1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100
|
import OCP.Geom
from typing import *
from typing import Iterable as iterable
from typing import Iterator as iterator
from numpy import float64
_Shape = Tuple[int, ...]
import OCP.NCollection
import OCP.TColStd
import OCP.gp
import OCP.TColgp
import OCP.Standard
import io
import OCP.GeomAbs
__all__ = [
"Geom_Geometry",
"Geom_AxisPlacement",
"Geom_Axis1Placement",
"Geom_Curve",
"Geom_Surface",
"Geom_BoundedCurve",
"Geom_BoundedSurface",
"Geom_BSplineCurve",
"Geom_BSplineSurface",
"Geom_Point",
"Geom_Conic",
"Geom_Circle",
"Geom_ElementarySurface",
"Geom_BezierCurve",
"Geom_CylindricalSurface",
"Geom_Vector",
"Geom_ConicalSurface",
"Geom_Ellipse",
"Geom_Axis2Placement",
"Geom_SequenceOfBSplineSurface",
"Geom_Hyperbola",
"Geom_Line",
"Geom_OffsetCurve",
"Geom_OffsetSurface",
"Geom_OsculatingSurface",
"Geom_Parabola",
"Geom_Plane",
"Geom_CartesianPoint",
"Geom_RectangularTrimmedSurface",
"Geom_HSequenceOfBSplineSurface",
"Geom_SphericalSurface",
"Geom_BezierSurface",
"Geom_SweptSurface",
"Geom_SurfaceOfRevolution",
"Geom_SurfaceOfLinearExtrusion",
"Geom_ToroidalSurface",
"Geom_Transformation",
"Geom_TrimmedCurve",
"Geom_UndefinedDerivative",
"Geom_UndefinedValue",
"Geom_Direction",
"Geom_VectorWithMagnitude"
]
class Geom_Geometry(OCP.Standard.Standard_Transient):
"""
The abstract class Geometry for 3D space is the root class of all geometric objects from the Geom package. It describes the common behavior of these objects when: - applying geometric transformations to objects, and - constructing objects by geometric transformation (including copying). Warning Only transformations which do not modify the nature of the geometry can be applied to Geom objects: this is the case with translations, rotations, symmetries and scales; this is also the case with gp_Trsf composite transformations which are used to define the geometric transformations applied using the Transform or Transformed functions. Note: Geometry defines the "prototype" of the abstract method Transform which is defined for each concrete type of derived object. All other transformations are implemented using the Transform method.The abstract class Geometry for 3D space is the root class of all geometric objects from the Geom package. It describes the common behavior of these objects when: - applying geometric transformations to objects, and - constructing objects by geometric transformation (including copying). Warning Only transformations which do not modify the nature of the geometry can be applied to Geom objects: this is the case with translations, rotations, symmetries and scales; this is also the case with gp_Trsf composite transformations which are used to define the geometric transformations applied using the Transform or Transformed functions. Note: Geometry defines the "prototype" of the abstract method Transform which is defined for each concrete type of derived object. All other transformations are implemented using the Transform method.The abstract class Geometry for 3D space is the root class of all geometric objects from the Geom package. It describes the common behavior of these objects when: - applying geometric transformations to objects, and - constructing objects by geometric transformation (including copying). Warning Only transformations which do not modify the nature of the geometry can be applied to Geom objects: this is the case with translations, rotations, symmetries and scales; this is also the case with gp_Trsf composite transformations which are used to define the geometric transformations applied using the Transform or Transformed functions. Note: Geometry defines the "prototype" of the abstract method Transform which is defined for each concrete type of derived object. All other transformations are implemented using the Transform method.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this geometric object.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom).
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_AxisPlacement(Geom_Geometry, OCP.Standard.Standard_Transient):
"""
The abstract class AxisPlacement describes the common behavior of positioning systems in 3D space, such as axis or coordinate systems. The Geom package provides two implementations of 3D positioning systems: - the axis (Geom_Axis1Placement class), which is defined by: - its origin, also termed the "Location point" of the axis, - its unit vector, termed the "Direction" or "main Direction" of the axis; - the right-handed coordinate system (Geom_Axis2Placement class), which is defined by: - its origin, also termed the "Location point" of the coordinate system, - three orthogonal unit vectors, termed respectively the "X Direction", the "Y Direction" and the "Direction" of the coordinate system. As the coordinate system is right-handed, these unit vectors have the following relation: "Direction" = "X Direction" ^ "Y Direction". The "Direction" is also called the "main Direction" because, when the unit vector is modified, the "X Direction" and "Y Direction" are recomputed, whereas when the "X Direction" or "Y Direction" is modified, the "main Direction" does not change. The axis whose origin is the origin of the positioning system and whose unit vector is its "main Direction" is also called the "Axis" or "main Axis" of the positioning system.The abstract class AxisPlacement describes the common behavior of positioning systems in 3D space, such as axis or coordinate systems. The Geom package provides two implementations of 3D positioning systems: - the axis (Geom_Axis1Placement class), which is defined by: - its origin, also termed the "Location point" of the axis, - its unit vector, termed the "Direction" or "main Direction" of the axis; - the right-handed coordinate system (Geom_Axis2Placement class), which is defined by: - its origin, also termed the "Location point" of the coordinate system, - three orthogonal unit vectors, termed respectively the "X Direction", the "Y Direction" and the "Direction" of the coordinate system. As the coordinate system is right-handed, these unit vectors have the following relation: "Direction" = "X Direction" ^ "Y Direction". The "Direction" is also called the "main Direction" because, when the unit vector is modified, the "X Direction" and "Y Direction" are recomputed, whereas when the "X Direction" or "Y Direction" is modified, the "main Direction" does not change. The axis whose origin is the origin of the positioning system and whose unit vector is its "main Direction" is also called the "Axis" or "main Axis" of the positioning system.The abstract class AxisPlacement describes the common behavior of positioning systems in 3D space, such as axis or coordinate systems. The Geom package provides two implementations of 3D positioning systems: - the axis (Geom_Axis1Placement class), which is defined by: - its origin, also termed the "Location point" of the axis, - its unit vector, termed the "Direction" or "main Direction" of the axis; - the right-handed coordinate system (Geom_Axis2Placement class), which is defined by: - its origin, also termed the "Location point" of the coordinate system, - three orthogonal unit vectors, termed respectively the "X Direction", the "Y Direction" and the "Direction" of the coordinate system. As the coordinate system is right-handed, these unit vectors have the following relation: "Direction" = "X Direction" ^ "Y Direction". The "Direction" is also called the "main Direction" because, when the unit vector is modified, the "X Direction" and "Y Direction" are recomputed, whereas when the "X Direction" or "Y Direction" is modified, the "main Direction" does not change. The axis whose origin is the origin of the positioning system and whose unit vector is its "main Direction" is also called the "Axis" or "main Axis" of the positioning system.
"""
def Angle(self,Other : Geom_AxisPlacement) -> float:
"""
Computes the angular value, in radians, between the "main Direction" of this positioning system and that of positioning system Other. The result is a value between 0 and Pi.
"""
def Axis(self) -> OCP.gp.gp_Ax1:
"""
Returns the main axis of the axis placement. For an "Axis2placement" it is the main axis (Location, Direction ). For an "Axis1Placement" this method returns a copy of <me>.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this geometric object.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def Direction(self) -> OCP.gp.gp_Dir:
"""
Returns the main "Direction" of an axis placement.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def Location(self) -> OCP.gp.gp_Pnt:
"""
Returns the Location point (origin) of the axis placement.
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def SetAxis(self,A1 : OCP.gp.gp_Ax1) -> None:
"""
Assigns A1 as the "main Axis" of this positioning system. This modifies - its origin, and - its "main Direction". If this positioning system is a Geom_Axis2Placement, then its "X Direction" and "Y Direction" are recomputed. Exceptions For a Geom_Axis2Placement: Standard_ConstructionError if A1 and the previous "X Direction" of the coordinate system are parallel.
"""
def SetDirection(self,V : OCP.gp.gp_Dir) -> None:
"""
Changes the direction of the axis placement. If <me> is an axis placement two axis the main "Direction" is modified and the "XDirection" and "YDirection" are recomputed. Raises ConstructionError only for an axis placement two axis if V and the previous "XDirection" are parallel because it is not possible to calculate the new "XDirection" and the new "YDirection".
"""
def SetLocation(self,P : OCP.gp.gp_Pnt) -> None:
"""
Assigns the point P as the origin of this positioning system.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom).
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_Axis1Placement(Geom_AxisPlacement, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
Describes an axis in 3D space. An axis is defined by: - its origin, also termed the "Location point" of the axis, - its unit vector, termed the "Direction" of the axis. Note: Geom_Axis1Placement axes provide the same kind of "geometric" services as gp_Ax1 axes but have more complex data structures. The geometric objects provided by the Geom package use gp_Ax1 objects to include axes in their data structures, or to define an axis of symmetry or axis of rotation. Geom_Axis1Placement axes are used in a context where they can be shared by several objects contained inside a common data structure.Describes an axis in 3D space. An axis is defined by: - its origin, also termed the "Location point" of the axis, - its unit vector, termed the "Direction" of the axis. Note: Geom_Axis1Placement axes provide the same kind of "geometric" services as gp_Ax1 axes but have more complex data structures. The geometric objects provided by the Geom package use gp_Ax1 objects to include axes in their data structures, or to define an axis of symmetry or axis of rotation. Geom_Axis1Placement axes are used in a context where they can be shared by several objects contained inside a common data structure.Describes an axis in 3D space. An axis is defined by: - its origin, also termed the "Location point" of the axis, - its unit vector, termed the "Direction" of the axis. Note: Geom_Axis1Placement axes provide the same kind of "geometric" services as gp_Ax1 axes but have more complex data structures. The geometric objects provided by the Geom package use gp_Ax1 objects to include axes in their data structures, or to define an axis of symmetry or axis of rotation. Geom_Axis1Placement axes are used in a context where they can be shared by several objects contained inside a common data structure.
"""
def Angle(self,Other : Geom_AxisPlacement) -> float:
"""
Computes the angular value, in radians, between the "main Direction" of this positioning system and that of positioning system Other. The result is a value between 0 and Pi.
"""
def Ax1(self) -> OCP.gp.gp_Ax1:
"""
Returns a non transient copy of <me>.
"""
def Axis(self) -> OCP.gp.gp_Ax1:
"""
Returns the main axis of the axis placement. For an "Axis2placement" it is the main axis (Location, Direction ). For an "Axis1Placement" this method returns a copy of <me>.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object, which is a copy of this axis.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def Direction(self) -> OCP.gp.gp_Dir:
"""
Returns the main "Direction" of an axis placement.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def Location(self) -> OCP.gp.gp_Pnt:
"""
Returns the Location point (origin) of the axis placement.
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def Reverse(self) -> None:
"""
Reverses the direction of the axis placement.
"""
def Reversed(self) -> Geom_Axis1Placement:
"""
Returns a copy of <me> reversed.
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def SetAxis(self,A1 : OCP.gp.gp_Ax1) -> None:
"""
Assigns A1 as the "main Axis" of this positioning system. This modifies - its origin, and - its "main Direction". If this positioning system is a Geom_Axis2Placement, then its "X Direction" and "Y Direction" are recomputed. Exceptions For a Geom_Axis2Placement: Standard_ConstructionError if A1 and the previous "X Direction" of the coordinate system are parallel.
"""
def SetDirection(self,V : OCP.gp.gp_Dir) -> None:
"""
Assigns V to the unit vector of this axis.
"""
def SetLocation(self,P : OCP.gp.gp_Pnt) -> None:
"""
Assigns the point P as the origin of this positioning system.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Applies the transformation T to this axis.
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
@overload
def __init__(self,P : OCP.gp.gp_Pnt,V : OCP.gp.gp_Dir) -> None: ...
@overload
def __init__(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_Curve(Geom_Geometry, OCP.Standard.Standard_Transient):
"""
The abstract class Curve describes the common behavior of curves in 3D space. The Geom package provides numerous concrete classes of derived curves, including lines, circles, conics, Bezier or BSpline curves, etc. The main characteristic of these curves is that they are parameterized. The Geom_Curve class shows: - how to work with the parametric equation of a curve in order to calculate the point of parameter u, together with the vector tangent and the derivative vectors of order 2, 3,..., N at this point; - how to obtain general information about the curve (for example, level of continuity, closed characteristics, periodicity, bounds of the parameter field); - how the parameter changes when a geometric transformation is applied to the curve or when the orientation of the curve is inverted. All curves must have a geometric continuity: a curve is at least "C0". Generally, this property is checked at the time of construction or when the curve is edited. Where this is not the case, the documentation states so explicitly. Warning The Geom package does not prevent the construction of curves with null length or curves which self-intersect.The abstract class Curve describes the common behavior of curves in 3D space. The Geom package provides numerous concrete classes of derived curves, including lines, circles, conics, Bezier or BSpline curves, etc. The main characteristic of these curves is that they are parameterized. The Geom_Curve class shows: - how to work with the parametric equation of a curve in order to calculate the point of parameter u, together with the vector tangent and the derivative vectors of order 2, 3,..., N at this point; - how to obtain general information about the curve (for example, level of continuity, closed characteristics, periodicity, bounds of the parameter field); - how the parameter changes when a geometric transformation is applied to the curve or when the orientation of the curve is inverted. All curves must have a geometric continuity: a curve is at least "C0". Generally, this property is checked at the time of construction or when the curve is edited. Where this is not the case, the documentation states so explicitly. Warning The Geom package does not prevent the construction of curves with null length or curves which self-intersect.The abstract class Curve describes the common behavior of curves in 3D space. The Geom package provides numerous concrete classes of derived curves, including lines, circles, conics, Bezier or BSpline curves, etc. The main characteristic of these curves is that they are parameterized. The Geom_Curve class shows: - how to work with the parametric equation of a curve in order to calculate the point of parameter u, together with the vector tangent and the derivative vectors of order 2, 3,..., N at this point; - how to obtain general information about the curve (for example, level of continuity, closed characteristics, periodicity, bounds of the parameter field); - how the parameter changes when a geometric transformation is applied to the curve or when the orientation of the curve is inverted. All curves must have a geometric continuity: a curve is at least "C0". Generally, this property is checked at the time of construction or when the curve is edited. Where this is not the case, the documentation states so explicitly. Warning The Geom package does not prevent the construction of curves with null length or curves which self-intersect.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
It is the global continuity of the curve C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, G1 : tangency continuity all along the Curve, G2 : curvature continuity all along the Curve, CN : the order of continuity is infinite.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this geometric object.
"""
def D0(self,U : float,P : OCP.gp.gp_Pnt) -> None:
"""
Returns in P the point of parameter U. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve.
"""
def D1(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec) -> None:
"""
Returns the point P of parameter U and the first derivative V1. Raised if the continuity of the curve is not C1.
"""
def D2(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec) -> None:
"""
Returns the point P of parameter U, the first and second derivatives V1 and V2. Raised if the continuity of the curve is not C2.
