1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
|
// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybind11;
// Standard Handle
#include <Standard_Handle.hxx>
// user-defined inclusion per module before includes
// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_Surface.hxx>
#include <Geom_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_SectionGenerator.hxx>
#include <GeomFill_Line.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_SweepSectionGenerator.hxx>
#include <GeomFill_Line.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BezierSurface.hxx>
#include <Geom_BezierCurve.hxx>
#include <Law_Function.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_Frenet.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_CoonsAlgPatch.hxx>
#include <GeomFill_TgtField.hxx>
#include <Geom_BSplineSurface.hxx>
#include <GeomFill_Boundary.hxx>
#include <GeomFill_BoundWithSurf.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_Boundary.hxx>
#include <Law_Function.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_Frenet.hxx>
#include <Law_Function.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_TrihedronLaw.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_Frenet.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_Curve.hxx>
#include <Law_Function.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <GeomFill_Tensor.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_Curve.hxx>
#include <GeomFill_SectionLaw.hxx>
#include <Geom_Curve.hxx>
#include <Geom_Surface.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Approx_CurvlinFunc.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_Frenet.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_LocationLaw.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <GeomFill_DraftTrihedron.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_TrihedronWithGuide.hxx>
#include <GeomFill_SectionLaw.hxx>
#include <Geom_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_Surface.hxx>
#include <GeomFill_LocationLaw.hxx>
#include <GeomFill_SectionLaw.hxx>
#include <Geom2d_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Geom_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_LocationLaw.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Law_Function.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_LocationLaw.hxx>
#include <GeomFill_SectionLaw.hxx>
#include <Geom_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_LocationLaw.hxx>
#include <GeomFill_SectionLaw.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Law_BSpline.hxx>
#include <gp_Vec.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_CoonsAlgPatch.hxx>
#include <gp_Vec.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_Curve.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_BSplineSurface.hxx>
// module includes
#include <GeomFill.hxx>
#include <GeomFill_ApproxStyle.hxx>
#include <GeomFill_AppSurf.hxx>
#include <GeomFill_AppSweep.hxx>
#include <GeomFill_Array1OfLocationLaw.hxx>
#include <GeomFill_Array1OfSectionLaw.hxx>
#include <GeomFill_BezierCurves.hxx>
#include <GeomFill_Boundary.hxx>
#include <GeomFill_BoundWithSurf.hxx>
#include <GeomFill_BSplineCurves.hxx>
#include <GeomFill_CircularBlendFunc.hxx>
#include <GeomFill_ConstantBiNormal.hxx>
#include <GeomFill_ConstrainedFilling.hxx>
#include <GeomFill_Coons.hxx>
#include <GeomFill_CoonsAlgPatch.hxx>
#include <GeomFill_CornerState.hxx>
#include <GeomFill_CorrectedFrenet.hxx>
#include <GeomFill_CurveAndTrihedron.hxx>
#include <GeomFill_Curved.hxx>
#include <GeomFill_Darboux.hxx>
#include <GeomFill_DegeneratedBound.hxx>
#include <GeomFill_DiscreteTrihedron.hxx>
#include <GeomFill_DraftTrihedron.hxx>
#include <GeomFill_EvolvedSection.hxx>
#include <GeomFill_Filling.hxx>
#include <GeomFill_FillingStyle.hxx>
#include <GeomFill_Fixed.hxx>
#include <GeomFill_Frenet.hxx>
#include <GeomFill_FunctionDraft.hxx>
#include <GeomFill_FunctionGuide.hxx>
#include <GeomFill_Generator.hxx>
#include <GeomFill_GuideTrihedronAC.hxx>
#include <GeomFill_GuideTrihedronPlan.hxx>
#include <GeomFill_HArray1OfLocationLaw.hxx>
#include <GeomFill_HArray1OfSectionLaw.hxx>
#include <GeomFill_HSequenceOfAx2.hxx>
#include <GeomFill_Line.hxx>
#include <GeomFill_LocationDraft.hxx>
#include <GeomFill_LocationGuide.hxx>
#include <GeomFill_LocationLaw.hxx>
#include <GeomFill_LocFunction.hxx>
#include <GeomFill_NSections.hxx>
#include <GeomFill_Pipe.hxx>
#include <GeomFill_PipeError.hxx>
#include <GeomFill_PlanFunc.hxx>
#include <GeomFill_PolynomialConvertor.hxx>
#include <GeomFill_Profiler.hxx>
#include <GeomFill_QuasiAngularConvertor.hxx>
#include <GeomFill_SectionGenerator.hxx>
