File: __init__.pyi

package info (click to toggle)
python-ocp 7.8.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 64,720 kB
  • sloc: cpp: 362,337; pascal: 33; python: 23; makefile: 4
file content (1713 lines) | stat: -rw-r--r-- 78,630 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
import OCP.BRepApprox
from typing import *
from typing import Iterable as iterable
from typing import Iterator as iterator
from numpy import float64
_Shape = Tuple[int, ...]
import OCP.AppParCurves
import OCP.Approx
import OCP.GeomAbs
import OCP.math
import io
import OCP.Geom
import OCP.TColStd
import OCP.Standard
import OCP.IntImp
import OCP.TColgp
import OCP.gp
import OCP.Adaptor3d
import OCP.Geom2d
import OCP.IntSurf
import OCP.BRepAdaptor
__all__  = [
"BRepApprox_Approx",
"BRepApprox_ApproxLine",
"BRepApprox_BSpGradient_BFGSOfMyBSplGradientOfTheComputeLineOfApprox",
"BRepApprox_BSpParFunctionOfMyBSplGradientOfTheComputeLineOfApprox",
"BRepApprox_BSpParLeastSquareOfMyBSplGradientOfTheComputeLineOfApprox",
"BRepApprox_Gradient_BFGSOfMyGradientOfTheComputeLineBezierOfApprox",
"BRepApprox_Gradient_BFGSOfMyGradientbisOfTheComputeLineOfApprox",
"BRepApprox_MyBSplGradientOfTheComputeLineOfApprox",
"BRepApprox_MyGradientOfTheComputeLineBezierOfApprox",
"BRepApprox_MyGradientbisOfTheComputeLineOfApprox",
"BRepApprox_ParFunctionOfMyGradientOfTheComputeLineBezierOfApprox",
"BRepApprox_ParFunctionOfMyGradientbisOfTheComputeLineOfApprox",
"BRepApprox_ParLeastSquareOfMyGradientOfTheComputeLineBezierOfApprox",
"BRepApprox_ParLeastSquareOfMyGradientbisOfTheComputeLineOfApprox",
"BRepApprox_ResConstraintOfMyGradientOfTheComputeLineBezierOfApprox",
"BRepApprox_ResConstraintOfMyGradientbisOfTheComputeLineOfApprox",
"BRepApprox_SurfaceTool",
"BRepApprox_TheComputeLineBezierOfApprox",
"BRepApprox_TheComputeLineOfApprox",
"BRepApprox_TheFunctionOfTheInt2SOfThePrmPrmSvSurfacesOfApprox",
"BRepApprox_TheImpPrmSvSurfacesOfApprox",
"BRepApprox_TheInt2SOfThePrmPrmSvSurfacesOfApprox",
"BRepApprox_TheMultiLineOfApprox",
"BRepApprox_TheMultiLineToolOfApprox",
"BRepApprox_ThePrmPrmSvSurfacesOfApprox",
"BRepApprox_TheZerImpFuncOfTheImpPrmSvSurfacesOfApprox"
]
class BRepApprox_Approx():
    """
    None
    """
    def IsDone(self) -> bool: 
        """
        None
        """
    def NbMultiCurves(self) -> int: 
        """
        None
        """
    @staticmethod
    def Parameters_s(Line : BRepApprox_TheMultiLineOfApprox,firstP : int,lastP : int,Par : OCP.Approx.Approx_ParametrizationType,TheParameters : Any) -> None: 
        """
        None
        """
    @overload
    def Perform(self,Surf1 : OCP.BRepAdaptor.BRepAdaptor_Surface,Surf2 : OCP.BRepAdaptor.BRepAdaptor_Surface,aLine : BRepApprox_ApproxLine,ApproxXYZ : bool=True,ApproxU1V1 : bool=True,ApproxU2V2 : bool=True,indicemin : int=0,indicemax : int=0) -> None: 
        """
        None

        None
        """
    @overload
    def Perform(self,aLine : BRepApprox_ApproxLine,ApproxXYZ : bool=True,ApproxU1V1 : bool=True,ApproxU2V2 : bool=True,indicemin : int=0,indicemax : int=0) -> None: ...
    def SetParameters(self,Tol3d : float,Tol2d : float,DegMin : int,DegMax : int,NbIterMax : int,NbPntMax : int=30,ApproxWithTangency : bool=True,Parametrization : OCP.Approx.Approx_ParametrizationType=Approx_ParametrizationType.Approx_ChordLength) -> None: 
        """
        None
        """
    def TolReached2d(self) -> float: 
        """
        None
        """
    def TolReached3d(self) -> float: 
        """
        None
        """
    def Value(self,Index : int) -> OCP.AppParCurves.AppParCurves_MultiBSpCurve: 
        """
        None
        """
    def __init__(self) -> None: ...
    pass
class BRepApprox_ApproxLine(OCP.Standard.Standard_Transient):
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def NbPnts(self) -> int: 
        """
        None
        """
    def Point(self,Index : int) -> OCP.IntSurf.IntSurf_PntOn2S: 
        """
        None
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    @overload
    def __init__(self,CurveXYZ : OCP.Geom.Geom_BSplineCurve,CurveUV1 : OCP.Geom2d.Geom2d_BSplineCurve,CurveUV2 : OCP.Geom2d.Geom2d_BSplineCurve) -> None: ...
    @overload
    def __init__(self,lin : OCP.IntSurf.IntSurf_LineOn2S,theTang : bool=False) -> None: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class BRepApprox_BSpGradient_BFGSOfMyBSplGradientOfTheComputeLineOfApprox(OCP.math.math_BFGS):
    """
    None
    """
    def Dump(self,o : io.BytesIO) -> None: 
        """
        Prints on the stream o information on the current state of the object. Is used to redefine the operator <<.
        """
    @overload
    def Gradient(self) -> Any: 
        """
        Returns the value of the gradient vector at the minimum in Grad. Exception NotDone is raised if the minimum was not found. Exception DimensionError is raised if the range of Grad is not equal to the range of the StartingPoint.

        Returns the value of the gradient vector at the minimum in Grad. Exception NotDone is raised if the minimum was not found. Exception DimensionError is raised if the range of Grad is not equal to the range of the StartingPoint.

        Returns the gradient vector at the minimum. Exception NotDone is raised if the minimum was not found.

        Returns the gradient vector at the minimum. Exception NotDone is raised if the minimum was not found.
        """
    @overload
    def Gradient(self,Grad : Any) -> None: ...
    def IsDone(self) -> bool: 
        """
        Returns true if the computations are successful, otherwise returns false.

        Returns true if the computations are successful, otherwise returns false.
        """
    def IsSolutionReached(self,F : OCP.math.math_MultipleVarFunctionWithGradient) -> bool: 
        """
        None
        """
    @overload
    def Location(self,Loc : Any) -> None: 
        """
        outputs the location vector of the minimum in Loc. Exception NotDone is raised if the minimum was not found. Exception DimensionError is raised if the range of Loc is not equal to the range of the StartingPoint.

        outputs the location vector of the minimum in Loc. Exception NotDone is raised if the minimum was not found. Exception DimensionError is raised if the range of Loc is not equal to the range of the StartingPoint.

        returns the location vector of the minimum. Exception NotDone is raised if the minimum was not found.

        returns the location vector of the minimum. Exception NotDone is raised if the minimum was not found.
        """
    @overload
    def Location(self) -> Any: ...
    def Minimum(self) -> float: 
        """
        returns the value of the minimum. Exception NotDone is raised if the minimum was not found.

        returns the value of the minimum. Exception NotDone is raised if the minimum was not found.
        """
    def NbIterations(self) -> int: 
        """
        Returns the number of iterations really done in the calculation of the minimum. The exception NotDone is raised if the minimum was not found.

