1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
|
// std lib related includes
#include <tuple>
// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybind11;
// Standard Handle
#include <Standard_Handle.hxx>
// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Geom_Curve.hxx>
#include <Geom2d_Curve.hxx>
#include <gp_GTrsf2d.hxx>
#include <Adaptor3d_CurveOnSurface.hxx>
#include <Geom_BoundedCurve.hxx>
#include <Geom_BoundedSurface.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Geom_BezierSurface.hxx>
#include <Geom_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_CurveOnSurface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomLib_DenominatorMultiplier.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_Curve.hxx>
#include <Geom_Surface.hxx>
#include <Geom2d_Curve.hxx>
#include <Geom2dAdaptor_Curve.hxx>
#include <gp_Lin2d.hxx>
#include <gp_Pnt.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Vec2d.hxx>
// module includes
#include <GeomLib.hxx>
#include <GeomLib_Array1OfMat.hxx>
#include <GeomLib_Check2dBSplineCurve.hxx>
#include <GeomLib_CheckBSplineCurve.hxx>
#include <GeomLib_CheckCurveOnSurface.hxx>
#include <GeomLib_DenominatorMultiplier.hxx>
#include <GeomLib_DenominatorMultiplierPtr.hxx>
#include <GeomLib_Interpolate.hxx>
#include <GeomLib_InterpolationErrors.hxx>
#include <GeomLib_IsPlanarSurface.hxx>
#include <GeomLib_LogSample.hxx>
#include <GeomLib_MakeCurvefromApprox.hxx>
#include <GeomLib_PolyFunc.hxx>
#include <GeomLib_Tool.hxx>
// template related includes
// ./opencascade/GeomLib_Array1OfMat.hxx
#include "NCollection_tmpl.hxx"
// user-defined pre
#include "OCP_specific.inc"
// user-defined inclusion per module
// Module definiiton
void register_GeomLib(py::module &main_module) {
py::module m = static_cast<py::module>(main_module.attr("GeomLib"));
py::object klass;
//Python trampoline classes
// classes
// Class GeomLib from ./opencascade/GeomLib.hxx
klass = m.attr("GeomLib");
// default constructor
register_default_constructor<GeomLib , shared_ptr<GeomLib>>(m,"GeomLib");
// nested enums
static_cast<py::class_<GeomLib , shared_ptr<GeomLib> >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("To3d_s",
(opencascade::handle<Geom_Curve> (*)( const gp_Ax2 & , const opencascade::handle<Geom2d_Curve> & ) ) static_cast<opencascade::handle<Geom_Curve> (*)( const gp_Ax2 & , const opencascade::handle<Geom2d_Curve> & ) >(&GeomLib::To3d),
R"#(Computes the curve 3d from package Geom corresponding to curve 2d from package Geom2d, on the plan defined with the local coordinate system Position.)#" , py::arg("Position"), py::arg("Curve2d")
)
.def_static("GTransform_s",
(opencascade::handle<Geom2d_Curve> (*)( const opencascade::handle<Geom2d_Curve> & , const gp_GTrsf2d & ) ) static_cast<opencascade::handle<Geom2d_Curve> (*)( const opencascade::handle<Geom2d_Curve> & , const gp_GTrsf2d & ) >(&GeomLib::GTransform),
R"#(Computes the curve 3d from package Geom corresponding to the curve 3d from package Geom, transformed with the transformation <GTrsf> WARNING : this method may return a null Handle if it's impossible to compute the transformation of a curve. It's not implemented when : 1) the curve is an infinite parabola or hyperbola 2) the curve is an offsetcurve)#" , py::arg("Curve"), py::arg("GTrsf")
)
.def_static("FuseIntervals_s",
(void (*)( const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Real> & , NCollection_Sequence<Standard_Real> & , const Standard_Real , const Standard_Boolean ) ) static_cast<void (*)( const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Real> & , NCollection_Sequence<Standard_Real> & , const Standard_Real , const Standard_Boolean ) >(&GeomLib::FuseIntervals),
R"#(This method fuse intervals Interval1 and Interval2 with specified Confusion)#" , py::arg("Interval1"), py::arg("Interval2"), py::arg("Fusion"), py::arg("Confusion")=static_cast<const Standard_Real>(1.0e-9), py::arg("IsAdjustToFirstInterval")=static_cast<const Standard_Boolean>(Standard_False)
)
.def_static("NormEstim_s",
(Standard_Integer (*)( const opencascade::handle<Geom_Surface> & , const gp_Pnt2d & , const Standard_Real , gp_Dir & ) ) static_cast<Standard_Integer (*)( const opencascade::handle<Geom_Surface> & , const gp_Pnt2d & , const Standard_Real , gp_Dir & ) >(&GeomLib::NormEstim),
R"#(Estimate surface normal at the given (U, V) point.)#" , py::arg("theSurf"), py::arg("theUV"), py::arg("theTol"), py::arg("theNorm")
)
.def_static("IsBSplUClosed_s",
(Standard_Boolean (*)( const opencascade::handle<Geom_BSplineSurface> & , const Standard_Real , const Standard_Real , const Standard_Real ) ) static_cast<Standard_Boolean (*)( const opencascade::handle<Geom_BSplineSurface> & , const Standard_Real , const Standard_Real , const Standard_Real ) >(&GeomLib::IsBSplUClosed),
R"#(Returns true if the poles of U1 isoline and the poles of U2 isoline of surface are identical according to tolerance criterion. For rational surfaces Weights(i)*Poles(i) are checked.)#" , py::arg("S"), py::arg("U1"), py::arg("U2"), py::arg("Tol")
)
.def_static("IsBSplVClosed_s",
