File: GeomPlate.cpp

package info (click to toggle)
python-ocp 7.8.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 64,720 kB
  • sloc: cpp: 362,337; pascal: 33; python: 23; makefile: 4
file content (1033 lines) | stat: -rw-r--r-- 71,277 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

// std lib related includes
#include <tuple>

// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

namespace py = pybind11;

// Standard Handle
#include <Standard_Handle.hxx>


// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_Plane.hxx>
#include <Geom_Line.hxx>
#include <Geom_Surface.hxx>
#include <GeomPlate_Surface.hxx>
#include <Geom2d_Curve.hxx>
#include <Law_Function.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GeomPlate_Surface.hxx>
#include <Geom_BSplineSurface.hxx>
#include <AdvApp2Var_Criterion.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <AdvApp2Var_Patch.hxx>
#include <AdvApp2Var_Context.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <AdvApp2Var_Patch.hxx>
#include <AdvApp2Var_Context.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Trsf.hxx>
#include <gp_GTrsf2d.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>

// module includes
#include <GeomPlate_Aij.hxx>
#include <GeomPlate_Array1OfHCurve.hxx>
#include <GeomPlate_Array1OfSequenceOfReal.hxx>
#include <GeomPlate_BuildAveragePlane.hxx>
#include <GeomPlate_BuildPlateSurface.hxx>
#include <GeomPlate_CurveConstraint.hxx>
#include <GeomPlate_HArray1OfHCurve.hxx>
#include <GeomPlate_HArray1OfSequenceOfReal.hxx>
#include <GeomPlate_HSequenceOfCurveConstraint.hxx>
#include <GeomPlate_HSequenceOfPointConstraint.hxx>
#include <GeomPlate_MakeApprox.hxx>
#include <GeomPlate_PlateG0Criterion.hxx>
#include <GeomPlate_PlateG1Criterion.hxx>
#include <GeomPlate_PointConstraint.hxx>
#include <GeomPlate_SequenceOfAij.hxx>
#include <GeomPlate_SequenceOfCurveConstraint.hxx>
#include <GeomPlate_SequenceOfPointConstraint.hxx>
#include <GeomPlate_Surface.hxx>

// template related includes

// ./opencascade/GeomPlate_Array1OfHCurve.hxx
#include "NCollection_tmpl.hxx"

// ./opencascade/GeomPlate_Array1OfSequenceOfReal.hxx
#include "NCollection_tmpl.hxx"

// ./opencascade/GeomPlate_SequenceOfAij.hxx
#include "NCollection_tmpl.hxx"

// ./opencascade/GeomPlate_SequenceOfCurveConstraint.hxx
#include "NCollection_tmpl.hxx"

// ./opencascade/GeomPlate_SequenceOfPointConstraint.hxx
#include "NCollection_tmpl.hxx"


// user-defined pre
#include "OCP_specific.inc"

// user-defined inclusion per module

// Module definiiton
void register_GeomPlate(py::module &main_module) {


py::module m = static_cast<py::module>(main_module.attr("GeomPlate"));
py::object klass;

//Python trampoline classes

// classes

    // Class GeomPlate_Aij from ./opencascade/GeomPlate_Aij.hxx
    klass = m.attr("GeomPlate_Aij");


    // nested enums

    static_cast<py::class_<GeomPlate_Aij , shared_ptr<GeomPlate_Aij>  >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const Standard_Integer,const Standard_Integer,const gp_Vec & >()  , py::arg("anInd1"),  py::arg("anInd2"),  py::arg("aVec") )
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomPlate_BuildAveragePlane from ./opencascade/GeomPlate_BuildAveragePlane.hxx
    klass = m.attr("GeomPlate_BuildAveragePlane");


    // nested enums

    static_cast<py::class_<GeomPlate_BuildAveragePlane , shared_ptr<GeomPlate_BuildAveragePlane>  >>(klass)
    // constructors
        .def(py::init< const opencascade::handle<TColgp_HArray1OfPnt> &,const Standard_Integer,const Standard_Real,const Standard_Integer,const Standard_Integer >()  , py::arg("Pts"),  py::arg("NbBoundPoints"),  py::arg("Tol"),  py::arg("POption"),  py::arg("NOption") )
        .def(py::init<  const NCollection_Sequence<gp_Vec> &,const opencascade::handle<TColgp_HArray1OfPnt> & >()  , py::arg("Normals"),  py::arg("Pts") )
    // custom constructors
    // methods
        .def("Plane",
             (opencascade::handle<Geom_Plane> (GeomPlate_BuildAveragePlane::*)() const) static_cast<opencascade::handle<Geom_Plane> (GeomPlate_BuildAveragePlane::*)() const>(&GeomPlate_BuildAveragePlane::Plane),
             R"#(Return the average Plane.)#" 
          )
        .def("Line",
             (opencascade::handle<Geom_Line> (GeomPlate_BuildAveragePlane::*)() const) static_cast<opencascade::handle<Geom_Line> (GeomPlate_BuildAveragePlane::*)() const>(&GeomPlate_BuildAveragePlane::Line),
             R"#(Return a Line when 2 eigenvalues are null.)#" 
          )
        .def("IsPlane",
             (Standard_Boolean (GeomPlate_BuildAveragePlane::*)() const) static_cast<Standard_Boolean (GeomPlate_BuildAveragePlane::*)() const>(&GeomPlate_BuildAveragePlane::IsPlane),
             R"#(return OK if is a plane.)#" 
          )
        .def("IsLine",
             (Standard_Boolean (GeomPlate_BuildAveragePlane::*)() const) static_cast<Standard_Boolean (GeomPlate_BuildAveragePlane::*)() const>(&GeomPlate_BuildAveragePlane::IsLine),
             R"#(return OK if is a line.)#" 
          )
    // methods using call by reference i.s.o. return
        .def("MinMaxBox",
             []( GeomPlate_BuildAveragePlane &self   ){
                 Standard_Real  Umin;
                Standard_Real  Umax;
                Standard_Real  Vmin;
                Standard_Real  Vmax;

                 self.MinMaxBox(Umin,Umax,Vmin,Vmax);
                 
                 return std::make_tuple(Umin,Umax,Vmin,Vmax); },
             R"#(computes the minimal box to include all normal projection points of the initial array on the plane.)#" 
          )
    // static methods
        .def_static("HalfSpace_s",
                    (Standard_Boolean (*)(  const NCollection_Sequence<gp_Vec> & ,  NCollection_Sequence<gp_Vec> & ,  NCollection_Sequence<GeomPlate_Aij> & ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<Standard_Boolean (*)(  const NCollection_Sequence<gp_Vec> & ,  NCollection_Sequence<gp_Vec> & ,  NCollection_Sequence<GeomPlate_Aij> & ,  const Standard_Real ,  const Standard_Real  ) >(&GeomPlate_BuildAveragePlane::HalfSpace),
                    R"#(None)#"  , py::arg("NewNormals"),  py::arg("Normals"),  py::arg("Bset"),  py::arg("LinTol"),  py::arg("AngTol")
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomPlate_BuildPlateSurface from ./opencascade/GeomPlate_BuildPlateSurface.hxx
    klass = m.attr("GeomPlate_BuildPlateSurface");


