File: IntAna2d.cpp

package info (click to toggle)
python-ocp 7.8.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 64,720 kB
  • sloc: cpp: 362,337; pascal: 33; python: 23; makefile: 4
file content (378 lines) | stat: -rw-r--r-- 20,959 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

// std lib related includes
#include <tuple>

// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

namespace py = pybind11;

// Standard Handle
#include <Standard_Handle.hxx>


// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Lin2d.hxx>
#include <gp_Circ2d.hxx>
#include <IntAna2d_Conic.hxx>
#include <gp_Elips2d.hxx>
#include <gp_Parab2d.hxx>
#include <gp_Hypr2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Circ2d.hxx>
#include <gp_Lin2d.hxx>
#include <gp_Parab2d.hxx>
#include <gp_Hypr2d.hxx>
#include <gp_Elips2d.hxx>
#include <gp_XY.hxx>
#include <gp_Ax2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>

// module includes
#include <IntAna2d_AnaIntersection.hxx>
#include <IntAna2d_Conic.hxx>
#include <IntAna2d_IntPoint.hxx>
#include <IntAna2d_Outils.hxx>

// template related includes


// user-defined pre
#include "OCP_specific.inc"

// user-defined inclusion per module

// Module definiiton
void register_IntAna2d(py::module &main_module) {


py::module m = static_cast<py::module>(main_module.attr("IntAna2d"));
py::object klass;

//Python trampoline classes

// classes

    // Class IntAna2d_AnaIntersection from ./opencascade/IntAna2d_AnaIntersection.hxx
    klass = m.attr("IntAna2d_AnaIntersection");


