1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
|
// std lib related includes
#include <tuple>
// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybind11;
// Standard Handle
#include <Standard_Handle.hxx>
// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_Plane.hxx>
#include <Geom_Line.hxx>
#include <Geom_Surface.hxx>
#include <GeomPlate_Surface.hxx>
#include <Geom2d_Curve.hxx>
#include <Law_Function.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomPlate_Surface.hxx>
#include <Geom_BSplineSurface.hxx>
#include <AdvApp2Var_Criterion.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <AdvApp2Var_Patch.hxx>
#include <AdvApp2Var_Context.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <AdvApp2Var_Patch.hxx>
#include <AdvApp2Var_Context.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Trsf.hxx>
#include <gp_GTrsf2d.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
// module includes
#include <GeomPlate_Aij.hxx>
#include <GeomPlate_Array1OfHCurve.hxx>
#include <GeomPlate_Array1OfSequenceOfReal.hxx>
#include <GeomPlate_BuildAveragePlane.hxx>
#include <GeomPlate_BuildPlateSurface.hxx>
#include <GeomPlate_CurveConstraint.hxx>
#include <GeomPlate_HArray1OfHCurve.hxx>
#include <GeomPlate_HArray1OfSequenceOfReal.hxx>
#include <GeomPlate_HSequenceOfCurveConstraint.hxx>
#include <GeomPlate_HSequenceOfPointConstraint.hxx>
#include <GeomPlate_MakeApprox.hxx>
#include <GeomPlate_PlateG0Criterion.hxx>
#include <GeomPlate_PlateG1Criterion.hxx>
#include <GeomPlate_PointConstraint.hxx>
#include <GeomPlate_SequenceOfAij.hxx>
#include <GeomPlate_SequenceOfCurveConstraint.hxx>
#include <GeomPlate_SequenceOfPointConstraint.hxx>
#include <GeomPlate_Surface.hxx>
// template related includes
// ./opencascade/GeomPlate_Array1OfHCurve.hxx
#include "NCollection_tmpl.hxx"
// ./opencascade/GeomPlate_Array1OfSequenceOfReal.hxx
#include "NCollection_tmpl.hxx"
// ./opencascade/GeomPlate_SequenceOfAij.hxx
#include "NCollection_tmpl.hxx"
// ./opencascade/GeomPlate_SequenceOfCurveConstraint.hxx
#include "NCollection_tmpl.hxx"
// ./opencascade/GeomPlate_SequenceOfPointConstraint.hxx
#include "NCollection_tmpl.hxx"
// user-defined pre
#include "OCP_specific.inc"
// user-defined inclusion per module
// Module definiiton
void register_GeomPlate(py::module &main_module) {
py::module m = static_cast<py::module>(main_module.attr("GeomPlate"));
py::object klass;
//Python trampoline classes
// classes
// Class GeomPlate_Aij from ./opencascade/GeomPlate_Aij.hxx
klass = m.attr("GeomPlate_Aij");
// nested enums
static_cast<py::class_<GeomPlate_Aij , shared_ptr<GeomPlate_Aij> >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const Standard_Integer,const Standard_Integer,const gp_Vec & >() , py::arg("anInd1"), py::arg("anInd2"), py::arg("aVec") )
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GeomPlate_BuildAveragePlane from ./opencascade/GeomPlate_BuildAveragePlane.hxx
klass = m.attr("GeomPlate_BuildAveragePlane");
// nested enums
static_cast<py::class_<GeomPlate_BuildAveragePlane , shared_ptr<GeomPlate_BuildAveragePlane> >>(klass)
// constructors
.def(py::init< const opencascade::handle<TColgp_HArray1OfPnt> &,const Standard_Integer,const Standard_Real,const Standard_Integer,const Standard_Integer >() , py::arg("Pts"), py::arg("NbBoundPoints"), py::arg("Tol"), py::arg("POption"), py::arg("NOption") )
.def(py::init< const NCollection_Sequence<gp_Vec> &,const opencascade::handle<TColgp_HArray1OfPnt> & >() , py::arg("Normals"), py::arg("Pts") )
// custom constructors
// methods
.def("Plane",
(opencascade::handle<Geom_Plane> (GeomPlate_BuildAveragePlane::*)() const) static_cast<opencascade::handle<Geom_Plane> (GeomPlate_BuildAveragePlane::*)() const>(&GeomPlate_BuildAveragePlane::Plane),
R"#(Return the average Plane.)#"
)
.def("Line",
(opencascade::handle<Geom_Line> (GeomPlate_BuildAveragePlane::*)() const) static_cast<opencascade::handle<Geom_Line> (GeomPlate_BuildAveragePlane::*)() const>(&GeomPlate_BuildAveragePlane::Line),
R"#(Return a Line when 2 eigenvalues are null.)#"
)
.def("IsPlane",
(Standard_Boolean (GeomPlate_BuildAveragePlane::*)() const) static_cast<Standard_Boolean (GeomPlate_BuildAveragePlane::*)() const>(&GeomPlate_BuildAveragePlane::IsPlane),
R"#(return OK if is a plane.)#"
)
.def("IsLine",
(Standard_Boolean (GeomPlate_BuildAveragePlane::*)() const) static_cast<Standard_Boolean (GeomPlate_BuildAveragePlane::*)() const>(&GeomPlate_BuildAveragePlane::IsLine),
R"#(return OK if is a line.)#"
)
// methods using call by reference i.s.o. return
.def("MinMaxBox",
[]( GeomPlate_BuildAveragePlane &self ){
Standard_Real Umin;
Standard_Real Umax;
Standard_Real Vmin;
Standard_Real Vmax;
self.MinMaxBox(Umin,Umax,Vmin,Vmax);
return std::make_tuple(Umin,Umax,Vmin,Vmax); },
R"#(computes the minimal box to include all normal projection points of the initial array on the plane.)#"
)
// static methods
.def_static("HalfSpace_s",
(Standard_Boolean (*)( const NCollection_Sequence<gp_Vec> & , NCollection_Sequence<gp_Vec> & , NCollection_Sequence<GeomPlate_Aij> & , const Standard_Real , const Standard_Real ) ) static_cast<Standard_Boolean (*)( const NCollection_Sequence<gp_Vec> & , NCollection_Sequence<gp_Vec> & , NCollection_Sequence<GeomPlate_Aij> & , const Standard_Real , const Standard_Real ) >(&GeomPlate_BuildAveragePlane::HalfSpace),
R"#(None)#" , py::arg("NewNormals"), py::arg("Normals"), py::arg("Bset"), py::arg("LinTol"), py::arg("AngTol")
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GeomPlate_BuildPlateSurface from ./opencascade/GeomPlate_BuildPlateSurface.hxx
klass = m.attr("GeomPlate_BuildPlateSurface");
// nested enums
static_cast<py::class_<GeomPlate_BuildPlateSurface , shared_ptr<GeomPlate_BuildPlateSurface> >>(klass)
// constructors
.def(py::init< const opencascade::handle<TColStd_HArray1OfInteger> &,const opencascade::handle<GeomPlate_HArray1OfHCurve> &,const opencascade::handle<TColStd_HArray1OfInteger> &,const Standard_Integer,const Standard_Integer,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Boolean >() , py::arg("NPoints"), py::arg("TabCurve"), py::arg("Tang"), py::arg("Degree"), py::arg("NbIter")=static_cast<const Standard_Integer>(3), py::arg("Tol2d")=static_cast<const Standard_Real>(0.00001), py::arg("Tol3d")=static_cast<const Standard_Real>(0.0001), py::arg("TolAng")=static_cast<const Standard_Real>(0.01), py::arg("TolCurv")=static_cast<const Standard_Real>(0.1), py::arg("Anisotropie")=static_cast<const Standard_Boolean>(Standard_False) )
.def(py::init< const opencascade::handle<Geom_Surface> &,const Standard_Integer,const Standard_Integer,const Standard_Integer,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Boolean >() , py::arg("Surf"), py::arg("Degree")=static_cast<const Standard_Integer>(3), py::arg("NbPtsOnCur")=static_cast<const Standard_Integer>(10), py::arg("NbIter")=static_cast<const Standard_Integer>(3), py::arg("Tol2d")=static_cast<const Standard_Real>(0.00001), py::arg("Tol3d")=static_cast<const Standard_Real>(0.0001), py::arg("TolAng")=static_cast<const Standard_Real>(0.01), py::arg("TolCurv")=static_cast<const Standard_Real>(0.1), py::arg("Anisotropie")=static_cast<const Standard_Boolean>(Standard_False) )
