1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
|
// std lib related includes
#include <tuple>
// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybind11;
// Standard Handle
#include <Standard_Handle.hxx>
// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Cone.hxx>
#include <gp_Cylinder.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pln.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Lin.hxx>
#include <IntAna_Quadric.hxx>
#include <gp_Circ.hxx>
#include <gp_Elips.hxx>
#include <gp_Parab.hxx>
#include <gp_Hypr.hxx>
#include <gp_Pln.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Lin.hxx>
#include <gp_Torus.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Cylinder.hxx>
#include <IntAna_Quadric.hxx>
#include <gp_Cone.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pln.hxx>
#include <gp_Cylinder.hxx>
#include <gp_Sphere.hxx>
#include <gp_Cone.hxx>
#include <gp_Torus.hxx>
#include <gp_Lin.hxx>
#include <gp_Circ.hxx>
#include <gp_Elips.hxx>
#include <gp_Parab.hxx>
#include <gp_Hypr.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
// module includes
#include <IntAna_Curve.hxx>
#include <IntAna_Int3Pln.hxx>
#include <IntAna_IntConicQuad.hxx>
#include <IntAna_IntLinTorus.hxx>
#include <IntAna_IntQuadQuad.hxx>
#include <IntAna_ListIteratorOfListOfCurve.hxx>
#include <IntAna_ListOfCurve.hxx>
#include <IntAna_QuadQuadGeo.hxx>
#include <IntAna_Quadric.hxx>
#include <IntAna_ResultType.hxx>
// template related includes
// ./opencascade/IntAna_ListOfCurve.hxx
#include "NCollection_tmpl.hxx"
// ./opencascade/IntAna_ListOfCurve.hxx
#include "NCollection_tmpl.hxx"
// user-defined pre
#include "OCP_specific.inc"
// user-defined inclusion per module
// Module definiiton
void register_IntAna(py::module &main_module) {
py::module m = static_cast<py::module>(main_module.attr("IntAna"));
py::object klass;
//Python trampoline classes
// classes
// Class IntAna_Curve from ./opencascade/IntAna_Curve.hxx
klass = m.attr("IntAna_Curve");
// nested enums
static_cast<py::class_<IntAna_Curve , shared_ptr<IntAna_Curve> >>(klass)
// constructors
.def(py::init< >() )
// custom constructors
// methods
.def("SetCylinderQuadValues",
(void (IntAna_Curve::*)( const gp_Cylinder & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Boolean ) ) static_cast<void (IntAna_Curve::*)( const gp_Cylinder & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Boolean ) >(&IntAna_Curve::SetCylinderQuadValues),
R"#(Sets the parameters used to compute Points and Derivative on the curve.)#" , py::arg("Cylinder"), py::arg("Qxx"), py::arg("Qyy"), py::arg("Qzz"), py::arg("Qxy"), py::arg("Qxz"), py::arg("Qyz"), py::arg("Qx"), py::arg("Qy"), py::arg("Qz"), py::arg("Q1"), py::arg("Tol"), py::arg("DomInf"), py::arg("DomSup"), py::arg("TwoZForATheta"), py::arg("ZIsPositive")
)
.def("SetConeQuadValues",
(void (IntAna_Curve::*)( const gp_Cone & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Boolean ) ) static_cast<void (IntAna_Curve::*)( const gp_Cone & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Boolean ) >(&IntAna_Curve::SetConeQuadValues),
R"#(Sets the parameters used to compute Points and Derivative on the curve.)#" , py::arg("Cone"), py::arg("Qxx"), py::arg("Qyy"), py::arg("Qzz"), py::arg("Qxy"), py::arg("Qxz"), py::arg("Qyz"), py::arg("Qx"), py::arg("Qy"), py::arg("Qz"), py::arg("Q1"), py::arg("Tol"), py::arg("DomInf"), py::arg("DomSup"), py::arg("TwoZForATheta"), py::arg("ZIsPositive")
)
.def("IsOpen",
(Standard_Boolean (IntAna_Curve::*)() const) static_cast<Standard_Boolean (IntAna_Curve::*)() const>(&IntAna_Curve::IsOpen),
R"#(Returns TRUE if the curve is not infinite at the last parameter or at the first parameter of the domain.)#"
)
.def("IsConstant",
(Standard_Boolean (IntAna_Curve::*)() const) static_cast<Standard_Boolean (IntAna_Curve::*)() const>(&IntAna_Curve::IsConstant),
R"#(Returns TRUE if the function is constant.)#"
)
.def("IsFirstOpen",
(Standard_Boolean (IntAna_Curve::*)() const) static_cast<Standard_Boolean (IntAna_Curve::*)() const>(&IntAna_Curve::IsFirstOpen),
R"#(Returns TRUE if the domain is open at the beginning.)#"
)
.def("IsLastOpen",
(Standard_Boolean (IntAna_Curve::*)() const) static_cast<Standard_Boolean (IntAna_Curve::*)() const>(&IntAna_Curve::IsLastOpen),
R"#(Returns TRUE if the domain is open at the end.)#"
)
.def("Value",
(gp_Pnt (IntAna_Curve::*)( const Standard_Real ) ) static_cast<gp_Pnt (IntAna_Curve::*)( const Standard_Real ) >(&IntAna_Curve::Value),
R"#(Returns the point at parameter Theta on the curve.)#" , py::arg("Theta")
)
.def("D1u",
(Standard_Boolean (IntAna_Curve::*)( const Standard_Real , gp_Pnt & , gp_Vec & ) ) static_cast<Standard_Boolean (IntAna_Curve::*)( const Standard_Real , gp_Pnt & , gp_Vec & ) >(&IntAna_Curve::D1u),
R"#(Returns the point and the first derivative at parameter Theta on the curve.)#" , py::arg("Theta"), py::arg("P"), py::arg("V")
)
.def("FindParameter",
(void (IntAna_Curve::*)( const gp_Pnt & , NCollection_List<Standard_Real> & ) const) static_cast<void (IntAna_Curve::*)( const gp_Pnt & , NCollection_List<Standard_Real> & ) const>(&IntAna_Curve::FindParameter),