        Returns the number of iterations really done in the calculation of the minimum. The exception NotDone is raised if the minimum was not found.
        """
    def Perform(self,F : OCP.math.math_MultipleVarFunctionWithGradient,StartingPoint : Any) -> None: 
        """
        Given the starting point StartingPoint, minimization is done on the function F. The solution F = Fi is found when : 2.0 * abs(Fi - Fi-1) <= Tolerance * (abs(Fi) + abs(Fi-1) + ZEPS). Tolerance, ZEPS and maximum number of iterations are given in the constructor.
        """
    def SetBoundary(self,theLeftBorder : Any,theRightBorder : Any) -> None: 
        """
        Set boundaries for conditional optimization. The expected indices range of vectors is [1, NbVariables].
        """
    def __init__(self,F : OCP.math.math_MultipleVarFunctionWithGradient,StartingPoint : Any,Tolerance3d : float,Tolerance2d : float,Eps : float,NbIterations : int=200) -> None: ...
    pass
class BRepApprox_BSpParFunctionOfMyBSplGradientOfTheComputeLineOfApprox(OCP.math.math_MultipleVarFunctionWithGradient, OCP.math.math_MultipleVarFunction):
    """
    None
    """
    def CurveValue(self) -> OCP.AppParCurves.AppParCurves_MultiBSpCurve: 
        """
        returns the MultiBSpCurve approximating the set after computing the value F or Grad(F).
        """
    def DerivativeFunctionMatrix(self) -> OCP.math.math_Matrix: 
        """
        returns the derivative function matrix used to approximate the multiline.
        """
    def Error(self,IPoint : int,CurveIndex : int) -> float: 
        """
        returns the distance between the MultiPoint of range IPoint and the curve CurveIndex.
        """
    def FirstConstraint(self,TheConstraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,FirstPoint : int) -> OCP.AppParCurves.AppParCurves_Constraint: 
        """
        None
        """
    def FunctionMatrix(self) -> OCP.math.math_Matrix: 
        """
        returns the function matrix used to approximate the multiline.
        """
    def GetStateNumber(self) -> int: 
        """
        return the state of the function corresponding to the latestt call of any methods associated to the function. This function is called by each of the algorithms described later which define the function Integer Algorithm::StateNumber(). The algorithm has the responsibility to call this function when it has found a solution (i.e. a root or a minimum) and has to maintain the association between the solution found and this StateNumber. Byu default, this method returns 0 (which means for the algorithm: no state has been saved). It is the responsibility of the programmer to decide if he needs to save the current state of the function and to return an Integer that allows retrieval of the state.
        """
    def Gradient(self,X : Any,G : Any) -> bool: 
        """
        returns the gradient G of the sum above for the parameters Xi.
        """
    def Index(self) -> Any: 
        """
        Returns the indexes of the first non null values of A and DA. The values are non null from Index(ieme point) +1 to Index(ieme point) + degree +1.
        """
    def LastConstraint(self,TheConstraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,LastPoint : int) -> OCP.AppParCurves.AppParCurves_Constraint: 
        """
        None
        """
    def MaxError2d(self) -> float: 
        """
        returns the maximum distance between the points and the MultiBSpCurve.
        """
    def MaxError3d(self) -> float: 
        """
        returns the maximum distance between the points and the MultiBSpCurve.
        """
    def NbVariables(self) -> int: 
        """
        returns the number of variables of the function. It corresponds to the number of MultiPoints.
        """
    def NewParameters(self) -> Any: 
        """
        returns the new parameters of the MultiLine.
        """
    def SetFirstLambda(self,l1 : float) -> None: 
        """
        None
        """
    def SetLastLambda(self,l2 : float) -> None: 
        """
        None
        """
    def Value(self,X : Any,F : float) -> bool: 
        """
        this method computes the new approximation of the MultiLine SSP and calculates F = sum (||Pui - Bi*Pi||2) for each point of the MultiLine.
        """
    def Values(self,X : Any,F : float,G : Any) -> bool: 
        """
        returns the value F=sum(||Pui - Bi*Pi||)2. returns the value G = grad(F) for the parameters Xi.
        """
    def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,FirstPoint : int,LastPoint : int,TheConstraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,Parameters : Any,Knots : OCP.TColStd.TColStd_Array1OfReal,Mults : OCP.TColStd.TColStd_Array1OfInteger,NbPol : int) -> None: ...
    pass
class BRepApprox_BSpParLeastSquareOfMyBSplGradientOfTheComputeLineOfApprox():
    """
    None
    """
    def BSplineValue(self) -> OCP.AppParCurves.AppParCurves_MultiBSpCurve: 
        """
        returns the result of the approximation, i.e. all the Curves. An exception is raised if NotDone.
        """
    def BezierValue(self) -> OCP.AppParCurves.AppParCurves_MultiCurve: 
        """
        returns the result of the approximation, i.e. all the Curves. An exception is raised if NotDone.
        """
    def DerivativeFunctionMatrix(self) -> OCP.math.math_Matrix: 
        """
        returns the derivative function matrix used to approximate the set.
        """
    def Distance(self) -> OCP.math.math_Matrix: 
        """
        returns the distances between the points of the multiline and the approximation curves.
        """
    def Error(self) -> tuple[float, float, float]: 
        """
        returns the maximum errors between the MultiLine and the approximation curves. F is the sum of the square distances.
        """
    def ErrorGradient(self,Grad : Any) -> tuple[float, float, float]: 
        """
        returns the maximum errors between the MultiLine and the approximation curves. F is the sum of the square distances. Grad is the derivative vector of the function F.
        """
    def FirstLambda(self) -> float: 
        """
        returns the value (P2 - P1)/ V1 if the first point was a tangency point.
        """
    def FunctionMatrix(self) -> OCP.math.math_Matrix: 
        """
        returns the function matrix used to approximate the set.
        """
    def IsDone(self) -> bool: 
        """
        returns True if all has been correctly done.
        """
    def KIndex(self) -> Any: 
        """
        Returns the indexes of the first non null values of A and DA. The values are non null from Index(ieme point) +1 to Index(ieme point) + degree +1.
        """
    def LastLambda(self) -> float: 
        """
        returns the value (PN - PN-1)/ VN if the last point was a tangency point.
        """
    @overload
    def Perform(self,Parameters : Any,V1t : Any,V2t : Any,V1c : Any,V2c : Any,l1 : float,l2 : float) -> None: 
        """
        Is used after having initialized the fields. The case "CurvaturePoint" is not treated in this method.

        Is used after having initialized the fields.

        Is used after having initialized the fields. <V1t> is the tangent vector at the first point. <V2t> is the tangent vector at the last point.

        Is used after having initialized the fields. <V1t> is the tangent vector at the first point. <V2t> is the tangent vector at the last point. <V1c> is the tangent vector at the first point. <V2c> is the tangent vector at the last point.
        """
    @overload
    def Perform(self,Parameters : Any,l1 : float,l2 : float) -> None: ...
    @overload
    def Perform(self,Parameters : Any) -> None: ...
    @overload
    def Perform(self,Parameters : Any,V1t : Any,V2t : Any,l1 : float,l2 : float) -> None: ...
    def Points(self) -> OCP.math.math_Matrix: 
        """
        returns the matrix of points value.
        """
    def Poles(self) -> OCP.math.math_Matrix: 
        """
        returns the matrix of resulting control points value.
        """
    @overload
    def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,Knots : OCP.TColStd.TColStd_Array1OfReal,Mults : OCP.TColStd.TColStd_Array1OfInteger,FirstPoint : int,LastPoint : int,FirstCons : OCP.AppParCurves.AppParCurves_Constraint,LastCons : OCP.AppParCurves.AppParCurves_Constraint,Parameters : Any,NbPol : int) -> None: ...
    @overload
    def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,FirstPoint : int,LastPoint : int,FirstCons : OCP.AppParCurves.AppParCurves_Constraint,LastCons : OCP.AppParCurves.AppParCurves_Constraint,NbPol : int) -> None: ...
    @overload
    def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,FirstPoint : int,LastPoint : int,FirstCons : OCP.AppParCurves.AppParCurves_Constraint,LastCons : OCP.AppParCurves.AppParCurves_Constraint,Parameters : Any,NbPol : int) -> None: ...
    @overload
    def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,Knots : OCP.TColStd.TColStd_Array1OfReal,Mults : OCP.TColStd.TColStd_Array1OfInteger,FirstPoint : int,LastPoint : int,FirstCons : OCP.AppParCurves.AppParCurves_Constraint,LastCons : OCP.AppParCurves.AppParCurves_Constraint,NbPol : int) -> None: ...
    pass
class BRepApprox_Gradient_BFGSOfMyGradientOfTheComputeLineBezierOfApprox(OCP.math.math_BFGS):
    """
    None
    """
    def Dump(self,o : io.BytesIO) -> None: 
        """
        Prints on the stream o information on the current state of the object. Is used to redefine the operator <<.
        """
    @overload
    def Gradient(self) -> Any: 
        """
        Returns the value of the gradient vector at the minimum in Grad. Exception NotDone is raised if the minimum was not found. Exception DimensionError is raised if the range of Grad is not equal to the range of the StartingPoint.

        Returns the value of the gradient vector at the minimum in Grad. Exception NotDone is raised if the minimum was not found. Exception DimensionError is raised if the range of Grad is not equal to the range of the StartingPoint.

        Returns the gradient vector at the minimum. Exception NotDone is raised if the minimum was not found.

        Returns the gradient vector at the minimum. Exception NotDone is raised if the minimum was not found.
        """
    @overload
    def Gradient(self,Grad : Any) -> None: ...
    def IsDone(self) -> bool: 
        """
        Returns true if the computations are successful, otherwise returns false.

        Returns true if the computations are successful, otherwise returns false.
        """
    def IsSolutionReached(self,F : OCP.math.math_MultipleVarFunctionWithGradient) -> bool: 
        """
        None
        """
    @overload
    def Location(self,Loc : Any) -> None: 
        """
        outputs the location vector of the minimum in Loc. Exception NotDone is raised if the minimum was not found. Exception DimensionError is raised if the range of Loc is not equal to the range of the StartingPoint.

        outputs the location vector of the minimum in Loc. Exception NotDone is raised if the minimum was not found. Exception DimensionError is raised if the range of Loc is not equal to the range of the StartingPoint.

        returns the location vector of the minimum. Exception NotDone is raised if the minimum was not found.

        returns the location vector of the minimum. Exception NotDone is raised if the minimum was not found.
        """
    @overload
    def Location(self) -> Any: ...
    def Minimum(self) -> float: 
        """
        returns the value of the minimum. Exception NotDone is raised if the minimum was not found.

        returns the value of the minimum. Exception NotDone is raised if the minimum was not found.
        """
    def NbIterations(self) -> int: 
        """
        Returns the number of iterations really done in the calculation of the minimum. The exception NotDone is raised if the minimum was not found.