.def(py::init< const Standard_Integer,const Standard_Integer,const Standard_Integer,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Boolean >() , py::arg("Degree")=static_cast<const Standard_Integer>(3), py::arg("NbPtsOnCur")=static_cast<const Standard_Integer>(10), py::arg("NbIter")=static_cast<const Standard_Integer>(3), py::arg("Tol2d")=static_cast<const Standard_Real>(0.00001), py::arg("Tol3d")=static_cast<const Standard_Real>(0.0001), py::arg("TolAng")=static_cast<const Standard_Real>(0.01), py::arg("TolCurv")=static_cast<const Standard_Real>(0.1), py::arg("Anisotropie")=static_cast<const Standard_Boolean>(Standard_False) )
// custom constructors
// methods
.def("Init",
(void (GeomPlate_BuildPlateSurface::*)() ) static_cast<void (GeomPlate_BuildPlateSurface::*)() >(&GeomPlate_BuildPlateSurface::Init),
R"#(Resets all constraints)#"
)
.def("LoadInitSurface",
(void (GeomPlate_BuildPlateSurface::*)( const opencascade::handle<Geom_Surface> & ) ) static_cast<void (GeomPlate_BuildPlateSurface::*)( const opencascade::handle<Geom_Surface> & ) >(&GeomPlate_BuildPlateSurface::LoadInitSurface),
R"#(Loads the initial Surface)#" , py::arg("Surf")
)
.def("Add",
(void (GeomPlate_BuildPlateSurface::*)( const opencascade::handle<GeomPlate_CurveConstraint> & ) ) static_cast<void (GeomPlate_BuildPlateSurface::*)( const opencascade::handle<GeomPlate_CurveConstraint> & ) >(&GeomPlate_BuildPlateSurface::Add),
R"#(Adds the linear constraint cont.)#" , py::arg("Cont")
)
.def("SetNbBounds",
(void (GeomPlate_BuildPlateSurface::*)( const Standard_Integer ) ) static_cast<void (GeomPlate_BuildPlateSurface::*)( const Standard_Integer ) >(&GeomPlate_BuildPlateSurface::SetNbBounds),
R"#(None)#" , py::arg("NbBounds")
)
.def("Add",
(void (GeomPlate_BuildPlateSurface::*)( const opencascade::handle<GeomPlate_PointConstraint> & ) ) static_cast<void (GeomPlate_BuildPlateSurface::*)( const opencascade::handle<GeomPlate_PointConstraint> & ) >(&GeomPlate_BuildPlateSurface::Add),
R"#(Adds the point constraint cont.)#" , py::arg("Cont")
)
.def("Perform",
(void (GeomPlate_BuildPlateSurface::*)( const Message_ProgressRange & ) ) static_cast<void (GeomPlate_BuildPlateSurface::*)( const Message_ProgressRange & ) >(&GeomPlate_BuildPlateSurface::Perform),
R"#(Calls the algorithm and computes the plate surface using the loaded constraints. If no initial surface is given, the algorithm automatically computes one. Exceptions Standard_RangeError if the value of the constraint is null or if plate is not done.)#" , py::arg("theProgress")=static_cast<const Message_ProgressRange &>(Message_ProgressRange ( ))
)
.def("CurveConstraint",
(opencascade::handle<GeomPlate_CurveConstraint> (GeomPlate_BuildPlateSurface::*)( const Standard_Integer ) const) static_cast<opencascade::handle<GeomPlate_CurveConstraint> (GeomPlate_BuildPlateSurface::*)( const Standard_Integer ) const>(&GeomPlate_BuildPlateSurface::CurveConstraint),
R"#(returns the CurveConstraints of order order)#" , py::arg("order")
)
.def("PointConstraint",
(opencascade::handle<GeomPlate_PointConstraint> (GeomPlate_BuildPlateSurface::*)( const Standard_Integer ) const) static_cast<opencascade::handle<GeomPlate_PointConstraint> (GeomPlate_BuildPlateSurface::*)( const Standard_Integer ) const>(&GeomPlate_BuildPlateSurface::PointConstraint),
R"#(returns the PointConstraint of order order)#" , py::arg("order")
)
.def("Disc2dContour",
(void (GeomPlate_BuildPlateSurface::*)( const Standard_Integer , NCollection_Sequence<gp_XY> & ) ) static_cast<void (GeomPlate_BuildPlateSurface::*)( const Standard_Integer , NCollection_Sequence<gp_XY> & ) >(&GeomPlate_BuildPlateSurface::Disc2dContour),
R"#(None)#" , py::arg("nbp"), py::arg("Seq2d")
)
.def("Disc3dContour",
(void (GeomPlate_BuildPlateSurface::*)( const Standard_Integer , const Standard_Integer , NCollection_Sequence<gp_XYZ> & ) ) static_cast<void (GeomPlate_BuildPlateSurface::*)( const Standard_Integer , const Standard_Integer , NCollection_Sequence<gp_XYZ> & ) >(&GeomPlate_BuildPlateSurface::Disc3dContour),
R"#(None)#" , py::arg("nbp"), py::arg("iordre"), py::arg("Seq3d")
)
.def("IsDone",
(Standard_Boolean (GeomPlate_BuildPlateSurface::*)() const) static_cast<Standard_Boolean (GeomPlate_BuildPlateSurface::*)() const>(&GeomPlate_BuildPlateSurface::IsDone),
R"#(Tests whether computation of the plate has been completed.)#"
)
.def("Surface",
(opencascade::handle<GeomPlate_Surface> (GeomPlate_BuildPlateSurface::*)() const) static_cast<opencascade::handle<GeomPlate_Surface> (GeomPlate_BuildPlateSurface::*)() const>(&GeomPlate_BuildPlateSurface::Surface),
R"#(Returns the result of the computation. This surface can then be used by GeomPlate_MakeApprox for converting the resulting surface into a BSpline.)#"
)
.def("SurfInit",
(opencascade::handle<Geom_Surface> (GeomPlate_BuildPlateSurface::*)() const) static_cast<opencascade::handle<Geom_Surface> (GeomPlate_BuildPlateSurface::*)() const>(&GeomPlate_BuildPlateSurface::SurfInit),
R"#(Returns the initial surface)#"
)
.def("Sense",
(opencascade::handle<TColStd_HArray1OfInteger> (GeomPlate_BuildPlateSurface::*)() const) static_cast<opencascade::handle<TColStd_HArray1OfInteger> (GeomPlate_BuildPlateSurface::*)() const>(&GeomPlate_BuildPlateSurface::Sense),
R"#(Allows you to ensure that the array of curves returned by Curves2d has the correct orientation. Returns the orientation of the curves in the array returned by Curves2d. Computation changes the orientation of these curves. Consequently, this method returns the orientation prior to computation.)#"
)
.def("Curves2d",
(opencascade::handle<TColGeom2d_HArray1OfCurve> (GeomPlate_BuildPlateSurface::*)() const) static_cast<opencascade::handle<TColGeom2d_HArray1OfCurve> (GeomPlate_BuildPlateSurface::*)() const>(&GeomPlate_BuildPlateSurface::Curves2d),
R"#(Extracts the array of curves on the plate surface which correspond to the curve constraints set in Add.)#"
)
.def("Order",
(opencascade::handle<TColStd_HArray1OfInteger> (GeomPlate_BuildPlateSurface::*)() const) static_cast<opencascade::handle<TColStd_HArray1OfInteger> (GeomPlate_BuildPlateSurface::*)() const>(&GeomPlate_BuildPlateSurface::Order),
R"#(Returns the order of the curves in the array returned by Curves2d. Computation changes this order. Consequently, this method returns the order of the curves prior to computation.)#"
)
.def("G0Error",
(Standard_Real (GeomPlate_BuildPlateSurface::*)() const) static_cast<Standard_Real (GeomPlate_BuildPlateSurface::*)() const>(&GeomPlate_BuildPlateSurface::G0Error),
R"#(Returns the max distance between the result and the constraints)#"
)
.def("G1Error",
(Standard_Real (GeomPlate_BuildPlateSurface::*)() const) static_cast<Standard_Real (GeomPlate_BuildPlateSurface::*)() const>(&GeomPlate_BuildPlateSurface::G1Error),