#include <GeomFill_SectionLaw.hxx>
#include <GeomFill_SectionPlacement.hxx>
#include <GeomFill_SequenceOfAx2.hxx>
#include <GeomFill_SequenceOfTrsf.hxx>
#include <GeomFill_SimpleBound.hxx>
#include <GeomFill_SnglrFunc.hxx>
#include <GeomFill_Stretch.hxx>
#include <GeomFill_Sweep.hxx>
#include <GeomFill_SweepFunction.hxx>
#include <GeomFill_SweepSectionGenerator.hxx>
#include <GeomFill_Tensor.hxx>
#include <GeomFill_TgtField.hxx>
#include <GeomFill_TgtOnCoons.hxx>
#include <GeomFill_Trihedron.hxx>
#include <GeomFill_TrihedronLaw.hxx>
#include <GeomFill_TrihedronWithGuide.hxx>
#include <GeomFill_UniformSection.hxx>
// template related includes
#include "NCollection_tmpl.hxx"
#include "NCollection_tmpl.hxx"
#include "NCollection_tmpl.hxx"
#include "NCollection_tmpl.hxx"
// user-defined pre
#include "OCP_specific.inc"
// user-defined inclusion per module
// Module definiiton
void register_GeomFill_enums(py::module &main_module) {
py::module m = main_module.def_submodule("GeomFill", R"#()#");
// user-defined inclusion per module in the body
// enums
py::enum_<GeomFill_Trihedron>(m, "GeomFill_Trihedron",R"#(None)#")
.value("GeomFill_IsCorrectedFrenet",GeomFill_Trihedron::GeomFill_IsCorrectedFrenet)
.value("GeomFill_IsFixed",GeomFill_Trihedron::GeomFill_IsFixed)
.value("GeomFill_IsFrenet",GeomFill_Trihedron::GeomFill_IsFrenet)
.value("GeomFill_IsConstantNormal",GeomFill_Trihedron::GeomFill_IsConstantNormal)
.value("GeomFill_IsDarboux",GeomFill_Trihedron::GeomFill_IsDarboux)
.value("GeomFill_IsGuideAC",GeomFill_Trihedron::GeomFill_IsGuideAC)
.value("GeomFill_IsGuidePlan",GeomFill_Trihedron::GeomFill_IsGuidePlan)
.value("GeomFill_IsGuideACWithContact",GeomFill_Trihedron::GeomFill_IsGuideACWithContact)
.value("GeomFill_IsGuidePlanWithContact",GeomFill_Trihedron::GeomFill_IsGuidePlanWithContact)
.value("GeomFill_IsDiscreteTrihedron",GeomFill_Trihedron::GeomFill_IsDiscreteTrihedron).export_values();
py::enum_<GeomFill_ApproxStyle>(m, "GeomFill_ApproxStyle",R"#(None)#")
.value("GeomFill_Section",GeomFill_ApproxStyle::GeomFill_Section)
.value("GeomFill_Location",GeomFill_ApproxStyle::GeomFill_Location).export_values();
py::enum_<GeomFill_PipeError>(m, "GeomFill_PipeError",R"#(None)#")
.value("GeomFill_PipeOk",GeomFill_PipeError::GeomFill_PipeOk)
.value("GeomFill_PipeNotOk",GeomFill_PipeError::GeomFill_PipeNotOk)
.value("GeomFill_PlaneNotIntersectGuide",GeomFill_PipeError::GeomFill_PlaneNotIntersectGuide)
.value("GeomFill_ImpossibleContact",GeomFill_PipeError::GeomFill_ImpossibleContact).export_values();
py::enum_<GeomFill_FillingStyle>(m, "GeomFill_FillingStyle",R"#(Defines the three filling styles used in this package - GeomFill_Stretch - the style with the flattest patches - GeomFill_Coons - a rounded style of patch with less depth than those of Curved - GeomFill_Curved - the style with the most rounded patches.)#")
.value("GeomFill_StretchStyle",GeomFill_FillingStyle::GeomFill_StretchStyle)
.value("GeomFill_CoonsStyle",GeomFill_FillingStyle::GeomFill_CoonsStyle)
.value("GeomFill_CurvedStyle",GeomFill_FillingStyle::GeomFill_CurvedStyle).export_values();
//Python trampoline classes
class Py_GeomFill_Boundary : public GeomFill_Boundary{
public:
using GeomFill_Boundary::GeomFill_Boundary;
// public pure virtual
gp_Pnt Value(const Standard_Real U) const override { PYBIND11_OVERLOAD_PURE(gp_Pnt,GeomFill_Boundary,Value,U) };
void D1(const Standard_Real U,gp_Pnt & P,gp_Vec & V) const override { PYBIND11_OVERLOAD_PURE(void,GeomFill_Boundary,D1,U,P,V) };
void Reparametrize(const Standard_Real First,const Standard_Real Last,const Standard_Boolean HasDF,const Standard_Boolean HasDL,const Standard_Real DF,const Standard_Real DL,const Standard_Boolean Rev) override { PYBIND11_OVERLOAD_PURE(void,GeomFill_Boundary,Reparametrize,First,Last,HasDF,HasDL,DF,DL,Rev) };
Standard_Boolean IsDegenerated() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,GeomFill_Boundary,IsDegenerated,) };
void Bounds(Standard_Real & First,Standard_Real & Last) const override { PYBIND11_OVERLOAD_PURE(void,GeomFill_Boundary,Bounds,First,Last) };
// protected pure virtual
// private pure virtual
};
class Py_GeomFill_LocationLaw : public GeomFill_LocationLaw{
public:
using GeomFill_LocationLaw::GeomFill_LocationLaw;
// public pure virtual
Standard_Boolean SetCurve(const opencascade::handle<Adaptor3d_Curve> & C) override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,GeomFill_LocationLaw,SetCurve,C) };
const opencascade::handle<Adaptor3d_Curve> & GetCurve() const override { PYBIND11_OVERLOAD_PURE(const opencascade::handle<Adaptor3d_Curve> &,GeomFill_LocationLaw,GetCurve,) };