    // nested enums

    static_cast<py::class_<GeomPlate_BuildPlateSurface , shared_ptr<GeomPlate_BuildPlateSurface>  >>(klass)
    // constructors
        .def(py::init< const opencascade::handle<TColStd_HArray1OfInteger> &,const opencascade::handle<GeomPlate_HArray1OfHCurve> &,const opencascade::handle<TColStd_HArray1OfInteger> &,const Standard_Integer,const Standard_Integer,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Boolean >()  , py::arg("NPoints"),  py::arg("TabCurve"),  py::arg("Tang"),  py::arg("Degree"),  py::arg("NbIter")=static_cast<const Standard_Integer>(3),  py::arg("Tol2d")=static_cast<const Standard_Real>(0.00001),  py::arg("Tol3d")=static_cast<const Standard_Real>(0.0001),  py::arg("TolAng")=static_cast<const Standard_Real>(0.01),  py::arg("TolCurv")=static_cast<const Standard_Real>(0.1),  py::arg("Anisotropie")=static_cast<const Standard_Boolean>(Standard_False) )
        .def(py::init< const opencascade::handle<Geom_Surface> &,const Standard_Integer,const Standard_Integer,const Standard_Integer,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Boolean >()  , py::arg("Surf"),  py::arg("Degree")=static_cast<const Standard_Integer>(3),  py::arg("NbPtsOnCur")=static_cast<const Standard_Integer>(10),  py::arg("NbIter")=static_cast<const Standard_Integer>(3),  py::arg("Tol2d")=static_cast<const Standard_Real>(0.00001),  py::arg("Tol3d")=static_cast<const Standard_Real>(0.0001),  py::arg("TolAng")=static_cast<const Standard_Real>(0.01),  py::arg("TolCurv")=static_cast<const Standard_Real>(0.1),  py::arg("Anisotropie")=static_cast<const Standard_Boolean>(Standard_False) )
        .def(py::init< const Standard_Integer,const Standard_Integer,const Standard_Integer,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Boolean >()  , py::arg("Degree")=static_cast<const Standard_Integer>(3),  py::arg("NbPtsOnCur")=static_cast<const Standard_Integer>(10),  py::arg("NbIter")=static_cast<const Standard_Integer>(3),  py::arg("Tol2d")=static_cast<const Standard_Real>(0.00001),  py::arg("Tol3d")=static_cast<const Standard_Real>(0.0001),  py::arg("TolAng")=static_cast<const Standard_Real>(0.01),  py::arg("TolCurv")=static_cast<const Standard_Real>(0.1),  py::arg("Anisotropie")=static_cast<const Standard_Boolean>(Standard_False) )
    // custom constructors
    // methods
        .def("Init",
             (void (GeomPlate_BuildPlateSurface::*)() ) static_cast<void (GeomPlate_BuildPlateSurface::*)() >(&GeomPlate_BuildPlateSurface::Init),
             R"#(Resets all constraints)#" 
          )
        .def("LoadInitSurface",
             (void (GeomPlate_BuildPlateSurface::*)( const opencascade::handle<Geom_Surface> &  ) ) static_cast<void (GeomPlate_BuildPlateSurface::*)( const opencascade::handle<Geom_Surface> &  ) >(&GeomPlate_BuildPlateSurface::LoadInitSurface),
             R"#(Loads the initial Surface)#"  , py::arg("Surf")
          )
        .def("Add",
             (void (GeomPlate_BuildPlateSurface::*)( const opencascade::handle<GeomPlate_CurveConstraint> &  ) ) static_cast<void (GeomPlate_BuildPlateSurface::*)( const opencascade::handle<GeomPlate_CurveConstraint> &  ) >(&GeomPlate_BuildPlateSurface::Add),
             R"#(Adds the linear constraint cont.)#"  , py::arg("Cont")
          )
        .def("SetNbBounds",
             (void (GeomPlate_BuildPlateSurface::*)( const Standard_Integer  ) ) static_cast<void (GeomPlate_BuildPlateSurface::*)( const Standard_Integer  ) >(&GeomPlate_BuildPlateSurface::SetNbBounds),
             R"#(None)#"  , py::arg("NbBounds")
          )
        .def("Add",
             (void (GeomPlate_BuildPlateSurface::*)( const opencascade::handle<GeomPlate_PointConstraint> &  ) ) static_cast<void (GeomPlate_BuildPlateSurface::*)( const opencascade::handle<GeomPlate_PointConstraint> &  ) >(&GeomPlate_BuildPlateSurface::Add),
             R"#(Adds the point constraint cont.)#"  , py::arg("Cont")
          )
        .def("Perform",
             (void (GeomPlate_BuildPlateSurface::*)( const Message_ProgressRange &  ) ) static_cast<void (GeomPlate_BuildPlateSurface::*)( const Message_ProgressRange &  ) >(&GeomPlate_BuildPlateSurface::Perform),
             R"#(Calls the algorithm and computes the plate surface using the loaded constraints. If no initial surface is given, the algorithm automatically computes one. Exceptions Standard_RangeError if the value of the constraint is null or if plate is not done.)#"  , py::arg("theProgress")=static_cast<const Message_ProgressRange &>(Message_ProgressRange ( ))
          )
        .def("CurveConstraint",
             (opencascade::handle<GeomPlate_CurveConstraint> (GeomPlate_BuildPlateSurface::*)( const Standard_Integer  ) const) static_cast<opencascade::handle<GeomPlate_CurveConstraint> (GeomPlate_BuildPlateSurface::*)( const Standard_Integer  ) const>(&GeomPlate_BuildPlateSurface::CurveConstraint),
             R"#(returns the CurveConstraints of order order)#"  , py::arg("order")
          )
        .def("PointConstraint",
             (opencascade::handle<GeomPlate_PointConstraint> (GeomPlate_BuildPlateSurface::*)( const Standard_Integer  ) const) static_cast<opencascade::handle<GeomPlate_PointConstraint> (GeomPlate_BuildPlateSurface::*)( const Standard_Integer  ) const>(&GeomPlate_BuildPlateSurface::PointConstraint),
             R"#(returns the PointConstraint of order order)#"  , py::arg("order")
          )
        .def("Disc2dContour",
             (void (GeomPlate_BuildPlateSurface::*)( const Standard_Integer ,  NCollection_Sequence<gp_XY> &  ) ) static_cast<void (GeomPlate_BuildPlateSurface::*)( const Standard_Integer ,  NCollection_Sequence<gp_XY> &  ) >(&GeomPlate_BuildPlateSurface::Disc2dContour),
             R"#(None)#"  , py::arg("nbp"),  py::arg("Seq2d")
          )
        .def("Disc3dContour",
             (void (GeomPlate_BuildPlateSurface::*)( const Standard_Integer ,  const Standard_Integer ,  NCollection_Sequence<gp_XYZ> &  ) ) static_cast<void (GeomPlate_BuildPlateSurface::*)( const Standard_Integer ,  const Standard_Integer ,  NCollection_Sequence<gp_XYZ> &  ) >(&GeomPlate_BuildPlateSurface::Disc3dContour),
             R"#(None)#"  , py::arg("nbp"),  py::arg("iordre"),  py::arg("Seq3d")
          )
        .def("IsDone",
             (Standard_Boolean (GeomPlate_BuildPlateSurface::*)() const) static_cast<Standard_Boolean (GeomPlate_BuildPlateSurface::*)() const>(&GeomPlate_BuildPlateSurface::IsDone),
             R"#(Tests whether computation of the plate has been completed.)#" 
          )
        .def("Surface",
             (opencascade::handle<GeomPlate_Surface> (GeomPlate_BuildPlateSurface::*)() const) static_cast<opencascade::handle<GeomPlate_Surface> (GeomPlate_BuildPlateSurface::*)() const>(&GeomPlate_BuildPlateSurface::Surface),
             R"#(Returns the result of the computation. This surface can then be used by GeomPlate_MakeApprox for converting the resulting surface into a BSpline.)#" 
          )
        .def("SurfInit",
             (opencascade::handle<Geom_Surface> (GeomPlate_BuildPlateSurface::*)() const) static_cast<opencascade::handle<Geom_Surface> (GeomPlate_BuildPlateSurface::*)() const>(&GeomPlate_BuildPlateSurface::SurfInit),
             R"#(Returns the initial surface)#" 
          )
        .def("Sense",
             (opencascade::handle<TColStd_HArray1OfInteger> (GeomPlate_BuildPlateSurface::*)() const) static_cast<opencascade::handle<TColStd_HArray1OfInteger> (GeomPlate_BuildPlateSurface::*)() const>(&GeomPlate_BuildPlateSurface::Sense),
             R"#(Allows you to ensure that the array of curves returned by Curves2d has the correct orientation. Returns the orientation of the curves in the array returned by Curves2d. Computation changes the orientation of these curves. Consequently, this method returns the orientation prior to computation.)#" 
          )
        .def("Curves2d",
             (opencascade::handle<TColGeom2d_HArray1OfCurve> (GeomPlate_BuildPlateSurface::*)() const) static_cast<opencascade::handle<TColGeom2d_HArray1OfCurve> (GeomPlate_BuildPlateSurface::*)() const>(&GeomPlate_BuildPlateSurface::Curves2d),
             R"#(Extracts the array of curves on the plate surface which correspond to the curve constraints set in Add.)#" 
          )
        .def("Order",
             (opencascade::handle<TColStd_HArray1OfInteger> (GeomPlate_BuildPlateSurface::*)() const) static_cast<opencascade::handle<TColStd_HArray1OfInteger> (GeomPlate_BuildPlateSurface::*)() const>(&GeomPlate_BuildPlateSurface::Order),
             R"#(Returns the order of the curves in the array returned by Curves2d. Computation changes this order. Consequently, this method returns the order of the curves prior to computation.)#" 
          )
        .def("G0Error",
             (Standard_Real (GeomPlate_BuildPlateSurface::*)() const) static_cast<Standard_Real (GeomPlate_BuildPlateSurface::*)() const>(&GeomPlate_BuildPlateSurface::G0Error),
             R"#(Returns the max distance between the result and the constraints)#" 
          )
        .def("G1Error",
             (Standard_Real (GeomPlate_BuildPlateSurface::*)() const) static_cast<Standard_Real (GeomPlate_BuildPlateSurface::*)() const>(&GeomPlate_BuildPlateSurface::G1Error),
             R"#(Returns the max angle between the result and the constraints)#" 
          )
        .def("G2Error",
             (Standard_Real (GeomPlate_BuildPlateSurface::*)() const) static_cast<Standard_Real (GeomPlate_BuildPlateSurface::*)() const>(&GeomPlate_BuildPlateSurface::G2Error),
             R"#(Returns the max difference of curvature between the result and the constraints)#" 
          )
        .def("G0Error",
             (Standard_Real (GeomPlate_BuildPlateSurface::*)( const Standard_Integer  ) ) static_cast<Standard_Real (GeomPlate_BuildPlateSurface::*)( const Standard_Integer  ) >(&GeomPlate_BuildPlateSurface::G0Error),
             R"#(Returns the max distance between the result and the constraint Index)#"  , py::arg("Index")
          )
        .def("G1Error",
             (Standard_Real (GeomPlate_BuildPlateSurface::*)( const Standard_Integer  ) ) static_cast<Standard_Real (GeomPlate_BuildPlateSurface::*)( const Standard_Integer  ) >(&GeomPlate_BuildPlateSurface::G1Error),
             R"#(Returns the max angle between the result and the constraint Index)#"  , py::arg("Index")
          )
        .def("G2Error",
             (Standard_Real (GeomPlate_BuildPlateSurface::*)( const Standard_Integer  ) ) static_cast<Standard_Real (GeomPlate_BuildPlateSurface::*)( const Standard_Integer  ) >(&GeomPlate_BuildPlateSurface::G2Error),
             R"#(Returns the max difference of curvature between the result and the constraint Index)#"  , py::arg("Index")
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomPlate_CurveConstraint from ./opencascade/GeomPlate_CurveConstraint.hxx
    klass = m.attr("GeomPlate_CurveConstraint");


