File: GeomLib.cpp

package info (click to toggle)
python-ocp 7.8.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 64,720 kB
  • sloc: cpp: 362,337; pascal: 33; python: 23; makefile: 4
file content (742 lines) | stat: -rw-r--r-- 50,502 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742

// std lib related includes
#include <tuple>

// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

namespace py = pybind11;

// Standard Handle
#include <Standard_Handle.hxx>


// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Geom_Curve.hxx>
#include <Geom2d_Curve.hxx>
#include <gp_GTrsf2d.hxx>
#include <Adaptor3d_CurveOnSurface.hxx>
#include <Geom_BoundedCurve.hxx>
#include <Geom_BoundedSurface.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Geom_BezierSurface.hxx>
#include <Geom_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_CurveOnSurface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomLib_DenominatorMultiplier.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_Curve.hxx>
#include <Geom_Surface.hxx>
#include <Geom2d_Curve.hxx>
#include <Geom2dAdaptor_Curve.hxx>
#include <gp_Lin2d.hxx>
#include <gp_Pnt.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Vec2d.hxx>

// module includes
#include <GeomLib.hxx>
#include <GeomLib_Array1OfMat.hxx>
#include <GeomLib_Check2dBSplineCurve.hxx>
#include <GeomLib_CheckBSplineCurve.hxx>
#include <GeomLib_CheckCurveOnSurface.hxx>
#include <GeomLib_DenominatorMultiplier.hxx>
#include <GeomLib_DenominatorMultiplierPtr.hxx>
#include <GeomLib_Interpolate.hxx>
#include <GeomLib_InterpolationErrors.hxx>
#include <GeomLib_IsPlanarSurface.hxx>
#include <GeomLib_LogSample.hxx>
#include <GeomLib_MakeCurvefromApprox.hxx>
#include <GeomLib_PolyFunc.hxx>
#include <GeomLib_Tool.hxx>

// template related includes

// ./opencascade/GeomLib_Array1OfMat.hxx
#include "NCollection_tmpl.hxx"


// user-defined pre
#include "OCP_specific.inc"

// user-defined inclusion per module

// Module definiiton
void register_GeomLib(py::module &main_module) {


py::module m = static_cast<py::module>(main_module.attr("GeomLib"));
py::object klass;

//Python trampoline classes

// classes

    // Class GeomLib from ./opencascade/GeomLib.hxx
    klass = m.attr("GeomLib");

    // default constructor
    register_default_constructor<GeomLib , shared_ptr<GeomLib>>(m,"GeomLib");

    // nested enums

    static_cast<py::class_<GeomLib , shared_ptr<GeomLib>  >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("To3d_s",
                    (opencascade::handle<Geom_Curve> (*)( const gp_Ax2 & ,  const opencascade::handle<Geom2d_Curve> &  ) ) static_cast<opencascade::handle<Geom_Curve> (*)( const gp_Ax2 & ,  const opencascade::handle<Geom2d_Curve> &  ) >(&GeomLib::To3d),
                    R"#(Computes the curve 3d from package Geom corresponding to curve 2d from package Geom2d, on the plan defined with the local coordinate system Position.)#"  , py::arg("Position"),  py::arg("Curve2d")
          )
        .def_static("GTransform_s",
                    (opencascade::handle<Geom2d_Curve> (*)( const opencascade::handle<Geom2d_Curve> & ,  const gp_GTrsf2d &  ) ) static_cast<opencascade::handle<Geom2d_Curve> (*)( const opencascade::handle<Geom2d_Curve> & ,  const gp_GTrsf2d &  ) >(&GeomLib::GTransform),
                    R"#(Computes the curve 3d from package Geom corresponding to the curve 3d from package Geom, transformed with the transformation <GTrsf> WARNING : this method may return a null Handle if it's impossible to compute the transformation of a curve. It's not implemented when : 1) the curve is an infinite parabola or hyperbola 2) the curve is an offsetcurve)#"  , py::arg("Curve"),  py::arg("GTrsf")
          )
        .def_static("FuseIntervals_s",
                    (void (*)(  const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Real> & ,  NCollection_Sequence<Standard_Real> & ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<void (*)(  const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Real> & ,  NCollection_Sequence<Standard_Real> & ,  const Standard_Real ,  const Standard_Boolean  ) >(&GeomLib::FuseIntervals),
                    R"#(This method fuse intervals Interval1 and Interval2 with specified Confusion)#"  , py::arg("Interval1"),  py::arg("Interval2"),  py::arg("Fusion"),  py::arg("Confusion")=static_cast<const Standard_Real>(1.0e-9),  py::arg("IsAdjustToFirstInterval")=static_cast<const Standard_Boolean>(Standard_False)
          )
        .def_static("NormEstim_s",
                    (Standard_Integer (*)( const opencascade::handle<Geom_Surface> & ,  const gp_Pnt2d & ,  const Standard_Real ,  gp_Dir &  ) ) static_cast<Standard_Integer (*)( const opencascade::handle<Geom_Surface> & ,  const gp_Pnt2d & ,  const Standard_Real ,  gp_Dir &  ) >(&GeomLib::NormEstim),
                    R"#(Estimate surface normal at the given (U, V) point.)#"  , py::arg("theSurf"),  py::arg("theUV"),  py::arg("theTol"),  py::arg("theNorm")
          )
        .def_static("IsBSplUClosed_s",
                    (Standard_Boolean (*)( const opencascade::handle<Geom_BSplineSurface> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<Standard_Boolean (*)( const opencascade::handle<Geom_BSplineSurface> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&GeomLib::IsBSplUClosed),
                    R"#(Returns true if the poles of U1 isoline and the poles of U2 isoline of surface are identical according to tolerance criterion. For rational surfaces Weights(i)*Poles(i) are checked.)#"  , py::arg("S"),  py::arg("U1"),  py::arg("U2"),  py::arg("Tol")
          )
        .def_static("IsBSplVClosed_s",
                    (Standard_Boolean (*)( const opencascade::handle<Geom_BSplineSurface> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<Standard_Boolean (*)( const opencascade::handle<Geom_BSplineSurface> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&GeomLib::IsBSplVClosed),
                    R"#(Returns true if the poles of V1 isoline and the poles of V2 isoline of surface are identical according to tolerance criterion. For rational surfaces Weights(i)*Poles(i) are checked.)#"  , py::arg("S"),  py::arg("V1"),  py::arg("V2"),  py::arg("Tol")
          )
        .def_static("IsBzUClosed_s",
                    (Standard_Boolean (*)( const opencascade::handle<Geom_BezierSurface> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<Standard_Boolean (*)( const opencascade::handle<Geom_BezierSurface> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&GeomLib::IsBzUClosed),
                    R"#(Returns true if the poles of U1 isoline and the poles of U2 isoline of surface are identical according to tolerance criterion.)#"  , py::arg("S"),  py::arg("U1"),  py::arg("U2"),  py::arg("Tol")
          )
        .def_static("IsBzVClosed_s",
                    (Standard_Boolean (*)( const opencascade::handle<Geom_BezierSurface> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<Standard_Boolean (*)( const opencascade::handle<Geom_BezierSurface> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&GeomLib::IsBzVClosed),
                    R"#(Returns true if the poles of V1 isoline and the poles of V2 isoline of surface are identical according to tolerance criterion.)#"  , py::arg("S"),  py::arg("V1"),  py::arg("V2"),  py::arg("Tol")
          )
        .def_static("isIsoLine_s",
                    (Standard_Boolean (*)( const opencascade::handle<Adaptor2d_Curve2d> & ,  Standard_Boolean & ,  Standard_Real & ,  Standard_Boolean &  ) ) static_cast<Standard_Boolean (*)( const opencascade::handle<Adaptor2d_Curve2d> & ,  Standard_Boolean & ,  Standard_Real & ,  Standard_Boolean &  ) >(&GeomLib::isIsoLine),
                    R"#(Checks whether the 2d curve is a isoline. It can be represented by b-spline, bezier, or geometric line. This line should have natural parameterization.)#"  , py::arg("theC2D"),  py::arg("theIsU"),  py::arg("theParam"),  py::arg("theIsForward")
          )
        .def_static("buildC3dOnIsoLine_s",
                    (opencascade::handle<Geom_Curve> (*)( const opencascade::handle<Adaptor2d_Curve2d> & ,  const opencascade::handle<Adaptor3d_Surface> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<opencascade::handle<Geom_Curve> (*)( const opencascade::handle<Adaptor2d_Curve2d> & ,  const opencascade::handle<Adaptor3d_Surface> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Real ,  const Standard_Boolean  ) >(&GeomLib::buildC3dOnIsoLine),
                    R"#(Builds 3D curve for a isoline. This method takes corresponding isoline from the input surface.)#"  , py::arg("theC2D"),  py::arg("theSurf"),  py::arg("theFirst"),  py::arg("theLast"),  py::arg("theTolerance"),  py::arg("theIsU"),  py::arg("theParam"),  py::arg("theIsForward")
          )
    // static methods using call by reference i.s.o. return
        .def_static("SameRange_s",
            [](const Standard_Real Tolerance,const opencascade::handle<Geom2d_Curve> & Curve2dPtr,const Standard_Real First,const Standard_Real Last,const Standard_Real RequestedFirst,const Standard_Real RequestedLast,Geom2d_Curve& NewCurve2dPtr ){
                opencascade::handle<Geom2d_Curve>  NewCurve2dPtr_ptr; NewCurve2dPtr_ptr = &NewCurve2dPtr;