(Standard_Boolean (*)( const opencascade::handle<Geom_BSplineSurface> & , const Standard_Real , const Standard_Real , const Standard_Real ) ) static_cast<Standard_Boolean (*)( const opencascade::handle<Geom_BSplineSurface> & , const Standard_Real , const Standard_Real , const Standard_Real ) >(&GeomLib::IsBSplVClosed),
R"#(Returns true if the poles of V1 isoline and the poles of V2 isoline of surface are identical according to tolerance criterion. For rational surfaces Weights(i)*Poles(i) are checked.)#" , py::arg("S"), py::arg("V1"), py::arg("V2"), py::arg("Tol")
)
.def_static("IsBzUClosed_s",
(Standard_Boolean (*)( const opencascade::handle<Geom_BezierSurface> & , const Standard_Real , const Standard_Real , const Standard_Real ) ) static_cast<Standard_Boolean (*)( const opencascade::handle<Geom_BezierSurface> & , const Standard_Real , const Standard_Real , const Standard_Real ) >(&GeomLib::IsBzUClosed),
R"#(Returns true if the poles of U1 isoline and the poles of U2 isoline of surface are identical according to tolerance criterion.)#" , py::arg("S"), py::arg("U1"), py::arg("U2"), py::arg("Tol")
)
.def_static("IsBzVClosed_s",
(Standard_Boolean (*)( const opencascade::handle<Geom_BezierSurface> & , const Standard_Real , const Standard_Real , const Standard_Real ) ) static_cast<Standard_Boolean (*)( const opencascade::handle<Geom_BezierSurface> & , const Standard_Real , const Standard_Real , const Standard_Real ) >(&GeomLib::IsBzVClosed),
R"#(Returns true if the poles of V1 isoline and the poles of V2 isoline of surface are identical according to tolerance criterion.)#" , py::arg("S"), py::arg("V1"), py::arg("V2"), py::arg("Tol")
)
.def_static("isIsoLine_s",
(Standard_Boolean (*)( const opencascade::handle<Adaptor2d_Curve2d> & , Standard_Boolean & , Standard_Real & , Standard_Boolean & ) ) static_cast<Standard_Boolean (*)( const opencascade::handle<Adaptor2d_Curve2d> & , Standard_Boolean & , Standard_Real & , Standard_Boolean & ) >(&GeomLib::isIsoLine),
R"#(Checks whether the 2d curve is a isoline. It can be represented by b-spline, bezier, or geometric line. This line should have natural parameterization.)#" , py::arg("theC2D"), py::arg("theIsU"), py::arg("theParam"), py::arg("theIsForward")
)
.def_static("buildC3dOnIsoLine_s",
(opencascade::handle<Geom_Curve> (*)( const opencascade::handle<Adaptor2d_Curve2d> & , const opencascade::handle<Adaptor3d_Surface> & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Real , const Standard_Boolean ) ) static_cast<opencascade::handle<Geom_Curve> (*)( const opencascade::handle<Adaptor2d_Curve2d> & , const opencascade::handle<Adaptor3d_Surface> & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Real , const Standard_Boolean ) >(&GeomLib::buildC3dOnIsoLine),
R"#(Builds 3D curve for a isoline. This method takes corresponding isoline from the input surface.)#" , py::arg("theC2D"), py::arg("theSurf"), py::arg("theFirst"), py::arg("theLast"), py::arg("theTolerance"), py::arg("theIsU"), py::arg("theParam"), py::arg("theIsForward")
)
// static methods using call by reference i.s.o. return
.def_static("SameRange_s",
[](const Standard_Real Tolerance,const opencascade::handle<Geom2d_Curve> & Curve2dPtr,const Standard_Real First,const Standard_Real Last,const Standard_Real RequestedFirst,const Standard_Real RequestedLast,Geom2d_Curve& NewCurve2dPtr ){
opencascade::handle<Geom2d_Curve> NewCurve2dPtr_ptr; NewCurve2dPtr_ptr = &NewCurve2dPtr;
GeomLib::SameRange(Tolerance,Curve2dPtr,First,Last,RequestedFirst,RequestedLast,NewCurve2dPtr_ptr);
if ( NewCurve2dPtr_ptr.get() != &NewCurve2dPtr ) copy_if_copy_constructible(NewCurve2dPtr, *NewCurve2dPtr_ptr);
},
R"#(Make the curve Curve2dPtr have the imposed range First to List the most economic way, that is if it can change the range without changing the nature of the curve it will try to do that. Otherwise it will produce a Bspline curve that has the required range)#" , py::arg("Tolerance"), py::arg("Curve2dPtr"), py::arg("First"), py::arg("Last"), py::arg("RequestedFirst"), py::arg("RequestedLast"), py::arg("NewCurve2dPtr")
)
.def_static("BuildCurve3d_s",
[](const Standard_Real Tolerance,Adaptor3d_CurveOnSurface & CurvePtr,const Standard_Real FirstParameter,const Standard_Real LastParameter,Geom_Curve& NewCurvePtr,const GeomAbs_Shape Continuity,const Standard_Integer MaxDegree,const Standard_Integer MaxSegment ){
Standard_Real MaxDeviation;
Standard_Real AverageDeviation;
opencascade::handle<Geom_Curve> NewCurvePtr_ptr; NewCurvePtr_ptr = &NewCurvePtr;
GeomLib::BuildCurve3d(Tolerance,CurvePtr,FirstParameter,LastParameter,NewCurvePtr_ptr,MaxDeviation,AverageDeviation,Continuity,MaxDegree,MaxSegment);
if ( NewCurvePtr_ptr.get() != &NewCurvePtr ) copy_if_copy_constructible(NewCurvePtr, *NewCurvePtr_ptr);
return std::make_tuple(MaxDeviation,AverageDeviation); },
R"#(None)#" , py::arg("Tolerance"), py::arg("CurvePtr"), py::arg("FirstParameter"), py::arg("LastParameter"), py::arg("NewCurvePtr"), py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C1), py::arg("MaxDegree")=static_cast<const Standard_Integer>(14), py::arg("MaxSegment")=static_cast<const Standard_Integer>(30)
)
.def_static("AdjustExtremity_s",
[](Geom_BoundedCurve& Curve,const gp_Pnt & P1,const gp_Pnt & P2,const gp_Vec & T1,const gp_Vec & T2 ){