R"#(Returns the max angle between the result and the constraints)#"
)
.def("G2Error",
(Standard_Real (GeomPlate_BuildPlateSurface::*)() const) static_cast<Standard_Real (GeomPlate_BuildPlateSurface::*)() const>(&GeomPlate_BuildPlateSurface::G2Error),
R"#(Returns the max difference of curvature between the result and the constraints)#"
)
.def("G0Error",
(Standard_Real (GeomPlate_BuildPlateSurface::*)( const Standard_Integer ) ) static_cast<Standard_Real (GeomPlate_BuildPlateSurface::*)( const Standard_Integer ) >(&GeomPlate_BuildPlateSurface::G0Error),
R"#(Returns the max distance between the result and the constraint Index)#" , py::arg("Index")
)
.def("G1Error",
(Standard_Real (GeomPlate_BuildPlateSurface::*)( const Standard_Integer ) ) static_cast<Standard_Real (GeomPlate_BuildPlateSurface::*)( const Standard_Integer ) >(&GeomPlate_BuildPlateSurface::G1Error),
R"#(Returns the max angle between the result and the constraint Index)#" , py::arg("Index")
)
.def("G2Error",
(Standard_Real (GeomPlate_BuildPlateSurface::*)( const Standard_Integer ) ) static_cast<Standard_Real (GeomPlate_BuildPlateSurface::*)( const Standard_Integer ) >(&GeomPlate_BuildPlateSurface::G2Error),
R"#(Returns the max difference of curvature between the result and the constraint Index)#" , py::arg("Index")
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GeomPlate_CurveConstraint from ./opencascade/GeomPlate_CurveConstraint.hxx
klass = m.attr("GeomPlate_CurveConstraint");
// nested enums
static_cast<py::class_<GeomPlate_CurveConstraint ,opencascade::handle<GeomPlate_CurveConstraint> , Standard_Transient >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const opencascade::handle<Adaptor3d_Curve> &,const Standard_Integer,const Standard_Integer,const Standard_Real,const Standard_Real,const Standard_Real >() , py::arg("Boundary"), py::arg("Order"), py::arg("NPt")=static_cast<const Standard_Integer>(10), py::arg("TolDist")=static_cast<const Standard_Real>(0.0001), py::arg("TolAng")=static_cast<const Standard_Real>(0.01), py::arg("TolCurv")=static_cast<const Standard_Real>(0.1) )
// custom constructors
// methods
.def("SetOrder",
(void (GeomPlate_CurveConstraint::*)( const Standard_Integer ) ) static_cast<void (GeomPlate_CurveConstraint::*)( const Standard_Integer ) >(&GeomPlate_CurveConstraint::SetOrder),
R"#(Allows you to set the order of continuity required for the constraints: G0, G1, and G2, controlled respectively by G0Criterion G1Criterion and G2Criterion.)#" , py::arg("Order")
)
.def("Order",
(Standard_Integer (GeomPlate_CurveConstraint::*)() const) static_cast<Standard_Integer (GeomPlate_CurveConstraint::*)() const>(&GeomPlate_CurveConstraint::Order),
R"#(Returns the order of constraint, one of G0, G1 or G2.)#"
)
.def("NbPoints",
(Standard_Integer (GeomPlate_CurveConstraint::*)() const) static_cast<Standard_Integer (GeomPlate_CurveConstraint::*)() const>(&GeomPlate_CurveConstraint::NbPoints),
R"#(Returns the number of points on the curve used as a constraint. The default setting is 10. This parameter affects computation time, which increases by the cube of the number of points.)#"
)
.def("SetNbPoints",
(void (GeomPlate_CurveConstraint::*)( const Standard_Integer ) ) static_cast<void (GeomPlate_CurveConstraint::*)( const Standard_Integer ) >(&GeomPlate_CurveConstraint::SetNbPoints),
R"#(Allows you to set the number of points on the curve constraint. The default setting is 10. This parameter affects computation time, which increases by the cube of the number of points.)#" , py::arg("NewNb")
)
.def("SetG0Criterion",
(void (GeomPlate_CurveConstraint::*)( const opencascade::handle<Law_Function> & ) ) static_cast<void (GeomPlate_CurveConstraint::*)( const opencascade::handle<Law_Function> & ) >(&GeomPlate_CurveConstraint::SetG0Criterion),
R"#(Allows you to set the G0 criterion. This is the law defining the greatest distance allowed between the constraint and the target surface for each point of the constraint. If this criterion is not set, TolDist, the distance tolerance from the constructor, is used.)#" , py::arg("G0Crit")
)
.def("SetG1Criterion",
(void (GeomPlate_CurveConstraint::*)( const opencascade::handle<Law_Function> & ) ) static_cast<void (GeomPlate_CurveConstraint::*)( const opencascade::handle<Law_Function> & ) >(&GeomPlate_CurveConstraint::SetG1Criterion),
R"#(Allows you to set the G1 criterion. This is the law defining the greatest angle allowed between the constraint and the target surface. If this criterion is not set, TolAng, the angular tolerance from the constructor, is used. Raises ConstructionError if the curve is not on a surface)#" , py::arg("G1Crit")
)
.def("SetG2Criterion",
(void (GeomPlate_CurveConstraint::*)( const opencascade::handle<Law_Function> & ) ) static_cast<void (GeomPlate_CurveConstraint::*)( const opencascade::handle<Law_Function> & ) >(&GeomPlate_CurveConstraint::SetG2Criterion),
R"#(None)#" , py::arg("G2Crit")
)
.def("G0Criterion",
(Standard_Real (GeomPlate_CurveConstraint::*)( const Standard_Real ) const) static_cast<Standard_Real (GeomPlate_CurveConstraint::*)( const Standard_Real ) const>(&GeomPlate_CurveConstraint::G0Criterion),
R"#(Returns the G0 criterion at the parametric point U on the curve. This is the greatest distance allowed between the constraint and the target surface at U.)#" , py::arg("U")
)
.def("G1Criterion",
(Standard_Real (GeomPlate_CurveConstraint::*)( const Standard_Real ) const) static_cast<Standard_Real (GeomPlate_CurveConstraint::*)( const Standard_Real ) const>(&GeomPlate_CurveConstraint::G1Criterion),
R"#(Returns the G1 criterion at the parametric point U on the curve. This is the greatest angle allowed between the constraint and the target surface at U. Raises ConstructionError if the curve is not on a surface)#" , py::arg("U")
)
.def("G2Criterion",
(Standard_Real (GeomPlate_CurveConstraint::*)( const Standard_Real ) const) static_cast<Standard_Real (GeomPlate_CurveConstraint::*)( const Standard_Real ) const>(&GeomPlate_CurveConstraint::G2Criterion),
R"#(Returns the G2 criterion at the parametric point U on the curve. This is the greatest difference in curvature allowed between the constraint and the target surface at U. Raises ConstructionError if the curve is not on a surface)#" , py::arg("U")
)
.def("FirstParameter",
(Standard_Real (GeomPlate_CurveConstraint::*)() const) static_cast<Standard_Real (GeomPlate_CurveConstraint::*)() const>(&GeomPlate_CurveConstraint::FirstParameter),
R"#(None)#"
)
.def("LastParameter",
(Standard_Real (GeomPlate_CurveConstraint::*)() const) static_cast<Standard_Real (GeomPlate_CurveConstraint::*)() const>(&GeomPlate_CurveConstraint::LastParameter),
R"#(None)#"
)
.def("Length",
(Standard_Real (GeomPlate_CurveConstraint::*)() const) static_cast<Standard_Real (GeomPlate_CurveConstraint::*)() const>(&GeomPlate_CurveConstraint::Length),
R"#(None)#"
)
.def("LPropSurf",
(GeomLProp_SLProps & (GeomPlate_CurveConstraint::*)( const Standard_Real ) ) static_cast<GeomLProp_SLProps & (GeomPlate_CurveConstraint::*)( const Standard_Real ) >(&GeomPlate_CurveConstraint::LPropSurf),