    // nested enums

    static_cast<py::class_<GeomPlate_CurveConstraint ,opencascade::handle<GeomPlate_CurveConstraint>  , Standard_Transient >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const opencascade::handle<Adaptor3d_Curve> &,const Standard_Integer,const Standard_Integer,const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("Boundary"),  py::arg("Order"),  py::arg("NPt")=static_cast<const Standard_Integer>(10),  py::arg("TolDist")=static_cast<const Standard_Real>(0.0001),  py::arg("TolAng")=static_cast<const Standard_Real>(0.01),  py::arg("TolCurv")=static_cast<const Standard_Real>(0.1) )
    // custom constructors
    // methods
        .def("SetOrder",
             (void (GeomPlate_CurveConstraint::*)( const Standard_Integer  ) ) static_cast<void (GeomPlate_CurveConstraint::*)( const Standard_Integer  ) >(&GeomPlate_CurveConstraint::SetOrder),
             R"#(Allows you to set the order of continuity required for the constraints: G0, G1, and G2, controlled respectively by G0Criterion G1Criterion and G2Criterion.)#"  , py::arg("Order")
          )
        .def("Order",
             (Standard_Integer (GeomPlate_CurveConstraint::*)() const) static_cast<Standard_Integer (GeomPlate_CurveConstraint::*)() const>(&GeomPlate_CurveConstraint::Order),
             R"#(Returns the order of constraint, one of G0, G1 or G2.)#" 
          )
        .def("NbPoints",
             (Standard_Integer (GeomPlate_CurveConstraint::*)() const) static_cast<Standard_Integer (GeomPlate_CurveConstraint::*)() const>(&GeomPlate_CurveConstraint::NbPoints),
             R"#(Returns the number of points on the curve used as a constraint. The default setting is 10. This parameter affects computation time, which increases by the cube of the number of points.)#" 
          )
        .def("SetNbPoints",
             (void (GeomPlate_CurveConstraint::*)( const Standard_Integer  ) ) static_cast<void (GeomPlate_CurveConstraint::*)( const Standard_Integer  ) >(&GeomPlate_CurveConstraint::SetNbPoints),
             R"#(Allows you to set the number of points on the curve constraint. The default setting is 10. This parameter affects computation time, which increases by the cube of the number of points.)#"  , py::arg("NewNb")
          )
        .def("SetG0Criterion",
             (void (GeomPlate_CurveConstraint::*)( const opencascade::handle<Law_Function> &  ) ) static_cast<void (GeomPlate_CurveConstraint::*)( const opencascade::handle<Law_Function> &  ) >(&GeomPlate_CurveConstraint::SetG0Criterion),
             R"#(Allows you to set the G0 criterion. This is the law defining the greatest distance allowed between the constraint and the target surface for each point of the constraint. If this criterion is not set, TolDist, the distance tolerance from the constructor, is used.)#"  , py::arg("G0Crit")
          )
        .def("SetG1Criterion",
             (void (GeomPlate_CurveConstraint::*)( const opencascade::handle<Law_Function> &  ) ) static_cast<void (GeomPlate_CurveConstraint::*)( const opencascade::handle<Law_Function> &  ) >(&GeomPlate_CurveConstraint::SetG1Criterion),
             R"#(Allows you to set the G1 criterion. This is the law defining the greatest angle allowed between the constraint and the target surface. If this criterion is not set, TolAng, the angular tolerance from the constructor, is used. Raises ConstructionError if the curve is not on a surface)#"  , py::arg("G1Crit")
          )
        .def("SetG2Criterion",
             (void (GeomPlate_CurveConstraint::*)( const opencascade::handle<Law_Function> &  ) ) static_cast<void (GeomPlate_CurveConstraint::*)( const opencascade::handle<Law_Function> &  ) >(&GeomPlate_CurveConstraint::SetG2Criterion),
             R"#(None)#"  , py::arg("G2Crit")
          )
        .def("G0Criterion",
             (Standard_Real (GeomPlate_CurveConstraint::*)( const Standard_Real  ) const) static_cast<Standard_Real (GeomPlate_CurveConstraint::*)( const Standard_Real  ) const>(&GeomPlate_CurveConstraint::G0Criterion),
             R"#(Returns the G0 criterion at the parametric point U on the curve. This is the greatest distance allowed between the constraint and the target surface at U.)#"  , py::arg("U")
          )
        .def("G1Criterion",
             (Standard_Real (GeomPlate_CurveConstraint::*)( const Standard_Real  ) const) static_cast<Standard_Real (GeomPlate_CurveConstraint::*)( const Standard_Real  ) const>(&GeomPlate_CurveConstraint::G1Criterion),
             R"#(Returns the G1 criterion at the parametric point U on the curve. This is the greatest angle allowed between the constraint and the target surface at U. Raises ConstructionError if the curve is not on a surface)#"  , py::arg("U")
          )
        .def("G2Criterion",
             (Standard_Real (GeomPlate_CurveConstraint::*)( const Standard_Real  ) const) static_cast<Standard_Real (GeomPlate_CurveConstraint::*)( const Standard_Real  ) const>(&GeomPlate_CurveConstraint::G2Criterion),
             R"#(Returns the G2 criterion at the parametric point U on the curve. This is the greatest difference in curvature allowed between the constraint and the target surface at U. Raises ConstructionError if the curve is not on a surface)#"  , py::arg("U")
          )
        .def("FirstParameter",
             (Standard_Real (GeomPlate_CurveConstraint::*)() const) static_cast<Standard_Real (GeomPlate_CurveConstraint::*)() const>(&GeomPlate_CurveConstraint::FirstParameter),
             R"#(None)#" 
          )
        .def("LastParameter",
             (Standard_Real (GeomPlate_CurveConstraint::*)() const) static_cast<Standard_Real (GeomPlate_CurveConstraint::*)() const>(&GeomPlate_CurveConstraint::LastParameter),
             R"#(None)#" 
          )
        .def("Length",
             (Standard_Real (GeomPlate_CurveConstraint::*)() const) static_cast<Standard_Real (GeomPlate_CurveConstraint::*)() const>(&GeomPlate_CurveConstraint::Length),
             R"#(None)#" 
          )
        .def("LPropSurf",
             (GeomLProp_SLProps & (GeomPlate_CurveConstraint::*)( const Standard_Real  ) ) static_cast<GeomLProp_SLProps & (GeomPlate_CurveConstraint::*)( const Standard_Real  ) >(&GeomPlate_CurveConstraint::LPropSurf),
             R"#(None)#"  , py::arg("U")
          )
        .def("D0",
             (void (GeomPlate_CurveConstraint::*)( const Standard_Real ,  gp_Pnt &  ) const) static_cast<void (GeomPlate_CurveConstraint::*)( const Standard_Real ,  gp_Pnt &  ) const>(&GeomPlate_CurveConstraint::D0),
             R"#(None)#"  , py::arg("U"),  py::arg("P")
          )
        .def("D1",
             (void (GeomPlate_CurveConstraint::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (GeomPlate_CurveConstraint::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&GeomPlate_CurveConstraint::D1),
             R"#(None)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def("D2",
             (void (GeomPlate_CurveConstraint::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (GeomPlate_CurveConstraint::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&GeomPlate_CurveConstraint::D2),
             R"#(None)#"  , py::arg("U"),  py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3"),  py::arg("V4"),  py::arg("V5")
          )
        .def("Curve3d",
             (opencascade::handle<Adaptor3d_Curve> (GeomPlate_CurveConstraint::*)() const) static_cast<opencascade::handle<Adaptor3d_Curve> (GeomPlate_CurveConstraint::*)() const>(&GeomPlate_CurveConstraint::Curve3d),
             R"#(None)#" 
          )
        .def("SetCurve2dOnSurf",
             (void (GeomPlate_CurveConstraint::*)( const opencascade::handle<Geom2d_Curve> &  ) ) static_cast<void (GeomPlate_CurveConstraint::*)( const opencascade::handle<Geom2d_Curve> &  ) >(&GeomPlate_CurveConstraint::SetCurve2dOnSurf),
             R"#(loads a 2d curve associated the surface resulting of the constraints)#"  , py::arg("Curve2d")
          )
        .def("Curve2dOnSurf",
             (opencascade::handle<Geom2d_Curve> (GeomPlate_CurveConstraint::*)() const) static_cast<opencascade::handle<Geom2d_Curve> (GeomPlate_CurveConstraint::*)() const>(&GeomPlate_CurveConstraint::Curve2dOnSurf),
             R"#(Returns a 2d curve associated the surface resulting of the constraints)#" 
          )
        .def("SetProjectedCurve",
             (void (GeomPlate_CurveConstraint::*)( const opencascade::handle<Adaptor2d_Curve2d> & ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (GeomPlate_CurveConstraint::*)( const opencascade::handle<Adaptor2d_Curve2d> & ,  const Standard_Real ,  const Standard_Real  ) >(&GeomPlate_CurveConstraint::SetProjectedCurve),
             R"#(loads a 2d curve resulting from the normal projection of the curve on the initial surface)#"  , py::arg("Curve2d"),  py::arg("TolU"),  py::arg("TolV")
          )
        .def("ProjectedCurve",
             (opencascade::handle<Adaptor2d_Curve2d> (GeomPlate_CurveConstraint::*)() const) static_cast<opencascade::handle<Adaptor2d_Curve2d> (GeomPlate_CurveConstraint::*)() const>(&GeomPlate_CurveConstraint::ProjectedCurve),
             R"#(Returns the projected curve resulting from the normal projection of the curve on the initial surface)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&GeomPlate_CurveConstraint::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&GeomPlate_CurveConstraint::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (GeomPlate_CurveConstraint::*)() const) static_cast<const opencascade::handle<Standard_Type> & (GeomPlate_CurveConstraint::*)() const>(&GeomPlate_CurveConstraint::DynamicType),
             R"#(None)#"
             