void SetTrsf(const gp_Mat & Transfo) override { PYBIND11_OVERLOAD_PURE(void,GeomFill_LocationLaw,SetTrsf,Transfo) };
opencascade::handle<GeomFill_LocationLaw> Copy() const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<GeomFill_LocationLaw>,GeomFill_LocationLaw,Copy,) };
Standard_Boolean D0(const Standard_Real Param,gp_Mat & M,gp_Vec & V) override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,GeomFill_LocationLaw,D0,Param,M,V) };
Standard_Boolean D0(const Standard_Real Param,gp_Mat & M,gp_Vec & V,NCollection_Array1<gp_Pnt2d> & Poles2d) override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,GeomFill_LocationLaw,D0,Param,M,V,Poles2d) };
Standard_Integer NbIntervals(const GeomAbs_Shape S) const override { PYBIND11_OVERLOAD_PURE(Standard_Integer,GeomFill_LocationLaw,NbIntervals,S) };
void Intervals(NCollection_Array1<Standard_Real> & T,const GeomAbs_Shape S) const override { PYBIND11_OVERLOAD_PURE(void,GeomFill_LocationLaw,Intervals,T,S) };
void SetInterval(const Standard_Real First,const Standard_Real Last) override { PYBIND11_OVERLOAD_PURE(void,GeomFill_LocationLaw,SetInterval,First,Last) };
Standard_Real GetMaximalNorm() override { PYBIND11_OVERLOAD_PURE(Standard_Real,GeomFill_LocationLaw,GetMaximalNorm,) };
void GetAverageLaw(gp_Mat & AM,gp_Vec & AV) override { PYBIND11_OVERLOAD_PURE(void,GeomFill_LocationLaw,GetAverageLaw,AM,AV) };
void GetInterval(Standard_Real & First,Standard_Real & Last) const override { PYBIND11_OVERLOAD_PURE(void,GeomFill_LocationLaw,GetInterval,First,Last) };
void GetDomain(Standard_Real & First,Standard_Real & Last) const override { PYBIND11_OVERLOAD_PURE(void,GeomFill_LocationLaw,GetDomain,First,Last) };
// protected pure virtual
// private pure virtual
};
class Py_GeomFill_SectionLaw : public GeomFill_SectionLaw{
public:
using GeomFill_SectionLaw::GeomFill_SectionLaw;
// public pure virtual
Standard_Boolean D0(const Standard_Real Param,NCollection_Array1<gp_Pnt> & Poles,NCollection_Array1<Standard_Real> & Weigths) override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,GeomFill_SectionLaw,D0,Param,Poles,Weigths) };
void Knots(NCollection_Array1<Standard_Real> & TKnots) const override { PYBIND11_OVERLOAD_PURE(void,GeomFill_SectionLaw,Knots,TKnots) };
void Mults(NCollection_Array1<Standard_Integer> & TMults) const override { PYBIND11_OVERLOAD_PURE(void,GeomFill_SectionLaw,Mults,TMults) };
Standard_Boolean IsRational() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,GeomFill_SectionLaw,IsRational,) };
Standard_Boolean IsUPeriodic() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,GeomFill_SectionLaw,IsUPeriodic,) };
Standard_Boolean IsVPeriodic() const override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,GeomFill_SectionLaw,IsVPeriodic,) };
Standard_Integer NbIntervals(const GeomAbs_Shape S) const override { PYBIND11_OVERLOAD_PURE(Standard_Integer,GeomFill_SectionLaw,NbIntervals,S) };
void Intervals(NCollection_Array1<Standard_Real> & T,const GeomAbs_Shape S) const override { PYBIND11_OVERLOAD_PURE(void,GeomFill_SectionLaw,Intervals,T,S) };
void SetInterval(const Standard_Real First,const Standard_Real Last) override { PYBIND11_OVERLOAD_PURE(void,GeomFill_SectionLaw,SetInterval,First,Last) };
void GetTolerance(const Standard_Real BoundTol,const Standard_Real SurfTol,const Standard_Real AngleTol,NCollection_Array1<Standard_Real> & Tol3d) const override { PYBIND11_OVERLOAD_PURE(void,GeomFill_SectionLaw,GetTolerance,BoundTol,SurfTol,AngleTol,Tol3d) };
Standard_Real MaximalSection() const override { PYBIND11_OVERLOAD_PURE(Standard_Real,GeomFill_SectionLaw,MaximalSection,) };
void SectionShape(Standard_Integer & NbPoles,Standard_Integer & NbKnots,Standard_Integer & Degree) const override { PYBIND11_OVERLOAD_PURE(void,GeomFill_SectionLaw,SectionShape,NbPoles,NbKnots,Degree) };
void GetInterval(Standard_Real & First,Standard_Real & Last) const override { PYBIND11_OVERLOAD_PURE(void,GeomFill_SectionLaw,GetInterval,First,Last) };
void GetDomain(Standard_Real & First,Standard_Real & Last) const override { PYBIND11_OVERLOAD_PURE(void,GeomFill_SectionLaw,GetDomain,First,Last) };
// protected pure virtual
// private pure virtual
};
class Py_GeomFill_TgtField : public GeomFill_TgtField{
public:
using GeomFill_TgtField::GeomFill_TgtField;
// public pure virtual
gp_Vec Value(const Standard_Real W) const override { PYBIND11_OVERLOAD_PURE(gp_Vec,GeomFill_TgtField,Value,W) };
gp_Vec D1(const Standard_Real W) const override { PYBIND11_OVERLOAD_PURE(gp_Vec,GeomFill_TgtField,D1,W) };
void D1(const Standard_Real W,gp_Vec & V,gp_Vec & DV) const override { PYBIND11_OVERLOAD_PURE(void,GeomFill_TgtField,D1,W,V,DV) };