"""
def D3(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec,V3 : OCP.gp.gp_Vec) -> None:
"""
Returns the point P of parameter U, the first, the second and the third derivative. Raised if the continuity of the curve is not C3.
"""
def DN(self,U : float,N : int) -> OCP.gp.gp_Vec:
"""
The returned vector gives the value of the derivative for the order of derivation N. Raised if the continuity of the curve is not CN.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def FirstParameter(self) -> float:
"""
Returns the value of the first parameter. Warnings : It can be RealFirst from package Standard if the curve is infinite
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCN(self,N : int) -> bool:
"""
Returns true if the degree of continuity of this curve is at least N. Exceptions - Standard_RangeError if N is less than 0.
"""
def IsClosed(self) -> bool:
"""
Returns true if the curve is closed. Some curves such as circle are always closed, others such as line are never closed (by definition). Some Curves such as OffsetCurve can be closed or not. These curves are considered as closed if the distance between the first point and the last point of the curve is lower or equal to the Resolution from package gp which is a fixed criterion independent of the application.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsPeriodic(self) -> bool:
"""
Is the parametrization of the curve periodic ? It is possible only if the curve is closed and if the following relation is satisfied : for each parametric value U the distance between the point P(u) and the point P (u + T) is lower or equal to Resolution from package gp, T is the period and must be a constant. There are three possibilities : . the curve is never periodic by definition (SegmentLine) . the curve is always periodic by definition (Circle) . the curve can be defined as periodic (BSpline). In this case a function SetPeriodic allows you to give the shape of the curve. The general rule for this case is : if a curve can be periodic or not the default periodicity set is non periodic and you have to turn (explicitly) the curve into a periodic curve if you want the curve to be periodic.
"""
def LastParameter(self) -> float:
"""
Returns the value of the last parameter. Warnings : It can be RealLast from package Standard if the curve is infinite
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> float:
"""
Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.
"""
def Period(self) -> float:
"""
Returns the period of this curve. Exceptions Standard_NoSuchObject if this curve is not periodic.
"""
def Reverse(self) -> None:
"""
Changes the direction of parametrization of <me>. The "FirstParameter" and the "LastParameter" are not changed but the orientation of the curve is modified. If the curve is bounded the StartPoint of the initial curve becomes the EndPoint of the reversed curve and the EndPoint of the initial curve becomes the StartPoint of the reversed curve.
"""
def Reversed(self) -> Geom_Curve:
"""
Returns a copy of <me> reversed.
"""
def ReversedParameter(self,U : float) -> float:
"""
Returns the parameter on the reversed curve for the point of parameter U on <me>.
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom).
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf) -> float:
"""
Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def Value(self,U : float) -> OCP.gp.gp_Pnt:
"""
Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve. it is implemented with D0.
"""
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_Surface(Geom_Geometry, OCP.Standard.Standard_Transient):
"""
Describes the common behavior of surfaces in 3D space. The Geom package provides many implementations of concrete derived surfaces, such as planes, cylinders, cones, spheres and tori, surfaces of linear extrusion, surfaces of revolution, Bezier and BSpline surfaces, and so on. The key characteristic of these surfaces is that they are parameterized. Geom_Surface demonstrates: - how to work with the parametric equation of a surface to compute the point of parameters (u, v), and, at this point, the 1st, 2nd ... Nth derivative; - how to find global information about a surface in each parametric direction (for example, level of continuity, whether the surface is closed, its periodicity, the bounds of the parameters and so on); - how the parameters change when geometric transformations are applied to the surface, or the orientation is modified.Describes the common behavior of surfaces in 3D space. The Geom package provides many implementations of concrete derived surfaces, such as planes, cylinders, cones, spheres and tori, surfaces of linear extrusion, surfaces of revolution, Bezier and BSpline surfaces, and so on. The key characteristic of these surfaces is that they are parameterized. Geom_Surface demonstrates: - how to work with the parametric equation of a surface to compute the point of parameters (u, v), and, at this point, the 1st, 2nd ... Nth derivative; - how to find global information about a surface in each parametric direction (for example, level of continuity, whether the surface is closed, its periodicity, the bounds of the parameters and so on); - how the parameters change when geometric transformations are applied to the surface, or the orientation is modified.Describes the common behavior of surfaces in 3D space. The Geom package provides many implementations of concrete derived surfaces, such as planes, cylinders, cones, spheres and tori, surfaces of linear extrusion, surfaces of revolution, Bezier and BSpline surfaces, and so on. The key characteristic of these surfaces is that they are parameterized. Geom_Surface demonstrates: - how to work with the parametric equation of a surface to compute the point of parameters (u, v), and, at this point, the 1st, 2nd ... Nth derivative; - how to find global information about a surface in each parametric direction (for example, level of continuity, whether the surface is closed, its periodicity, the bounds of the parameters and so on); - how the parameters change when geometric transformations are applied to the surface, or the orientation is modified.
"""
def Bounds(self) -> tuple[float, float, float, float]:
"""
Returns the parametric bounds U1, U2, V1 and V2 of this surface. If the surface is infinite, this function can return a value equal to Precision::Infinite: instead of Standard_Real::LastReal.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
Returns the Global Continuity of the surface in direction U and V : - C0: only geometric continuity, - C1: continuity of the first derivative all along the surface, - C2: continuity of the second derivative all along the surface, - C3: continuity of the third derivative all along the surface, - G1: tangency continuity all along the surface, - G2: curvature continuity all along the surface, - CN: the order of continuity is infinite.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this geometric object.
"""
def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None:
"""
Computes the point of parameter U,V on the surface.
"""
def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None:
"""
Computes the point P and the first derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C1.
"""
def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None:
"""
Computes the point P, the first and the second derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C2.
"""
def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None:
"""
Computes the point P, the first,the second and the third derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C2.
"""
def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec:
"""
Computes the derivative of order Nu in the direction U and Nv in the direction V at the point P(U, V).
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCNu(self,N : int) -> bool:
"""
Returns the order of continuity of the surface in the U parametric direction. Raised if N < 0.
"""
def IsCNv(self,N : int) -> bool:
"""
Returns the order of continuity of the surface in the V parametric direction. Raised if N < 0.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsUClosed(self) -> bool:
"""
Checks whether this surface is closed in the u parametric direction. Returns true if, in the u parametric direction: taking uFirst and uLast as the parametric bounds in the u parametric direction, for each parameter v, the distance between the points P(uFirst, v) and P(uLast, v) is less than or equal to gp::Resolution().
"""
def IsUPeriodic(self) -> bool:
"""
Checks if this surface is periodic in the u parametric direction. Returns true if: - this surface is closed in the u parametric direction, and - there is a constant T such that the distance between the points P (u, v) and P (u + T, v) (or the points P (u, v) and P (u, v + T)) is less than or equal to gp::Resolution().
"""
def IsVClosed(self) -> bool:
"""
Checks whether this surface is closed in the u parametric direction. Returns true if, in the v parametric direction: taking vFirst and vLast as the parametric bounds in the v parametric direction, for each parameter u, the distance between the points P(u, vFirst) and P(u, vLast) is less than or equal to gp::Resolution().
"""
def IsVPeriodic(self) -> bool:
"""
Checks if this surface is periodic in the v parametric direction. Returns true if: - this surface is closed in the v parametric direction, and - there is a constant T such that the distance between the points P (u, v) and P (u + T, v) (or the points P (u, v) and P (u, v + T)) is less than or equal to gp::Resolution().
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d:
"""
Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns an identity transformation
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom).
"""
def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]:
"""
Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method does not change <U> and <V>
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def UIso(self,U : float) -> Geom_Curve:
"""
Computes the U isoparametric curve.
"""
def UPeriod(self) -> float:
"""
Returns the period of this surface in the u parametric direction. Raises if the surface is not uperiodic.
"""
def UReverse(self) -> None:
"""
Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified.
"""
def UReversed(self) -> Geom_Surface:
"""
Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def UReversedParameter(self,U : float) -> float:
"""
Returns the parameter on the Ureversed surface for the point of parameter U on <me>. is the same point as
"""
def VIso(self,V : float) -> Geom_Curve:
"""
Computes the V isoparametric curve.
"""
def VPeriod(self) -> float:
"""
Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic.
"""
def VReverse(self) -> None:
"""
Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified.
"""
def VReversed(self) -> Geom_Surface:
"""
Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def VReversedParameter(self,V : float) -> float:
"""
Returns the parameter on the Vreversed surface for the point of parameter V on <me>. is the same point as
"""
def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt:
"""
Computes the point of parameter (U, V) on the surface.
"""
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_BoundedCurve(Geom_Curve, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
The abstract class BoundedCurve describes the common behavior of bounded curves in 3D space. A bounded curve is limited by two finite values of the parameter, termed respectively "first parameter" and "last parameter". The "first parameter" gives the "start point" of the bounded curve, and the "last parameter" gives the "end point" of the bounded curve. The length of a bounded curve is finite. The Geom package provides three concrete classes of bounded curves: - two frequently used mathematical formulations of complex curves: - Geom_BezierCurve, - Geom_BSplineCurve, and - Geom_TrimmedCurve to trim a curve, i.e. to only take part of the curve limited by two values of the parameter of the basis curve.The abstract class BoundedCurve describes the common behavior of bounded curves in 3D space. A bounded curve is limited by two finite values of the parameter, termed respectively "first parameter" and "last parameter". The "first parameter" gives the "start point" of the bounded curve, and the "last parameter" gives the "end point" of the bounded curve. The length of a bounded curve is finite. The Geom package provides three concrete classes of bounded curves: - two frequently used mathematical formulations of complex curves: - Geom_BezierCurve, - Geom_BSplineCurve, and - Geom_TrimmedCurve to trim a curve, i.e. to only take part of the curve limited by two values of the parameter of the basis curve.The abstract class BoundedCurve describes the common behavior of bounded curves in 3D space. A bounded curve is limited by two finite values of the parameter, termed respectively "first parameter" and "last parameter". The "first parameter" gives the "start point" of the bounded curve, and the "last parameter" gives the "end point" of the bounded curve. The length of a bounded curve is finite. The Geom package provides three concrete classes of bounded curves: - two frequently used mathematical formulations of complex curves: - Geom_BezierCurve, - Geom_BSplineCurve, and - Geom_TrimmedCurve to trim a curve, i.e. to only take part of the curve limited by two values of the parameter of the basis curve.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
It is the global continuity of the curve C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, G1 : tangency continuity all along the Curve, G2 : curvature continuity all along the Curve, CN : the order of continuity is infinite.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this geometric object.
"""
def D0(self,U : float,P : OCP.gp.gp_Pnt) -> None:
"""
Returns in P the point of parameter U. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve.
"""
def D1(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec) -> None:
"""
Returns the point P of parameter U and the first derivative V1. Raised if the continuity of the curve is not C1.
"""
def D2(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec) -> None:
"""
Returns the point P of parameter U, the first and second derivatives V1 and V2. Raised if the continuity of the curve is not C2.
"""
def D3(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec,V3 : OCP.gp.gp_Vec) -> None:
"""
Returns the point P of parameter U, the first, the second and the third derivative. Raised if the continuity of the curve is not C3.
"""
def DN(self,U : float,N : int) -> OCP.gp.gp_Vec:
"""
The returned vector gives the value of the derivative for the order of derivation N. Raised if the continuity of the curve is not CN.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def EndPoint(self) -> OCP.gp.gp_Pnt:
"""
Returns the end point of the curve.
"""
def FirstParameter(self) -> float:
"""
Returns the value of the first parameter. Warnings : It can be RealFirst from package Standard if the curve is infinite
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCN(self,N : int) -> bool:
"""
Returns true if the degree of continuity of this curve is at least N. Exceptions - Standard_RangeError if N is less than 0.
"""
def IsClosed(self) -> bool:
"""
Returns true if the curve is closed. Some curves such as circle are always closed, others such as line are never closed (by definition). Some Curves such as OffsetCurve can be closed or not. These curves are considered as closed if the distance between the first point and the last point of the curve is lower or equal to the Resolution from package gp which is a fixed criterion independent of the application.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsPeriodic(self) -> bool:
"""
Is the parametrization of the curve periodic ? It is possible only if the curve is closed and if the following relation is satisfied : for each parametric value U the distance between the point P(u) and the point P (u + T) is lower or equal to Resolution from package gp, T is the period and must be a constant. There are three possibilities : . the curve is never periodic by definition (SegmentLine) . the curve is always periodic by definition (Circle) . the curve can be defined as periodic (BSpline). In this case a function SetPeriodic allows you to give the shape of the curve. The general rule for this case is : if a curve can be periodic or not the default periodicity set is non periodic and you have to turn (explicitly) the curve into a periodic curve if you want the curve to be periodic.
"""
def LastParameter(self) -> float:
"""
Returns the value of the last parameter. Warnings : It can be RealLast from package Standard if the curve is infinite
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> float:
"""
Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.
"""
def Period(self) -> float:
"""
Returns the period of this curve. Exceptions Standard_NoSuchObject if this curve is not periodic.
"""
def Reverse(self) -> None:
"""
Changes the direction of parametrization of <me>. The "FirstParameter" and the "LastParameter" are not changed but the orientation of the curve is modified. If the curve is bounded the StartPoint of the initial curve becomes the EndPoint of the reversed curve and the EndPoint of the initial curve becomes the StartPoint of the reversed curve.
"""
def Reversed(self) -> Geom_Curve:
"""
Returns a copy of <me> reversed.
"""
def ReversedParameter(self,U : float) -> float:
"""
Returns the parameter on the reversed curve for the point of parameter U on <me>.
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def StartPoint(self) -> OCP.gp.gp_Pnt:
"""
Returns the start point of the curve.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom).
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf) -> float:
"""
Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def Value(self,U : float) -> OCP.gp.gp_Pnt:
"""
Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve. it is implemented with D0.
