File: IntAna.cpp

package info (click to toggle)
python-ocp 7.8.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 64,720 kB
  • sloc: cpp: 362,337; pascal: 33; python: 23; makefile: 4
file content (785 lines) | stat: -rw-r--r-- 51,518 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785

// std lib related includes
#include <tuple>

// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

namespace py = pybind11;

// Standard Handle
#include <Standard_Handle.hxx>


// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Cone.hxx>
#include <gp_Cylinder.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pln.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Lin.hxx>
#include <IntAna_Quadric.hxx>
#include <gp_Circ.hxx>
#include <gp_Elips.hxx>
#include <gp_Parab.hxx>
#include <gp_Hypr.hxx>
#include <gp_Pln.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Lin.hxx>
#include <gp_Torus.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Cylinder.hxx>
#include <IntAna_Quadric.hxx>
#include <gp_Cone.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pln.hxx>
#include <gp_Cylinder.hxx>
#include <gp_Sphere.hxx>
#include <gp_Cone.hxx>
#include <gp_Torus.hxx>
#include <gp_Lin.hxx>
#include <gp_Circ.hxx>
#include <gp_Elips.hxx>
#include <gp_Parab.hxx>
#include <gp_Hypr.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>

// module includes
#include <IntAna_Curve.hxx>
#include <IntAna_Int3Pln.hxx>
#include <IntAna_IntConicQuad.hxx>
#include <IntAna_IntLinTorus.hxx>
#include <IntAna_IntQuadQuad.hxx>
#include <IntAna_ListIteratorOfListOfCurve.hxx>
#include <IntAna_ListOfCurve.hxx>
#include <IntAna_QuadQuadGeo.hxx>
#include <IntAna_Quadric.hxx>
#include <IntAna_ResultType.hxx>

// template related includes

// ./opencascade/IntAna_ListOfCurve.hxx
#include "NCollection_tmpl.hxx"

// ./opencascade/IntAna_ListOfCurve.hxx
#include "NCollection_tmpl.hxx"


// user-defined pre
#include "OCP_specific.inc"

// user-defined inclusion per module

// Module definiiton
void register_IntAna(py::module &main_module) {


py::module m = static_cast<py::module>(main_module.attr("IntAna"));
py::object klass;

//Python trampoline classes

// classes

    // Class IntAna_Curve from ./opencascade/IntAna_Curve.hxx
    klass = m.attr("IntAna_Curve");


    // nested enums

    static_cast<py::class_<IntAna_Curve , shared_ptr<IntAna_Curve>  >>(klass)
    // constructors
        .def(py::init<  >()  )
    // custom constructors
    // methods
        .def("SetCylinderQuadValues",
             (void (IntAna_Curve::*)( const gp_Cylinder & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Boolean  ) ) static_cast<void (IntAna_Curve::*)( const gp_Cylinder & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Boolean  ) >(&IntAna_Curve::SetCylinderQuadValues),
             R"#(Sets the parameters used to compute Points and Derivative on the curve.)#"  , py::arg("Cylinder"),  py::arg("Qxx"),  py::arg("Qyy"),  py::arg("Qzz"),  py::arg("Qxy"),  py::arg("Qxz"),  py::arg("Qyz"),  py::arg("Qx"),  py::arg("Qy"),  py::arg("Qz"),  py::arg("Q1"),  py::arg("Tol"),  py::arg("DomInf"),  py::arg("DomSup"),  py::arg("TwoZForATheta"),  py::arg("ZIsPositive")
          )
        .def("SetConeQuadValues",
             (void (IntAna_Curve::*)( const gp_Cone & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Boolean  ) ) static_cast<void (IntAna_Curve::*)( const gp_Cone & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Boolean  ) >(&IntAna_Curve::SetConeQuadValues),
             R"#(Sets the parameters used to compute Points and Derivative on the curve.)#"  , py::arg("Cone"),  py::arg("Qxx"),  py::arg("Qyy"),  py::arg("Qzz"),  py::arg("Qxy"),  py::arg("Qxz"),  py::arg("Qyz"),  py::arg("Qx"),  py::arg("Qy"),  py::arg("Qz"),  py::arg("Q1"),  py::arg("Tol"),  py::arg("DomInf"),  py::arg("DomSup"),  py::arg("TwoZForATheta"),  py::arg("ZIsPositive")
          )
        .def("IsOpen",
             (Standard_Boolean (IntAna_Curve::*)() const) static_cast<Standard_Boolean (IntAna_Curve::*)() const>(&IntAna_Curve::IsOpen),
             R"#(Returns TRUE if the curve is not infinite at the last parameter or at the first parameter of the domain.)#" 
          )
        .def("IsConstant",
             (Standard_Boolean (IntAna_Curve::*)() const) static_cast<Standard_Boolean (IntAna_Curve::*)() const>(&IntAna_Curve::IsConstant),
             R"#(Returns TRUE if the function is constant.)#" 
          )
        .def("IsFirstOpen",
             (Standard_Boolean (IntAna_Curve::*)() const) static_cast<Standard_Boolean (IntAna_Curve::*)() const>(&IntAna_Curve::IsFirstOpen),
             R"#(Returns TRUE if the domain is open at the beginning.)#" 
          )
        .def("IsLastOpen",
             (Standard_Boolean (IntAna_Curve::*)() const) static_cast<Standard_Boolean (IntAna_Curve::*)() const>(&IntAna_Curve::IsLastOpen),
             R"#(Returns TRUE if the domain is open at the end.)#" 
          )
        .def("Value",
             (gp_Pnt (IntAna_Curve::*)( const Standard_Real  ) ) static_cast<gp_Pnt (IntAna_Curve::*)( const Standard_Real  ) >(&IntAna_Curve::Value),
             R"#(Returns the point at parameter Theta on the curve.)#"  , py::arg("Theta")
          )
        .def("D1u",
             (Standard_Boolean (IntAna_Curve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec &  ) ) static_cast<Standard_Boolean (IntAna_Curve::*)( const Standard_Real ,  gp_Pnt & ,  gp_Vec &  ) >(&IntAna_Curve::D1u),
             R"#(Returns the point and the first derivative at parameter Theta on the curve.)#"  , py::arg("Theta"),  py::arg("P"),  py::arg("V")
          )
        .def("FindParameter",
             (void (IntAna_Curve::*)( const gp_Pnt & ,  NCollection_List<Standard_Real> &  ) const) static_cast<void (IntAna_Curve::*)( const gp_Pnt & ,  NCollection_List<Standard_Real> &  ) const>(&IntAna_Curve::FindParameter),
             R"#(Tries to find the parameter of the point P on the curve. If the method returns False, the "projection" is impossible. If the method returns True at least one parameter has been found. theParams is always sorted in ascending order.)#"  , py::arg("P"),  py::arg("theParams")
          )
        .def("SetIsFirstOpen",
             (void (IntAna_Curve::*)( const Standard_Boolean  ) ) static_cast<void (IntAna_Curve::*)( const Standard_Boolean  ) >(&IntAna_Curve::SetIsFirstOpen),
             R"#(If flag is True, the Curve is not defined at the first parameter of its domain.)#"  , py::arg("Flag")
          )
        .def("SetIsLastOpen",
             (void (IntAna_Curve::*)( const Standard_Boolean  ) ) static_cast<void (IntAna_Curve::*)( const Standard_Boolean  ) >(&IntAna_Curve::SetIsLastOpen),
             R"#(If flag is True, the Curve is not defined at the first parameter of its domain.)#"  , py::arg("Flag")
          )
        .def("SetDomain",
             (void (IntAna_Curve::*)( const Standard_Real ,  const Standard_Real  ) ) static_cast<void (IntAna_Curve::*)( const Standard_Real ,  const Standard_Real  ) >(&IntAna_Curve::SetDomain),
             R"#(Trims this curve)#"  , py::arg("theFirst"),  py::arg("theLast")
          )
    // methods using call by reference i.s.o. return
        .def("Domain",
             []( IntAna_Curve &self   ){
                 Standard_Real  theFirst;
                Standard_Real  theLast;