R"#(Tries to find the parameter of the point P on the curve. If the method returns False, the "projection" is impossible. If the method returns True at least one parameter has been found. theParams is always sorted in ascending order.)#" , py::arg("P"), py::arg("theParams")
)
.def("SetIsFirstOpen",
(void (IntAna_Curve::*)( const Standard_Boolean ) ) static_cast<void (IntAna_Curve::*)( const Standard_Boolean ) >(&IntAna_Curve::SetIsFirstOpen),
R"#(If flag is True, the Curve is not defined at the first parameter of its domain.)#" , py::arg("Flag")
)
.def("SetIsLastOpen",
(void (IntAna_Curve::*)( const Standard_Boolean ) ) static_cast<void (IntAna_Curve::*)( const Standard_Boolean ) >(&IntAna_Curve::SetIsLastOpen),
R"#(If flag is True, the Curve is not defined at the first parameter of its domain.)#" , py::arg("Flag")
)
.def("SetDomain",
(void (IntAna_Curve::*)( const Standard_Real , const Standard_Real ) ) static_cast<void (IntAna_Curve::*)( const Standard_Real , const Standard_Real ) >(&IntAna_Curve::SetDomain),
R"#(Trims this curve)#" , py::arg("theFirst"), py::arg("theLast")
)
// methods using call by reference i.s.o. return
.def("Domain",
[]( IntAna_Curve &self ){
Standard_Real theFirst;
Standard_Real theLast;
self.Domain(theFirst,theLast);
return std::make_tuple(theFirst,theLast); },
R"#(Returns the paramatric domain of the curve.)#"
)
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class IntAna_Int3Pln from ./opencascade/IntAna_Int3Pln.hxx
klass = m.attr("IntAna_Int3Pln");
// nested enums
static_cast<py::class_<IntAna_Int3Pln , shared_ptr<IntAna_Int3Pln> >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const gp_Pln &,const gp_Pln &,const gp_Pln & >() , py::arg("P1"), py::arg("P2"), py::arg("P3") )
// custom constructors
// methods
.def("Perform",
(void (IntAna_Int3Pln::*)( const gp_Pln & , const gp_Pln & , const gp_Pln & ) ) static_cast<void (IntAna_Int3Pln::*)( const gp_Pln & , const gp_Pln & , const gp_Pln & ) >(&IntAna_Int3Pln::Perform),
R"#(Determination of the intersection point between 3 planes.)#" , py::arg("P1"), py::arg("P2"), py::arg("P3")
)
.def("IsDone",
(Standard_Boolean (IntAna_Int3Pln::*)() const) static_cast<Standard_Boolean (IntAna_Int3Pln::*)() const>(&IntAna_Int3Pln::IsDone),
R"#(Returns True if the computation was successful.)#"
)
.def("IsEmpty",
(Standard_Boolean (IntAna_Int3Pln::*)() const) static_cast<Standard_Boolean (IntAna_Int3Pln::*)() const>(&IntAna_Int3Pln::IsEmpty),
R"#(Returns TRUE if there is no intersection POINT. If 2 planes are identical or parallel, IsEmpty will return TRUE.)#"
)
.def("IsDone",
(Standard_Boolean (IntAna_Int3Pln::*)() const) static_cast<Standard_Boolean (IntAna_Int3Pln::*)() const>(&IntAna_Int3Pln::IsDone),
R"#(Returns True if the computation was successful.)#"
)
.def("IsEmpty",
(Standard_Boolean (IntAna_Int3Pln::*)() const) static_cast<Standard_Boolean (IntAna_Int3Pln::*)() const>(&IntAna_Int3Pln::IsEmpty),
R"#(Returns TRUE if there is no intersection POINT. If 2 planes are identical or parallel, IsEmpty will return TRUE.)#"
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Value",
(const gp_Pnt & (IntAna_Int3Pln::*)() const) static_cast<const gp_Pnt & (IntAna_Int3Pln::*)() const>(&IntAna_Int3Pln::Value),
R"#(Returns the intersection point.)#"
)
.def("Value",
(const gp_Pnt & (IntAna_Int3Pln::*)() const) static_cast<const gp_Pnt & (IntAna_Int3Pln::*)() const>(&IntAna_Int3Pln::Value),
R"#(Returns the intersection point.)#"
)
;
// Class IntAna_IntConicQuad from ./opencascade/IntAna_IntConicQuad.hxx
klass = m.attr("IntAna_IntConicQuad");
// nested enums
static_cast<py::class_<IntAna_IntConicQuad , shared_ptr<IntAna_IntConicQuad> >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const gp_Lin &,const IntAna_Quadric & >() , py::arg("L"), py::arg("Q") )
.def(py::init< const gp_Circ &,const IntAna_Quadric & >() , py::arg("C"), py::arg("Q") )
.def(py::init< const gp_Elips &,const IntAna_Quadric & >() , py::arg("E"), py::arg("Q") )
.def(py::init< const gp_Parab &,const IntAna_Quadric & >() , py::arg("P"), py::arg("Q") )
.def(py::init< const gp_Hypr &,const IntAna_Quadric & >() , py::arg("H"), py::arg("Q") )
.def(py::init< const gp_Lin &,const gp_Pln &,const Standard_Real,const Standard_Real,const Standard_Real >() , py::arg("L"), py::arg("P"), py::arg("Tolang"), py::arg("Tol")=static_cast<const Standard_Real>(0), py::arg("Len")=static_cast<const Standard_Real>(0) )
.def(py::init< const gp_Circ &,const gp_Pln &,const Standard_Real,const Standard_Real >() , py::arg("C"), py::arg("P"), py::arg("Tolang"), py::arg("Tol") )
.def(py::init< const gp_Elips &,const gp_Pln &,const Standard_Real,const Standard_Real >() , py::arg("E"), py::arg("P"), py::arg("Tolang"), py::arg("Tol") )
.def(py::init< const gp_Parab &,const gp_Pln &,const Standard_Real >() , py::arg("Pb"), py::arg("P"), py::arg("Tolang") )
.def(py::init< const gp_Hypr &,const gp_Pln &,const Standard_Real >() , py::arg("H"), py::arg("P"), py::arg("Tolang") )
// custom constructors
// methods
.def("Perform",
(void (IntAna_IntConicQuad::*)( const gp_Lin & , const IntAna_Quadric & ) ) static_cast<void (IntAna_IntConicQuad::*)( const gp_Lin & , const IntAna_Quadric & ) >(&IntAna_IntConicQuad::Perform),
R"#(Intersects a line and a quadric.)#" , py::arg("L"), py::arg("Q")