"""
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_BoundedSurface(Geom_Surface, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
The root class for bounded surfaces in 3D space. A bounded surface is defined by a rectangle in its 2D parametric space, i.e. - its u parameter, which ranges between two finite values u0 and u1, referred to as "First u parameter" and "Last u parameter" respectively, and - its v parameter, which ranges between two finite values v0 and v1, referred to as "First v parameter" and the "Last v parameter" respectively. The surface is limited by four curves which are the boundaries of the surface: - its u0 and u1 isoparametric curves in the u parametric direction, and - its v0 and v1 isoparametric curves in the v parametric direction. A bounded surface is finite. The common behavior of all bounded surfaces is described by the Geom_Surface class. The Geom package provides three concrete implementations of bounded surfaces: - Geom_BezierSurface, - Geom_BSplineSurface, and - Geom_RectangularTrimmedSurface. The first two of these implement well known mathematical definitions of complex surfaces, the third trims a surface using four isoparametric curves, i.e. it limits the variation of its parameters to a rectangle in 2D parametric space.The root class for bounded surfaces in 3D space. A bounded surface is defined by a rectangle in its 2D parametric space, i.e. - its u parameter, which ranges between two finite values u0 and u1, referred to as "First u parameter" and "Last u parameter" respectively, and - its v parameter, which ranges between two finite values v0 and v1, referred to as "First v parameter" and the "Last v parameter" respectively. The surface is limited by four curves which are the boundaries of the surface: - its u0 and u1 isoparametric curves in the u parametric direction, and - its v0 and v1 isoparametric curves in the v parametric direction. A bounded surface is finite. The common behavior of all bounded surfaces is described by the Geom_Surface class. The Geom package provides three concrete implementations of bounded surfaces: - Geom_BezierSurface, - Geom_BSplineSurface, and - Geom_RectangularTrimmedSurface. The first two of these implement well known mathematical definitions of complex surfaces, the third trims a surface using four isoparametric curves, i.e. it limits the variation of its parameters to a rectangle in 2D parametric space.The root class for bounded surfaces in 3D space. A bounded surface is defined by a rectangle in its 2D parametric space, i.e. - its u parameter, which ranges between two finite values u0 and u1, referred to as "First u parameter" and "Last u parameter" respectively, and - its v parameter, which ranges between two finite values v0 and v1, referred to as "First v parameter" and the "Last v parameter" respectively. The surface is limited by four curves which are the boundaries of the surface: - its u0 and u1 isoparametric curves in the u parametric direction, and - its v0 and v1 isoparametric curves in the v parametric direction. A bounded surface is finite. The common behavior of all bounded surfaces is described by the Geom_Surface class. The Geom package provides three concrete implementations of bounded surfaces: - Geom_BezierSurface, - Geom_BSplineSurface, and - Geom_RectangularTrimmedSurface. The first two of these implement well known mathematical definitions of complex surfaces, the third trims a surface using four isoparametric curves, i.e. it limits the variation of its parameters to a rectangle in 2D parametric space.
"""
def Bounds(self) -> tuple[float, float, float, float]:
"""
Returns the parametric bounds U1, U2, V1 and V2 of this surface. If the surface is infinite, this function can return a value equal to Precision::Infinite: instead of Standard_Real::LastReal.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
Returns the Global Continuity of the surface in direction U and V : - C0: only geometric continuity, - C1: continuity of the first derivative all along the surface, - C2: continuity of the second derivative all along the surface, - C3: continuity of the third derivative all along the surface, - G1: tangency continuity all along the surface, - G2: curvature continuity all along the surface, - CN: the order of continuity is infinite.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this geometric object.
"""
def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None:
"""
Computes the point of parameter U,V on the surface.
"""
def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None:
"""
Computes the point P and the first derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C1.
"""
def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None:
"""
Computes the point P, the first and the second derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C2.
"""
def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None:
"""
Computes the point P, the first,the second and the third derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C2.
"""
def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec:
"""
Computes the derivative of order Nu in the direction U and Nv in the direction V at the point P(U, V).
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCNu(self,N : int) -> bool:
"""
Returns the order of continuity of the surface in the U parametric direction. Raised if N < 0.
"""
def IsCNv(self,N : int) -> bool:
"""
Returns the order of continuity of the surface in the V parametric direction. Raised if N < 0.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsUClosed(self) -> bool:
"""
Checks whether this surface is closed in the u parametric direction. Returns true if, in the u parametric direction: taking uFirst and uLast as the parametric bounds in the u parametric direction, for each parameter v, the distance between the points P(uFirst, v) and P(uLast, v) is less than or equal to gp::Resolution().
"""
def IsUPeriodic(self) -> bool:
"""
Checks if this surface is periodic in the u parametric direction. Returns true if: - this surface is closed in the u parametric direction, and - there is a constant T such that the distance between the points P (u, v) and P (u + T, v) (or the points P (u, v) and P (u, v + T)) is less than or equal to gp::Resolution().
"""
def IsVClosed(self) -> bool:
"""
Checks whether this surface is closed in the u parametric direction. Returns true if, in the v parametric direction: taking vFirst and vLast as the parametric bounds in the v parametric direction, for each parameter u, the distance between the points P(u, vFirst) and P(u, vLast) is less than or equal to gp::Resolution().
"""
def IsVPeriodic(self) -> bool:
"""
Checks if this surface is periodic in the v parametric direction. Returns true if: - this surface is closed in the v parametric direction, and - there is a constant T such that the distance between the points P (u, v) and P (u + T, v) (or the points P (u, v) and P (u, v + T)) is less than or equal to gp::Resolution().
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d:
"""
Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns an identity transformation
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom).
"""
def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]:
"""
Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method does not change <U> and <V>
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def UIso(self,U : float) -> Geom_Curve:
"""
Computes the U isoparametric curve.
"""
def UPeriod(self) -> float:
"""
Returns the period of this surface in the u parametric direction. Raises if the surface is not uperiodic.
"""
def UReverse(self) -> None:
"""
Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified.
"""
def UReversed(self) -> Geom_Surface:
"""
Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def UReversedParameter(self,U : float) -> float:
"""
Returns the parameter on the Ureversed surface for the point of parameter U on <me>. is the same point as
"""
def VIso(self,V : float) -> Geom_Curve:
"""
Computes the V isoparametric curve.
"""
def VPeriod(self) -> float:
"""
Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic.
"""
def VReverse(self) -> None:
"""
Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified.
"""
def VReversed(self) -> Geom_Surface:
"""
Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def VReversedParameter(self,V : float) -> float:
"""
Returns the parameter on the Vreversed surface for the point of parameter V on <me>. is the same point as
"""
def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt:
"""
Computes the point of parameter (U, V) on the surface.
"""
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_BSplineCurve(Geom_BoundedCurve, Geom_Curve, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
Definition of the B_spline curve. A B-spline curve can be Uniform or non-uniform Rational or non-rational Periodic or non-periodicDefinition of the B_spline curve. A B-spline curve can be Uniform or non-uniform Rational or non-rational Periodic or non-periodicDefinition of the B_spline curve. A B-spline curve can be Uniform or non-uniform Rational or non-rational Periodic or non-periodic
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
Returns the global continuity of the curve : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, CN : the order of continuity is infinite. For a B-spline curve of degree d if a knot Ui has a multiplicity p the B-spline curve is only Cd-p continuous at Ui. So the global continuity of the curve can't be greater than Cd-p where p is the maximum multiplicity of the interior Knots. In the interior of a knot span the curve is infinitely continuously differentiable.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this BSpline curve.
"""
def D0(self,U : float,P : OCP.gp.gp_Pnt) -> None:
"""
Returns in P the point of parameter U.
"""
def D1(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec) -> None:
"""
Raised if the continuity of the curve is not C1.
"""
def D2(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec) -> None:
"""
Raised if the continuity of the curve is not C2.
"""
def D3(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec,V3 : OCP.gp.gp_Vec) -> None:
"""
Raised if the continuity of the curve is not C3.
"""
def DN(self,U : float,N : int) -> OCP.gp.gp_Vec:
"""
For the point of parameter U of this BSpline curve, computes the vector corresponding to the Nth derivative. Warning On a point where the continuity of the curve is not the one requested, this function impacts the part defined by the parameter with a value greater than U, i.e. the part of the curve to the "right" of the singularity. Exceptions Standard_RangeError if N is less than 1.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Degree(self) -> int:
"""
Returns the degree of this BSpline curve. The degree of a Geom_BSplineCurve curve cannot be greater than Geom_BSplineCurve::MaxDegree(). Computation of value and derivatives
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def EndPoint(self) -> OCP.gp.gp_Pnt:
"""
Returns the last point of the curve. Warnings : The last point of the curve is different from the last pole of the curve if the multiplicity of the last knot is lower than Degree.
"""
def FirstParameter(self) -> float:
"""
Returns the value of the first parameter of this BSpline curve. This is a knot value. The first parameter is the one of the start point of the BSpline curve.
"""
def FirstUKnotIndex(self) -> int:
"""
Returns the index in the knot array of the knot corresponding to the first or last parameter of this BSpline curve. For a BSpline curve, the first (or last) parameter (which gives the start (or end) point of the curve) is a knot value. However, if the multiplicity of the first (or last) knot is less than Degree + 1, where Degree is the degree of the curve, it is not the first (or last) knot of the curve.
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncreaseDegree(self,Degree : int) -> None:
"""
Increases the degree of this BSpline curve to Degree. As a result, the poles, weights and multiplicities tables are modified; the knots table is not changed. Nothing is done if Degree is less than or equal to the current degree. Exceptions Standard_ConstructionError if Degree is greater than Geom_BSplineCurve::MaxDegree().
"""
@overload
def IncreaseMultiplicity(self,Index : int,M : int) -> None:
"""
Increases the multiplicity of the knot <Index> to <M>.
Increases the multiplicities of the knots in [I1,I2] to <M>.
"""
@overload
def IncreaseMultiplicity(self,I1 : int,I2 : int,M : int) -> None: ...
def IncrementMultiplicity(self,I1 : int,I2 : int,M : int) -> None:
"""
Increment the multiplicities of the knots in [I1,I2] by <M>.
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def InsertKnot(self,U : float,M : int=1,ParametricTolerance : float=0.0,Add : bool=True) -> None:
"""
Inserts a knot value in the sequence of knots. If <U> is an existing knot the multiplicity is increased by <M>.
"""
def InsertKnots(self,Knots : OCP.TColStd.TColStd_Array1OfReal,Mults : OCP.TColStd.TColStd_Array1OfInteger,ParametricTolerance : float=0.0,Add : bool=False) -> None:
"""
Inserts a set of knots values in the sequence of knots.
"""
def IsCN(self,N : int) -> bool:
"""
Returns the continuity of the curve, the curve is at least C0. Raised if N < 0.
"""
def IsClosed(self) -> bool:
"""
Returns true if the distance between the first point and the last point of the curve is lower or equal to Resolution from package gp. Warnings : The first and the last point can be different from the first pole and the last pole of the curve.
"""
def IsEqual(self,theOther : Geom_BSplineCurve,thePreci : float) -> bool:
"""
Comapare two Bspline curve on identity;
"""
def IsG1(self,theTf : float,theTl : float,theAngTol : float) -> bool:
"""
Check if curve has at least G1 continuity in interval [theTf, theTl] Returns true if IsCN(1) or angle between "left" and "right" first derivatives at knots with C0 continuity is less then theAngTol only knots in interval [theTf, theTl] is checked
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsPeriodic(self) -> bool:
"""
Returns True if the curve is periodic.
"""
def IsRational(self) -> bool:
"""
Returns True if the weights are not identical. The tolerance criterion is Epsilon of the class Real.
"""
def Knot(self,Index : int) -> float:
"""
Returns the knot of range Index. When there is a knot with a multiplicity greater than 1 the knot is not repeated. The method Multiplicity can be used to get the multiplicity of the Knot. Raised if Index < 1 or Index > NbKnots
"""
def KnotDistribution(self) -> OCP.GeomAbs.GeomAbs_BSplKnotDistribution:
"""
Returns NonUniform or Uniform or QuasiUniform or PiecewiseBezier. If all the knots differ by a positive constant from the preceding knot the BSpline Curve can be : - Uniform if all the knots are of multiplicity 1, - QuasiUniform if all the knots are of multiplicity 1 except for the first and last knot which are of multiplicity Degree + 1, - PiecewiseBezier if the first and last knots have multiplicity Degree + 1 and if interior knots have multiplicity Degree A piecewise Bezier with only two knots is a BezierCurve. else the curve is non uniform. The tolerance criterion is Epsilon from class Real.
"""
@overload
def KnotSequence(self,K : OCP.TColStd.TColStd_Array1OfReal) -> None:
"""
Returns K, the knots sequence of this BSpline curve. In this sequence, knots with a multiplicity greater than 1 are repeated. In the case of a non-periodic curve the length of the sequence must be equal to the sum of the NbKnots multiplicities of the knots of the curve (where NbKnots is the number of knots of this BSpline curve). This sum is also equal to : NbPoles + Degree + 1 where NbPoles is the number of poles and Degree the degree of this BSpline curve. In the case of a periodic curve, if there are k periodic knots, the period is Knot(k+1) - Knot(1). The initial sequence is built by writing knots 1 to k+1, which are repeated according to their corresponding multiplicities. If Degree is the degree of the curve, the degree of continuity of the curve at the knot of index 1 (or k+1) is equal to c = Degree + 1 - Mult(1). c knots are then inserted at the beginning and end of the initial sequence: - the c values of knots preceding the first item Knot(k+1) in the initial sequence are inserted at the beginning; the period is subtracted from these c values; - the c values of knots following the last item Knot(1) in the initial sequence are inserted at the end; the period is added to these c values. The length of the sequence must therefore be equal to: NbPoles + 2*Degree - Mult(1) + 2. Example For a non-periodic BSpline curve of degree 2 where: - the array of knots is: { k1 k2 k3 k4 }, - with associated multiplicities: { 3 1 2 3 }, the knot sequence is: K = { k1 k1 k1 k2 k3 k3 k4 k4 k4 } For a periodic BSpline curve of degree 4 , which is "C1" continuous at the first knot, and where : - the periodic knots are: { k1 k2 k3 (k4) } (3 periodic knots: the points of parameter k1 and k4 are identical, the period is p = k4 - k1), - with associated multiplicities: { 3 1 2 (3) }, the degree of continuity at knots k1 and k4 is: Degree + 1 - Mult(i) = 2. 2 supplementary knots are added at the beginning and end of the sequence: - at the beginning: the 2 knots preceding k4 minus the period; in this example, this is k3 - p both times; - at the end: the 2 knots following k1 plus the period; in this example, this is k2 + p and k3 + p. The knot sequence is therefore: K = { k3-p k3-p k1 k1 k1 k2 k3 k3 k4 k4 k4 k2+p k3+p } Exceptions Raised if K.Lower() is less than number of first knot in knot sequence with repetitions or K.Upper() is more than number of last knot in knot sequence with repetitions.
returns the knots of the B-spline curve. Knots with multiplicit greater than 1 are repeated
"""
@overload
def KnotSequence(self) -> OCP.TColStd.TColStd_Array1OfReal: ...
@overload
def Knots(self) -> OCP.TColStd.TColStd_Array1OfReal:
"""
returns the knot values of the B-spline curve; Warning A knot with a multiplicity greater than 1 is not repeated in the knot table. The Multiplicity function can be used to obtain the multiplicity of each knot.
returns the knot values of the B-spline curve; Warning A knot with a multiplicity greater than 1 is not repeated in the knot table. The Multiplicity function can be used to obtain the multiplicity of each knot.
"""
@overload
def Knots(self,K : OCP.TColStd.TColStd_Array1OfReal) -> None: ...
def LastParameter(self) -> float:
"""
Computes the parametric value of the end point of the curve. It is a knot value.
"""
def LastUKnotIndex(self) -> int:
"""
For a BSpline curve the last parameter (which gives the end point of the curve) is a knot value but if the multiplicity of the last knot index is lower than Degree + 1 it is not the last knot of the curve. This method computes the index of the knot corresponding to the last parameter.