                 self.Domain(theFirst,theLast);
                 
                 return std::make_tuple(theFirst,theLast); },
             R"#(Returns the paramatric domain of the curve.)#" 
          )
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class IntAna_Int3Pln from ./opencascade/IntAna_Int3Pln.hxx
    klass = m.attr("IntAna_Int3Pln");


    // nested enums

    static_cast<py::class_<IntAna_Int3Pln , shared_ptr<IntAna_Int3Pln>  >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const gp_Pln &,const gp_Pln &,const gp_Pln & >()  , py::arg("P1"),  py::arg("P2"),  py::arg("P3") )
    // custom constructors
    // methods
        .def("Perform",
             (void (IntAna_Int3Pln::*)( const gp_Pln & ,  const gp_Pln & ,  const gp_Pln &  ) ) static_cast<void (IntAna_Int3Pln::*)( const gp_Pln & ,  const gp_Pln & ,  const gp_Pln &  ) >(&IntAna_Int3Pln::Perform),
             R"#(Determination of the intersection point between 3 planes.)#"  , py::arg("P1"),  py::arg("P2"),  py::arg("P3")
          )
        .def("IsDone",
             (Standard_Boolean (IntAna_Int3Pln::*)() const) static_cast<Standard_Boolean (IntAna_Int3Pln::*)() const>(&IntAna_Int3Pln::IsDone),
             R"#(Returns True if the computation was successful.)#" 
          )
        .def("IsEmpty",
             (Standard_Boolean (IntAna_Int3Pln::*)() const) static_cast<Standard_Boolean (IntAna_Int3Pln::*)() const>(&IntAna_Int3Pln::IsEmpty),
             R"#(Returns TRUE if there is no intersection POINT. If 2 planes are identical or parallel, IsEmpty will return TRUE.)#" 
          )
        .def("IsDone",
             (Standard_Boolean (IntAna_Int3Pln::*)() const) static_cast<Standard_Boolean (IntAna_Int3Pln::*)() const>(&IntAna_Int3Pln::IsDone),
             R"#(Returns True if the computation was successful.)#" 
          )
        .def("IsEmpty",
             (Standard_Boolean (IntAna_Int3Pln::*)() const) static_cast<Standard_Boolean (IntAna_Int3Pln::*)() const>(&IntAna_Int3Pln::IsEmpty),
             R"#(Returns TRUE if there is no intersection POINT. If 2 planes are identical or parallel, IsEmpty will return TRUE.)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Value",
             (const gp_Pnt & (IntAna_Int3Pln::*)() const) static_cast<const gp_Pnt & (IntAna_Int3Pln::*)() const>(&IntAna_Int3Pln::Value),
             R"#(Returns the intersection point.)#"
             
         )
       .def("Value",
             (const gp_Pnt & (IntAna_Int3Pln::*)() const) static_cast<const gp_Pnt & (IntAna_Int3Pln::*)() const>(&IntAna_Int3Pln::Value),
             R"#(Returns the intersection point.)#"
             
         )
;

    // Class IntAna_IntConicQuad from ./opencascade/IntAna_IntConicQuad.hxx
    klass = m.attr("IntAna_IntConicQuad");