opencascade::handle<Geom_BoundedCurve> Curve_ptr; Curve_ptr = &Curve;
GeomLib::AdjustExtremity(Curve_ptr,P1,P2,T1,T2);
if ( Curve_ptr.get() != &Curve ) copy_if_copy_constructible(Curve, *Curve_ptr);
},
R"#(None)#" , py::arg("Curve"), py::arg("P1"), py::arg("P2"), py::arg("T1"), py::arg("T2")
)
.def_static("ExtendCurveToPoint_s",
[](Geom_BoundedCurve& Curve,const gp_Pnt & Point,const Standard_Integer Cont,const Standard_Boolean After ){
opencascade::handle<Geom_BoundedCurve> Curve_ptr; Curve_ptr = &Curve;
GeomLib::ExtendCurveToPoint(Curve_ptr,Point,Cont,After);
if ( Curve_ptr.get() != &Curve ) copy_if_copy_constructible(Curve, *Curve_ptr);
},
R"#(Extends the bounded curve Curve to the point Point. The extension is built: - at the end of the curve if After equals true, or - at the beginning of the curve if After equals false. The extension is performed according to a degree of continuity equal to Cont, which in its turn must be equal to 1, 2 or 3. This function converts the bounded curve Curve into a BSpline curve. Warning - Nothing is done, and Curve is not modified if Cont is not equal to 1, 2 or 3. - It is recommended that the extension should not be too large with respect to the size of the bounded curve Curve: Point must not be located too far from one of the extremities of Curve.)#" , py::arg("Curve"), py::arg("Point"), py::arg("Cont"), py::arg("After")
)
.def_static("ExtendSurfByLength_s",
[](Geom_BoundedSurface& Surf,const Standard_Real Length,const Standard_Integer Cont,const Standard_Boolean InU,const Standard_Boolean After ){
opencascade::handle<Geom_BoundedSurface> Surf_ptr; Surf_ptr = &Surf;
GeomLib::ExtendSurfByLength(Surf_ptr,Length,Cont,InU,After);
if ( Surf_ptr.get() != &Surf ) copy_if_copy_constructible(Surf, *Surf_ptr);
},
R"#(Extends the bounded surface Surf along one of its boundaries. The chord length of the extension is equal to Length. The direction of the extension is given as: - the u parametric direction of Surf, if InU equals true, or - the v parametric direction of Surf, if InU equals false. In this parametric direction, the extension is built on the side of: - the last parameter of Surf, if After equals true, or - the first parameter of Surf, if After equals false. The extension is performed according to a degree of continuity equal to Cont, which in its turn must be equal to 1, 2 or 3. This function converts the bounded surface Surf into a BSpline surface. Warning - Nothing is done, and Surf is not modified if Cont is not equal to 1, 2 or 3. - It is recommended that Length, the size of the extension should not be too large with respect to the size of the bounded surface Surf. - Surf must not be a periodic BSpline surface in the parametric direction corresponding to the direction of extension.)#" , py::arg("Surf"), py::arg("Length"), py::arg("Cont"), py::arg("InU"), py::arg("After")
)
.def_static("AxeOfInertia_s",
[]( const NCollection_Array1<gp_Pnt> & Points,gp_Ax2 & Axe,const Standard_Real Tol ){
Standard_Boolean IsSingular;
GeomLib::AxeOfInertia(Points,Axe,IsSingular,Tol);
return std::make_tuple(IsSingular); },
R"#(Compute axes of inertia, of some points -- -- -- <Axe>.Location() is the BaryCentre -- -- -- -- -- <Axe>.XDirection is the axe of upper inertia -- -- -- -- <Axe>.Direction is the Normal to the average plane -- -- -- IsSingular is True if points are on line -- Tol is used to determine singular cases.)#" , py::arg("Points"), py::arg("Axe"), py::arg("Tol")=static_cast<const Standard_Real>(1.0e-7)
)
.def_static("Inertia_s",
[]( const NCollection_Array1<gp_Pnt> & Points,gp_Pnt & Bary,gp_Dir & XDir,gp_Dir & YDir ){
Standard_Real Xgap;
Standard_Real YGap;
Standard_Real ZGap;
GeomLib::Inertia(Points,Bary,XDir,YDir,Xgap,YGap,ZGap);
return std::make_tuple(Xgap,YGap,ZGap); },
R"#(Compute principale axes of inertia, and dispersion value of some points.)#" , py::arg("Points"), py::arg("Bary"), py::arg("XDir"), py::arg("YDir")
)
.def_static("RemovePointsFromArray_s",
[](const Standard_Integer NumPoints, const NCollection_Array1<Standard_Real> & InParameters,TColStd_HArray1OfReal& OutParameters ){
opencascade::handle<TColStd_HArray1OfReal> OutParameters_ptr; OutParameters_ptr = &OutParameters;
GeomLib::RemovePointsFromArray(NumPoints,InParameters,OutParameters_ptr);
if ( OutParameters_ptr.get() != &OutParameters ) copy_if_copy_constructible(OutParameters, *OutParameters_ptr);
},
R"#(Warning! This assume that the InParameter is an increasing sequence of real number and it will not check for that : Unpredictable result can happen if this is not satisfied. It is the caller responsibility to check for that property.)#" , py::arg("NumPoints"), py::arg("InParameters"), py::arg("OutParameters")
)
.def_static("DensifyArray1OfReal_s",
[](const Standard_Integer MinNumPoints, const NCollection_Array1<Standard_Real> & InParameters,TColStd_HArray1OfReal& OutParameters ){
opencascade::handle<TColStd_HArray1OfReal> OutParameters_ptr; OutParameters_ptr = &OutParameters;
GeomLib::DensifyArray1OfReal(MinNumPoints,InParameters,OutParameters_ptr);
if ( OutParameters_ptr.get() != &OutParameters ) copy_if_copy_constructible(OutParameters, *OutParameters_ptr);
},