"""
def LocalD0(self,U : float,FromK1 : int,ToK2 : int,P : OCP.gp.gp_Pnt) -> None:
"""
Raised if FromK1 = ToK2.
"""
def LocalD1(self,U : float,FromK1 : int,ToK2 : int,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec) -> None:
"""
Raised if the local continuity of the curve is not C1 between the knot K1 and the knot K2. Raised if FromK1 = ToK2.
"""
def LocalD2(self,U : float,FromK1 : int,ToK2 : int,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec) -> None:
"""
Raised if the local continuity of the curve is not C2 between the knot K1 and the knot K2. Raised if FromK1 = ToK2.
"""
def LocalD3(self,U : float,FromK1 : int,ToK2 : int,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec,V3 : OCP.gp.gp_Vec) -> None:
"""
Raised if the local continuity of the curve is not C3 between the knot K1 and the knot K2. Raised if FromK1 = ToK2.
"""
def LocalDN(self,U : float,FromK1 : int,ToK2 : int,N : int) -> OCP.gp.gp_Vec:
"""
Raised if the local continuity of the curve is not CN between the knot K1 and the knot K2. Raised if FromK1 = ToK2. Raised if N < 1.
"""
def LocalValue(self,U : float,FromK1 : int,ToK2 : int) -> OCP.gp.gp_Pnt:
"""
Raised if FromK1 = ToK2.
"""
def LocateU(self,U : float,ParametricTolerance : float,WithKnotRepetition : bool=False) -> tuple[int, int]:
"""
Locates the parametric value U in the sequence of knots. If "WithKnotRepetition" is True we consider the knot's representation with repetition of multiple knot value, otherwise we consider the knot's representation with no repetition of multiple knot values. Knots (I1) <= U <= Knots (I2) . if I1 = I2 U is a knot value (the tolerance criterion ParametricTolerance is used). . if I1 < 1 => U < Knots (1) - Abs(ParametricTolerance) . if I2 > NbKnots => U > Knots (NbKnots) + Abs(ParametricTolerance)
"""
@staticmethod
def MaxDegree_s() -> int:
"""
Returns the value of the maximum degree of the normalized B-spline basis functions in this package.
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def MovePoint(self,U : float,P : OCP.gp.gp_Pnt,Index1 : int,Index2 : int) -> tuple[int, int]:
"""
Moves the point of parameter U of this BSpline curve to P. Index1 and Index2 are the indexes in the table of poles of this BSpline curve of the first and last poles designated to be moved. FirstModifiedPole and LastModifiedPole are the indexes of the first and last poles which are effectively modified. In the event of incompatibility between Index1, Index2 and the value U: - no change is made to this BSpline curve, and - the FirstModifiedPole and LastModifiedPole are returned null. Exceptions Standard_OutOfRange if: - Index1 is greater than or equal to Index2, or - Index1 or Index2 is less than 1 or greater than the number of poles of this BSpline curve.
"""
def MovePointAndTangent(self,U : float,P : OCP.gp.gp_Pnt,Tangent : OCP.gp.gp_Vec,Tolerance : float,StartingCondition : int,EndingCondition : int) -> tuple[int]:
"""
Move a point with parameter U to P. and makes it tangent at U be Tangent. StartingCondition = -1 means first can move EndingCondition = -1 means last point can move StartingCondition = 0 means the first point cannot move EndingCondition = 0 means the last point cannot move StartingCondition = 1 means the first point and tangent cannot move EndingCondition = 1 means the last point and tangent cannot move and so forth ErrorStatus != 0 means that there are not enough degree of freedom with the constrain to deform the curve accordingly
"""
@overload
def Multiplicities(self) -> OCP.TColStd.TColStd_Array1OfInteger:
"""
Returns the multiplicity of the knots of the curve.
returns the multiplicity of the knots of the curve.
"""
@overload
def Multiplicities(self,M : OCP.TColStd.TColStd_Array1OfInteger) -> None: ...
def Multiplicity(self,Index : int) -> int:
"""
Returns the multiplicity of the knots of range Index. Raised if Index < 1 or Index > NbKnots
"""
def NbKnots(self) -> int:
"""
Returns the number of knots. This method returns the number of knot without repetition of multiple knots.
"""
def NbPoles(self) -> int:
"""
Returns the number of poles
"""
def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> float:
"""
Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.
"""
def Period(self) -> float:
"""
Returns the period of this curve. Exceptions Standard_NoSuchObject if this curve is not periodic.
"""
def PeriodicNormalization(self) -> tuple[float]:
"""
returns the parameter normalized within the period if the curve is periodic : otherwise does not do anything
"""
def Pole(self,Index : int) -> OCP.gp.gp_Pnt:
"""
Returns the pole of range Index. Raised if Index < 1 or Index > NbPoles.
"""
@overload
def Poles(self,P : OCP.TColgp.TColgp_Array1OfPnt) -> None:
"""
Returns the poles of the B-spline curve;
Returns the poles of the B-spline curve;
"""
@overload
def Poles(self) -> OCP.TColgp.TColgp_Array1OfPnt: ...
def RemoveKnot(self,Index : int,M : int,Tolerance : float) -> bool:
"""
Reduces the multiplicity of the knot of index Index to M. If M is equal to 0, the knot is removed. With a modification of this type, the array of poles is also modified. Two different algorithms are systematically used to compute the new poles of the curve. If, for each pole, the distance between the pole calculated using the first algorithm and the same pole calculated using the second algorithm, is less than Tolerance, this ensures that the curve is not modified by more than Tolerance. Under these conditions, true is returned; otherwise, false is returned. A low tolerance is used to prevent modification of the curve. A high tolerance is used to "smooth" the curve. Exceptions Standard_OutOfRange if Index is outside the bounds of the knots table. pole insertion and pole removing this operation is limited to the Uniform or QuasiUniform BSplineCurve. The knot values are modified . If the BSpline is NonUniform or Piecewise Bezier an exception Construction error is raised.
"""
def Resolution(self,Tolerance3D : float) -> tuple[float]:
"""
Computes for this BSpline curve the parametric tolerance UTolerance for a given 3D tolerance Tolerance3D. If f(t) is the equation of this BSpline curve, UTolerance ensures that: | t1 - t0| < Utolerance ===> |f(t1) - f(t0)| < Tolerance3D
"""
def Reverse(self) -> None:
"""
Changes the direction of parametrization of <me>. The Knot sequence is modified, the FirstParameter and the LastParameter are not modified. The StartPoint of the initial curve becomes the EndPoint of the reversed curve and the EndPoint of the initial curve becomes the StartPoint of the reversed curve.
"""
def Reversed(self) -> Geom_Curve:
"""
Returns a copy of <me> reversed.
"""
def ReversedParameter(self,U : float) -> float:
"""
Returns the parameter on the reversed curve for the point of parameter U on <me>.
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def Segment(self,U1 : float,U2 : float,theTolerance : float=9.999999999999999e-10) -> None:
"""
Modifies this BSpline curve by segmenting it between U1 and U2. Either of these values can be outside the bounds of the curve, but U2 must be greater than U1. All data structure tables of this BSpline curve are modified, but the knots located between U1 and U2 are retained. The degree of the curve is not modified.
"""
@overload
def SetKnot(self,Index : int,K : float) -> None:
"""
Modifies this BSpline curve by assigning the value K to the knot of index Index in the knots table. This is a relatively local modification because K must be such that: Knots(Index - 1) < K < Knots(Index + 1) The second syntax allows you also to increase the multiplicity of the knot to M (but it is not possible to decrease the multiplicity of the knot with this function). Standard_ConstructionError if: - K is not such that: Knots(Index - 1) < K < Knots(Index + 1) - M is greater than the degree of this BSpline curve or lower than the previous multiplicity of knot of index Index in the knots table. Standard_OutOfRange if Index is outside the bounds of the knots table.
Changes the knot of range Index with its multiplicity. You can increase the multiplicity of a knot but it is not allowed to decrease the multiplicity of an existing knot.
"""
@overload
def SetKnot(self,Index : int,K : float,M : int) -> None: ...
def SetKnots(self,K : OCP.TColStd.TColStd_Array1OfReal) -> None:
"""
Modifies this BSpline curve by assigning the array K to its knots table. The multiplicity of the knots is not modified. Exceptions Standard_ConstructionError if the values in the array K are not in ascending order. Standard_OutOfRange if the bounds of the array K are not respectively 1 and the number of knots of this BSpline curve.
"""
def SetNotPeriodic(self) -> None:
"""
Changes this BSpline curve into a non-periodic curve. If this curve is already non-periodic, it is not modified. Note: the poles and knots tables are modified. Warning If this curve is periodic, as the multiplicity of the first and last knots is not modified, and is not equal to Degree + 1, where Degree is the degree of this BSpline curve, the start and end points of the curve are not its first and last poles.
"""
@overload
def SetOrigin(self,Index : int) -> None:
"""
Assigns the knot of index Index in the knots table as the origin of this periodic BSpline curve. As a consequence, the knots and poles tables are modified. Exceptions Standard_NoSuchObject if this curve is not periodic. Standard_DomainError if Index is outside the bounds of the knots table.
Set the origin of a periodic curve at Knot U. If U is not a knot of the BSpline a new knot is inserted. KnotVector and poles are modified. Raised if the curve is not periodic
"""
@overload
def SetOrigin(self,U : float,Tol : float) -> None: ...
def SetPeriodic(self) -> None:
"""
Changes this BSpline curve into a periodic curve. To become periodic, the curve must first be closed. Next, the knot sequence must be periodic. For this, FirstUKnotIndex and LastUKnotIndex are used to compute I1 and I2, the indexes in the knots array of the knots corresponding to the first and last parameters of this BSpline curve. The period is therefore: Knots(I2) - Knots(I1). Consequently, the knots and poles tables are modified. Exceptions Standard_ConstructionError if this BSpline curve is not closed.
"""
@overload
def SetPole(self,Index : int,P : OCP.gp.gp_Pnt) -> None:
"""
Modifies this BSpline curve by assigning P to the pole of index Index in the poles table. Exceptions Standard_OutOfRange if Index is outside the bounds of the poles table. Standard_ConstructionError if Weight is negative or null.
Modifies this BSpline curve by assigning P to the pole of index Index in the poles table. This syntax also allows you to modify the weight of the modified pole, which becomes Weight. In this case, if this BSpline curve is non-rational, it can become rational and vice versa. Exceptions Standard_OutOfRange if Index is outside the bounds of the poles table. Standard_ConstructionError if Weight is negative or null.
"""
@overload
def SetPole(self,Index : int,P : OCP.gp.gp_Pnt,Weight : float) -> None: ...
def SetWeight(self,Index : int,Weight : float) -> None:
"""
Changes the weight for the pole of range Index. If the curve was non rational it can become rational. If the curve was rational it can become non rational.
"""
def StartPoint(self) -> OCP.gp.gp_Pnt:
"""
Returns the start point of the curve. Warnings : This point is different from the first pole of the curve if the multiplicity of the first knot is lower than Degree.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Applies the transformation T to this BSpline curve.
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf) -> float:
"""
Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def Value(self,U : float) -> OCP.gp.gp_Pnt:
"""
Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve. it is implemented with D0.
"""
def Weight(self,Index : int) -> float:
"""
Returns the weight of the pole of range Index . Raised if Index < 1 or Index > NbPoles.
"""
@overload
def Weights(self) -> OCP.TColStd.TColStd_Array1OfReal:
"""
Returns the weights of the B-spline curve;
Returns the weights of the B-spline curve;
"""
@overload
def Weights(self,W : OCP.TColStd.TColStd_Array1OfReal) -> None: ...
@overload
def __init__(self,Poles : OCP.TColgp.TColgp_Array1OfPnt,Weights : OCP.TColStd.TColStd_Array1OfReal,Knots : OCP.TColStd.TColStd_Array1OfReal,Multiplicities : OCP.TColStd.TColStd_Array1OfInteger,Degree : int,Periodic : bool=False,CheckRational : bool=True) -> None: ...