    // nested enums

    static_cast<py::class_<IntAna_IntConicQuad , shared_ptr<IntAna_IntConicQuad>  >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const gp_Lin &,const IntAna_Quadric & >()  , py::arg("L"),  py::arg("Q") )
        .def(py::init< const gp_Circ &,const IntAna_Quadric & >()  , py::arg("C"),  py::arg("Q") )
        .def(py::init< const gp_Elips &,const IntAna_Quadric & >()  , py::arg("E"),  py::arg("Q") )
        .def(py::init< const gp_Parab &,const IntAna_Quadric & >()  , py::arg("P"),  py::arg("Q") )
        .def(py::init< const gp_Hypr &,const IntAna_Quadric & >()  , py::arg("H"),  py::arg("Q") )
        .def(py::init< const gp_Lin &,const gp_Pln &,const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("L"),  py::arg("P"),  py::arg("Tolang"),  py::arg("Tol")=static_cast<const Standard_Real>(0),  py::arg("Len")=static_cast<const Standard_Real>(0) )
        .def(py::init< const gp_Circ &,const gp_Pln &,const Standard_Real,const Standard_Real >()  , py::arg("C"),  py::arg("P"),  py::arg("Tolang"),  py::arg("Tol") )
        .def(py::init< const gp_Elips &,const gp_Pln &,const Standard_Real,const Standard_Real >()  , py::arg("E"),  py::arg("P"),  py::arg("Tolang"),  py::arg("Tol") )
        .def(py::init< const gp_Parab &,const gp_Pln &,const Standard_Real >()  , py::arg("Pb"),  py::arg("P"),  py::arg("Tolang") )
        .def(py::init< const gp_Hypr &,const gp_Pln &,const Standard_Real >()  , py::arg("H"),  py::arg("P"),  py::arg("Tolang") )
    // custom constructors
    // methods
        .def("Perform",
             (void (IntAna_IntConicQuad::*)( const gp_Lin & ,  const IntAna_Quadric &  ) ) static_cast<void (IntAna_IntConicQuad::*)( const gp_Lin & ,  const IntAna_Quadric &  ) >(&IntAna_IntConicQuad::Perform),
             R"#(Intersects a line and a quadric.)#"  , py::arg("L"),  py::arg("Q")
          )
        .def("Perform",
             (void (IntAna_IntConicQuad::*)( const gp_Circ & ,  const IntAna_Quadric &  ) ) static_cast<void (IntAna_IntConicQuad::*)( const gp_Circ & ,  const IntAna_Quadric &  ) >(&IntAna_IntConicQuad::Perform),
             R"#(Intersects a circle and a quadric.)#"  , py::arg("C"),  py::arg("Q")
          )
        .def("Perform",
             (void (IntAna_IntConicQuad::*)( const gp_Elips & ,  const IntAna_Quadric &  ) ) static_cast<void (IntAna_IntConicQuad::*)( const gp_Elips & ,  const IntAna_Quadric &  ) >(&IntAna_IntConicQuad::Perform),
             R"#(Intersects an ellipse and a quadric.)#"  , py::arg("E"),  py::arg("Q")
          )
        .def("Perform",
             (void (IntAna_IntConicQuad::*)( const gp_Parab & ,  const IntAna_Quadric &  ) ) static_cast<void (IntAna_IntConicQuad::*)( const gp_Parab & ,  const IntAna_Quadric &  ) >(&IntAna_IntConicQuad::Perform),
             R"#(Intersects a parabola and a quadric.)#"  , py::arg("P"),  py::arg("Q")
          )
        .def("Perform",
             (void (IntAna_IntConicQuad::*)( const gp_Hypr & ,  const IntAna_Quadric &  ) ) static_cast<void (IntAna_IntConicQuad::*)( const gp_Hypr & ,  const IntAna_Quadric &  ) >(&IntAna_IntConicQuad::Perform),
             R"#(Intersects an hyperbola and a quadric.)#"  , py::arg("H"),  py::arg("Q")
          )
        .def("Perform",
             (void (IntAna_IntConicQuad::*)( const gp_Lin & ,  const gp_Pln & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (IntAna_IntConicQuad::*)( const gp_Lin & ,  const gp_Pln & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&IntAna_IntConicQuad::Perform),
             R"#(Intersects a line and a plane. Tolang is used to determine if the angle between two vectors is null. Tol is used to check the distance between line and plane on the distance <Len> from the origin of the line.)#"  , py::arg("L"),  py::arg("P"),  py::arg("Tolang"),  py::arg("Tol")=static_cast<const Standard_Real>(0),  py::arg("Len")=static_cast<const Standard_Real>(0)
          )
        .def("Perform",
             (void (IntAna_IntConicQuad::*)( const gp_Circ & ,  const gp_Pln & ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (IntAna_IntConicQuad::*)( const gp_Circ & ,  const gp_Pln & ,  const Standard_Real ,  const Standard_Real  ) >(&IntAna_IntConicQuad::Perform),
             R"#(Intersects a circle and a plane. Tolang is used to determine if the angle between two vectors is null. Tol is used to determine if a distance is null.)#"  , py::arg("C"),  py::arg("P"),  py::arg("Tolang"),  py::arg("Tol")
          )
        .def("Perform",
             (void (IntAna_IntConicQuad::*)( const gp_Elips & ,  const gp_Pln & ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (IntAna_IntConicQuad::*)( const gp_Elips & ,  const gp_Pln & ,  const Standard_Real ,  const Standard_Real  ) >(&IntAna_IntConicQuad::Perform),
             R"#(Intersects an ellipse and a plane. Tolang is used to determine if the angle between two vectors is null. Tol is used to determine if a distance is null.)#"  , py::arg("E"),  py::arg("P"),  py::arg("Tolang"),  py::arg("Tol")
          )
        .def("Perform",
             (void (IntAna_IntConicQuad::*)( const gp_Parab & ,  const gp_Pln & ,  const Standard_Real  ) ) static_cast<void (IntAna_IntConicQuad::*)( const gp_Parab & ,  const gp_Pln & ,  const Standard_Real  ) >(&IntAna_IntConicQuad::Perform),
             R"#(Intersects a parabola and a plane. Tolang is used to determine if the angle between two vectors is null.)#"  , py::arg("Pb"),  py::arg("P"),  py::arg("Tolang")
          )
        .def("Perform",
             (void (IntAna_IntConicQuad::*)( const gp_Hypr & ,  const gp_Pln & ,  const Standard_Real  ) ) static_cast<void (IntAna_IntConicQuad::*)( const gp_Hypr & ,  const gp_Pln & ,  const Standard_Real  ) >(&IntAna_IntConicQuad::Perform),
             R"#(Intersects an hyperbola and a plane. Tolang is used to determine if the angle between two vectors is null.)#"  , py::arg("H"),  py::arg("P"),  py::arg("Tolang")
          )
        .def("IsDone",
             (Standard_Boolean (IntAna_IntConicQuad::*)() const) static_cast<Standard_Boolean (IntAna_IntConicQuad::*)() const>(&IntAna_IntConicQuad::IsDone),
             R"#(Returns TRUE if the creation completed.)#" 
          )
        .def("IsInQuadric",
             (Standard_Boolean (IntAna_IntConicQuad::*)() const) static_cast<Standard_Boolean (IntAna_IntConicQuad::*)() const>(&IntAna_IntConicQuad::IsInQuadric),
             R"#(Returns TRUE if the conic is in the quadric.)#" 
          )
        .def("IsParallel",
             (Standard_Boolean (IntAna_IntConicQuad::*)() const) static_cast<Standard_Boolean (IntAna_IntConicQuad::*)() const>(&IntAna_IntConicQuad::IsParallel),
             R"#(Returns TRUE if the line is in a quadric which is parallel to the quadric.)#" 
          )
        .def("NbPoints",
             (Standard_Integer (IntAna_IntConicQuad::*)() const) static_cast<Standard_Integer (IntAna_IntConicQuad::*)() const>(&IntAna_IntConicQuad::NbPoints),
             R"#(Returns the number of intersection point.)#" 
          )
        .def("Point",
             (const gp_Pnt & (IntAna_IntConicQuad::*)( const Standard_Integer  ) const) static_cast<const gp_Pnt & (IntAna_IntConicQuad::*)( const Standard_Integer  ) const>(&IntAna_IntConicQuad::Point),
             R"#(Returns the point of range N.)#"  , py::arg("N")
          )
        .def("ParamOnConic",
             (Standard_Real (IntAna_IntConicQuad::*)( const Standard_Integer  ) const) static_cast<Standard_Real (IntAna_IntConicQuad::*)( const Standard_Integer  ) const>(&IntAna_IntConicQuad::ParamOnConic),
             R"#(Returns the parameter on the line of the intersection point of range N.)#"  , py::arg("N")
          )
        .def("IsDone",
             (Standard_Boolean (IntAna_IntConicQuad::*)() const) static_cast<Standard_Boolean (IntAna_IntConicQuad::*)() const>(&IntAna_IntConicQuad::IsDone),
             R"#(Returns TRUE if the creation completed.)#" 
          )
        .def("IsInQuadric",
             (Standard_Boolean (IntAna_IntConicQuad::*)() const) static_cast<Standard_Boolean (IntAna_IntConicQuad::*)() const>(&IntAna_IntConicQuad::IsInQuadric),
             R"#(Returns TRUE if the conic is in the quadric.)#" 
          )
        .def("IsParallel",
             (Standard_Boolean (IntAna_IntConicQuad::*)() const) static_cast<Standard_Boolean (IntAna_IntConicQuad::*)() const>(&IntAna_IntConicQuad::IsParallel),
             R"#(Returns TRUE if the line is in a quadric which is parallel to the quadric.)#" 
          )
        .def("NbPoints",
             (Standard_Integer (IntAna_IntConicQuad::*)() const) static_cast<Standard_Integer (IntAna_IntConicQuad::*)() const>(&IntAna_IntConicQuad::NbPoints),
             R"#(Returns the number of intersection point.)#" 
          )
        .def("Point",
             (const gp_Pnt & (IntAna_IntConicQuad::*)( const Standard_Integer  ) const) static_cast<const gp_Pnt & (IntAna_IntConicQuad::*)( const Standard_Integer  ) const>(&IntAna_IntConicQuad::Point),
             R"#(Returns the point of range N.)#"  , py::arg("i")
          )
        .def("ParamOnConic",
             (Standard_Real (IntAna_IntConicQuad::*)( const Standard_Integer  ) const) static_cast<Standard_Real (IntAna_IntConicQuad::*)( const Standard_Integer  ) const>(&IntAna_IntConicQuad::ParamOnConic),
             R"#(Returns the parameter on the line of the intersection point of range N.)#"  , py::arg("i")
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class IntAna_IntLinTorus from ./opencascade/IntAna_IntLinTorus.hxx
    klass = m.attr("IntAna_IntLinTorus");


