File: GeomFill_pre.cpp

package info (click to toggle)
python-ocp 7.8.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 64,720 kB
  • sloc: cpp: 362,337; pascal: 33; python: 23; makefile: 4
file content (574 lines) | stat: -rw-r--r-- 43,375 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574

// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

namespace py = pybind11;


// Standard Handle
#include <Standard_Handle.hxx>

// user-defined inclusion per module before includes

// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_Surface.hxx>
#include <Geom_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_SectionGenerator.hxx>
#include <GeomFill_Line.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_SweepSectionGenerator.hxx>
#include <GeomFill_Line.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BezierSurface.hxx>
#include <Geom_BezierCurve.hxx>
#include <Law_Function.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_Frenet.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_CoonsAlgPatch.hxx>
#include <GeomFill_TgtField.hxx>
#include <Geom_BSplineSurface.hxx>
#include <GeomFill_Boundary.hxx>
#include <GeomFill_BoundWithSurf.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_Boundary.hxx>
#include <Law_Function.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_Frenet.hxx>
#include <Law_Function.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_TrihedronLaw.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_Frenet.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_Curve.hxx>
#include <Law_Function.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <GeomFill_Tensor.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_Curve.hxx>
#include <GeomFill_SectionLaw.hxx>
#include <Geom_Curve.hxx>
#include <Geom_Surface.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Approx_CurvlinFunc.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_Frenet.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_LocationLaw.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <GeomFill_DraftTrihedron.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_TrihedronWithGuide.hxx>
#include <GeomFill_SectionLaw.hxx>
#include <Geom_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_Surface.hxx>
#include <GeomFill_LocationLaw.hxx>
#include <GeomFill_SectionLaw.hxx>
#include <Geom2d_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Geom_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_LocationLaw.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Law_Function.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_LocationLaw.hxx>
#include <GeomFill_SectionLaw.hxx>
#include <Geom_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_LocationLaw.hxx>
#include <GeomFill_SectionLaw.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Law_BSpline.hxx>
#include <gp_Vec.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomFill_CoonsAlgPatch.hxx>
#include <gp_Vec.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_Curve.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_BSplineSurface.hxx>

// module includes
#include <GeomFill.hxx>
#include <GeomFill_ApproxStyle.hxx>
#include <GeomFill_AppSurf.hxx>
#include <GeomFill_AppSweep.hxx>
#include <GeomFill_Array1OfLocationLaw.hxx>
#include <GeomFill_Array1OfSectionLaw.hxx>
#include <GeomFill_BezierCurves.hxx>
#include <GeomFill_Boundary.hxx>
#include <GeomFill_BoundWithSurf.hxx>
#include <GeomFill_BSplineCurves.hxx>
#include <GeomFill_CircularBlendFunc.hxx>
#include <GeomFill_ConstantBiNormal.hxx>
#include <GeomFill_ConstrainedFilling.hxx>
#include <GeomFill_Coons.hxx>
#include <GeomFill_CoonsAlgPatch.hxx>
#include <GeomFill_CornerState.hxx>
#include <GeomFill_CorrectedFrenet.hxx>
#include <GeomFill_CurveAndTrihedron.hxx>
#include <GeomFill_Curved.hxx>
#include <GeomFill_Darboux.hxx>
#include <GeomFill_DegeneratedBound.hxx>
#include <GeomFill_DiscreteTrihedron.hxx>
#include <GeomFill_DraftTrihedron.hxx>
#include <GeomFill_EvolvedSection.hxx>
#include <GeomFill_Filling.hxx>
#include <GeomFill_FillingStyle.hxx>
#include <GeomFill_Fixed.hxx>
#include <GeomFill_Frenet.hxx>
#include <GeomFill_FunctionDraft.hxx>
#include <GeomFill_FunctionGuide.hxx>
#include <GeomFill_Generator.hxx>
#include <GeomFill_GuideTrihedronAC.hxx>
#include <GeomFill_GuideTrihedronPlan.hxx>
#include <GeomFill_HArray1OfLocationLaw.hxx>
#include <GeomFill_HArray1OfSectionLaw.hxx>
#include <GeomFill_HSequenceOfAx2.hxx>
#include <GeomFill_Line.hxx>
#include <GeomFill_LocationDraft.hxx>
#include <GeomFill_LocationGuide.hxx>
#include <GeomFill_LocationLaw.hxx>
#include <GeomFill_LocFunction.hxx>
#include <GeomFill_NSections.hxx>
#include <GeomFill_Pipe.hxx>
#include <GeomFill_PipeError.hxx>
#include <GeomFill_PlanFunc.hxx>
#include <GeomFill_PolynomialConvertor.hxx>
#include <GeomFill_Profiler.hxx>
#include <GeomFill_QuasiAngularConvertor.hxx>
#include <GeomFill_SectionGenerator.hxx>
#include <GeomFill_SectionLaw.hxx>
#include <GeomFill_SectionPlacement.hxx>
#include <GeomFill_SequenceOfAx2.hxx>
#include <GeomFill_SequenceOfTrsf.hxx>
#include <GeomFill_SimpleBound.hxx>
#include <GeomFill_SnglrFunc.hxx>
#include <GeomFill_Stretch.hxx>
#include <GeomFill_Sweep.hxx>
#include <GeomFill_SweepFunction.hxx>
#include <GeomFill_SweepSectionGenerator.hxx>
#include <GeomFill_Tensor.hxx>
#include <GeomFill_TgtField.hxx>
#include <GeomFill_TgtOnCoons.hxx>
#include <GeomFill_Trihedron.hxx>
#include <GeomFill_TrihedronLaw.hxx>
#include <GeomFill_TrihedronWithGuide.hxx>
#include <GeomFill_UniformSection.hxx>