         )
;

    // Class GeomPlate_HArray1OfHCurve from ./opencascade/GeomPlate_HArray1OfHCurve.hxx
    klass = m.attr("GeomPlate_HArray1OfHCurve");


    // nested enums

    static_cast<py::class_<GeomPlate_HArray1OfHCurve ,opencascade::handle<GeomPlate_HArray1OfHCurve>  , GeomPlate_Array1OfHCurve , Standard_Transient >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const Standard_Integer,const Standard_Integer >()  , py::arg("theLower"),  py::arg("theUpper") )
        .def(py::init< const Standard_Integer,const Standard_Integer, const opencascade::handle<Adaptor3d_Curve> & >()  , py::arg("theLower"),  py::arg("theUpper"),  py::arg("theValue") )
        .def(py::init<  const opencascade::handle<Adaptor3d_Curve> &,const Standard_Integer,const Standard_Integer,const bool >()  , py::arg("theBegin"),  py::arg("theLower"),  py::arg("theUpper"),  py::arg("arg") )
        .def(py::init<  const NCollection_Array1<opencascade::handle<Adaptor3d_Curve>> & >()  , py::arg("theOther") )
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&GeomPlate_HArray1OfHCurve::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&GeomPlate_HArray1OfHCurve::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Array1",
             (const GeomPlate_Array1OfHCurve & (GeomPlate_HArray1OfHCurve::*)() const) static_cast<const GeomPlate_Array1OfHCurve & (GeomPlate_HArray1OfHCurve::*)() const>(&GeomPlate_HArray1OfHCurve::Array1),
             R"#(None)#"
             
         )
       .def("ChangeArray1",
             (GeomPlate_Array1OfHCurve & (GeomPlate_HArray1OfHCurve::*)() ) static_cast<GeomPlate_Array1OfHCurve & (GeomPlate_HArray1OfHCurve::*)() >(&GeomPlate_HArray1OfHCurve::ChangeArray1),
             R"#(None)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (GeomPlate_HArray1OfHCurve::*)() const) static_cast<const opencascade::handle<Standard_Type> & (GeomPlate_HArray1OfHCurve::*)() const>(&GeomPlate_HArray1OfHCurve::DynamicType),
             R"#(None)#"
             
         )
;

    // Class GeomPlate_HArray1OfSequenceOfReal from ./opencascade/GeomPlate_HArray1OfSequenceOfReal.hxx
    klass = m.attr("GeomPlate_HArray1OfSequenceOfReal");


    // nested enums

    static_cast<py::class_<GeomPlate_HArray1OfSequenceOfReal ,opencascade::handle<GeomPlate_HArray1OfSequenceOfReal>  , GeomPlate_Array1OfSequenceOfReal , Standard_Transient >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const Standard_Integer,const Standard_Integer >()  , py::arg("theLower"),  py::arg("theUpper") )
        .def(py::init< const Standard_Integer,const Standard_Integer, const NCollection_Sequence<double> & >()  , py::arg("theLower"),  py::arg("theUpper"),  py::arg("theValue") )
        .def(py::init<  const NCollection_Sequence<double> &,const Standard_Integer,const Standard_Integer,const bool >()  , py::arg("theBegin"),  py::arg("theLower"),  py::arg("theUpper"),  py::arg("arg") )
        .def(py::init<  const NCollection_Array1<TColStd_SequenceOfReal> & >()  , py::arg("theOther") )
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&GeomPlate_HArray1OfSequenceOfReal::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&GeomPlate_HArray1OfSequenceOfReal::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Array1",
             (const GeomPlate_Array1OfSequenceOfReal & (GeomPlate_HArray1OfSequenceOfReal::*)() const) static_cast<const GeomPlate_Array1OfSequenceOfReal & (GeomPlate_HArray1OfSequenceOfReal::*)() const>(&GeomPlate_HArray1OfSequenceOfReal::Array1),
             R"#(None)#"
             
