1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
|
import OCP.BRepApprox
from typing import *
from typing import Iterable as iterable
from typing import Iterator as iterator
from numpy import float64
_Shape = Tuple[int, ...]
import OCP.AppParCurves
import OCP.Approx
import OCP.GeomAbs
import OCP.math
import io
import OCP.Geom
import OCP.TColStd
import OCP.Standard
import OCP.IntImp
import OCP.TColgp
import OCP.gp
import OCP.Adaptor3d
import OCP.Geom2d
import OCP.IntSurf
import OCP.BRepAdaptor
__all__ = [
"BRepApprox_Approx",
"BRepApprox_ApproxLine",
"BRepApprox_BSpGradient_BFGSOfMyBSplGradientOfTheComputeLineOfApprox",
"BRepApprox_BSpParFunctionOfMyBSplGradientOfTheComputeLineOfApprox",
"BRepApprox_BSpParLeastSquareOfMyBSplGradientOfTheComputeLineOfApprox",
"BRepApprox_Gradient_BFGSOfMyGradientOfTheComputeLineBezierOfApprox",
"BRepApprox_Gradient_BFGSOfMyGradientbisOfTheComputeLineOfApprox",
"BRepApprox_MyBSplGradientOfTheComputeLineOfApprox",
"BRepApprox_MyGradientOfTheComputeLineBezierOfApprox",
"BRepApprox_MyGradientbisOfTheComputeLineOfApprox",
"BRepApprox_ParFunctionOfMyGradientOfTheComputeLineBezierOfApprox",
"BRepApprox_ParFunctionOfMyGradientbisOfTheComputeLineOfApprox",
"BRepApprox_ParLeastSquareOfMyGradientOfTheComputeLineBezierOfApprox",
"BRepApprox_ParLeastSquareOfMyGradientbisOfTheComputeLineOfApprox",
"BRepApprox_ResConstraintOfMyGradientOfTheComputeLineBezierOfApprox",
"BRepApprox_ResConstraintOfMyGradientbisOfTheComputeLineOfApprox",
"BRepApprox_SurfaceTool",
"BRepApprox_TheComputeLineBezierOfApprox",
"BRepApprox_TheComputeLineOfApprox",
"BRepApprox_TheFunctionOfTheInt2SOfThePrmPrmSvSurfacesOfApprox",
"BRepApprox_TheImpPrmSvSurfacesOfApprox",
"BRepApprox_TheInt2SOfThePrmPrmSvSurfacesOfApprox",
"BRepApprox_TheMultiLineOfApprox",
"BRepApprox_TheMultiLineToolOfApprox",
"BRepApprox_ThePrmPrmSvSurfacesOfApprox",
"BRepApprox_TheZerImpFuncOfTheImpPrmSvSurfacesOfApprox"
]
class BRepApprox_Approx():
"""
None
"""
def IsDone(self) -> bool:
"""
None
"""
def NbMultiCurves(self) -> int:
"""
None
"""
@staticmethod
def Parameters_s(Line : BRepApprox_TheMultiLineOfApprox,firstP : int,lastP : int,Par : OCP.Approx.Approx_ParametrizationType,TheParameters : Any) -> None:
"""
None
"""
@overload
def Perform(self,Surf1 : OCP.BRepAdaptor.BRepAdaptor_Surface,Surf2 : OCP.BRepAdaptor.BRepAdaptor_Surface,aLine : BRepApprox_ApproxLine,ApproxXYZ : bool=True,ApproxU1V1 : bool=True,ApproxU2V2 : bool=True,indicemin : int=0,indicemax : int=0) -> None:
"""
None
None
"""
@overload
def Perform(self,aLine : BRepApprox_ApproxLine,ApproxXYZ : bool=True,ApproxU1V1 : bool=True,ApproxU2V2 : bool=True,indicemin : int=0,indicemax : int=0) -> None: ...
def SetParameters(self,Tol3d : float,Tol2d : float,DegMin : int,DegMax : int,NbIterMax : int,NbPntMax : int=30,ApproxWithTangency : bool=True,Parametrization : OCP.Approx.Approx_ParametrizationType=Approx_ParametrizationType.Approx_ChordLength) -> None:
"""
None
"""
def TolReached2d(self) -> float:
"""
None
"""
def TolReached3d(self) -> float:
"""
None
"""
def Value(self,Index : int) -> OCP.AppParCurves.AppParCurves_MultiBSpCurve:
"""
None
"""
def __init__(self) -> None: ...
pass
class BRepApprox_ApproxLine(OCP.Standard.Standard_Transient):
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def NbPnts(self) -> int:
"""
None
"""
def Point(self,Index : int) -> OCP.IntSurf.IntSurf_PntOn2S:
"""
None
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
@overload
def __init__(self,CurveXYZ : OCP.Geom.Geom_BSplineCurve,CurveUV1 : OCP.Geom2d.Geom2d_BSplineCurve,CurveUV2 : OCP.Geom2d.Geom2d_BSplineCurve) -> None: ...
@overload
def __init__(self,lin : OCP.IntSurf.IntSurf_LineOn2S,theTang : bool=False) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class BRepApprox_BSpGradient_BFGSOfMyBSplGradientOfTheComputeLineOfApprox(OCP.math.math_BFGS):
"""
None
"""
def Dump(self,o : io.BytesIO) -> None:
"""
Prints on the stream o information on the current state of the object. Is used to redefine the operator <<.
"""
@overload
def Gradient(self) -> Any:
"""
Returns the value of the gradient vector at the minimum in Grad. Exception NotDone is raised if the minimum was not found. Exception DimensionError is raised if the range of Grad is not equal to the range of the StartingPoint.
Returns the value of the gradient vector at the minimum in Grad. Exception NotDone is raised if the minimum was not found. Exception DimensionError is raised if the range of Grad is not equal to the range of the StartingPoint.
Returns the gradient vector at the minimum. Exception NotDone is raised if the minimum was not found.
Returns the gradient vector at the minimum. Exception NotDone is raised if the minimum was not found.
"""
@overload
def Gradient(self,Grad : Any) -> None: ...
def IsDone(self) -> bool:
"""
Returns true if the computations are successful, otherwise returns false.
Returns true if the computations are successful, otherwise returns false.
"""
def IsSolutionReached(self,F : OCP.math.math_MultipleVarFunctionWithGradient) -> bool:
"""
None
"""
@overload
def Location(self,Loc : Any) -> None:
"""
outputs the location vector of the minimum in Loc. Exception NotDone is raised if the minimum was not found. Exception DimensionError is raised if the range of Loc is not equal to the range of the StartingPoint.
outputs the location vector of the minimum in Loc. Exception NotDone is raised if the minimum was not found. Exception DimensionError is raised if the range of Loc is not equal to the range of the StartingPoint.
returns the location vector of the minimum. Exception NotDone is raised if the minimum was not found.
returns the location vector of the minimum. Exception NotDone is raised if the minimum was not found.
"""
@overload
def Location(self) -> Any: ...
def Minimum(self) -> float:
"""
returns the value of the minimum. Exception NotDone is raised if the minimum was not found.
returns the value of the minimum. Exception NotDone is raised if the minimum was not found.
"""
def NbIterations(self) -> int:
"""
Returns the number of iterations really done in the calculation of the minimum. The exception NotDone is raised if the minimum was not found.
Returns the number of iterations really done in the calculation of the minimum. The exception NotDone is raised if the minimum was not found.
"""
def Perform(self,F : OCP.math.math_MultipleVarFunctionWithGradient,StartingPoint : Any) -> None:
"""
Given the starting point StartingPoint, minimization is done on the function F. The solution F = Fi is found when : 2.0 * abs(Fi - Fi-1) <= Tolerance * (abs(Fi) + abs(Fi-1) + ZEPS). Tolerance, ZEPS and maximum number of iterations are given in the constructor.
"""
def SetBoundary(self,theLeftBorder : Any,theRightBorder : Any) -> None:
"""
Set boundaries for conditional optimization. The expected indices range of vectors is [1, NbVariables].
"""
def __init__(self,F : OCP.math.math_MultipleVarFunctionWithGradient,StartingPoint : Any,Tolerance3d : float,Tolerance2d : float,Eps : float,NbIterations : int=200) -> None: ...
pass
class BRepApprox_BSpParFunctionOfMyBSplGradientOfTheComputeLineOfApprox(OCP.math.math_MultipleVarFunctionWithGradient, OCP.math.math_MultipleVarFunction):
"""
None
"""
def CurveValue(self) -> OCP.AppParCurves.AppParCurves_MultiBSpCurve:
"""
returns the MultiBSpCurve approximating the set after computing the value F or Grad(F).
"""
def DerivativeFunctionMatrix(self) -> OCP.math.math_Matrix:
"""
returns the derivative function matrix used to approximate the multiline.
"""
def Error(self,IPoint : int,CurveIndex : int) -> float:
"""
returns the distance between the MultiPoint of range IPoint and the curve CurveIndex.