// template related includes

#include "NCollection_tmpl.hxx"

#include "NCollection_tmpl.hxx"

#include "NCollection_tmpl.hxx"

#include "NCollection_tmpl.hxx"


// user-defined pre
#include "OCP_specific.inc"

// user-defined inclusion per module

// Module definiiton
void register_GeomFill_enums(py::module &main_module) {


py::module m = main_module.def_submodule("GeomFill", R"#()#");

// user-defined inclusion per module in the body

// enums
    py::enum_<GeomFill_Trihedron>(m, "GeomFill_Trihedron",R"#(None)#")
        .value("GeomFill_IsCorrectedFrenet",GeomFill_Trihedron::GeomFill_IsCorrectedFrenet)
        .value("GeomFill_IsFixed",GeomFill_Trihedron::GeomFill_IsFixed)
        .value("GeomFill_IsFrenet",GeomFill_Trihedron::GeomFill_IsFrenet)
        .value("GeomFill_IsConstantNormal",GeomFill_Trihedron::GeomFill_IsConstantNormal)
        .value("GeomFill_IsDarboux",GeomFill_Trihedron::GeomFill_IsDarboux)
        .value("GeomFill_IsGuideAC",GeomFill_Trihedron::GeomFill_IsGuideAC)
        .value("GeomFill_IsGuidePlan",GeomFill_Trihedron::GeomFill_IsGuidePlan)
        .value("GeomFill_IsGuideACWithContact",GeomFill_Trihedron::GeomFill_IsGuideACWithContact)
        .value("GeomFill_IsGuidePlanWithContact",GeomFill_Trihedron::GeomFill_IsGuidePlanWithContact)
        .value("GeomFill_IsDiscreteTrihedron",GeomFill_Trihedron::GeomFill_IsDiscreteTrihedron).export_values();
    py::enum_<GeomFill_ApproxStyle>(m, "GeomFill_ApproxStyle",R"#(None)#")
        .value("GeomFill_Section",GeomFill_ApproxStyle::GeomFill_Section)
        .value("GeomFill_Location",GeomFill_ApproxStyle::GeomFill_Location).export_values();
    py::enum_<GeomFill_PipeError>(m, "GeomFill_PipeError",R"#(None)#")
        .value("GeomFill_PipeOk",GeomFill_PipeError::GeomFill_PipeOk)
        .value("GeomFill_PipeNotOk",GeomFill_PipeError::GeomFill_PipeNotOk)
        .value("GeomFill_PlaneNotIntersectGuide",GeomFill_PipeError::GeomFill_PlaneNotIntersectGuide)
        .value("GeomFill_ImpossibleContact",GeomFill_PipeError::GeomFill_ImpossibleContact).export_values();
    py::enum_<GeomFill_FillingStyle>(m, "GeomFill_FillingStyle",R"#(Defines the three filling styles used in this package - GeomFill_Stretch - the style with the flattest patches - GeomFill_Coons - a rounded style of patch with less depth than those of Curved - GeomFill_Curved - the style with the most rounded patches.)#")
        .value("GeomFill_StretchStyle",GeomFill_FillingStyle::GeomFill_StretchStyle)
        .value("GeomFill_CoonsStyle",GeomFill_FillingStyle::GeomFill_CoonsStyle)
        .value("GeomFill_CurvedStyle",GeomFill_FillingStyle::GeomFill_CurvedStyle).export_values();

//Python trampoline classes
    class Py_GeomFill_Boundary : public GeomFill_Boundary{
    public:
        using GeomFill_Boundary::GeomFill_Boundary;


        // public pure virtual
        gp_Pnt Value(const Standard_Real U) const  override { PYBIND11_OVERLOAD_PURE(gp_Pnt,GeomFill_Boundary,Value,U) };
        void D1(const Standard_Real U,gp_Pnt & P,gp_Vec & V) const  override { PYBIND11_OVERLOAD_PURE(void,GeomFill_Boundary,D1,U,P,V) };
        void Reparametrize(const Standard_Real First,const Standard_Real Last,const Standard_Boolean HasDF,const Standard_Boolean HasDL,const Standard_Real DF,const Standard_Real DL,const Standard_Boolean Rev) override { PYBIND11_OVERLOAD_PURE(void,GeomFill_Boundary,Reparametrize,First,Last,HasDF,HasDL,DF,DL,Rev) };
        Standard_Boolean IsDegenerated() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,GeomFill_Boundary,IsDegenerated,) };
        void Bounds(Standard_Real & First,Standard_Real & Last) const  override { PYBIND11_OVERLOAD_PURE(void,GeomFill_Boundary,Bounds,First,Last) };


        // protected pure virtual


        // private pure virtual

    };
    class Py_GeomFill_LocationLaw : public GeomFill_LocationLaw{
    public:
        using GeomFill_LocationLaw::GeomFill_LocationLaw;