        Returns the number of iterations really done in the calculation of the minimum. The exception NotDone is raised if the minimum was not found.
        """
    def Perform(self,F : OCP.math.math_MultipleVarFunctionWithGradient,StartingPoint : Any) -> None: 
        """
        Given the starting point StartingPoint, minimization is done on the function F. The solution F = Fi is found when : 2.0 * abs(Fi - Fi-1) <= Tolerance * (abs(Fi) + abs(Fi-1) + ZEPS). Tolerance, ZEPS and maximum number of iterations are given in the constructor.
        """
    def SetBoundary(self,theLeftBorder : Any,theRightBorder : Any) -> None: 
        """
        Set boundaries for conditional optimization. The expected indices range of vectors is [1, NbVariables].
        """
    def __init__(self,F : OCP.math.math_MultipleVarFunctionWithGradient,StartingPoint : Any,Tolerance3d : float,Tolerance2d : float,Eps : float,NbIterations : int=200) -> None: ...
    pass
class BRepApprox_Gradient_BFGSOfMyGradientbisOfTheComputeLineOfApprox(OCP.math.math_BFGS):
    """
    None
    """
    def Dump(self,o : io.BytesIO) -> None: 
        """
        Prints on the stream o information on the current state of the object. Is used to redefine the operator <<.
        """
    @overload
    def Gradient(self) -> Any: 
        """
        Returns the value of the gradient vector at the minimum in Grad. Exception NotDone is raised if the minimum was not found. Exception DimensionError is raised if the range of Grad is not equal to the range of the StartingPoint.

        Returns the value of the gradient vector at the minimum in Grad. Exception NotDone is raised if the minimum was not found. Exception DimensionError is raised if the range of Grad is not equal to the range of the StartingPoint.

        Returns the gradient vector at the minimum. Exception NotDone is raised if the minimum was not found.

        Returns the gradient vector at the minimum. Exception NotDone is raised if the minimum was not found.
        """
    @overload
    def Gradient(self,Grad : Any) -> None: ...
    def IsDone(self) -> bool: 
        """
        Returns true if the computations are successful, otherwise returns false.

        Returns true if the computations are successful, otherwise returns false.
        """
    def IsSolutionReached(self,F : OCP.math.math_MultipleVarFunctionWithGradient) -> bool: 
        """
        None
        """
    @overload
    def Location(self,Loc : Any) -> None: 
        """
        outputs the location vector of the minimum in Loc. Exception NotDone is raised if the minimum was not found. Exception DimensionError is raised if the range of Loc is not equal to the range of the StartingPoint.

        outputs the location vector of the minimum in Loc. Exception NotDone is raised if the minimum was not found. Exception DimensionError is raised if the range of Loc is not equal to the range of the StartingPoint.

        returns the location vector of the minimum. Exception NotDone is raised if the minimum was not found.

        returns the location vector of the minimum. Exception NotDone is raised if the minimum was not found.
        """
    @overload
    def Location(self) -> Any: ...
    def Minimum(self) -> float: 
        """
        returns the value of the minimum. Exception NotDone is raised if the minimum was not found.

        returns the value of the minimum. Exception NotDone is raised if the minimum was not found.
        """
    def NbIterations(self) -> int: 
        """
        Returns the number of iterations really done in the calculation of the minimum. The exception NotDone is raised if the minimum was not found.

        Returns the number of iterations really done in the calculation of the minimum. The exception NotDone is raised if the minimum was not found.
        """
    def Perform(self,F : OCP.math.math_MultipleVarFunctionWithGradient,StartingPoint : Any) -> None: 
        """
        Given the starting point StartingPoint, minimization is done on the function F. The solution F = Fi is found when : 2.0 * abs(Fi - Fi-1) <= Tolerance * (abs(Fi) + abs(Fi-1) + ZEPS). Tolerance, ZEPS and maximum number of iterations are given in the constructor.
        """
    def SetBoundary(self,theLeftBorder : Any,theRightBorder : Any) -> None: 
        """
        Set boundaries for conditional optimization. The expected indices range of vectors is [1, NbVariables].
        """
    def __init__(self,F : OCP.math.math_MultipleVarFunctionWithGradient,StartingPoint : Any,Tolerance3d : float,Tolerance2d : float,Eps : float,NbIterations : int=200) -> None: ...
    pass
class BRepApprox_MyBSplGradientOfTheComputeLineOfApprox():
    """
    None
    """
    def AverageError(self) -> float: 
        """
        returns the average error between the old and the new approximation.
        """
    def Error(self,Index : int) -> float: 
        """
        returns the difference between the old and the new approximation. An exception is raised if NotDone. An exception is raised if Index<1 or Index>NbParameters.
        """
    def IsDone(self) -> bool: 
        """
        returns True if all has been correctly done.
        """
    def MaxError2d(self) -> float: 
        """
        returns the maximum difference between the old and the new approximation.
        """
    def MaxError3d(self) -> float: 
        """
        returns the maximum difference between the old and the new approximation.
        """
    def Value(self) -> OCP.AppParCurves.AppParCurves_MultiBSpCurve: 
        """
        returns all the BSpline curves approximating the MultiLine SSP after minimization of the parameter.
        """
    @overload
    def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,FirstPoint : int,LastPoint : int,TheConstraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,Parameters : Any,Knots : OCP.TColStd.TColStd_Array1OfReal,Mults : OCP.TColStd.TColStd_Array1OfInteger,Deg : int,Tol3d : float,Tol2d : float,NbIterations : int=1) -> None: ...
    @overload
    def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,FirstPoint : int,LastPoint : int,TheConstraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,Parameters : Any,Knots : OCP.TColStd.TColStd_Array1OfReal,Mults : OCP.TColStd.TColStd_Array1OfInteger,Deg : int,Tol3d : float,Tol2d : float,NbIterations : int,lambda1 : float,lambda2 : float) -> None: ...
    pass
class BRepApprox_MyGradientOfTheComputeLineBezierOfApprox():
    """
    None
    """
    def AverageError(self) -> float: 
        """
        returns the average error between the old and the new approximation.
        """
    def Error(self,Index : int) -> float: 
        """
        returns the difference between the old and the new approximation. An exception is raised if NotDone. An exception is raised if Index<1 or Index>NbParameters.
        """
    def IsDone(self) -> bool: 
        """
        returns True if all has been correctly done.
        """
    def MaxError2d(self) -> float: 
        """
        returns the maximum difference between the old and the new approximation.
        """
    def MaxError3d(self) -> float: 
        """
        returns the maximum difference between the old and the new approximation.
        """
    def Value(self) -> OCP.AppParCurves.AppParCurves_MultiCurve: 
        """
        returns all the Bezier curves approximating the MultiLine SSP after minimization of the parameter.
        """
    def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,FirstPoint : int,LastPoint : int,TheConstraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,Parameters : Any,Deg : int,Tol3d : float,Tol2d : float,NbIterations : int=200) -> None: ...
    pass
class BRepApprox_MyGradientbisOfTheComputeLineOfApprox():
    """
    None
    """
    def AverageError(self) -> float: 
        """
        returns the average error between the old and the new approximation.
        """
    def Error(self,Index : int) -> float: 
        """
        returns the difference between the old and the new approximation. An exception is raised if NotDone. An exception is raised if Index<1 or Index>NbParameters.
        """
    def IsDone(self) -> bool: 
        """
        returns True if all has been correctly done.
        """
    def MaxError2d(self) -> float: 
        """
        returns the maximum difference between the old and the new approximation.
        """
    def MaxError3d(self) -> float: 
        """
        returns the maximum difference between the old and the new approximation.
        """
    def Value(self) -> OCP.AppParCurves.AppParCurves_MultiCurve: 
        """
        returns all the Bezier curves approximating the MultiLine SSP after minimization of the parameter.
        """
    def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,FirstPoint : int,LastPoint : int,TheConstraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,Parameters : Any,Deg : int,Tol3d : float,Tol2d : float,NbIterations : int=200) -> None: ...
    pass
class BRepApprox_ParFunctionOfMyGradientOfTheComputeLineBezierOfApprox(OCP.math.math_MultipleVarFunctionWithGradient, OCP.math.math_MultipleVarFunction):
    """
    None
    """
    def CurveValue(self) -> OCP.AppParCurves.AppParCurves_MultiCurve: 
        """
        returns the MultiCurve approximating the set after computing the value F or Grad(F).
        """
    def Error(self,IPoint : int,CurveIndex : int) -> float: 
        """
        returns the distance between the MultiPoint of range IPoint and the curve CurveIndex.
        """
    def FirstConstraint(self,TheConstraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,FirstPoint : int) -> OCP.AppParCurves.AppParCurves_Constraint: 
        """
        None
        """
    def GetStateNumber(self) -> int: 
        """
        return the state of the function corresponding to the latestt call of any methods associated to the function. This function is called by each of the algorithms described later which define the function Integer Algorithm::StateNumber(). The algorithm has the responsibility to call this function when it has found a solution (i.e. a root or a minimum) and has to maintain the association between the solution found and this StateNumber. Byu default, this method returns 0 (which means for the algorithm: no state has been saved). It is the responsibility of the programmer to decide if he needs to save the current state of the function and to return an Integer that allows retrieval of the state.
        """
    def Gradient(self,X : Any,G : Any) -> bool: 
        """
        returns the gradient G of the sum above for the parameters Xi.
        """
    def LastConstraint(self,TheConstraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,LastPoint : int) -> OCP.AppParCurves.AppParCurves_Constraint: 
        """
        None
        """
    def MaxError2d(self) -> float: 
        """
        returns the maximum distance between the points and the MultiCurve.
        """
    def MaxError3d(self) -> float: 
        """
        returns the maximum distance between the points and the MultiCurve.
        """
    def NbVariables(self) -> int: 
        """
        returns the number of variables of the function. It corresponds to the number of MultiPoints.
        """
    def NewParameters(self) -> Any: 
        """
        returns the new parameters of the MultiLine.
        """
    def Value(self,X : Any,F : float) -> bool: 
        """
        this method computes the new approximation of the MultiLine SSP and calculates F = sum (||Pui - Bi*Pi||2) for each point of the MultiLine.
        """
    def Values(self,X : Any,F : float,G : Any) -> bool: 
        """
        returns the value F=sum(||Pui - Bi*Pi||)2. returns the value G = grad(F) for the parameters Xi.
        """
    def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,FirstPoint : int,LastPoint : int,TheConstraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,Parameters : Any,Deg : int) -> None: ...
    pass
class BRepApprox_ParFunctionOfMyGradientbisOfTheComputeLineOfApprox(OCP.math.math_MultipleVarFunctionWithGradient, OCP.math.math_MultipleVarFunction):
    """
    None
    """
    def CurveValue(self) -> OCP.AppParCurves.AppParCurves_MultiCurve: 
        """
        returns the MultiCurve approximating the set after computing the value F or Grad(F).
        """
    def Error(self,IPoint : int,CurveIndex : int) -> float: 
        """
        returns the distance between the MultiPoint of range IPoint and the curve CurveIndex.
        """
    def FirstConstraint(self,TheConstraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,FirstPoint : int) -> OCP.AppParCurves.AppParCurves_Constraint: 
        """
        None
        """
    def GetStateNumber(self) -> int: 
        """
        return the state of the function corresponding to the latestt call of any methods associated to the function. This function is called by each of the algorithms described later which define the function Integer Algorithm::StateNumber(). The algorithm has the responsibility to call this function when it has found a solution (i.e. a root or a minimum) and has to maintain the association between the solution found and this StateNumber. Byu default, this method returns 0 (which means for the algorithm: no state has been saved). It is the responsibility of the programmer to decide if he needs to save the current state of the function and to return an Integer that allows retrieval of the state.
        """
    def Gradient(self,X : Any,G : Any) -> bool: 
        """
        returns the gradient G of the sum above for the parameters Xi.
        """
    def LastConstraint(self,TheConstraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,LastPoint : int) -> OCP.AppParCurves.AppParCurves_Constraint: 
        """
        None
        """
    def MaxError2d(self) -> float: 
        """
        returns the maximum distance between the points and the MultiCurve.
        """
    def MaxError3d(self) -> float: 
        """
        returns the maximum distance between the points and the MultiCurve.
        """
    def NbVariables(self) -> int: 
        """
        returns the number of variables of the function. It corresponds to the number of MultiPoints.
        """
    def NewParameters(self) -> Any: 
        """
        returns the new parameters of the MultiLine.
        """
    def Value(self,X : Any,F : float) -> bool: 
        """
        this method computes the new approximation of the MultiLine SSP and calculates F = sum (||Pui - Bi*Pi||2) for each point of the MultiLine.
        """
    def Values(self,X : Any,F : float,G : Any) -> bool: 
        """
        returns the value F=sum(||Pui - Bi*Pi||)2. returns the value G = grad(F) for the parameters Xi.
        """
    def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,FirstPoint : int,LastPoint : int,TheConstraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,Parameters : Any,Deg : int) -> None: ...
    pass
class BRepApprox_ParLeastSquareOfMyGradientOfTheComputeLineBezierOfApprox():
    """
    None
    """
    def BSplineValue(self) -> OCP.AppParCurves.AppParCurves_MultiBSpCurve: 
        """
        returns the result of the approximation, i.e. all the Curves. An exception is raised if NotDone.
        """
    def BezierValue(self) -> OCP.AppParCurves.AppParCurves_MultiCurve: 
        """
        returns the result of the approximation, i.e. all the Curves. An exception is raised if NotDone.
        """
    def DerivativeFunctionMatrix(self) -> OCP.math.math_Matrix: 
        """
        returns the derivative function matrix used to approximate the set.
        """
    def Distance(self) -> OCP.math.math_Matrix: 
        """
        returns the distances between the points of the multiline and the approximation curves.
        """
    def Error(self) -> tuple[float, float, float]: 
        """
        returns the maximum errors between the MultiLine and the approximation curves. F is the sum of the square distances.
        """
    def ErrorGradient(self,Grad : Any) -> tuple[float, float, float]: 
        """
        returns the maximum errors between the MultiLine and the approximation curves. F is the sum of the square distances. Grad is the derivative vector of the function F.
        """
    def FirstLambda(self) -> float: 
        """
        returns the value (P2 - P1)/ V1 if the first point was a tangency point.
        """
    def FunctionMatrix(self) -> OCP.math.math_Matrix: 
        """
        returns the function matrix used to approximate the set.
        """
    def IsDone(self) -> bool: 
        """
        returns True if all has been correctly done.
        """
    def KIndex(self) -> Any: 
        """
        Returns the indexes of the first non null values of A and DA. The values are non null from Index(ieme point) +1 to Index(ieme point) + degree +1.
        """
    def LastLambda(self) -> float: 
        """
        returns the value (PN - PN-1)/ VN if the last point was a tangency point.
        """
    @overload
    def Perform(self,Parameters : Any,l1 : float,l2 : float) -> None: 
        """
        Is used after having initialized the fields. The case "CurvaturePoint" is not treated in this method.