    // nested enums

    static_cast<py::class_<IntAna_IntLinTorus , shared_ptr<IntAna_IntLinTorus>  >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const gp_Lin &,const gp_Torus & >()  , py::arg("L"),  py::arg("T") )
    // custom constructors
    // methods
        .def("Perform",
             (void (IntAna_IntLinTorus::*)( const gp_Lin & ,  const gp_Torus &  ) ) static_cast<void (IntAna_IntLinTorus::*)( const gp_Lin & ,  const gp_Torus &  ) >(&IntAna_IntLinTorus::Perform),
             R"#(Intersects a line and a torus.)#"  , py::arg("L"),  py::arg("T")
          )
        .def("IsDone",
             (Standard_Boolean (IntAna_IntLinTorus::*)() const) static_cast<Standard_Boolean (IntAna_IntLinTorus::*)() const>(&IntAna_IntLinTorus::IsDone),
             R"#(Returns True if the computation was successful.)#" 
          )
        .def("NbPoints",
             (Standard_Integer (IntAna_IntLinTorus::*)() const) static_cast<Standard_Integer (IntAna_IntLinTorus::*)() const>(&IntAna_IntLinTorus::NbPoints),
             R"#(Returns the number of intersection points.)#" 
          )
        .def("Value",
             (const gp_Pnt & (IntAna_IntLinTorus::*)( const Standard_Integer  ) const) static_cast<const gp_Pnt & (IntAna_IntLinTorus::*)( const Standard_Integer  ) const>(&IntAna_IntLinTorus::Value),
             R"#(Returns the intersection point of range Index.)#"  , py::arg("Index")
          )
        .def("ParamOnLine",
             (Standard_Real (IntAna_IntLinTorus::*)( const Standard_Integer  ) const) static_cast<Standard_Real (IntAna_IntLinTorus::*)( const Standard_Integer  ) const>(&IntAna_IntLinTorus::ParamOnLine),
             R"#(Returns the parameter on the line of the intersection point of range Index.)#"  , py::arg("Index")
          )
        .def("IsDone",
             (Standard_Boolean (IntAna_IntLinTorus::*)() const) static_cast<Standard_Boolean (IntAna_IntLinTorus::*)() const>(&IntAna_IntLinTorus::IsDone),
             R"#(Returns True if the computation was successful.)#" 
          )
        .def("NbPoints",
             (Standard_Integer (IntAna_IntLinTorus::*)() const) static_cast<Standard_Integer (IntAna_IntLinTorus::*)() const>(&IntAna_IntLinTorus::NbPoints),
             R"#(Returns the number of intersection points.)#" 
          )
        .def("Value",
             (const gp_Pnt & (IntAna_IntLinTorus::*)( const Standard_Integer  ) const) static_cast<const gp_Pnt & (IntAna_IntLinTorus::*)( const Standard_Integer  ) const>(&IntAna_IntLinTorus::Value),
             R"#(Returns the intersection point of range Index.)#"  , py::arg("Index")
          )
        .def("ParamOnLine",
             (Standard_Real (IntAna_IntLinTorus::*)( const Standard_Integer  ) const) static_cast<Standard_Real (IntAna_IntLinTorus::*)( const Standard_Integer  ) const>(&IntAna_IntLinTorus::ParamOnLine),
             R"#(Returns the parameter on the line of the intersection point of range Index.)#"  , py::arg("Index")
          )
    // methods using call by reference i.s.o. return
        .def("ParamOnTorus",
             []( IntAna_IntLinTorus &self , const Standard_Integer Index ){
                 Standard_Real  FI;
                Standard_Real  THETA;

                 self.ParamOnTorus(Index,FI,THETA);
                 
                 return std::make_tuple(FI,THETA); },
             R"#(Returns the parameters on the torus of the intersection point of range Index.)#"  , py::arg("Index")
          )
        .def("ParamOnTorus",
             []( IntAna_IntLinTorus &self , const Standard_Integer Index ){
                 Standard_Real  FI;
                Standard_Real  THETA;

                 self.ParamOnTorus(Index,FI,THETA);
                 
                 return std::make_tuple(FI,THETA); },
             R"#(Returns the parameters on the torus of the intersection point of range Index.)#"  , py::arg("Index")
          )
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class IntAna_IntQuadQuad from ./opencascade/IntAna_IntQuadQuad.hxx
    klass = m.attr("IntAna_IntQuadQuad");


