_Integer (GeomConvert_FuncSphereLSDist::*)() const>(&GeomConvert_FuncSphereLSDist::NbVariables),
             R"#(Number of variables.)#" 
          )
        .def("Value",
             (Standard_Boolean (GeomConvert_FuncSphereLSDist::*)(  const math_VectorBase<double> & ,  Standard_Real &  ) ) static_cast<Standard_Boolean (GeomConvert_FuncSphereLSDist::*)(  const math_VectorBase<double> & ,  Standard_Real &  ) >(&GeomConvert_FuncSphereLSDist::Value),
             R"#(Value.)#"  , py::arg("X"),  py::arg("F")
          )
        .def("Gradient",
             (Standard_Boolean (GeomConvert_FuncSphereLSDist::*)(  const math_VectorBase<double> & ,  math_VectorBase<double> &  ) ) static_cast<Standard_Boolean (GeomConvert_FuncSphereLSDist::*)(  const math_VectorBase<double> & ,  math_VectorBase<double> &  ) >(&GeomConvert_FuncSphereLSDist::Gradient),
             R"#(Gradient.)#"  , py::arg("X"),  py::arg("G")
          )
        .def("Values",
             (Standard_Boolean (GeomConvert_FuncSphereLSDist::*)(  const math_VectorBase<double> & ,  Standard_Real & ,  math_VectorBase<double> &  ) ) static_cast<Standard_Boolean (GeomConvert_FuncSphereLSDist::*)(  const math_VectorBase<double> & ,  Standard_Real & ,  math_VectorBase<double> &  ) >(&GeomConvert_FuncSphereLSDist::Values),
             R"#(Value and gradient.)#"  , py::arg("X"),  py::arg("F"),  py::arg("G")
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomConvert_SurfToAnaSurf from ./opencascade/GeomConvert_SurfToAnaSurf.hxx
    klass = m.attr("GeomConvert_SurfToAnaSurf");


    // nested enums

    static_cast<py::class_<GeomConvert_SurfToAnaSurf , shared_ptr<GeomConvert_SurfToAnaSurf>  >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const opencascade::handle<Geom_Surface> & >()  , py::arg("S") )
    // custom constructors
    // methods
        .def("Init",
             (void (GeomConvert_SurfToAnaSurf::*)( const opencascade::handle<Geom_Surface> &  ) ) static_cast<void (GeomConvert_SurfToAnaSurf::*)( const opencascade::handle<Geom_Surface> &  ) >(&GeomConvert_SurfToAnaSurf::Init),
             R"#(None)#"  , py::arg("S")
          )
        .def("SetConvType",
             (void (GeomConvert_SurfToAnaSurf::*)( const GeomConvert_ConvType  ) ) static_cast<void (GeomConvert_SurfToAnaSurf::*)( const GeomConvert_ConvType  ) >(&GeomConvert_SurfToAnaSurf::SetConvType),
             R"#(None)#"  , py::arg("theConvType")=static_cast<const GeomConvert_ConvType>(GeomConvert_Simplest)
          )
        .def("SetTarget",
             (void (GeomConvert_SurfToAnaSurf::*)( const GeomAbs_SurfaceType  ) ) static_cast<void (GeomConvert_SurfToAnaSurf::*)( const GeomAbs_SurfaceType  ) >(&GeomConvert_SurfToAnaSurf::SetTarget),
             R"#(None)#"  , py::arg("theSurfType")=static_cast<const GeomAbs_SurfaceType>(GeomAbs_Plane)
          )
        .def("Gap",
             (Standard_Real (GeomConvert_SurfToAnaSurf::*)() const) static_cast<Standard_Real (GeomConvert_SurfToAnaSurf::*)() const>(&GeomConvert_SurfToAnaSurf::Gap),
             R"#(Returns maximal deviation of converted surface from the original one computed by last call to ConvertToAnalytical)#" 
          )
        .def("ConvertToAnalytical",
             (opencascade::handle<Geom_Surface> (GeomConvert_SurfToAnaSurf::*)( const Standard_Real  ) ) static_cast<opencascade::handle<Geom_Surface> (GeomConvert_SurfToAnaSurf::*)( const Standard_Real  ) >(&GeomConvert_SurfToAnaSurf::ConvertToAnalytical),
             R"#(Tries to convert the Surface to an Analytic form Returns the result In case of failure, returns a Null Handle)#"  , py::arg("InitialToler")
          )
        .def("ConvertToAnalytical",
             (opencascade::handle<Geom_Surface> (GeomConvert_SurfToAnaSurf::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<opencascade::handle<Geom_Surface> (GeomConvert_SurfToAnaSurf::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&GeomConvert_SurfToAnaSurf::ConvertToAnalytical),
             R"#(None)#"  , py::arg("InitialToler"),  py::arg("Umin"),  py::arg("Umax"),  py::arg("Vmin"),  py::arg("Vmax")
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("IsSame_s",
                    (Standard_Boolean (*)( const opencascade::handle<Geom_Surface> & ,  const opencascade::handle<Geom_Surface> & ,  const Standard_Real  ) ) static_cast<Standard_Boolean (*)( const opencascade::handle<Geom_Surface> & ,  const opencascade::handle<Geom_Surface> & ,  const Standard_Real  ) >(&GeomConvert_SurfToAnaSurf::IsSame),
                    R"#(Returns true if surfaces is same with the given tolerance)#"  , py::arg("S1"),  py::arg("S2"),  py::arg("tol")
          )
        .def_static("IsCanonical_s",
                    (Standard_Boolean (*)( const opencascade::handle<Geom_Surface> &  ) ) static_cast<Standard_Boolean (*)( const opencascade::handle<Geom_Surface> &  ) >(&GeomConvert_SurfToAnaSurf::IsCanonical),
                    R"#(Returns true, if surface is canonical)#"  , py::arg("S")
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomConvert_Units from ./opencascade/GeomConvert_Units.hxx
    klass = m.attr("GeomConvert_Units");