                GeomLib::SameRange(Tolerance,Curve2dPtr,First,Last,RequestedFirst,RequestedLast,NewCurve2dPtr_ptr);
                if ( NewCurve2dPtr_ptr.get() != &NewCurve2dPtr ) copy_if_copy_constructible(NewCurve2dPtr, *NewCurve2dPtr_ptr);

 },
            R"#(Make the curve Curve2dPtr have the imposed range First to List the most economic way, that is if it can change the range without changing the nature of the curve it will try to do that. Otherwise it will produce a Bspline curve that has the required range)#"  , py::arg("Tolerance"),  py::arg("Curve2dPtr"),  py::arg("First"),  py::arg("Last"),  py::arg("RequestedFirst"),  py::arg("RequestedLast"),  py::arg("NewCurve2dPtr")
          )
        .def_static("BuildCurve3d_s",
            [](const Standard_Real Tolerance,Adaptor3d_CurveOnSurface & CurvePtr,const Standard_Real FirstParameter,const Standard_Real LastParameter,Geom_Curve& NewCurvePtr,const GeomAbs_Shape Continuity,const Standard_Integer MaxDegree,const Standard_Integer MaxSegment ){
                Standard_Real  MaxDeviation;
                Standard_Real  AverageDeviation;
                opencascade::handle<Geom_Curve>  NewCurvePtr_ptr; NewCurvePtr_ptr = &NewCurvePtr;

                GeomLib::BuildCurve3d(Tolerance,CurvePtr,FirstParameter,LastParameter,NewCurvePtr_ptr,MaxDeviation,AverageDeviation,Continuity,MaxDegree,MaxSegment);
                if ( NewCurvePtr_ptr.get() != &NewCurvePtr ) copy_if_copy_constructible(NewCurvePtr, *NewCurvePtr_ptr);

return std::make_tuple(MaxDeviation,AverageDeviation); },
            R"#(None)#"  , py::arg("Tolerance"),  py::arg("CurvePtr"),  py::arg("FirstParameter"),  py::arg("LastParameter"),  py::arg("NewCurvePtr"),  py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C1),  py::arg("MaxDegree")=static_cast<const Standard_Integer>(14),  py::arg("MaxSegment")=static_cast<const Standard_Integer>(30)
          )
        .def_static("AdjustExtremity_s",
            [](Geom_BoundedCurve& Curve,const gp_Pnt & P1,const gp_Pnt & P2,const gp_Vec & T1,const gp_Vec & T2 ){
                opencascade::handle<Geom_BoundedCurve>  Curve_ptr; Curve_ptr = &Curve;

                GeomLib::AdjustExtremity(Curve_ptr,P1,P2,T1,T2);
                if ( Curve_ptr.get() != &Curve ) copy_if_copy_constructible(Curve, *Curve_ptr);

 },
            R"#(None)#"  , py::arg("Curve"),  py::arg("P1"),  py::arg("P2"),  py::arg("T1"),  py::arg("T2")
          )
        .def_static("ExtendCurveToPoint_s",
            [](Geom_BoundedCurve& Curve,const gp_Pnt & Point,const Standard_Integer Cont,const Standard_Boolean After ){
                opencascade::handle<Geom_BoundedCurve>  Curve_ptr; Curve_ptr = &Curve;