R"#(this makes sure that there is at least MinNumPoints in OutParameters taking into account the parameters in the InParameters array provided those are in order, that is the sequence of real in the InParameter is strictly non decreasing)#" , py::arg("MinNumPoints"), py::arg("InParameters"), py::arg("OutParameters")
)
.def_static("EvalMaxParametricDistance_s",
[](const Adaptor3d_Curve & Curve,const Adaptor3d_Curve & AReferenceCurve,const Standard_Real Tolerance, const NCollection_Array1<Standard_Real> & Parameters ){
Standard_Real MaxDistance;
GeomLib::EvalMaxParametricDistance(Curve,AReferenceCurve,Tolerance,Parameters,MaxDistance);
return std::make_tuple(MaxDistance); },
R"#(this will compute the maximum distance at the parameters given in the Parameters array by evaluating each parameter the two curves and taking the maximum of the evaluated distance)#" , py::arg("Curve"), py::arg("AReferenceCurve"), py::arg("Tolerance"), py::arg("Parameters")
)
.def_static("EvalMaxDistanceAlongParameter_s",
[](const Adaptor3d_Curve & Curve,const Adaptor3d_Curve & AReferenceCurve,const Standard_Real Tolerance, const NCollection_Array1<Standard_Real> & Parameters ){
Standard_Real MaxDistance;
GeomLib::EvalMaxDistanceAlongParameter(Curve,AReferenceCurve,Tolerance,Parameters,MaxDistance);
return std::make_tuple(MaxDistance); },
R"#(this will compute the maximum distance at the parameters given in the Parameters array by projecting from the Curve to the reference curve and taking the minimum distance Than the maximum will be taken on those minimas.)#" , py::arg("Curve"), py::arg("AReferenceCurve"), py::arg("Tolerance"), py::arg("Parameters")
)
.def_static("CancelDenominatorDerivative_s",
[](Geom_BSplineSurface& BSurf,const Standard_Boolean UDirection,const Standard_Boolean VDirection ){
opencascade::handle<Geom_BSplineSurface> BSurf_ptr; BSurf_ptr = &BSurf;
GeomLib::CancelDenominatorDerivative(BSurf_ptr,UDirection,VDirection);
if ( BSurf_ptr.get() != &BSurf ) copy_if_copy_constructible(BSurf, *BSurf_ptr);
},
R"#(Cancel,on the boundaries,the denominator first derivative in the directions wished by the user and set its value to 1.)#" , py::arg("BSurf"), py::arg("UDirection"), py::arg("VDirection")
)
.def_static("IsClosed_s",
[](const opencascade::handle<Geom_Surface> & S,const Standard_Real Tol ){
Standard_Boolean isUClosed;
Standard_Boolean isVClosed;
GeomLib::IsClosed(S,Tol,isUClosed,isVClosed);
return std::make_tuple(isUClosed,isVClosed); },
R"#(This method defines if opposite boundaries of surface coincide with given tolerance)#" , py::arg("S"), py::arg("Tol")
)
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GeomLib_Check2dBSplineCurve from ./opencascade/GeomLib_Check2dBSplineCurve.hxx
klass = m.attr("GeomLib_Check2dBSplineCurve");
// nested enums
static_cast<py::class_<GeomLib_Check2dBSplineCurve , shared_ptr<GeomLib_Check2dBSplineCurve> >>(klass)
// constructors
.def(py::init< const opencascade::handle<Geom2d_BSplineCurve> &,const Standard_Real,const Standard_Real >() , py::arg("Curve"), py::arg("Tolerance"), py::arg("AngularTolerance") )
// custom constructors
// methods
.def("IsDone",
(Standard_Boolean (GeomLib_Check2dBSplineCurve::*)() const) static_cast<Standard_Boolean (GeomLib_Check2dBSplineCurve::*)() const>(&GeomLib_Check2dBSplineCurve::IsDone),
R"#(None)#"
)
.def("FixTangent",
(void (GeomLib_Check2dBSplineCurve::*)( const Standard_Boolean , const Standard_Boolean ) ) static_cast<void (GeomLib_Check2dBSplineCurve::*)( const Standard_Boolean , const Standard_Boolean ) >(&GeomLib_Check2dBSplineCurve::FixTangent),
R"#(None)#" , py::arg("FirstFlag"), py::arg("LastFlag")
)
.def("FixedTangent",
(opencascade::handle<Geom2d_BSplineCurve> (GeomLib_Check2dBSplineCurve::*)( const Standard_Boolean , const Standard_Boolean ) ) static_cast<opencascade::handle<Geom2d_BSplineCurve> (GeomLib_Check2dBSplineCurve::*)( const Standard_Boolean , const Standard_Boolean ) >(&GeomLib_Check2dBSplineCurve::FixedTangent),
R"#(modifies the curve by fixing the first or the last tangencies)#" , py::arg("FirstFlag"), py::arg("LastFlag")
)
.def("IsDone",
(Standard_Boolean (GeomLib_Check2dBSplineCurve::*)() const) static_cast<Standard_Boolean (GeomLib_Check2dBSplineCurve::*)() const>(&GeomLib_Check2dBSplineCurve::IsDone),
R"#(None)#"
)
// methods using call by reference i.s.o. return
.def("NeedTangentFix",
[]( GeomLib_Check2dBSplineCurve &self ){
Standard_Boolean FirstFlag;
Standard_Boolean SecondFlag;
self.NeedTangentFix(FirstFlag,SecondFlag);
return std::make_tuple(FirstFlag,SecondFlag); },
R"#(None)#"
)
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GeomLib_CheckBSplineCurve from ./opencascade/GeomLib_CheckBSplineCurve.hxx
klass = m.attr("GeomLib_CheckBSplineCurve");
// nested enums
static_cast<py::class_<GeomLib_CheckBSplineCurve , shared_ptr<GeomLib_CheckBSplineCurve> >>(klass)
// constructors
.def(py::init< const opencascade::handle<Geom_BSplineCurve> &,const Standard_Real,const Standard_Real >() , py::arg("Curve"), py::arg("Tolerance"), py::arg("AngularTolerance") )
// custom constructors
// methods
.def("IsDone",
(Standard_Boolean (GeomLib_CheckBSplineCurve::*)() const) static_cast<Standard_Boolean (GeomLib_CheckBSplineCurve::*)() const>(&GeomLib_CheckBSplineCurve::IsDone),