        // public pure virtual
        Standard_Boolean SetCurve(const opencascade::handle<Adaptor3d_Curve> & C) override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,GeomFill_LocationLaw,SetCurve,C) };
        const opencascade::handle<Adaptor3d_Curve> & GetCurve() const  override { PYBIND11_OVERLOAD_PURE(const opencascade::handle<Adaptor3d_Curve> &,GeomFill_LocationLaw,GetCurve,) };
        void SetTrsf(const gp_Mat & Transfo) override { PYBIND11_OVERLOAD_PURE(void,GeomFill_LocationLaw,SetTrsf,Transfo) };
        opencascade::handle<GeomFill_LocationLaw> Copy() const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<GeomFill_LocationLaw>,GeomFill_LocationLaw,Copy,) };
        Standard_Boolean D0(const Standard_Real Param,gp_Mat & M,gp_Vec & V) override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,GeomFill_LocationLaw,D0,Param,M,V) };
        Standard_Boolean D0(const Standard_Real Param,gp_Mat & M,gp_Vec & V,NCollection_Array1<gp_Pnt2d> & Poles2d) override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,GeomFill_LocationLaw,D0,Param,M,V,Poles2d) };
        Standard_Integer NbIntervals(const GeomAbs_Shape S) const  override { PYBIND11_OVERLOAD_PURE(Standard_Integer,GeomFill_LocationLaw,NbIntervals,S) };
        void Intervals(NCollection_Array1<Standard_Real> & T,const GeomAbs_Shape S) const  override { PYBIND11_OVERLOAD_PURE(void,GeomFill_LocationLaw,Intervals,T,S) };
        void SetInterval(const Standard_Real First,const Standard_Real Last) override { PYBIND11_OVERLOAD_PURE(void,GeomFill_LocationLaw,SetInterval,First,Last) };
        Standard_Real GetMaximalNorm() override { PYBIND11_OVERLOAD_PURE(Standard_Real,GeomFill_LocationLaw,GetMaximalNorm,) };
        void GetAverageLaw(gp_Mat & AM,gp_Vec & AV) override { PYBIND11_OVERLOAD_PURE(void,GeomFill_LocationLaw,GetAverageLaw,AM,AV) };
        void GetInterval(Standard_Real & First,Standard_Real & Last) const  override { PYBIND11_OVERLOAD_PURE(void,GeomFill_LocationLaw,GetInterval,First,Last) };
        void GetDomain(Standard_Real & First,Standard_Real & Last) const  override { PYBIND11_OVERLOAD_PURE(void,GeomFill_LocationLaw,GetDomain,First,Last) };


        // protected pure virtual


        // private pure virtual

    };
    class Py_GeomFill_SectionLaw : public GeomFill_SectionLaw{
    public:
        using GeomFill_SectionLaw::GeomFill_SectionLaw;


        // public pure virtual
        Standard_Boolean D0(const Standard_Real Param,NCollection_Array1<gp_Pnt> & Poles,NCollection_Array1<Standard_Real> & Weigths) override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,GeomFill_SectionLaw,D0,Param,Poles,Weigths) };
        void Knots(NCollection_Array1<Standard_Real> & TKnots) const  override { PYBIND11_OVERLOAD_PURE(void,GeomFill_SectionLaw,Knots,TKnots) };
        void Mults(NCollection_Array1<Standard_Integer> & TMults) const  override { PYBIND11_OVERLOAD_PURE(void,GeomFill_SectionLaw,Mults,TMults) };
        Standard_Boolean IsRational() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,GeomFill_SectionLaw,IsRational,) };
        Standard_Boolean IsUPeriodic() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,GeomFill_SectionLaw,IsUPeriodic,) };
        Standard_Boolean IsVPeriodic() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,GeomFill_SectionLaw,IsVPeriodic,) };
        Standard_Integer NbIntervals(const GeomAbs_Shape S) const  override { PYBIND11_OVERLOAD_PURE(Standard_Integer,GeomFill_SectionLaw,NbIntervals,S) };
        void Intervals(NCollection_Array1<Standard_Real> & T,const GeomAbs_Shape S) const  override { PYBIND11_OVERLOAD_PURE(void,GeomFill_SectionLaw,Intervals,T,S) };
        void SetInterval(const Standard_Real First,const Standard_Real Last) override { PYBIND11_OVERLOAD_PURE(void,GeomFill_SectionLaw,SetInterval,First,Last) };
        void GetTolerance(const Standard_Real BoundTol,const Standard_Real SurfTol,const Standard_Real AngleTol,NCollection_Array1<Standard_Real> & Tol3d) const  override { PYBIND11_OVERLOAD_PURE(void,GeomFill_SectionLaw,GetTolerance,BoundTol,SurfTol,AngleTol,Tol3d) };
        Standard_Real MaximalSection() const  override { PYBIND11_OVERLOAD_PURE(Standard_Real,GeomFill_SectionLaw,MaximalSection,) };
        void SectionShape(Standard_Integer & NbPoles,Standard_Integer & NbKnots,Standard_Integer & Degree) const  override { PYBIND11_OVERLOAD_PURE(void,GeomFill_SectionLaw,SectionShape,NbPoles,NbKnots,Degree) };
        void GetInterval(Standard_Real & First,Standard_Real & Last) const  override { PYBIND11_OVERLOAD_PURE(void,GeomFill_SectionLaw,GetInterval,First,Last) };
        void GetDomain(Standard_Real & First,Standard_Real & Last) const  override { PYBIND11_OVERLOAD_PURE(void,GeomFill_SectionLaw,GetDomain,First,Last) };