// protected pure virtual
// private pure virtual
};
class Py_GeomFill_TrihedronLaw : public GeomFill_TrihedronLaw{
public:
using GeomFill_TrihedronLaw::GeomFill_TrihedronLaw;
// public pure virtual
opencascade::handle<GeomFill_TrihedronLaw> Copy() const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<GeomFill_TrihedronLaw>,GeomFill_TrihedronLaw,Copy,) };
Standard_Boolean D0(const Standard_Real Param,gp_Vec & Tangent,gp_Vec & Normal,gp_Vec & BiNormal) override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,GeomFill_TrihedronLaw,D0,Param,Tangent,Normal,BiNormal) };
Standard_Integer NbIntervals(const GeomAbs_Shape S) const override { PYBIND11_OVERLOAD_PURE(Standard_Integer,GeomFill_TrihedronLaw,NbIntervals,S) };
void Intervals(NCollection_Array1<Standard_Real> & T,const GeomAbs_Shape S) const override { PYBIND11_OVERLOAD_PURE(void,GeomFill_TrihedronLaw,Intervals,T,S) };
void GetAverageLaw(gp_Vec & ATangent,gp_Vec & ANormal,gp_Vec & ABiNormal) override { PYBIND11_OVERLOAD_PURE(void,GeomFill_TrihedronLaw,GetAverageLaw,ATangent,ANormal,ABiNormal) };
// protected pure virtual
// private pure virtual
};
class Py_GeomFill_TrihedronWithGuide : public GeomFill_TrihedronWithGuide{
public:
using GeomFill_TrihedronWithGuide::GeomFill_TrihedronWithGuide;
// public pure virtual
opencascade::handle<Adaptor3d_Curve> Guide() const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Adaptor3d_Curve>,GeomFill_TrihedronWithGuide,Guide,) };
void Origine(const Standard_Real Param1,const Standard_Real Param2) override { PYBIND11_OVERLOAD_PURE(void,GeomFill_TrihedronWithGuide,Origine,Param1,Param2) };
opencascade::handle<GeomFill_TrihedronLaw> Copy() const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<GeomFill_TrihedronLaw>,GeomFill_TrihedronLaw,Copy,) };
Standard_Boolean D0(const Standard_Real Param,gp_Vec & Tangent,gp_Vec & Normal,gp_Vec & BiNormal) override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,GeomFill_TrihedronLaw,D0,Param,Tangent,Normal,BiNormal) };
Standard_Integer NbIntervals(const GeomAbs_Shape S) const override { PYBIND11_OVERLOAD_PURE(Standard_Integer,GeomFill_TrihedronLaw,NbIntervals,S) };
void Intervals(NCollection_Array1<Standard_Real> & T,const GeomAbs_Shape S) const override { PYBIND11_OVERLOAD_PURE(void,GeomFill_TrihedronLaw,Intervals,T,S) };
void GetAverageLaw(gp_Vec & ATangent,gp_Vec & ANormal,gp_Vec & ABiNormal) override { PYBIND11_OVERLOAD_PURE(void,GeomFill_TrihedronLaw,GetAverageLaw,ATangent,ANormal,ABiNormal) };
// protected pure virtual
// private pure virtual
};
// pre-register typdefs+classes (topologically sorted)
py::class_<GeomFill , shared_ptr<GeomFill> >(m,"GeomFill",R"#(Tools and Data to filling Surface and Sweep Surfaces)#");
py::class_<GeomFill_BSplineCurves , shared_ptr<GeomFill_BSplineCurves> >(m,"GeomFill_BSplineCurves",R"#(An algorithm for constructing a BSpline surface filled from contiguous BSpline curves which form its boundaries. The algorithm accepts two, three or four BSpline curves as the boundaries of the target surface. A range of filling styles - more or less rounded, more or less flat - is available. A BSplineCurves object provides a framework for: - defining the boundaries, and the filling style of the surface - implementing the construction algorithm - consulting the result. Warning Some problems may show up with rational curves.)#");
py::class_<GeomFill_BezierCurves , shared_ptr<GeomFill_BezierCurves> >(m,"GeomFill_BezierCurves",R"#(This class provides an algorithm for constructing a Bezier surface filled from contiguous Bezier curves which form its boundaries. The algorithm accepts two, three or four Bezier curves as the boundaries of the target surface. A range of filling styles - more or less rounded, more or less flat - is available. A BezierCurves object provides a framework for: - defining the boundaries, and the filling style of the surface - implementing the construction algorithm - consulting the result. Warning Some problems may show up with rational curves.)#");
py::class_<GeomFill_ConstrainedFilling , shared_ptr<GeomFill_ConstrainedFilling> >(m,"GeomFill_ConstrainedFilling",R"#(An algorithm for constructing a BSpline surface filled from a series of boundaries which serve as path constraints and optionally, as tangency constraints. The algorithm accepts three or four curves as the boundaries of the target surface. The only FillingStyle used is Coons. A ConstrainedFilling object provides a framework for: - defining the boundaries of the surface - implementing the construction algorithm - consulting the result. Warning This surface filling algorithm is specifically designed to be used in connection with fillets. Satisfactory results cannot be guaranteed for other uses.)#");