        Is used after having initialized the fields.

        Is used after having initialized the fields. <V1t> is the tangent vector at the first point. <V2t> is the tangent vector at the last point.

        Is used after having initialized the fields. <V1t> is the tangent vector at the first point. <V2t> is the tangent vector at the last point. <V1c> is the tangent vector at the first point. <V2c> is the tangent vector at the last point.
        """
    @overload
    def Perform(self,Parameters : Any,V1t : Any,V2t : Any,l1 : float,l2 : float) -> None: ...
    @overload
    def Perform(self,Parameters : Any) -> None: ...
    @overload
    def Perform(self,Parameters : Any,V1t : Any,V2t : Any,V1c : Any,V2c : Any,l1 : float,l2 : float) -> None: ...
    def Points(self) -> OCP.math.math_Matrix: 
        """
        returns the matrix of points value.
        """
    def Poles(self) -> OCP.math.math_Matrix: 
        """
        returns the matrix of resulting control points value.
        """
    @overload
    def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,FirstPoint : int,LastPoint : int,FirstCons : OCP.AppParCurves.AppParCurves_Constraint,LastCons : OCP.AppParCurves.AppParCurves_Constraint,NbPol : int) -> None: ...
    @overload
    def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,FirstPoint : int,LastPoint : int,FirstCons : OCP.AppParCurves.AppParCurves_Constraint,LastCons : OCP.AppParCurves.AppParCurves_Constraint,Parameters : Any,NbPol : int) -> None: ...
    @overload
    def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,Knots : OCP.TColStd.TColStd_Array1OfReal,Mults : OCP.TColStd.TColStd_Array1OfInteger,FirstPoint : int,LastPoint : int,FirstCons : OCP.AppParCurves.AppParCurves_Constraint,LastCons : OCP.AppParCurves.AppParCurves_Constraint,NbPol : int) -> None: ...
    @overload
    def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,Knots : OCP.TColStd.TColStd_Array1OfReal,Mults : OCP.TColStd.TColStd_Array1OfInteger,FirstPoint : int,LastPoint : int,FirstCons : OCP.AppParCurves.AppParCurves_Constraint,LastCons : OCP.AppParCurves.AppParCurves_Constraint,Parameters : Any,NbPol : int) -> None: ...
    pass
class BRepApprox_ParLeastSquareOfMyGradientbisOfTheComputeLineOfApprox():
    """
    None
    """
    def BSplineValue(self) -> OCP.AppParCurves.AppParCurves_MultiBSpCurve: 
        """
        returns the result of the approximation, i.e. all the Curves. An exception is raised if NotDone.
        """
    def BezierValue(self) -> OCP.AppParCurves.AppParCurves_MultiCurve: 
        """
        returns the result of the approximation, i.e. all the Curves. An exception is raised if NotDone.
        """
    def DerivativeFunctionMatrix(self) -> OCP.math.math_Matrix: 
        """
        returns the derivative function matrix used to approximate the set.
        """
    def Distance(self) -> OCP.math.math_Matrix: 
        """
        returns the distances between the points of the multiline and the approximation curves.
        """
    def Error(self) -> tuple[float, float, float]: 
        """
        returns the maximum errors between the MultiLine and the approximation curves. F is the sum of the square distances.
        """
    def ErrorGradient(self,Grad : Any) -> tuple[float, float, float]: 
        """
        returns the maximum errors between the MultiLine and the approximation curves. F is the sum of the square distances. Grad is the derivative vector of the function F.
        """
    def FirstLambda(self) -> float: 
        """
        returns the value (P2 - P1)/ V1 if the first point was a tangency point.
        """
    def FunctionMatrix(self) -> OCP.math.math_Matrix: 
        """
        returns the function matrix used to approximate the set.
        """
    def IsDone(self) -> bool: 
        """
        returns True if all has been correctly done.
        """
    def KIndex(self) -> Any: 
        """
        Returns the indexes of the first non null values of A and DA. The values are non null from Index(ieme point) +1 to Index(ieme point) + degree +1.
        """
    def LastLambda(self) -> float: 
        """
        returns the value (PN - PN-1)/ VN if the last point was a tangency point.
        """
    @overload
    def Perform(self,Parameters : Any) -> None: 
        """
        Is used after having initialized the fields. The case "CurvaturePoint" is not treated in this method.