)
.def("Perform",
(void (IntAna_IntConicQuad::*)( const gp_Circ & , const IntAna_Quadric & ) ) static_cast<void (IntAna_IntConicQuad::*)( const gp_Circ & , const IntAna_Quadric & ) >(&IntAna_IntConicQuad::Perform),
R"#(Intersects a circle and a quadric.)#" , py::arg("C"), py::arg("Q")
)
.def("Perform",
(void (IntAna_IntConicQuad::*)( const gp_Elips & , const IntAna_Quadric & ) ) static_cast<void (IntAna_IntConicQuad::*)( const gp_Elips & , const IntAna_Quadric & ) >(&IntAna_IntConicQuad::Perform),
R"#(Intersects an ellipse and a quadric.)#" , py::arg("E"), py::arg("Q")
)
.def("Perform",
(void (IntAna_IntConicQuad::*)( const gp_Parab & , const IntAna_Quadric & ) ) static_cast<void (IntAna_IntConicQuad::*)( const gp_Parab & , const IntAna_Quadric & ) >(&IntAna_IntConicQuad::Perform),
R"#(Intersects a parabola and a quadric.)#" , py::arg("P"), py::arg("Q")
)
.def("Perform",
(void (IntAna_IntConicQuad::*)( const gp_Hypr & , const IntAna_Quadric & ) ) static_cast<void (IntAna_IntConicQuad::*)( const gp_Hypr & , const IntAna_Quadric & ) >(&IntAna_IntConicQuad::Perform),
R"#(Intersects an hyperbola and a quadric.)#" , py::arg("H"), py::arg("Q")
)
.def("Perform",
(void (IntAna_IntConicQuad::*)( const gp_Lin & , const gp_Pln & , const Standard_Real , const Standard_Real , const Standard_Real ) ) static_cast<void (IntAna_IntConicQuad::*)( const gp_Lin & , const gp_Pln & , const Standard_Real , const Standard_Real , const Standard_Real ) >(&IntAna_IntConicQuad::Perform),
R"#(Intersects a line and a plane. Tolang is used to determine if the angle between two vectors is null. Tol is used to check the distance between line and plane on the distance <Len> from the origin of the line.)#" , py::arg("L"), py::arg("P"), py::arg("Tolang"), py::arg("Tol")=static_cast<const Standard_Real>(0), py::arg("Len")=static_cast<const Standard_Real>(0)
)
.def("Perform",
(void (IntAna_IntConicQuad::*)( const gp_Circ & , const gp_Pln & , const Standard_Real , const Standard_Real ) ) static_cast<void (IntAna_IntConicQuad::*)( const gp_Circ & , const gp_Pln & , const Standard_Real , const Standard_Real ) >(&IntAna_IntConicQuad::Perform),
R"#(Intersects a circle and a plane. Tolang is used to determine if the angle between two vectors is null. Tol is used to determine if a distance is null.)#" , py::arg("C"), py::arg("P"), py::arg("Tolang"), py::arg("Tol")
)
.def("Perform",
(void (IntAna_IntConicQuad::*)( const gp_Elips & , const gp_Pln & , const Standard_Real , const Standard_Real ) ) static_cast<void (IntAna_IntConicQuad::*)( const gp_Elips & , const gp_Pln & , const Standard_Real , const Standard_Real ) >(&IntAna_IntConicQuad::Perform),
R"#(Intersects an ellipse and a plane. Tolang is used to determine if the angle between two vectors is null. Tol is used to determine if a distance is null.)#" , py::arg("E"), py::arg("P"), py::arg("Tolang"), py::arg("Tol")
)
.def("Perform",
(void (IntAna_IntConicQuad::*)( const gp_Parab & , const gp_Pln & , const Standard_Real ) ) static_cast<void (IntAna_IntConicQuad::*)( const gp_Parab & , const gp_Pln & , const Standard_Real ) >(&IntAna_IntConicQuad::Perform),
R"#(Intersects a parabola and a plane. Tolang is used to determine if the angle between two vectors is null.)#" , py::arg("Pb"), py::arg("P"), py::arg("Tolang")
)
.def("Perform",
(void (IntAna_IntConicQuad::*)( const gp_Hypr & , const gp_Pln & , const Standard_Real ) ) static_cast<void (IntAna_IntConicQuad::*)( const gp_Hypr & , const gp_Pln & , const Standard_Real ) >(&IntAna_IntConicQuad::Perform),
R"#(Intersects an hyperbola and a plane. Tolang is used to determine if the angle between two vectors is null.)#" , py::arg("H"), py::arg("P"), py::arg("Tolang")
)
.def("IsDone",
(Standard_Boolean (IntAna_IntConicQuad::*)() const) static_cast<Standard_Boolean (IntAna_IntConicQuad::*)() const>(&IntAna_IntConicQuad::IsDone),
R"#(Returns TRUE if the creation completed.)#"
)
.def("IsInQuadric",
(Standard_Boolean (IntAna_IntConicQuad::*)() const) static_cast<Standard_Boolean (IntAna_IntConicQuad::*)() const>(&IntAna_IntConicQuad::IsInQuadric),
R"#(Returns TRUE if the conic is in the quadric.)#"
)
.def("IsParallel",
(Standard_Boolean (IntAna_IntConicQuad::*)() const) static_cast<Standard_Boolean (IntAna_IntConicQuad::*)() const>(&IntAna_IntConicQuad::IsParallel),
R"#(Returns TRUE if the line is in a quadric which is parallel to the quadric.)#"
)
.def("NbPoints",
(Standard_Integer (IntAna_IntConicQuad::*)() const) static_cast<Standard_Integer (IntAna_IntConicQuad::*)() const>(&IntAna_IntConicQuad::NbPoints),
R"#(Returns the number of intersection point.)#"
)
.def("Point",
(const gp_Pnt & (IntAna_IntConicQuad::*)( const Standard_Integer ) const) static_cast<const gp_Pnt & (IntAna_IntConicQuad::*)( const Standard_Integer ) const>(&IntAna_IntConicQuad::Point),
R"#(Returns the point of range N.)#" , py::arg("N")
)
.def("ParamOnConic",
(Standard_Real (IntAna_IntConicQuad::*)( const Standard_Integer ) const) static_cast<Standard_Real (IntAna_IntConicQuad::*)( const Standard_Integer ) const>(&IntAna_IntConicQuad::ParamOnConic),
R"#(Returns the parameter on the line of the intersection point of range N.)#" , py::arg("N")
)
.def("IsDone",