"""
def FirstConstraint(self,TheConstraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,FirstPoint : int) -> OCP.AppParCurves.AppParCurves_Constraint:
"""
None
"""
def FunctionMatrix(self) -> OCP.math.math_Matrix:
"""
returns the function matrix used to approximate the multiline.
"""
def GetStateNumber(self) -> int:
"""
return the state of the function corresponding to the latestt call of any methods associated to the function. This function is called by each of the algorithms described later which define the function Integer Algorithm::StateNumber(). The algorithm has the responsibility to call this function when it has found a solution (i.e. a root or a minimum) and has to maintain the association between the solution found and this StateNumber. Byu default, this method returns 0 (which means for the algorithm: no state has been saved). It is the responsibility of the programmer to decide if he needs to save the current state of the function and to return an Integer that allows retrieval of the state.
"""
def Gradient(self,X : Any,G : Any) -> bool:
"""
returns the gradient G of the sum above for the parameters Xi.
"""
def Index(self) -> Any:
"""
Returns the indexes of the first non null values of A and DA. The values are non null from Index(ieme point) +1 to Index(ieme point) + degree +1.
"""
def LastConstraint(self,TheConstraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,LastPoint : int) -> OCP.AppParCurves.AppParCurves_Constraint:
"""
None
"""
def MaxError2d(self) -> float:
"""
returns the maximum distance between the points and the MultiBSpCurve.
"""
def MaxError3d(self) -> float:
"""
returns the maximum distance between the points and the MultiBSpCurve.
"""
def NbVariables(self) -> int:
"""
returns the number of variables of the function. It corresponds to the number of MultiPoints.
"""
def NewParameters(self) -> Any:
"""
returns the new parameters of the MultiLine.
"""
def SetFirstLambda(self,l1 : float) -> None:
"""
None
"""
def SetLastLambda(self,l2 : float) -> None:
"""
None
"""
def Value(self,X : Any,F : float) -> bool:
"""
this method computes the new approximation of the MultiLine SSP and calculates F = sum (||Pui - Bi*Pi||2) for each point of the MultiLine.
"""
def Values(self,X : Any,F : float,G : Any) -> bool:
"""
returns the value F=sum(||Pui - Bi*Pi||)2. returns the value G = grad(F) for the parameters Xi.
"""
def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,FirstPoint : int,LastPoint : int,TheConstraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,Parameters : Any,Knots : OCP.TColStd.TColStd_Array1OfReal,Mults : OCP.TColStd.TColStd_Array1OfInteger,NbPol : int) -> None: ...
pass
class BRepApprox_BSpParLeastSquareOfMyBSplGradientOfTheComputeLineOfApprox():
"""
None
"""
def BSplineValue(self) -> OCP.AppParCurves.AppParCurves_MultiBSpCurve:
"""
returns the result of the approximation, i.e. all the Curves. An exception is raised if NotDone.
"""
def BezierValue(self) -> OCP.AppParCurves.AppParCurves_MultiCurve:
"""
returns the result of the approximation, i.e. all the Curves. An exception is raised if NotDone.
"""
def DerivativeFunctionMatrix(self) -> OCP.math.math_Matrix:
"""
returns the derivative function matrix used to approximate the set.
"""
def Distance(self) -> OCP.math.math_Matrix:
"""
returns the distances between the points of the multiline and the approximation curves.
"""
def Error(self) -> tuple[float, float, float]:
"""
returns the maximum errors between the MultiLine and the approximation curves. F is the sum of the square distances.
"""
def ErrorGradient(self,Grad : Any) -> tuple[float, float, float]:
"""
returns the maximum errors between the MultiLine and the approximation curves. F is the sum of the square distances. Grad is the derivative vector of the function F.
"""
def FirstLambda(self) -> float:
"""
returns the value (P2 - P1)/ V1 if the first point was a tangency point.
"""
def FunctionMatrix(self) -> OCP.math.math_Matrix:
"""
returns the function matrix used to approximate the set.
"""
def IsDone(self) -> bool:
"""
returns True if all has been correctly done.
"""
def KIndex(self) -> Any:
"""
Returns the indexes of the first non null values of A and DA. The values are non null from Index(ieme point) +1 to Index(ieme point) + degree +1.
"""
def LastLambda(self) -> float:
"""
returns the value (PN - PN-1)/ VN if the last point was a tangency point.
"""
@overload
def Perform(self,Parameters : Any,V1t : Any,V2t : Any,V1c : Any,V2c : Any,l1 : float,l2 : float) -> None:
"""
Is used after having initialized the fields. The case "CurvaturePoint" is not treated in this method.
Is used after having initialized the fields.
Is used after having initialized the fields. <V1t> is the tangent vector at the first point. <V2t> is the tangent vector at the last point.
Is used after having initialized the fields. <V1t> is the tangent vector at the first point. <V2t> is the tangent vector at the last point. <V1c> is the tangent vector at the first point. <V2c> is the tangent vector at the last point.
"""
@overload
def Perform(self,Parameters : Any,l1 : float,l2 : float) -> None: ...
@overload
def Perform(self,Parameters : Any) -> None: ...
@overload
def Perform(self,Parameters : Any,V1t : Any,V2t : Any,l1 : float,l2 : float) -> None: ...
def Points(self) -> OCP.math.math_Matrix:
"""
returns the matrix of points value.
"""
def Poles(self) -> OCP.math.math_Matrix:
"""
returns the matrix of resulting control points value.
"""
@overload
def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,Knots : OCP.TColStd.TColStd_Array1OfReal,Mults : OCP.TColStd.TColStd_Array1OfInteger,FirstPoint : int,LastPoint : int,FirstCons : OCP.AppParCurves.AppParCurves_Constraint,LastCons : OCP.AppParCurves.AppParCurves_Constraint,Parameters : Any,NbPol : int) -> None: ...
@overload
def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,FirstPoint : int,LastPoint : int,FirstCons : OCP.AppParCurves.AppParCurves_Constraint,LastCons : OCP.AppParCurves.AppParCurves_Constraint,NbPol : int) -> None: ...
@overload
def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,FirstPoint : int,LastPoint : int,FirstCons : OCP.AppParCurves.AppParCurves_Constraint,LastCons : OCP.AppParCurves.AppParCurves_Constraint,Parameters : Any,NbPol : int) -> None: ...
@overload
def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,Knots : OCP.TColStd.TColStd_Array1OfReal,Mults : OCP.TColStd.TColStd_Array1OfInteger,FirstPoint : int,LastPoint : int,FirstCons : OCP.AppParCurves.AppParCurves_Constraint,LastCons : OCP.AppParCurves.AppParCurves_Constraint,NbPol : int) -> None: ...
pass
class BRepApprox_Gradient_BFGSOfMyGradientOfTheComputeLineBezierOfApprox(OCP.math.math_BFGS):
"""
None
"""
def Dump(self,o : io.BytesIO) -> None:
"""
Prints on the stream o information on the current state of the object. Is used to redefine the operator <<.
"""
@overload
def Gradient(self) -> Any:
"""
Returns the value of the gradient vector at the minimum in Grad. Exception NotDone is raised if the minimum was not found. Exception DimensionError is raised if the range of Grad is not equal to the range of the StartingPoint.
Returns the value of the gradient vector at the minimum in Grad. Exception NotDone is raised if the minimum was not found. Exception DimensionError is raised if the range of Grad is not equal to the range of the StartingPoint.
Returns the gradient vector at the minimum. Exception NotDone is raised if the minimum was not found.
Returns the gradient vector at the minimum. Exception NotDone is raised if the minimum was not found.
"""
@overload
def Gradient(self,Grad : Any) -> None: ...
def IsDone(self) -> bool:
"""
Returns true if the computations are successful, otherwise returns false.
Returns true if the computations are successful, otherwise returns false.
"""
def IsSolutionReached(self,F : OCP.math.math_MultipleVarFunctionWithGradient) -> bool:
"""
None
"""
@overload
def Location(self,Loc : Any) -> None:
"""
outputs the location vector of the minimum in Loc. Exception NotDone is raised if the minimum was not found. Exception DimensionError is raised if the range of Loc is not equal to the range of the StartingPoint.
outputs the location vector of the minimum in Loc. Exception NotDone is raised if the minimum was not found. Exception DimensionError is raised if the range of Loc is not equal to the range of the StartingPoint.
returns the location vector of the minimum. Exception NotDone is raised if the minimum was not found.
returns the location vector of the minimum. Exception NotDone is raised if the minimum was not found.
"""
@overload
def Location(self) -> Any: ...
def Minimum(self) -> float:
"""
returns the value of the minimum. Exception NotDone is raised if the minimum was not found.
returns the value of the minimum. Exception NotDone is raised if the minimum was not found.
"""
def NbIterations(self) -> int:
"""
Returns the number of iterations really done in the calculation of the minimum. The exception NotDone is raised if the minimum was not found.
Returns the number of iterations really done in the calculation of the minimum. The exception NotDone is raised if the minimum was not found.