        Is used after having initialized the fields.

        Is used after having initialized the fields. <V1t> is the tangent vector at the first point. <V2t> is the tangent vector at the last point.

        Is used after having initialized the fields. <V1t> is the tangent vector at the first point. <V2t> is the tangent vector at the last point. <V1c> is the tangent vector at the first point. <V2c> is the tangent vector at the last point.
        """
    @overload
    def Perform(self,Parameters : Any,l1 : float,l2 : float) -> None: ...
    @overload
    def Perform(self,Parameters : Any,V1t : Any,V2t : Any,l1 : float,l2 : float) -> None: ...
    @overload
    def Perform(self,Parameters : Any,V1t : Any,V2t : Any,V1c : Any,V2c : Any,l1 : float,l2 : float) -> None: ...
    def Points(self) -> OCP.math.math_Matrix: 
        """
        returns the matrix of points value.
        """
    def Poles(self) -> OCP.math.math_Matrix: 
        """
        returns the matrix of resulting control points value.
        """
    @overload
    def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,FirstPoint : int,LastPoint : int,FirstCons : OCP.AppParCurves.AppParCurves_Constraint,LastCons : OCP.AppParCurves.AppParCurves_Constraint,NbPol : int) -> None: ...
    @overload
    def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,Knots : OCP.TColStd.TColStd_Array1OfReal,Mults : OCP.TColStd.TColStd_Array1OfInteger,FirstPoint : int,LastPoint : int,FirstCons : OCP.AppParCurves.AppParCurves_Constraint,LastCons : OCP.AppParCurves.AppParCurves_Constraint,NbPol : int) -> None: ...
    @overload
    def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,Knots : OCP.TColStd.TColStd_Array1OfReal,Mults : OCP.TColStd.TColStd_Array1OfInteger,FirstPoint : int,LastPoint : int,FirstCons : OCP.AppParCurves.AppParCurves_Constraint,LastCons : OCP.AppParCurves.AppParCurves_Constraint,Parameters : Any,NbPol : int) -> None: ...
    @overload
    def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,FirstPoint : int,LastPoint : int,FirstCons : OCP.AppParCurves.AppParCurves_Constraint,LastCons : OCP.AppParCurves.AppParCurves_Constraint,Parameters : Any,NbPol : int) -> None: ...
    pass
class BRepApprox_ResConstraintOfMyGradientOfTheComputeLineBezierOfApprox():
    """
    None
    """
    def ConstraintDerivative(self,SSP : BRepApprox_TheMultiLineOfApprox,Parameters : Any,Deg : int,DA : OCP.math.math_Matrix) -> OCP.math.math_Matrix: 
        """
        Returns the derivative of the constraint matrix.
        """
    def ConstraintMatrix(self) -> OCP.math.math_Matrix: 
        """
        None
        """
    def Duale(self) -> Any: 
        """
        returns the duale variables of the system.
        """
    def InverseMatrix(self) -> OCP.math.math_Matrix: 
        """
        returns the Inverse of Cont*Transposed(Cont), where Cont is the constraint matrix for the algorithm.
        """
    def IsDone(self) -> bool: 
        """
        returns True if all has been correctly done.
        """
    def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,SCurv : OCP.AppParCurves.AppParCurves_MultiCurve,FirstPoint : int,LastPoint : int,Constraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,Bern : OCP.math.math_Matrix,DerivativeBern : OCP.math.math_Matrix,Tolerance : float=1e-10) -> None: ...
    pass
class BRepApprox_ResConstraintOfMyGradientbisOfTheComputeLineOfApprox():
    """
    None
    """
    def ConstraintDerivative(self,SSP : BRepApprox_TheMultiLineOfApprox,Parameters : Any,Deg : int,DA : OCP.math.math_Matrix) -> OCP.math.math_Matrix: 
        """
        Returns the derivative of the constraint matrix.
        """
    def ConstraintMatrix(self) -> OCP.math.math_Matrix: 
        """
        None
        """
    def Duale(self) -> Any: 
        """
        returns the duale variables of the system.
        """
    def InverseMatrix(self) -> OCP.math.math_Matrix: 
        """
        returns the Inverse of Cont*Transposed(Cont), where Cont is the constraint matrix for the algorithm.
        """
    def IsDone(self) -> bool: 
        """
        returns True if all has been correctly done.
        """
    def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,SCurv : OCP.AppParCurves.AppParCurves_MultiCurve,FirstPoint : int,LastPoint : int,Constraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,Bern : OCP.math.math_Matrix,DerivativeBern : OCP.math.math_Matrix,Tolerance : float=1e-10) -> None: ...
    pass
class BRepApprox_SurfaceTool():
    """
    None
    """
    @staticmethod
    def AxeOfRevolution_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> OCP.gp.gp_Ax1: 
        """
        None
        """
    @staticmethod
    def BSpline_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> OCP.Geom.Geom_BSplineSurface: 
        """
        None
        """
    @staticmethod
    def BasisCurve_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> OCP.Adaptor3d.Adaptor3d_Curve: 
        """
        None
        """
    @staticmethod
    def Bezier_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> OCP.Geom.Geom_BezierSurface: 
        """
        None
        """
    @staticmethod
    def Cone_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> OCP.gp.gp_Cone: 
        """
        None
        """
    @staticmethod
    def Cylinder_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> OCP.gp.gp_Cylinder: 
        """
        None
        """
    @staticmethod
    def D0_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,u : float,v : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        None
        """
    @staticmethod
    def D1_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,u : float,v : float,P : OCP.gp.gp_Pnt,D1u : OCP.gp.gp_Vec,D1v : OCP.gp.gp_Vec) -> None: 
        """
        None
        """
    @staticmethod
    def D2_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,u : float,v : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None: 
        """
        None
        """
    @staticmethod
    def D3_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,u : float,v : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None: 
        """
        None
        """
    @staticmethod
    def DN_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,u : float,v : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec: 
        """
        None
        """
    @staticmethod
    def Direction_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> OCP.gp.gp_Dir: 
        """
        None
        """
    @staticmethod
    def FirstUParameter_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> float: 
        """
        None
        """
    @staticmethod
    def FirstVParameter_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> float: 
        """
        None
        """
    @staticmethod
    def GetType_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> OCP.GeomAbs.GeomAbs_SurfaceType: 
        """
        None
        """
    @staticmethod
    def IsUClosed_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> bool: 
        """
        None
        """
    @staticmethod
    def IsUPeriodic_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> bool: 
        """
        None
        """
    @staticmethod
    def IsVClosed_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> bool: 
        """
        None
        """
    @staticmethod
    def IsVPeriodic_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> bool: 
        """
        None
        """
    @staticmethod
    def LastUParameter_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> float: 
        """
        None
        """
    @staticmethod
    def LastVParameter_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> float: 
        """
        None
        """
    @staticmethod
    @overload
    def NbSamplesU_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,u1 : float,u2 : float) -> int: 
        """
        None

        None
        """
    @staticmethod
    @overload
    def NbSamplesU_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> int: ...
    @staticmethod
    @overload
    def NbSamplesV_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,v1 : float,v2 : float) -> int: 
        """
        None