                GeomLib::ExtendCurveToPoint(Curve_ptr,Point,Cont,After);
                if ( Curve_ptr.get() != &Curve ) copy_if_copy_constructible(Curve, *Curve_ptr);

 },
            R"#(Extends the bounded curve Curve to the point Point. The extension is built: - at the end of the curve if After equals true, or - at the beginning of the curve if After equals false. The extension is performed according to a degree of continuity equal to Cont, which in its turn must be equal to 1, 2 or 3. This function converts the bounded curve Curve into a BSpline curve. Warning - Nothing is done, and Curve is not modified if Cont is not equal to 1, 2 or 3. - It is recommended that the extension should not be too large with respect to the size of the bounded curve Curve: Point must not be located too far from one of the extremities of Curve.)#"  , py::arg("Curve"),  py::arg("Point"),  py::arg("Cont"),  py::arg("After")
          )
        .def_static("ExtendSurfByLength_s",
            [](Geom_BoundedSurface& Surf,const Standard_Real Length,const Standard_Integer Cont,const Standard_Boolean InU,const Standard_Boolean After ){
                opencascade::handle<Geom_BoundedSurface>  Surf_ptr; Surf_ptr = &Surf;

                GeomLib::ExtendSurfByLength(Surf_ptr,Length,Cont,InU,After);
                if ( Surf_ptr.get() != &Surf ) copy_if_copy_constructible(Surf, *Surf_ptr);

 },
            R"#(Extends the bounded surface Surf along one of its boundaries. The chord length of the extension is equal to Length. The direction of the extension is given as: - the u parametric direction of Surf, if InU equals true, or - the v parametric direction of Surf, if InU equals false. In this parametric direction, the extension is built on the side of: - the last parameter of Surf, if After equals true, or - the first parameter of Surf, if After equals false. The extension is performed according to a degree of continuity equal to Cont, which in its turn must be equal to 1, 2 or 3. This function converts the bounded surface Surf into a BSpline surface. Warning - Nothing is done, and Surf is not modified if Cont is not equal to 1, 2 or 3. - It is recommended that Length, the size of the extension should not be too large with respect to the size of the bounded surface Surf. - Surf must not be a periodic BSpline surface in the parametric direction corresponding to the direction of extension.)#"  , py::arg("Surf"),  py::arg("Length"),  py::arg("Cont"),  py::arg("InU"),  py::arg("After")
          )
        .def_static("AxeOfInertia_s",
            []( const NCollection_Array1<gp_Pnt> & Points,gp_Ax2 & Axe,const Standard_Real Tol ){
                Standard_Boolean  IsSingular;

                GeomLib::AxeOfInertia(Points,Axe,IsSingular,Tol);
                
return std::make_tuple(IsSingular); },
            R"#(Compute axes of inertia, of some points -- -- -- <Axe>.Location() is the BaryCentre -- -- -- -- -- <Axe>.XDirection is the axe of upper inertia -- -- -- -- <Axe>.Direction is the Normal to the average plane -- -- -- IsSingular is True if points are on line -- Tol is used to determine singular cases.)#"  , py::arg("Points"),  py::arg("Axe"),  py::arg("Tol")=static_cast<const Standard_Real>(1.0e-7)
          )
        .def_static("Inertia_s",
            []( const NCollection_Array1<gp_Pnt> & Points,gp_Pnt & Bary,gp_Dir & XDir,gp_Dir & YDir ){
                Standard_Real  Xgap;
                Standard_Real  YGap;
                Standard_Real  ZGap;

                GeomLib::Inertia(Points,Bary,XDir,YDir,Xgap,YGap,ZGap);
                
return std::make_tuple(Xgap,YGap,ZGap); },
            R"#(Compute principale axes of inertia, and dispersion value of some points.)#"  , py::arg("Points"),  py::arg("Bary"),  py::arg("XDir"),  py::arg("YDir")
          )
        .def_static("RemovePointsFromArray_s",
            [](const Standard_Integer NumPoints, const NCollection_Array1<Standard_Real> & InParameters,TColStd_HArray1OfReal& OutParameters ){
                opencascade::handle<TColStd_HArray1OfReal>  OutParameters_ptr; OutParameters_ptr = &OutParameters;

                GeomLib::RemovePointsFromArray(NumPoints,InParameters,OutParameters_ptr);
                if ( OutParameters_ptr.get() != &OutParameters ) copy_if_copy_constructible(OutParameters, *OutParameters_ptr);

 },
            R"#(Warning! This assume that the InParameter is an increasing sequence of real number and it will not check for that : Unpredictable result can happen if this is not satisfied. It is the caller responsibility to check for that property.)#"  , py::arg("NumPoints"),  py::arg("InParameters"),  py::arg("OutParameters")
          )
        .def_static("DensifyArray1OfReal_s",
            [](const Standard_Integer MinNumPoints, const NCollection_Array1<Standard_Real> & InParameters,TColStd_HArray1OfReal& OutParameters ){
                opencascade::handle<TColStd_HArray1OfReal>  OutParameters_ptr; OutParameters_ptr = &OutParameters;

                GeomLib::DensifyArray1OfReal(MinNumPoints,InParameters,OutParameters_ptr);
                if ( OutParameters_ptr.get() != &OutParameters ) copy_if_copy_constructible(OutParameters, *OutParameters_ptr);

 },
            R"#(this makes sure that there is at least MinNumPoints in OutParameters taking into account the parameters in the InParameters array provided those are in order, that is the sequence of real in the InParameter is strictly non decreasing)#"  , py::arg("MinNumPoints"),  py::arg("InParameters"),  py::arg("OutParameters")
          )
        .def_static("EvalMaxParametricDistance_s",
            [](const Adaptor3d_Curve & Curve,const Adaptor3d_Curve & AReferenceCurve,const Standard_Real Tolerance, const NCollection_Array1<Standard_Real> & Parameters ){
                Standard_Real  MaxDistance;