"""
def Perform(self,F : OCP.math.math_MultipleVarFunctionWithGradient,StartingPoint : Any) -> None:
"""
Given the starting point StartingPoint, minimization is done on the function F. The solution F = Fi is found when : 2.0 * abs(Fi - Fi-1) <= Tolerance * (abs(Fi) + abs(Fi-1) + ZEPS). Tolerance, ZEPS and maximum number of iterations are given in the constructor.
"""
def SetBoundary(self,theLeftBorder : Any,theRightBorder : Any) -> None:
"""
Set boundaries for conditional optimization. The expected indices range of vectors is [1, NbVariables].
"""
def __init__(self,F : OCP.math.math_MultipleVarFunctionWithGradient,StartingPoint : Any,Tolerance3d : float,Tolerance2d : float,Eps : float,NbIterations : int=200) -> None: ...
pass
class BRepApprox_Gradient_BFGSOfMyGradientbisOfTheComputeLineOfApprox(OCP.math.math_BFGS):
"""
None
"""
def Dump(self,o : io.BytesIO) -> None:
"""
Prints on the stream o information on the current state of the object. Is used to redefine the operator <<.
"""
@overload
def Gradient(self) -> Any:
"""
Returns the value of the gradient vector at the minimum in Grad. Exception NotDone is raised if the minimum was not found. Exception DimensionError is raised if the range of Grad is not equal to the range of the StartingPoint.
Returns the value of the gradient vector at the minimum in Grad. Exception NotDone is raised if the minimum was not found. Exception DimensionError is raised if the range of Grad is not equal to the range of the StartingPoint.
Returns the gradient vector at the minimum. Exception NotDone is raised if the minimum was not found.
Returns the gradient vector at the minimum. Exception NotDone is raised if the minimum was not found.
"""
@overload
def Gradient(self,Grad : Any) -> None: ...
def IsDone(self) -> bool:
"""
Returns true if the computations are successful, otherwise returns false.
Returns true if the computations are successful, otherwise returns false.
"""
def IsSolutionReached(self,F : OCP.math.math_MultipleVarFunctionWithGradient) -> bool:
"""
None
"""
@overload
def Location(self,Loc : Any) -> None:
"""
outputs the location vector of the minimum in Loc. Exception NotDone is raised if the minimum was not found. Exception DimensionError is raised if the range of Loc is not equal to the range of the StartingPoint.
outputs the location vector of the minimum in Loc. Exception NotDone is raised if the minimum was not found. Exception DimensionError is raised if the range of Loc is not equal to the range of the StartingPoint.
returns the location vector of the minimum. Exception NotDone is raised if the minimum was not found.
returns the location vector of the minimum. Exception NotDone is raised if the minimum was not found.
"""
@overload
def Location(self) -> Any: ...
def Minimum(self) -> float:
"""
returns the value of the minimum. Exception NotDone is raised if the minimum was not found.
returns the value of the minimum. Exception NotDone is raised if the minimum was not found.
"""
def NbIterations(self) -> int:
"""
Returns the number of iterations really done in the calculation of the minimum. The exception NotDone is raised if the minimum was not found.
Returns the number of iterations really done in the calculation of the minimum. The exception NotDone is raised if the minimum was not found.
"""
def Perform(self,F : OCP.math.math_MultipleVarFunctionWithGradient,StartingPoint : Any) -> None:
"""
Given the starting point StartingPoint, minimization is done on the function F. The solution F = Fi is found when : 2.0 * abs(Fi - Fi-1) <= Tolerance * (abs(Fi) + abs(Fi-1) + ZEPS). Tolerance, ZEPS and maximum number of iterations are given in the constructor.
"""
def SetBoundary(self,theLeftBorder : Any,theRightBorder : Any) -> None:
"""
Set boundaries for conditional optimization. The expected indices range of vectors is [1, NbVariables].
"""
def __init__(self,F : OCP.math.math_MultipleVarFunctionWithGradient,StartingPoint : Any,Tolerance3d : float,Tolerance2d : float,Eps : float,NbIterations : int=200) -> None: ...
pass
class BRepApprox_MyBSplGradientOfTheComputeLineOfApprox():
"""
None
"""
def AverageError(self) -> float:
"""
returns the average error between the old and the new approximation.
"""
def Error(self,Index : int) -> float:
"""
returns the difference between the old and the new approximation. An exception is raised if NotDone. An exception is raised if Index<1 or Index>NbParameters.
"""
def IsDone(self) -> bool:
"""
returns True if all has been correctly done.
"""
def MaxError2d(self) -> float:
"""
returns the maximum difference between the old and the new approximation.
"""
def MaxError3d(self) -> float:
"""
returns the maximum difference between the old and the new approximation.
"""
def Value(self) -> OCP.AppParCurves.AppParCurves_MultiBSpCurve:
"""
returns all the BSpline curves approximating the MultiLine SSP after minimization of the parameter.
"""
@overload
def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,FirstPoint : int,LastPoint : int,TheConstraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,Parameters : Any,Knots : OCP.TColStd.TColStd_Array1OfReal,Mults : OCP.TColStd.TColStd_Array1OfInteger,Deg : int,Tol3d : float,Tol2d : float,NbIterations : int=1) -> None: ...
@overload
def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,FirstPoint : int,LastPoint : int,TheConstraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,Parameters : Any,Knots : OCP.TColStd.TColStd_Array1OfReal,Mults : OCP.TColStd.TColStd_Array1OfInteger,Deg : int,Tol3d : float,Tol2d : float,NbIterations : int,lambda1 : float,lambda2 : float) -> None: ...
pass
class BRepApprox_MyGradientOfTheComputeLineBezierOfApprox():
"""
None
"""
def AverageError(self) -> float:
"""
returns the average error between the old and the new approximation.
"""
def Error(self,Index : int) -> float:
"""
returns the difference between the old and the new approximation. An exception is raised if NotDone. An exception is raised if Index<1 or Index>NbParameters.
"""
def IsDone(self) -> bool:
"""
returns True if all has been correctly done.
"""
def MaxError2d(self) -> float:
"""
returns the maximum difference between the old and the new approximation.
"""
def MaxError3d(self) -> float:
"""
returns the maximum difference between the old and the new approximation.
"""
def Value(self) -> OCP.AppParCurves.AppParCurves_MultiCurve:
"""
returns all the Bezier curves approximating the MultiLine SSP after minimization of the parameter.
"""
def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,FirstPoint : int,LastPoint : int,TheConstraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,Parameters : Any,Deg : int,Tol3d : float,Tol2d : float,NbIterations : int=200) -> None: ...
pass
class BRepApprox_MyGradientbisOfTheComputeLineOfApprox():
"""
None
"""
def AverageError(self) -> float:
"""
returns the average error between the old and the new approximation.
"""
def Error(self,Index : int) -> float:
"""
returns the difference between the old and the new approximation. An exception is raised if NotDone. An exception is raised if Index<1 or Index>NbParameters.
"""
def IsDone(self) -> bool:
"""
returns True if all has been correctly done.
"""
def MaxError2d(self) -> float:
"""
returns the maximum difference between the old and the new approximation.
"""
def MaxError3d(self) -> float:
"""
returns the maximum difference between the old and the new approximation.
"""
def Value(self) -> OCP.AppParCurves.AppParCurves_MultiCurve:
"""
returns all the Bezier curves approximating the MultiLine SSP after minimization of the parameter.
"""
def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,FirstPoint : int,LastPoint : int,TheConstraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,Parameters : Any,Deg : int,Tol3d : float,Tol2d : float,NbIterations : int=200) -> None: ...
pass
class BRepApprox_ParFunctionOfMyGradientOfTheComputeLineBezierOfApprox(OCP.math.math_MultipleVarFunctionWithGradient, OCP.math.math_MultipleVarFunction):
"""
None
"""
def CurveValue(self) -> OCP.AppParCurves.AppParCurves_MultiCurve:
"""
returns the MultiCurve approximating the set after computing the value F or Grad(F).
"""
def Error(self,IPoint : int,CurveIndex : int) -> float:
"""
returns the distance between the MultiPoint of range IPoint and the curve CurveIndex.
"""
def FirstConstraint(self,TheConstraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,FirstPoint : int) -> OCP.AppParCurves.AppParCurves_Constraint:
"""
None
"""
def GetStateNumber(self) -> int:
"""
return the state of the function corresponding to the latestt call of any methods associated to the function. This function is called by each of the algorithms described later which define the function Integer Algorithm::StateNumber(). The algorithm has the responsibility to call this function when it has found a solution (i.e. a root or a minimum) and has to maintain the association between the solution found and this StateNumber. Byu default, this method returns 0 (which means for the algorithm: no state has been saved). It is the responsibility of the programmer to decide if he needs to save the current state of the function and to return an Integer that allows retrieval of the state.
"""
def Gradient(self,X : Any,G : Any) -> bool:
"""
returns the gradient G of the sum above for the parameters Xi.
"""
def LastConstraint(self,TheConstraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,LastPoint : int) -> OCP.AppParCurves.AppParCurves_Constraint:
"""
None
"""
def MaxError2d(self) -> float:
"""
returns the maximum distance between the points and the MultiCurve.
"""
def MaxError3d(self) -> float:
"""
returns the maximum distance between the points and the MultiCurve.