        None
        """
    @staticmethod
    @overload
    def NbSamplesV_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> int: ...
    @staticmethod
    def NbUIntervals_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,Sh : OCP.GeomAbs.GeomAbs_Shape) -> int: 
        """
        None
        """
    @staticmethod
    def NbVIntervals_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,Sh : OCP.GeomAbs.GeomAbs_Shape) -> int: 
        """
        None
        """
    @staticmethod
    def Plane_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> OCP.gp.gp_Pln: 
        """
        None
        """
    @staticmethod
    def Sphere_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> OCP.gp.gp_Sphere: 
        """
        None
        """
    @staticmethod
    def Torus_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> OCP.gp.gp_Torus: 
        """
        None
        """
    @staticmethod
    def UIntervals_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,T : OCP.TColStd.TColStd_Array1OfReal,Sh : OCP.GeomAbs.GeomAbs_Shape) -> None: 
        """
        None
        """
    @staticmethod
    def UPeriod_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> float: 
        """
        None
        """
    @staticmethod
    def UResolution_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,R3d : float) -> float: 
        """
        None
        """
    @staticmethod
    def UTrim_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,First : float,Last : float,Tol : float) -> OCP.Adaptor3d.Adaptor3d_Surface: 
        """
        If <First> >= <Last>
        """
    @staticmethod
    def VIntervals_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,T : OCP.TColStd.TColStd_Array1OfReal,Sh : OCP.GeomAbs.GeomAbs_Shape) -> None: 
        """
        None
        """
    @staticmethod
    def VPeriod_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> float: 
        """
        None
        """
    @staticmethod
    def VResolution_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,R3d : float) -> float: 
        """
        None
        """
    @staticmethod
    def VTrim_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,First : float,Last : float,Tol : float) -> OCP.Adaptor3d.Adaptor3d_Surface: 
        """
        If <First> >= <Last>
        """
    @staticmethod
    def Value_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,u : float,v : float) -> OCP.gp.gp_Pnt: 
        """
        None
        """
    def __init__(self) -> None: ...
    pass
class BRepApprox_TheComputeLineBezierOfApprox():
    """
    None
    """
    def ChangeValue(self,Index : int=1) -> OCP.AppParCurves.AppParCurves_MultiCurve: 
        """
        returns the result of the approximation.
        """
    def Error(self,Index : int) -> tuple[float, float]: 
        """
        returns the tolerances 2d and 3d of the <Index> MultiCurve.
        """
    def Init(self,degreemin : int=4,degreemax : int=8,Tolerance3d : float=0.001,Tolerance2d : float=1e-06,NbIterations : int=5,cutting : bool=True,parametrization : OCP.Approx.Approx_ParametrizationType=Approx_ParametrizationType.Approx_ChordLength,Squares : bool=False) -> None: 
        """
        Initializes the fields of the algorithm.
        """
    def IsAllApproximated(self) -> bool: 
        """
        returns False if at a moment of the approximation, the status NoApproximation has been sent by the user when more points were needed.
        """
    def IsToleranceReached(self) -> bool: 
        """
        returns False if the status NoPointsAdded has been sent.
        """
    def NbMultiCurves(self) -> int: 
        """
        Returns the number of MultiCurve doing the approximation of the MultiLine.
        """
    def Parameters(self,Index : int=1) -> OCP.TColStd.TColStd_Array1OfReal: 
        """
        returns the new parameters of the approximation corresponding to the points of the multicurve <Index>.
        """
    def Parametrization(self) -> OCP.Approx.Approx_ParametrizationType: 
        """
        returns the type of parametrization
        """
    def Perform(self,Line : BRepApprox_TheMultiLineOfApprox) -> None: 
        """
        runs the algorithm after having initialized the fields.
        """
    def SetConstraints(self,firstC : OCP.AppParCurves.AppParCurves_Constraint,lastC : OCP.AppParCurves.AppParCurves_Constraint) -> None: 
        """
        changes the first and the last constraint points.
        """
    def SetDegrees(self,degreemin : int,degreemax : int) -> None: 
        """
        changes the degrees of the approximation.
        """
    def SetTolerances(self,Tolerance3d : float,Tolerance2d : float) -> None: 
        """
        Changes the tolerances of the approximation.
        """
    def SplineValue(self) -> OCP.AppParCurves.AppParCurves_MultiBSpCurve: 
        """
        returns the result of the approximation.
        """
    def Value(self,Index : int=1) -> OCP.AppParCurves.AppParCurves_MultiCurve: 
        """
        returns the result of the approximation.
        """
    @overload
    def __init__(self,degreemin : int=4,degreemax : int=8,Tolerance3d : float=0.001,Tolerance2d : float=1e-06,NbIterations : int=5,cutting : bool=True,parametrization : OCP.Approx.Approx_ParametrizationType=Approx_ParametrizationType.Approx_ChordLength,Squares : bool=False) -> None: ...
    @overload
    def __init__(self,Parameters : Any,degreemin : int=4,degreemax : int=8,Tolerance3d : float=0.001,Tolerance2d : float=1e-06,NbIterations : int=5,cutting : bool=True,Squares : bool=False) -> None: ...
    @overload
    def __init__(self,Line : BRepApprox_TheMultiLineOfApprox,Parameters : Any,degreemin : int=4,degreemax : int=8,Tolerance3d : float=0.001,Tolerance2d : float=1e-06,NbIterations : int=5,cutting : bool=True,Squares : bool=False) -> None: ...
    @overload
    def __init__(self,Line : BRepApprox_TheMultiLineOfApprox,degreemin : int=4,degreemax : int=8,Tolerance3d : float=0.001,Tolerance2d : float=1e-06,NbIterations : int=5,cutting : bool=True,parametrization : OCP.Approx.Approx_ParametrizationType=Approx_ParametrizationType.Approx_ChordLength,Squares : bool=False) -> None: ...
    pass
class BRepApprox_TheComputeLineOfApprox():
    """
    None
    """
    def ChangeValue(self) -> OCP.AppParCurves.AppParCurves_MultiBSpCurve: 
        """
        returns the result of the approximation.
        """
    def Error(self) -> tuple[float, float]: 
        """
        returns the tolerances 2d and 3d of the MultiBSpCurve.
        """
    def Init(self,degreemin : int=4,degreemax : int=8,Tolerance3d : float=0.001,Tolerance2d : float=1e-06,NbIterations : int=5,cutting : bool=True,parametrization : OCP.Approx.Approx_ParametrizationType=Approx_ParametrizationType.Approx_ChordLength,Squares : bool=False) -> None: 
        """
        Initializes the fields of the algorithm.
        """
    def Interpol(self,Line : BRepApprox_TheMultiLineOfApprox) -> None: 
        """
        Constructs an interpolation of the MultiLine <Line> The result will be a C2 curve of degree 3.
        """
    def IsAllApproximated(self) -> bool: 
        """
        returns False if at a moment of the approximation, the status NoApproximation has been sent by the user when more points were needed.
        """
    def IsToleranceReached(self) -> bool: 
        """
        returns False if the status NoPointsAdded has been sent.
        """
    def Parameters(self) -> OCP.TColStd.TColStd_Array1OfReal: 
        """
        returns the new parameters of the approximation corresponding to the points of the MultiBSpCurve.
        """
    def Perform(self,Line : BRepApprox_TheMultiLineOfApprox) -> None: 
        """
        runs the algorithm after having initialized the fields.
        """
    def SetConstraints(self,firstC : OCP.AppParCurves.AppParCurves_Constraint,lastC : OCP.AppParCurves.AppParCurves_Constraint) -> None: 
        """
        changes the first and the last constraint points.
        """
    def SetContinuity(self,C : int) -> None: 
        """
        sets the continuity of the spline. if C = 2, the spline will be C2.
        """
    def SetDegrees(self,degreemin : int,degreemax : int) -> None: 
        """
        changes the degrees of the approximation.
        """
    def SetKnots(self,Knots : OCP.TColStd.TColStd_Array1OfReal) -> None: 
        """
        The approximation will be done with the set of knots <Knots>. The multiplicities will be set with the degree and the desired continuity.
        """
    def SetKnotsAndMultiplicities(self,Knots : OCP.TColStd.TColStd_Array1OfReal,Mults : OCP.TColStd.TColStd_Array1OfInteger) -> None: 
        """
        The approximation will be done with the set of knots <Knots> and the multiplicities <Mults>.
        """
    def SetParameters(self,ThePar : Any) -> None: 
        """
        The approximation will begin with the set of parameters <ThePar>.
        """
    def SetPeriodic(self,thePeriodic : bool) -> None: 
        """
        Sets periodic flag. If thePeriodic = Standard_True, algorithm tries to build periodic multicurve using corresponding C1 boundary condition for first and last multipoints. Multiline must be closed.
        """
    def SetTolerances(self,Tolerance3d : float,Tolerance2d : float) -> None: 
        """
        Changes the tolerances of the approximation.
        """
    def Value(self) -> OCP.AppParCurves.AppParCurves_MultiBSpCurve: 
        """
        returns the result of the approximation.
        """
    @overload
    def __init__(self,Line : BRepApprox_TheMultiLineOfApprox,Parameters : Any,degreemin : int=4,degreemax : int=8,Tolerance3d : float=0.001,Tolerance2d : float=1e-06,NbIterations : int=5,cutting : bool=True,Squares : bool=False) -> None: ...
    @overload
    def __init__(self,degreemin : int=4,degreemax : int=8,Tolerance3d : float=0.001,Tolerance2d : float=1e-06,NbIterations : int=5,cutting : bool=True,parametrization : OCP.Approx.Approx_ParametrizationType=Approx_ParametrizationType.Approx_ChordLength,Squares : bool=False) -> None: ...
    @overload
    def __init__(self,Parameters : Any,degreemin : int=4,degreemax : int=8,Tolerance3d : float=0.001,Tolerance2d : float=1e-06,NbIterations : int=5,cutting : bool=True,Squares : bool=False) -> None: ...
    @overload
    def __init__(self,Line : BRepApprox_TheMultiLineOfApprox,degreemin : int=4,degreemax : int=8,Tolerance3d : float=0.001,Tolerance2d : float=1e-06,NbIterations : int=5,cutting : bool=True,parametrization : OCP.Approx.Approx_ParametrizationType=Approx_ParametrizationType.Approx_ChordLength,Squares : bool=False) -> None: ...
    pass
class BRepApprox_TheFunctionOfTheInt2SOfThePrmPrmSvSurfacesOfApprox(OCP.math.math_FunctionSetWithDerivatives, OCP.math.math_FunctionSet):
    """
    None
    """
    def AuxillarSurface1(self) -> OCP.BRepAdaptor.BRepAdaptor_Surface: 
        """
        None
        """
    def AuxillarSurface2(self) -> OCP.BRepAdaptor.BRepAdaptor_Surface: 
        """
        None
        """
    def ComputeParameters(self,ChoixIso : OCP.IntImp.IntImp_ConstIsoparametric,Param : OCP.TColStd.TColStd_Array1OfReal,UVap : Any,BornInf : Any,BornSup : Any,Tolerance : Any) -> None: 
        """
        None
        """
    def Derivatives(self,X : Any,D : OCP.math.math_Matrix) -> bool: 
        """
        None
        """
    def Direction(self) -> OCP.gp.gp_Dir: 
        """
        None
        """
    def DirectionOnS1(self) -> OCP.gp.gp_Dir2d: 
        """
        None
        """
    def DirectionOnS2(self) -> OCP.gp.gp_Dir2d: 
        """
        None
        """
    def GetStateNumber(self) -> int: 
        """
        Returns the state of the function corresponding to the latestcall of any methods associated with the function. This function is called by each of the algorithms described later which define the function Integer Algorithm::StateNumber(). The algorithm has the responsibility to call this function when it has found a solution (i.e. a root or a minimum) and has to maintain the association between the solution found and this StateNumber. Byu default, this method returns 0 (which means for the algorithm: no state has been saved). It is the responsibility of the programmer to decide if he needs to save the current state of the function and to return an Integer that allows retrieval of the state.
        """
    def IsTangent(self,UVap : Any,Param : OCP.TColStd.TColStd_Array1OfReal,BestChoix : OCP.IntImp.IntImp_ConstIsoparametric) -> bool: 
        """
        None
        """
    def NbEquations(self) -> int: 
        """
        None
        """
    def NbVariables(self) -> int: 
        """
        None
        """
    def Point(self) -> OCP.gp.gp_Pnt: 
        """
        None
        """
    def Root(self) -> float: 
        """
        returns somme des fi*fi
        """
    def Value(self,X : Any,F : Any) -> bool: 
        """
        None
        """
    def Values(self,X : Any,F : Any,D : OCP.math.math_Matrix) -> bool: 
        """
        None
        """
    def __init__(self,S1 : OCP.BRepAdaptor.BRepAdaptor_Surface,S2 : OCP.BRepAdaptor.BRepAdaptor_Surface) -> None: ...
    pass
class BRepApprox_TheImpPrmSvSurfacesOfApprox():
    """
    None
    """
    def Compute(self,u1 : float,v1 : float,u2 : float,v2 : float,Pt : OCP.gp.gp_Pnt,Tg : OCP.gp.gp_Vec,Tguv1 : OCP.gp.gp_Vec2d,Tguv2 : OCP.gp.gp_Vec2d) -> bool: 
        """
        returns True if Tg,Tguv1 Tguv2 can be computed.
        """
    def FillInitialVectorOfSolution(self,u1 : float,v1 : float,u2 : float,v2 : float,binfu : float,bsupu : float,binfv : float,bsupv : float,X : Any,TranslationU : float,TranslationV : float) -> bool: 
        """
        None
        """
    def Pnt(self,u1 : float,v1 : float,u2 : float,v2 : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        None
        """
    def SeekPoint(self,u1 : float,v1 : float,u2 : float,v2 : float,Point : OCP.IntSurf.IntSurf_PntOn2S) -> bool: 
        """
        None
        """
    def Tangency(self,u1 : float,v1 : float,u2 : float,v2 : float,Tg : OCP.gp.gp_Vec) -> bool: 
        """
        None
        """
    def TangencyOnSurf1(self,u1 : float,v1 : float,u2 : float,v2 : float,Tg : OCP.gp.gp_Vec2d) -> bool: 
        """
        None
        """
    def TangencyOnSurf2(self,u1 : float,v1 : float,u2 : float,v2 : float,Tg : OCP.gp.gp_Vec2d) -> bool: 
        """
        None
        """
    @overload
    def __init__(self,Surf1 : OCP.BRepAdaptor.BRepAdaptor_Surface,Surf2 : OCP.IntSurf.IntSurf_Quadric) -> None: ...
    @overload
    def __init__(self,Surf1 : OCP.IntSurf.IntSurf_Quadric,Surf2 : OCP.BRepAdaptor.BRepAdaptor_Surface) -> None: ...
    pass
class BRepApprox_TheInt2SOfThePrmPrmSvSurfacesOfApprox():
    """
    None
    """
    def ChangePoint(self) -> OCP.IntSurf.IntSurf_PntOn2S: 
        """
        return the intersection point which is enable for changing.
        """
    def Direction(self) -> OCP.gp.gp_Dir: 
        """
        Returns the tangent at the intersection line.
        """
    def DirectionOnS1(self) -> OCP.gp.gp_Dir2d: 
        """
        Returns the tangent at the intersection line in the parametric space of the first surface.
        """
    def DirectionOnS2(self) -> OCP.gp.gp_Dir2d: 
        """
        Returns the tangent at the intersection line in the parametric space of the second surface.
        """
    def Function(self) -> BRepApprox_TheFunctionOfTheInt2SOfThePrmPrmSvSurfacesOfApprox: 
        """
        return the math function which is used to compute the intersection
        """
    def IsDone(self) -> bool: 
        """
        Returns TRUE if the creation completed without failure.
        """
    def IsEmpty(self) -> bool: 
        """
        Returns TRUE when there is no solution to the problem.
        """
    def IsTangent(self) -> bool: 
        """
        Returns True if the surfaces are tangent at the intersection point.
        """
    @overload
    def Perform(self,Param : OCP.TColStd.TColStd_Array1OfReal,Rsnld : OCP.math.math_FunctionSetRoot,ChoixIso : OCP.IntImp.IntImp_ConstIsoparametric) -> OCP.IntImp.IntImp_ConstIsoparametric: 
        """
        returns the best constant isoparametric to find the next intersection's point +stores the solution point (the solution point is found with the close point to intersect the isoparametric with the other patch; the choice of the isoparametic is calculated)