R"#(None)#"
)
.def("FixTangent",
(void (GeomLib_CheckBSplineCurve::*)( const Standard_Boolean , const Standard_Boolean ) ) static_cast<void (GeomLib_CheckBSplineCurve::*)( const Standard_Boolean , const Standard_Boolean ) >(&GeomLib_CheckBSplineCurve::FixTangent),
R"#(None)#" , py::arg("FirstFlag"), py::arg("LastFlag")
)
.def("FixedTangent",
(opencascade::handle<Geom_BSplineCurve> (GeomLib_CheckBSplineCurve::*)( const Standard_Boolean , const Standard_Boolean ) ) static_cast<opencascade::handle<Geom_BSplineCurve> (GeomLib_CheckBSplineCurve::*)( const Standard_Boolean , const Standard_Boolean ) >(&GeomLib_CheckBSplineCurve::FixedTangent),
R"#(modifies the curve by fixing the first or the last tangencies)#" , py::arg("FirstFlag"), py::arg("LastFlag")
)
.def("IsDone",
(Standard_Boolean (GeomLib_CheckBSplineCurve::*)() const) static_cast<Standard_Boolean (GeomLib_CheckBSplineCurve::*)() const>(&GeomLib_CheckBSplineCurve::IsDone),
R"#(None)#"
)
// methods using call by reference i.s.o. return
.def("NeedTangentFix",
[]( GeomLib_CheckBSplineCurve &self ){
Standard_Boolean FirstFlag;
Standard_Boolean SecondFlag;
self.NeedTangentFix(FirstFlag,SecondFlag);
return std::make_tuple(FirstFlag,SecondFlag); },
R"#(None)#"
)
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GeomLib_CheckCurveOnSurface from ./opencascade/GeomLib_CheckCurveOnSurface.hxx
klass = m.attr("GeomLib_CheckCurveOnSurface");
// nested enums
static_cast<py::class_<GeomLib_CheckCurveOnSurface , shared_ptr<GeomLib_CheckCurveOnSurface> >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const opencascade::handle<Adaptor3d_Curve> &,const Standard_Real >() , py::arg("theCurve"), py::arg("theTolRange")=static_cast<const Standard_Real>(Precision :: PConfusion ( )) )
// custom constructors
// methods
.def("Init",
(void (GeomLib_CheckCurveOnSurface::*)( const opencascade::handle<Adaptor3d_Curve> & , const Standard_Real ) ) static_cast<void (GeomLib_CheckCurveOnSurface::*)( const opencascade::handle<Adaptor3d_Curve> & , const Standard_Real ) >(&GeomLib_CheckCurveOnSurface::Init),
R"#(Sets the data for the algorithm)#" , py::arg("theCurve"), py::arg("theTolRange")=static_cast<const Standard_Real>(Precision :: PConfusion ( ))
)
.def("Init",
(void (GeomLib_CheckCurveOnSurface::*)() ) static_cast<void (GeomLib_CheckCurveOnSurface::*)() >(&GeomLib_CheckCurveOnSurface::Init),
R"#(Initializes all members by default values)#"
)
.def("Perform",
(void (GeomLib_CheckCurveOnSurface::*)( const opencascade::handle<Adaptor3d_CurveOnSurface> & ) ) static_cast<void (GeomLib_CheckCurveOnSurface::*)( const opencascade::handle<Adaptor3d_CurveOnSurface> & ) >(&GeomLib_CheckCurveOnSurface::Perform),
R"#(Computes the max distance for the 3d curve <myCurve> and 2d curve <theCurveOnSurface> If isMultiThread == Standard_True then computation will be performed in parallel.)#" , py::arg("theCurveOnSurface")
)
.def("SetParallel",
(void (GeomLib_CheckCurveOnSurface::*)( const Standard_Boolean ) ) static_cast<void (GeomLib_CheckCurveOnSurface::*)( const Standard_Boolean ) >(&GeomLib_CheckCurveOnSurface::SetParallel),
R"#(Sets parallel flag)#" , py::arg("theIsParallel")
)
.def("IsParallel",
(Standard_Boolean (GeomLib_CheckCurveOnSurface::*)() ) static_cast<Standard_Boolean (GeomLib_CheckCurveOnSurface::*)() >(&GeomLib_CheckCurveOnSurface::IsParallel),
R"#(Returns true if parallel flag is set)#"
)
.def("IsDone",
(Standard_Boolean (GeomLib_CheckCurveOnSurface::*)() const) static_cast<Standard_Boolean (GeomLib_CheckCurveOnSurface::*)() const>(&GeomLib_CheckCurveOnSurface::IsDone),
R"#(Returns true if the max distance has been found)#"
)
.def("ErrorStatus",
(Standard_Integer (GeomLib_CheckCurveOnSurface::*)() const) static_cast<Standard_Integer (GeomLib_CheckCurveOnSurface::*)() const>(&GeomLib_CheckCurveOnSurface::ErrorStatus),
R"#(Returns error status The possible values are: 0 - OK; 1 - null curve or surface or 2d curve; 2 - invalid parametric range; 3 - error in calculations.)#"
)
.def("MaxDistance",
(Standard_Real (GeomLib_CheckCurveOnSurface::*)() const) static_cast<Standard_Real (GeomLib_CheckCurveOnSurface::*)() const>(&GeomLib_CheckCurveOnSurface::MaxDistance),
R"#(Returns max distance)#"
)
.def("MaxParameter",
(Standard_Real (GeomLib_CheckCurveOnSurface::*)() const) static_cast<Standard_Real (GeomLib_CheckCurveOnSurface::*)() const>(&GeomLib_CheckCurveOnSurface::MaxParameter),
R"#(Returns parameter in which the distance is maximal)#"
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GeomLib_DenominatorMultiplier from ./opencascade/GeomLib_DenominatorMultiplier.hxx
klass = m.attr("GeomLib_DenominatorMultiplier");
// nested enums
static_cast<py::class_<GeomLib_DenominatorMultiplier , shared_ptr<GeomLib_DenominatorMultiplier> >>(klass)
// constructors
.def(py::init< const opencascade::handle<Geom_BSplineSurface> &, const NCollection_Array1<Standard_Real> & >() , py::arg("Surface"), py::arg("KnotVector") )
// custom constructors
// methods
.def("Value",
(Standard_Real (GeomLib_DenominatorMultiplier::*)( const Standard_Real , const Standard_Real ) const) static_cast<Standard_Real (GeomLib_DenominatorMultiplier::*)( const Standard_Real , const Standard_Real ) const>(&GeomLib_DenominatorMultiplier::Value),