         )
       .def("ChangeArray1",
             (GeomPlate_Array1OfSequenceOfReal & (GeomPlate_HArray1OfSequenceOfReal::*)() ) static_cast<GeomPlate_Array1OfSequenceOfReal & (GeomPlate_HArray1OfSequenceOfReal::*)() >(&GeomPlate_HArray1OfSequenceOfReal::ChangeArray1),
             R"#(None)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (GeomPlate_HArray1OfSequenceOfReal::*)() const) static_cast<const opencascade::handle<Standard_Type> & (GeomPlate_HArray1OfSequenceOfReal::*)() const>(&GeomPlate_HArray1OfSequenceOfReal::DynamicType),
             R"#(None)#"
             
         )
;

    // Class GeomPlate_HSequenceOfCurveConstraint from ./opencascade/GeomPlate_HSequenceOfCurveConstraint.hxx
    klass = m.attr("GeomPlate_HSequenceOfCurveConstraint");


    // nested enums

    static_cast<py::class_<GeomPlate_HSequenceOfCurveConstraint ,opencascade::handle<GeomPlate_HSequenceOfCurveConstraint>  , GeomPlate_SequenceOfCurveConstraint , Standard_Transient >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init<  const NCollection_Sequence<opencascade::handle<GeomPlate_CurveConstraint>> & >()  , py::arg("theOther") )
    // custom constructors
    // methods
        .def("Append",
             (void (GeomPlate_HSequenceOfCurveConstraint::*)(  const opencascade::handle<GeomPlate_CurveConstraint> &  ) ) static_cast<void (GeomPlate_HSequenceOfCurveConstraint::*)(  const opencascade::handle<GeomPlate_CurveConstraint> &  ) >(&GeomPlate_HSequenceOfCurveConstraint::Append),
             R"#(None)#"  , py::arg("theItem")
          )
        .def("Append",
             (void (GeomPlate_HSequenceOfCurveConstraint::*)( NCollection_Sequence<opencascade::handle<GeomPlate_CurveConstraint>> &  ) ) static_cast<void (GeomPlate_HSequenceOfCurveConstraint::*)( NCollection_Sequence<opencascade::handle<GeomPlate_CurveConstraint>> &  ) >(&GeomPlate_HSequenceOfCurveConstraint::Append),
             R"#(None)#"  , py::arg("theSequence")
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&GeomPlate_HSequenceOfCurveConstraint::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&GeomPlate_HSequenceOfCurveConstraint::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Sequence",
             (const GeomPlate_SequenceOfCurveConstraint & (GeomPlate_HSequenceOfCurveConstraint::*)() const) static_cast<const GeomPlate_SequenceOfCurveConstraint & (GeomPlate_HSequenceOfCurveConstraint::*)() const>(&GeomPlate_HSequenceOfCurveConstraint::Sequence),
             R"#(None)#"
             
         )
       .def("ChangeSequence",
             (GeomPlate_SequenceOfCurveConstraint & (GeomPlate_HSequenceOfCurveConstraint::*)() ) static_cast<GeomPlate_SequenceOfCurveConstraint & (GeomPlate_HSequenceOfCurveConstraint::*)() >(&GeomPlate_HSequenceOfCurveConstraint::ChangeSequence),
             R"#(None)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (GeomPlate_HSequenceOfCurveConstraint::*)() const) static_cast<const opencascade::handle<Standard_Type> & (GeomPlate_HSequenceOfCurveConstraint::*)() const>(&GeomPlate_HSequenceOfCurveConstraint::DynamicType),
             R"#(None)#"
             
         )
;

    // Class GeomPlate_HSequenceOfPointConstraint from ./opencascade/GeomPlate_HSequenceOfPointConstraint.hxx
    klass = m.attr("GeomPlate_HSequenceOfPointConstraint");


    // nested enums

    static_cast<py::class_<GeomPlate_HSequenceOfPointConstraint ,opencascade::handle<GeomPlate_HSequenceOfPointConstraint>  , GeomPlate_SequenceOfPointConstraint , Standard_Transient >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init<  const NCollection_Sequence<opencascade::handle<GeomPlate_PointConstraint>> & >()  , py::arg("theOther") )
    // custom constructors
    // methods
        .def("Append",
             (void (GeomPlate_HSequenceOfPointConstraint::*)(  const opencascade::handle<GeomPlate_PointConstraint> &  ) ) static_cast<void (GeomPlate_HSequenceOfPointConstraint::*)(  const opencascade::handle<GeomPlate_PointConstraint> &  ) >(&GeomPlate_HSequenceOfPointConstraint::Append),
             R"#(None)#"  , py::arg("theItem")
          )
        .def("Append",
             (void (GeomPlate_HSequenceOfPointConstraint::*)( NCollection_Sequence<opencascade::handle<GeomPlate_PointConstraint>> &  ) ) static_cast<void (GeomPlate_HSequenceOfPointConstraint::*)( NCollection_Sequence<opencascade::handle<GeomPlate_PointConstraint>> &  ) >(&GeomPlate_HSequenceOfPointConstraint::Append),
             R"#(None)#"  , py::arg("theSequence")
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&GeomPlate_HSequenceOfPointConstraint::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&GeomPlate_HSequenceOfPointConstraint::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Sequence",
             (const GeomPlate_SequenceOfPointConstraint & (GeomPlate_HSequenceOfPointConstraint::*)() const) static_cast<const GeomPlate_SequenceOfPointConstraint & (GeomPlate_HSequenceOfPointConstraint::*)() const>(&GeomPlate_HSequenceOfPointConstraint::Sequence),
             R"#(None)#"
             
         )
       .def("ChangeSequence",
             (GeomPlate_SequenceOfPointConstraint & (GeomPlate_HSequenceOfPointConstraint::*)() ) static_cast<GeomPlate_SequenceOfPointConstraint & (GeomPlate_HSequenceOfPointConstraint::*)() >(&GeomPlate_HSequenceOfPointConstraint::ChangeSequence),
             R"#(None)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (GeomPlate_HSequenceOfPointConstraint::*)() const) static_cast<const opencascade::handle<Standard_Type> & (GeomPlate_HSequenceOfPointConstraint::*)() const>(&GeomPlate_HSequenceOfPointConstraint::DynamicType),
             R"#(None)#"
             
         )
;

    // Class GeomPlate_MakeApprox from ./opencascade/GeomPlate_MakeApprox.hxx
    klass = m.attr("GeomPlate_MakeApprox");


    // nested enums

    static_cast<py::class_<GeomPlate_MakeApprox , shared_ptr<GeomPlate_MakeApprox>  >>(klass)
    // constructors
        .def(py::init< const opencascade::handle<GeomPlate_Surface> &,const AdvApp2Var_Criterion &,const Standard_Real,const Standard_Integer,const Standard_Integer,const GeomAbs_Shape,const Standard_Real >()  , py::arg("SurfPlate"),  py::arg("PlateCrit"),  py::arg("Tol3d"),  py::arg("Nbmax"),  py::arg("dgmax"),  py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C1),  py::arg("EnlargeCoeff")=static_cast<const Standard_Real>(1.1) )
        .def(py::init< const opencascade::handle<GeomPlate_Surface> &,const Standard_Real,const Standard_Integer,const Standard_Integer,const Standard_Real,const Standard_Integer,const GeomAbs_Shape,const Standard_Real >()  , py::arg("SurfPlate"),  py::arg("Tol3d"),  py::arg("Nbmax"),  py::arg("dgmax"),  py::arg("dmax"),  py::arg("CritOrder")=static_cast<const Standard_Integer>(0),  py::arg("Continuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C1),  py::arg("EnlargeCoeff")=static_cast<const Standard_Real>(1.1) )
    // custom constructors
    // methods
        .def("Surface",
             (opencascade::handle<Geom_BSplineSurface> (GeomPlate_MakeApprox::*)() const) static_cast<opencascade::handle<Geom_BSplineSurface> (GeomPlate_MakeApprox::*)() const>(&GeomPlate_MakeApprox::Surface),
             R"#(Returns the BSpline surface extracted from the GeomPlate_MakeApprox object.)#" 
          )
        .def("ApproxError",
             (Standard_Real (GeomPlate_MakeApprox::*)() const) static_cast<Standard_Real (GeomPlate_MakeApprox::*)() const>(&GeomPlate_MakeApprox::ApproxError),
             R"#(Returns the error in computation of the approximation surface. This is the distance between the entire target BSpline surface and the entire original surface generated by BuildPlateSurface and converted by GeomPlate_Surface.)#" 
          )
        .def("CriterionError",
             (Standard_Real (GeomPlate_MakeApprox::*)() const) static_cast<Standard_Real (GeomPlate_MakeApprox::*)() const>(&GeomPlate_MakeApprox::CriterionError),
             R"#(Returns the criterion error in computation of the approximation surface. This is estimated relative to the curve and point constraints only.)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomPlate_PlateG0Criterion from ./opencascade/GeomPlate_PlateG0Criterion.hxx
    klass = m.attr("GeomPlate_PlateG0Criterion");