py::class_<GeomFill_CornerState , shared_ptr<GeomFill_CornerState> >(m,"GeomFill_CornerState",R"#(Class (should be a structure) storing the information about continuity, normals parallelism, coons conditions and bounds tangents angle on the corner of contour to be filled.)#");
py::class_<GeomFill_Filling , shared_ptr<GeomFill_Filling> >(m,"GeomFill_Filling",R"#(Root class for Filling;)#");
py::class_<GeomFill_LocFunction , shared_ptr<GeomFill_LocFunction> >(m,"GeomFill_LocFunction",R"#(None)#");
py::class_<GeomFill_Pipe , shared_ptr<GeomFill_Pipe> >(m,"GeomFill_Pipe",R"#(Describes functions to construct pipes. A pipe is built by sweeping a curve (the section) along another curve (the path). The Pipe class provides the following types of construction: - pipes with a circular section of constant radius, - pipes with a constant section, - pipes with a section evolving between two given curves. All standard specific cases are detected in order to build, where required, a plane, cylinder, cone, sphere, torus, surface of linear extrusion or surface of revolution. Generally speaking, the result is a BSpline surface (NURBS). A Pipe object provides a framework for: - defining the pipe to be built, - implementing the construction algorithm, and - consulting the resulting surface. There are several methods to instantiate a Pipe: 1) give a path and a radius : the section is a circle. This location is the first point of the path, and this direction is the first derivate (calculate at the first point ) of the path.)#");
py::class_<GeomFill_PolynomialConvertor , shared_ptr<GeomFill_PolynomialConvertor> >(m,"GeomFill_PolynomialConvertor",R"#(To convert circular section in polynome)#");
py::class_<GeomFill_Profiler , shared_ptr<GeomFill_Profiler> >(m,"GeomFill_Profiler",R"#(Evaluation of the common BSplineProfile of a group of curves from Geom. All the curves will have the same degree, the same knot-vector, so the same number of poles.)#");
py::class_<GeomFill_QuasiAngularConvertor , shared_ptr<GeomFill_QuasiAngularConvertor> >(m,"GeomFill_QuasiAngularConvertor",R"#(To convert circular section in QuasiAngular Bezier form)#");
py::class_<GeomFill_SectionPlacement , shared_ptr<GeomFill_SectionPlacement> >(m,"GeomFill_SectionPlacement",R"#(To place section in sweep Function)#");
py::class_<GeomFill_Sweep , shared_ptr<GeomFill_Sweep> >(m,"GeomFill_Sweep",R"#(Geometrical Sweep Algorithm)#");
py::class_<GeomFill_SweepSectionGenerator , shared_ptr<GeomFill_SweepSectionGenerator> >(m,"GeomFill_SweepSectionGenerator",R"#(class for instantiation of AppBlend. evaluate the sections of a sweep surface.)#");
py::class_<GeomFill_Tensor , shared_ptr<GeomFill_Tensor> >(m,"GeomFill_Tensor",R"#(used to store the "gradient of gradient")#");
py::class_<GeomFill_AppSurf , shared_ptr<GeomFill_AppSurf> , AppBlend_Approx >(m,"GeomFill_AppSurf",R"#(Approximate a BSplineSurface passing by all the curves described in the SectionGenerator)#");
py::class_<GeomFill_AppSweep , shared_ptr<GeomFill_AppSweep> , AppBlend_Approx >(m,"GeomFill_AppSweep",R"#(Approximate a sweep surface passing by all the curves described in the SweepSectionGenerator.)#");
preregister_template_NCollection_Array1<opencascade::handle<GeomFill_LocationLaw>>(m,"GeomFill_Array1OfLocationLaw");
preregister_template_NCollection_Array1<opencascade::handle<GeomFill_SectionLaw>>(m,"GeomFill_Array1OfSectionLaw");
py::class_<GeomFill_Boundary ,opencascade::handle<GeomFill_Boundary> ,Py_GeomFill_Boundary , Standard_Transient >(m,"GeomFill_Boundary",R"#(Root class to define a boundary which will form part of a contour around a gap requiring filling. Any new type of constrained boundary must inherit this class. The GeomFill package provides two classes to define constrained boundaries: - GeomFill_SimpleBound to define an unattached boundary - GeomFill_BoundWithSurf to define a boundary attached to a surface. These objects are used to define the boundaries for a GeomFill_ConstrainedFilling framework.Root class to define a boundary which will form part of a contour around a gap requiring filling. Any new type of constrained boundary must inherit this class. The GeomFill package provides two classes to define constrained boundaries: - GeomFill_SimpleBound to define an unattached boundary - GeomFill_BoundWithSurf to define a boundary attached to a surface. These objects are used to define the boundaries for a GeomFill_ConstrainedFilling framework.Root class to define a boundary which will form part of a contour around a gap requiring filling. Any new type of constrained boundary must inherit this class. The GeomFill package provides two classes to define constrained boundaries: - GeomFill_SimpleBound to define an unattached boundary - GeomFill_BoundWithSurf to define a boundary attached to a surface. These objects are used to define the boundaries for a GeomFill_ConstrainedFilling framework.)#");