    // nested enums

    static_cast<py::class_<IntAna_IntQuadQuad , shared_ptr<IntAna_IntQuadQuad>  >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const gp_Cylinder &,const IntAna_Quadric &,const Standard_Real >()  , py::arg("C"),  py::arg("Q"),  py::arg("Tol") )
        .def(py::init< const gp_Cone &,const IntAna_Quadric &,const Standard_Real >()  , py::arg("C"),  py::arg("Q"),  py::arg("Tol") )
    // custom constructors
    // methods
        .def("Perform",
             (void (IntAna_IntQuadQuad::*)( const gp_Cylinder & ,  const IntAna_Quadric & ,  const Standard_Real  ) ) static_cast<void (IntAna_IntQuadQuad::*)( const gp_Cylinder & ,  const IntAna_Quadric & ,  const Standard_Real  ) >(&IntAna_IntQuadQuad::Perform),
             R"#(Intersects a cylinder and a quadric . Tol est a definir plus precisemment.)#"  , py::arg("C"),  py::arg("Q"),  py::arg("Tol")
          )
        .def("Perform",
             (void (IntAna_IntQuadQuad::*)( const gp_Cone & ,  const IntAna_Quadric & ,  const Standard_Real  ) ) static_cast<void (IntAna_IntQuadQuad::*)( const gp_Cone & ,  const IntAna_Quadric & ,  const Standard_Real  ) >(&IntAna_IntQuadQuad::Perform),
             R"#(Intersects a cone and a quadric. Tol est a definir plus precisemment.)#"  , py::arg("C"),  py::arg("Q"),  py::arg("Tol")
          )
        .def("IsDone",
             (Standard_Boolean (IntAna_IntQuadQuad::*)() const) static_cast<Standard_Boolean (IntAna_IntQuadQuad::*)() const>(&IntAna_IntQuadQuad::IsDone),
             R"#(Returns True if the computation was successful.)#" 
          )
        .def("IdenticalElements",
             (Standard_Boolean (IntAna_IntQuadQuad::*)() const) static_cast<Standard_Boolean (IntAna_IntQuadQuad::*)() const>(&IntAna_IntQuadQuad::IdenticalElements),
             R"#(Returns TRUE if the cylinder, the cone or the sphere is identical to the quadric.)#" 
          )
        .def("NbCurve",
             (Standard_Integer (IntAna_IntQuadQuad::*)() const) static_cast<Standard_Integer (IntAna_IntQuadQuad::*)() const>(&IntAna_IntQuadQuad::NbCurve),
             R"#(Returns the number of curves solution.)#" 
          )
        .def("Curve",
             (const IntAna_Curve & (IntAna_IntQuadQuad::*)( const Standard_Integer  ) const) static_cast<const IntAna_Curve & (IntAna_IntQuadQuad::*)( const Standard_Integer  ) const>(&IntAna_IntQuadQuad::Curve),
             R"#(Returns the curve of range N.)#"  , py::arg("N")
          )
        .def("NbPnt",
             (Standard_Integer (IntAna_IntQuadQuad::*)() const) static_cast<Standard_Integer (IntAna_IntQuadQuad::*)() const>(&IntAna_IntQuadQuad::NbPnt),
             R"#(Returns the number of contact point.)#" 
          )
        .def("Point",
             (const gp_Pnt & (IntAna_IntQuadQuad::*)( const Standard_Integer  ) const) static_cast<const gp_Pnt & (IntAna_IntQuadQuad::*)( const Standard_Integer  ) const>(&IntAna_IntQuadQuad::Point),
             R"#(Returns the point of range N.)#"  , py::arg("N")
          )
        .def("HasNextCurve",
             (Standard_Boolean (IntAna_IntQuadQuad::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (IntAna_IntQuadQuad::*)( const Standard_Integer  ) const>(&IntAna_IntQuadQuad::HasNextCurve),
             R"#(Returns True if the Curve I shares its last bound with another curve.)#"  , py::arg("I")
          )
        .def("NextCurve",
             (Standard_Integer (IntAna_IntQuadQuad::*)( const Standard_Integer ,  Standard_Boolean &  ) const) static_cast<Standard_Integer (IntAna_IntQuadQuad::*)( const Standard_Integer ,  Standard_Boolean &  ) const>(&IntAna_IntQuadQuad::NextCurve),
             R"#(If HasNextCurve(I) returns True, this function returns the Index J of the curve which has a common bound with the curve I. If theOpposite == True , then the last parameter of the curve I, and the last parameter of the curve J give the same point. Else the last parameter of the curve I and the first parameter of the curve J are the same point.)#"  , py::arg("I"),  py::arg("theOpposite")
          )
        .def("HasPreviousCurve",
             (Standard_Boolean (IntAna_IntQuadQuad::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (IntAna_IntQuadQuad::*)( const Standard_Integer  ) const>(&IntAna_IntQuadQuad::HasPreviousCurve),
             R"#(Returns True if the Curve I shares its first bound with another curve.)#"  , py::arg("I")
          )
        .def("PreviousCurve",
             (Standard_Integer (IntAna_IntQuadQuad::*)( const Standard_Integer ,  Standard_Boolean &  ) const) static_cast<Standard_Integer (IntAna_IntQuadQuad::*)( const Standard_Integer ,  Standard_Boolean &  ) const>(&IntAna_IntQuadQuad::PreviousCurve),
             R"#(if HasPreviousCurve(I) returns True, this function returns the Index J of the curve which has a common bound with the curve I. If theOpposite == True , then the first parameter of the curve I, and the first parameter of the curve J give the same point. Else the first parameter of the curve I and the last parameter of the curve J are the same point.)#"  , py::arg("I"),  py::arg("theOpposite")
          )
        .def("IsDone",
             (Standard_Boolean (IntAna_IntQuadQuad::*)() const) static_cast<Standard_Boolean (IntAna_IntQuadQuad::*)() const>(&IntAna_IntQuadQuad::IsDone),
             R"#(Returns True if the computation was successful.)#" 
          )
        .def("IdenticalElements",
             (Standard_Boolean (IntAna_IntQuadQuad::*)() const) static_cast<Standard_Boolean (IntAna_IntQuadQuad::*)() const>(&IntAna_IntQuadQuad::IdenticalElements),
             R"#(Returns TRUE if the cylinder, the cone or the sphere is identical to the quadric.)#" 
          )
        .def("NbCurve",
             (Standard_Integer (IntAna_IntQuadQuad::*)() const) static_cast<Standard_Integer (IntAna_IntQuadQuad::*)() const>(&IntAna_IntQuadQuad::NbCurve),
             R"#(Returns the number of curves solution.)#" 
          )
        .def("NbPnt",
             (Standard_Integer (IntAna_IntQuadQuad::*)() const) static_cast<Standard_Integer (IntAna_IntQuadQuad::*)() const>(&IntAna_IntQuadQuad::NbPnt),
             R"#(Returns the number of contact point.)#" 
          )
    // methods using call by reference i.s.o. return
        .def("Parameters",
             []( IntAna_IntQuadQuad &self , const Standard_Integer N ){
                 Standard_Real  U1;
                Standard_Real  U2;

                 self.Parameters(N,U1,U2);
                 
                 return std::make_tuple(U1,U2); },
             R"#(Returns the parameters on the "explicit quadric" (i.e the cylinder or the cone, the first argument given to the constructor) of the point of range N.)#"  , py::arg("N")
          )
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class IntAna_QuadQuadGeo from ./opencascade/IntAna_QuadQuadGeo.hxx
    klass = m.attr("IntAna_QuadQuadGeo");