@overload
def __init__(self,Poles : OCP.TColgp.TColgp_Array1OfPnt,Knots : OCP.TColStd.TColStd_Array1OfReal,Multiplicities : OCP.TColStd.TColStd_Array1OfInteger,Degree : int,Periodic : bool=False) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_BSplineSurface(Geom_BoundedSurface, Geom_Surface, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
Describes a BSpline surface. In each parametric direction, a BSpline surface can be: - uniform or non-uniform, - rational or non-rational, - periodic or non-periodic. A BSpline surface is defined by: - its degrees, in the u and v parametric directions, - its periodic characteristic, in the u and v parametric directions, - a table of poles, also called control points (together with the associated weights if the surface is rational), and - a table of knots, together with the associated multiplicities. The degree of a Geom_BSplineSurface is limited to a value (25) which is defined and controlled by the system. This value is returned by the function MaxDegree. Poles and Weights Poles and Weights are manipulated using two associative double arrays: - the poles table, which is a double array of gp_Pnt points, and - the weights table, which is a double array of reals. The bounds of the poles and weights arrays are: - 1 and NbUPoles for the row bounds (provided that the BSpline surface is not periodic in the u parametric direction), where NbUPoles is the number of poles of the surface in the u parametric direction, and - 1 and NbVPoles for the column bounds (provided that the BSpline surface is not periodic in the v parametric direction), where NbVPoles is the number of poles of the surface in the v parametric direction. The poles of the surface are the points used to shape and reshape the surface. They comprise a rectangular network. If the surface is not periodic: - The points (1, 1), (NbUPoles, 1), (1, NbVPoles), and (NbUPoles, NbVPoles) are the four parametric "corners" of the surface. - The first column of poles and the last column of poles define two BSpline curves which delimit the surface in the v parametric direction. These are the v isoparametric curves corresponding to the two bounds of the v parameter. - The first row of poles and the last row of poles define two BSpline curves which delimit the surface in the u parametric direction. These are the u isoparametric curves corresponding to the two bounds of the u parameter. If the surface is periodic, these geometric properties are not verified. It is more difficult to define a geometrical significance for the weights. However they are useful for representing a quadric surface precisely. Moreover, if the weights of all the poles are equal, the surface has a polynomial equation, and hence is a "non-rational surface". The non-rational surface is a special, but frequently used, case, where all poles have identical weights. The weights are defined and used only in the case of a rational surface. The rational characteristic is defined in each parametric direction. A surface can be rational in the u parametric direction, and non-rational in the v parametric direction. Knots and Multiplicities For a Geom_BSplineSurface the table of knots is made up of two increasing sequences of reals, without repetition, one for each parametric direction. The multiplicities define the repetition of the knots. A BSpline surface comprises multiple contiguous patches, which are themselves polynomial or rational surfaces. The knots are the parameters of the isoparametric curves which limit these contiguous patches. The multiplicity of a knot on a BSpline surface (in a given parametric direction) is related to the degree of continuity of the surface at that knot in that parametric direction: Degree of continuity at knot(i) = Degree - Multi(i) where: - Degree is the degree of the BSpline surface in the given parametric direction, and - Multi(i) is the multiplicity of knot number i in the given parametric direction. There are some special cases, where the knots are regularly spaced in one parametric direction (i.e. the difference between two consecutive knots is a constant). - "Uniform": all the multiplicities are equal to 1. - "Quasi-uniform": all the multiplicities are equal to 1, except for the first and last knots in this parametric direction, and these are equal to Degree + 1. - "Piecewise Bezier": all the multiplicities are equal to Degree except for the first and last knots, which are equal to Degree + 1. This surface is a concatenation of Bezier patches in the given parametric direction. If the BSpline surface is not periodic in a given parametric direction, the bounds of the knots and multiplicities tables are 1 and NbKnots, where NbKnots is the number of knots of the BSpline surface in that parametric direction. If the BSpline surface is periodic in a given parametric direction, and there are k periodic knots and p periodic poles in that parametric direction: - the period is such that: period = Knot(k+1) - Knot(1), and - the poles and knots tables in that parametric direction can be considered as infinite tables, such that: Knot(i+k) = Knot(i) + period, and Pole(i+p) = Pole(i) Note: The data structure tables for a periodic BSpline surface are more complex than those of a non-periodic one. References : . A survey of curve and surface methods in CADG Wolfgang BOHM CAGD 1 (1984) . On de Boor-like algorithms and blossoming Wolfgang BOEHM cagd 5 (1988) . Blossoming and knot insertion algorithms for B-spline curves Ronald N. GOLDMAN . Modelisation des surfaces en CAO, Henri GIAUME Peugeot SA . Curves and Surfaces for Computer Aided Geometric Design, a practical guide Gerald FarinDescribes a BSpline surface. In each parametric direction, a BSpline surface can be: - uniform or non-uniform, - rational or non-rational, - periodic or non-periodic. A BSpline surface is defined by: - its degrees, in the u and v parametric directions, - its periodic characteristic, in the u and v parametric directions, - a table of poles, also called control points (together with the associated weights if the surface is rational), and - a table of knots, together with the associated multiplicities. The degree of a Geom_BSplineSurface is limited to a value (25) which is defined and controlled by the system. This value is returned by the function MaxDegree. Poles and Weights Poles and Weights are manipulated using two associative double arrays: - the poles table, which is a double array of gp_Pnt points, and - the weights table, which is a double array of reals. The bounds of the poles and weights arrays are: - 1 and NbUPoles for the row bounds (provided that the BSpline surface is not periodic in the u parametric direction), where NbUPoles is the number of poles of the surface in the u parametric direction, and - 1 and NbVPoles for the column bounds (provided that the BSpline surface is not periodic in the v parametric direction), where NbVPoles is the number of poles of the surface in the v parametric direction. The poles of the surface are the points used to shape and reshape the surface. They comprise a rectangular network. If the surface is not periodic: - The points (1, 1), (NbUPoles, 1), (1, NbVPoles), and (NbUPoles, NbVPoles) are the four parametric "corners" of the surface. - The first column of poles and the last column of poles define two BSpline curves which delimit the surface in the v parametric direction. These are the v isoparametric curves corresponding to the two bounds of the v parameter. - The first row of poles and the last row of poles define two BSpline curves which delimit the surface in the u parametric direction. These are the u isoparametric curves corresponding to the two bounds of the u parameter. If the surface is periodic, these geometric properties are not verified. It is more difficult to define a geometrical significance for the weights. However they are useful for representing a quadric surface precisely. Moreover, if the weights of all the poles are equal, the surface has a polynomial equation, and hence is a "non-rational surface". The non-rational surface is a special, but frequently used, case, where all poles have identical weights. The weights are defined and used only in the case of a rational surface. The rational characteristic is defined in each parametric direction. A surface can be rational in the u parametric direction, and non-rational in the v parametric direction. Knots and Multiplicities For a Geom_BSplineSurface the table of knots is made up of two increasing sequences of reals, without repetition, one for each parametric direction. The multiplicities define the repetition of the knots. A BSpline surface comprises multiple contiguous patches, which are themselves polynomial or rational surfaces. The knots are the parameters of the isoparametric curves which limit these contiguous patches. The multiplicity of a knot on a BSpline surface (in a given parametric direction) is related to the degree of continuity of the surface at that knot in that parametric direction: Degree of continuity at knot(i) = Degree - Multi(i) where: - Degree is the degree of the BSpline surface in the given parametric direction, and - Multi(i) is the multiplicity of knot number i in the given parametric direction. There are some special cases, where the knots are regularly spaced in one parametric direction (i.e. the difference between two consecutive knots is a constant). - "Uniform": all the multiplicities are equal to 1. - "Quasi-uniform": all the multiplicities are equal to 1, except for the first and last knots in this parametric direction, and these are equal to Degree + 1. - "Piecewise Bezier": all the multiplicities are equal to Degree except for the first and last knots, which are equal to Degree + 1. This surface is a concatenation of Bezier patches in the given parametric direction. If the BSpline surface is not periodic in a given parametric direction, the bounds of the knots and multiplicities tables are 1 and NbKnots, where NbKnots is the number of knots of the BSpline surface in that parametric direction. If the BSpline surface is periodic in a given parametric direction, and there are k periodic knots and p periodic poles in that parametric direction: - the period is such that: period = Knot(k+1) - Knot(1), and - the poles and knots tables in that parametric direction can be considered as infinite tables, such that: Knot(i+k) = Knot(i) + period, and Pole(i+p) = Pole(i) Note: The data structure tables for a periodic BSpline surface are more complex than those of a non-periodic one. References : . A survey of curve and surface methods in CADG Wolfgang BOHM CAGD 1 (1984) . On de Boor-like algorithms and blossoming Wolfgang BOEHM cagd 5 (1988) . Blossoming and knot insertion algorithms for B-spline curves Ronald N. GOLDMAN . Modelisation des surfaces en CAO, Henri GIAUME Peugeot SA . Curves and Surfaces for Computer Aided Geometric Design, a practical guide Gerald FarinDescribes a BSpline surface. In each parametric direction, a BSpline surface can be: - uniform or non-uniform, - rational or non-rational, - periodic or non-periodic. A BSpline surface is defined by: - its degrees, in the u and v parametric directions, - its periodic characteristic, in the u and v parametric directions, - a table of poles, also called control points (together with the associated weights if the surface is rational), and - a table of knots, together with the associated multiplicities. The degree of a Geom_BSplineSurface is limited to a value (25) which is defined and controlled by the system. This value is returned by the function MaxDegree. Poles and Weights Poles and Weights are manipulated using two associative double arrays: - the poles table, which is a double array of gp_Pnt points, and - the weights table, which is a double array of reals. The bounds of the poles and weights arrays are: - 1 and NbUPoles for the row bounds (provided that the BSpline surface is not periodic in the u parametric direction), where NbUPoles is the number of poles of the surface in the u parametric direction, and - 1 and NbVPoles for the column bounds (provided that the BSpline surface is not periodic in the v parametric direction), where NbVPoles is the number of poles of the surface in the v parametric direction. The poles of the surface are the points used to shape and reshape the surface. They comprise a rectangular network. If the surface is not periodic: - The points (1, 1), (NbUPoles, 1), (1, NbVPoles), and (NbUPoles, NbVPoles) are the four parametric "corners" of the surface. - The first column of poles and the last column of poles define two BSpline curves which delimit the surface in the v parametric direction. These are the v isoparametric curves corresponding to the two bounds of the v parameter. - The first row of poles and the last row of poles define two BSpline curves which delimit the surface in the u parametric direction. These are the u isoparametric curves corresponding to the two bounds of the u parameter. If the surface is periodic, these geometric properties are not verified. It is more difficult to define a geometrical significance for the weights. However they are useful for representing a quadric surface precisely. Moreover, if the weights of all the poles are equal, the surface has a polynomial equation, and hence is a "non-rational surface". The non-rational surface is a special, but frequently used, case, where all poles have identical weights. The weights are defined and used only in the case of a rational surface. The rational characteristic is defined in each parametric direction. A surface can be rational in the u parametric direction, and non-rational in the v parametric direction. Knots and Multiplicities For a Geom_BSplineSurface the table of knots is made up of two increasing sequences of reals, without repetition, one for each parametric direction. The multiplicities define the repetition of the knots. A BSpline surface comprises multiple contiguous patches, which are themselves polynomial or rational surfaces. The knots are the parameters of the isoparametric curves which limit these contiguous patches. The multiplicity of a knot on a BSpline surface (in a given parametric direction) is related to the degree of continuity of the surface at that knot in that parametric direction: Degree of continuity at knot(i) = Degree - Multi(i) where: - Degree is the degree of the BSpline surface in the given parametric direction, and - Multi(i) is the multiplicity of knot number i in the given parametric direction. There are some special cases, where the knots are regularly spaced in one parametric direction (i.e. the difference between two consecutive knots is a constant). - "Uniform": all the multiplicities are equal to 1. - "Quasi-uniform": all the multiplicities are equal to 1, except for the first and last knots in this parametric direction, and these are equal to Degree + 1. - "Piecewise Bezier": all the multiplicities are equal to Degree except for the first and last knots, which are equal to Degree + 1. This surface is a concatenation of Bezier patches in the given parametric direction. If the BSpline surface is not periodic in a given parametric direction, the bounds of the knots and multiplicities tables are 1 and NbKnots, where NbKnots is the number of knots of the BSpline surface in that parametric direction. If the BSpline surface is periodic in a given parametric direction, and there are k periodic knots and p periodic poles in that parametric direction: - the period is such that: period = Knot(k+1) - Knot(1), and - the poles and knots tables in that parametric direction can be considered as infinite tables, such that: Knot(i+k) = Knot(i) + period, and Pole(i+p) = Pole(i) Note: The data structure tables for a periodic BSpline surface are more complex than those of a non-periodic one. References : . A survey of curve and surface methods in CADG Wolfgang BOHM CAGD 1 (1984) . On de Boor-like algorithms and blossoming Wolfgang BOEHM cagd 5 (1988) . Blossoming and knot insertion algorithms for B-spline curves Ronald N. GOLDMAN . Modelisation des surfaces en CAO, Henri GIAUME Peugeot SA . Curves and Surfaces for Computer Aided Geometric Design, a practical guide Gerald Farin
"""
def Bounds(self) -> tuple[float, float, float, float]:
"""
Returns the parametric bounds of the surface. Warnings : These parametric values are the bounds of the array of knots UKnots and VKnots only if the first knots and the last knots have a multiplicity equal to UDegree + 1 or VDegree + 1
"""
def CheckAndSegment(self,U1 : float,U2 : float,V1 : float,V2 : float,theUTolerance : float=9.999999999999999e-10,theVTolerance : float=9.999999999999999e-10) -> None:
"""
Segments the surface between U1 and U2 in the U-Direction. between V1 and V2 in the V-Direction.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
Returns the continuity of the surface : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Surface, C2 : continuity of the second derivative all along the Surface, C3 : continuity of the third derivative all along the Surface, CN : the order of continuity is infinite. A B-spline surface is infinitely continuously differentiable for the couple of parameters U, V such that U != UKnots(i) and V != VKnots(i). The continuity of the surface at a knot value depends on the multiplicity of this knot. Example : If the surface is C1 in the V direction and C2 in the U direction this function returns Shape = C1.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this BSpline surface.
"""
def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None:
"""
None
"""
def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None:
"""
Raised if the continuity of the surface is not C1.
"""
def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None:
"""
Raised if the continuity of the surface is not C2.
"""
def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None:
"""
Raised if the continuity of the surface is not C3.
"""
def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec:
"""
Nu is the order of derivation in the U parametric direction and Nv is the order of derivation in the V parametric direction.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def ExchangeUV(self) -> None:
"""
Exchanges the u and v parametric directions on this BSpline surface. As a consequence: - the poles and weights tables are transposed, - the knots and multiplicities tables are exchanged, - degrees of continuity, and rational, periodic and uniform characteristics are exchanged, and - the orientation of the surface is inverted.
"""
def FirstUKnotIndex(self) -> int:
"""
Computes the Index of the UKnots which gives the first parametric value of the surface in the U direction. The UIso curve corresponding to this value is a boundary curve of the surface.
"""
def FirstVKnotIndex(self) -> int:
"""
Computes the Index of the VKnots which gives the first parametric value of the surface in the V direction. The VIso curve corresponding to this knot is a boundary curve of the surface.
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncreaseDegree(self,UDegree : int,VDegree : int) -> None:
"""
Increases the degrees of this BSpline surface to UDegree and VDegree in the u and v parametric directions respectively. As a result, the tables of poles, weights and multiplicities are modified. The tables of knots is not changed. Note: Nothing is done if the given degree is less than or equal to the current degree in the corresponding parametric direction. Exceptions Standard_ConstructionError if UDegree or VDegree is greater than Geom_BSplineSurface::MaxDegree().
"""
@overload
def IncreaseUMultiplicity(self,UIndex : int,M : int) -> None:
"""
Increases the multiplicity of the knot of range UIndex in the UKnots sequence. M is the new multiplicity. M must be greater than the previous multiplicity and lower or equal to the degree of the surface in the U parametric direction. Raised if M is not in the range [1, UDegree]
Increases until order M the multiplicity of the set of knots FromI1,...., ToI2 in the U direction. This method can be used to make a B_spline surface into a PiecewiseBezier B_spline surface. If <me> was uniform, it can become non uniform.
"""
@overload
def IncreaseUMultiplicity(self,FromI1 : int,ToI2 : int,M : int) -> None: ...
@overload
def IncreaseVMultiplicity(self,VIndex : int,M : int) -> None:
"""
Increases the multiplicity of a knot in the V direction. M is the new multiplicity.
Increases until order M the multiplicity of the set of knots FromI1,...., ToI2 in the V direction. This method can be used to make a BSplineSurface into a PiecewiseBezier B_spline surface. If <me> was uniform, it can become non-uniform.
"""
@overload
def IncreaseVMultiplicity(self,FromI1 : int,ToI2 : int,M : int) -> None: ...
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IncrementUMultiplicity(self,FromI1 : int,ToI2 : int,Step : int) -> None:
"""
Increments the multiplicity of the consecutives uknots FromI1..ToI2 by step. The multiplicity of each knot FromI1,.....,ToI2 must be lower or equal to the UDegree of the B_spline.
"""
def IncrementVMultiplicity(self,FromI1 : int,ToI2 : int,Step : int) -> None:
"""
Increments the multiplicity of the consecutives vknots FromI1..ToI2 by step. The multiplicity of each knot FromI1,.....,ToI2 must be lower or equal to the VDegree of the B_spline.
"""
def InsertUKnot(self,U : float,M : int,ParametricTolerance : float,Add : bool=True) -> None:
"""
Inserts a knot value in the sequence of UKnots. If U is a knot value this method increases the multiplicity of the knot if the previous multiplicity was lower than M else it does nothing. The tolerance criterion is ParametricTolerance. ParametricTolerance should be greater or equal than Resolution from package gp.