    // nested enums

    static_cast<py::class_<GeomPlate_PlateG0Criterion , shared_ptr<GeomPlate_PlateG0Criterion>  , AdvApp2Var_Criterion >>(klass)
    // constructors
        .def(py::init<  const NCollection_Sequence<gp_XY> &, const NCollection_Sequence<gp_XYZ> &,const Standard_Real,const AdvApp2Var_CriterionType,const AdvApp2Var_CriterionRepartition >()  , py::arg("Data"),  py::arg("G0Data"),  py::arg("Maximum"),  py::arg("Type")=static_cast<const AdvApp2Var_CriterionType>(AdvApp2Var_Absolute),  py::arg("Repart")=static_cast<const AdvApp2Var_CriterionRepartition>(AdvApp2Var_Regular) )
    // custom constructors
    // methods
        .def("Value",
             (void (GeomPlate_PlateG0Criterion::*)( AdvApp2Var_Patch & ,  const AdvApp2Var_Context &  ) const) static_cast<void (GeomPlate_PlateG0Criterion::*)( AdvApp2Var_Patch & ,  const AdvApp2Var_Context &  ) const>(&GeomPlate_PlateG0Criterion::Value),
             R"#(None)#"  , py::arg("P"),  py::arg("C")
          )
        .def("IsSatisfied",
             (Standard_Boolean (GeomPlate_PlateG0Criterion::*)( const AdvApp2Var_Patch &  ) const) static_cast<Standard_Boolean (GeomPlate_PlateG0Criterion::*)( const AdvApp2Var_Patch &  ) const>(&GeomPlate_PlateG0Criterion::IsSatisfied),
             R"#(None)#"  , py::arg("P")
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomPlate_PlateG1Criterion from ./opencascade/GeomPlate_PlateG1Criterion.hxx
    klass = m.attr("GeomPlate_PlateG1Criterion");


    // nested enums

    static_cast<py::class_<GeomPlate_PlateG1Criterion , shared_ptr<GeomPlate_PlateG1Criterion>  , AdvApp2Var_Criterion >>(klass)
    // constructors
        .def(py::init<  const NCollection_Sequence<gp_XY> &, const NCollection_Sequence<gp_XYZ> &,const Standard_Real,const AdvApp2Var_CriterionType,const AdvApp2Var_CriterionRepartition >()  , py::arg("Data"),  py::arg("G1Data"),  py::arg("Maximum"),  py::arg("Type")=static_cast<const AdvApp2Var_CriterionType>(AdvApp2Var_Absolute),  py::arg("Repart")=static_cast<const AdvApp2Var_CriterionRepartition>(AdvApp2Var_Regular) )
    // custom constructors
    // methods
        .def("Value",
             (void (GeomPlate_PlateG1Criterion::*)( AdvApp2Var_Patch & ,  const AdvApp2Var_Context &  ) const) static_cast<void (GeomPlate_PlateG1Criterion::*)( AdvApp2Var_Patch & ,  const AdvApp2Var_Context &  ) const>(&GeomPlate_PlateG1Criterion::Value),
             R"#(None)#"  , py::arg("P"),  py::arg("C")
          )
        .def("IsSatisfied",
             (Standard_Boolean (GeomPlate_PlateG1Criterion::*)( const AdvApp2Var_Patch &  ) const) static_cast<Standard_Boolean (GeomPlate_PlateG1Criterion::*)( const AdvApp2Var_Patch &  ) const>(&GeomPlate_PlateG1Criterion::IsSatisfied),
             R"#(None)#"  , py::arg("P")
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GeomPlate_PointConstraint from ./opencascade/GeomPlate_PointConstraint.hxx
    klass = m.attr("GeomPlate_PointConstraint");


    // nested enums

    static_cast<py::class_<GeomPlate_PointConstraint ,opencascade::handle<GeomPlate_PointConstraint>  , Standard_Transient >>(klass)
    // constructors
        .def(py::init< const gp_Pnt &,const Standard_Integer,const Standard_Real >()  , py::arg("Pt"),  py::arg("Order"),  py::arg("TolDist")=static_cast<const Standard_Real>(0.0001) )
        .def(py::init< const Standard_Real,const Standard_Real,const opencascade::handle<Geom_Surface> &,const Standard_Integer,const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("U"),  py::arg("V"),  py::arg("Surf"),  py::arg("Order"),  py::arg("TolDist")=static_cast<const Standard_Real>(0.0001),  py::arg("TolAng")=static_cast<const Standard_Real>(0.01),  py::arg("TolCurv")=static_cast<const Standard_Real>(0.1) )
    // custom constructors
    // methods
        .def("SetOrder",
             (void (GeomPlate_PointConstraint::*)( const Standard_Integer  ) ) static_cast<void (GeomPlate_PointConstraint::*)( const Standard_Integer  ) >(&GeomPlate_PointConstraint::SetOrder),
             R"#(None)#"  , py::arg("Order")
          )
        .def("Order",
             (Standard_Integer (GeomPlate_PointConstraint::*)() const) static_cast<Standard_Integer (GeomPlate_PointConstraint::*)() const>(&GeomPlate_PointConstraint::Order),
             R"#(Returns the order of constraint: G0, G1, and G2, controlled respectively by G0Criterion G1Criterion and G2Criterion.)#" 
          )
        .def("SetG0Criterion",
             (void (GeomPlate_PointConstraint::*)( const Standard_Real  ) ) static_cast<void (GeomPlate_PointConstraint::*)( const Standard_Real  ) >(&GeomPlate_PointConstraint::SetG0Criterion),
             R"#(Allows you to set the G0 criterion. This is the law defining the greatest distance allowed between the constraint and the target surface. If this criterion is not set, {TolDist, the distance tolerance from the constructor, is used)#"  , py::arg("TolDist")
          )
        .def("SetG1Criterion",
             (void (GeomPlate_PointConstraint::*)( const Standard_Real  ) ) static_cast<void (GeomPlate_PointConstraint::*)( const Standard_Real  ) >(&GeomPlate_PointConstraint::SetG1Criterion),
             R"#(Allows you to set the G1 criterion. This is the law defining the greatest angle allowed between the constraint and the target surface. If this criterion is not set, TolAng, the angular tolerance from the constructor, is used. Raises ConstructionError if the point is not on the surface)#"  , py::arg("TolAng")
          )
        .def("SetG2Criterion",
             (void (GeomPlate_PointConstraint::*)( const Standard_Real  ) ) static_cast<void (GeomPlate_PointConstraint::*)( const Standard_Real  ) >(&GeomPlate_PointConstraint::SetG2Criterion),
             R"#(Allows you to set the G2 criterion. This is the law defining the greatest difference in curvature allowed between the constraint and the target surface. If this criterion is not set, TolCurv, the curvature tolerance from the constructor, is used. Raises ConstructionError if the point is not on the surface)#"  , py::arg("TolCurv")
          )
        .def("G0Criterion",
             (Standard_Real (GeomPlate_PointConstraint::*)() const) static_cast<Standard_Real (GeomPlate_PointConstraint::*)() const>(&GeomPlate_PointConstraint::G0Criterion),
             R"#(Returns the G0 criterion. This is the greatest distance allowed between the constraint and the target surface.)#" 
          )
        .def("G1Criterion",
             (Standard_Real (GeomPlate_PointConstraint::*)() const) static_cast<Standard_Real (GeomPlate_PointConstraint::*)() const>(&GeomPlate_PointConstraint::G1Criterion),
             R"#(Returns the G1 criterion. This is the greatest angle allowed between the constraint and the target surface. Raises ConstructionError if the point is not on the surface.)#" 
          )
        .def("G2Criterion",
             (Standard_Real (GeomPlate_PointConstraint::*)() const) static_cast<Standard_Real (GeomPlate_PointConstraint::*)() const>(&GeomPlate_PointConstraint::G2Criterion),
             R"#(Returns the G2 criterion. This is the greatest difference in curvature allowed between the constraint and the target surface. Raises ConstructionError if the point is not on the surface)#" 
          )
        .def("D0",
             (void (GeomPlate_PointConstraint::*)( gp_Pnt &  ) const) static_cast<void (GeomPlate_PointConstraint::*)( gp_Pnt &  ) const>(&GeomPlate_PointConstraint::D0),
             R"#(None)#"  , py::arg("P")
          )
        .def("D1",
             (void (GeomPlate_PointConstraint::*)( gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (GeomPlate_PointConstraint::*)( gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&GeomPlate_PointConstraint::D1),
             R"#(None)#"  , py::arg("P"),  py::arg("V1"),  py::arg("V2")
          )
        .def("D2",
             (void (GeomPlate_PointConstraint::*)( gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (GeomPlate_PointConstraint::*)( gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&GeomPlate_PointConstraint::D2),
             R"#(None)#"  , py::arg("P"),  py::arg("V1"),  py::arg("V2"),  py::arg("V3"),  py::arg("V4"),  py::arg("V5")
          )
        .def("HasPnt2dOnSurf",
             (Standard_Boolean (GeomPlate_PointConstraint::*)() const) static_cast<Standard_Boolean (GeomPlate_PointConstraint::*)() const>(&GeomPlate_PointConstraint::HasPnt2dOnSurf),
             R"#(None)#" 
          )
        .def("SetPnt2dOnSurf",
             (void (GeomPlate_PointConstraint::*)( const gp_Pnt2d &  ) ) static_cast<void (GeomPlate_PointConstraint::*)( const gp_Pnt2d &  ) >(&GeomPlate_PointConstraint::SetPnt2dOnSurf),
             R"#(None)#"  , py::arg("Pnt")
          )
        .def("Pnt2dOnSurf",
             (gp_Pnt2d (GeomPlate_PointConstraint::*)() const) static_cast<gp_Pnt2d (GeomPlate_PointConstraint::*)() const>(&GeomPlate_PointConstraint::Pnt2dOnSurf),
             R"#(None)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&GeomPlate_PointConstraint::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&GeomPlate_PointConstraint::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("LPropSurf",
             (GeomLProp_SLProps & (GeomPlate_PointConstraint::*)() ) static_cast<GeomLProp_SLProps & (GeomPlate_PointConstraint::*)() >(&GeomPlate_PointConstraint::LPropSurf),
             R"#(None)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (GeomPlate_PointConstraint::*)() const) static_cast<const opencascade::handle<Standard_Type> & (GeomPlate_PointConstraint::*)() const>(&GeomPlate_PointConstraint::DynamicType),
             R"#(None)#"
             