"""
def NbVariables(self) -> int:
"""
returns the number of variables of the function. It corresponds to the number of MultiPoints.
"""
def NewParameters(self) -> Any:
"""
returns the new parameters of the MultiLine.
"""
def Value(self,X : Any,F : float) -> bool:
"""
this method computes the new approximation of the MultiLine SSP and calculates F = sum (||Pui - Bi*Pi||2) for each point of the MultiLine.
"""
def Values(self,X : Any,F : float,G : Any) -> bool:
"""
returns the value F=sum(||Pui - Bi*Pi||)2. returns the value G = grad(F) for the parameters Xi.
"""
def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,FirstPoint : int,LastPoint : int,TheConstraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,Parameters : Any,Deg : int) -> None: ...
pass
class BRepApprox_ParFunctionOfMyGradientbisOfTheComputeLineOfApprox(OCP.math.math_MultipleVarFunctionWithGradient, OCP.math.math_MultipleVarFunction):
"""
None
"""
def CurveValue(self) -> OCP.AppParCurves.AppParCurves_MultiCurve:
"""
returns the MultiCurve approximating the set after computing the value F or Grad(F).
"""
def Error(self,IPoint : int,CurveIndex : int) -> float:
"""
returns the distance between the MultiPoint of range IPoint and the curve CurveIndex.
"""
def FirstConstraint(self,TheConstraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,FirstPoint : int) -> OCP.AppParCurves.AppParCurves_Constraint:
"""
None
"""
def GetStateNumber(self) -> int:
"""
return the state of the function corresponding to the latestt call of any methods associated to the function. This function is called by each of the algorithms described later which define the function Integer Algorithm::StateNumber(). The algorithm has the responsibility to call this function when it has found a solution (i.e. a root or a minimum) and has to maintain the association between the solution found and this StateNumber. Byu default, this method returns 0 (which means for the algorithm: no state has been saved). It is the responsibility of the programmer to decide if he needs to save the current state of the function and to return an Integer that allows retrieval of the state.
"""
def Gradient(self,X : Any,G : Any) -> bool:
"""
returns the gradient G of the sum above for the parameters Xi.
"""
def LastConstraint(self,TheConstraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,LastPoint : int) -> OCP.AppParCurves.AppParCurves_Constraint:
"""
None
"""
def MaxError2d(self) -> float:
"""
returns the maximum distance between the points and the MultiCurve.
"""
def MaxError3d(self) -> float:
"""
returns the maximum distance between the points and the MultiCurve.
"""
def NbVariables(self) -> int:
"""
returns the number of variables of the function. It corresponds to the number of MultiPoints.
"""
def NewParameters(self) -> Any:
"""
returns the new parameters of the MultiLine.
"""
def Value(self,X : Any,F : float) -> bool:
"""
this method computes the new approximation of the MultiLine SSP and calculates F = sum (||Pui - Bi*Pi||2) for each point of the MultiLine.
"""
def Values(self,X : Any,F : float,G : Any) -> bool:
"""
returns the value F=sum(||Pui - Bi*Pi||)2. returns the value G = grad(F) for the parameters Xi.
"""
def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,FirstPoint : int,LastPoint : int,TheConstraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,Parameters : Any,Deg : int) -> None: ...
pass
class BRepApprox_ParLeastSquareOfMyGradientOfTheComputeLineBezierOfApprox():
"""
None
"""
def BSplineValue(self) -> OCP.AppParCurves.AppParCurves_MultiBSpCurve:
"""
returns the result of the approximation, i.e. all the Curves. An exception is raised if NotDone.
"""
def BezierValue(self) -> OCP.AppParCurves.AppParCurves_MultiCurve:
"""
returns the result of the approximation, i.e. all the Curves. An exception is raised if NotDone.
"""
def DerivativeFunctionMatrix(self) -> OCP.math.math_Matrix:
"""
returns the derivative function matrix used to approximate the set.
"""
def Distance(self) -> OCP.math.math_Matrix:
"""
returns the distances between the points of the multiline and the approximation curves.
"""
def Error(self) -> tuple[float, float, float]:
"""
returns the maximum errors between the MultiLine and the approximation curves. F is the sum of the square distances.
"""
def ErrorGradient(self,Grad : Any) -> tuple[float, float, float]:
"""
returns the maximum errors between the MultiLine and the approximation curves. F is the sum of the square distances. Grad is the derivative vector of the function F.
"""
def FirstLambda(self) -> float:
"""
returns the value (P2 - P1)/ V1 if the first point was a tangency point.
"""
def FunctionMatrix(self) -> OCP.math.math_Matrix:
"""
returns the function matrix used to approximate the set.
"""
def IsDone(self) -> bool:
"""
returns True if all has been correctly done.
"""
def KIndex(self) -> Any:
"""
Returns the indexes of the first non null values of A and DA. The values are non null from Index(ieme point) +1 to Index(ieme point) + degree +1.
"""
def LastLambda(self) -> float:
"""
returns the value (PN - PN-1)/ VN if the last point was a tangency point.
"""
@overload
def Perform(self,Parameters : Any,l1 : float,l2 : float) -> None:
"""
Is used after having initialized the fields. The case "CurvaturePoint" is not treated in this method.
Is used after having initialized the fields.
Is used after having initialized the fields. <V1t> is the tangent vector at the first point. <V2t> is the tangent vector at the last point.
Is used after having initialized the fields. <V1t> is the tangent vector at the first point. <V2t> is the tangent vector at the last point. <V1c> is the tangent vector at the first point. <V2c> is the tangent vector at the last point.
"""
@overload
def Perform(self,Parameters : Any,V1t : Any,V2t : Any,l1 : float,l2 : float) -> None: ...
@overload
def Perform(self,Parameters : Any) -> None: ...
@overload
def Perform(self,Parameters : Any,V1t : Any,V2t : Any,V1c : Any,V2c : Any,l1 : float,l2 : float) -> None: ...
def Points(self) -> OCP.math.math_Matrix:
"""
returns the matrix of points value.
"""
def Poles(self) -> OCP.math.math_Matrix:
"""
returns the matrix of resulting control points value.
"""
@overload
def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,FirstPoint : int,LastPoint : int,FirstCons : OCP.AppParCurves.AppParCurves_Constraint,LastCons : OCP.AppParCurves.AppParCurves_Constraint,NbPol : int) -> None: ...
@overload
def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,FirstPoint : int,LastPoint : int,FirstCons : OCP.AppParCurves.AppParCurves_Constraint,LastCons : OCP.AppParCurves.AppParCurves_Constraint,Parameters : Any,NbPol : int) -> None: ...
@overload
def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,Knots : OCP.TColStd.TColStd_Array1OfReal,Mults : OCP.TColStd.TColStd_Array1OfInteger,FirstPoint : int,LastPoint : int,FirstCons : OCP.AppParCurves.AppParCurves_Constraint,LastCons : OCP.AppParCurves.AppParCurves_Constraint,NbPol : int) -> None: ...
@overload
def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,Knots : OCP.TColStd.TColStd_Array1OfReal,Mults : OCP.TColStd.TColStd_Array1OfInteger,FirstPoint : int,LastPoint : int,FirstCons : OCP.AppParCurves.AppParCurves_Constraint,LastCons : OCP.AppParCurves.AppParCurves_Constraint,Parameters : Any,NbPol : int) -> None: ...
pass
class BRepApprox_ParLeastSquareOfMyGradientbisOfTheComputeLineOfApprox():
"""
None
"""
def BSplineValue(self) -> OCP.AppParCurves.AppParCurves_MultiBSpCurve:
"""
returns the result of the approximation, i.e. all the Curves. An exception is raised if NotDone.
"""
def BezierValue(self) -> OCP.AppParCurves.AppParCurves_MultiCurve:
"""
returns the result of the approximation, i.e. all the Curves. An exception is raised if NotDone.
"""
def DerivativeFunctionMatrix(self) -> OCP.math.math_Matrix:
"""
returns the derivative function matrix used to approximate the set.
"""
def Distance(self) -> OCP.math.math_Matrix:
"""
returns the distances between the points of the multiline and the approximation curves.
"""
def Error(self) -> tuple[float, float, float]:
"""
returns the maximum errors between the MultiLine and the approximation curves. F is the sum of the square distances.
"""
def ErrorGradient(self,Grad : Any) -> tuple[float, float, float]:
"""
returns the maximum errors between the MultiLine and the approximation curves. F is the sum of the square distances. Grad is the derivative vector of the function F.
"""
def FirstLambda(self) -> float:
"""
returns the value (P2 - P1)/ V1 if the first point was a tangency point.
"""
def FunctionMatrix(self) -> OCP.math.math_Matrix:
"""
returns the function matrix used to approximate the set.
"""
def IsDone(self) -> bool:
"""
returns True if all has been correctly done.
"""
def KIndex(self) -> Any:
"""
Returns the indexes of the first non null values of A and DA. The values are non null from Index(ieme point) +1 to Index(ieme point) + degree +1.
"""
def LastLambda(self) -> float:
"""
returns the value (PN - PN-1)/ VN if the last point was a tangency point.