R"#(None)#" , py::arg("U")
)
.def("D0",
(void (GeomPlate_CurveConstraint::*)( const Standard_Real , gp_Pnt & ) const) static_cast<void (GeomPlate_CurveConstraint::*)( const Standard_Real , gp_Pnt & ) const>(&GeomPlate_CurveConstraint::D0),
R"#(None)#" , py::arg("U"), py::arg("P")
)
.def("D1",
(void (GeomPlate_CurveConstraint::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const) static_cast<void (GeomPlate_CurveConstraint::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const>(&GeomPlate_CurveConstraint::D1),
R"#(None)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2")
)
.def("D2",
(void (GeomPlate_CurveConstraint::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (GeomPlate_CurveConstraint::*)( const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&GeomPlate_CurveConstraint::D2),
R"#(None)#" , py::arg("U"), py::arg("P"), py::arg("V1"), py::arg("V2"), py::arg("V3"), py::arg("V4"), py::arg("V5")
)
.def("Curve3d",
(opencascade::handle<Adaptor3d_Curve> (GeomPlate_CurveConstraint::*)() const) static_cast<opencascade::handle<Adaptor3d_Curve> (GeomPlate_CurveConstraint::*)() const>(&GeomPlate_CurveConstraint::Curve3d),
R"#(None)#"
)
.def("SetCurve2dOnSurf",
(void (GeomPlate_CurveConstraint::*)( const opencascade::handle<Geom2d_Curve> & ) ) static_cast<void (GeomPlate_CurveConstraint::*)( const opencascade::handle<Geom2d_Curve> & ) >(&GeomPlate_CurveConstraint::SetCurve2dOnSurf),
R"#(loads a 2d curve associated the surface resulting of the constraints)#" , py::arg("Curve2d")
)
.def("Curve2dOnSurf",
(opencascade::handle<Geom2d_Curve> (GeomPlate_CurveConstraint::*)() const) static_cast<opencascade::handle<Geom2d_Curve> (GeomPlate_CurveConstraint::*)() const>(&GeomPlate_CurveConstraint::Curve2dOnSurf),
R"#(Returns a 2d curve associated the surface resulting of the constraints)#"
)
.def("SetProjectedCurve",
(void (GeomPlate_CurveConstraint::*)( const opencascade::handle<Adaptor2d_Curve2d> & , const Standard_Real , const Standard_Real ) ) static_cast<void (GeomPlate_CurveConstraint::*)( const opencascade::handle<Adaptor2d_Curve2d> & , const Standard_Real , const Standard_Real ) >(&GeomPlate_CurveConstraint::SetProjectedCurve),
R"#(loads a 2d curve resulting from the normal projection of the curve on the initial surface)#" , py::arg("Curve2d"), py::arg("TolU"), py::arg("TolV")
)
.def("ProjectedCurve",
(opencascade::handle<Adaptor2d_Curve2d> (GeomPlate_CurveConstraint::*)() const) static_cast<opencascade::handle<Adaptor2d_Curve2d> (GeomPlate_CurveConstraint::*)() const>(&GeomPlate_CurveConstraint::ProjectedCurve),
R"#(Returns the projected curve resulting from the normal projection of the curve on the initial surface)#"
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&GeomPlate_CurveConstraint::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&GeomPlate_CurveConstraint::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (GeomPlate_CurveConstraint::*)() const) static_cast<const opencascade::handle<Standard_Type> & (GeomPlate_CurveConstraint::*)() const>(&GeomPlate_CurveConstraint::DynamicType),
R"#(None)#"
)
;
// Class GeomPlate_HArray1OfHCurve from ./opencascade/GeomPlate_HArray1OfHCurve.hxx
klass = m.attr("GeomPlate_HArray1OfHCurve");
// nested enums
static_cast<py::class_<GeomPlate_HArray1OfHCurve ,opencascade::handle<GeomPlate_HArray1OfHCurve> , GeomPlate_Array1OfHCurve , Standard_Transient >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const Standard_Integer,const Standard_Integer >() , py::arg("theLower"), py::arg("theUpper") )
.def(py::init< const Standard_Integer,const Standard_Integer, const opencascade::handle<Adaptor3d_Curve> & >() , py::arg("theLower"), py::arg("theUpper"), py::arg("theValue") )
.def(py::init< const opencascade::handle<Adaptor3d_Curve> &,const Standard_Integer,const Standard_Integer,const bool >() , py::arg("theBegin"), py::arg("theLower"), py::arg("theUpper"), py::arg("arg") )
.def(py::init< const NCollection_Array1<opencascade::handle<Adaptor3d_Curve>> & >() , py::arg("theOther") )
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&GeomPlate_HArray1OfHCurve::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&GeomPlate_HArray1OfHCurve::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Array1",
(const GeomPlate_Array1OfHCurve & (GeomPlate_HArray1OfHCurve::*)() const) static_cast<const GeomPlate_Array1OfHCurve & (GeomPlate_HArray1OfHCurve::*)() const>(&GeomPlate_HArray1OfHCurve::Array1),
R"#(None)#"
)
.def("ChangeArray1",
(GeomPlate_Array1OfHCurve & (GeomPlate_HArray1OfHCurve::*)() ) static_cast<GeomPlate_Array1OfHCurve & (GeomPlate_HArray1OfHCurve::*)() >(&GeomPlate_HArray1OfHCurve::ChangeArray1),
R"#(None)#"
, py::return_value_policy::reference_internal
)
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (GeomPlate_HArray1OfHCurve::*)() const) static_cast<const opencascade::handle<Standard_Type> & (GeomPlate_HArray1OfHCurve::*)() const>(&GeomPlate_HArray1OfHCurve::DynamicType),
R"#(None)#"
)
;
// Class GeomPlate_HArray1OfSequenceOfReal from ./opencascade/GeomPlate_HArray1OfSequenceOfReal.hxx
klass = m.attr("GeomPlate_HArray1OfSequenceOfReal");
// nested enums
static_cast<py::class_<GeomPlate_HArray1OfSequenceOfReal ,opencascade::handle<GeomPlate_HArray1OfSequenceOfReal> , GeomPlate_Array1OfSequenceOfReal , Standard_Transient >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const Standard_Integer,const Standard_Integer >() , py::arg("theLower"), py::arg("theUpper") )
.def(py::init< const Standard_Integer,const Standard_Integer, const NCollection_Sequence<double> & >() , py::arg("theLower"), py::arg("theUpper"), py::arg("theValue") )
.def(py::init< const NCollection_Sequence<double> &,const Standard_Integer,const Standard_Integer,const bool >() , py::arg("theBegin"), py::arg("theLower"), py::arg("theUpper"), py::arg("arg") )
.def(py::init< const NCollection_Array1<TColStd_SequenceOfReal> & >() , py::arg("theOther") )
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&GeomPlate_HArray1OfSequenceOfReal::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&GeomPlate_HArray1OfSequenceOfReal::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Array1",
(const GeomPlate_Array1OfSequenceOfReal & (GeomPlate_HArray1OfSequenceOfReal::*)() const) static_cast<const GeomPlate_Array1OfSequenceOfReal & (GeomPlate_HArray1OfSequenceOfReal::*)() const>(&GeomPlate_HArray1OfSequenceOfReal::Array1),
R"#(None)#"
)
.def("ChangeArray1",
(GeomPlate_Array1OfSequenceOfReal & (GeomPlate_HArray1OfSequenceOfReal::*)() ) static_cast<GeomPlate_Array1OfSequenceOfReal & (GeomPlate_HArray1OfSequenceOfReal::*)() >(&GeomPlate_HArray1OfSequenceOfReal::ChangeArray1),
R"#(None)#"
, py::return_value_policy::reference_internal
)
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (GeomPlate_HArray1OfSequenceOfReal::*)() const) static_cast<const opencascade::handle<Standard_Type> & (GeomPlate_HArray1OfSequenceOfReal::*)() const>(&GeomPlate_HArray1OfSequenceOfReal::DynamicType),