        returns the best constant isoparametric to find the next intersection's point +stores the solution point (the solution point is found with the close point to intersect the isoparametric with the other patch; the choice of the isoparametic is given by ChoixIso)
        """
    @overload
    def Perform(self,Param : OCP.TColStd.TColStd_Array1OfReal,Rsnld : OCP.math.math_FunctionSetRoot) -> OCP.IntImp.IntImp_ConstIsoparametric: ...
    def Point(self) -> OCP.IntSurf.IntSurf_PntOn2S: 
        """
        Returns the intersection point.
        """
    @overload
    def __init__(self,Param : OCP.TColStd.TColStd_Array1OfReal,S1 : OCP.BRepAdaptor.BRepAdaptor_Surface,S2 : OCP.BRepAdaptor.BRepAdaptor_Surface,TolTangency : float) -> None: ...
    @overload
    def __init__(self,S1 : OCP.BRepAdaptor.BRepAdaptor_Surface,S2 : OCP.BRepAdaptor.BRepAdaptor_Surface,TolTangency : float) -> None: ...
    pass
class BRepApprox_TheMultiLineOfApprox():
    """
    None
    """
    def Dump(self) -> None: 
        """
        Dump of the current multi-line.
        """
    def FirstPoint(self) -> int: 
        """
        None
        """
    def LastPoint(self) -> int: 
        """
        None
        """
    def MakeMLBetween(self,Low : int,High : int,NbPointsToInsert : int) -> BRepApprox_TheMultiLineOfApprox: 
        """
        Tries to make a sub-line between <Low> and <High> points of this line by adding <NbPointsToInsert> new points
        """
    def MakeMLOneMorePoint(self,Low : int,High : int,indbad : int,OtherLine : BRepApprox_TheMultiLineOfApprox) -> bool: 
        """
        Tries to make a sub-line between <Low> and <High> points of this line by adding one more point between (indbad-1)-th and indbad-th points
        """
    def NbP2d(self) -> int: 
        """
        Returns the number of 2d points of a TheLine.
        """
    def NbP3d(self) -> int: 
        """
        Returns the number of 3d points of a TheLine.
        """
    @overload
    def Tangency(self,MPointIndex : int,tabV : OCP.TColgp.TColgp_Array1OfVec,tabV2d : OCP.TColgp.TColgp_Array1OfVec2d) -> bool: 
        """
        Returns the 3d tangency points of the multipoint <MPointIndex> only when 3d points exist.

        Returns the 2d tangency points of the multipoint <MPointIndex> only when 2d points exist.

        Returns the 3d and 2d points of the multipoint <MPointIndex>.
        """
    @overload
    def Tangency(self,MPointIndex : int,tabV2d : OCP.TColgp.TColgp_Array1OfVec2d) -> bool: ...
    @overload
    def Tangency(self,MPointIndex : int,tabV : OCP.TColgp.TColgp_Array1OfVec) -> bool: ...
    @overload
    def Value(self,MPointIndex : int,tabPt : OCP.TColgp.TColgp_Array1OfPnt) -> None: 
        """
        Returns the 3d points of the multipoint <MPointIndex> when only 3d points exist.

        Returns the 2d points of the multipoint <MPointIndex> when only 2d points exist.