                GeomLib::EvalMaxParametricDistance(Curve,AReferenceCurve,Tolerance,Parameters,MaxDistance);
                
return std::make_tuple(MaxDistance); },
            R"#(this will compute the maximum distance at the parameters given in the Parameters array by evaluating each parameter the two curves and taking the maximum of the evaluated distance)#"  , py::arg("Curve"),  py::arg("AReferenceCurve"),  py::arg("Tolerance"),  py::arg("Parameters")
          )
        .def_static("EvalMaxDistanceAlongParameter_s",
            [](const Adaptor3d_Curve & Curve,const Adaptor3d_Curve & AReferenceCurve,const Standard_Real Tolerance, const NCollection_Array1<Standard_Real> & Parameters ){
                Standard_Real  MaxDistance;

                GeomLib::EvalMaxDistanceAlongParameter(Curve,AReferenceCurve,Tolerance,Parameters,MaxDistance);
                
return std::make_tuple(MaxDistance); },
            R"#(this will compute the maximum distance at the parameters given in the Parameters array by projecting from the Curve to the reference curve and taking the minimum distance Than the maximum will be taken on those minimas.)#"  , py::arg("Curve"),  py::arg("AReferenceCurve"),  py::arg("Tolerance"),  py::arg("Parameters")
          )
        .def_static("CancelDenominatorDerivative_s",
            [](Geom_BSplineSurface& BSurf,const Standard_Boolean UDirection,const Standard_Boolean VDirection ){
                opencascade::handle<Geom_BSplineSurface>  BSurf_ptr; BSurf_ptr = &BSurf;

                GeomLib::CancelDenominatorDerivative(BSurf_ptr,UDirection,VDirection);
                if ( BSurf_ptr.get() != &BSurf ) copy_if_copy_constructible(BSurf, *BSurf_ptr);

 },
            R"#(Cancel,on the boundaries,the denominator first derivative in the directions wished by the user and set its value to 1.)#"  , py::arg("BSurf"),  py::arg("UDirection"),  py::arg("VDirection")
          )
        .def_static("IsClosed_s",
            [](const opencascade::handle<Geom_Surface> & S,const Standard_Real Tol ){
                Standard_Boolean  isUClosed;
                Standard_Boolean  isVClosed;

                GeomLib::IsClosed(S,Tol,isUClosed,isVClosed);
                
return std::make_tuple(isUClosed,isVClosed); },
            R"#(This method defines if opposite boundaries of surface coincide with given tolerance)#"  , py::arg("S"),  py::arg("Tol")
          )
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomLib_Check2dBSplineCurve from ./opencascade/GeomLib_Check2dBSplineCurve.hxx
    klass = m.attr("GeomLib_Check2dBSplineCurve");


    // nested enums

    static_cast<py::class_<GeomLib_Check2dBSplineCurve , shared_ptr<GeomLib_Check2dBSplineCurve>  >>(klass)
    // constructors
        .def(py::init< const opencascade::handle<Geom2d_BSplineCurve> &,const Standard_Real,const Standard_Real >()  , py::arg("Curve"),  py::arg("Tolerance"),  py::arg("AngularTolerance") )
    // custom constructors
    // methods
        .def("IsDone",
             (Standard_Boolean (GeomLib_Check2dBSplineCurve::*)() const) static_cast<Standard_Boolean (GeomLib_Check2dBSplineCurve::*)() const>(&GeomLib_Check2dBSplineCurve::IsDone),
             R"#(None)#" 
          )
        .def("FixTangent",
             (void (GeomLib_Check2dBSplineCurve::*)( const Standard_Boolean ,  const Standard_Boolean  ) ) static_cast<void (GeomLib_Check2dBSplineCurve::*)( const Standard_Boolean ,  const Standard_Boolean  ) >(&GeomLib_Check2dBSplineCurve::FixTangent),
             R"#(None)#"  , py::arg("FirstFlag"),  py::arg("LastFlag")
          )
        .def("FixedTangent",
             (opencascade::handle<Geom2d_BSplineCurve> (GeomLib_Check2dBSplineCurve::*)( const Standard_Boolean ,  const Standard_Boolean  ) ) static_cast<opencascade::handle<Geom2d_BSplineCurve> (GeomLib_Check2dBSplineCurve::*)( const Standard_Boolean ,  const Standard_Boolean  ) >(&GeomLib_Check2dBSplineCurve::FixedTangent),
             R"#(modifies the curve by fixing the first or the last tangencies)#"  , py::arg("FirstFlag"),  py::arg("LastFlag")
          )
        .def("IsDone",
             (Standard_Boolean (GeomLib_Check2dBSplineCurve::*)() const) static_cast<Standard_Boolean (GeomLib_Check2dBSplineCurve::*)() const>(&GeomLib_Check2dBSplineCurve::IsDone),
             R"#(None)#" 
          )
    // methods using call by reference i.s.o. return
        .def("NeedTangentFix",
             []( GeomLib_Check2dBSplineCurve &self   ){
                 Standard_Boolean  FirstFlag;
                Standard_Boolean  SecondFlag;

                 self.NeedTangentFix(FirstFlag,SecondFlag);
                 
                 return std::make_tuple(FirstFlag,SecondFlag); },
             R"#(None)#" 
          )
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomLib_CheckBSplineCurve from ./opencascade/GeomLib_CheckBSplineCurve.hxx
    klass = m.attr("GeomLib_CheckBSplineCurve");