R"#(None)#"
)
;
// Class GeomPlate_HSequenceOfCurveConstraint from ./opencascade/GeomPlate_HSequenceOfCurveConstraint.hxx
klass = m.attr("GeomPlate_HSequenceOfCurveConstraint");
// nested enums
static_cast<py::class_<GeomPlate_HSequenceOfCurveConstraint ,opencascade::handle<GeomPlate_HSequenceOfCurveConstraint> , GeomPlate_SequenceOfCurveConstraint , Standard_Transient >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const NCollection_Sequence<opencascade::handle<GeomPlate_CurveConstraint>> & >() , py::arg("theOther") )
// custom constructors
// methods
.def("Append",
(void (GeomPlate_HSequenceOfCurveConstraint::*)( const opencascade::handle<GeomPlate_CurveConstraint> & ) ) static_cast<void (GeomPlate_HSequenceOfCurveConstraint::*)( const opencascade::handle<GeomPlate_CurveConstraint> & ) >(&GeomPlate_HSequenceOfCurveConstraint::Append),
R"#(None)#" , py::arg("theItem")
)
.def("Append",
(void (GeomPlate_HSequenceOfCurveConstraint::*)( NCollection_Sequence<opencascade::handle<GeomPlate_CurveConstraint>> & ) ) static_cast<void (GeomPlate_HSequenceOfCurveConstraint::*)( NCollection_Sequence<opencascade::handle<GeomPlate_CurveConstraint>> & ) >(&GeomPlate_HSequenceOfCurveConstraint::Append),
R"#(None)#" , py::arg("theSequence")
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&GeomPlate_HSequenceOfCurveConstraint::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&GeomPlate_HSequenceOfCurveConstraint::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Sequence",
(const GeomPlate_SequenceOfCurveConstraint & (GeomPlate_HSequenceOfCurveConstraint::*)() const) static_cast<const GeomPlate_SequenceOfCurveConstraint & (GeomPlate_HSequenceOfCurveConstraint::*)() const>(&GeomPlate_HSequenceOfCurveConstraint::Sequence),
R"#(None)#"
)
.def("ChangeSequence",
(GeomPlate_SequenceOfCurveConstraint & (GeomPlate_HSequenceOfCurveConstraint::*)() ) static_cast<GeomPlate_SequenceOfCurveConstraint & (GeomPlate_HSequenceOfCurveConstraint::*)() >(&GeomPlate_HSequenceOfCurveConstraint::ChangeSequence),
R"#(None)#"
, py::return_value_policy::reference_internal
)
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (GeomPlate_HSequenceOfCurveConstraint::*)() const) static_cast<const opencascade::handle<Standard_Type> & (GeomPlate_HSequenceOfCurveConstraint::*)() const>(&GeomPlate_HSequenceOfCurveConstraint::DynamicType),
R"#(None)#"
)
;
// Class GeomPlate_HSequenceOfPointConstraint from ./opencascade/GeomPlate_HSequenceOfPointConstraint.hxx
klass = m.attr("GeomPlate_HSequenceOfPointConstraint");
// nested enums
static_cast<py::class_<GeomPlate_HSequenceOfPointConstraint ,opencascade::handle<GeomPlate_HSequenceOfPointConstraint> , GeomPlate_SequenceOfPointConstraint , Standard_Transient >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const NCollection_Sequence<opencascade::handle<GeomPlate_PointConstraint>> & >() , py::arg("theOther") )
// custom constructors
// methods
.def("Append",
(void (GeomPlate_HSequenceOfPointConstraint::*)( const opencascade::handle<GeomPlate_PointConstraint> & ) ) static_cast<void (GeomPlate_HSequenceOfPointConstraint::*)( const opencascade::handle<GeomPlate_PointConstraint> & ) >(&GeomPlate_HSequenceOfPointConstraint::Append),
R"#(None)#" , py::arg("theItem")
)
.def("Append",
(void (GeomPlate_HSequenceOfPointConstraint::*)( NCollection_Sequence<opencascade::handle<GeomPlate_PointConstraint>> & ) ) static_cast<void (GeomPlate_HSequenceOfPointConstraint::*)( NCollection_Sequence<opencascade::handle<GeomPlate_PointConstraint>> & ) >(&GeomPlate_HSequenceOfPointConstraint::Append),
R"#(None)#" , py::arg("theSequence")
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&GeomPlate_HSequenceOfPointConstraint::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&GeomPlate_HSequenceOfPointConstraint::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Sequence",
(const GeomPlate_SequenceOfPointConstraint & (GeomPlate_HSequenceOfPointConstraint::*)() const) static_cast<const GeomPlate_SequenceOfPointConstraint & (GeomPlate_HSequenceOfPointConstraint::*)() const>(&GeomPlate_HSequenceOfPointConstraint::Sequence),
R"#(None)#"
)
.def("ChangeSequence",
(GeomPlate_SequenceOfPointConstraint & (GeomPlate_HSequenceOfPointConstraint::*)() ) static_cast<GeomPlate_SequenceOfPointConstraint & (GeomPlate_HSequenceOfPointConstraint::*)() >(&GeomPlate_HSequenceOfPointConstraint::ChangeSequence),
R"#(None)#"
, py::return_value_policy::reference_internal
)
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (GeomPlate_HSequenceOfPointConstraint::*)() const) static_cast<const opencascade::handle<Standard_Type> & (GeomPlate_HSequenceOfPointConstraint::*)() const>(&GeomPlate_HSequenceOfPointConstraint::DynamicType),
R"#(None)#"
)
;
// Class GeomPlate_MakeApprox from ./opencascade/GeomPlate_MakeApprox.hxx
klass = m.attr("GeomPlate_MakeApprox");
// nested enums
static_cast<py::class_<GeomPlate_MakeApprox , shared_ptr<GeomPlate_MakeApprox> >>(klass)
// constructors
.def(py::init< const opencascade::handle<GeomPlate_Surface> &,const AdvApp2Var_Criterion &,const Standard_Real,const Standard_Integer,const Standard_Integer,const GeomAbs_Shape,const Standard_Real >() , py::arg("SurfPlate"), py::arg("PlateCrit"), py::arg("Tol3d"), py::arg("Nbmax"), py::arg("dgmax"), py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C1), py::arg("EnlargeCoeff")=static_cast<const Standard_Real>(1.1) )
.def(py::init< const opencascade::handle<GeomPlate_Surface> &,const Standard_Real,const Standard_Integer,const Standard_Integer,const Standard_Real,const Standard_Integer,const GeomAbs_Shape,const Standard_Real >() , py::arg("SurfPlate"), py::arg("Tol3d"), py::arg("Nbmax"), py::arg("dgmax"), py::arg("dmax"), py::arg("CritOrder")=static_cast<const Standard_Integer>(0), py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C1), py::arg("EnlargeCoeff")=static_cast<const Standard_Real>(1.1) )
// custom constructors
// methods
.def("Surface",
(opencascade::handle<Geom_BSplineSurface> (GeomPlate_MakeApprox::*)() const) static_cast<opencascade::handle<Geom_BSplineSurface> (GeomPlate_MakeApprox::*)() const>(&GeomPlate_MakeApprox::Surface),
R"#(Returns the BSpline surface extracted from the GeomPlate_MakeApprox object.)#"
)
.def("ApproxError",
(Standard_Real (GeomPlate_MakeApprox::*)() const) static_cast<Standard_Real (GeomPlate_MakeApprox::*)() const>(&GeomPlate_MakeApprox::ApproxError),
R"#(Returns the error in computation of the approximation surface. This is the distance between the entire target BSpline surface and the entire original surface generated by BuildPlateSurface and converted by GeomPlate_Surface.)#"
)
.def("CriterionError",
(Standard_Real (GeomPlate_MakeApprox::*)() const) static_cast<Standard_Real (GeomPlate_MakeApprox::*)() const>(&GeomPlate_MakeApprox::CriterionError),
R"#(Returns the criterion error in computation of the approximation surface. This is estimated relative to the curve and point constraints only.)#"
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GeomPlate_PlateG0Criterion from ./opencascade/GeomPlate_PlateG0Criterion.hxx