    // nested enums

    static_cast<py::class_<IntAna_QuadQuadGeo , shared_ptr<IntAna_QuadQuadGeo>  >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const gp_Pln &,const gp_Pln &,const Standard_Real,const Standard_Real >()  , py::arg("P1"),  py::arg("P2"),  py::arg("TolAng"),  py::arg("Tol") )
        .def(py::init< const gp_Pln &,const gp_Cylinder &,const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("P"),  py::arg("C"),  py::arg("Tolang"),  py::arg("Tol"),  py::arg("H")=static_cast<const Standard_Real>(0) )
        .def(py::init< const gp_Pln &,const gp_Sphere & >()  , py::arg("P"),  py::arg("S") )
        .def(py::init< const gp_Pln &,const gp_Cone &,const Standard_Real,const Standard_Real >()  , py::arg("P"),  py::arg("C"),  py::arg("Tolang"),  py::arg("Tol") )
        .def(py::init< const gp_Cylinder &,const gp_Cylinder &,const Standard_Real >()  , py::arg("Cyl1"),  py::arg("Cyl2"),  py::arg("Tol") )
        .def(py::init< const gp_Cylinder &,const gp_Sphere &,const Standard_Real >()  , py::arg("Cyl"),  py::arg("Sph"),  py::arg("Tol") )
        .def(py::init< const gp_Cylinder &,const gp_Cone &,const Standard_Real >()  , py::arg("Cyl"),  py::arg("Con"),  py::arg("Tol") )
        .def(py::init< const gp_Sphere &,const gp_Sphere &,const Standard_Real >()  , py::arg("Sph1"),  py::arg("Sph2"),  py::arg("Tol") )
        .def(py::init< const gp_Sphere &,const gp_Cone &,const Standard_Real >()  , py::arg("Sph"),  py::arg("Con"),  py::arg("Tol") )
        .def(py::init< const gp_Cone &,const gp_Cone &,const Standard_Real >()  , py::arg("Con1"),  py::arg("Con2"),  py::arg("Tol") )
        .def(py::init< const gp_Pln &,const gp_Torus &,const Standard_Real >()  , py::arg("Pln"),  py::arg("Tor"),  py::arg("Tol") )
        .def(py::init< const gp_Cylinder &,const gp_Torus &,const Standard_Real >()  , py::arg("Cyl"),  py::arg("Tor"),  py::arg("Tol") )
        .def(py::init< const gp_Cone &,const gp_Torus &,const Standard_Real >()  , py::arg("Con"),  py::arg("Tor"),  py::arg("Tol") )
        .def(py::init< const gp_Sphere &,const gp_Torus &,const Standard_Real >()  , py::arg("Sph"),  py::arg("Tor"),  py::arg("Tol") )
        .def(py::init< const gp_Torus &,const gp_Torus &,const Standard_Real >()  , py::arg("Tor1"),  py::arg("Tor2"),  py::arg("Tol") )
    // custom constructors
    // methods
        .def("Perform",
             (void (IntAna_QuadQuadGeo::*)( const gp_Pln & ,  const gp_Pln & ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Pln & ,  const gp_Pln & ,  const Standard_Real ,  const Standard_Real  ) >(&IntAna_QuadQuadGeo::Perform),
             R"#(Intersects two planes. TolAng is the angular tolerance used to determine if the planes are parallel. Tol is the tolerance used to determine if the planes are identical (only when they are parallel).)#"  , py::arg("P1"),  py::arg("P2"),  py::arg("TolAng"),  py::arg("Tol")
          )
        .def("Perform",
             (void (IntAna_QuadQuadGeo::*)( const gp_Pln & ,  const gp_Cylinder & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Pln & ,  const gp_Cylinder & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&IntAna_QuadQuadGeo::Perform),
             R"#(Intersects a plane and a cylinder. TolAng is the angular tolerance used to determine if the axis of the cylinder is parallel to the plane. Tol is the tolerance used to determine if the result is a circle or an ellipse. If the maximum distance between the ellipse solution and the circle centered at the ellipse center is less than Tol, the result will be the circle. H is the height of the cylinder <Cyl>. It is used to check whether the plane and cylinder are parallel.)#"  , py::arg("P"),  py::arg("C"),  py::arg("Tolang"),  py::arg("Tol"),  py::arg("H")=static_cast<const Standard_Real>(0)
          )
        .def("Perform",
             (void (IntAna_QuadQuadGeo::*)( const gp_Pln & ,  const gp_Sphere &  ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Pln & ,  const gp_Sphere &  ) >(&IntAna_QuadQuadGeo::Perform),
             R"#(Intersects a plane and a sphere.)#"  , py::arg("P"),  py::arg("S")
          )
        .def("Perform",
             (void (IntAna_QuadQuadGeo::*)( const gp_Pln & ,  const gp_Cone & ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Pln & ,  const gp_Cone & ,  const Standard_Real ,  const Standard_Real  ) >(&IntAna_QuadQuadGeo::Perform),
             R"#(Intersects a plane and a cone. TolAng is the angular tolerance used to determine if the axis of the cone is parallel or perpendicular to the plane, and if the generating line of the cone is parallel to the plane. Tol is the tolerance used to determine if the apex of the cone is in the plane.)#"  , py::arg("P"),  py::arg("C"),  py::arg("Tolang"),  py::arg("Tol")
          )
        .def("Perform",
             (void (IntAna_QuadQuadGeo::*)( const gp_Cylinder & ,  const gp_Cylinder & ,  const Standard_Real  ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Cylinder & ,  const gp_Cylinder & ,  const Standard_Real  ) >(&IntAna_QuadQuadGeo::Perform),
             R"#(Intersects two cylinders)#"  , py::arg("Cyl1"),  py::arg("Cyl2"),  py::arg("Tol")
          )
        .def("Perform",
             (void (IntAna_QuadQuadGeo::*)( const gp_Cylinder & ,  const gp_Sphere & ,  const Standard_Real  ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Cylinder & ,  const gp_Sphere & ,  const Standard_Real  ) >(&IntAna_QuadQuadGeo::Perform),
             R"#(Intersects a cylinder and a sphere.)#"  , py::arg("Cyl"),  py::arg("Sph"),  py::arg("Tol")
          )
        .def("Perform",
             (void (IntAna_QuadQuadGeo::*)( const gp_Cylinder & ,  const gp_Cone & ,  const Standard_Real  ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Cylinder & ,  const gp_Cone & ,  const Standard_Real  ) >(&IntAna_QuadQuadGeo::Perform),
             R"#(Intersects a cylinder and a cone.)#"  , py::arg("Cyl"),  py::arg("Con"),  py::arg("Tol")
          )
        .def("Perform",
             (void (IntAna_QuadQuadGeo::*)( const gp_Sphere & ,  const gp_Sphere & ,  const Standard_Real  ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Sphere & ,  const gp_Sphere & ,  const Standard_Real  ) >(&IntAna_QuadQuadGeo::Perform),
             R"#(Intersects a two spheres.)#"  , py::arg("Sph1"),  py::arg("Sph2"),  py::arg("Tol")
          )
        .def("Perform",
             (void (IntAna_QuadQuadGeo::*)( const gp_Sphere & ,  const gp_Cone & ,  const Standard_Real  ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Sphere & ,  const gp_Cone & ,  const Standard_Real  ) >(&IntAna_QuadQuadGeo::Perform),