(Standard_Boolean (IntAna_IntConicQuad::*)() const) static_cast<Standard_Boolean (IntAna_IntConicQuad::*)() const>(&IntAna_IntConicQuad::IsDone),
R"#(Returns TRUE if the creation completed.)#"
)
.def("IsInQuadric",
(Standard_Boolean (IntAna_IntConicQuad::*)() const) static_cast<Standard_Boolean (IntAna_IntConicQuad::*)() const>(&IntAna_IntConicQuad::IsInQuadric),
R"#(Returns TRUE if the conic is in the quadric.)#"
)
.def("IsParallel",
(Standard_Boolean (IntAna_IntConicQuad::*)() const) static_cast<Standard_Boolean (IntAna_IntConicQuad::*)() const>(&IntAna_IntConicQuad::IsParallel),
R"#(Returns TRUE if the line is in a quadric which is parallel to the quadric.)#"
)
.def("NbPoints",
(Standard_Integer (IntAna_IntConicQuad::*)() const) static_cast<Standard_Integer (IntAna_IntConicQuad::*)() const>(&IntAna_IntConicQuad::NbPoints),
R"#(Returns the number of intersection point.)#"
)
.def("Point",
(const gp_Pnt & (IntAna_IntConicQuad::*)( const Standard_Integer ) const) static_cast<const gp_Pnt & (IntAna_IntConicQuad::*)( const Standard_Integer ) const>(&IntAna_IntConicQuad::Point),
R"#(Returns the point of range N.)#" , py::arg("i")
)
.def("ParamOnConic",
(Standard_Real (IntAna_IntConicQuad::*)( const Standard_Integer ) const) static_cast<Standard_Real (IntAna_IntConicQuad::*)( const Standard_Integer ) const>(&IntAna_IntConicQuad::ParamOnConic),
R"#(Returns the parameter on the line of the intersection point of range N.)#" , py::arg("i")
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class IntAna_IntLinTorus from ./opencascade/IntAna_IntLinTorus.hxx
klass = m.attr("IntAna_IntLinTorus");
// nested enums
static_cast<py::class_<IntAna_IntLinTorus , shared_ptr<IntAna_IntLinTorus> >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const gp_Lin &,const gp_Torus & >() , py::arg("L"), py::arg("T") )
// custom constructors
// methods
.def("Perform",
(void (IntAna_IntLinTorus::*)( const gp_Lin & , const gp_Torus & ) ) static_cast<void (IntAna_IntLinTorus::*)( const gp_Lin & , const gp_Torus & ) >(&IntAna_IntLinTorus::Perform),
R"#(Intersects a line and a torus.)#" , py::arg("L"), py::arg("T")
)
.def("IsDone",
(Standard_Boolean (IntAna_IntLinTorus::*)() const) static_cast<Standard_Boolean (IntAna_IntLinTorus::*)() const>(&IntAna_IntLinTorus::IsDone),
R"#(Returns True if the computation was successful.)#"
)
.def("NbPoints",
(Standard_Integer (IntAna_IntLinTorus::*)() const) static_cast<Standard_Integer (IntAna_IntLinTorus::*)() const>(&IntAna_IntLinTorus::NbPoints),
R"#(Returns the number of intersection points.)#"
)
.def("Value",
(const gp_Pnt & (IntAna_IntLinTorus::*)( const Standard_Integer ) const) static_cast<const gp_Pnt & (IntAna_IntLinTorus::*)( const Standard_Integer ) const>(&IntAna_IntLinTorus::Value),
R"#(Returns the intersection point of range Index.)#" , py::arg("Index")
)
.def("ParamOnLine",
(Standard_Real (IntAna_IntLinTorus::*)( const Standard_Integer ) const) static_cast<Standard_Real (IntAna_IntLinTorus::*)( const Standard_Integer ) const>(&IntAna_IntLinTorus::ParamOnLine),
R"#(Returns the parameter on the line of the intersection point of range Index.)#" , py::arg("Index")
)
.def("IsDone",
(Standard_Boolean (IntAna_IntLinTorus::*)() const) static_cast<Standard_Boolean (IntAna_IntLinTorus::*)() const>(&IntAna_IntLinTorus::IsDone),
R"#(Returns True if the computation was successful.)#"
)
.def("NbPoints",
(Standard_Integer (IntAna_IntLinTorus::*)() const) static_cast<Standard_Integer (IntAna_IntLinTorus::*)() const>(&IntAna_IntLinTorus::NbPoints),
R"#(Returns the number of intersection points.)#"
)
.def("Value",
(const gp_Pnt & (IntAna_IntLinTorus::*)( const Standard_Integer ) const) static_cast<const gp_Pnt & (IntAna_IntLinTorus::*)( const Standard_Integer ) const>(&IntAna_IntLinTorus::Value),
R"#(Returns the intersection point of range Index.)#" , py::arg("Index")
)
.def("ParamOnLine",
(Standard_Real (IntAna_IntLinTorus::*)( const Standard_Integer ) const) static_cast<Standard_Real (IntAna_IntLinTorus::*)( const Standard_Integer ) const>(&IntAna_IntLinTorus::ParamOnLine),
R"#(Returns the parameter on the line of the intersection point of range Index.)#" , py::arg("Index")
)
// methods using call by reference i.s.o. return
.def("ParamOnTorus",
[]( IntAna_IntLinTorus &self , const Standard_Integer Index ){
Standard_Real FI;
Standard_Real THETA;
self.ParamOnTorus(Index,FI,THETA);
return std::make_tuple(FI,THETA); },
R"#(Returns the parameters on the torus of the intersection point of range Index.)#" , py::arg("Index")
)
.def("ParamOnTorus",
[]( IntAna_IntLinTorus &self , const Standard_Integer Index ){
Standard_Real FI;
Standard_Real THETA;
self.ParamOnTorus(Index,FI,THETA);
return std::make_tuple(FI,THETA); },
R"#(Returns the parameters on the torus of the intersection point of range Index.)#" , py::arg("Index")
)
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class IntAna_IntQuadQuad from ./opencascade/IntAna_IntQuadQuad.hxx
klass = m.attr("IntAna_IntQuadQuad");
// nested enums
static_cast<py::class_<IntAna_IntQuadQuad , shared_ptr<IntAna_IntQuadQuad> >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const gp_Cylinder &,const IntAna_Quadric &,const Standard_Real >() , py::arg("C"), py::arg("Q"), py::arg("Tol") )