    // nested enums

    static_cast<py::class_<IntAna2d_AnaIntersection , shared_ptr<IntAna2d_AnaIntersection>  >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const gp_Lin2d &,const gp_Lin2d & >()  , py::arg("L1"),  py::arg("L2") )
        .def(py::init< const gp_Circ2d &,const gp_Circ2d & >()  , py::arg("C1"),  py::arg("C2") )
        .def(py::init< const gp_Lin2d &,const gp_Circ2d & >()  , py::arg("L"),  py::arg("C") )
        .def(py::init< const gp_Lin2d &,const IntAna2d_Conic & >()  , py::arg("L"),  py::arg("C") )
        .def(py::init< const gp_Circ2d &,const IntAna2d_Conic & >()  , py::arg("C"),  py::arg("Co") )
        .def(py::init< const gp_Elips2d &,const IntAna2d_Conic & >()  , py::arg("E"),  py::arg("C") )
        .def(py::init< const gp_Parab2d &,const IntAna2d_Conic & >()  , py::arg("P"),  py::arg("C") )
        .def(py::init< const gp_Hypr2d &,const IntAna2d_Conic & >()  , py::arg("H"),  py::arg("C") )
    // custom constructors
    // methods
        .def("Perform",
             (void (IntAna2d_AnaIntersection::*)( const gp_Lin2d & ,  const gp_Lin2d &  ) ) static_cast<void (IntAna2d_AnaIntersection::*)( const gp_Lin2d & ,  const gp_Lin2d &  ) >(&IntAna2d_AnaIntersection::Perform),
             R"#(Intersection between two lines.)#"  , py::arg("L1"),  py::arg("L2")
          )
        .def("Perform",
             (void (IntAna2d_AnaIntersection::*)( const gp_Circ2d & ,  const gp_Circ2d &  ) ) static_cast<void (IntAna2d_AnaIntersection::*)( const gp_Circ2d & ,  const gp_Circ2d &  ) >(&IntAna2d_AnaIntersection::Perform),
             R"#(Intersection between two circles.)#"  , py::arg("C1"),  py::arg("C2")
          )
        .def("Perform",
             (void (IntAna2d_AnaIntersection::*)( const gp_Lin2d & ,  const gp_Circ2d &  ) ) static_cast<void (IntAna2d_AnaIntersection::*)( const gp_Lin2d & ,  const gp_Circ2d &  ) >(&IntAna2d_AnaIntersection::Perform),
             R"#(Intersection between a line and a circle.)#"  , py::arg("L"),  py::arg("C")
          )
        .def("Perform",
             (void (IntAna2d_AnaIntersection::*)( const gp_Lin2d & ,  const IntAna2d_Conic &  ) ) static_cast<void (IntAna2d_AnaIntersection::*)( const gp_Lin2d & ,  const IntAna2d_Conic &  ) >(&IntAna2d_AnaIntersection::Perform),
             R"#(Intersection between a line and a conic.)#"  , py::arg("L"),  py::arg("C")
          )
        .def("Perform",
             (void (IntAna2d_AnaIntersection::*)( const gp_Circ2d & ,  const IntAna2d_Conic &  ) ) static_cast<void (IntAna2d_AnaIntersection::*)( const gp_Circ2d & ,  const IntAna2d_Conic &  ) >(&IntAna2d_AnaIntersection::Perform),
             R"#(Intersection between a circle and another conic.)#"  , py::arg("C"),  py::arg("Co")
          )
        .def("Perform",
             (void (IntAna2d_AnaIntersection::*)( const gp_Elips2d & ,  const IntAna2d_Conic &  ) ) static_cast<void (IntAna2d_AnaIntersection::*)( const gp_Elips2d & ,  const IntAna2d_Conic &  ) >(&IntAna2d_AnaIntersection::Perform),
             R"#(Intersection between an ellipse and another conic.)#"  , py::arg("E"),  py::arg("C")
          )
        .def("Perform",
             (void (IntAna2d_AnaIntersection::*)( const gp_Parab2d & ,  const IntAna2d_Conic &  ) ) static_cast<void (IntAna2d_AnaIntersection::*)( const gp_Parab2d & ,  const IntAna2d_Conic &  ) >(&IntAna2d_AnaIntersection::Perform),
             R"#(Intersection between a parabola and another conic.)#"  , py::arg("P"),  py::arg("C")
          )
        .def("Perform",
             (void (IntAna2d_AnaIntersection::*)( const gp_Hypr2d & ,  const IntAna2d_Conic &  ) ) static_cast<void (IntAna2d_AnaIntersection::*)( const gp_Hypr2d & ,  const IntAna2d_Conic &  ) >(&IntAna2d_AnaIntersection::Perform),
             R"#(Intersection between an hyperbola and another conic.)#"  , py::arg("H"),  py::arg("C")
          )
        .def("IsDone",
             (Standard_Boolean (IntAna2d_AnaIntersection::*)() const) static_cast<Standard_Boolean (IntAna2d_AnaIntersection::*)() const>(&IntAna2d_AnaIntersection::IsDone),
             R"#(Returns TRUE if the computation was successful.)#" 
          )
        .def("IsEmpty",
             (Standard_Boolean (IntAna2d_AnaIntersection::*)() const) static_cast<Standard_Boolean (IntAna2d_AnaIntersection::*)() const>(&IntAna2d_AnaIntersection::IsEmpty),
             R"#(Returns TRUE when there is no intersection, i-e - no intersection point - the elements are not identical. The element may be parallel in this case.)#" 
          )
        .def("IdenticalElements",
             (Standard_Boolean (IntAna2d_AnaIntersection::*)() const) static_cast<Standard_Boolean (IntAna2d_AnaIntersection::*)() const>(&IntAna2d_AnaIntersection::IdenticalElements),
             R"#(For the intersection between an element of gp and a conic known by an implicit equation, the result will be TRUE if the element of gp verifies the implicit equation. For the intersection between two Lin2d or two Circ2d, the result will be TRUE if the elements are identical. The function returns FALSE in all the other cases.)#" 
          )
        .def("ParallelElements",
             (Standard_Boolean (IntAna2d_AnaIntersection::*)() const) static_cast<Standard_Boolean (IntAna2d_AnaIntersection::*)() const>(&IntAna2d_AnaIntersection::ParallelElements),
             R"#(For the intersection between two Lin2d or two Circ2d, the function returns TRUE if the elements are parallel. The function returns FALSE in all the other cases.)#" 
          )
        .def("NbPoints",
             (Standard_Integer (IntAna2d_AnaIntersection::*)() const) static_cast<Standard_Integer (IntAna2d_AnaIntersection::*)() const>(&IntAna2d_AnaIntersection::NbPoints),
             R"#(returns the number of IntPoint between the 2 curves.)#" 
          )
        .def("Point",
             (const IntAna2d_IntPoint & (IntAna2d_AnaIntersection::*)( const Standard_Integer  ) const) static_cast<const IntAna2d_IntPoint & (IntAna2d_AnaIntersection::*)( const Standard_Integer  ) const>(&IntAna2d_AnaIntersection::Point),
             R"#(returns the intersection point of range N; If (N<=0) or (N>NbPoints), an exception is raised.)#"  , py::arg("N")
          )
        .def("IsDone",
             (Standard_Boolean (IntAna2d_AnaIntersection::*)() const) static_cast<Standard_Boolean (IntAna2d_AnaIntersection::*)() const>(&IntAna2d_AnaIntersection::IsDone),
             R"#(Returns TRUE if the computation was successful.)#" 
          )
        .def("IsEmpty",
             (Standard_Boolean (IntAna2d_AnaIntersection::*)() const) static_cast<Standard_Boolean (IntAna2d_AnaIntersection::*)() const>(&IntAna2d_AnaIntersection::IsEmpty),
             R"#(Returns TRUE when there is no intersection, i-e - no intersection point - the elements are not identical. The element may be parallel in this case.)#" 
          )
        .def("IdenticalElements",
             (Standard_Boolean (IntAna2d_AnaIntersection::*)() const) static_cast<Standard_Boolean (IntAna2d_AnaIntersection::*)() const>(&IntAna2d_AnaIntersection::IdenticalElements),
             R"#(For the intersection between an element of gp and a conic known by an implicit equation, the result will be TRUE if the element of gp verifies the implicit equation. For the intersection between two Lin2d or two Circ2d, the result will be TRUE if the elements are identical. The function returns FALSE in all the other cases.)#" 
          )
        .def("ParallelElements",
             (Standard_Boolean (IntAna2d_AnaIntersection::*)() const) static_cast<Standard_Boolean (IntAna2d_AnaIntersection::*)() const>(&IntAna2d_AnaIntersection::ParallelElements),
             R"#(For the intersection between two Lin2d or two Circ2d, the function returns TRUE if the elements are parallel. The function returns FALSE in all the other cases.)#" 
          )
        .def("NbPoints",
             (Standard_Integer (IntAna2d_AnaIntersection::*)() const) static_cast<Standard_Integer (IntAna2d_AnaIntersection::*)() const>(&IntAna2d_AnaIntersection::NbPoints),
             R"#(returns the number of IntPoint between the 2 curves.)#" 
          )
        .def("Point",
             (const IntAna2d_IntPoint & (IntAna2d_AnaIntersection::*)( const Standard_Integer  ) const) static_cast<const IntAna2d_IntPoint & (IntAna2d_AnaIntersection::*)( const Standard_Integer  ) const>(&IntAna2d_AnaIntersection::Point),
             R"#(returns the intersection point of range N; If (N<=0) or (N>NbPoints), an exception is raised.)#"  , py::arg("N")
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class IntAna2d_Conic from ./opencascade/IntAna2d_Conic.hxx
    klass = m.attr("IntAna2d_Conic");