R"#(Returns the value of a(UParameter,VParameter)=)#" , py::arg("UParameter"), py::arg("VParameter")
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GeomLib_Interpolate from ./opencascade/GeomLib_Interpolate.hxx
klass = m.attr("GeomLib_Interpolate");
// nested enums
static_cast<py::class_<GeomLib_Interpolate , shared_ptr<GeomLib_Interpolate> >>(klass)
// constructors
.def(py::init< const Standard_Integer,const Standard_Integer, const NCollection_Array1<gp_Pnt> &, const NCollection_Array1<Standard_Real> & >() , py::arg("Degree"), py::arg("NumPoints"), py::arg("Points"), py::arg("Parameters") )
// custom constructors
// methods
.def("IsDone",
(Standard_Boolean (GeomLib_Interpolate::*)() const) static_cast<Standard_Boolean (GeomLib_Interpolate::*)() const>(&GeomLib_Interpolate::IsDone),
R"#(returns if everything went OK)#"
)
.def("Error",
(GeomLib_InterpolationErrors (GeomLib_Interpolate::*)() const) static_cast<GeomLib_InterpolationErrors (GeomLib_Interpolate::*)() const>(&GeomLib_Interpolate::Error),
R"#(returns the error type if any)#"
)
.def("Curve",
(opencascade::handle<Geom_BSplineCurve> (GeomLib_Interpolate::*)() const) static_cast<opencascade::handle<Geom_BSplineCurve> (GeomLib_Interpolate::*)() const>(&GeomLib_Interpolate::Curve),
R"#(returns the interpolated curve of the requested degree)#"
)
.def("IsDone",
(Standard_Boolean (GeomLib_Interpolate::*)() const) static_cast<Standard_Boolean (GeomLib_Interpolate::*)() const>(&GeomLib_Interpolate::IsDone),
R"#(returns if everything went OK)#"
)
.def("Error",
(GeomLib_InterpolationErrors (GeomLib_Interpolate::*)() const) static_cast<GeomLib_InterpolationErrors (GeomLib_Interpolate::*)() const>(&GeomLib_Interpolate::Error),
R"#(returns the error type if any)#"
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GeomLib_IsPlanarSurface from ./opencascade/GeomLib_IsPlanarSurface.hxx
klass = m.attr("GeomLib_IsPlanarSurface");
// nested enums
static_cast<py::class_<GeomLib_IsPlanarSurface , shared_ptr<GeomLib_IsPlanarSurface> >>(klass)
// constructors
.def(py::init< const opencascade::handle<Geom_Surface> &,const Standard_Real >() , py::arg("S"), py::arg("Tol")=static_cast<const Standard_Real>(1.0e-7) )
// custom constructors
// methods
.def("IsPlanar",
(Standard_Boolean (GeomLib_IsPlanarSurface::*)() const) static_cast<Standard_Boolean (GeomLib_IsPlanarSurface::*)() const>(&GeomLib_IsPlanarSurface::IsPlanar),
R"#(Return if the Surface is a plan)#"
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Plan",
(const gp_Pln & (GeomLib_IsPlanarSurface::*)() const) static_cast<const gp_Pln & (GeomLib_IsPlanarSurface::*)() const>(&GeomLib_IsPlanarSurface::Plan),
R"#(Return the plan definition)#"
)
;
// Class GeomLib_LogSample from ./opencascade/GeomLib_LogSample.hxx
klass = m.attr("GeomLib_LogSample");
// nested enums
static_cast<py::class_<GeomLib_LogSample , shared_ptr<GeomLib_LogSample> , math_FunctionSample >>(klass)
// constructors
.def(py::init< const Standard_Real,const Standard_Real,const Standard_Integer >() , py::arg("A"), py::arg("B"), py::arg("N") )
// custom constructors
// methods
.def("GetParameter",
(Standard_Real (GeomLib_LogSample::*)( const Standard_Integer ) const) static_cast<Standard_Real (GeomLib_LogSample::*)( const Standard_Integer ) const>(&GeomLib_LogSample::GetParameter),
R"#(Returns the value of parameter of the point of range Index : A + ((Index-1)/(NbPoints-1))*B. An exception is raised if Index<=0 or Index>NbPoints.)#" , py::arg("Index")
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GeomLib_MakeCurvefromApprox from ./opencascade/GeomLib_MakeCurvefromApprox.hxx
klass = m.attr("GeomLib_MakeCurvefromApprox");
// nested enums
static_cast<py::class_<GeomLib_MakeCurvefromApprox , shared_ptr<GeomLib_MakeCurvefromApprox> >>(klass)
// constructors
.def(py::init< const AdvApprox_ApproxAFunction & >() , py::arg("Approx") )
// custom constructors
// methods
.def("IsDone",
(Standard_Boolean (GeomLib_MakeCurvefromApprox::*)() const) static_cast<Standard_Boolean (GeomLib_MakeCurvefromApprox::*)() const>(&GeomLib_MakeCurvefromApprox::IsDone),
R"#(None)#"
)
.def("Nb1DSpaces",
(Standard_Integer (GeomLib_MakeCurvefromApprox::*)() const) static_cast<Standard_Integer (GeomLib_MakeCurvefromApprox::*)() const>(&GeomLib_MakeCurvefromApprox::Nb1DSpaces),
R"#(returns the number of 1D spaces of the Approx)#"
)
.def("Nb2DSpaces",
(Standard_Integer (GeomLib_MakeCurvefromApprox::*)() const) static_cast<Standard_Integer (GeomLib_MakeCurvefromApprox::*)() const>(&GeomLib_MakeCurvefromApprox::Nb2DSpaces),
R"#(returns the number of 3D spaces of the Approx)#"
)
.def("Nb3DSpaces",
(Standard_Integer (GeomLib_MakeCurvefromApprox::*)() const) static_cast<Standard_Integer (GeomLib_MakeCurvefromApprox::*)() const>(&GeomLib_MakeCurvefromApprox::Nb3DSpaces),
R"#(returns the number of 3D spaces of the Approx)#"
)
.def("Curve2d",
(opencascade::handle<Geom2d_BSplineCurve> (GeomLib_MakeCurvefromApprox::*)( const Standard_Integer ) const) static_cast<opencascade::handle<Geom2d_BSplineCurve> (GeomLib_MakeCurvefromApprox::*)( const Standard_Integer ) const>(&GeomLib_MakeCurvefromApprox::Curve2d),