        // protected pure virtual


        // private pure virtual

    };
    class Py_GeomFill_TgtField : public GeomFill_TgtField{
    public:
        using GeomFill_TgtField::GeomFill_TgtField;


        // public pure virtual
        gp_Vec Value(const Standard_Real W) const  override { PYBIND11_OVERLOAD_PURE(gp_Vec,GeomFill_TgtField,Value,W) };
        gp_Vec D1(const Standard_Real W) const  override { PYBIND11_OVERLOAD_PURE(gp_Vec,GeomFill_TgtField,D1,W) };
        void D1(const Standard_Real W,gp_Vec & V,gp_Vec & DV) const  override { PYBIND11_OVERLOAD_PURE(void,GeomFill_TgtField,D1,W,V,DV) };


        // protected pure virtual


        // private pure virtual

    };
    class Py_GeomFill_TrihedronLaw : public GeomFill_TrihedronLaw{
    public:
        using GeomFill_TrihedronLaw::GeomFill_TrihedronLaw;


        // public pure virtual
        opencascade::handle<GeomFill_TrihedronLaw> Copy() const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<GeomFill_TrihedronLaw>,GeomFill_TrihedronLaw,Copy,) };
        Standard_Boolean D0(const Standard_Real Param,gp_Vec & Tangent,gp_Vec & Normal,gp_Vec & BiNormal) override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,GeomFill_TrihedronLaw,D0,Param,Tangent,Normal,BiNormal) };
        Standard_Integer NbIntervals(const GeomAbs_Shape S) const  override { PYBIND11_OVERLOAD_PURE(Standard_Integer,GeomFill_TrihedronLaw,NbIntervals,S) };
        void Intervals(NCollection_Array1<Standard_Real> & T,const GeomAbs_Shape S) const  override { PYBIND11_OVERLOAD_PURE(void,GeomFill_TrihedronLaw,Intervals,T,S) };
        void GetAverageLaw(gp_Vec & ATangent,gp_Vec & ANormal,gp_Vec & ABiNormal) override { PYBIND11_OVERLOAD_PURE(void,GeomFill_TrihedronLaw,GetAverageLaw,ATangent,ANormal,ABiNormal) };


        // protected pure virtual


        // private pure virtual

    };
    class Py_GeomFill_TrihedronWithGuide : public GeomFill_TrihedronWithGuide{
    public:
        using GeomFill_TrihedronWithGuide::GeomFill_TrihedronWithGuide;


        // public pure virtual
        opencascade::handle<Adaptor3d_Curve> Guide() const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Adaptor3d_Curve>,GeomFill_TrihedronWithGuide,Guide,) };
        void Origine(const Standard_Real Param1,const Standard_Real Param2) override { PYBIND11_OVERLOAD_PURE(void,GeomFill_TrihedronWithGuide,Origine,Param1,Param2) };

        opencascade::handle<GeomFill_TrihedronLaw> Copy() const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<GeomFill_TrihedronLaw>,GeomFill_TrihedronLaw,Copy,) };
        Standard_Boolean D0(const Standard_Real Param,gp_Vec & Tangent,gp_Vec & Normal,gp_Vec & BiNormal) override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,GeomFill_TrihedronLaw,D0,Param,Tangent,Normal,BiNormal) };
        Standard_Integer NbIntervals(const GeomAbs_Shape S) const  override { PYBIND11_OVERLOAD_PURE(Standard_Integer,GeomFill_TrihedronLaw,NbIntervals,S) };
        void Intervals(NCollection_Array1<Standard_Real> & T,const GeomAbs_Shape S) const  override { PYBIND11_OVERLOAD_PURE(void,GeomFill_TrihedronLaw,Intervals,T,S) };
        void GetAverageLaw(gp_Vec & ATangent,gp_Vec & ANormal,gp_Vec & ABiNormal) override { PYBIND11_OVERLOAD_PURE(void,GeomFill_TrihedronLaw,GetAverageLaw,ATangent,ANormal,ABiNormal) };

        // protected pure virtual


        // private pure virtual

    };