py::class_<GeomFill_CircularBlendFunc ,opencascade::handle<GeomFill_CircularBlendFunc> , Approx_SweepFunction >(m,"GeomFill_CircularBlendFunc",R"#(Circular Blend Function to approximate by SweepApproximation from ApproxCircular Blend Function to approximate by SweepApproximation from ApproxCircular Blend Function to approximate by SweepApproximation from Approx)#");
py::class_<GeomFill_Coons , shared_ptr<GeomFill_Coons> , GeomFill_Filling >(m,"GeomFill_Coons",R"#(None)#");
py::class_<GeomFill_CoonsAlgPatch ,opencascade::handle<GeomFill_CoonsAlgPatch> , Standard_Transient >(m,"GeomFill_CoonsAlgPatch",R"#(Provides evaluation methods on an algorithmic patch (based on 4 Curves) defined by its boundaries and blending functions.Provides evaluation methods on an algorithmic patch (based on 4 Curves) defined by its boundaries and blending functions.Provides evaluation methods on an algorithmic patch (based on 4 Curves) defined by its boundaries and blending functions.)#");
py::class_<GeomFill_Curved , shared_ptr<GeomFill_Curved> , GeomFill_Filling >(m,"GeomFill_Curved",R"#(None)#");
py::class_<GeomFill_FunctionDraft , shared_ptr<GeomFill_FunctionDraft> , math_FunctionSetWithDerivatives >(m,"GeomFill_FunctionDraft",R"#(None)#");
py::class_<GeomFill_FunctionGuide , shared_ptr<GeomFill_FunctionGuide> , math_FunctionSetWithDerivatives >(m,"GeomFill_FunctionGuide",R"#(None)#");
py::class_<GeomFill_Generator , shared_ptr<GeomFill_Generator> , GeomFill_Profiler >(m,"GeomFill_Generator",R"#(Create a surface using generating lines. Inherits profiler. The surface will be a BSplineSurface passing by all the curves described in the generator. The VDegree of the resulting surface is 1.)#");
py::class_<GeomFill_Line ,opencascade::handle<GeomFill_Line> , Standard_Transient >(m,"GeomFill_Line",R"#(class for instantiation of AppBlendclass for instantiation of AppBlendclass for instantiation of AppBlend)#");
py::class_<GeomFill_LocationLaw ,opencascade::handle<GeomFill_LocationLaw> ,Py_GeomFill_LocationLaw , Standard_Transient >(m,"GeomFill_LocationLaw",R"#(To define location law in Sweeping location is -- defined by an Matrix M and an Vector V, and transform an point P in MP+V.To define location law in Sweeping location is -- defined by an Matrix M and an Vector V, and transform an point P in MP+V.To define location law in Sweeping location is -- defined by an Matrix M and an Vector V, and transform an point P in MP+V.)#");
py::class_<GeomFill_PlanFunc , shared_ptr<GeomFill_PlanFunc> , math_FunctionWithDerivative >(m,"GeomFill_PlanFunc",R"#(None)#");
py::class_<GeomFill_SectionGenerator , shared_ptr<GeomFill_SectionGenerator> , GeomFill_Profiler >(m,"GeomFill_SectionGenerator",R"#(gives the functions needed for instantiation from AppSurf in AppBlend. Allow to evaluate a surface passing by all the curves if the Profiler.)#");
py::class_<GeomFill_SectionLaw ,opencascade::handle<GeomFill_SectionLaw> ,Py_GeomFill_SectionLaw , Standard_Transient >(m,"GeomFill_SectionLaw",R"#(To define section law in sweepingTo define section law in sweepingTo define section law in sweeping)#");
preregister_template_NCollection_Sequence<gp_Ax2>(m,"GeomFill_SequenceOfAx2");
preregister_template_NCollection_Sequence<gp_Trsf>(m,"GeomFill_SequenceOfTrsf");
py::class_<GeomFill_SnglrFunc ,opencascade::handle<GeomFill_SnglrFunc> , Adaptor3d_Curve >(m,"GeomFill_SnglrFunc",R"#(to represent function C'(t)^C''(t))#");
py::class_<GeomFill_Stretch , shared_ptr<GeomFill_Stretch> , GeomFill_Filling >(m,"GeomFill_Stretch",R"#(None)#");
py::class_<GeomFill_SweepFunction ,opencascade::handle<GeomFill_SweepFunction> , Approx_SweepFunction >(m,"GeomFill_SweepFunction",R"#(Function to approximate by SweepApproximation from Approx. To build general sweep Surface.Function to approximate by SweepApproximation from Approx. To build general sweep Surface.Function to approximate by SweepApproximation from Approx. To build general sweep Surface.)#");
py::class_<GeomFill_TgtField ,opencascade::handle<GeomFill_TgtField> ,Py_GeomFill_TgtField , Standard_Transient >(m,"GeomFill_TgtField",R"#(Root class defining the methods we need to make an algorithmic tangents field.Root class defining the methods we need to make an algorithmic tangents field.Root class defining the methods we need to make an algorithmic tangents field.)#");