"""
def InsertUKnots(self,Knots : OCP.TColStd.TColStd_Array1OfReal,Mults : OCP.TColStd.TColStd_Array1OfInteger,ParametricTolerance : float=0.0,Add : bool=True) -> None:
"""
Inserts into the knots table for the U parametric direction of this BSpline surface: - the values of the array Knots, with their respective multiplicities, Mults. If the knot value to insert already exists in the table, its multiplicity is: - increased by M, if Add is true (the default), or - increased to M, if Add is false. The tolerance criterion used to check the equality of the knots is the larger of the values ParametricTolerance and Standard_Real::Epsilon(val), where val is the knot value to be inserted. Warning - If a given multiplicity coefficient is null, or negative, nothing is done. - The new multiplicity of a knot is limited to the degree of this BSpline surface in the corresponding parametric direction. Exceptions Standard_ConstructionError if a knot value to insert is outside the bounds of this BSpline surface in the specified parametric direction. The comparison uses the precision criterion ParametricTolerance.
"""
def InsertVKnot(self,V : float,M : int,ParametricTolerance : float,Add : bool=True) -> None:
"""
Inserts a knot value in the sequence of VKnots. If V is a knot value this method increases the multiplicity of the knot if the previous multiplicity was lower than M otherwise it does nothing. The tolerance criterion is ParametricTolerance. ParametricTolerance should be greater or equal than Resolution from package gp.
"""
def InsertVKnots(self,Knots : OCP.TColStd.TColStd_Array1OfReal,Mults : OCP.TColStd.TColStd_Array1OfInteger,ParametricTolerance : float=0.0,Add : bool=True) -> None:
"""
Inserts into the knots table for the V parametric direction of this BSpline surface: - the values of the array Knots, with their respective multiplicities, Mults. If the knot value to insert already exists in the table, its multiplicity is: - increased by M, if Add is true (the default), or - increased to M, if Add is false. The tolerance criterion used to check the equality of the knots is the larger of the values ParametricTolerance and Standard_Real::Epsilon(val), where val is the knot value to be inserted. Warning - If a given multiplicity coefficient is null, or negative, nothing is done. - The new multiplicity of a knot is limited to the degree of this BSpline surface in the corresponding parametric direction. Exceptions Standard_ConstructionError if a knot value to insert is outside the bounds of this BSpline surface in the specified parametric direction. The comparison uses the precision criterion ParametricTolerance.
"""
def IsCNu(self,N : int) -> bool:
"""
Returns True if the order of continuity of the surface in the U direction is N. Raised if N < 0.
"""
def IsCNv(self,N : int) -> bool:
"""
Returns True if the order of continuity of the surface in the V direction is N. Raised if N < 0.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsUClosed(self) -> bool:
"""
Returns true if the first control points row and the last control points row are identical. The tolerance criterion is Resolution from package gp.
"""
def IsUPeriodic(self) -> bool:
"""
Returns True if the surface is closed in the U direction and if the B-spline has been turned into a periodic surface using the function SetUPeriodic.
"""
def IsURational(self) -> bool:
"""
Returns False if for each row of weights all the weights are identical. The tolerance criterion is resolution from package gp. Example : |1.0, 1.0, 1.0| if Weights = |0.5, 0.5, 0.5| returns False |2.0, 2.0, 2.0|
"""
def IsVClosed(self) -> bool:
"""
Returns true if the first control points column and the last last control points column are identical. The tolerance criterion is Resolution from package gp.
"""
def IsVPeriodic(self) -> bool:
"""
Returns True if the surface is closed in the V direction and if the B-spline has been turned into a periodic surface using the function SetVPeriodic.
"""
def IsVRational(self) -> bool:
"""
Returns False if for each column of weights all the weights are identical. The tolerance criterion is resolution from package gp. Examples : |1.0, 2.0, 0.5| if Weights = |1.0, 2.0, 0.5| returns False |1.0, 2.0, 0.5|
"""
def LastUKnotIndex(self) -> int:
"""
Computes the Index of the UKnots which gives the last parametric value of the surface in the U direction. The UIso curve corresponding to this knot is a boundary curve of the surface.
"""
def LastVKnotIndex(self) -> int:
"""
Computes the Index of the VKnots which gives the last parametric value of the surface in the V direction. The VIso curve corresponding to this knot is a boundary curve of the surface.
"""
def LocalD0(self,U : float,V : float,FromUK1 : int,ToUK2 : int,FromVK1 : int,ToVK2 : int,P : OCP.gp.gp_Pnt) -> None:
"""
Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2.
"""
def LocalD1(self,U : float,V : float,FromUK1 : int,ToUK2 : int,FromVK1 : int,ToVK2 : int,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None:
"""
Raised if the local continuity of the surface is not C1 between the knots FromUK1, ToUK2 and FromVK1, ToVK2. Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2.
"""
def LocalD2(self,U : float,V : float,FromUK1 : int,ToUK2 : int,FromVK1 : int,ToVK2 : int,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None:
"""
Raised if the local continuity of the surface is not C2 between the knots FromUK1, ToUK2 and FromVK1, ToVK2. Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2.
"""
def LocalD3(self,U : float,V : float,FromUK1 : int,ToUK2 : int,FromVK1 : int,ToVK2 : int,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None:
"""
Raised if the local continuity of the surface is not C3 between the knots FromUK1, ToUK2 and FromVK1, ToVK2. Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2.
"""
def LocalDN(self,U : float,V : float,FromUK1 : int,ToUK2 : int,FromVK1 : int,ToVK2 : int,Nu : int,Nv : int) -> OCP.gp.gp_Vec:
"""
Raised if the local continuity of the surface is not CNu between the knots FromUK1, ToUK2 and CNv between the knots FromVK1, ToVK2. Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2.
"""
def LocalValue(self,U : float,V : float,FromUK1 : int,ToUK2 : int,FromVK1 : int,ToVK2 : int) -> OCP.gp.gp_Pnt:
"""
Computes the point of parameter U, V on the BSpline surface patch defines between the knots UK1 UK2, VK1, VK2. U can be out of the bounds [Knot UK1, Knot UK2] and V can be outof the bounds [Knot VK1, Knot VK2] but for the computation we only use the definition of the surface between these knot values. Raises if FromUK1 = ToUK2 or FromVK1 = ToVK2.
"""
def LocateU(self,U : float,ParametricTolerance : float,WithKnotRepetition : bool=False) -> tuple[int, int]:
"""
Locates the parametric value U in the sequence of UKnots. If "WithKnotRepetition" is True we consider the knot's representation with repetition of multiple knot value, otherwise we consider the knot's representation with no repetition of multiple knot values. UKnots (I1) <= U <= UKnots (I2) . if I1 = I2 U is a knot value (the tolerance criterion ParametricTolerance is used). . if I1 < 1 => U < UKnots(1) - Abs(ParametricTolerance) . if I2 > NbUKnots => U > UKnots(NbUKnots)+Abs(ParametricTolerance)
"""
def LocateV(self,V : float,ParametricTolerance : float,WithKnotRepetition : bool=False) -> tuple[int, int]:
"""
Locates the parametric value V in the sequence of knots. If "WithKnotRepetition" is True we consider the knot's representation with repetition of multiple knot value, otherwise we consider the knot's representation with no repetition of multiple knot values. VKnots (I1) <= V <= VKnots (I2) . if I1 = I2 V is a knot value (the tolerance criterion ParametricTolerance is used). . if I1 < 1 => V < VKnots(1) - Abs(ParametricTolerance) . if I2 > NbVKnots => V > VKnots(NbVKnots)+Abs(ParametricTolerance) poles insertion and removing The following methods are available only if the surface is Uniform or QuasiUniform in the considered direction The knot repartition is modified.
"""
@staticmethod
def MaxDegree_s() -> int:
"""
Returns the value of the maximum degree of the normalized B-spline basis functions in the u and v directions.
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def MovePoint(self,U : float,V : float,P : OCP.gp.gp_Pnt,UIndex1 : int,UIndex2 : int,VIndex1 : int,VIndex2 : int) -> tuple[int, int, int, int]:
"""
Move a point with parameter U and V to P. given u,v as parameters) to reach a new position UIndex1, UIndex2, VIndex1, VIndex2: indicates the poles which can be moved if Problem in BSplineBasis calculation, no change for the curve and UFirstIndex, VLastIndex = 0 VFirstIndex, VLastIndex = 0
"""
def NbUKnots(self) -> int:
"""
Returns the number of knots in the U direction.
"""
def NbUPoles(self) -> int:
"""
Returns number of poles in the U direction.
"""
def NbVKnots(self) -> int:
"""
Returns the number of knots in the V direction.
"""
def NbVPoles(self) -> int:
"""
Returns the number of poles in the V direction.
"""
def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d:
"""
Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns an identity transformation
"""
def PeriodicNormalization(self) -> tuple[float, float]:
"""
returns the parameter normalized within the period if the surface is periodic : otherwise does not do anything
"""
def Pole(self,UIndex : int,VIndex : int) -> OCP.gp.gp_Pnt:
"""
Returns the pole of range (UIndex, VIndex).
"""
@overload
def Poles(self) -> OCP.TColgp.TColgp_Array2OfPnt:
"""
Returns the poles of the B-spline surface.
Returns the poles of the B-spline surface.
"""
@overload
def Poles(self,P : OCP.TColgp.TColgp_Array2OfPnt) -> None: ...
def RemoveUKnot(self,Index : int,M : int,Tolerance : float) -> bool:
"""
Reduces to M the multiplicity of the knot of index Index in the U parametric direction. If M is 0, the knot is removed. With a modification of this type, the table of poles is also modified. Two different algorithms are used systematically to compute the new poles of the surface. For each pole, the distance between the pole calculated using the first algorithm and the same pole calculated using the second algorithm, is checked. If this distance is less than Tolerance it ensures that the surface is not modified by more than Tolerance. Under these conditions, the function returns true; otherwise, it returns false. A low tolerance prevents modification of the surface. A high tolerance "smoothes" the surface. Exceptions Standard_OutOfRange if Index is outside the bounds of the knots table of this BSpline surface.
"""
def RemoveVKnot(self,Index : int,M : int,Tolerance : float) -> bool:
"""
Reduces to M the multiplicity of the knot of index Index in the V parametric direction. If M is 0, the knot is removed. With a modification of this type, the table of poles is also modified. Two different algorithms are used systematically to compute the new poles of the surface. For each pole, the distance between the pole calculated using the first algorithm and the same pole calculated using the second algorithm, is checked. If this distance is less than Tolerance it ensures that the surface is not modified by more than Tolerance. Under these conditions, the function returns true; otherwise, it returns false. A low tolerance prevents modification of the surface. A high tolerance "smoothes" the surface. Exceptions Standard_OutOfRange if Index is outside the bounds of the knots table of this BSpline surface.
"""
def Resolution(self,Tolerance3D : float) -> tuple[float, float]:
"""
Computes two tolerance values for this BSpline surface, based on the given tolerance in 3D space Tolerance3D. The tolerances computed are: - UTolerance in the u parametric direction, and - VTolerance in the v parametric direction. If f(u,v) is the equation of this BSpline surface, UTolerance and VTolerance guarantee that : | u1 - u0 | < UTolerance and | v1 - v0 | < VTolerance ====> |f (u1,v1) - f (u0,v0)| < Tolerance3D
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def Segment(self,U1 : float,U2 : float,V1 : float,V2 : float,theUTolerance : float=9.999999999999999e-10,theVTolerance : float=9.999999999999999e-10) -> None:
"""
Segments the surface between U1 and U2 in the U-Direction. between V1 and V2 in the V-Direction. The control points are modified, the first and the last point are not the same.
"""
@overload
def SetPole(self,UIndex : int,VIndex : int,P : OCP.gp.gp_Pnt,Weight : float) -> None:
"""
Substitutes the pole of range (UIndex, VIndex) with P. If the surface is rational the weight of range (UIndex, VIndex) is not modified.
Substitutes the pole and the weight of range (UIndex, VIndex) with P and W.
"""
@overload
def SetPole(self,UIndex : int,VIndex : int,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def SetPoleCol(self,VIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt,CPoleWeights : OCP.TColStd.TColStd_Array1OfReal) -> None:
"""
Changes a column of poles or a part of this column. Raised if Vindex < 1 or VIndex > NbVPoles.
Changes a column of poles or a part of this column with the corresponding weights. If the surface was rational it can become non rational. If the surface was non rational it can become rational. Raised if Vindex < 1 or VIndex > NbVPoles.
"""
@overload
def SetPoleCol(self,VIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt) -> None: ...
@overload
def SetPoleRow(self,UIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt) -> None:
"""
Changes a row of poles or a part of this row with the corresponding weights. If the surface was rational it can become non rational. If the surface was non rational it can become rational. Raised if Uindex < 1 or UIndex > NbUPoles.
Changes a row of poles or a part of this row. Raised if Uindex < 1 or UIndex > NbUPoles.
"""
@overload
def SetPoleRow(self,UIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt,CPoleWeights : OCP.TColStd.TColStd_Array1OfReal) -> None: ...
@overload
def SetUKnot(self,UIndex : int,K : float) -> None:
"""
Substitutes the UKnots of range UIndex with K.
Changes the value of the UKnots of range UIndex and increases its multiplicity.
"""
@overload
def SetUKnot(self,UIndex : int,K : float,M : int) -> None: ...
def SetUKnots(self,UK : OCP.TColStd.TColStd_Array1OfReal) -> None:
"""
Changes all the U-knots of the surface. The multiplicity of the knots are not modified.
"""
def SetUNotPeriodic(self) -> None:
"""
Sets the surface U not periodic. Changes this BSpline surface into a non-periodic surface along U direction. If this surface is already non-periodic, it is not modified. Note: the poles and knots tables are modified.
"""
def SetUOrigin(self,Index : int) -> None:
"""
Assigns the knot of index Index in the knots table in the corresponding parametric direction to be the origin of this periodic BSpline surface. As a consequence, the knots and poles tables are modified. Exceptions Standard_NoSuchObject if this BSpline surface is not periodic in the given parametric direction. Standard_DomainError if Index is outside the bounds of the knots table in the given parametric direction.
"""
def SetUPeriodic(self) -> None:
"""
Sets the surface U periodic. Modifies this surface to be periodic in the U parametric direction. To become periodic in a given parametric direction a surface must be closed in that parametric direction, and the knot sequence relative to that direction must be periodic. To generate this periodic sequence of knots, the functions FirstUKnotIndex and LastUKnotIndex are used to compute I1 and I2. These are the indexes, in the knot array associated with the given parametric direction, of the knots that correspond to the first and last parameters of this BSpline surface in the given parametric direction. Hence the period is: Knots(I1) - Knots(I2) As a result, the knots and poles tables are modified. Exceptions Standard_ConstructionError if the surface is not closed in the given parametric direction.
"""
@overload
def SetVKnot(self,VIndex : int,K : float) -> None:
"""
Substitutes the VKnots of range VIndex with K.
Changes the value of the VKnots of range VIndex and increases its multiplicity.