klass = m.attr("GeomPlate_PlateG0Criterion");
// nested enums
static_cast<py::class_<GeomPlate_PlateG0Criterion , shared_ptr<GeomPlate_PlateG0Criterion> , AdvApp2Var_Criterion >>(klass)
// constructors
.def(py::init< const NCollection_Sequence<gp_XY> &, const NCollection_Sequence<gp_XYZ> &,const Standard_Real,const AdvApp2Var_CriterionType,const AdvApp2Var_CriterionRepartition >() , py::arg("Data"), py::arg("G0Data"), py::arg("Maximum"), py::arg("Type")=static_cast<const AdvApp2Var_CriterionType>(AdvApp2Var_Absolute), py::arg("Repart")=static_cast<const AdvApp2Var_CriterionRepartition>(AdvApp2Var_Regular) )
// custom constructors
// methods
.def("Value",
(void (GeomPlate_PlateG0Criterion::*)( AdvApp2Var_Patch & , const AdvApp2Var_Context & ) const) static_cast<void (GeomPlate_PlateG0Criterion::*)( AdvApp2Var_Patch & , const AdvApp2Var_Context & ) const>(&GeomPlate_PlateG0Criterion::Value),
R"#(None)#" , py::arg("P"), py::arg("C")
)
.def("IsSatisfied",
(Standard_Boolean (GeomPlate_PlateG0Criterion::*)( const AdvApp2Var_Patch & ) const) static_cast<Standard_Boolean (GeomPlate_PlateG0Criterion::*)( const AdvApp2Var_Patch & ) const>(&GeomPlate_PlateG0Criterion::IsSatisfied),
R"#(None)#" , py::arg("P")
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GeomPlate_PlateG1Criterion from ./opencascade/GeomPlate_PlateG1Criterion.hxx
klass = m.attr("GeomPlate_PlateG1Criterion");
// nested enums
static_cast<py::class_<GeomPlate_PlateG1Criterion , shared_ptr<GeomPlate_PlateG1Criterion> , AdvApp2Var_Criterion >>(klass)
// constructors
.def(py::init< const NCollection_Sequence<gp_XY> &, const NCollection_Sequence<gp_XYZ> &,const Standard_Real,const AdvApp2Var_CriterionType,const AdvApp2Var_CriterionRepartition >() , py::arg("Data"), py::arg("G1Data"), py::arg("Maximum"), py::arg("Type")=static_cast<const AdvApp2Var_CriterionType>(AdvApp2Var_Absolute), py::arg("Repart")=static_cast<const AdvApp2Var_CriterionRepartition>(AdvApp2Var_Regular) )
// custom constructors
// methods
.def("Value",
(void (GeomPlate_PlateG1Criterion::*)( AdvApp2Var_Patch & , const AdvApp2Var_Context & ) const) static_cast<void (GeomPlate_PlateG1Criterion::*)( AdvApp2Var_Patch & , const AdvApp2Var_Context & ) const>(&GeomPlate_PlateG1Criterion::Value),
R"#(None)#" , py::arg("P"), py::arg("C")
)
.def("IsSatisfied",
(Standard_Boolean (GeomPlate_PlateG1Criterion::*)( const AdvApp2Var_Patch & ) const) static_cast<Standard_Boolean (GeomPlate_PlateG1Criterion::*)( const AdvApp2Var_Patch & ) const>(&GeomPlate_PlateG1Criterion::IsSatisfied),
R"#(None)#" , py::arg("P")
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GeomPlate_PointConstraint from ./opencascade/GeomPlate_PointConstraint.hxx
klass = m.attr("GeomPlate_PointConstraint");
// nested enums
static_cast<py::class_<GeomPlate_PointConstraint ,opencascade::handle<GeomPlate_PointConstraint> , Standard_Transient >>(klass)
// constructors
.def(py::init< const gp_Pnt &,const Standard_Integer,const Standard_Real >() , py::arg("Pt"), py::arg("Order"), py::arg("TolDist")=static_cast<const Standard_Real>(0.0001) )
.def(py::init< const Standard_Real,const Standard_Real,const opencascade::handle<Geom_Surface> &,const Standard_Integer,const Standard_Real,const Standard_Real,const Standard_Real >() , py::arg("U"), py::arg("V"), py::arg("Surf"), py::arg("Order"), py::arg("TolDist")=static_cast<const Standard_Real>(0.0001), py::arg("TolAng")=static_cast<const Standard_Real>(0.01), py::arg("TolCurv")=static_cast<const Standard_Real>(0.1) )
// custom constructors
// methods
.def("SetOrder",
(void (GeomPlate_PointConstraint::*)( const Standard_Integer ) ) static_cast<void (GeomPlate_PointConstraint::*)( const Standard_Integer ) >(&GeomPlate_PointConstraint::SetOrder),
R"#(None)#" , py::arg("Order")
)
.def("Order",
(Standard_Integer (GeomPlate_PointConstraint::*)() const) static_cast<Standard_Integer (GeomPlate_PointConstraint::*)() const>(&GeomPlate_PointConstraint::Order),
R"#(Returns the order of constraint: G0, G1, and G2, controlled respectively by G0Criterion G1Criterion and G2Criterion.)#"
)
.def("SetG0Criterion",
(void (GeomPlate_PointConstraint::*)( const Standard_Real ) ) static_cast<void (GeomPlate_PointConstraint::*)( const Standard_Real ) >(&GeomPlate_PointConstraint::SetG0Criterion),
R"#(Allows you to set the G0 criterion. This is the law defining the greatest distance allowed between the constraint and the target surface. If this criterion is not set, {TolDist, the distance tolerance from the constructor, is used)#" , py::arg("TolDist")
)
.def("SetG1Criterion",
(void (GeomPlate_PointConstraint::*)( const Standard_Real ) ) static_cast<void (GeomPlate_PointConstraint::*)( const Standard_Real ) >(&GeomPlate_PointConstraint::SetG1Criterion),
R"#(Allows you to set the G1 criterion. This is the law defining the greatest angle allowed between the constraint and the target surface. If this criterion is not set, TolAng, the angular tolerance from the constructor, is used. Raises ConstructionError if the point is not on the surface)#" , py::arg("TolAng")
)
.def("SetG2Criterion",
(void (GeomPlate_PointConstraint::*)( const Standard_Real ) ) static_cast<void (GeomPlate_PointConstraint::*)( const Standard_Real ) >(&GeomPlate_PointConstraint::SetG2Criterion),
R"#(Allows you to set the G2 criterion. This is the law defining the greatest difference in curvature allowed between the constraint and the target surface. If this criterion is not set, TolCurv, the curvature tolerance from the constructor, is used. Raises ConstructionError if the point is not on the surface)#" , py::arg("TolCurv")
)
.def("G0Criterion",
(Standard_Real (GeomPlate_PointConstraint::*)() const) static_cast<Standard_Real (GeomPlate_PointConstraint::*)() const>(&GeomPlate_PointConstraint::G0Criterion),
R"#(Returns the G0 criterion. This is the greatest distance allowed between the constraint and the target surface.)#"
)
.def("G1Criterion",
(Standard_Real (GeomPlate_PointConstraint::*)() const) static_cast<Standard_Real (GeomPlate_PointConstraint::*)() const>(&GeomPlate_PointConstraint::G1Criterion),
R"#(Returns the G1 criterion. This is the greatest angle allowed between the constraint and the target surface. Raises ConstructionError if the point is not on the surface.)#"
)
.def("G2Criterion",
(Standard_Real (GeomPlate_PointConstraint::*)() const) static_cast<Standard_Real (GeomPlate_PointConstraint::*)() const>(&GeomPlate_PointConstraint::G2Criterion),
R"#(Returns the G2 criterion. This is the greatest difference in curvature allowed between the constraint and the target surface. Raises ConstructionError if the point is not on the surface)#"
)
.def("D0",
(void (GeomPlate_PointConstraint::*)( gp_Pnt & ) const) static_cast<void (GeomPlate_PointConstraint::*)( gp_Pnt & ) const>(&GeomPlate_PointConstraint::D0),
R"#(None)#" , py::arg("P")
)
.def("D1",