// pre-register typdefs+classes (topologically sorted)
    py::class_<GeomFill , shared_ptr<GeomFill>  >(m,"GeomFill",R"#(Tools and Data to filling Surface and Sweep Surfaces)#");
    py::class_<GeomFill_BSplineCurves , shared_ptr<GeomFill_BSplineCurves>  >(m,"GeomFill_BSplineCurves",R"#(An algorithm for constructing a BSpline surface filled from contiguous BSpline curves which form its boundaries. The algorithm accepts two, three or four BSpline curves as the boundaries of the target surface. A range of filling styles - more or less rounded, more or less flat - is available. A BSplineCurves object provides a framework for: - defining the boundaries, and the filling style of the surface - implementing the construction algorithm - consulting the result. Warning Some problems may show up with rational curves.)#");
    py::class_<GeomFill_BezierCurves , shared_ptr<GeomFill_BezierCurves>  >(m,"GeomFill_BezierCurves",R"#(This class provides an algorithm for constructing a Bezier surface filled from contiguous Bezier curves which form its boundaries. The algorithm accepts two, three or four Bezier curves as the boundaries of the target surface. A range of filling styles - more or less rounded, more or less flat - is available. A BezierCurves object provides a framework for: - defining the boundaries, and the filling style of the surface - implementing the construction algorithm - consulting the result. Warning Some problems may show up with rational curves.)#");
    py::class_<GeomFill_ConstrainedFilling , shared_ptr<GeomFill_ConstrainedFilling>  >(m,"GeomFill_ConstrainedFilling",R"#(An algorithm for constructing a BSpline surface filled from a series of boundaries which serve as path constraints and optionally, as tangency constraints. The algorithm accepts three or four curves as the boundaries of the target surface. The only FillingStyle used is Coons. A ConstrainedFilling object provides a framework for: - defining the boundaries of the surface - implementing the construction algorithm - consulting the result. Warning This surface filling algorithm is specifically designed to be used in connection with fillets. Satisfactory results cannot be guaranteed for other uses.)#");
    py::class_<GeomFill_CornerState , shared_ptr<GeomFill_CornerState>  >(m,"GeomFill_CornerState",R"#(Class (should be a structure) storing the information about continuity, normals parallelism, coons conditions and bounds tangents angle on the corner of contour to be filled.)#");
    py::class_<GeomFill_Filling , shared_ptr<GeomFill_Filling>  >(m,"GeomFill_Filling",R"#(Root class for Filling;)#");
    py::class_<GeomFill_LocFunction , shared_ptr<GeomFill_LocFunction>  >(m,"GeomFill_LocFunction",R"#(None)#");
    py::class_<GeomFill_Pipe , shared_ptr<GeomFill_Pipe>  >(m,"GeomFill_Pipe",R"#(Describes functions to construct pipes. A pipe is built by sweeping a curve (the section) along another curve (the path). The Pipe class provides the following types of construction: - pipes with a circular section of constant radius, - pipes with a constant section, - pipes with a section evolving between two given curves. All standard specific cases are detected in order to build, where required, a plane, cylinder, cone, sphere, torus, surface of linear extrusion or surface of revolution. Generally speaking, the result is a BSpline surface (NURBS). A Pipe object provides a framework for: - defining the pipe to be built, - implementing the construction algorithm, and - consulting the resulting surface. There are several methods to instantiate a Pipe: 1) give a path and a radius : the section is a circle. This location is the first point of the path, and this direction is the first derivate (calculate at the first point ) of the path.)#");
    py::class_<GeomFill_PolynomialConvertor , shared_ptr<GeomFill_PolynomialConvertor>  >(m,"GeomFill_PolynomialConvertor",R"#(To convert circular section in polynome)#");
    py::class_<GeomFill_Profiler , shared_ptr<GeomFill_Profiler>  >(m,"GeomFill_Profiler",R"#(Evaluation of the common BSplineProfile of a group of curves from Geom. All the curves will have the same degree, the same knot-vector, so the same number of poles.)#");
    py::class_<GeomFill_QuasiAngularConvertor , shared_ptr<GeomFill_QuasiAngularConvertor>  >(m,"GeomFill_QuasiAngularConvertor",R"#(To convert circular section in QuasiAngular Bezier form)#");
    py::class_<GeomFill_SectionPlacement , shared_ptr<GeomFill_SectionPlacement>  >(m,"GeomFill_SectionPlacement",R"#(To place section in sweep Function)#");
    py::class_<GeomFill_Sweep , shared_ptr<GeomFill_Sweep>  >(m,"GeomFill_Sweep",R"#(Geometrical Sweep Algorithm)#");
    py::class_<GeomFill_SweepSectionGenerator , shared_ptr<GeomFill_SweepSectionGenerator>  >(m,"GeomFill_SweepSectionGenerator",R"#(class for instantiation of AppBlend. evaluate the sections of a sweep surface.)#");
    py::class_<GeomFill_Tensor , shared_ptr<GeomFill_Tensor>  >(m,"GeomFill_Tensor",R"#(used to store the "gradient of gradient")#");
    py::class_<GeomFill_AppSurf , shared_ptr<GeomFill_AppSurf>  , AppBlend_Approx >(m,"GeomFill_AppSurf",R"#(Approximate a BSplineSurface passing by all the curves described in the SectionGenerator)#");