.def(py::init< const gp_Cone &,const IntAna_Quadric &,const Standard_Real >() , py::arg("C"), py::arg("Q"), py::arg("Tol") )
// custom constructors
// methods
.def("Perform",
(void (IntAna_IntQuadQuad::*)( const gp_Cylinder & , const IntAna_Quadric & , const Standard_Real ) ) static_cast<void (IntAna_IntQuadQuad::*)( const gp_Cylinder & , const IntAna_Quadric & , const Standard_Real ) >(&IntAna_IntQuadQuad::Perform),
R"#(Intersects a cylinder and a quadric . Tol est a definir plus precisemment.)#" , py::arg("C"), py::arg("Q"), py::arg("Tol")
)
.def("Perform",
(void (IntAna_IntQuadQuad::*)( const gp_Cone & , const IntAna_Quadric & , const Standard_Real ) ) static_cast<void (IntAna_IntQuadQuad::*)( const gp_Cone & , const IntAna_Quadric & , const Standard_Real ) >(&IntAna_IntQuadQuad::Perform),
R"#(Intersects a cone and a quadric. Tol est a definir plus precisemment.)#" , py::arg("C"), py::arg("Q"), py::arg("Tol")
)
.def("IsDone",
(Standard_Boolean (IntAna_IntQuadQuad::*)() const) static_cast<Standard_Boolean (IntAna_IntQuadQuad::*)() const>(&IntAna_IntQuadQuad::IsDone),
R"#(Returns True if the computation was successful.)#"
)
.def("IdenticalElements",
(Standard_Boolean (IntAna_IntQuadQuad::*)() const) static_cast<Standard_Boolean (IntAna_IntQuadQuad::*)() const>(&IntAna_IntQuadQuad::IdenticalElements),
R"#(Returns TRUE if the cylinder, the cone or the sphere is identical to the quadric.)#"
)
.def("NbCurve",
(Standard_Integer (IntAna_IntQuadQuad::*)() const) static_cast<Standard_Integer (IntAna_IntQuadQuad::*)() const>(&IntAna_IntQuadQuad::NbCurve),
R"#(Returns the number of curves solution.)#"
)
.def("Curve",
(const IntAna_Curve & (IntAna_IntQuadQuad::*)( const Standard_Integer ) const) static_cast<const IntAna_Curve & (IntAna_IntQuadQuad::*)( const Standard_Integer ) const>(&IntAna_IntQuadQuad::Curve),
R"#(Returns the curve of range N.)#" , py::arg("N")
)
.def("NbPnt",
(Standard_Integer (IntAna_IntQuadQuad::*)() const) static_cast<Standard_Integer (IntAna_IntQuadQuad::*)() const>(&IntAna_IntQuadQuad::NbPnt),
R"#(Returns the number of contact point.)#"
)
.def("Point",
(const gp_Pnt & (IntAna_IntQuadQuad::*)( const Standard_Integer ) const) static_cast<const gp_Pnt & (IntAna_IntQuadQuad::*)( const Standard_Integer ) const>(&IntAna_IntQuadQuad::Point),
R"#(Returns the point of range N.)#" , py::arg("N")
)
.def("HasNextCurve",
(Standard_Boolean (IntAna_IntQuadQuad::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (IntAna_IntQuadQuad::*)( const Standard_Integer ) const>(&IntAna_IntQuadQuad::HasNextCurve),
R"#(Returns True if the Curve I shares its last bound with another curve.)#" , py::arg("I")
)
.def("NextCurve",
(Standard_Integer (IntAna_IntQuadQuad::*)( const Standard_Integer , Standard_Boolean & ) const) static_cast<Standard_Integer (IntAna_IntQuadQuad::*)( const Standard_Integer , Standard_Boolean & ) const>(&IntAna_IntQuadQuad::NextCurve),
R"#(If HasNextCurve(I) returns True, this function returns the Index J of the curve which has a common bound with the curve I. If theOpposite == True , then the last parameter of the curve I, and the last parameter of the curve J give the same point. Else the last parameter of the curve I and the first parameter of the curve J are the same point.)#" , py::arg("I"), py::arg("theOpposite")
)
.def("HasPreviousCurve",
(Standard_Boolean (IntAna_IntQuadQuad::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (IntAna_IntQuadQuad::*)( const Standard_Integer ) const>(&IntAna_IntQuadQuad::HasPreviousCurve),
R"#(Returns True if the Curve I shares its first bound with another curve.)#" , py::arg("I")
)
.def("PreviousCurve",
(Standard_Integer (IntAna_IntQuadQuad::*)( const Standard_Integer , Standard_Boolean & ) const) static_cast<Standard_Integer (IntAna_IntQuadQuad::*)( const Standard_Integer , Standard_Boolean & ) const>(&IntAna_IntQuadQuad::PreviousCurve),
R"#(if HasPreviousCurve(I) returns True, this function returns the Index J of the curve which has a common bound with the curve I. If theOpposite == True , then the first parameter of the curve I, and the first parameter of the curve J give the same point. Else the first parameter of the curve I and the last parameter of the curve J are the same point.)#" , py::arg("I"), py::arg("theOpposite")
)
.def("IsDone",
(Standard_Boolean (IntAna_IntQuadQuad::*)() const) static_cast<Standard_Boolean (IntAna_IntQuadQuad::*)() const>(&IntAna_IntQuadQuad::IsDone),
R"#(Returns True if the computation was successful.)#"
)
.def("IdenticalElements",
(Standard_Boolean (IntAna_IntQuadQuad::*)() const) static_cast<Standard_Boolean (IntAna_IntQuadQuad::*)() const>(&IntAna_IntQuadQuad::IdenticalElements),
R"#(Returns TRUE if the cylinder, the cone or the sphere is identical to the quadric.)#"
)
.def("NbCurve",
(Standard_Integer (IntAna_IntQuadQuad::*)() const) static_cast<Standard_Integer (IntAna_IntQuadQuad::*)() const>(&IntAna_IntQuadQuad::NbCurve),
R"#(Returns the number of curves solution.)#"
)
.def("NbPnt",
(Standard_Integer (IntAna_IntQuadQuad::*)() const) static_cast<Standard_Integer (IntAna_IntQuadQuad::*)() const>(&IntAna_IntQuadQuad::NbPnt),
R"#(Returns the number of contact point.)#"
)