(void (GeomPlate_PointConstraint::*)( gp_Pnt & , gp_Vec & , gp_Vec & ) const) static_cast<void (GeomPlate_PointConstraint::*)( gp_Pnt & , gp_Vec & , gp_Vec & ) const>(&GeomPlate_PointConstraint::D1),
R"#(None)#" , py::arg("P"), py::arg("V1"), py::arg("V2")
)
.def("D2",
(void (GeomPlate_PointConstraint::*)( gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (GeomPlate_PointConstraint::*)( gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&GeomPlate_PointConstraint::D2),
R"#(None)#" , py::arg("P"), py::arg("V1"), py::arg("V2"), py::arg("V3"), py::arg("V4"), py::arg("V5")
)
.def("HasPnt2dOnSurf",
(Standard_Boolean (GeomPlate_PointConstraint::*)() const) static_cast<Standard_Boolean (GeomPlate_PointConstraint::*)() const>(&GeomPlate_PointConstraint::HasPnt2dOnSurf),
R"#(None)#"
)
.def("SetPnt2dOnSurf",
(void (GeomPlate_PointConstraint::*)( const gp_Pnt2d & ) ) static_cast<void (GeomPlate_PointConstraint::*)( const gp_Pnt2d & ) >(&GeomPlate_PointConstraint::SetPnt2dOnSurf),
R"#(None)#" , py::arg("Pnt")
)
.def("Pnt2dOnSurf",
(gp_Pnt2d (GeomPlate_PointConstraint::*)() const) static_cast<gp_Pnt2d (GeomPlate_PointConstraint::*)() const>(&GeomPlate_PointConstraint::Pnt2dOnSurf),
R"#(None)#"
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&GeomPlate_PointConstraint::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&GeomPlate_PointConstraint::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("LPropSurf",
(GeomLProp_SLProps & (GeomPlate_PointConstraint::*)() ) static_cast<GeomLProp_SLProps & (GeomPlate_PointConstraint::*)() >(&GeomPlate_PointConstraint::LPropSurf),
R"#(None)#"
, py::return_value_policy::reference_internal
)
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (GeomPlate_PointConstraint::*)() const) static_cast<const opencascade::handle<Standard_Type> & (GeomPlate_PointConstraint::*)() const>(&GeomPlate_PointConstraint::DynamicType),
R"#(None)#"
)
;
// Class GeomPlate_Surface from ./opencascade/GeomPlate_Surface.hxx
klass = m.attr("GeomPlate_Surface");
// nested enums
static_cast<py::class_<GeomPlate_Surface ,opencascade::handle<GeomPlate_Surface> , Geom_Surface >>(klass)
// constructors
.def(py::init< const opencascade::handle<Geom_Surface> &,const Plate_Plate & >() , py::arg("Surfinit"), py::arg("Surfinter") )
// custom constructors
// methods
.def("UReverse",
(void (GeomPlate_Surface::*)() ) static_cast<void (GeomPlate_Surface::*)() >(&GeomPlate_Surface::UReverse),
R"#(Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified.)#"
)
.def("UReversedParameter",
(Standard_Real (GeomPlate_Surface::*)( const Standard_Real ) const) static_cast<Standard_Real (GeomPlate_Surface::*)( const Standard_Real ) const>(&GeomPlate_Surface::UReversedParameter),
R"#(Return the parameter on the Ureversed surface for the point of parameter U on <me>. is the same point as)#" , py::arg("U")
)
.def("VReverse",
(void (GeomPlate_Surface::*)() ) static_cast<void (GeomPlate_Surface::*)() >(&GeomPlate_Surface::VReverse),
R"#(Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified.)#"
)
.def("VReversedParameter",
(Standard_Real (GeomPlate_Surface::*)( const Standard_Real ) const) static_cast<Standard_Real (GeomPlate_Surface::*)( const Standard_Real ) const>(&GeomPlate_Surface::VReversedParameter),
R"#(Return the parameter on the Vreversed surface for the point of parameter V on <me>. is the same point as)#" , py::arg("V")
)
.def("ParametricTransformation",
(gp_GTrsf2d (GeomPlate_Surface::*)( const gp_Trsf & ) const) static_cast<gp_GTrsf2d (GeomPlate_Surface::*)( const gp_Trsf & ) const>(&GeomPlate_Surface::ParametricTransformation),
R"#(Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns an identity transformation)#" , py::arg("T")
)
.def("IsUClosed",
(Standard_Boolean (GeomPlate_Surface::*)() const) static_cast<Standard_Boolean (GeomPlate_Surface::*)() const>(&GeomPlate_Surface::IsUClosed),
R"#(Is the surface closed in the parametric direction U ? Returns True if for each parameter V the distance between the point P (UFirst, V) and P (ULast, V) is lower or equal to Resolution from gp. UFirst and ULast are the parametric bounds in the U direction.)#"
)
.def("IsVClosed",
(Standard_Boolean (GeomPlate_Surface::*)() const) static_cast<Standard_Boolean (GeomPlate_Surface::*)() const>(&GeomPlate_Surface::IsVClosed),
R"#(Is the surface closed in the parametric direction V ? Returns True if for each parameter U the distance between the point P (U, VFirst) and P (U, VLast) is lower or equal to Resolution from gp. VFirst and VLast are the parametric bounds in the V direction.)#"
)
.def("IsUPeriodic",
(Standard_Boolean (GeomPlate_Surface::*)() const) static_cast<Standard_Boolean (GeomPlate_Surface::*)() const>(&GeomPlate_Surface::IsUPeriodic),
R"#(Is the parametrization of a surface periodic in the direction U ? It is possible only if the surface is closed in this parametric direction and if the following relation is satisfied : for each parameter V the distance between the point P (U, V) and the point P (U + T, V) is lower or equal to Resolution from package gp. T is the parametric period and must be a constant.)#"
)
.def("UPeriod",
(Standard_Real (GeomPlate_Surface::*)() const) static_cast<Standard_Real (GeomPlate_Surface::*)() const>(&GeomPlate_Surface::UPeriod),
R"#(returns the Uperiod. raises if the surface is not uperiodic.)#"
)
.def("IsVPeriodic",
(Standard_Boolean (GeomPlate_Surface::*)() const) static_cast<Standard_Boolean (GeomPlate_Surface::*)() const>(&GeomPlate_Surface::IsVPeriodic),
R"#(Is the parametrization of a surface periodic in the direction U ? It is possible only if the surface is closed in this parametric direction and if the following relation is satisfied : for each parameter V the distance between the point P (U, V) and the point P (U + T, V) is lower or equal to Resolution from package gp. T is the parametric period and must be a constant.)#"
)
.def("VPeriod",
(Standard_Real (GeomPlate_Surface::*)() const) static_cast<Standard_Real (GeomPlate_Surface::*)() const>(&GeomPlate_Surface::VPeriod),
R"#(returns the Vperiod. raises if the surface is not vperiodic.)#"
)
.def("UIso",
(opencascade::handle<Geom_Curve> (GeomPlate_Surface::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom_Curve> (GeomPlate_Surface::*)( const Standard_Real ) const>(&GeomPlate_Surface::UIso),
R"#(Computes the U isoparametric curve.)#" , py::arg("U")
)
.def("VIso",
(opencascade::handle<Geom_Curve> (GeomPlate_Surface::*)( const Standard_Real ) const) static_cast<opencascade::handle<Geom_Curve> (GeomPlate_Surface::*)( const Standard_Real ) const>(&GeomPlate_Surface::VIso),
R"#(Computes the V isoparametric curve.)#" , py::arg("V")
)
.def("Continuity",
(GeomAbs_Shape (GeomPlate_Surface::*)() const) static_cast<GeomAbs_Shape (GeomPlate_Surface::*)() const>(&GeomPlate_Surface::Continuity),
R"#(Global Continuity of the surface in direction U and V : C0 : only geometric continuity, C1 : continuity of the first derivative all along the surface, C2 : continuity of the second derivative all along the surface, C3 : continuity of the third derivative all along the surface, G1 : tangency continuity all along the surface, G2 : curvature continuity all along the surface, CN : the order of continuity is infinite. Example : If the surface is C1 in the V parametric direction and C2 in the U parametric direction Shape = C1.)#"