         )
;

    // Class GeomPlate_Surface from ./opencascade/GeomPlate_Surface.hxx
    klass = m.attr("GeomPlate_Surface");


    // nested enums

    static_cast<py::class_<GeomPlate_Surface ,opencascade::handle<GeomPlate_Surface>  , Geom_Surface >>(klass)
    // constructors
        .def(py::init< const opencascade::handle<Geom_Surface> &,const Plate_Plate & >()  , py::arg("Surfinit"),  py::arg("Surfinter") )
    // custom constructors
    // methods
        .def("UReverse",
             (void (GeomPlate_Surface::*)() ) static_cast<void (GeomPlate_Surface::*)() >(&GeomPlate_Surface::UReverse),
             R"#(Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified.)#" 
          )
        .def("UReversedParameter",
             (Standard_Real (GeomPlate_Surface::*)( const Standard_Real  ) const) static_cast<Standard_Real (GeomPlate_Surface::*)( const Standard_Real  ) const>(&GeomPlate_Surface::UReversedParameter),
             R"#(Return the parameter on the Ureversed surface for the point of parameter U on <me>. is the same point as)#"  , py::arg("U")
          )
        .def("VReverse",
             (void (GeomPlate_Surface::*)() ) static_cast<void (GeomPlate_Surface::*)() >(&GeomPlate_Surface::VReverse),
             R"#(Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified.)#" 
          )
        .def("VReversedParameter",
             (Standard_Real (GeomPlate_Surface::*)( const Standard_Real  ) const) static_cast<Standard_Real (GeomPlate_Surface::*)( const Standard_Real  ) const>(&GeomPlate_Surface::VReversedParameter),
             R"#(Return the parameter on the Vreversed surface for the point of parameter V on <me>. is the same point as)#"  , py::arg("V")
          )
        .def("ParametricTransformation",
             (gp_GTrsf2d (GeomPlate_Surface::*)( const gp_Trsf &  ) const) static_cast<gp_GTrsf2d (GeomPlate_Surface::*)( const gp_Trsf &  ) const>(&GeomPlate_Surface::ParametricTransformation),
             R"#(Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns an identity transformation)#"  , py::arg("T")
          )
        .def("IsUClosed",
             (Standard_Boolean (GeomPlate_Surface::*)() const) static_cast<Standard_Boolean (GeomPlate_Surface::*)() const>(&GeomPlate_Surface::IsUClosed),
             R"#(Is the surface closed in the parametric direction U ? Returns True if for each parameter V the distance between the point P (UFirst, V) and P (ULast, V) is lower or equal to Resolution from gp. UFirst and ULast are the parametric bounds in the U direction.)#" 
          )
        .def("IsVClosed",
             (Standard_Boolean (GeomPlate_Surface::*)() const) static_cast<Standard_Boolean (GeomPlate_Surface::*)() const>(&GeomPlate_Surface::IsVClosed),
             R"#(Is the surface closed in the parametric direction V ? Returns True if for each parameter U the distance between the point P (U, VFirst) and P (U, VLast) is lower or equal to Resolution from gp. VFirst and VLast are the parametric bounds in the V direction.)#" 
          )
        .def("IsUPeriodic",
             (Standard_Boolean (GeomPlate_Surface::*)() const) static_cast<Standard_Boolean (GeomPlate_Surface::*)() const>(&GeomPlate_Surface::IsUPeriodic),
             R"#(Is the parametrization of a surface periodic in the direction U ? It is possible only if the surface is closed in this parametric direction and if the following relation is satisfied : for each parameter V the distance between the point P (U, V) and the point P (U + T, V) is lower or equal to Resolution from package gp. T is the parametric period and must be a constant.)#" 
          )
        .def("UPeriod",
             (Standard_Real (GeomPlate_Surface::*)() const) static_cast<Standard_Real (GeomPlate_Surface::*)() const>(&GeomPlate_Surface::UPeriod),
             R"#(returns the Uperiod. raises if the surface is not uperiodic.)#" 
          )
        .def("IsVPeriodic",
             (Standard_Boolean (GeomPlate_Surface::*)() const) static_cast<Standard_Boolean (GeomPlate_Surface::*)() const>(&GeomPlate_Surface::IsVPeriodic),
             R"#(Is the parametrization of a surface periodic in the direction U ? It is possible only if the surface is closed in this parametric direction and if the following relation is satisfied : for each parameter V the distance between the point P (U, V) and the point P (U + T, V) is lower or equal to Resolution from package gp. T is the parametric period and must be a constant.)#" 
          )
        .def("VPeriod",
             (Standard_Real (GeomPlate_Surface::*)() const) static_cast<Standard_Real (GeomPlate_Surface::*)() const>(&GeomPlate_Surface::VPeriod),
             R"#(returns the Vperiod. raises if the surface is not vperiodic.)#" 
          )
        .def("UIso",
             (opencascade::handle<Geom_Curve> (GeomPlate_Surface::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom_Curve> (GeomPlate_Surface::*)( const Standard_Real  ) const>(&GeomPlate_Surface::UIso),
             R"#(Computes the U isoparametric curve.)#"  , py::arg("U")
          )
        .def("VIso",
             (opencascade::handle<Geom_Curve> (GeomPlate_Surface::*)( const Standard_Real  ) const) static_cast<opencascade::handle<Geom_Curve> (GeomPlate_Surface::*)( const Standard_Real  ) const>(&GeomPlate_Surface::VIso),
             R"#(Computes the V isoparametric curve.)#"  , py::arg("V")
          )
        .def("Continuity",
             (GeomAbs_Shape (GeomPlate_Surface::*)() const) static_cast<GeomAbs_Shape (GeomPlate_Surface::*)() const>(&GeomPlate_Surface::Continuity),
             R"#(Global Continuity of the surface in direction U and V : C0 : only geometric continuity, C1 : continuity of the first derivative all along the surface, C2 : continuity of the second derivative all along the surface, C3 : continuity of the third derivative all along the surface, G1 : tangency continuity all along the surface, G2 : curvature continuity all along the surface, CN : the order of continuity is infinite. Example : If the surface is C1 in the V parametric direction and C2 in the U parametric direction Shape = C1.)#" 
          )
        .def("IsCNu",
             (Standard_Boolean (GeomPlate_Surface::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (GeomPlate_Surface::*)( const Standard_Integer  ) const>(&GeomPlate_Surface::IsCNu),
             R"#(Returns the order of continuity of the surface in the U parametric direction. Raised if N < 0.)#"  , py::arg("N")
          )
        .def("IsCNv",
             (Standard_Boolean (GeomPlate_Surface::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (GeomPlate_Surface::*)( const Standard_Integer  ) const>(&GeomPlate_Surface::IsCNv),
             R"#(Returns the order of continuity of the surface in the V parametric direction. Raised if N < 0.)#"  , py::arg("N")
          )
        .def("D0",
             (void (GeomPlate_Surface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt &  ) const) static_cast<void (GeomPlate_Surface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt &  ) const>(&GeomPlate_Surface::D0),
             R"#(Computes the point of parameter U,V on the surface.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P")
          )
        .def("D1",
             (void (GeomPlate_Surface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (GeomPlate_Surface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec &  ) const>(&GeomPlate_Surface::D1),
             R"#(Computes the point P and the first derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C1.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V")
          )
        .def("D2",
             (void (GeomPlate_Surface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (GeomPlate_Surface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&GeomPlate_Surface::D2),
             R"#(Computes the point P, the first and the second derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C2.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV")
          )
        .def("D3",
             (void (GeomPlate_Surface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const) static_cast<void (GeomPlate_Surface::*)( const Standard_Real ,  const Standard_Real ,  gp_Pnt & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec & ,  gp_Vec &  ) const>(&GeomPlate_Surface::D3),
             R"#(Computes the point P, the first,the second and the third derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C2.)#"  , py::arg("U"),  py::arg("V"),  py::arg("P"),  py::arg("D1U"),  py::arg("D1V"),  py::arg("D2U"),  py::arg("D2V"),  py::arg("D2UV"),  py::arg("D3U"),  py::arg("D3V"),  py::arg("D3UUV"),  py::arg("D3UVV")
          )
        .def("DN",
             (gp_Vec (GeomPlate_Surface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const) static_cast<gp_Vec (GeomPlate_Surface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const>(&GeomPlate_Surface::DN),
             R"#(---Purpose ; Computes the derivative of order Nu in the direction U and Nv in the direction V at the point P(U, V).)#"  , py::arg("U"),  py::arg("V"),  py::arg("Nu"),  py::arg("Nv")
          )
        .def("Copy",
             (opencascade::handle<Geom_Geometry> (GeomPlate_Surface::*)() const) static_cast<opencascade::handle<Geom_Geometry> (GeomPlate_Surface::*)() const>(&GeomPlate_Surface::Copy),
             R"#(None)#" 
          )
        .def("Transform",
             (void (GeomPlate_Surface::*)( const gp_Trsf &  ) ) static_cast<void (GeomPlate_Surface::*)( const gp_Trsf &  ) >(&GeomPlate_Surface::Transform),
             R"#(Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom).)#"  , py::arg("T")
          )
        .def("CallSurfinit",
             (opencascade::handle<Geom_Surface> (GeomPlate_Surface::*)() const) static_cast<opencascade::handle<Geom_Surface> (GeomPlate_Surface::*)() const>(&GeomPlate_Surface::CallSurfinit),
             R"#(None)#" 
          )
        .def("SetBounds",
             (void (GeomPlate_Surface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (GeomPlate_Surface::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&GeomPlate_Surface::SetBounds),
             R"#(None)#"  , py::arg("Umin"),  py::arg("Umax"),  py::arg("Vmin"),  py::arg("Vmax")
          )
        .def("Constraints",
             (void (GeomPlate_Surface::*)( NCollection_Sequence<gp_XY> &  ) const) static_cast<void (GeomPlate_Surface::*)( NCollection_Sequence<gp_XY> &  ) const>(&GeomPlate_Surface::Constraints),
             R"#(None)#"  , py::arg("Seq")
          )
    // methods using call by reference i.s.o. return
        .def("TransformParameters",
             []( GeomPlate_Surface &self , const gp_Trsf & T ){
                 Standard_Real  U;
                Standard_Real  V;