    py::class_<GeomFill_AppSweep , shared_ptr<GeomFill_AppSweep>  , AppBlend_Approx >(m,"GeomFill_AppSweep",R"#(Approximate a sweep surface passing by all the curves described in the SweepSectionGenerator.)#");
    preregister_template_NCollection_Array1<opencascade::handle<GeomFill_LocationLaw>>(m,"GeomFill_Array1OfLocationLaw");
    preregister_template_NCollection_Array1<opencascade::handle<GeomFill_SectionLaw>>(m,"GeomFill_Array1OfSectionLaw");
    py::class_<GeomFill_Boundary ,opencascade::handle<GeomFill_Boundary> ,Py_GeomFill_Boundary , Standard_Transient >(m,"GeomFill_Boundary",R"#(Root class to define a boundary which will form part of a contour around a gap requiring filling. Any new type of constrained boundary must inherit this class. The GeomFill package provides two classes to define constrained boundaries: - GeomFill_SimpleBound to define an unattached boundary - GeomFill_BoundWithSurf to define a boundary attached to a surface. These objects are used to define the boundaries for a GeomFill_ConstrainedFilling framework.Root class to define a boundary which will form part of a contour around a gap requiring filling. Any new type of constrained boundary must inherit this class. The GeomFill package provides two classes to define constrained boundaries: - GeomFill_SimpleBound to define an unattached boundary - GeomFill_BoundWithSurf to define a boundary attached to a surface. These objects are used to define the boundaries for a GeomFill_ConstrainedFilling framework.Root class to define a boundary which will form part of a contour around a gap requiring filling. Any new type of constrained boundary must inherit this class. The GeomFill package provides two classes to define constrained boundaries: - GeomFill_SimpleBound to define an unattached boundary - GeomFill_BoundWithSurf to define a boundary attached to a surface. These objects are used to define the boundaries for a GeomFill_ConstrainedFilling framework.)#");
    py::class_<GeomFill_CircularBlendFunc ,opencascade::handle<GeomFill_CircularBlendFunc>  , Approx_SweepFunction >(m,"GeomFill_CircularBlendFunc",R"#(Circular Blend Function to approximate by SweepApproximation from ApproxCircular Blend Function to approximate by SweepApproximation from ApproxCircular Blend Function to approximate by SweepApproximation from Approx)#");
    py::class_<GeomFill_Coons , shared_ptr<GeomFill_Coons>  , GeomFill_Filling >(m,"GeomFill_Coons",R"#(None)#");
    py::class_<GeomFill_CoonsAlgPatch ,opencascade::handle<GeomFill_CoonsAlgPatch>  , Standard_Transient >(m,"GeomFill_CoonsAlgPatch",R"#(Provides evaluation methods on an algorithmic patch (based on 4 Curves) defined by its boundaries and blending functions.Provides evaluation methods on an algorithmic patch (based on 4 Curves) defined by its boundaries and blending functions.Provides evaluation methods on an algorithmic patch (based on 4 Curves) defined by its boundaries and blending functions.)#");
    py::class_<GeomFill_Curved , shared_ptr<GeomFill_Curved>  , GeomFill_Filling >(m,"GeomFill_Curved",R"#(None)#");
    py::class_<GeomFill_FunctionDraft , shared_ptr<GeomFill_FunctionDraft>  , math_FunctionSetWithDerivatives >(m,"GeomFill_FunctionDraft",R"#(None)#");
    py::class_<GeomFill_FunctionGuide , shared_ptr<GeomFill_FunctionGuide>  , math_FunctionSetWithDerivatives >(m,"GeomFill_FunctionGuide",R"#(None)#");
    py::class_<GeomFill_Generator , shared_ptr<GeomFill_Generator>  , GeomFill_Profiler >(m,"GeomFill_Generator",R"#(Create a surface using generating lines. Inherits profiler. The surface will be a BSplineSurface passing by all the curves described in the generator. The VDegree of the resulting surface is 1.)#");
    py::class_<GeomFill_Line ,opencascade::handle<GeomFill_Line>  , Standard_Transient >(m,"GeomFill_Line",R"#(class for instantiation of AppBlendclass for instantiation of AppBlendclass for instantiation of AppBlend)#");
    py::class_<GeomFill_LocationLaw ,opencascade::handle<GeomFill_LocationLaw> ,Py_GeomFill_LocationLaw , Standard_Transient >(m,"GeomFill_LocationLaw",R"#(To define location law in Sweeping location is -- defined by an Matrix M and an Vector V, and transform an point P in MP+V.To define location law in Sweeping location is -- defined by an Matrix M and an Vector V, and transform an point P in MP+V.To define location law in Sweeping location is -- defined by an Matrix M and an Vector V, and transform an point P in MP+V.)#");
    py::class_<GeomFill_PlanFunc , shared_ptr<GeomFill_PlanFunc>  , math_FunctionWithDerivative >(m,"GeomFill_PlanFunc",R"#(None)#");
    py::class_<GeomFill_SectionGenerator , shared_ptr<GeomFill_SectionGenerator>  , GeomFill_Profiler >(m,"GeomFill_SectionGenerator",R"#(gives the functions needed for instantiation from AppSurf in AppBlend. Allow to evaluate a surface passing by all the curves if the Profiler.)#");
    py::class_<GeomFill_SectionLaw ,opencascade::handle<GeomFill_SectionLaw> ,Py_GeomFill_SectionLaw , Standard_Transient >(m,"GeomFill_SectionLaw",R"#(To define section law in sweepingTo define section law in sweepingTo define section law in sweeping)#");
    preregister_template_NCollection_Sequence<gp_Ax2>(m,"GeomFill_SequenceOfAx2");