// methods using call by reference i.s.o. return
.def("Parameters",
[]( IntAna_IntQuadQuad &self , const Standard_Integer N ){
Standard_Real U1;
Standard_Real U2;
self.Parameters(N,U1,U2);
return std::make_tuple(U1,U2); },
R"#(Returns the parameters on the "explicit quadric" (i.e the cylinder or the cone, the first argument given to the constructor) of the point of range N.)#" , py::arg("N")
)
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class IntAna_QuadQuadGeo from ./opencascade/IntAna_QuadQuadGeo.hxx
klass = m.attr("IntAna_QuadQuadGeo");
// nested enums
static_cast<py::class_<IntAna_QuadQuadGeo , shared_ptr<IntAna_QuadQuadGeo> >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const gp_Pln &,const gp_Pln &,const Standard_Real,const Standard_Real >() , py::arg("P1"), py::arg("P2"), py::arg("TolAng"), py::arg("Tol") )
.def(py::init< const gp_Pln &,const gp_Cylinder &,const Standard_Real,const Standard_Real,const Standard_Real >() , py::arg("P"), py::arg("C"), py::arg("Tolang"), py::arg("Tol"), py::arg("H")=static_cast<const Standard_Real>(0) )
.def(py::init< const gp_Pln &,const gp_Sphere & >() , py::arg("P"), py::arg("S") )
.def(py::init< const gp_Pln &,const gp_Cone &,const Standard_Real,const Standard_Real >() , py::arg("P"), py::arg("C"), py::arg("Tolang"), py::arg("Tol") )
.def(py::init< const gp_Cylinder &,const gp_Cylinder &,const Standard_Real >() , py::arg("Cyl1"), py::arg("Cyl2"), py::arg("Tol") )
.def(py::init< const gp_Cylinder &,const gp_Sphere &,const Standard_Real >() , py::arg("Cyl"), py::arg("Sph"), py::arg("Tol") )
.def(py::init< const gp_Cylinder &,const gp_Cone &,const Standard_Real >() , py::arg("Cyl"), py::arg("Con"), py::arg("Tol") )
.def(py::init< const gp_Sphere &,const gp_Sphere &,const Standard_Real >() , py::arg("Sph1"), py::arg("Sph2"), py::arg("Tol") )
.def(py::init< const gp_Sphere &,const gp_Cone &,const Standard_Real >() , py::arg("Sph"), py::arg("Con"), py::arg("Tol") )
.def(py::init< const gp_Cone &,const gp_Cone &,const Standard_Real >() , py::arg("Con1"), py::arg("Con2"), py::arg("Tol") )
.def(py::init< const gp_Pln &,const gp_Torus &,const Standard_Real >() , py::arg("Pln"), py::arg("Tor"), py::arg("Tol") )
.def(py::init< const gp_Cylinder &,const gp_Torus &,const Standard_Real >() , py::arg("Cyl"), py::arg("Tor"), py::arg("Tol") )
.def(py::init< const gp_Cone &,const gp_Torus &,const Standard_Real >() , py::arg("Con"), py::arg("Tor"), py::arg("Tol") )
.def(py::init< const gp_Sphere &,const gp_Torus &,const Standard_Real >() , py::arg("Sph"), py::arg("Tor"), py::arg("Tol") )
.def(py::init< const gp_Torus &,const gp_Torus &,const Standard_Real >() , py::arg("Tor1"), py::arg("Tor2"), py::arg("Tol") )
// custom constructors
// methods
.def("Perform",
(void (IntAna_QuadQuadGeo::*)( const gp_Pln & , const gp_Pln & , const Standard_Real , const Standard_Real ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Pln & , const gp_Pln & , const Standard_Real , const Standard_Real ) >(&IntAna_QuadQuadGeo::Perform),
R"#(Intersects two planes. TolAng is the angular tolerance used to determine if the planes are parallel. Tol is the tolerance used to determine if the planes are identical (only when they are parallel).)#" , py::arg("P1"), py::arg("P2"), py::arg("TolAng"), py::arg("Tol")
)
.def("Perform",
(void (IntAna_QuadQuadGeo::*)( const gp_Pln & , const gp_Cylinder & , const Standard_Real , const Standard_Real , const Standard_Real ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Pln & , const gp_Cylinder & , const Standard_Real , const Standard_Real , const Standard_Real ) >(&IntAna_QuadQuadGeo::Perform),
R"#(Intersects a plane and a cylinder. TolAng is the angular tolerance used to determine if the axis of the cylinder is parallel to the plane. Tol is the tolerance used to determine if the result is a circle or an ellipse. If the maximum distance between the ellipse solution and the circle centered at the ellipse center is less than Tol, the result will be the circle. H is the height of the cylinder <Cyl>. It is used to check whether the plane and cylinder are parallel.)#" , py::arg("P"), py::arg("C"), py::arg("Tolang"), py::arg("Tol"), py::arg("H")=static_cast<const Standard_Real>(0)
)
.def("Perform",
(void (IntAna_QuadQuadGeo::*)( const gp_Pln & , const gp_Sphere & ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Pln & , const gp_Sphere & ) >(&IntAna_QuadQuadGeo::Perform),
R"#(Intersects a plane and a sphere.)#" , py::arg("P"), py::arg("S")
)
.def("Perform",
(void (IntAna_QuadQuadGeo::*)( const gp_Pln & , const gp_Cone & , const Standard_Real , const Standard_Real ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Pln & , const gp_Cone & , const Standard_Real , const Standard_Real ) >(&IntAna_QuadQuadGeo::Perform),
R"#(Intersects a plane and a cone. TolAng is the angular tolerance used to determine if the axis of the cone is parallel or perpendicular to the plane, and if the generating line of the cone is parallel to the plane. Tol is the tolerance used to determine if the apex of the cone is in the plane.)#" , py::arg("P"), py::arg("C"), py::arg("Tolang"), py::arg("Tol")
)
.def("Perform",