    // nested enums

    static_cast<py::class_<IntAna2d_Conic , shared_ptr<IntAna2d_Conic>  >>(klass)
    // constructors
        .def(py::init< const gp_Circ2d & >()  , py::arg("C") )
        .def(py::init< const gp_Lin2d & >()  , py::arg("C") )
        .def(py::init< const gp_Parab2d & >()  , py::arg("C") )
        .def(py::init< const gp_Hypr2d & >()  , py::arg("C") )
        .def(py::init< const gp_Elips2d & >()  , py::arg("C") )
    // custom constructors
    // methods
        .def("Value",
             (Standard_Real (IntAna2d_Conic::*)( const Standard_Real ,  const Standard_Real  ) const) static_cast<Standard_Real (IntAna2d_Conic::*)( const Standard_Real ,  const Standard_Real  ) const>(&IntAna2d_Conic::Value),
             R"#(value of the function F at the point X,Y.)#"  , py::arg("X"),  py::arg("Y")
          )
        .def("Grad",
             (gp_XY (IntAna2d_Conic::*)( const Standard_Real ,  const Standard_Real  ) const) static_cast<gp_XY (IntAna2d_Conic::*)( const Standard_Real ,  const Standard_Real  ) const>(&IntAna2d_Conic::Grad),
             R"#(returns the value of the gradient of F at the point X,Y.)#"  , py::arg("X"),  py::arg("Y")
          )
    // methods using call by reference i.s.o. return
        .def("ValAndGrad",
             []( IntAna2d_Conic &self , const Standard_Real X,const Standard_Real Y,gp_XY & Grd ){
                 Standard_Real  Val;