R"#(returns a polynomial curve whose poles correspond to the Index2d 2D space if Index2d not in the Range [1,Nb2dSpaces] if the Approx is not Done)#" , py::arg("Index2d")
)
.def("Curve2dFromTwo1d",
(opencascade::handle<Geom2d_BSplineCurve> (GeomLib_MakeCurvefromApprox::*)( const Standard_Integer , const Standard_Integer ) const) static_cast<opencascade::handle<Geom2d_BSplineCurve> (GeomLib_MakeCurvefromApprox::*)( const Standard_Integer , const Standard_Integer ) const>(&GeomLib_MakeCurvefromApprox::Curve2dFromTwo1d),
R"#(returns a 2D curve building it from the 1D curve in x at Index1d and y at Index2d amongst the 1D curves if Index1d not in the Range [1,Nb1dSpaces] if Index2d not in the Range [1,Nb1dSpaces] if the Approx is not Done)#" , py::arg("Index1d"), py::arg("Index2d")
)
.def("Curve2d",
(opencascade::handle<Geom2d_BSplineCurve> (GeomLib_MakeCurvefromApprox::*)( const Standard_Integer , const Standard_Integer ) const) static_cast<opencascade::handle<Geom2d_BSplineCurve> (GeomLib_MakeCurvefromApprox::*)( const Standard_Integer , const Standard_Integer ) const>(&GeomLib_MakeCurvefromApprox::Curve2d),
R"#(returns a rational curve whose poles correspond to the index2d of the 2D space and whose weights correspond to one dimensional space of index 1d if Index1d not in the Range [1,Nb1dSpaces] if Index2d not in the Range [1,Nb2dSpaces] if the Approx is not Done)#" , py::arg("Index1d"), py::arg("Index2d")
)
.def("Curve",
(opencascade::handle<Geom_BSplineCurve> (GeomLib_MakeCurvefromApprox::*)( const Standard_Integer ) const) static_cast<opencascade::handle<Geom_BSplineCurve> (GeomLib_MakeCurvefromApprox::*)( const Standard_Integer ) const>(&GeomLib_MakeCurvefromApprox::Curve),
R"#(returns a polynomial curve whose poles correspond to the Index3D 3D space if Index3D not in the Range [1,Nb3dSpaces] if the Approx is not Done)#" , py::arg("Index3d")
)
.def("Curve",
(opencascade::handle<Geom_BSplineCurve> (GeomLib_MakeCurvefromApprox::*)( const Standard_Integer , const Standard_Integer ) const) static_cast<opencascade::handle<Geom_BSplineCurve> (GeomLib_MakeCurvefromApprox::*)( const Standard_Integer , const Standard_Integer ) const>(&GeomLib_MakeCurvefromApprox::Curve),
R"#(returns a rational curve whose poles correspond to the index3D of the 3D space and whose weights correspond to the index1d 1D space. if Index1D not in the Range [1,Nb1dSpaces] if Index3D not in the Range [1,Nb3dSpaces] if the Approx is not Done)#" , py::arg("Index1D"), py::arg("Index3D")
)
.def("IsDone",
(Standard_Boolean (GeomLib_MakeCurvefromApprox::*)() const) static_cast<Standard_Boolean (GeomLib_MakeCurvefromApprox::*)() const>(&GeomLib_MakeCurvefromApprox::IsDone),
R"#(None)#"
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GeomLib_PolyFunc from ./opencascade/GeomLib_PolyFunc.hxx
klass = m.attr("GeomLib_PolyFunc");
// nested enums
static_cast<py::class_<GeomLib_PolyFunc , shared_ptr<GeomLib_PolyFunc> , math_FunctionWithDerivative >>(klass)
// constructors
.def(py::init< const math_VectorBase<double> & >() , py::arg("Coeffs") )
// custom constructors
// methods
.def("Value",
(Standard_Boolean (GeomLib_PolyFunc::*)( const Standard_Real , Standard_Real & ) ) static_cast<Standard_Boolean (GeomLib_PolyFunc::*)( const Standard_Real , Standard_Real & ) >(&GeomLib_PolyFunc::Value),
R"#(computes the value <F>of the function for the variable <X>. Returns True if the calculation were successfully done, False otherwise.)#" , py::arg("X"), py::arg("F")
)
.def("Derivative",
(Standard_Boolean (GeomLib_PolyFunc::*)( const Standard_Real , Standard_Real & ) ) static_cast<Standard_Boolean (GeomLib_PolyFunc::*)( const Standard_Real , Standard_Real & ) >(&GeomLib_PolyFunc::Derivative),
R"#(computes the derivative <D> of the function for the variable <X>. Returns True if the calculation were successfully done, False otherwise.)#" , py::arg("X"), py::arg("D")
)
.def("Values",
(Standard_Boolean (GeomLib_PolyFunc::*)( const Standard_Real , Standard_Real & , Standard_Real & ) ) static_cast<Standard_Boolean (GeomLib_PolyFunc::*)( const Standard_Real , Standard_Real & , Standard_Real & ) >(&GeomLib_PolyFunc::Values),
R"#(computes the value <F> and the derivative <D> of the function for the variable <X>. Returns True if the calculation were successfully done, False otherwise.)#" , py::arg("X"), py::arg("F"), py::arg("D")
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GeomLib_Tool from ./opencascade/GeomLib_Tool.hxx
klass = m.attr("GeomLib_Tool");
// default constructor
register_default_constructor<GeomLib_Tool , shared_ptr<GeomLib_Tool>>(m,"GeomLib_Tool");
// nested enums
static_cast<py::class_<GeomLib_Tool , shared_ptr<GeomLib_Tool> >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("Parameter_s",
(Standard_Boolean (*)( const opencascade::handle<Geom_Curve> & , const gp_Pnt & , const Standard_Real , Standard_Real & ) ) static_cast<Standard_Boolean (*)( const opencascade::handle<Geom_Curve> & , const gp_Pnt & , const Standard_Real , Standard_Real & ) >(&GeomLib_Tool::Parameter),