(void (IntAna_QuadQuadGeo::*)( const gp_Cylinder & , const gp_Cylinder & , const Standard_Real ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Cylinder & , const gp_Cylinder & , const Standard_Real ) >(&IntAna_QuadQuadGeo::Perform),
R"#(Intersects two cylinders)#" , py::arg("Cyl1"), py::arg("Cyl2"), py::arg("Tol")
)
.def("Perform",
(void (IntAna_QuadQuadGeo::*)( const gp_Cylinder & , const gp_Sphere & , const Standard_Real ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Cylinder & , const gp_Sphere & , const Standard_Real ) >(&IntAna_QuadQuadGeo::Perform),
R"#(Intersects a cylinder and a sphere.)#" , py::arg("Cyl"), py::arg("Sph"), py::arg("Tol")
)
.def("Perform",
(void (IntAna_QuadQuadGeo::*)( const gp_Cylinder & , const gp_Cone & , const Standard_Real ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Cylinder & , const gp_Cone & , const Standard_Real ) >(&IntAna_QuadQuadGeo::Perform),
R"#(Intersects a cylinder and a cone.)#" , py::arg("Cyl"), py::arg("Con"), py::arg("Tol")
)
.def("Perform",
(void (IntAna_QuadQuadGeo::*)( const gp_Sphere & , const gp_Sphere & , const Standard_Real ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Sphere & , const gp_Sphere & , const Standard_Real ) >(&IntAna_QuadQuadGeo::Perform),
R"#(Intersects a two spheres.)#" , py::arg("Sph1"), py::arg("Sph2"), py::arg("Tol")
)
.def("Perform",
(void (IntAna_QuadQuadGeo::*)( const gp_Sphere & , const gp_Cone & , const Standard_Real ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Sphere & , const gp_Cone & , const Standard_Real ) >(&IntAna_QuadQuadGeo::Perform),
R"#(Intersects a sphere and a cone.)#" , py::arg("Sph"), py::arg("Con"), py::arg("Tol")
)
.def("Perform",
(void (IntAna_QuadQuadGeo::*)( const gp_Cone & , const gp_Cone & , const Standard_Real ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Cone & , const gp_Cone & , const Standard_Real ) >(&IntAna_QuadQuadGeo::Perform),
R"#(Intersects two cones.)#" , py::arg("Con1"), py::arg("Con2"), py::arg("Tol")
)
.def("Perform",
(void (IntAna_QuadQuadGeo::*)( const gp_Pln & , const gp_Torus & , const Standard_Real ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Pln & , const gp_Torus & , const Standard_Real ) >(&IntAna_QuadQuadGeo::Perform),
R"#(Intersects plane and torus.)#" , py::arg("Pln"), py::arg("Tor"), py::arg("Tol")
)
.def("Perform",
(void (IntAna_QuadQuadGeo::*)( const gp_Cylinder & , const gp_Torus & , const Standard_Real ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Cylinder & , const gp_Torus & , const Standard_Real ) >(&IntAna_QuadQuadGeo::Perform),
R"#(Intersects cylinder and torus.)#" , py::arg("Cyl"), py::arg("Tor"), py::arg("Tol")
)
.def("Perform",
(void (IntAna_QuadQuadGeo::*)( const gp_Cone & , const gp_Torus & , const Standard_Real ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Cone & , const gp_Torus & , const Standard_Real ) >(&IntAna_QuadQuadGeo::Perform),
R"#(Intersects cone and torus.)#" , py::arg("Con"), py::arg("Tor"), py::arg("Tol")
)
.def("Perform",
(void (IntAna_QuadQuadGeo::*)( const gp_Sphere & , const gp_Torus & , const Standard_Real ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Sphere & , const gp_Torus & , const Standard_Real ) >(&IntAna_QuadQuadGeo::Perform),
R"#(Intersects sphere and torus.)#" , py::arg("Sph"), py::arg("Tor"), py::arg("Tol")
)
.def("Perform",
(void (IntAna_QuadQuadGeo::*)( const gp_Torus & , const gp_Torus & , const Standard_Real ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Torus & , const gp_Torus & , const Standard_Real ) >(&IntAna_QuadQuadGeo::Perform),
R"#(Intersects two toruses.)#" , py::arg("Tor1"), py::arg("Tor2"), py::arg("Tol")
)
.def("IsDone",
(Standard_Boolean (IntAna_QuadQuadGeo::*)() const) static_cast<Standard_Boolean (IntAna_QuadQuadGeo::*)() const>(&IntAna_QuadQuadGeo::IsDone),
R"#(Returns Standard_True if the computation was successful.)#"
)
.def("TypeInter",
(IntAna_ResultType (IntAna_QuadQuadGeo::*)() const) static_cast<IntAna_ResultType (IntAna_QuadQuadGeo::*)() const>(&IntAna_QuadQuadGeo::TypeInter),
R"#(Returns the type of intersection.)#"
)
.def("NbSolutions",
(Standard_Integer (IntAna_QuadQuadGeo::*)() const) static_cast<Standard_Integer (IntAna_QuadQuadGeo::*)() const>(&IntAna_QuadQuadGeo::NbSolutions),
R"#(Returns the number of intersections. The possible intersections are : - 1 point - 1 or 2 line(s) - 1 Point and 1 Line - 1 circle - 1 ellipse - 1 parabola - 1 or 2 hyperbola(s).)#"
)
.def("Point",
(gp_Pnt (IntAna_QuadQuadGeo::*)( const Standard_Integer ) const) static_cast<gp_Pnt (IntAna_QuadQuadGeo::*)( const Standard_Integer ) const>(&IntAna_QuadQuadGeo::Point),
R"#(Returns the point solution of range Num.)#" , py::arg("Num")
)
.def("Line",
(gp_Lin (IntAna_QuadQuadGeo::*)( const Standard_Integer ) const) static_cast<gp_Lin (IntAna_QuadQuadGeo::*)( const Standard_Integer ) const>(&IntAna_QuadQuadGeo::Line),
R"#(Returns the line solution of range Num.)#" , py::arg("Num")
)
.def("Circle",
(gp_Circ (IntAna_QuadQuadGeo::*)( const Standard_Integer ) const) static_cast<gp_Circ (IntAna_QuadQuadGeo::*)( const Standard_Integer ) const>(&IntAna_QuadQuadGeo::Circle),
R"#(Returns the circle solution of range Num.)#" , py::arg("Num")
)
.def("Ellipse",