"""
@overload
def SetVKnot(self,VIndex : int,K : float,M : int) -> None: ...
def SetVKnots(self,VK : OCP.TColStd.TColStd_Array1OfReal) -> None:
"""
Changes all the V-knots of the surface. The multiplicity of the knots are not modified.
"""
def SetVNotPeriodic(self) -> None:
"""
Sets the surface V not periodic. Changes this BSpline surface into a non-periodic surface along V direction. If this surface is already non-periodic, it is not modified. Note: the poles and knots tables are modified.
"""
def SetVOrigin(self,Index : int) -> None:
"""
Assigns the knot of index Index in the knots table in the corresponding parametric direction to be the origin of this periodic BSpline surface. As a consequence, the knots and poles tables are modified. Exceptions Standard_NoSuchObject if this BSpline surface is not periodic in the given parametric direction. Standard_DomainError if Index is outside the bounds of the knots table in the given parametric direction.
"""
def SetVPeriodic(self) -> None:
"""
Sets the surface V periodic. Modifies this surface to be periodic in the V parametric direction. To become periodic in a given parametric direction a surface must be closed in that parametric direction, and the knot sequence relative to that direction must be periodic. To generate this periodic sequence of knots, the functions FirstVKnotIndex and LastVKnotIndex are used to compute I1 and I2. These are the indexes, in the knot array associated with the given parametric direction, of the knots that correspond to the first and last parameters of this BSpline surface in the given parametric direction. Hence the period is: Knots(I1) - Knots(I2) As a result, the knots and poles tables are modified. Exceptions Standard_ConstructionError if the surface is not closed in the given parametric direction.
"""
def SetWeight(self,UIndex : int,VIndex : int,Weight : float) -> None:
"""
Changes the weight of the pole of range UIndex, VIndex. If the surface was non rational it can become rational. If the surface was rational it can become non rational.
"""
def SetWeightCol(self,VIndex : int,CPoleWeights : OCP.TColStd.TColStd_Array1OfReal) -> None:
"""
Changes a column of weights of a part of this column.
"""
def SetWeightRow(self,UIndex : int,CPoleWeights : OCP.TColStd.TColStd_Array1OfReal) -> None:
"""
Changes a row of weights or a part of this row.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Applies the transformation T to this BSpline surface.
"""
def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]:
"""
Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method does not change <U> and <V>
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def UDegree(self) -> int:
"""
Returns the degree of the normalized B-splines Ni,n in the U direction.
"""
@overload
def UIso(self,U : float,CheckRational : bool) -> Geom_Curve:
"""
Computes the U isoparametric curve. A B-spline curve is returned.
Computes the U isoparametric curve. If CheckRational=False, no try to make it non-rational. A B-spline curve is returned.
"""
@overload
def UIso(self,U : float) -> Geom_Curve: ...
def UKnot(self,UIndex : int) -> float:
"""
Returns the Knot value of range UIndex. Raised if UIndex < 1 or UIndex > NbUKnots
"""
def UKnotDistribution(self) -> OCP.GeomAbs.GeomAbs_BSplKnotDistribution:
"""
Returns NonUniform or Uniform or QuasiUniform or PiecewiseBezier. If all the knots differ by a positive constant from the preceding knot in the U direction the B-spline surface can be : - Uniform if all the knots are of multiplicity 1, - QuasiUniform if all the knots are of multiplicity 1 except for the first and last knot which are of multiplicity Degree + 1, - PiecewiseBezier if the first and last knots have multiplicity Degree + 1 and if interior knots have multiplicity Degree otherwise the surface is non uniform in the U direction The tolerance criterion is Resolution from package gp.
"""
@overload
def UKnotSequence(self) -> OCP.TColStd.TColStd_Array1OfReal:
"""
Returns the uknots sequence. In this sequence the knots with a multiplicity greater than 1 are repeated. Example : Ku = {k1, k1, k1, k2, k3, k3, k4, k4, k4}
Returns the uknots sequence. In this sequence the knots with a multiplicity greater than 1 are repeated. Example : Ku = {k1, k1, k1, k2, k3, k3, k4, k4, k4}
"""
@overload
def UKnotSequence(self,Ku : OCP.TColStd.TColStd_Array1OfReal) -> None: ...
@overload
def UKnots(self) -> OCP.TColStd.TColStd_Array1OfReal:
"""
Returns the knots in the U direction.
Returns the knots in the U direction.
"""
@overload
def UKnots(self,Ku : OCP.TColStd.TColStd_Array1OfReal) -> None: ...
@overload
def UMultiplicities(self) -> OCP.TColStd.TColStd_Array1OfInteger:
"""
Returns the multiplicities of the knots in the U direction.
Returns the multiplicities of the knots in the U direction.
"""
@overload
def UMultiplicities(self,Mu : OCP.TColStd.TColStd_Array1OfInteger) -> None: ...
def UMultiplicity(self,UIndex : int) -> int:
"""
Returns the multiplicity value of knot of range UIndex in the u direction. Raised if UIndex < 1 or UIndex > NbUKnots.
"""
def UPeriod(self) -> float:
"""
Returns the period of this surface in the u parametric direction. Raises if the surface is not uperiodic.
"""
def UReverse(self) -> None:
"""
Changes the orientation of this BSpline surface in the U parametric direction. The bounds of the surface are not changed but the given parametric direction is reversed. Hence the orientation of the surface is reversed. The knots and poles tables are modified.
"""
def UReversed(self) -> Geom_Surface:
"""
Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def UReversedParameter(self,U : float) -> float:
"""
Computes the u parameter on the modified surface, produced by reversing its U parametric direction, for the point of u parameter U, on this BSpline surface. For a BSpline surface, these functions return respectively: - UFirst + ULast - U, where UFirst, ULast are the values of the first and last parameters of this BSpline surface, in the u parametric directions.
"""
def VDegree(self) -> int:
"""
Returns the degree of the normalized B-splines Ni,d in the V direction.
"""
@overload
def VIso(self,V : float) -> Geom_Curve:
"""
Computes the V isoparametric curve. A B-spline curve is returned.
Computes the V isoparametric curve. If CheckRational=False, no try to make it non-rational. A B-spline curve is returned. transformations
"""
@overload
def VIso(self,V : float,CheckRational : bool) -> Geom_Curve: ...
def VKnot(self,VIndex : int) -> float:
"""
Returns the Knot value of range VIndex. Raised if VIndex < 1 or VIndex > NbVKnots
"""
def VKnotDistribution(self) -> OCP.GeomAbs.GeomAbs_BSplKnotDistribution:
"""
Returns NonUniform or Uniform or QuasiUniform or PiecewiseBezier. If all the knots differ by a positive constant from the preceding knot in the V direction the B-spline surface can be : - Uniform if all the knots are of multiplicity 1, - QuasiUniform if all the knots are of multiplicity 1 except for the first and last knot which are of multiplicity Degree + 1, - PiecewiseBezier if the first and last knots have multiplicity Degree + 1 and if interior knots have multiplicity Degree otherwise the surface is non uniform in the V direction. The tolerance criterion is Resolution from package gp.
"""
@overload
def VKnotSequence(self) -> OCP.TColStd.TColStd_Array1OfReal:
"""
Returns the vknots sequence. In this sequence the knots with a multiplicity greater than 1 are repeated. Example : Kv = {k1, k1, k1, k2, k3, k3, k4, k4, k4}
Returns the vknots sequence. In this sequence the knots with a multiplicity greater than 1 are repeated. Example : Ku = {k1, k1, k1, k2, k3, k3, k4, k4, k4}
"""
@overload
def VKnotSequence(self,Kv : OCP.TColStd.TColStd_Array1OfReal) -> None: ...
@overload
def VKnots(self,Kv : OCP.TColStd.TColStd_Array1OfReal) -> None:
"""
Returns the knots in the V direction.
Returns the knots in the V direction.
"""
@overload
def VKnots(self) -> OCP.TColStd.TColStd_Array1OfReal: ...
@overload
def VMultiplicities(self,Mv : OCP.TColStd.TColStd_Array1OfInteger) -> None:
"""
Returns the multiplicities of the knots in the V direction.
Returns the multiplicities of the knots in the V direction.
"""
@overload
def VMultiplicities(self) -> OCP.TColStd.TColStd_Array1OfInteger: ...
def VMultiplicity(self,VIndex : int) -> int:
"""
Returns the multiplicity value of knot of range VIndex in the v direction. Raised if VIndex < 1 or VIndex > NbVKnots
"""
def VPeriod(self) -> float:
"""
Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic.
"""
def VReverse(self) -> None:
"""
Changes the orientation of this BSpline surface in the V parametric direction. The bounds of the surface are not changed but the given parametric direction is reversed. Hence the orientation of the surface is reversed. The knots and poles tables are modified.
"""
def VReversed(self) -> Geom_Surface:
"""
Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def VReversedParameter(self,V : float) -> float:
"""
Computes the v parameter on the modified surface, produced by reversing its V parametric direction, for the point of v parameter V on this BSpline surface. For a BSpline surface, these functions return respectively: - VFirst + VLast - V, VFirst and VLast are the values of the first and last parameters of this BSpline surface, in the v pametric directions.
"""
def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt:
"""
Computes the point of parameter (U, V) on the surface.
"""
def Weight(self,UIndex : int,VIndex : int) -> float:
"""
Returns the weight value of range UIndex, VIndex.
"""
@overload
def Weights(self) -> OCP.TColStd.TColStd_Array2OfReal:
"""
Returns the weights of the B-spline surface.
Returns the weights of the B-spline surface. value and derivatives computation
"""
@overload
def Weights(self,W : OCP.TColStd.TColStd_Array2OfReal) -> None: ...
@overload
def __init__(self,Poles : OCP.TColgp.TColgp_Array2OfPnt,UKnots : OCP.TColStd.TColStd_Array1OfReal,VKnots : OCP.TColStd.TColStd_Array1OfReal,UMults : OCP.TColStd.TColStd_Array1OfInteger,VMults : OCP.TColStd.TColStd_Array1OfInteger,UDegree : int,VDegree : int,UPeriodic : bool=False,VPeriodic : bool=False) -> None: ...
@overload
def __init__(self,Poles : OCP.TColgp.TColgp_Array2OfPnt,Weights : OCP.TColStd.TColStd_Array2OfReal,UKnots : OCP.TColStd.TColStd_Array1OfReal,VKnots : OCP.TColStd.TColStd_Array1OfReal,UMults : OCP.TColStd.TColStd_Array1OfInteger,VMults : OCP.TColStd.TColStd_Array1OfInteger,UDegree : int,VDegree : int,UPeriodic : bool=False,VPeriodic : bool=False) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_Point(Geom_Geometry, OCP.Standard.Standard_Transient):
"""
The abstract class Point describes the common behavior of geometric points in 3D space. The Geom package also provides the concrete class Geom_CartesianPoint.The abstract class Point describes the common behavior of geometric points in 3D space. The Geom package also provides the concrete class Geom_CartesianPoint.The abstract class Point describes the common behavior of geometric points in 3D space. The Geom package also provides the concrete class Geom_CartesianPoint.
"""
def Coord(self) -> tuple[float, float, float]:
"""
returns the Coordinates of <me>.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this geometric object.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def Distance(self,Other : Geom_Point) -> float:
"""
Computes the distance between <me> and <Other>.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def Pnt(self) -> OCP.gp.gp_Pnt:
"""
returns a non transient copy of <me>
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def SquareDistance(self,Other : Geom_Point) -> float:
"""
Computes the square distance between <me> and <Other>.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom).
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def X(self) -> float:
"""
returns the X coordinate of <me>.
"""
def Y(self) -> float:
"""
returns the Y coordinate of <me>.
"""
def Z(self) -> float:
"""
returns the Z coordinate of <me>.
"""
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_Conic(Geom_Curve, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
The abstract class Conic describes the common behavior of conic curves in 3D space and, in particular, their general characteristics. The Geom package provides four concrete classes of conics: Geom_Circle, Geom_Ellipse, Geom_Hyperbola and Geom_Parabola. A conic is positioned in space with a right-handed coordinate system (gp_Ax2 object), where: - the origin is the center of the conic (or the apex in the case of a parabola), - the origin, "X Direction" and "Y Direction" define the plane of the conic. This coordinate system is the local coordinate system of the conic. The "main Direction" of this coordinate system is the vector normal to the plane of the conic. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the conic. The "main Direction" of the local coordinate system gives an explicit orientation to the conic, determining the direction in which the parameter increases along the conic. The "X Axis" of the local coordinate system also defines the origin of the parameter of the conic.The abstract class Conic describes the common behavior of conic curves in 3D space and, in particular, their general characteristics. The Geom package provides four concrete classes of conics: Geom_Circle, Geom_Ellipse, Geom_Hyperbola and Geom_Parabola. A conic is positioned in space with a right-handed coordinate system (gp_Ax2 object), where: - the origin is the center of the conic (or the apex in the case of a parabola), - the origin, "X Direction" and "Y Direction" define the plane of the conic. This coordinate system is the local coordinate system of the conic. The "main Direction" of this coordinate system is the vector normal to the plane of the conic. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the conic. The "main Direction" of the local coordinate system gives an explicit orientation to the conic, determining the direction in which the parameter increases along the conic. The "X Axis" of the local coordinate system also defines the origin of the parameter of the conic.The abstract class Conic describes the common behavior of conic curves in 3D space and, in particular, their general characteristics. The Geom package provides four concrete classes of conics: Geom_Circle, Geom_Ellipse, Geom_Hyperbola and Geom_Parabola. A conic is positioned in space with a right-handed coordinate system (gp_Ax2 object), where: - the origin is the center of the conic (or the apex in the case of a parabola), - the origin, "X Direction" and "Y Direction" define the plane of the conic. This coordinate system is the local coordinate system of the conic. The "main Direction" of this coordinate system is the vector normal to the plane of the conic. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the conic. The "main Direction" of the local coordinate system gives an explicit orientation to the conic, determining the direction in which the parameter increases along the conic. The "X Axis" of the local coordinate system also defines the origin of the parameter of the conic.
"""
def Axis(self) -> OCP.gp.gp_Ax1:
"""
Returns the "main Axis" of this conic. This axis is normal to the plane of the conic.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
The continuity of the conic is Cn.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this geometric object.
"""
def D0(self,U : float,P : OCP.gp.gp_Pnt) -> None:
"""
Returns in P the point of parameter U. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve.
"""
def D1(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec) -> None:
"""
Returns the point P of parameter U and the first derivative V1. Raised if the continuity of the curve is not C1.
"""
def D2(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec) -> None:
"""
Returns the point P of parameter U, the first and second derivatives V1 and V2. Raised if the continuity of the curve is not C2.
"""
def D3(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec,V3 : OCP.gp.gp_Vec) -> None:
"""
Returns the point P of parameter U, the first, the second and the third derivative. Raised if the continuity of the curve is not C3.