             R"#(Intersects a sphere and a cone.)#"  , py::arg("Sph"),  py::arg("Con"),  py::arg("Tol")
          )
        .def("Perform",
             (void (IntAna_QuadQuadGeo::*)( const gp_Cone & ,  const gp_Cone & ,  const Standard_Real  ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Cone & ,  const gp_Cone & ,  const Standard_Real  ) >(&IntAna_QuadQuadGeo::Perform),
             R"#(Intersects two cones.)#"  , py::arg("Con1"),  py::arg("Con2"),  py::arg("Tol")
          )
        .def("Perform",
             (void (IntAna_QuadQuadGeo::*)( const gp_Pln & ,  const gp_Torus & ,  const Standard_Real  ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Pln & ,  const gp_Torus & ,  const Standard_Real  ) >(&IntAna_QuadQuadGeo::Perform),
             R"#(Intersects plane and torus.)#"  , py::arg("Pln"),  py::arg("Tor"),  py::arg("Tol")
          )
        .def("Perform",
             (void (IntAna_QuadQuadGeo::*)( const gp_Cylinder & ,  const gp_Torus & ,  const Standard_Real  ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Cylinder & ,  const gp_Torus & ,  const Standard_Real  ) >(&IntAna_QuadQuadGeo::Perform),
             R"#(Intersects cylinder and torus.)#"  , py::arg("Cyl"),  py::arg("Tor"),  py::arg("Tol")
          )
        .def("Perform",
             (void (IntAna_QuadQuadGeo::*)( const gp_Cone & ,  const gp_Torus & ,  const Standard_Real  ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Cone & ,  const gp_Torus & ,  const Standard_Real  ) >(&IntAna_QuadQuadGeo::Perform),
             R"#(Intersects cone and torus.)#"  , py::arg("Con"),  py::arg("Tor"),  py::arg("Tol")
          )
        .def("Perform",
             (void (IntAna_QuadQuadGeo::*)( const gp_Sphere & ,  const gp_Torus & ,  const Standard_Real  ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Sphere & ,  const gp_Torus & ,  const Standard_Real  ) >(&IntAna_QuadQuadGeo::Perform),
             R"#(Intersects sphere and torus.)#"  , py::arg("Sph"),  py::arg("Tor"),  py::arg("Tol")
          )
        .def("Perform",
             (void (IntAna_QuadQuadGeo::*)( const gp_Torus & ,  const gp_Torus & ,  const Standard_Real  ) ) static_cast<void (IntAna_QuadQuadGeo::*)( const gp_Torus & ,  const gp_Torus & ,  const Standard_Real  ) >(&IntAna_QuadQuadGeo::Perform),
             R"#(Intersects two toruses.)#"  , py::arg("Tor1"),  py::arg("Tor2"),  py::arg("Tol")
          )
        .def("IsDone",
             (Standard_Boolean (IntAna_QuadQuadGeo::*)() const) static_cast<Standard_Boolean (IntAna_QuadQuadGeo::*)() const>(&IntAna_QuadQuadGeo::IsDone),
             R"#(Returns Standard_True if the computation was successful.)#" 
          )
        .def("TypeInter",
             (IntAna_ResultType (IntAna_QuadQuadGeo::*)() const) static_cast<IntAna_ResultType (IntAna_QuadQuadGeo::*)() const>(&IntAna_QuadQuadGeo::TypeInter),
             R"#(Returns the type of intersection.)#" 
          )
        .def("NbSolutions",
             (Standard_Integer (IntAna_QuadQuadGeo::*)() const) static_cast<Standard_Integer (IntAna_QuadQuadGeo::*)() const>(&IntAna_QuadQuadGeo::NbSolutions),
             R"#(Returns the number of intersections. The possible intersections are : - 1 point - 1 or 2 line(s) - 1 Point and 1 Line - 1 circle - 1 ellipse - 1 parabola - 1 or 2 hyperbola(s).)#" 
          )
        .def("Point",
             (gp_Pnt (IntAna_QuadQuadGeo::*)( const Standard_Integer  ) const) static_cast<gp_Pnt (IntAna_QuadQuadGeo::*)( const Standard_Integer  ) const>(&IntAna_QuadQuadGeo::Point),
             R"#(Returns the point solution of range Num.)#"  , py::arg("Num")
          )
        .def("Line",
             (gp_Lin (IntAna_QuadQuadGeo::*)( const Standard_Integer  ) const) static_cast<gp_Lin (IntAna_QuadQuadGeo::*)( const Standard_Integer  ) const>(&IntAna_QuadQuadGeo::Line),
             R"#(Returns the line solution of range Num.)#"  , py::arg("Num")
          )
        .def("Circle",
             (gp_Circ (IntAna_QuadQuadGeo::*)( const Standard_Integer  ) const) static_cast<gp_Circ (IntAna_QuadQuadGeo::*)( const Standard_Integer  ) const>(&IntAna_QuadQuadGeo::Circle),
             R"#(Returns the circle solution of range Num.)#"  , py::arg("Num")
          )
        .def("Ellipse",
             (gp_Elips (IntAna_QuadQuadGeo::*)( const Standard_Integer  ) const) static_cast<gp_Elips (IntAna_QuadQuadGeo::*)( const Standard_Integer  ) const>(&IntAna_QuadQuadGeo::Ellipse),
             R"#(Returns the ellipse solution of range Num.)#"  , py::arg("Num")
          )
        .def("Parabola",
             (gp_Parab (IntAna_QuadQuadGeo::*)( const Standard_Integer  ) const) static_cast<gp_Parab (IntAna_QuadQuadGeo::*)( const Standard_Integer  ) const>(&IntAna_QuadQuadGeo::Parabola),
             R"#(Returns the parabola solution of range Num.)#"  , py::arg("Num")
          )
        .def("Hyperbola",
             (gp_Hypr (IntAna_QuadQuadGeo::*)( const Standard_Integer  ) const) static_cast<gp_Hypr (IntAna_QuadQuadGeo::*)( const Standard_Integer  ) const>(&IntAna_QuadQuadGeo::Hyperbola),
             R"#(Returns the hyperbola solution of range Num.)#"  , py::arg("Num")
          )
        .def("HasCommonGen",
             (Standard_Boolean (IntAna_QuadQuadGeo::*)() const) static_cast<Standard_Boolean (IntAna_QuadQuadGeo::*)() const>(&IntAna_QuadQuadGeo::HasCommonGen),
             R"#(None)#" 
          )
        .def("IsDone",
             (Standard_Boolean (IntAna_QuadQuadGeo::*)() const) static_cast<Standard_Boolean (IntAna_QuadQuadGeo::*)() const>(&IntAna_QuadQuadGeo::IsDone),
             R"#(Returns Standard_True if the computation was successful.)#" 
          )
        .def("TypeInter",
             (IntAna_ResultType (IntAna_QuadQuadGeo::*)() const) static_cast<IntAna_ResultType (IntAna_QuadQuadGeo::*)() const>(&IntAna_QuadQuadGeo::TypeInter),
             R"#(Returns the type of intersection.)#" 
          )
        .def("NbSolutions",
             (Standard_Integer (IntAna_QuadQuadGeo::*)() const) static_cast<Standard_Integer (IntAna_QuadQuadGeo::*)() const>(&IntAna_QuadQuadGeo::NbSolutions),
             R"#(Returns the number of intersections. The possible intersections are : - 1 point - 1 or 2 line(s) - 1 Point and 1 Line - 1 circle - 1 ellipse - 1 parabola - 1 or 2 hyperbola(s).)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("PChar",
             (const gp_Pnt & (IntAna_QuadQuadGeo::*)() const) static_cast<const gp_Pnt & (IntAna_QuadQuadGeo::*)() const>(&IntAna_QuadQuadGeo::PChar),
             R"#(None)#"
             