    // nested enums

    static_cast<py::class_<GeomLib_CheckBSplineCurve , shared_ptr<GeomLib_CheckBSplineCurve>  >>(klass)
    // constructors
        .def(py::init< const opencascade::handle<Geom_BSplineCurve> &,const Standard_Real,const Standard_Real >()  , py::arg("Curve"),  py::arg("Tolerance"),  py::arg("AngularTolerance") )
    // custom constructors
    // methods
        .def("IsDone",
             (Standard_Boolean (GeomLib_CheckBSplineCurve::*)() const) static_cast<Standard_Boolean (GeomLib_CheckBSplineCurve::*)() const>(&GeomLib_CheckBSplineCurve::IsDone),
             R"#(None)#" 
          )
        .def("FixTangent",
             (void (GeomLib_CheckBSplineCurve::*)( const Standard_Boolean ,  const Standard_Boolean  ) ) static_cast<void (GeomLib_CheckBSplineCurve::*)( const Standard_Boolean ,  const Standard_Boolean  ) >(&GeomLib_CheckBSplineCurve::FixTangent),
             R"#(None)#"  , py::arg("FirstFlag"),  py::arg("LastFlag")
          )
        .def("FixedTangent",
             (opencascade::handle<Geom_BSplineCurve> (GeomLib_CheckBSplineCurve::*)( const Standard_Boolean ,  const Standard_Boolean  ) ) static_cast<opencascade::handle<Geom_BSplineCurve> (GeomLib_CheckBSplineCurve::*)( const Standard_Boolean ,  const Standard_Boolean  ) >(&GeomLib_CheckBSplineCurve::FixedTangent),
             R"#(modifies the curve by fixing the first or the last tangencies)#"  , py::arg("FirstFlag"),  py::arg("LastFlag")
          )
        .def("IsDone",
             (Standard_Boolean (GeomLib_CheckBSplineCurve::*)() const) static_cast<Standard_Boolean (GeomLib_CheckBSplineCurve::*)() const>(&GeomLib_CheckBSplineCurve::IsDone),
             R"#(None)#" 
          )
    // methods using call by reference i.s.o. return
        .def("NeedTangentFix",
             []( GeomLib_CheckBSplineCurve &self   ){
                 Standard_Boolean  FirstFlag;
                Standard_Boolean  SecondFlag;

                 self.NeedTangentFix(FirstFlag,SecondFlag);
                 
                 return std::make_tuple(FirstFlag,SecondFlag); },
             R"#(None)#" 
          )
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomLib_CheckCurveOnSurface from ./opencascade/GeomLib_CheckCurveOnSurface.hxx
    klass = m.attr("GeomLib_CheckCurveOnSurface");


    // nested enums

    static_cast<py::class_<GeomLib_CheckCurveOnSurface , shared_ptr<GeomLib_CheckCurveOnSurface>  >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const opencascade::handle<Adaptor3d_Curve> &,const Standard_Real >()  , py::arg("theCurve"),  py::arg("theTolRange")=static_cast<const Standard_Real>(Precision :: PConfusion ( )) )
    // custom constructors
    // methods
        .def("Init",
             (void (GeomLib_CheckCurveOnSurface::*)( const opencascade::handle<Adaptor3d_Curve> & ,  const Standard_Real  ) ) static_cast<void (GeomLib_CheckCurveOnSurface::*)( const opencascade::handle<Adaptor3d_Curve> & ,  const Standard_Real  ) >(&GeomLib_CheckCurveOnSurface::Init),
             R"#(Sets the data for the algorithm)#"  , py::arg("theCurve"),  py::arg("theTolRange")=static_cast<const Standard_Real>(Precision :: PConfusion ( ))
          )
        .def("Init",
             (void (GeomLib_CheckCurveOnSurface::*)() ) static_cast<void (GeomLib_CheckCurveOnSurface::*)() >(&GeomLib_CheckCurveOnSurface::Init),
             R"#(Initializes all members by default values)#" 
          )
        .def("Perform",
             (void (GeomLib_CheckCurveOnSurface::*)( const opencascade::handle<Adaptor3d_CurveOnSurface> &  ) ) static_cast<void (GeomLib_CheckCurveOnSurface::*)( const opencascade::handle<Adaptor3d_CurveOnSurface> &  ) >(&GeomLib_CheckCurveOnSurface::Perform),
             R"#(Computes the max distance for the 3d curve <myCurve> and 2d curve <theCurveOnSurface> If isMultiThread == Standard_True then computation will be performed in parallel.)#"  , py::arg("theCurveOnSurface")
          )
        .def("SetParallel",
             (void (GeomLib_CheckCurveOnSurface::*)( const Standard_Boolean  ) ) static_cast<void (GeomLib_CheckCurveOnSurface::*)( const Standard_Boolean  ) >(&GeomLib_CheckCurveOnSurface::SetParallel),
             R"#(Sets parallel flag)#"  , py::arg("theIsParallel")
          )
        .def("IsParallel",
             (Standard_Boolean (GeomLib_CheckCurveOnSurface::*)() ) static_cast<Standard_Boolean (GeomLib_CheckCurveOnSurface::*)() >(&GeomLib_CheckCurveOnSurface::IsParallel),
             R"#(Returns true if parallel flag is set)#" 
          )
        .def("IsDone",
             (Standard_Boolean (GeomLib_CheckCurveOnSurface::*)() const) static_cast<Standard_Boolean (GeomLib_CheckCurveOnSurface::*)() const>(&GeomLib_CheckCurveOnSurface::IsDone),
             R"#(Returns true if the max distance has been found)#" 
          )
        .def("ErrorStatus",
             (Standard_Integer (GeomLib_CheckCurveOnSurface::*)() const) static_cast<Standard_Integer (GeomLib_CheckCurveOnSurface::*)() const>(&GeomLib_CheckCurveOnSurface::ErrorStatus),
             R"#(Returns error status The possible values are: 0 - OK; 1 - null curve or surface or 2d curve; 2 - invalid parametric range; 3 - error in calculations.)#" 
          )
        .def("MaxDistance",
             (Standard_Real (GeomLib_CheckCurveOnSurface::*)() const) static_cast<Standard_Real (GeomLib_CheckCurveOnSurface::*)() const>(&GeomLib_CheckCurveOnSurface::MaxDistance),
             R"#(Returns max distance)#" 
          )
        .def("MaxParameter",
             (Standard_Real (GeomLib_CheckCurveOnSurface::*)() const) static_cast<Standard_Real (GeomLib_CheckCurveOnSurface::*)() const>(&GeomLib_CheckCurveOnSurface::MaxParameter),
             R"#(Returns parameter in which the distance is maximal)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomLib_DenominatorMultiplier from ./opencascade/GeomLib_DenominatorMultiplier.hxx
    klass = m.attr("GeomLib_DenominatorMultiplier");


    // nested enums

    static_cast<py::class_<GeomLib_DenominatorMultiplier , shared_ptr<GeomLib_DenominatorMultiplier>  >>(klass)
    // constructors
        .def(py::init< const opencascade::handle<Geom_BSplineSurface> &, const NCollection_Array1<Standard_Real> & >()  , py::arg("Surface"),  py::arg("KnotVector") )
    // custom constructors
    // methods
        .def("Value",
             (Standard_Real (GeomLib_DenominatorMultiplier::*)( const Standard_Real ,  const Standard_Real  ) const) static_cast<Standard_Real (GeomLib_DenominatorMultiplier::*)( const Standard_Real ,  const Standard_Real  ) const>(&GeomLib_DenominatorMultiplier::Value),
             R"#(Returns the value of a(UParameter,VParameter)=)#"  , py::arg("UParameter"),  py::arg("VParameter")
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomLib_Interpolate from ./opencascade/GeomLib_Interpolate.hxx
    klass = m.attr("GeomLib_Interpolate");