"""
@overload
def Perform(self,Parameters : Any) -> None:
"""
Is used after having initialized the fields. The case "CurvaturePoint" is not treated in this method.
Is used after having initialized the fields.
Is used after having initialized the fields. <V1t> is the tangent vector at the first point. <V2t> is the tangent vector at the last point.
Is used after having initialized the fields. <V1t> is the tangent vector at the first point. <V2t> is the tangent vector at the last point. <V1c> is the tangent vector at the first point. <V2c> is the tangent vector at the last point.
"""
@overload
def Perform(self,Parameters : Any,l1 : float,l2 : float) -> None: ...
@overload
def Perform(self,Parameters : Any,V1t : Any,V2t : Any,l1 : float,l2 : float) -> None: ...
@overload
def Perform(self,Parameters : Any,V1t : Any,V2t : Any,V1c : Any,V2c : Any,l1 : float,l2 : float) -> None: ...
def Points(self) -> OCP.math.math_Matrix:
"""
returns the matrix of points value.
"""
def Poles(self) -> OCP.math.math_Matrix:
"""
returns the matrix of resulting control points value.
"""
@overload
def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,FirstPoint : int,LastPoint : int,FirstCons : OCP.AppParCurves.AppParCurves_Constraint,LastCons : OCP.AppParCurves.AppParCurves_Constraint,NbPol : int) -> None: ...
@overload
def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,Knots : OCP.TColStd.TColStd_Array1OfReal,Mults : OCP.TColStd.TColStd_Array1OfInteger,FirstPoint : int,LastPoint : int,FirstCons : OCP.AppParCurves.AppParCurves_Constraint,LastCons : OCP.AppParCurves.AppParCurves_Constraint,NbPol : int) -> None: ...
@overload
def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,Knots : OCP.TColStd.TColStd_Array1OfReal,Mults : OCP.TColStd.TColStd_Array1OfInteger,FirstPoint : int,LastPoint : int,FirstCons : OCP.AppParCurves.AppParCurves_Constraint,LastCons : OCP.AppParCurves.AppParCurves_Constraint,Parameters : Any,NbPol : int) -> None: ...
@overload
def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,FirstPoint : int,LastPoint : int,FirstCons : OCP.AppParCurves.AppParCurves_Constraint,LastCons : OCP.AppParCurves.AppParCurves_Constraint,Parameters : Any,NbPol : int) -> None: ...
pass
class BRepApprox_ResConstraintOfMyGradientOfTheComputeLineBezierOfApprox():
"""
None
"""
def ConstraintDerivative(self,SSP : BRepApprox_TheMultiLineOfApprox,Parameters : Any,Deg : int,DA : OCP.math.math_Matrix) -> OCP.math.math_Matrix:
"""
Returns the derivative of the constraint matrix.
"""
def ConstraintMatrix(self) -> OCP.math.math_Matrix:
"""
None
"""
def Duale(self) -> Any:
"""
returns the duale variables of the system.
"""
def InverseMatrix(self) -> OCP.math.math_Matrix:
"""
returns the Inverse of Cont*Transposed(Cont), where Cont is the constraint matrix for the algorithm.
"""
def IsDone(self) -> bool:
"""
returns True if all has been correctly done.
"""
def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,SCurv : OCP.AppParCurves.AppParCurves_MultiCurve,FirstPoint : int,LastPoint : int,Constraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,Bern : OCP.math.math_Matrix,DerivativeBern : OCP.math.math_Matrix,Tolerance : float=1e-10) -> None: ...
pass
class BRepApprox_ResConstraintOfMyGradientbisOfTheComputeLineOfApprox():
"""
None
"""
def ConstraintDerivative(self,SSP : BRepApprox_TheMultiLineOfApprox,Parameters : Any,Deg : int,DA : OCP.math.math_Matrix) -> OCP.math.math_Matrix:
"""
Returns the derivative of the constraint matrix.
"""
def ConstraintMatrix(self) -> OCP.math.math_Matrix:
"""
None
"""
def Duale(self) -> Any:
"""
returns the duale variables of the system.
"""
def InverseMatrix(self) -> OCP.math.math_Matrix:
"""
returns the Inverse of Cont*Transposed(Cont), where Cont is the constraint matrix for the algorithm.
"""
def IsDone(self) -> bool:
"""
returns True if all has been correctly done.
"""
def __init__(self,SSP : BRepApprox_TheMultiLineOfApprox,SCurv : OCP.AppParCurves.AppParCurves_MultiCurve,FirstPoint : int,LastPoint : int,Constraints : OCP.AppParCurves.AppParCurves_HArray1OfConstraintCouple,Bern : OCP.math.math_Matrix,DerivativeBern : OCP.math.math_Matrix,Tolerance : float=1e-10) -> None: ...
pass
class BRepApprox_SurfaceTool():
"""
None
"""
@staticmethod
def AxeOfRevolution_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> OCP.gp.gp_Ax1:
"""
None
"""
@staticmethod
def BSpline_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> OCP.Geom.Geom_BSplineSurface:
"""
None
"""
@staticmethod
def BasisCurve_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> OCP.Adaptor3d.Adaptor3d_Curve:
"""
None
"""
@staticmethod
def Bezier_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> OCP.Geom.Geom_BezierSurface:
"""
None
"""
@staticmethod
def Cone_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> OCP.gp.gp_Cone:
"""
None
"""
@staticmethod
def Cylinder_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> OCP.gp.gp_Cylinder:
"""
None
"""
@staticmethod
def D0_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,u : float,v : float,P : OCP.gp.gp_Pnt) -> None:
"""
None
"""
@staticmethod
def D1_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,u : float,v : float,P : OCP.gp.gp_Pnt,D1u : OCP.gp.gp_Vec,D1v : OCP.gp.gp_Vec) -> None:
"""
None
"""
@staticmethod
def D2_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,u : float,v : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None:
"""
None
"""
@staticmethod
def D3_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,u : float,v : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None:
"""
None
"""
@staticmethod
def DN_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,u : float,v : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec:
"""
None
"""
@staticmethod
def Direction_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> OCP.gp.gp_Dir:
"""
None
"""
@staticmethod
def FirstUParameter_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> float:
"""
None
"""
@staticmethod
def FirstVParameter_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> float:
"""
None
"""
@staticmethod
def GetType_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> OCP.GeomAbs.GeomAbs_SurfaceType:
"""
None
"""
@staticmethod
def IsUClosed_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> bool:
"""
None
"""
@staticmethod
def IsUPeriodic_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> bool:
"""
None
"""
@staticmethod
def IsVClosed_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> bool:
"""
None
"""
@staticmethod
def IsVPeriodic_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> bool:
"""
None
"""
@staticmethod
def LastUParameter_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> float:
"""
None
"""
@staticmethod
def LastVParameter_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> float:
"""
None
"""
@staticmethod
@overload
def NbSamplesU_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,u1 : float,u2 : float) -> int:
"""
None
None
"""
@staticmethod
@overload
def NbSamplesU_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> int: ...
@staticmethod
@overload
def NbSamplesV_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,v1 : float,v2 : float) -> int:
"""
None
None
"""
@staticmethod
@overload
def NbSamplesV_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> int: ...
@staticmethod
def NbUIntervals_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,Sh : OCP.GeomAbs.GeomAbs_Shape) -> int:
"""
None
"""
@staticmethod
def NbVIntervals_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,Sh : OCP.GeomAbs.GeomAbs_Shape) -> int:
"""
None
"""
@staticmethod
def Plane_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> OCP.gp.gp_Pln:
"""
None
"""
@staticmethod
def Sphere_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> OCP.gp.gp_Sphere:
"""
None
"""
@staticmethod
def Torus_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> OCP.gp.gp_Torus:
"""
None
"""
@staticmethod
def UIntervals_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,T : OCP.TColStd.TColStd_Array1OfReal,Sh : OCP.GeomAbs.GeomAbs_Shape) -> None:
"""
None
"""
@staticmethod
def UPeriod_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> float:
"""
None
"""
@staticmethod
def UResolution_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,R3d : float) -> float:
"""
None
"""
@staticmethod
def UTrim_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,First : float,Last : float,Tol : float) -> OCP.Adaptor3d.Adaptor3d_Surface:
"""
If <First> >= <Last>
"""
@staticmethod
def VIntervals_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,T : OCP.TColStd.TColStd_Array1OfReal,Sh : OCP.GeomAbs.GeomAbs_Shape) -> None:
"""
None
"""
@staticmethod
def VPeriod_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface) -> float:
"""
None
"""
@staticmethod
def VResolution_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,R3d : float) -> float:
"""
None
"""
@staticmethod
def VTrim_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,First : float,Last : float,Tol : float) -> OCP.Adaptor3d.Adaptor3d_Surface:
"""
If <First> >= <Last>
"""
@staticmethod
def Value_s(S : OCP.BRepAdaptor.BRepAdaptor_Surface,u : float,v : float) -> OCP.gp.gp_Pnt:
"""
None
"""
def __init__(self) -> None: ...
pass
class BRepApprox_TheComputeLineBezierOfApprox():
"""
None
"""
def ChangeValue(self,Index : int=1) -> OCP.AppParCurves.AppParCurves_MultiCurve:
"""
returns the result of the approximation.