)
.def("IsCNu",
(Standard_Boolean (GeomPlate_Surface::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (GeomPlate_Surface::*)( const Standard_Integer ) const>(&GeomPlate_Surface::IsCNu),
R"#(Returns the order of continuity of the surface in the U parametric direction. Raised if N < 0.)#" , py::arg("N")
)
.def("IsCNv",
(Standard_Boolean (GeomPlate_Surface::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (GeomPlate_Surface::*)( const Standard_Integer ) const>(&GeomPlate_Surface::IsCNv),
R"#(Returns the order of continuity of the surface in the V parametric direction. Raised if N < 0.)#" , py::arg("N")
)
.def("D0",
(void (GeomPlate_Surface::*)( const Standard_Real , const Standard_Real , gp_Pnt & ) const) static_cast<void (GeomPlate_Surface::*)( const Standard_Real , const Standard_Real , gp_Pnt & ) const>(&GeomPlate_Surface::D0),
R"#(Computes the point of parameter U,V on the surface.)#" , py::arg("U"), py::arg("V"), py::arg("P")
)
.def("D1",
(void (GeomPlate_Surface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const) static_cast<void (GeomPlate_Surface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & ) const>(&GeomPlate_Surface::D1),
R"#(Computes the point P and the first derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C1.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V")
)
.def("D2",
(void (GeomPlate_Surface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (GeomPlate_Surface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&GeomPlate_Surface::D2),
R"#(Computes the point P, the first and the second derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C2.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V"), py::arg("D2U"), py::arg("D2V"), py::arg("D2UV")
)
.def("D3",
(void (GeomPlate_Surface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const) static_cast<void (GeomPlate_Surface::*)( const Standard_Real , const Standard_Real , gp_Pnt & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & , gp_Vec & ) const>(&GeomPlate_Surface::D3),
R"#(Computes the point P, the first,the second and the third derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C2.)#" , py::arg("U"), py::arg("V"), py::arg("P"), py::arg("D1U"), py::arg("D1V"), py::arg("D2U"), py::arg("D2V"), py::arg("D2UV"), py::arg("D3U"), py::arg("D3V"), py::arg("D3UUV"), py::arg("D3UVV")
)
.def("DN",
(gp_Vec (GeomPlate_Surface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer ) const) static_cast<gp_Vec (GeomPlate_Surface::*)( const Standard_Real , const Standard_Real , const Standard_Integer , const Standard_Integer ) const>(&GeomPlate_Surface::DN),
R"#(---Purpose ; Computes the derivative of order Nu in the direction U and Nv in the direction V at the point P(U, V).)#" , py::arg("U"), py::arg("V"), py::arg("Nu"), py::arg("Nv")
)
.def("Copy",
(opencascade::handle<Geom_Geometry> (GeomPlate_Surface::*)() const) static_cast<opencascade::handle<Geom_Geometry> (GeomPlate_Surface::*)() const>(&GeomPlate_Surface::Copy),
R"#(None)#"
)
.def("Transform",
(void (GeomPlate_Surface::*)( const gp_Trsf & ) ) static_cast<void (GeomPlate_Surface::*)( const gp_Trsf & ) >(&GeomPlate_Surface::Transform),
R"#(Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom).)#" , py::arg("T")
)
.def("CallSurfinit",
(opencascade::handle<Geom_Surface> (GeomPlate_Surface::*)() const) static_cast<opencascade::handle<Geom_Surface> (GeomPlate_Surface::*)() const>(&GeomPlate_Surface::CallSurfinit),
R"#(None)#"
)
.def("SetBounds",
(void (GeomPlate_Surface::*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real ) ) static_cast<void (GeomPlate_Surface::*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real ) >(&GeomPlate_Surface::SetBounds),
R"#(None)#" , py::arg("Umin"), py::arg("Umax"), py::arg("Vmin"), py::arg("Vmax")
)
.def("Constraints",
(void (GeomPlate_Surface::*)( NCollection_Sequence<gp_XY> & ) const) static_cast<void (GeomPlate_Surface::*)( NCollection_Sequence<gp_XY> & ) const>(&GeomPlate_Surface::Constraints),
R"#(None)#" , py::arg("Seq")
)
// methods using call by reference i.s.o. return
.def("TransformParameters",
[]( GeomPlate_Surface &self , const gp_Trsf & T ){
Standard_Real U;
Standard_Real V;
self.TransformParameters(U,V,T);
return std::make_tuple(U,V); },
R"#(Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This methods does not change <U> and <V>)#" , py::arg("T")
)
.def("Bounds",
[]( GeomPlate_Surface &self ){
Standard_Real U1;
Standard_Real U2;
Standard_Real V1;
Standard_Real V2;
self.Bounds(U1,U2,V1,V2);
return std::make_tuple(U1,U2,V1,V2); },
R"#(None)#"
)
.def("RealBounds",
[]( GeomPlate_Surface &self ){
Standard_Real U1;
Standard_Real U2;
Standard_Real V1;
Standard_Real V2;
self.RealBounds(U1,U2,V1,V2);
return std::make_tuple(U1,U2,V1,V2); },
R"#(None)#"
)
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&GeomPlate_Surface::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&GeomPlate_Surface::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (GeomPlate_Surface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (GeomPlate_Surface::*)() const>(&GeomPlate_Surface::DynamicType),
R"#(None)#"
)
;
// functions
// ./opencascade/GeomPlate_Aij.hxx
// ./opencascade/GeomPlate_Array1OfHCurve.hxx
// ./opencascade/GeomPlate_Array1OfSequenceOfReal.hxx
// ./opencascade/GeomPlate_BuildAveragePlane.hxx
// ./opencascade/GeomPlate_BuildPlateSurface.hxx
// ./opencascade/GeomPlate_CurveConstraint.hxx
// ./opencascade/GeomPlate_HArray1OfHCurve.hxx
// ./opencascade/GeomPlate_HArray1OfSequenceOfReal.hxx
// ./opencascade/GeomPlate_HSequenceOfCurveConstraint.hxx
// ./opencascade/GeomPlate_HSequenceOfPointConstraint.hxx
// ./opencascade/GeomPlate_MakeApprox.hxx
// ./opencascade/GeomPlate_PlateG0Criterion.hxx
// ./opencascade/GeomPlate_PlateG1Criterion.hxx
// ./opencascade/GeomPlate_PointConstraint.hxx
// ./opencascade/GeomPlate_SequenceOfAij.hxx
// ./opencascade/GeomPlate_SequenceOfCurveConstraint.hxx
// ./opencascade/GeomPlate_SequenceOfPointConstraint.hxx
// ./opencascade/GeomPlate_Surface.hxx
// Additional functions
// operators
// register typdefs
register_template_NCollection_Array1<opencascade::handle<Adaptor3d_Curve>>(m,"GeomPlate_Array1OfHCurve");
register_template_NCollection_Array1<TColStd_SequenceOfReal>(m,"GeomPlate_Array1OfSequenceOfReal");
register_template_NCollection_Sequence<GeomPlate_Aij>(m,"GeomPlate_SequenceOfAij");
register_template_NCollection_Sequence<opencascade::handle<GeomPlate_CurveConstraint>>(m,"GeomPlate_SequenceOfCurveConstraint");
register_template_NCollection_Sequence<opencascade::handle<GeomPlate_PointConstraint>>(m,"GeomPlate_SequenceOfPointConstraint");
// exceptions
// user-defined post-inclusion per module in the body
};
// user-defined post-inclusion per module
// user-defined post
|