    // nested enums

    static_cast<py::class_<GeomLib_Interpolate , shared_ptr<GeomLib_Interpolate>  >>(klass)
    // constructors
        .def(py::init< const Standard_Integer,const Standard_Integer, const NCollection_Array1<gp_Pnt> &, const NCollection_Array1<Standard_Real> & >()  , py::arg("Degree"),  py::arg("NumPoints"),  py::arg("Points"),  py::arg("Parameters") )
    // custom constructors
    // methods
        .def("IsDone",
             (Standard_Boolean (GeomLib_Interpolate::*)() const) static_cast<Standard_Boolean (GeomLib_Interpolate::*)() const>(&GeomLib_Interpolate::IsDone),
             R"#(returns if everything went OK)#" 
          )
        .def("Error",
             (GeomLib_InterpolationErrors (GeomLib_Interpolate::*)() const) static_cast<GeomLib_InterpolationErrors (GeomLib_Interpolate::*)() const>(&GeomLib_Interpolate::Error),
             R"#(returns the error type if any)#" 
          )
        .def("Curve",
             (opencascade::handle<Geom_BSplineCurve> (GeomLib_Interpolate::*)() const) static_cast<opencascade::handle<Geom_BSplineCurve> (GeomLib_Interpolate::*)() const>(&GeomLib_Interpolate::Curve),
             R"#(returns the interpolated curve of the requested degree)#" 
          )
        .def("IsDone",
             (Standard_Boolean (GeomLib_Interpolate::*)() const) static_cast<Standard_Boolean (GeomLib_Interpolate::*)() const>(&GeomLib_Interpolate::IsDone),
             R"#(returns if everything went OK)#" 
          )
        .def("Error",
             (GeomLib_InterpolationErrors (GeomLib_Interpolate::*)() const) static_cast<GeomLib_InterpolationErrors (GeomLib_Interpolate::*)() const>(&GeomLib_Interpolate::Error),
             R"#(returns the error type if any)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomLib_IsPlanarSurface from ./opencascade/GeomLib_IsPlanarSurface.hxx
    klass = m.attr("GeomLib_IsPlanarSurface");


    // nested enums

    static_cast<py::class_<GeomLib_IsPlanarSurface , shared_ptr<GeomLib_IsPlanarSurface>  >>(klass)
    // constructors
        .def(py::init< const opencascade::handle<Geom_Surface> &,const Standard_Real >()  , py::arg("S"),  py::arg("Tol")=static_cast<const Standard_Real>(1.0e-7) )
    // custom constructors
    // methods
        .def("IsPlanar",
             (Standard_Boolean (GeomLib_IsPlanarSurface::*)() const) static_cast<Standard_Boolean (GeomLib_IsPlanarSurface::*)() const>(&GeomLib_IsPlanarSurface::IsPlanar),
             R"#(Return if the Surface is a plan)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Plan",
             (const gp_Pln & (GeomLib_IsPlanarSurface::*)() const) static_cast<const gp_Pln & (GeomLib_IsPlanarSurface::*)() const>(&GeomLib_IsPlanarSurface::Plan),
             R"#(Return the plan definition)#"
             
         )
;

    // Class GeomLib_LogSample from ./opencascade/GeomLib_LogSample.hxx
    klass = m.attr("GeomLib_LogSample");


    // nested enums

    static_cast<py::class_<GeomLib_LogSample , shared_ptr<GeomLib_LogSample>  , math_FunctionSample >>(klass)
    // constructors
        .def(py::init< const Standard_Real,const Standard_Real,const Standard_Integer >()  , py::arg("A"),  py::arg("B"),  py::arg("N") )
    // custom constructors
    // methods
        .def("GetParameter",
             (Standard_Real (GeomLib_LogSample::*)( const Standard_Integer  ) const) static_cast<Standard_Real (GeomLib_LogSample::*)( const Standard_Integer  ) const>(&GeomLib_LogSample::GetParameter),
             R"#(Returns the value of parameter of the point of range Index : A + ((Index-1)/(NbPoints-1))*B. An exception is raised if Index<=0 or Index>NbPoints.)#"  , py::arg("Index")
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomLib_MakeCurvefromApprox from ./opencascade/GeomLib_MakeCurvefromApprox.hxx
    klass = m.attr("GeomLib_MakeCurvefromApprox");