                 self.TransformParameters(U,V,T);
                 
                 return std::make_tuple(U,V); },
             R"#(Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This methods does not change <U> and <V>)#"  , py::arg("T")
          )
        .def("Bounds",
             []( GeomPlate_Surface &self   ){
                 Standard_Real  U1;
                Standard_Real  U2;
                Standard_Real  V1;
                Standard_Real  V2;

                 self.Bounds(U1,U2,V1,V2);
                 
                 return std::make_tuple(U1,U2,V1,V2); },
             R"#(None)#" 
          )
        .def("RealBounds",
             []( GeomPlate_Surface &self   ){
                 Standard_Real  U1;
                Standard_Real  U2;
                Standard_Real  V1;
                Standard_Real  V2;

                 self.RealBounds(U1,U2,V1,V2);
                 
                 return std::make_tuple(U1,U2,V1,V2); },
             R"#(None)#" 
          )
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&GeomPlate_Surface::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&GeomPlate_Surface::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (GeomPlate_Surface::*)() const) static_cast<const opencascade::handle<Standard_Type> & (GeomPlate_Surface::*)() const>(&GeomPlate_Surface::DynamicType),
             R"#(None)#"
             
         )
;

// functions
// ./opencascade/GeomPlate_Aij.hxx
// ./opencascade/GeomPlate_Array1OfHCurve.hxx
// ./opencascade/GeomPlate_Array1OfSequenceOfReal.hxx
// ./opencascade/GeomPlate_BuildAveragePlane.hxx
// ./opencascade/GeomPlate_BuildPlateSurface.hxx
// ./opencascade/GeomPlate_CurveConstraint.hxx
// ./opencascade/GeomPlate_HArray1OfHCurve.hxx
// ./opencascade/GeomPlate_HArray1OfSequenceOfReal.hxx
// ./opencascade/GeomPlate_HSequenceOfCurveConstraint.hxx
// ./opencascade/GeomPlate_HSequenceOfPointConstraint.hxx
// ./opencascade/GeomPlate_MakeApprox.hxx
// ./opencascade/GeomPlate_PlateG0Criterion.hxx
// ./opencascade/GeomPlate_PlateG1Criterion.hxx
// ./opencascade/GeomPlate_PointConstraint.hxx
// ./opencascade/GeomPlate_SequenceOfAij.hxx
// ./opencascade/GeomPlate_SequenceOfCurveConstraint.hxx
// ./opencascade/GeomPlate_SequenceOfPointConstraint.hxx
// ./opencascade/GeomPlate_Surface.hxx

// Additional functions

// operators

// register typdefs
    register_template_NCollection_Array1<opencascade::handle<Adaptor3d_Curve>>(m,"GeomPlate_Array1OfHCurve");
    register_template_NCollection_Array1<TColStd_SequenceOfReal>(m,"GeomPlate_Array1OfSequenceOfReal");
    register_template_NCollection_Sequence<GeomPlate_Aij>(m,"GeomPlate_SequenceOfAij");
    register_template_NCollection_Sequence<opencascade::handle<GeomPlate_CurveConstraint>>(m,"GeomPlate_SequenceOfCurveConstraint");
    register_template_NCollection_Sequence<opencascade::handle<GeomPlate_PointConstraint>>(m,"GeomPlate_SequenceOfPointConstraint");


// exceptions

// user-defined post-inclusion per module in the body

};

// user-defined post-inclusion per module

// user-defined post