                 self.ValAndGrad(X,Y,Val,Grd);
                 
                 return std::make_tuple(Val); },
             R"#(Returns the value of the function and its gradient at the point X,Y.)#"  , py::arg("X"),  py::arg("Y"),  py::arg("Grd")
          )
        .def("Coefficients",
             []( IntAna2d_Conic &self   ){
                 Standard_Real  A;
                Standard_Real  B;
                Standard_Real  C;
                Standard_Real  D;
                Standard_Real  E;
                Standard_Real  F;

                 self.Coefficients(A,B,C,D,E,F);
                 
                 return std::make_tuple(A,B,C,D,E,F); },
             R"#(returns the coefficients of the polynomial equation which defines the conic: A.X**2 + B.Y**2 + 2.C.X*Y + 2.D.X + 2.E.Y + F = 0.)#" 
          )
        .def("NewCoefficients",
             []( IntAna2d_Conic &self , const gp_Ax2d & Axis ){
                 Standard_Real  A;
                Standard_Real  B;
                Standard_Real  C;
                Standard_Real  D;
                Standard_Real  E;
                Standard_Real  F;

                 self.NewCoefficients(A,B,C,D,E,F,Axis);
                 
                 return std::make_tuple(A,B,C,D,E,F); },
             R"#(Returns the coefficients of the polynomial equation ( written in the natural coordinates system ) A x x + B y y + 2 C x y + 2 D x + 2 E y + F in the local coordinates system defined by Axis)#"  , py::arg("Axis")
          )
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class IntAna2d_IntPoint from ./opencascade/IntAna2d_IntPoint.hxx
    klass = m.attr("IntAna2d_IntPoint");


    // nested enums

    static_cast<py::class_<IntAna2d_IntPoint , shared_ptr<IntAna2d_IntPoint>  >>(klass)
    // constructors
        .def(py::init< const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("X"),  py::arg("Y"),  py::arg("U1"),  py::arg("U2") )
        .def(py::init< const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("X"),  py::arg("Y"),  py::arg("U1") )
        .def(py::init<  >()  )
    // custom constructors
    // methods
        .def("SetValue",
             (void (IntAna2d_IntPoint::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (IntAna2d_IntPoint::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&IntAna2d_IntPoint::SetValue),
             R"#(Set the values for a "non-implicit" point.)#"  , py::arg("X"),  py::arg("Y"),  py::arg("U1"),  py::arg("U2")
          )
        .def("SetValue",
             (void (IntAna2d_IntPoint::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (IntAna2d_IntPoint::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&IntAna2d_IntPoint::SetValue),
             R"#(Set the values for an "implicit" point.)#"  , py::arg("X"),  py::arg("Y"),  py::arg("U1")
          )
        .def("SecondIsImplicit",
             (Standard_Boolean (IntAna2d_IntPoint::*)() const) static_cast<Standard_Boolean (IntAna2d_IntPoint::*)() const>(&IntAna2d_IntPoint::SecondIsImplicit),
             R"#(Returns True if the second curve is implicit.)#" 
          )
        .def("ParamOnFirst",
             (Standard_Real (IntAna2d_IntPoint::*)() const) static_cast<Standard_Real (IntAna2d_IntPoint::*)() const>(&IntAna2d_IntPoint::ParamOnFirst),
             R"#(Returns the parameter on the first element.)#" 
          )
        .def("ParamOnSecond",
             (Standard_Real (IntAna2d_IntPoint::*)() const) static_cast<Standard_Real (IntAna2d_IntPoint::*)() const>(&IntAna2d_IntPoint::ParamOnSecond),
             R"#(Returns the parameter on the second element. If the second element is an implicit curve, an exception is raised.)#" 
          )
        .def("ParamOnFirst",
             (Standard_Real (IntAna2d_IntPoint::*)() const) static_cast<Standard_Real (IntAna2d_IntPoint::*)() const>(&IntAna2d_IntPoint::ParamOnFirst),
             R"#(Returns the parameter on the first element.)#" 
          )
        .def("ParamOnSecond",
             (Standard_Real (IntAna2d_IntPoint::*)() const) static_cast<Standard_Real (IntAna2d_IntPoint::*)() const>(&IntAna2d_IntPoint::ParamOnSecond),
             R"#(Returns the parameter on the second element. If the second element is an implicit curve, an exception is raised.)#" 
          )
        .def("SecondIsImplicit",
             (Standard_Boolean (IntAna2d_IntPoint::*)() const) static_cast<Standard_Boolean (IntAna2d_IntPoint::*)() const>(&IntAna2d_IntPoint::SecondIsImplicit),
             R"#(Returns True if the second curve is implicit.)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Value",
             (const gp_Pnt2d & (IntAna2d_IntPoint::*)() const) static_cast<const gp_Pnt2d & (IntAna2d_IntPoint::*)() const>(&IntAna2d_IntPoint::Value),
             R"#(Returns the geometric point.)#"
             