    preregister_template_NCollection_Sequence<gp_Trsf>(m,"GeomFill_SequenceOfTrsf");
    py::class_<GeomFill_SnglrFunc ,opencascade::handle<GeomFill_SnglrFunc>  , Adaptor3d_Curve >(m,"GeomFill_SnglrFunc",R"#(to represent function C'(t)^C''(t))#");
    py::class_<GeomFill_Stretch , shared_ptr<GeomFill_Stretch>  , GeomFill_Filling >(m,"GeomFill_Stretch",R"#(None)#");
    py::class_<GeomFill_SweepFunction ,opencascade::handle<GeomFill_SweepFunction>  , Approx_SweepFunction >(m,"GeomFill_SweepFunction",R"#(Function to approximate by SweepApproximation from Approx. To build general sweep Surface.Function to approximate by SweepApproximation from Approx. To build general sweep Surface.Function to approximate by SweepApproximation from Approx. To build general sweep Surface.)#");
    py::class_<GeomFill_TgtField ,opencascade::handle<GeomFill_TgtField> ,Py_GeomFill_TgtField , Standard_Transient >(m,"GeomFill_TgtField",R"#(Root class defining the methods we need to make an algorithmic tangents field.Root class defining the methods we need to make an algorithmic tangents field.Root class defining the methods we need to make an algorithmic tangents field.)#");
    py::class_<GeomFill_TrihedronLaw ,opencascade::handle<GeomFill_TrihedronLaw> ,Py_GeomFill_TrihedronLaw , Standard_Transient >(m,"GeomFill_TrihedronLaw",R"#(To define Trihedron along one CurveTo define Trihedron along one CurveTo define Trihedron along one Curve)#");
    py::class_<GeomFill_BoundWithSurf ,opencascade::handle<GeomFill_BoundWithSurf>  , GeomFill_Boundary >(m,"GeomFill_BoundWithSurf",R"#(Defines a 3d curve as a boundary for a GeomFill_ConstrainedFilling algorithm. This curve is attached to an existing surface. Defines a constrained boundary for filling the computations are done with a CurveOnSurf and a normals field defined by the normalized normal to the surface along the PCurve. Contains fields to allow a reparametrization of curve and normals field.Defines a 3d curve as a boundary for a GeomFill_ConstrainedFilling algorithm. This curve is attached to an existing surface. Defines a constrained boundary for filling the computations are done with a CurveOnSurf and a normals field defined by the normalized normal to the surface along the PCurve. Contains fields to allow a reparametrization of curve and normals field.Defines a 3d curve as a boundary for a GeomFill_ConstrainedFilling algorithm. This curve is attached to an existing surface. Defines a constrained boundary for filling the computations are done with a CurveOnSurf and a normals field defined by the normalized normal to the surface along the PCurve. Contains fields to allow a reparametrization of curve and normals field.)#");
    py::class_<GeomFill_ConstantBiNormal ,opencascade::handle<GeomFill_ConstantBiNormal>  , GeomFill_TrihedronLaw >(m,"GeomFill_ConstantBiNormal",R"#(Defined an Trihedron Law where the BiNormal, is fixedDefined an Trihedron Law where the BiNormal, is fixedDefined an Trihedron Law where the BiNormal, is fixed)#");
    py::class_<GeomFill_CorrectedFrenet ,opencascade::handle<GeomFill_CorrectedFrenet>  , GeomFill_TrihedronLaw >(m,"GeomFill_CorrectedFrenet",R"#(Defined an Corrected Frenet Trihedron Law It is like Frenet with an Torsion's minimizationDefined an Corrected Frenet Trihedron Law It is like Frenet with an Torsion's minimizationDefined an Corrected Frenet Trihedron Law It is like Frenet with an Torsion's minimization)#");
    py::class_<GeomFill_CurveAndTrihedron ,opencascade::handle<GeomFill_CurveAndTrihedron>  , GeomFill_LocationLaw >(m,"GeomFill_CurveAndTrihedron",R"#(Define location law with an TrihedronLaw and an curve Definition Location is : transformed section coordinates in (Curve(v)), (Normal(v), BiNormal(v), Tangente(v))) systeme are the same like section shape coordinates in (O,(OX, OY, OZ)) systeme.Define location law with an TrihedronLaw and an curve Definition Location is : transformed section coordinates in (Curve(v)), (Normal(v), BiNormal(v), Tangente(v))) systeme are the same like section shape coordinates in (O,(OX, OY, OZ)) systeme.Define location law with an TrihedronLaw and an curve Definition Location is : transformed section coordinates in (Curve(v)), (Normal(v), BiNormal(v), Tangente(v))) systeme are the same like section shape coordinates in (O,(OX, OY, OZ)) systeme.)#");
    py::class_<GeomFill_Darboux ,opencascade::handle<GeomFill_Darboux>  , GeomFill_TrihedronLaw >(m,"GeomFill_Darboux",R"#(Defines Darboux case of Frenet Trihedron LawDefines Darboux case of Frenet Trihedron LawDefines Darboux case of Frenet Trihedron Law)#");
    py::class_<GeomFill_DegeneratedBound ,opencascade::handle<GeomFill_DegeneratedBound>  , GeomFill_Boundary >(m,"GeomFill_DegeneratedBound",R"#(Description of a degenerated boundary (a point). Class defining a degenerated boundary for a constrained filling with a point and no other constraint. Only used to simulate an ordinary bound, may not be useful and desapear soon.Description of a degenerated boundary (a point). Class defining a degenerated boundary for a constrained filling with a point and no other constraint. Only used to simulate an ordinary bound, may not be useful and desapear soon.Description of a degenerated boundary (a point). Class defining a degenerated boundary for a constrained filling with a point and no other constraint. Only used to simulate an ordinary bound, may not be useful and desapear soon.)#");