(gp_Elips (IntAna_QuadQuadGeo::*)( const Standard_Integer ) const) static_cast<gp_Elips (IntAna_QuadQuadGeo::*)( const Standard_Integer ) const>(&IntAna_QuadQuadGeo::Ellipse),
R"#(Returns the ellipse solution of range Num.)#" , py::arg("Num")
)
.def("Parabola",
(gp_Parab (IntAna_QuadQuadGeo::*)( const Standard_Integer ) const) static_cast<gp_Parab (IntAna_QuadQuadGeo::*)( const Standard_Integer ) const>(&IntAna_QuadQuadGeo::Parabola),
R"#(Returns the parabola solution of range Num.)#" , py::arg("Num")
)
.def("Hyperbola",
(gp_Hypr (IntAna_QuadQuadGeo::*)( const Standard_Integer ) const) static_cast<gp_Hypr (IntAna_QuadQuadGeo::*)( const Standard_Integer ) const>(&IntAna_QuadQuadGeo::Hyperbola),
R"#(Returns the hyperbola solution of range Num.)#" , py::arg("Num")
)
.def("HasCommonGen",
(Standard_Boolean (IntAna_QuadQuadGeo::*)() const) static_cast<Standard_Boolean (IntAna_QuadQuadGeo::*)() const>(&IntAna_QuadQuadGeo::HasCommonGen),
R"#(None)#"
)
.def("IsDone",
(Standard_Boolean (IntAna_QuadQuadGeo::*)() const) static_cast<Standard_Boolean (IntAna_QuadQuadGeo::*)() const>(&IntAna_QuadQuadGeo::IsDone),
R"#(Returns Standard_True if the computation was successful.)#"
)
.def("TypeInter",
(IntAna_ResultType (IntAna_QuadQuadGeo::*)() const) static_cast<IntAna_ResultType (IntAna_QuadQuadGeo::*)() const>(&IntAna_QuadQuadGeo::TypeInter),
R"#(Returns the type of intersection.)#"
)
.def("NbSolutions",
(Standard_Integer (IntAna_QuadQuadGeo::*)() const) static_cast<Standard_Integer (IntAna_QuadQuadGeo::*)() const>(&IntAna_QuadQuadGeo::NbSolutions),
R"#(Returns the number of intersections. The possible intersections are : - 1 point - 1 or 2 line(s) - 1 Point and 1 Line - 1 circle - 1 ellipse - 1 parabola - 1 or 2 hyperbola(s).)#"
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("PChar",
(const gp_Pnt & (IntAna_QuadQuadGeo::*)() const) static_cast<const gp_Pnt & (IntAna_QuadQuadGeo::*)() const>(&IntAna_QuadQuadGeo::PChar),
R"#(None)#"
)
;
// Class IntAna_Quadric from ./opencascade/IntAna_Quadric.hxx
klass = m.attr("IntAna_Quadric");
// nested enums
static_cast<py::class_<IntAna_Quadric , shared_ptr<IntAna_Quadric> >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const gp_Pln & >() , py::arg("P") )
.def(py::init< const gp_Sphere & >() , py::arg("Sph") )
.def(py::init< const gp_Cylinder & >() , py::arg("Cyl") )
.def(py::init< const gp_Cone & >() , py::arg("Cone") )
// custom constructors
// methods
.def("SetQuadric",
(void (IntAna_Quadric::*)( const gp_Pln & ) ) static_cast<void (IntAna_Quadric::*)( const gp_Pln & ) >(&IntAna_Quadric::SetQuadric),
R"#(Initializes the quadric with a Pln)#" , py::arg("P")
)
.def("SetQuadric",
(void (IntAna_Quadric::*)( const gp_Sphere & ) ) static_cast<void (IntAna_Quadric::*)( const gp_Sphere & ) >(&IntAna_Quadric::SetQuadric),
R"#(Initialize the quadric with a Sphere)#" , py::arg("Sph")
)
.def("SetQuadric",
(void (IntAna_Quadric::*)( const gp_Cone & ) ) static_cast<void (IntAna_Quadric::*)( const gp_Cone & ) >(&IntAna_Quadric::SetQuadric),
R"#(Initializes the quadric with a Cone)#" , py::arg("Con")
)
.def("SetQuadric",
(void (IntAna_Quadric::*)( const gp_Cylinder & ) ) static_cast<void (IntAna_Quadric::*)( const gp_Cylinder & ) >(&IntAna_Quadric::SetQuadric),
R"#(Initializes the quadric with a Cylinder)#" , py::arg("Cyl")
)
// methods using call by reference i.s.o. return
.def("Coefficients",
[]( IntAna_Quadric &self ){
Standard_Real xCXX;
Standard_Real xCYY;
Standard_Real xCZZ;
Standard_Real xCXY;
Standard_Real xCXZ;
Standard_Real xCYZ;
Standard_Real xCX;
Standard_Real xCY;
Standard_Real xCZ;
Standard_Real xCCte;
self.Coefficients(xCXX,xCYY,xCZZ,xCXY,xCXZ,xCYZ,xCX,xCY,xCZ,xCCte);
return std::make_tuple(xCXX,xCYY,xCZZ,xCXY,xCXZ,xCYZ,xCX,xCY,xCZ,xCCte); },
R"#(Returns the coefficients of the polynomial equation which define the quadric: xCXX x**2 + xCYY y**2 + xCZZ z**2 + 2 ( xCXY x y + xCXZ x z + xCYZ y z ) + 2 ( xCX x + xCY y + xCZ z ) + xCCte)#"
)
.def("NewCoefficients",
[]( IntAna_Quadric &self , const gp_Ax3 & Axis ){
Standard_Real xCXX;
Standard_Real xCYY;
Standard_Real xCZZ;
Standard_Real xCXY;
Standard_Real xCXZ;
Standard_Real xCYZ;
Standard_Real xCX;
Standard_Real xCY;
Standard_Real xCZ;
Standard_Real xCCte;
self.NewCoefficients(xCXX,xCYY,xCZZ,xCXY,xCXZ,xCYZ,xCX,xCY,xCZ,xCCte,Axis);
return std::make_tuple(xCXX,xCYY,xCZZ,xCXY,xCXZ,xCYZ,xCX,xCY,xCZ,xCCte); },
R"#(Returns the coefficients of the polynomial equation ( written in the natural coordinates system ) in the local coordinates system defined by Axis)#" , py::arg("Axis")
)
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// functions
// ./opencascade/IntAna_Curve.hxx
// ./opencascade/IntAna_Int3Pln.hxx
// ./opencascade/IntAna_IntConicQuad.hxx
// ./opencascade/IntAna_IntLinTorus.hxx
// ./opencascade/IntAna_IntQuadQuad.hxx
// ./opencascade/IntAna_ListIteratorOfListOfCurve.hxx
// ./opencascade/IntAna_ListOfCurve.hxx
// ./opencascade/IntAna_QuadQuadGeo.hxx
// ./opencascade/IntAna_Quadric.hxx
// ./opencascade/IntAna_ResultType.hxx
// Additional functions
// operators
// register typdefs
register_template_NCollection_List<IntAna_Curve>(m,"IntAna_ListOfCurve");
// exceptions
// user-defined post-inclusion per module in the body
};
// user-defined post-inclusion per module
// user-defined post
|