    // default constructor
    register_default_constructor<GeomConvert_Units , shared_ptr<GeomConvert_Units>>(m,"GeomConvert_Units");

    // nested enums

    static_cast<py::class_<GeomConvert_Units , shared_ptr<GeomConvert_Units>  >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("RadianToDegree_s",
                    (opencascade::handle<Geom2d_Curve> (*)( const opencascade::handle<Geom2d_Curve> & ,  const opencascade::handle<Geom_Surface> & ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<opencascade::handle<Geom2d_Curve> (*)( const opencascade::handle<Geom2d_Curve> & ,  const opencascade::handle<Geom_Surface> & ,  const Standard_Real ,  const Standard_Real  ) >(&GeomConvert_Units::RadianToDegree),
                    R"#(Convert 2d curve for change angle unit from radian to degree)#"  , py::arg("theCurve"),  py::arg("theSurface"),  py::arg("theLengthFactor"),  py::arg("theFactorRadianDegree")
          )
        .def_static("DegreeToRadian_s",
                    (opencascade::handle<Geom2d_Curve> (*)( const opencascade::handle<Geom2d_Curve> & ,  const opencascade::handle<Geom_Surface> & ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<opencascade::handle<Geom2d_Curve> (*)( const opencascade::handle<Geom2d_Curve> & ,  const opencascade::handle<Geom_Surface> & ,  const Standard_Real ,  const Standard_Real  ) >(&GeomConvert_Units::DegreeToRadian),
                    R"#(Convert 2d curve for change angle unit from degree to radian)#"  , py::arg("theCurve"),  py::arg("theSurface"),  py::arg("theLengthFactor"),  py::arg("theFactorRadianDegree")
          )
        .def_static("MirrorPCurve_s",
                    (opencascade::handle<Geom2d_Curve> (*)( const opencascade::handle<Geom2d_Curve> &  ) ) static_cast<opencascade::handle<Geom2d_Curve> (*)( const opencascade::handle<Geom2d_Curve> &  ) >(&GeomConvert_Units::MirrorPCurve),
                    R"#(return 2d curve as 'mirror' for given)#"  , py::arg("theCurve")
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

// functions
// ./opencascade/GeomConvert.hxx
// ./opencascade/GeomConvert_ApproxCurve.hxx
// ./opencascade/GeomConvert_ApproxSurface.hxx
// ./opencascade/GeomConvert_BSplineCurveKnotSplitting.hxx
// ./opencascade/GeomConvert_BSplineCurveToBezierCurve.hxx
// ./opencascade/GeomConvert_BSplineSurfaceKnotSplitting.hxx
// ./opencascade/GeomConvert_BSplineSurfaceToBezierSurface.hxx
// ./opencascade/GeomConvert_CompBezierSurfacesToBSplineSurface.hxx
// ./opencascade/GeomConvert_CompCurveToBSplineCurve.hxx
// ./opencascade/GeomConvert_ConvType.hxx
// ./opencascade/GeomConvert_CurveToAnaCurve.hxx
// ./opencascade/GeomConvert_FuncConeLSDist.hxx
// ./opencascade/GeomConvert_FuncCylinderLSDist.hxx
// ./opencascade/GeomConvert_FuncSphereLSDist.hxx
// ./opencascade/GeomConvert_SurfToAnaSurf.hxx
// ./opencascade/GeomConvert_Units.hxx

// Additional functions

// operators

// register typdefs


// exceptions

// user-defined post-inclusion per module in the body

};

// user-defined post-inclusion per module

// user-defined post