        Returns the 3d and 2d points of the multipoint <MPointIndex>.
        """
    @overload
    def Value(self,MPointIndex : int,tabPt2d : OCP.TColgp.TColgp_Array1OfPnt2d) -> None: ...
    @overload
    def Value(self,MPointIndex : int,tabPt : OCP.TColgp.TColgp_Array1OfPnt,tabPt2d : OCP.TColgp.TColgp_Array1OfPnt2d) -> None: ...
    def WhatStatus(self) -> OCP.Approx.Approx_Status: 
        """
        None
        """
    @overload
    def __init__(self) -> None: ...
    @overload
    def __init__(self,line : BRepApprox_ApproxLine,NbP3d : int,NbP2d : int,ApproxU1V1 : bool,ApproxU2V2 : bool,xo : float,yo : float,zo : float,u1o : float,v1o : float,u2o : float,v2o : float,P2DOnFirst : bool,IndMin : int=0,IndMax : int=0) -> None: ...
    @overload
    def __init__(self,line : BRepApprox_ApproxLine,PtrSvSurfaces : capsule,NbP3d : int,NbP2d : int,ApproxU1V1 : bool,ApproxU2V2 : bool,xo : float,yo : float,zo : float,u1o : float,v1o : float,u2o : float,v2o : float,P2DOnFirst : bool,IndMin : int=0,IndMax : int=0) -> None: ...
    pass
class BRepApprox_TheMultiLineToolOfApprox():
    """
    None
    """
    @staticmethod
    @overload
    def Curvature_s(ML : BRepApprox_TheMultiLineOfApprox,MPointIndex : int,tabV : OCP.TColgp.TColgp_Array1OfVec) -> bool: 
        """
        returns the 3d curvature of the multipoint <MPointIndex> when only 3d points exist.

        returns the 2d curvature points of the multipoint <MPointIndex> only when 2d points exist.

        returns the 3d and 2d curvature of the multipoint <MPointIndex>.
        """
    @staticmethod
    @overload
    def Curvature_s(ML : BRepApprox_TheMultiLineOfApprox,MPointIndex : int,tabV2d : OCP.TColgp.TColgp_Array1OfVec2d) -> bool: ...
    @staticmethod
    @overload
    def Curvature_s(ML : BRepApprox_TheMultiLineOfApprox,MPointIndex : int,tabV : OCP.TColgp.TColgp_Array1OfVec,tabV2d : OCP.TColgp.TColgp_Array1OfVec2d) -> bool: ...
    @staticmethod
    def Dump_s(ML : BRepApprox_TheMultiLineOfApprox) -> None: 
        """
        Dump of the current multi-line.
        """
    @staticmethod
    def FirstPoint_s(ML : BRepApprox_TheMultiLineOfApprox) -> int: 
        """
        Returns the number of multipoints of the TheMultiLine.
        """
    @staticmethod
    def LastPoint_s(ML : BRepApprox_TheMultiLineOfApprox) -> int: 
        """
        Returns the number of multipoints of the TheMultiLine.
        """
    @staticmethod
    def MakeMLBetween_s(ML : BRepApprox_TheMultiLineOfApprox,I1 : int,I2 : int,NbPMin : int) -> BRepApprox_TheMultiLineOfApprox: 
        """
        Is called if WhatStatus returned "PointsAdded".
        """
    @staticmethod
    def MakeMLOneMorePoint_s(ML : BRepApprox_TheMultiLineOfApprox,I1 : int,I2 : int,indbad : int,OtherLine : BRepApprox_TheMultiLineOfApprox) -> bool: 
        """
        Is called when the Bezier curve contains a loop
        """
    @staticmethod
    def NbP2d_s(ML : BRepApprox_TheMultiLineOfApprox) -> int: 
        """
        Returns the number of 2d points of a TheMultiLine.
        """
    @staticmethod
    def NbP3d_s(ML : BRepApprox_TheMultiLineOfApprox) -> int: 
        """
        Returns the number of 3d points of a TheMultiLine.
        """
    @staticmethod
    @overload
    def Tangency_s(ML : BRepApprox_TheMultiLineOfApprox,MPointIndex : int,tabV : OCP.TColgp.TColgp_Array1OfVec) -> bool: 
        """
        returns the 3d points of the multipoint <MPointIndex> when only 3d points exist.

        returns the 2d tangency points of the multipoint <MPointIndex> only when 2d points exist.

        returns the 3d and 2d points of the multipoint <MPointIndex>.
        """
    @staticmethod
    @overload
    def Tangency_s(ML : BRepApprox_TheMultiLineOfApprox,MPointIndex : int,tabV : OCP.TColgp.TColgp_Array1OfVec,tabV2d : OCP.TColgp.TColgp_Array1OfVec2d) -> bool: ...
    @staticmethod
    @overload
    def Tangency_s(ML : BRepApprox_TheMultiLineOfApprox,MPointIndex : int,tabV2d : OCP.TColgp.TColgp_Array1OfVec2d) -> bool: ...
    @staticmethod
    @overload
    def Value_s(ML : BRepApprox_TheMultiLineOfApprox,MPointIndex : int,tabPt2d : OCP.TColgp.TColgp_Array1OfPnt2d) -> None: 
        """
        returns the 3d points of the multipoint <MPointIndex> when only 3d points exist.

        returns the 2d points of the multipoint <MPointIndex> when only 2d points exist.

        returns the 3d and 2d points of the multipoint <MPointIndex>.
        """
    @staticmethod
    @overload
    def Value_s(ML : BRepApprox_TheMultiLineOfApprox,MPointIndex : int,tabPt : OCP.TColgp.TColgp_Array1OfPnt,tabPt2d : OCP.TColgp.TColgp_Array1OfPnt2d) -> None: ...
    @staticmethod
    @overload
    def Value_s(ML : BRepApprox_TheMultiLineOfApprox,MPointIndex : int,tabPt : OCP.TColgp.TColgp_Array1OfPnt) -> None: ...
    @staticmethod
    def WhatStatus_s(ML : BRepApprox_TheMultiLineOfApprox,I1 : int,I2 : int) -> OCP.Approx.Approx_Status: 
        """
        None
        """
    def __init__(self) -> None: ...
    pass
class BRepApprox_ThePrmPrmSvSurfacesOfApprox():
    """
    None
    """
    def Compute(self,u1 : float,v1 : float,u2 : float,v2 : float,Pt : OCP.gp.gp_Pnt,Tg : OCP.gp.gp_Vec,Tguv1 : OCP.gp.gp_Vec2d,Tguv2 : OCP.gp.gp_Vec2d) -> bool: 
        """
        returns True if Tg,Tguv1 Tguv2 can be computed.
        """
    def Pnt(self,u1 : float,v1 : float,u2 : float,v2 : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        None
        """
    def SeekPoint(self,u1 : float,v1 : float,u2 : float,v2 : float,Point : OCP.IntSurf.IntSurf_PntOn2S) -> bool: 
        """
        None
        """
    def Tangency(self,u1 : float,v1 : float,u2 : float,v2 : float,Tg : OCP.gp.gp_Vec) -> bool: 
        """
        None
        """
    def TangencyOnSurf1(self,u1 : float,v1 : float,u2 : float,v2 : float,Tg : OCP.gp.gp_Vec2d) -> bool: 
        """
        None
        """
    def TangencyOnSurf2(self,u1 : float,v1 : float,u2 : float,v2 : float,Tg : OCP.gp.gp_Vec2d) -> bool: 
        """
        None
        """
    def __init__(self,Surf1 : OCP.BRepAdaptor.BRepAdaptor_Surface,Surf2 : OCP.BRepAdaptor.BRepAdaptor_Surface) -> None: ...
    pass
class BRepApprox_TheZerImpFuncOfTheImpPrmSvSurfacesOfApprox(OCP.math.math_FunctionSetWithDerivatives, OCP.math.math_FunctionSet):
    """
    None
    """
    def Derivatives(self,X : Any,D : OCP.math.math_Matrix) -> bool: 
        """
        None
        """
    def Direction2d(self) -> OCP.gp.gp_Dir2d: 
        """
        None
        """
    def Direction3d(self) -> OCP.gp.gp_Vec: 
        """
        None
        """
    def GetStateNumber(self) -> int: 
        """
        Returns the state of the function corresponding to the latestcall of any methods associated with the function. This function is called by each of the algorithms described later which define the function Integer Algorithm::StateNumber(). The algorithm has the responsibility to call this function when it has found a solution (i.e. a root or a minimum) and has to maintain the association between the solution found and this StateNumber. Byu default, this method returns 0 (which means for the algorithm: no state has been saved). It is the responsibility of the programmer to decide if he needs to save the current state of the function and to return an Integer that allows retrieval of the state.
        """
    def ISurface(self) -> OCP.IntSurf.IntSurf_Quadric: 
        """
        None
        """
    def IsTangent(self) -> bool: 
        """
        None
        """
    def NbEquations(self) -> int: 
        """
        None
        """
    def NbVariables(self) -> int: 
        """
        None
        """
    def PSurface(self) -> OCP.BRepAdaptor.BRepAdaptor_Surface: 
        """
        None
        """
    def Point(self) -> OCP.gp.gp_Pnt: 
        """
        None
        """
    def Root(self) -> float: 
        """
        None
        """
    @overload
    def Set(self,Tolerance : float) -> None: 
        """
        None

        None
        """
    @overload
    def Set(self,PS : OCP.BRepAdaptor.BRepAdaptor_Surface) -> None: ...
    def SetImplicitSurface(self,IS : OCP.IntSurf.IntSurf_Quadric) -> None: 
        """
        None
        """
    def Tolerance(self) -> float: 
        """
        Returns the value Tol so that if Abs(Func.Root())<Tol the function is considered null.
        """
    def Value(self,X : Any,F : Any) -> bool: 
        """
        None
        """
    def Values(self,X : Any,F : Any,D : OCP.math.math_Matrix) -> bool: 
        """
        None
        """
    @overload
    def __init__(self,IS : OCP.IntSurf.IntSurf_Quadric) -> None: ...
    @overload
    def __init__(self,PS : OCP.BRepAdaptor.BRepAdaptor_Surface,IS : OCP.IntSurf.IntSurf_Quadric) -> None: ...
    @overload
    def __init__(self) -> None: ...
    pass