"""
def Error(self,Index : int) -> tuple[float, float]:
"""
returns the tolerances 2d and 3d of the <Index> MultiCurve.
"""
def Init(self,degreemin : int=4,degreemax : int=8,Tolerance3d : float=0.001,Tolerance2d : float=1e-06,NbIterations : int=5,cutting : bool=True,parametrization : OCP.Approx.Approx_ParametrizationType=Approx_ParametrizationType.Approx_ChordLength,Squares : bool=False) -> None:
"""
Initializes the fields of the algorithm.
"""
def IsAllApproximated(self) -> bool:
"""
returns False if at a moment of the approximation, the status NoApproximation has been sent by the user when more points were needed.
"""
def IsToleranceReached(self) -> bool:
"""
returns False if the status NoPointsAdded has been sent.
"""
def NbMultiCurves(self) -> int:
"""
Returns the number of MultiCurve doing the approximation of the MultiLine.
"""
def Parameters(self,Index : int=1) -> OCP.TColStd.TColStd_Array1OfReal:
"""
returns the new parameters of the approximation corresponding to the points of the multicurve <Index>.
"""
def Parametrization(self) -> OCP.Approx.Approx_ParametrizationType:
"""
returns the type of parametrization
"""
def Perform(self,Line : BRepApprox_TheMultiLineOfApprox) -> None:
"""
runs the algorithm after having initialized the fields.
"""
def SetConstraints(self,firstC : OCP.AppParCurves.AppParCurves_Constraint,lastC : OCP.AppParCurves.AppParCurves_Constraint) -> None:
"""
changes the first and the last constraint points.
"""
def SetDegrees(self,degreemin : int,degreemax : int) -> None:
"""
changes the degrees of the approximation.
"""
def SetTolerances(self,Tolerance3d : float,Tolerance2d : float) -> None:
"""
Changes the tolerances of the approximation.
"""
def SplineValue(self) -> OCP.AppParCurves.AppParCurves_MultiBSpCurve:
"""
returns the result of the approximation.
"""
def Value(self,Index : int=1) -> OCP.AppParCurves.AppParCurves_MultiCurve:
"""
returns the result of the approximation.
"""
@overload
def __init__(self,degreemin : int=4,degreemax : int=8,Tolerance3d : float=0.001,Tolerance2d : float=1e-06,NbIterations : int=5,cutting : bool=True,parametrization : OCP.Approx.Approx_ParametrizationType=Approx_ParametrizationType.Approx_ChordLength,Squares : bool=False) -> None: ...
@overload
def __init__(self,Parameters : Any,degreemin : int=4,degreemax : int=8,Tolerance3d : float=0.001,Tolerance2d : float=1e-06,NbIterations : int=5,cutting : bool=True,Squares : bool=False) -> None: ...
@overload
def __init__(self,Line : BRepApprox_TheMultiLineOfApprox,Parameters : Any,degreemin : int=4,degreemax : int=8,Tolerance3d : float=0.001,Tolerance2d : float=1e-06,NbIterations : int=5,cutting : bool=True,Squares : bool=False) -> None: ...
@overload
def __init__(self,Line : BRepApprox_TheMultiLineOfApprox,degreemin : int=4,degreemax : int=8,Tolerance3d : float=0.001,Tolerance2d : float=1e-06,NbIterations : int=5,cutting : bool=True,parametrization : OCP.Approx.Approx_ParametrizationType=Approx_ParametrizationType.Approx_ChordLength,Squares : bool=False) -> None: ...
pass
class BRepApprox_TheComputeLineOfApprox():
"""
None
"""
def ChangeValue(self) -> OCP.AppParCurves.AppParCurves_MultiBSpCurve:
"""
returns the result of the approximation.
"""
def Error(self) -> tuple[float, float]:
"""
returns the tolerances 2d and 3d of the MultiBSpCurve.
"""
def Init(self,degreemin : int=4,degreemax : int=8,Tolerance3d : float=0.001,Tolerance2d : float=1e-06,NbIterations : int=5,cutting : bool=True,parametrization : OCP.Approx.Approx_ParametrizationType=Approx_ParametrizationType.Approx_ChordLength,Squares : bool=False) -> None:
"""
Initializes the fields of the algorithm.
"""
def Interpol(self,Line : BRepApprox_TheMultiLineOfApprox) -> None:
"""
Constructs an interpolation of the MultiLine <Line> The result will be a C2 curve of degree 3.
"""
def IsAllApproximated(self) -> bool:
"""
returns False if at a moment of the approximation, the status NoApproximation has been sent by the user when more points were needed.
"""
def IsToleranceReached(self) -> bool:
"""
returns False if the status NoPointsAdded has been sent.
"""
def Parameters(self) -> OCP.TColStd.TColStd_Array1OfReal:
"""
returns the new parameters of the approximation corresponding to the points of the MultiBSpCurve.
"""
def Perform(self,Line : BRepApprox_TheMultiLineOfApprox) -> None:
"""
runs the algorithm after having initialized the fields.
"""
def SetConstraints(self,firstC : OCP.AppParCurves.AppParCurves_Constraint,lastC : OCP.AppParCurves.AppParCurves_Constraint) -> None:
"""
changes the first and the last constraint points.
"""
def SetContinuity(self,C : int) -> None:
"""
sets the continuity of the spline. if C = 2, the spline will be C2.
"""
def SetDegrees(self,degreemin : int,degreemax : int) -> None:
"""
changes the degrees of the approximation.
"""
def SetKnots(self,Knots : OCP.TColStd.TColStd_Array1OfReal) -> None:
"""
The approximation will be done with the set of knots <Knots>. The multiplicities will be set with the degree and the desired continuity.
"""
def SetKnotsAndMultiplicities(self,Knots : OCP.TColStd.TColStd_Array1OfReal,Mults : OCP.TColStd.TColStd_Array1OfInteger) -> None:
"""
The approximation will be done with the set of knots <Knots> and the multiplicities <Mults>.
"""
def SetParameters(self,ThePar : Any) -> None:
"""
The approximation will begin with the set of parameters <ThePar>.
"""
def SetPeriodic(self,thePeriodic : bool) -> None:
"""
Sets periodic flag. If thePeriodic = Standard_True, algorithm tries to build periodic multicurve using corresponding C1 boundary condition for first and last multipoints. Multiline must be closed.
"""
def SetTolerances(self,Tolerance3d : float,Tolerance2d : float) -> None:
"""
Changes the tolerances of the approximation.
"""
def Value(self) -> OCP.AppParCurves.AppParCurves_MultiBSpCurve:
"""
returns the result of the approximation.
"""
@overload
def __init__(self,Line : BRepApprox_TheMultiLineOfApprox,Parameters : Any,degreemin : int=4,degreemax : int=8,Tolerance3d : float=0.001,Tolerance2d : float=1e-06,NbIterations : int=5,cutting : bool=True,Squares : bool=False) -> None: ...
@overload
def __init__(self,degreemin : int=4,degreemax : int=8,Tolerance3d : float=0.001,Tolerance2d : float=1e-06,NbIterations : int=5,cutting : bool=True,parametrization : OCP.Approx.Approx_ParametrizationType=Approx_ParametrizationType.Approx_ChordLength,Squares : bool=False) -> None: ...
@overload
def __init__(self,Parameters : Any,degreemin : int=4,degreemax : int=8,Tolerance3d : float=0.001,Tolerance2d : float=1e-06,NbIterations : int=5,cutting : bool=True,Squares : bool=False) -> None: ...
@overload
def __init__(self,Line : BRepApprox_TheMultiLineOfApprox,degreemin : int=4,degreemax : int=8,Tolerance3d : float=0.001,Tolerance2d : float=1e-06,NbIterations : int=5,cutting : bool=True,parametrization : OCP.Approx.Approx_ParametrizationType=Approx_ParametrizationType.Approx_ChordLength,Squares : bool=False) -> None: ...
pass
class BRepApprox_TheFunctionOfTheInt2SOfThePrmPrmSvSurfacesOfApprox(OCP.math.math_FunctionSetWithDerivatives, OCP.math.math_FunctionSet):
"""
None
"""
def AuxillarSurface1(self) -> OCP.BRepAdaptor.BRepAdaptor_Surface:
"""
None
"""
def AuxillarSurface2(self) -> OCP.BRepAdaptor.BRepAdaptor_Surface:
"""
None
"""
def ComputeParameters(self,ChoixIso : OCP.IntImp.IntImp_ConstIsoparametric,Param : OCP.TColStd.TColStd_Array1OfReal,UVap : Any,BornInf : Any,BornSup : Any,Tolerance : Any) -> None:
"""
None
"""
def Derivatives(self,X : Any,D : OCP.math.math_Matrix) -> bool:
"""
None
"""
def Direction(self) -> OCP.gp.gp_Dir:
"""
None
"""
def DirectionOnS1(self) -> OCP.gp.gp_Dir2d:
"""
None
"""
def DirectionOnS2(self) -> OCP.gp.gp_Dir2d:
"""
None
"""
def GetStateNumber(self) -> int:
"""
Returns the state of the function corresponding to the latestcall of any methods associated with the function. This function is called by each of the algorithms described later which define the function Integer Algorithm::StateNumber(). The algorithm has the responsibility to call this function when it has found a solution (i.e. a root or a minimum) and has to maintain the association between the solution found and this StateNumber. Byu default, this method returns 0 (which means for the algorithm: no state has been saved). It is the responsibility of the programmer to decide if he needs to save the current state of the function and to return an Integer that allows retrieval of the state.