         )
;

    // Class IntAna_Quadric from ./opencascade/IntAna_Quadric.hxx
    klass = m.attr("IntAna_Quadric");


    // nested enums

    static_cast<py::class_<IntAna_Quadric , shared_ptr<IntAna_Quadric>  >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const gp_Pln & >()  , py::arg("P") )
        .def(py::init< const gp_Sphere & >()  , py::arg("Sph") )
        .def(py::init< const gp_Cylinder & >()  , py::arg("Cyl") )
        .def(py::init< const gp_Cone & >()  , py::arg("Cone") )
    // custom constructors
    // methods
        .def("SetQuadric",
             (void (IntAna_Quadric::*)( const gp_Pln &  ) ) static_cast<void (IntAna_Quadric::*)( const gp_Pln &  ) >(&IntAna_Quadric::SetQuadric),
             R"#(Initializes the quadric with a Pln)#"  , py::arg("P")
          )
        .def("SetQuadric",
             (void (IntAna_Quadric::*)( const gp_Sphere &  ) ) static_cast<void (IntAna_Quadric::*)( const gp_Sphere &  ) >(&IntAna_Quadric::SetQuadric),
             R"#(Initialize the quadric with a Sphere)#"  , py::arg("Sph")
          )
        .def("SetQuadric",
             (void (IntAna_Quadric::*)( const gp_Cone &  ) ) static_cast<void (IntAna_Quadric::*)( const gp_Cone &  ) >(&IntAna_Quadric::SetQuadric),
             R"#(Initializes the quadric with a Cone)#"  , py::arg("Con")
          )
        .def("SetQuadric",
             (void (IntAna_Quadric::*)( const gp_Cylinder &  ) ) static_cast<void (IntAna_Quadric::*)( const gp_Cylinder &  ) >(&IntAna_Quadric::SetQuadric),
             R"#(Initializes the quadric with a Cylinder)#"  , py::arg("Cyl")
          )
    // methods using call by reference i.s.o. return
        .def("Coefficients",
             []( IntAna_Quadric &self   ){
                 Standard_Real  xCXX;
                Standard_Real  xCYY;
                Standard_Real  xCZZ;
                Standard_Real  xCXY;
                Standard_Real  xCXZ;
                Standard_Real  xCYZ;
                Standard_Real  xCX;
                Standard_Real  xCY;
                Standard_Real  xCZ;
                Standard_Real  xCCte;

                 self.Coefficients(xCXX,xCYY,xCZZ,xCXY,xCXZ,xCYZ,xCX,xCY,xCZ,xCCte);
                 
                 return std::make_tuple(xCXX,xCYY,xCZZ,xCXY,xCXZ,xCYZ,xCX,xCY,xCZ,xCCte); },
             R"#(Returns the coefficients of the polynomial equation which define the quadric: xCXX x**2 + xCYY y**2 + xCZZ z**2 + 2 ( xCXY x y + xCXZ x z + xCYZ y z ) + 2 ( xCX x + xCY y + xCZ z ) + xCCte)#" 
          )
        .def("NewCoefficients",
             []( IntAna_Quadric &self , const gp_Ax3 & Axis ){
                 Standard_Real  xCXX;
                Standard_Real  xCYY;
                Standard_Real  xCZZ;
                Standard_Real  xCXY;
                Standard_Real  xCXZ;
                Standard_Real  xCYZ;
                Standard_Real  xCX;
                Standard_Real  xCY;
                Standard_Real  xCZ;
                Standard_Real  xCCte;

                 self.NewCoefficients(xCXX,xCYY,xCZZ,xCXY,xCXZ,xCYZ,xCX,xCY,xCZ,xCCte,Axis);
                 
                 return std::make_tuple(xCXX,xCYY,xCZZ,xCXY,xCXZ,xCYZ,xCX,xCY,xCZ,xCCte); },
             R"#(Returns the coefficients of the polynomial equation ( written in the natural coordinates system ) in the local coordinates system defined by Axis)#"  , py::arg("Axis")
          )
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

// functions
// ./opencascade/IntAna_Curve.hxx
// ./opencascade/IntAna_Int3Pln.hxx
// ./opencascade/IntAna_IntConicQuad.hxx
// ./opencascade/IntAna_IntLinTorus.hxx
// ./opencascade/IntAna_IntQuadQuad.hxx
// ./opencascade/IntAna_ListIteratorOfListOfCurve.hxx
// ./opencascade/IntAna_ListOfCurve.hxx
// ./opencascade/IntAna_QuadQuadGeo.hxx
// ./opencascade/IntAna_Quadric.hxx
// ./opencascade/IntAna_ResultType.hxx

// Additional functions

// operators

// register typdefs
    register_template_NCollection_List<IntAna_Curve>(m,"IntAna_ListOfCurve");


// exceptions

// user-defined post-inclusion per module in the body

};

// user-defined post-inclusion per module

// user-defined post