    py::class_<GeomFill_DiscreteTrihedron ,opencascade::handle<GeomFill_DiscreteTrihedron>  , GeomFill_TrihedronLaw >(m,"GeomFill_DiscreteTrihedron",R"#(Defined Discrete Trihedron Law. The requirement for path curve is only G1. The result is C0-continuous surface that can be later approximated to C1.Defined Discrete Trihedron Law. The requirement for path curve is only G1. The result is C0-continuous surface that can be later approximated to C1.Defined Discrete Trihedron Law. The requirement for path curve is only G1. The result is C0-continuous surface that can be later approximated to C1.)#");
    py::class_<GeomFill_DraftTrihedron ,opencascade::handle<GeomFill_DraftTrihedron>  , GeomFill_TrihedronLaw >(m,"GeomFill_DraftTrihedron",R"#()#");
    py::class_<GeomFill_EvolvedSection ,opencascade::handle<GeomFill_EvolvedSection>  , GeomFill_SectionLaw >(m,"GeomFill_EvolvedSection",R"#(Define an Constant Section LawDefine an Constant Section LawDefine an Constant Section Law)#");
    py::class_<GeomFill_Fixed ,opencascade::handle<GeomFill_Fixed>  , GeomFill_TrihedronLaw >(m,"GeomFill_Fixed",R"#(Defined an constant TrihedronLawDefined an constant TrihedronLawDefined an constant TrihedronLaw)#");
    py::class_<GeomFill_Frenet ,opencascade::handle<GeomFill_Frenet>  , GeomFill_TrihedronLaw >(m,"GeomFill_Frenet",R"#(Defined Frenet Trihedron LawDefined Frenet Trihedron LawDefined Frenet Trihedron Law)#");
    py::class_<GeomFill_HArray1OfLocationLaw ,opencascade::handle<GeomFill_HArray1OfLocationLaw>  , GeomFill_Array1OfLocationLaw , Standard_Transient >(m,"GeomFill_HArray1OfLocationLaw",R"#()#");
    py::class_<GeomFill_HArray1OfSectionLaw ,opencascade::handle<GeomFill_HArray1OfSectionLaw>  , GeomFill_Array1OfSectionLaw , Standard_Transient >(m,"GeomFill_HArray1OfSectionLaw",R"#()#");
    py::class_<GeomFill_HSequenceOfAx2 ,opencascade::handle<GeomFill_HSequenceOfAx2>  , GeomFill_SequenceOfAx2 , Standard_Transient >(m,"GeomFill_HSequenceOfAx2",R"#()#");
    py::class_<GeomFill_LocationDraft ,opencascade::handle<GeomFill_LocationDraft>  , GeomFill_LocationLaw >(m,"GeomFill_LocationDraft",R"#()#");
    py::class_<GeomFill_LocationGuide ,opencascade::handle<GeomFill_LocationGuide>  , GeomFill_LocationLaw >(m,"GeomFill_LocationGuide",R"#()#");
    py::class_<GeomFill_NSections ,opencascade::handle<GeomFill_NSections>  , GeomFill_SectionLaw >(m,"GeomFill_NSections",R"#(Define a Section Law by N SectionsDefine a Section Law by N SectionsDefine a Section Law by N Sections)#");
    py::class_<GeomFill_SimpleBound ,opencascade::handle<GeomFill_SimpleBound>  , GeomFill_Boundary >(m,"GeomFill_SimpleBound",R"#(Defines a 3d curve as a boundary for a GeomFill_ConstrainedFilling algorithm. This curve is unattached to an existing surface.D Contains fields to allow a reparametrization of curve.Defines a 3d curve as a boundary for a GeomFill_ConstrainedFilling algorithm. This curve is unattached to an existing surface.D Contains fields to allow a reparametrization of curve.Defines a 3d curve as a boundary for a GeomFill_ConstrainedFilling algorithm. This curve is unattached to an existing surface.D Contains fields to allow a reparametrization of curve.)#");
    py::class_<GeomFill_TgtOnCoons ,opencascade::handle<GeomFill_TgtOnCoons>  , GeomFill_TgtField >(m,"GeomFill_TgtOnCoons",R"#(Defines an algorithmic tangents field on a boundary of a CoonsAlgPatch.Defines an algorithmic tangents field on a boundary of a CoonsAlgPatch.Defines an algorithmic tangents field on a boundary of a CoonsAlgPatch.)#");
    py::class_<GeomFill_TrihedronWithGuide ,opencascade::handle<GeomFill_TrihedronWithGuide> ,Py_GeomFill_TrihedronWithGuide , GeomFill_TrihedronLaw >(m,"GeomFill_TrihedronWithGuide",R"#(To define Trihedron along one Curve with a guideTo define Trihedron along one Curve with a guideTo define Trihedron along one Curve with a guide)#");
    py::class_<GeomFill_UniformSection ,opencascade::handle<GeomFill_UniformSection>  , GeomFill_SectionLaw >(m,"GeomFill_UniformSection",R"#(Define an Constant Section LawDefine an Constant Section LawDefine an Constant Section Law)#");
    py::class_<GeomFill_GuideTrihedronAC ,opencascade::handle<GeomFill_GuideTrihedronAC>  , GeomFill_TrihedronWithGuide >(m,"GeomFill_GuideTrihedronAC",R"#(Trihedron in the case of a sweeping along a guide curve. defined by curviline abscissTrihedron in the case of a sweeping along a guide curve. defined by curviline abscissTrihedron in the case of a sweeping along a guide curve. defined by curviline absciss)#");
    py::class_<GeomFill_GuideTrihedronPlan ,opencascade::handle<GeomFill_GuideTrihedronPlan>  , GeomFill_TrihedronWithGuide >(m,"GeomFill_GuideTrihedronPlan",R"#(Trihedron in the case of sweeping along a guide curve defined by the orthogonal plan on the trajectoryTrihedron in the case of sweeping along a guide curve defined by the orthogonal plan on the trajectoryTrihedron in the case of sweeping along a guide curve defined by the orthogonal plan on the trajectory)#");

};

// user-defined post-inclusion per module

// user-defined post