"""
def IsTangent(self,UVap : Any,Param : OCP.TColStd.TColStd_Array1OfReal,BestChoix : OCP.IntImp.IntImp_ConstIsoparametric) -> bool:
"""
None
"""
def NbEquations(self) -> int:
"""
None
"""
def NbVariables(self) -> int:
"""
None
"""
def Point(self) -> OCP.gp.gp_Pnt:
"""
None
"""
def Root(self) -> float:
"""
returns somme des fi*fi
"""
def Value(self,X : Any,F : Any) -> bool:
"""
None
"""
def Values(self,X : Any,F : Any,D : OCP.math.math_Matrix) -> bool:
"""
None
"""
def __init__(self,S1 : OCP.BRepAdaptor.BRepAdaptor_Surface,S2 : OCP.BRepAdaptor.BRepAdaptor_Surface) -> None: ...
pass
class BRepApprox_TheImpPrmSvSurfacesOfApprox():
"""
None
"""
def Compute(self,u1 : float,v1 : float,u2 : float,v2 : float,Pt : OCP.gp.gp_Pnt,Tg : OCP.gp.gp_Vec,Tguv1 : OCP.gp.gp_Vec2d,Tguv2 : OCP.gp.gp_Vec2d) -> bool:
"""
returns True if Tg,Tguv1 Tguv2 can be computed.
"""
def FillInitialVectorOfSolution(self,u1 : float,v1 : float,u2 : float,v2 : float,binfu : float,bsupu : float,binfv : float,bsupv : float,X : Any,TranslationU : float,TranslationV : float) -> bool:
"""
None
"""
def Pnt(self,u1 : float,v1 : float,u2 : float,v2 : float,P : OCP.gp.gp_Pnt) -> None:
"""
None
"""
def SeekPoint(self,u1 : float,v1 : float,u2 : float,v2 : float,Point : OCP.IntSurf.IntSurf_PntOn2S) -> bool:
"""
None
"""
def Tangency(self,u1 : float,v1 : float,u2 : float,v2 : float,Tg : OCP.gp.gp_Vec) -> bool:
"""
None
"""
def TangencyOnSurf1(self,u1 : float,v1 : float,u2 : float,v2 : float,Tg : OCP.gp.gp_Vec2d) -> bool:
"""
None
"""
def TangencyOnSurf2(self,u1 : float,v1 : float,u2 : float,v2 : float,Tg : OCP.gp.gp_Vec2d) -> bool:
"""
None
"""
@overload
def __init__(self,Surf1 : OCP.BRepAdaptor.BRepAdaptor_Surface,Surf2 : OCP.IntSurf.IntSurf_Quadric) -> None: ...
@overload
def __init__(self,Surf1 : OCP.IntSurf.IntSurf_Quadric,Surf2 : OCP.BRepAdaptor.BRepAdaptor_Surface) -> None: ...
pass
class BRepApprox_TheInt2SOfThePrmPrmSvSurfacesOfApprox():
"""
None
"""
def ChangePoint(self) -> OCP.IntSurf.IntSurf_PntOn2S:
"""
return the intersection point which is enable for changing.
"""
def Direction(self) -> OCP.gp.gp_Dir:
"""
Returns the tangent at the intersection line.
"""
def DirectionOnS1(self) -> OCP.gp.gp_Dir2d:
"""
Returns the tangent at the intersection line in the parametric space of the first surface.
"""
def DirectionOnS2(self) -> OCP.gp.gp_Dir2d:
"""
Returns the tangent at the intersection line in the parametric space of the second surface.
"""
def Function(self) -> BRepApprox_TheFunctionOfTheInt2SOfThePrmPrmSvSurfacesOfApprox:
"""
return the math function which is used to compute the intersection
"""
def IsDone(self) -> bool:
"""
Returns TRUE if the creation completed without failure.
"""
def IsEmpty(self) -> bool:
"""
Returns TRUE when there is no solution to the problem.
"""
def IsTangent(self) -> bool:
"""
Returns True if the surfaces are tangent at the intersection point.
"""
@overload
def Perform(self,Param : OCP.TColStd.TColStd_Array1OfReal,Rsnld : OCP.math.math_FunctionSetRoot,ChoixIso : OCP.IntImp.IntImp_ConstIsoparametric) -> OCP.IntImp.IntImp_ConstIsoparametric:
"""
returns the best constant isoparametric to find the next intersection's point +stores the solution point (the solution point is found with the close point to intersect the isoparametric with the other patch; the choice of the isoparametic is calculated)
returns the best constant isoparametric to find the next intersection's point +stores the solution point (the solution point is found with the close point to intersect the isoparametric with the other patch; the choice of the isoparametic is given by ChoixIso)
"""
@overload
def Perform(self,Param : OCP.TColStd.TColStd_Array1OfReal,Rsnld : OCP.math.math_FunctionSetRoot) -> OCP.IntImp.IntImp_ConstIsoparametric: ...
def Point(self) -> OCP.IntSurf.IntSurf_PntOn2S:
"""
Returns the intersection point.
"""
@overload
def __init__(self,Param : OCP.TColStd.TColStd_Array1OfReal,S1 : OCP.BRepAdaptor.BRepAdaptor_Surface,S2 : OCP.BRepAdaptor.BRepAdaptor_Surface,TolTangency : float) -> None: ...
@overload
def __init__(self,S1 : OCP.BRepAdaptor.BRepAdaptor_Surface,S2 : OCP.BRepAdaptor.BRepAdaptor_Surface,TolTangency : float) -> None: ...
pass
class BRepApprox_TheMultiLineOfApprox():
"""
None
"""
def Dump(self) -> None:
"""
Dump of the current multi-line.
"""
def FirstPoint(self) -> int:
"""
None
"""
def LastPoint(self) -> int:
"""
None
"""
def MakeMLBetween(self,Low : int,High : int,NbPointsToInsert : int) -> BRepApprox_TheMultiLineOfApprox:
"""
Tries to make a sub-line between <Low> and <High> points of this line by adding <NbPointsToInsert> new points
"""
def MakeMLOneMorePoint(self,Low : int,High : int,indbad : int,OtherLine : BRepApprox_TheMultiLineOfApprox) -> bool:
"""
Tries to make a sub-line between <Low> and <High> points of this line by adding one more point between (indbad-1)-th and indbad-th points
"""
def NbP2d(self) -> int:
"""
Returns the number of 2d points of a TheLine.
"""
def NbP3d(self) -> int:
"""
Returns the number of 3d points of a TheLine.
"""
@overload
def Tangency(self,MPointIndex : int,tabV : OCP.TColgp.TColgp_Array1OfVec,tabV2d : OCP.TColgp.TColgp_Array1OfVec2d) -> bool:
"""
Returns the 3d tangency points of the multipoint <MPointIndex> only when 3d points exist.
Returns the 2d tangency points of the multipoint <MPointIndex> only when 2d points exist.
Returns the 3d and 2d points of the multipoint <MPointIndex>.
"""
@overload
def Tangency(self,MPointIndex : int,tabV2d : OCP.TColgp.TColgp_Array1OfVec2d) -> bool: ...
@overload
def Tangency(self,MPointIndex : int,tabV : OCP.TColgp.TColgp_Array1OfVec) -> bool: ...
@overload
def Value(self,MPointIndex : int,tabPt : OCP.TColgp.TColgp_Array1OfPnt) -> None:
"""
Returns the 3d points of the multipoint <MPointIndex> when only 3d points exist.
Returns the 2d points of the multipoint <MPointIndex> when only 2d points exist.
Returns the 3d and 2d points of the multipoint <MPointIndex>.
"""
@overload
def Value(self,MPointIndex : int,tabPt2d : OCP.TColgp.TColgp_Array1OfPnt2d) -> None: ...
@overload
def Value(self,MPointIndex : int,tabPt : OCP.TColgp.TColgp_Array1OfPnt,tabPt2d : OCP.TColgp.TColgp_Array1OfPnt2d) -> None: ...
def WhatStatus(self) -> OCP.Approx.Approx_Status:
"""
None
"""
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,line : BRepApprox_ApproxLine,NbP3d : int,NbP2d : int,ApproxU1V1 : bool,ApproxU2V2 : bool,xo : float,yo : float,zo : float,u1o : float,v1o : float,u2o : float,v2o : float,P2DOnFirst : bool,IndMin : int=0,IndMax : int=0) -> None: ...