    // nested enums

    static_cast<py::class_<GeomLib_MakeCurvefromApprox , shared_ptr<GeomLib_MakeCurvefromApprox>  >>(klass)
    // constructors
        .def(py::init< const AdvApprox_ApproxAFunction & >()  , py::arg("Approx") )
    // custom constructors
    // methods
        .def("IsDone",
             (Standard_Boolean (GeomLib_MakeCurvefromApprox::*)() const) static_cast<Standard_Boolean (GeomLib_MakeCurvefromApprox::*)() const>(&GeomLib_MakeCurvefromApprox::IsDone),
             R"#(None)#" 
          )
        .def("Nb1DSpaces",
             (Standard_Integer (GeomLib_MakeCurvefromApprox::*)() const) static_cast<Standard_Integer (GeomLib_MakeCurvefromApprox::*)() const>(&GeomLib_MakeCurvefromApprox::Nb1DSpaces),
             R"#(returns the number of 1D spaces of the Approx)#" 
          )
        .def("Nb2DSpaces",
             (Standard_Integer (GeomLib_MakeCurvefromApprox::*)() const) static_cast<Standard_Integer (GeomLib_MakeCurvefromApprox::*)() const>(&GeomLib_MakeCurvefromApprox::Nb2DSpaces),
             R"#(returns the number of 3D spaces of the Approx)#" 
          )
        .def("Nb3DSpaces",
             (Standard_Integer (GeomLib_MakeCurvefromApprox::*)() const) static_cast<Standard_Integer (GeomLib_MakeCurvefromApprox::*)() const>(&GeomLib_MakeCurvefromApprox::Nb3DSpaces),
             R"#(returns the number of 3D spaces of the Approx)#" 
          )
        .def("Curve2d",
             (opencascade::handle<Geom2d_BSplineCurve> (GeomLib_MakeCurvefromApprox::*)( const Standard_Integer  ) const) static_cast<opencascade::handle<Geom2d_BSplineCurve> (GeomLib_MakeCurvefromApprox::*)( const Standard_Integer  ) const>(&GeomLib_MakeCurvefromApprox::Curve2d),
             R"#(returns a polynomial curve whose poles correspond to the Index2d 2D space if Index2d not in the Range [1,Nb2dSpaces] if the Approx is not Done)#"  , py::arg("Index2d")
          )
        .def("Curve2dFromTwo1d",
             (opencascade::handle<Geom2d_BSplineCurve> (GeomLib_MakeCurvefromApprox::*)( const Standard_Integer ,  const Standard_Integer  ) const) static_cast<opencascade::handle<Geom2d_BSplineCurve> (GeomLib_MakeCurvefromApprox::*)( const Standard_Integer ,  const Standard_Integer  ) const>(&GeomLib_MakeCurvefromApprox::Curve2dFromTwo1d),
             R"#(returns a 2D curve building it from the 1D curve in x at Index1d and y at Index2d amongst the 1D curves if Index1d not in the Range [1,Nb1dSpaces] if Index2d not in the Range [1,Nb1dSpaces] if the Approx is not Done)#"  , py::arg("Index1d"),  py::arg("Index2d")
          )
        .def("Curve2d",
             (opencascade::handle<Geom2d_BSplineCurve> (GeomLib_MakeCurvefromApprox::*)( const Standard_Integer ,  const Standard_Integer  ) const) static_cast<opencascade::handle<Geom2d_BSplineCurve> (GeomLib_MakeCurvefromApprox::*)( const Standard_Integer ,  const Standard_Integer  ) const>(&GeomLib_MakeCurvefromApprox::Curve2d),
             R"#(returns a rational curve whose poles correspond to the index2d of the 2D space and whose weights correspond to one dimensional space of index 1d if Index1d not in the Range [1,Nb1dSpaces] if Index2d not in the Range [1,Nb2dSpaces] if the Approx is not Done)#"  , py::arg("Index1d"),  py::arg("Index2d")
          )
        .def("Curve",
             (opencascade::handle<Geom_BSplineCurve> (GeomLib_MakeCurvefromApprox::*)( const Standard_Integer  ) const) static_cast<opencascade::handle<Geom_BSplineCurve> (GeomLib_MakeCurvefromApprox::*)( const Standard_Integer  ) const>(&GeomLib_MakeCurvefromApprox::Curve),
             R"#(returns a polynomial curve whose poles correspond to the Index3D 3D space if Index3D not in the Range [1,Nb3dSpaces] if the Approx is not Done)#"  , py::arg("Index3d")
          )
        .def("Curve",
             (opencascade::handle<Geom_BSplineCurve> (GeomLib_MakeCurvefromApprox::*)( const Standard_Integer ,  const Standard_Integer  ) const) static_cast<opencascade::handle<Geom_BSplineCurve> (GeomLib_MakeCurvefromApprox::*)( const Standard_Integer ,  const Standard_Integer  ) const>(&GeomLib_MakeCurvefromApprox::Curve),
             R"#(returns a rational curve whose poles correspond to the index3D of the 3D space and whose weights correspond to the index1d 1D space. if Index1D not in the Range [1,Nb1dSpaces] if Index3D not in the Range [1,Nb3dSpaces] if the Approx is not Done)#"  , py::arg("Index1D"),  py::arg("Index3D")
          )
        .def("IsDone",
             (Standard_Boolean (GeomLib_MakeCurvefromApprox::*)() const) static_cast<Standard_Boolean (GeomLib_MakeCurvefromApprox::*)() const>(&GeomLib_MakeCurvefromApprox::IsDone),
             R"#(None)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomLib_PolyFunc from ./opencascade/GeomLib_PolyFunc.hxx
    klass = m.attr("GeomLib_PolyFunc");


    // nested enums

    static_cast<py::class_<GeomLib_PolyFunc , shared_ptr<GeomLib_PolyFunc>  , math_FunctionWithDerivative >>(klass)
    // constructors
        .def(py::init<  const math_VectorBase<double> & >()  , py::arg("Coeffs") )
    // custom constructors
    // methods
        .def("Value",
             (Standard_Boolean (GeomLib_PolyFunc::*)( const Standard_Real ,  Standard_Real &  ) ) static_cast<Standard_Boolean (GeomLib_PolyFunc::*)( const Standard_Real ,  Standard_Real &  ) >(&GeomLib_PolyFunc::Value),
             R"#(computes the value <F>of the function for the variable <X>. Returns True if the calculation were successfully done, False otherwise.)#"  , py::arg("X"),  py::arg("F")
          )
        .def("Derivative",
             (Standard_Boolean (GeomLib_PolyFunc::*)( const Standard_Real ,  Standard_Real &  ) ) static_cast<Standard_Boolean (GeomLib_PolyFunc::*)( const Standard_Real ,  Standard_Real &  ) >(&GeomLib_PolyFunc::Derivative),
             R"#(computes the derivative <D> of the function for the variable <X>. Returns True if the calculation were successfully done, False otherwise.)#"  , py::arg("X"),  py::arg("D")
          )
        .def("Values",
             (Standard_Boolean (GeomLib_PolyFunc::*)( const Standard_Real ,  Standard_Real & ,  Standard_Real &  ) ) static_cast<Standard_Boolean (GeomLib_PolyFunc::*)( const Standard_Real ,  Standard_Real & ,  Standard_Real &  ) >(&GeomLib_PolyFunc::Values),
             R"#(computes the value <F> and the derivative <D> of the function for the variable <X>. Returns True if the calculation were successfully done, False otherwise.)#"  , py::arg("X"),  py::arg("F"),  py::arg("D")
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomLib_Tool from ./opencascade/GeomLib_Tool.hxx
    klass = m.attr("GeomLib_Tool");

    // default constructor
    register_default_constructor<GeomLib_Tool , shared_ptr<GeomLib_Tool>>(m,"GeomLib_Tool");