R"#(Extracts the parameter of a 3D point lying on a 3D curve or at a distance less than the MaxDist value.)#" , py::arg("Curve"), py::arg("Point"), py::arg("MaxDist"), py::arg("U")
)
.def_static("Parameters_s",
(Standard_Boolean (*)( const opencascade::handle<Geom_Surface> & , const gp_Pnt & , const Standard_Real , Standard_Real & , Standard_Real & ) ) static_cast<Standard_Boolean (*)( const opencascade::handle<Geom_Surface> & , const gp_Pnt & , const Standard_Real , Standard_Real & , Standard_Real & ) >(&GeomLib_Tool::Parameters),
R"#(Extracts the parameter of a 3D point lying on a surface or at a distance less than the MaxDist value.)#" , py::arg("Surface"), py::arg("Point"), py::arg("MaxDist"), py::arg("U"), py::arg("V")
)
.def_static("Parameter_s",
(Standard_Boolean (*)( const opencascade::handle<Geom2d_Curve> & , const gp_Pnt2d & , const Standard_Real , Standard_Real & ) ) static_cast<Standard_Boolean (*)( const opencascade::handle<Geom2d_Curve> & , const gp_Pnt2d & , const Standard_Real , Standard_Real & ) >(&GeomLib_Tool::Parameter),
R"#(Extracts the parameter of a 2D point lying on a 2D curve or at a distance less than the MaxDist value.)#" , py::arg("Curve"), py::arg("Point"), py::arg("MaxDist"), py::arg("U")
)
.def_static("ComputeDeviation_s",
(Standard_Real (*)( const Geom2dAdaptor_Curve & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Integer , Standard_Real *const , gp_Pnt2d *const , gp_Vec2d *const , gp_Lin2d *const ) ) static_cast<Standard_Real (*)( const Geom2dAdaptor_Curve & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Integer , Standard_Real *const , gp_Pnt2d *const , gp_Vec2d *const , gp_Lin2d *const ) >(&GeomLib_Tool::ComputeDeviation),
R"#(Computes parameter in theCurve (*thePrmOnCurve) where maximal deviation between theCurve and the linear segment joining its points with the parameters theFPar and theLPar is obtained. Returns the (positive) value of deviation. Returns negative value if the deviation cannot be computed. The returned parameter (in case of successful) will always be in the range [theFPar, theLPar]. Iterative method is used for computation. So, theStartParameter is needed to be set. Recommend value of theStartParameter can be found with the overloaded method. Additionally, following values can be returned (optionally):)#" , py::arg("theCurve"), py::arg("theFPar"), py::arg("theLPar"), py::arg("theStartParameter"), py::arg("theNbIters")=static_cast<const Standard_Integer>(100), py::arg("thePrmOnCurve")=static_cast<Standard_Real *const>(NULL), py::arg("thePtOnCurve")=static_cast<gp_Pnt2d *const>(NULL), py::arg("theVecCurvLine")=static_cast<gp_Vec2d *const>(NULL), py::arg("theLine")=static_cast<gp_Lin2d *const>(NULL)
)
.def_static("ComputeDeviation_s",
(Standard_Real (*)( const Geom2dAdaptor_Curve & , const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer , Standard_Real *const ) ) static_cast<Standard_Real (*)( const Geom2dAdaptor_Curve & , const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer , Standard_Real *const ) >(&GeomLib_Tool::ComputeDeviation),
R"#(Computes parameter in theCurve (*thePrmOnCurve) where maximal deviation between theCurve and the linear segment joining its points with the parameters theFPar and theLPar is obtained. Returns the (positive) value of deviation. Returns negative value if the deviation cannot be computed. The returned parameter (in case of successful) will always be in the range [theFPar, theLPar]. theNbSubIntervals defines discretization of the given interval [theFPar, theLPar] to provide better search condition. This value should be chosen taking into account complexity of the curve in considered interval. E.g. if there are many oscillations of the curve in the interval then theNbSubIntervals mus be great number. However, the greater value of theNbSubIntervals the slower the algorithm will compute. theNbIters sets number of iterations. ATTENTION!!! This algorithm cannot compute deviation precisely (so, there is no point in setting big value of theNbIters). But it can give some start point for the overloaded method.)#" , py::arg("theCurve"), py::arg("theFPar"), py::arg("theLPar"), py::arg("theNbSubIntervals"), py::arg("theNbIters")=static_cast<const Standard_Integer>(10), py::arg("thePrmOnCurve")=static_cast<Standard_Real *const>(NULL)
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// functions
// ./opencascade/GeomLib.hxx
// ./opencascade/GeomLib_Array1OfMat.hxx
// ./opencascade/GeomLib_Check2dBSplineCurve.hxx
// ./opencascade/GeomLib_CheckBSplineCurve.hxx
// ./opencascade/GeomLib_CheckCurveOnSurface.hxx
// ./opencascade/GeomLib_DenominatorMultiplier.hxx
// ./opencascade/GeomLib_DenominatorMultiplierPtr.hxx
// ./opencascade/GeomLib_Interpolate.hxx
// ./opencascade/GeomLib_InterpolationErrors.hxx
// ./opencascade/GeomLib_IsPlanarSurface.hxx
// ./opencascade/GeomLib_LogSample.hxx
// ./opencascade/GeomLib_MakeCurvefromApprox.hxx
// ./opencascade/GeomLib_PolyFunc.hxx
// ./opencascade/GeomLib_Tool.hxx
// Additional functions
// operators
// register typdefs
register_template_NCollection_Array1<gp_Mat>(m,"GeomLib_Array1OfMat");
// exceptions
// user-defined post-inclusion per module in the body
};
// user-defined post-inclusion per module
// user-defined post
|