@overload
def __init__(self,line : BRepApprox_ApproxLine,PtrSvSurfaces : capsule,NbP3d : int,NbP2d : int,ApproxU1V1 : bool,ApproxU2V2 : bool,xo : float,yo : float,zo : float,u1o : float,v1o : float,u2o : float,v2o : float,P2DOnFirst : bool,IndMin : int=0,IndMax : int=0) -> None: ...
pass
class BRepApprox_TheMultiLineToolOfApprox():
"""
None
"""
@staticmethod
@overload
def Curvature_s(ML : BRepApprox_TheMultiLineOfApprox,MPointIndex : int,tabV : OCP.TColgp.TColgp_Array1OfVec) -> bool:
"""
returns the 3d curvature of the multipoint <MPointIndex> when only 3d points exist.
returns the 2d curvature points of the multipoint <MPointIndex> only when 2d points exist.
returns the 3d and 2d curvature of the multipoint <MPointIndex>.
"""
@staticmethod
@overload
def Curvature_s(ML : BRepApprox_TheMultiLineOfApprox,MPointIndex : int,tabV2d : OCP.TColgp.TColgp_Array1OfVec2d) -> bool: ...
@staticmethod
@overload
def Curvature_s(ML : BRepApprox_TheMultiLineOfApprox,MPointIndex : int,tabV : OCP.TColgp.TColgp_Array1OfVec,tabV2d : OCP.TColgp.TColgp_Array1OfVec2d) -> bool: ...
@staticmethod
def Dump_s(ML : BRepApprox_TheMultiLineOfApprox) -> None:
"""
Dump of the current multi-line.
"""
@staticmethod
def FirstPoint_s(ML : BRepApprox_TheMultiLineOfApprox) -> int:
"""
Returns the number of multipoints of the TheMultiLine.
"""
@staticmethod
def LastPoint_s(ML : BRepApprox_TheMultiLineOfApprox) -> int:
"""
Returns the number of multipoints of the TheMultiLine.
"""
@staticmethod
def MakeMLBetween_s(ML : BRepApprox_TheMultiLineOfApprox,I1 : int,I2 : int,NbPMin : int) -> BRepApprox_TheMultiLineOfApprox:
"""
Is called if WhatStatus returned "PointsAdded".
"""
@staticmethod
def MakeMLOneMorePoint_s(ML : BRepApprox_TheMultiLineOfApprox,I1 : int,I2 : int,indbad : int,OtherLine : BRepApprox_TheMultiLineOfApprox) -> bool:
"""
Is called when the Bezier curve contains a loop
"""
@staticmethod
def NbP2d_s(ML : BRepApprox_TheMultiLineOfApprox) -> int:
"""
Returns the number of 2d points of a TheMultiLine.
"""
@staticmethod
def NbP3d_s(ML : BRepApprox_TheMultiLineOfApprox) -> int:
"""
Returns the number of 3d points of a TheMultiLine.
"""
@staticmethod
@overload
def Tangency_s(ML : BRepApprox_TheMultiLineOfApprox,MPointIndex : int,tabV : OCP.TColgp.TColgp_Array1OfVec) -> bool:
"""
returns the 3d points of the multipoint <MPointIndex> when only 3d points exist.
returns the 2d tangency points of the multipoint <MPointIndex> only when 2d points exist.
returns the 3d and 2d points of the multipoint <MPointIndex>.
"""
@staticmethod
@overload
def Tangency_s(ML : BRepApprox_TheMultiLineOfApprox,MPointIndex : int,tabV : OCP.TColgp.TColgp_Array1OfVec,tabV2d : OCP.TColgp.TColgp_Array1OfVec2d) -> bool: ...
@staticmethod
@overload
def Tangency_s(ML : BRepApprox_TheMultiLineOfApprox,MPointIndex : int,tabV2d : OCP.TColgp.TColgp_Array1OfVec2d) -> bool: ...
@staticmethod
@overload
def Value_s(ML : BRepApprox_TheMultiLineOfApprox,MPointIndex : int,tabPt2d : OCP.TColgp.TColgp_Array1OfPnt2d) -> None:
"""
returns the 3d points of the multipoint <MPointIndex> when only 3d points exist.
returns the 2d points of the multipoint <MPointIndex> when only 2d points exist.
returns the 3d and 2d points of the multipoint <MPointIndex>.
"""
@staticmethod
@overload
def Value_s(ML : BRepApprox_TheMultiLineOfApprox,MPointIndex : int,tabPt : OCP.TColgp.TColgp_Array1OfPnt,tabPt2d : OCP.TColgp.TColgp_Array1OfPnt2d) -> None: ...
@staticmethod
@overload
def Value_s(ML : BRepApprox_TheMultiLineOfApprox,MPointIndex : int,tabPt : OCP.TColgp.TColgp_Array1OfPnt) -> None: ...
@staticmethod
def WhatStatus_s(ML : BRepApprox_TheMultiLineOfApprox,I1 : int,I2 : int) -> OCP.Approx.Approx_Status:
"""
None
"""
def __init__(self) -> None: ...
pass
class BRepApprox_ThePrmPrmSvSurfacesOfApprox():
"""
None
"""
def Compute(self,u1 : float,v1 : float,u2 : float,v2 : float,Pt : OCP.gp.gp_Pnt,Tg : OCP.gp.gp_Vec,Tguv1 : OCP.gp.gp_Vec2d,Tguv2 : OCP.gp.gp_Vec2d) -> bool:
"""
returns True if Tg,Tguv1 Tguv2 can be computed.
"""
def Pnt(self,u1 : float,v1 : float,u2 : float,v2 : float,P : OCP.gp.gp_Pnt) -> None:
"""
None
"""
def SeekPoint(self,u1 : float,v1 : float,u2 : float,v2 : float,Point : OCP.IntSurf.IntSurf_PntOn2S) -> bool:
"""
None
"""
def Tangency(self,u1 : float,v1 : float,u2 : float,v2 : float,Tg : OCP.gp.gp_Vec) -> bool:
"""
None
"""
def TangencyOnSurf1(self,u1 : float,v1 : float,u2 : float,v2 : float,Tg : OCP.gp.gp_Vec2d) -> bool:
"""
None
"""
def TangencyOnSurf2(self,u1 : float,v1 : float,u2 : float,v2 : float,Tg : OCP.gp.gp_Vec2d) -> bool:
"""
None
"""
def __init__(self,Surf1 : OCP.BRepAdaptor.BRepAdaptor_Surface,Surf2 : OCP.BRepAdaptor.BRepAdaptor_Surface) -> None: ...
pass
class BRepApprox_TheZerImpFuncOfTheImpPrmSvSurfacesOfApprox(OCP.math.math_FunctionSetWithDerivatives, OCP.math.math_FunctionSet):
"""
None
"""
def Derivatives(self,X : Any,D : OCP.math.math_Matrix) -> bool:
"""
None
"""
def Direction2d(self) -> OCP.gp.gp_Dir2d:
"""
None
"""
def Direction3d(self) -> OCP.gp.gp_Vec:
"""
None
"""
def GetStateNumber(self) -> int:
"""
Returns the state of the function corresponding to the latestcall of any methods associated with the function. This function is called by each of the algorithms described later which define the function Integer Algorithm::StateNumber(). The algorithm has the responsibility to call this function when it has found a solution (i.e. a root or a minimum) and has to maintain the association between the solution found and this StateNumber. Byu default, this method returns 0 (which means for the algorithm: no state has been saved). It is the responsibility of the programmer to decide if he needs to save the current state of the function and to return an Integer that allows retrieval of the state.
"""
def ISurface(self) -> OCP.IntSurf.IntSurf_Quadric:
"""
None
"""
def IsTangent(self) -> bool:
"""
None
"""
def NbEquations(self) -> int:
"""
None
"""
def NbVariables(self) -> int:
"""
None
"""
def PSurface(self) -> OCP.BRepAdaptor.BRepAdaptor_Surface:
"""
None
"""
def Point(self) -> OCP.gp.gp_Pnt:
"""
None
"""
def Root(self) -> float:
"""
None
"""
@overload
def Set(self,Tolerance : float) -> None:
"""
None
None
"""
@overload
def Set(self,PS : OCP.BRepAdaptor.BRepAdaptor_Surface) -> None: ...
def SetImplicitSurface(self,IS : OCP.IntSurf.IntSurf_Quadric) -> None:
"""
None
"""
def Tolerance(self) -> float:
"""
Returns the value Tol so that if Abs(Func.Root())<Tol the function is considered null.
"""
def Value(self,X : Any,F : Any) -> bool:
"""
None
"""
def Values(self,X : Any,F : Any,D : OCP.math.math_Matrix) -> bool:
"""
None
"""
@overload
def __init__(self,IS : OCP.IntSurf.IntSurf_Quadric) -> None: ...
@overload
def __init__(self,PS : OCP.BRepAdaptor.BRepAdaptor_Surface,IS : OCP.IntSurf.IntSurf_Quadric) -> None: ...
@overload
def __init__(self) -> None: ...
pass
|