         )
       .def("Value",
             (const gp_Pnt2d & (IntAna2d_IntPoint::*)() const) static_cast<const gp_Pnt2d & (IntAna2d_IntPoint::*)() const>(&IntAna2d_IntPoint::Value),
             R"#(Returns the geometric point.)#"
             
         )
;

    // Class MyDirectPolynomialRoots from ./opencascade/IntAna2d_Outils.hxx
    klass = m.attr("MyDirectPolynomialRoots");


    // nested enums

    static_cast<py::class_<MyDirectPolynomialRoots , shared_ptr<MyDirectPolynomialRoots>  >>(klass)
    // constructors
        .def(py::init< const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("A4"),  py::arg("A3"),  py::arg("A2"),  py::arg("A1"),  py::arg("A0") )
        .def(py::init< const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("A2"),  py::arg("A1"),  py::arg("A0") )
    // custom constructors
    // methods
        .def("NbSolutions",
             (Standard_Integer (MyDirectPolynomialRoots::*)() const) static_cast<Standard_Integer (MyDirectPolynomialRoots::*)() const>(&MyDirectPolynomialRoots::NbSolutions),
             R"#(None)#" 
          )
        .def("Value",
             (Standard_Real (MyDirectPolynomialRoots::*)( const Standard_Integer  ) const) static_cast<Standard_Real (MyDirectPolynomialRoots::*)( const Standard_Integer  ) const>(&MyDirectPolynomialRoots::Value),
             R"#(None)#"  , py::arg("i")
          )
        .def("IsDone",
             (Standard_Real (MyDirectPolynomialRoots::*)() const) static_cast<Standard_Real (MyDirectPolynomialRoots::*)() const>(&MyDirectPolynomialRoots::IsDone),
             R"#(None)#" 
          )
        .def("InfiniteRoots",
             (Standard_Boolean (MyDirectPolynomialRoots::*)() const) static_cast<Standard_Boolean (MyDirectPolynomialRoots::*)() const>(&MyDirectPolynomialRoots::InfiniteRoots),
             R"#(None)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

// functions
// ./opencascade/IntAna2d_AnaIntersection.hxx
// ./opencascade/IntAna2d_Conic.hxx
// ./opencascade/IntAna2d_IntPoint.hxx
// ./opencascade/IntAna2d_Outils.hxx
    m.def("Points_Confondus",
          (Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ))  static_cast<Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  )>(&Points_Confondus),
          R"#(None)#"  , py::arg("xa"),  py::arg("ya"),  py::arg("xb"),  py::arg("yb")
          );
    m.def("Traitement_Points_Confondus",
          (void (*)( Standard_Integer & ,  IntAna2d_IntPoint *  ))  static_cast<void (*)( Standard_Integer & ,  IntAna2d_IntPoint *  )>(&Traitement_Points_Confondus),
          R"#(None)#"  , py::arg("nb_pts"),  py::arg("pts")
          );
    m.def("Coord_Ancien_Repere",
          (void (*)( Standard_Real & ,  Standard_Real & ,  const gp_Ax2d &  ))  static_cast<void (*)( Standard_Real & ,  Standard_Real & ,  const gp_Ax2d &  )>(&Coord_Ancien_Repere),
          R"#(None)#"  , py::arg("Ancien_X"),  py::arg("Ancien_Y"),  py::arg("Axe_Nouveau_Repere")
          );

// Additional functions

// operators

// register typdefs


// exceptions

// user-defined post-inclusion per module in the body

};

// user-defined post-inclusion per module

// user-defined post