py::class_<GeomFill_TrihedronLaw ,opencascade::handle<GeomFill_TrihedronLaw> ,Py_GeomFill_TrihedronLaw , Standard_Transient >(m,"GeomFill_TrihedronLaw",R"#(To define Trihedron along one CurveTo define Trihedron along one CurveTo define Trihedron along one Curve)#");
py::class_<GeomFill_BoundWithSurf ,opencascade::handle<GeomFill_BoundWithSurf> , GeomFill_Boundary >(m,"GeomFill_BoundWithSurf",R"#(Defines a 3d curve as a boundary for a GeomFill_ConstrainedFilling algorithm. This curve is attached to an existing surface. Defines a constrained boundary for filling the computations are done with a CurveOnSurf and a normals field defined by the normalized normal to the surface along the PCurve. Contains fields to allow a reparametrization of curve and normals field.Defines a 3d curve as a boundary for a GeomFill_ConstrainedFilling algorithm. This curve is attached to an existing surface. Defines a constrained boundary for filling the computations are done with a CurveOnSurf and a normals field defined by the normalized normal to the surface along the PCurve. Contains fields to allow a reparametrization of curve and normals field.Defines a 3d curve as a boundary for a GeomFill_ConstrainedFilling algorithm. This curve is attached to an existing surface. Defines a constrained boundary for filling the computations are done with a CurveOnSurf and a normals field defined by the normalized normal to the surface along the PCurve. Contains fields to allow a reparametrization of curve and normals field.)#");
py::class_<GeomFill_ConstantBiNormal ,opencascade::handle<GeomFill_ConstantBiNormal> , GeomFill_TrihedronLaw >(m,"GeomFill_ConstantBiNormal",R"#(Defined an Trihedron Law where the BiNormal, is fixedDefined an Trihedron Law where the BiNormal, is fixedDefined an Trihedron Law where the BiNormal, is fixed)#");
py::class_<GeomFill_CorrectedFrenet ,opencascade::handle<GeomFill_CorrectedFrenet> , GeomFill_TrihedronLaw >(m,"GeomFill_CorrectedFrenet",R"#(Defined an Corrected Frenet Trihedron Law It is like Frenet with an Torsion's minimizationDefined an Corrected Frenet Trihedron Law It is like Frenet with an Torsion's minimizationDefined an Corrected Frenet Trihedron Law It is like Frenet with an Torsion's minimization)#");
py::class_<GeomFill_CurveAndTrihedron ,opencascade::handle<GeomFill_CurveAndTrihedron> , GeomFill_LocationLaw >(m,"GeomFill_CurveAndTrihedron",R"#(Define location law with an TrihedronLaw and an curve Definition Location is : transformed section coordinates in (Curve(v)), (Normal(v), BiNormal(v), Tangente(v))) systeme are the same like section shape coordinates in (O,(OX, OY, OZ)) systeme.Define location law with an TrihedronLaw and an curve Definition Location is : transformed section coordinates in (Curve(v)), (Normal(v), BiNormal(v), Tangente(v))) systeme are the same like section shape coordinates in (O,(OX, OY, OZ)) systeme.Define location law with an TrihedronLaw and an curve Definition Location is : transformed section coordinates in (Curve(v)), (Normal(v), BiNormal(v), Tangente(v))) systeme are the same like section shape coordinates in (O,(OX, OY, OZ)) systeme.)#");
py::class_<GeomFill_Darboux ,opencascade::handle<GeomFill_Darboux> , GeomFill_TrihedronLaw >(m,"GeomFill_Darboux",R"#(Defines Darboux case of Frenet Trihedron LawDefines Darboux case of Frenet Trihedron LawDefines Darboux case of Frenet Trihedron Law)#");
py::class_<GeomFill_DegeneratedBound ,opencascade::handle<GeomFill_DegeneratedBound> , GeomFill_Boundary >(m,"GeomFill_DegeneratedBound",R"#(Description of a degenerated boundary (a point). Class defining a degenerated boundary for a constrained filling with a point and no other constraint. Only used to simulate an ordinary bound, may not be useful and desapear soon.Description of a degenerated boundary (a point). Class defining a degenerated boundary for a constrained filling with a point and no other constraint. Only used to simulate an ordinary bound, may not be useful and desapear soon.Description of a degenerated boundary (a point). Class defining a degenerated boundary for a constrained filling with a point and no other constraint. Only used to simulate an ordinary bound, may not be useful and desapear soon.)#");
py::class_<GeomFill_DiscreteTrihedron ,opencascade::handle<GeomFill_DiscreteTrihedron> , GeomFill_TrihedronLaw >(m,"GeomFill_DiscreteTrihedron",R"#(Defined Discrete Trihedron Law. The requirement for path curve is only G1. The result is C0-continuous surface that can be later approximated to C1.Defined Discrete Trihedron Law. The requirement for path curve is only G1. The result is C0-continuous surface that can be later approximated to C1.Defined Discrete Trihedron Law. The requirement for path curve is only G1. The result is C0-continuous surface that can be later approximated to C1.)#");