    // nested enums

    static_cast<py::class_<GeomLib_Tool , shared_ptr<GeomLib_Tool>  >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("Parameter_s",
                    (Standard_Boolean (*)( const opencascade::handle<Geom_Curve> & ,  const gp_Pnt & ,  const Standard_Real ,  Standard_Real &  ) ) static_cast<Standard_Boolean (*)( const opencascade::handle<Geom_Curve> & ,  const gp_Pnt & ,  const Standard_Real ,  Standard_Real &  ) >(&GeomLib_Tool::Parameter),
                    R"#(Extracts the parameter of a 3D point lying on a 3D curve or at a distance less than the MaxDist value.)#"  , py::arg("Curve"),  py::arg("Point"),  py::arg("MaxDist"),  py::arg("U")
          )
        .def_static("Parameters_s",
                    (Standard_Boolean (*)( const opencascade::handle<Geom_Surface> & ,  const gp_Pnt & ,  const Standard_Real ,  Standard_Real & ,  Standard_Real &  ) ) static_cast<Standard_Boolean (*)( const opencascade::handle<Geom_Surface> & ,  const gp_Pnt & ,  const Standard_Real ,  Standard_Real & ,  Standard_Real &  ) >(&GeomLib_Tool::Parameters),
                    R"#(Extracts the parameter of a 3D point lying on a surface or at a distance less than the MaxDist value.)#"  , py::arg("Surface"),  py::arg("Point"),  py::arg("MaxDist"),  py::arg("U"),  py::arg("V")
          )
        .def_static("Parameter_s",
                    (Standard_Boolean (*)( const opencascade::handle<Geom2d_Curve> & ,  const gp_Pnt2d & ,  const Standard_Real ,  Standard_Real &  ) ) static_cast<Standard_Boolean (*)( const opencascade::handle<Geom2d_Curve> & ,  const gp_Pnt2d & ,  const Standard_Real ,  Standard_Real &  ) >(&GeomLib_Tool::Parameter),
                    R"#(Extracts the parameter of a 2D point lying on a 2D curve or at a distance less than the MaxDist value.)#"  , py::arg("Curve"),  py::arg("Point"),  py::arg("MaxDist"),  py::arg("U")
          )
        .def_static("ComputeDeviation_s",
                    (Standard_Real (*)( const Geom2dAdaptor_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  Standard_Real *const ,  gp_Pnt2d *const ,  gp_Vec2d *const ,  gp_Lin2d *const  ) ) static_cast<Standard_Real (*)( const Geom2dAdaptor_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  Standard_Real *const ,  gp_Pnt2d *const ,  gp_Vec2d *const ,  gp_Lin2d *const  ) >(&GeomLib_Tool::ComputeDeviation),
                    R"#(Computes parameter in theCurve (*thePrmOnCurve) where maximal deviation between theCurve and the linear segment joining its points with the parameters theFPar and theLPar is obtained. Returns the (positive) value of deviation. Returns negative value if the deviation cannot be computed. The returned parameter (in case of successful) will always be in the range [theFPar, theLPar]. Iterative method is used for computation. So, theStartParameter is needed to be set. Recommend value of theStartParameter can be found with the overloaded method. Additionally, following values can be returned (optionally):)#"  , py::arg("theCurve"),  py::arg("theFPar"),  py::arg("theLPar"),  py::arg("theStartParameter"),  py::arg("theNbIters")=static_cast<const Standard_Integer>(100),  py::arg("thePrmOnCurve")=static_cast<Standard_Real *const>(NULL),  py::arg("thePtOnCurve")=static_cast<gp_Pnt2d *const>(NULL),  py::arg("theVecCurvLine")=static_cast<gp_Vec2d *const>(NULL),  py::arg("theLine")=static_cast<gp_Lin2d *const>(NULL)
          )
        .def_static("ComputeDeviation_s",
                    (Standard_Real (*)( const Geom2dAdaptor_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  Standard_Real *const  ) ) static_cast<Standard_Real (*)( const Geom2dAdaptor_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  Standard_Real *const  ) >(&GeomLib_Tool::ComputeDeviation),
                    R"#(Computes parameter in theCurve (*thePrmOnCurve) where maximal deviation between theCurve and the linear segment joining its points with the parameters theFPar and theLPar is obtained. Returns the (positive) value of deviation. Returns negative value if the deviation cannot be computed. The returned parameter (in case of successful) will always be in the range [theFPar, theLPar]. theNbSubIntervals defines discretization of the given interval [theFPar, theLPar] to provide better search condition. This value should be chosen taking into account complexity of the curve in considered interval. E.g. if there are many oscillations of the curve in the interval then theNbSubIntervals mus be great number. However, the greater value of theNbSubIntervals the slower the algorithm will compute. theNbIters sets number of iterations. ATTENTION!!! This algorithm cannot compute deviation precisely (so, there is no point in setting big value of theNbIters). But it can give some start point for the overloaded method.)#"  , py::arg("theCurve"),  py::arg("theFPar"),  py::arg("theLPar"),  py::arg("theNbSubIntervals"),  py::arg("theNbIters")=static_cast<const Standard_Integer>(10),  py::arg("thePrmOnCurve")=static_cast<Standard_Real *const>(NULL)
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

// functions
// ./opencascade/GeomLib.hxx
// ./opencascade/GeomLib_Array1OfMat.hxx
// ./opencascade/GeomLib_Check2dBSplineCurve.hxx
// ./opencascade/GeomLib_CheckBSplineCurve.hxx
// ./opencascade/GeomLib_CheckCurveOnSurface.hxx
// ./opencascade/GeomLib_DenominatorMultiplier.hxx
// ./opencascade/GeomLib_DenominatorMultiplierPtr.hxx
// ./opencascade/GeomLib_Interpolate.hxx
// ./opencascade/GeomLib_InterpolationErrors.hxx
// ./opencascade/GeomLib_IsPlanarSurface.hxx
// ./opencascade/GeomLib_LogSample.hxx
// ./opencascade/GeomLib_MakeCurvefromApprox.hxx
// ./opencascade/GeomLib_PolyFunc.hxx
// ./opencascade/GeomLib_Tool.hxx

// Additional functions

// operators

// register typdefs
    register_template_NCollection_Array1<gp_Mat>(m,"GeomLib_Array1OfMat");


// exceptions

// user-defined post-inclusion per module in the body

};

// user-defined post-inclusion per module

// user-defined post