py::class_<GeomFill_DraftTrihedron ,opencascade::handle<GeomFill_DraftTrihedron> , GeomFill_TrihedronLaw >(m,"GeomFill_DraftTrihedron",R"#()#");
py::class_<GeomFill_EvolvedSection ,opencascade::handle<GeomFill_EvolvedSection> , GeomFill_SectionLaw >(m,"GeomFill_EvolvedSection",R"#(Define an Constant Section LawDefine an Constant Section LawDefine an Constant Section Law)#");
py::class_<GeomFill_Fixed ,opencascade::handle<GeomFill_Fixed> , GeomFill_TrihedronLaw >(m,"GeomFill_Fixed",R"#(Defined an constant TrihedronLawDefined an constant TrihedronLawDefined an constant TrihedronLaw)#");
py::class_<GeomFill_Frenet ,opencascade::handle<GeomFill_Frenet> , GeomFill_TrihedronLaw >(m,"GeomFill_Frenet",R"#(Defined Frenet Trihedron LawDefined Frenet Trihedron LawDefined Frenet Trihedron Law)#");
py::class_<GeomFill_HArray1OfLocationLaw ,opencascade::handle<GeomFill_HArray1OfLocationLaw> , GeomFill_Array1OfLocationLaw , Standard_Transient >(m,"GeomFill_HArray1OfLocationLaw",R"#()#");
py::class_<GeomFill_HArray1OfSectionLaw ,opencascade::handle<GeomFill_HArray1OfSectionLaw> , GeomFill_Array1OfSectionLaw , Standard_Transient >(m,"GeomFill_HArray1OfSectionLaw",R"#()#");
py::class_<GeomFill_HSequenceOfAx2 ,opencascade::handle<GeomFill_HSequenceOfAx2> , GeomFill_SequenceOfAx2 , Standard_Transient >(m,"GeomFill_HSequenceOfAx2",R"#()#");
py::class_<GeomFill_LocationDraft ,opencascade::handle<GeomFill_LocationDraft> , GeomFill_LocationLaw >(m,"GeomFill_LocationDraft",R"#()#");
py::class_<GeomFill_LocationGuide ,opencascade::handle<GeomFill_LocationGuide> , GeomFill_LocationLaw >(m,"GeomFill_LocationGuide",R"#()#");
py::class_<GeomFill_NSections ,opencascade::handle<GeomFill_NSections> , GeomFill_SectionLaw >(m,"GeomFill_NSections",R"#(Define a Section Law by N SectionsDefine a Section Law by N SectionsDefine a Section Law by N Sections)#");
py::class_<GeomFill_SimpleBound ,opencascade::handle<GeomFill_SimpleBound> , GeomFill_Boundary >(m,"GeomFill_SimpleBound",R"#(Defines a 3d curve as a boundary for a GeomFill_ConstrainedFilling algorithm. This curve is unattached to an existing surface.D Contains fields to allow a reparametrization of curve.Defines a 3d curve as a boundary for a GeomFill_ConstrainedFilling algorithm. This curve is unattached to an existing surface.D Contains fields to allow a reparametrization of curve.Defines a 3d curve as a boundary for a GeomFill_ConstrainedFilling algorithm. This curve is unattached to an existing surface.D Contains fields to allow a reparametrization of curve.)#");
py::class_<GeomFill_TgtOnCoons ,opencascade::handle<GeomFill_TgtOnCoons> , GeomFill_TgtField >(m,"GeomFill_TgtOnCoons",R"#(Defines an algorithmic tangents field on a boundary of a CoonsAlgPatch.Defines an algorithmic tangents field on a boundary of a CoonsAlgPatch.Defines an algorithmic tangents field on a boundary of a CoonsAlgPatch.)#");
py::class_<GeomFill_TrihedronWithGuide ,opencascade::handle<GeomFill_TrihedronWithGuide> ,Py_GeomFill_TrihedronWithGuide , GeomFill_TrihedronLaw >(m,"GeomFill_TrihedronWithGuide",R"#(To define Trihedron along one Curve with a guideTo define Trihedron along one Curve with a guideTo define Trihedron along one Curve with a guide)#");
py::class_<GeomFill_UniformSection ,opencascade::handle<GeomFill_UniformSection> , GeomFill_SectionLaw >(m,"GeomFill_UniformSection",R"#(Define an Constant Section LawDefine an Constant Section LawDefine an Constant Section Law)#");
py::class_<GeomFill_GuideTrihedronAC ,opencascade::handle<GeomFill_GuideTrihedronAC> , GeomFill_TrihedronWithGuide >(m,"GeomFill_GuideTrihedronAC",R"#(Trihedron in the case of a sweeping along a guide curve. defined by curviline abscissTrihedron in the case of a sweeping along a guide curve. defined by curviline abscissTrihedron in the case of a sweeping along a guide curve. defined by curviline absciss)#");
py::class_<GeomFill_GuideTrihedronPlan ,opencascade::handle<GeomFill_GuideTrihedronPlan> , GeomFill_TrihedronWithGuide >(m,"GeomFill_GuideTrihedronPlan",R"#(Trihedron in the case of sweeping along a guide curve defined by the orthogonal plan on the trajectoryTrihedron in the case of sweeping along a guide curve defined by the orthogonal plan on the trajectoryTrihedron in the case of sweeping along a guide curve defined by the orthogonal plan on the trajectory)#");
};
// user-defined post-inclusion per module
// user-defined post
|