"""
def DN(self,U : float,N : int) -> OCP.gp.gp_Vec:
"""
The returned vector gives the value of the derivative for the order of derivation N. Raised if the continuity of the curve is not CN.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def Eccentricity(self) -> float:
"""
Returns the eccentricity value of the conic e. e = 0 for a circle 0 < e < 1 for an ellipse (e = 0 if MajorRadius = MinorRadius) e > 1 for a hyperbola e = 1 for a parabola Exceptions Standard_DomainError in the case of a hyperbola if its major radius is null.
"""
def FirstParameter(self) -> float:
"""
Returns the value of the first parameter. Warnings : It can be RealFirst from package Standard if the curve is infinite
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCN(self,N : int) -> bool:
"""
Returns True. Raised if N < 0.
"""
def IsClosed(self) -> bool:
"""
Returns true if the curve is closed. Some curves such as circle are always closed, others such as line are never closed (by definition). Some Curves such as OffsetCurve can be closed or not. These curves are considered as closed if the distance between the first point and the last point of the curve is lower or equal to the Resolution from package gp which is a fixed criterion independent of the application.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsPeriodic(self) -> bool:
"""
Is the parametrization of the curve periodic ? It is possible only if the curve is closed and if the following relation is satisfied : for each parametric value U the distance between the point P(u) and the point P (u + T) is lower or equal to Resolution from package gp, T is the period and must be a constant. There are three possibilities : . the curve is never periodic by definition (SegmentLine) . the curve is always periodic by definition (Circle) . the curve can be defined as periodic (BSpline). In this case a function SetPeriodic allows you to give the shape of the curve. The general rule for this case is : if a curve can be periodic or not the default periodicity set is non periodic and you have to turn (explicitly) the curve into a periodic curve if you want the curve to be periodic.
"""
def LastParameter(self) -> float:
"""
Returns the value of the last parameter. Warnings : It can be RealLast from package Standard if the curve is infinite
"""
def Location(self) -> OCP.gp.gp_Pnt:
"""
Returns the location point of the conic. For the circle, the ellipse and the hyperbola it is the center of the conic. For the parabola it is the Apex of the parabola.
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> float:
"""
Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.
"""
def Period(self) -> float:
"""
Returns the period of this curve. Exceptions Standard_NoSuchObject if this curve is not periodic.
"""
def Position(self) -> OCP.gp.gp_Ax2:
"""
Returns the local coordinates system of the conic. The main direction of the Axis2Placement is normal to the plane of the conic. The X direction of the Axis2placement is in the plane of the conic and corresponds to the origin for the conic's parametric value u.
"""
def Reverse(self) -> None:
"""
Reverses the direction of parameterization of <me>. The local coordinate system of the conic is modified.
"""
def Reversed(self) -> Geom_Curve:
"""
Returns a copy of <me> reversed.
"""
def ReversedParameter(self,U : float) -> float:
"""
Returns the parameter on the reversed curve for the point of parameter U on <me>.
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def SetAxis(self,theA1 : OCP.gp.gp_Ax1) -> None:
"""
Changes the orientation of the conic's plane. The normal axis to the plane is A1. The XAxis and the YAxis are recomputed.
"""
def SetLocation(self,theP : OCP.gp.gp_Pnt) -> None:
"""
changes the location point of the conic.
"""
def SetPosition(self,theA2 : OCP.gp.gp_Ax2) -> None:
"""
changes the local coordinate system of the conic.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom).
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf) -> float:
"""
Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def Value(self,U : float) -> OCP.gp.gp_Pnt:
"""
Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve. it is implemented with D0.
"""
def XAxis(self) -> OCP.gp.gp_Ax1:
"""
Returns the XAxis of the conic. This axis defines the origin of parametrization of the conic. This axis is perpendicular to the Axis of the conic. This axis and the Yaxis define the plane of the conic.
"""
def YAxis(self) -> OCP.gp.gp_Ax1:
"""
Returns the YAxis of the conic. The YAxis is perpendicular to the Xaxis. This axis and the Xaxis define the plane of the conic.
"""
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_Circle(Geom_Conic, Geom_Curve, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
Describes a circle in 3D space. A circle is defined by its radius and, as with any conic curve, is positioned in space with a right-handed coordinate system (gp_Ax2 object) where: - the origin is the center of the circle, and - the origin, "X Direction" and "Y Direction" define the plane of the circle. This coordinate system is the local coordinate system of the circle. The "main Direction" of this coordinate system is the vector normal to the plane of the circle. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the circle. The "main Direction" of the local coordinate system gives an explicit orientation to the circle (definition of the trigonometric sense), determining the direction in which the parameter increases along the circle. The Geom_Circle circle is parameterized by an angle: P(U) = O + R*Cos(U)*XDir + R*Sin(U)*YDir, where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - R is the radius of the circle. The "X Axis" of the local coordinate system therefore defines the origin of the parameter of the circle. The parameter is the angle with this "X Direction". A circle is a closed and periodic curve. The period is 2.*Pi and the parameter range is [ 0, 2.*Pi [.Describes a circle in 3D space. A circle is defined by its radius and, as with any conic curve, is positioned in space with a right-handed coordinate system (gp_Ax2 object) where: - the origin is the center of the circle, and - the origin, "X Direction" and "Y Direction" define the plane of the circle. This coordinate system is the local coordinate system of the circle. The "main Direction" of this coordinate system is the vector normal to the plane of the circle. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the circle. The "main Direction" of the local coordinate system gives an explicit orientation to the circle (definition of the trigonometric sense), determining the direction in which the parameter increases along the circle. The Geom_Circle circle is parameterized by an angle: P(U) = O + R*Cos(U)*XDir + R*Sin(U)*YDir, where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - R is the radius of the circle. The "X Axis" of the local coordinate system therefore defines the origin of the parameter of the circle. The parameter is the angle with this "X Direction". A circle is a closed and periodic curve. The period is 2.*Pi and the parameter range is [ 0, 2.*Pi [.Describes a circle in 3D space. A circle is defined by its radius and, as with any conic curve, is positioned in space with a right-handed coordinate system (gp_Ax2 object) where: - the origin is the center of the circle, and - the origin, "X Direction" and "Y Direction" define the plane of the circle. This coordinate system is the local coordinate system of the circle. The "main Direction" of this coordinate system is the vector normal to the plane of the circle. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the circle. The "main Direction" of the local coordinate system gives an explicit orientation to the circle (definition of the trigonometric sense), determining the direction in which the parameter increases along the circle. The Geom_Circle circle is parameterized by an angle: P(U) = O + R*Cos(U)*XDir + R*Sin(U)*YDir, where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - R is the radius of the circle. The "X Axis" of the local coordinate system therefore defines the origin of the parameter of the circle. The parameter is the angle with this "X Direction". A circle is a closed and periodic curve. The period is 2.*Pi and the parameter range is [ 0, 2.*Pi [.
"""
def Axis(self) -> OCP.gp.gp_Ax1:
"""
Returns the "main Axis" of this conic. This axis is normal to the plane of the conic.
"""
def Circ(self) -> OCP.gp.gp_Circ:
"""
returns the non transient circle from gp with the same geometric properties as <me>.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
The continuity of the conic is Cn.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this circle.
"""
def D0(self,U : float,P : OCP.gp.gp_Pnt) -> None:
"""
Returns in P the point of parameter U. P = C + R * Cos (U) * XDir + R * Sin (U) * YDir where C is the center of the circle , XDir the XDirection and YDir the YDirection of the circle's local coordinate system.
"""
def D1(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec) -> None:
"""
Returns the point P of parameter U and the first derivative V1.
"""
def D2(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec) -> None:
"""
Returns the point P of parameter U, the first and second derivatives V1 and V2.
"""
def D3(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec,V3 : OCP.gp.gp_Vec) -> None:
"""
Returns the point P of parameter u, the first second and third derivatives V1 V2 and V3.
"""
def DN(self,U : float,N : int) -> OCP.gp.gp_Vec:
"""
The returned vector gives the value of the derivative for the order of derivation N. Raised if N < 1.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def Eccentricity(self) -> float:
"""
Returns the eccentricity e = 0 for a circle.
"""
def FirstParameter(self) -> float:
"""
Returns the value of the first parameter of this circle. This is 0.0, which gives the start point of this circle, or The start point and end point of a circle are coincident.
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCN(self,N : int) -> bool:
"""
Returns True. Raised if N < 0.
"""
def IsClosed(self) -> bool:
"""
returns True.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsPeriodic(self) -> bool:
"""
returns True.
"""
def LastParameter(self) -> float:
"""
Returns the value of the last parameter of this circle. This is 2.*Pi, which gives the end point of this circle. The start point and end point of a circle are coincident.
"""
def Location(self) -> OCP.gp.gp_Pnt:
"""
Returns the location point of the conic. For the circle, the ellipse and the hyperbola it is the center of the conic. For the parabola it is the Apex of the parabola.
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> float:
"""
Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.
"""
def Period(self) -> float:
"""
Returns the period of this curve. Exceptions Standard_NoSuchObject if this curve is not periodic.
"""
def Position(self) -> OCP.gp.gp_Ax2:
"""
Returns the local coordinates system of the conic. The main direction of the Axis2Placement is normal to the plane of the conic. The X direction of the Axis2placement is in the plane of the conic and corresponds to the origin for the conic's parametric value u.
"""
def Radius(self) -> float:
"""
Returns the radius of this circle.
"""
def Reverse(self) -> None:
"""
Reverses the direction of parameterization of <me>. The local coordinate system of the conic is modified.
"""
def Reversed(self) -> Geom_Curve:
"""
Returns a copy of <me> reversed.
"""
def ReversedParameter(self,U : float) -> float:
"""
Computes the parameter on the reversed circle for the point of parameter U on this circle. For a circle, the returned value is: 2.*Pi - U.
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def SetAxis(self,theA1 : OCP.gp.gp_Ax1) -> None:
"""
Changes the orientation of the conic's plane. The normal axis to the plane is A1. The XAxis and the YAxis are recomputed.
"""
def SetCirc(self,C : OCP.gp.gp_Circ) -> None:
"""
Set <me> so that <me> has the same geometric properties as C.
"""
def SetLocation(self,theP : OCP.gp.gp_Pnt) -> None:
"""
changes the location point of the conic.
"""
def SetPosition(self,theA2 : OCP.gp.gp_Ax2) -> None:
"""
changes the local coordinate system of the conic.
"""
def SetRadius(self,R : float) -> None:
"""
Assigns the value R to the radius of this circle. Note: it is possible to have a circle with a radius equal to 0.0. Exceptions - Standard_ConstructionError if R is negative.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Applies the transformation T to this circle.
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf) -> float:
"""
Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def Value(self,U : float) -> OCP.gp.gp_Pnt:
"""
Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve. it is implemented with D0.
"""
def XAxis(self) -> OCP.gp.gp_Ax1:
"""
Returns the XAxis of the conic. This axis defines the origin of parametrization of the conic. This axis is perpendicular to the Axis of the conic. This axis and the Yaxis define the plane of the conic.
"""
def YAxis(self) -> OCP.gp.gp_Ax1:
"""
Returns the YAxis of the conic. The YAxis is perpendicular to the Xaxis. This axis and the Xaxis define the plane of the conic.
"""
@overload
def __init__(self,A2 : OCP.gp.gp_Ax2,Radius : float) -> None: ...
@overload
def __init__(self,C : OCP.gp.gp_Circ) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_ElementarySurface(Geom_Surface, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
Describes the common behavior of surfaces which have a simple parametric equation in a local coordinate system. The Geom package provides several implementations of concrete elementary surfaces: - the plane, and - four simple surfaces of revolution: the cylinder, the cone, the sphere and the torus. An elementary surface inherits the common behavior of Geom_Surface surfaces. Furthermore, it is located in 3D space by a coordinate system (a gp_Ax3 object) which is also its local coordinate system. Any elementary surface is oriented, i.e. the normal vector is always defined, and gives the same orientation to the surface, at any point on the surface. In topology this property is referred to as the "outside region of the surface". This orientation is related to the two parametric directions of the surface. Rotation of a surface around the "main Axis" of its coordinate system, in the trigonometric sense given by the "X Direction" and the "Y Direction" of the coordinate system, defines the u parametric direction of that elementary surface of revolution. This is the default construction mode. It is also possible, however, to change the orientation of a surface by reversing one of the two parametric directions: use the UReverse or VReverse functions to change the orientation of the normal at any point on the surface. Warning The local coordinate system of an elementary surface is not necessarily direct: - if it is direct, the trigonometric sense defined by its "main Direction" is the same as the trigonometric sense defined by its two vectors "X Direction" and "Y Direction": "main Direction" = "X Direction" ^ "Y Direction" - if it is indirect, the two definitions of trigonometric sense are opposite: "main Direction" = - "X Direction" ^ "Y Direction"Describes the common behavior of surfaces which have a simple parametric equation in a local coordinate system. The Geom package provides several implementations of concrete elementary surfaces: - the plane, and - four simple surfaces of revolution: the cylinder, the cone, the sphere and the torus. An elementary surface inherits the common behavior of Geom_Surface surfaces. Furthermore, it is located in 3D space by a coordinate system (a gp_Ax3 object) which is also its local coordinate system. Any elementary surface is oriented, i.e. the normal vector is always defined, and gives the same orientation to the surface, at any point on the surface. In topology this property is referred to as the "outside region of the surface". This orientation is related to the two parametric directions of the surface. Rotation of a surface around the "main Axis" of its coordinate system, in the trigonometric sense given by the "X Direction" and the "Y Direction" of the coordinate system, defines the u parametric direction of that elementary surface of revolution. This is the default construction mode. It is also possible, however, to change the orientation of a surface by reversing one of the two parametric directions: use the UReverse or VReverse functions to change the orientation of the normal at any point on the surface. Warning The local coordinate system of an elementary surface is not necessarily direct: - if it is direct, the trigonometric sense defined by its "main Direction" is the same as the trigonometric sense defined by its two vectors "X Direction" and "Y Direction": "main Direction" = "X Direction" ^ "Y Direction" - if it is indirect, the two definitions of trigonometric sense are opposite: "main Direction" = - "X Direction" ^ "Y Direction"Describes the common behavior of surfaces which have a simple parametric equation in a local coordinate system. The Geom package provides several implementations of concrete elementary surfaces: - the plane, and - four simple surfaces of revolution: the cylinder, the cone, the sphere and the torus. An elementary surface inherits the common behavior of Geom_Surface surfaces. Furthermore, it is located in 3D space by a coordinate system (a gp_Ax3 object) which is also its local coordinate system. Any elementary surface is oriented, i.e. the normal vector is always defined, and gives the same orientation to the surface, at any point on the surface. In topology this property is referred to as the "outside region of the surface". This orientation is related to the two parametric directions of the surface. Rotation of a surface around the "main Axis" of its coordinate system, in the trigonometric sense given by the "X Direction" and the "Y Direction" of the coordinate system, defines the u parametric direction of that elementary surface of revolution. This is the default construction mode. It is also possible, however, to change the orientation of a surface by reversing one of the two parametric directions: use the UReverse or VReverse functions to change the orientation of the normal at any point on the surface. Warning The local coordinate system of an elementary surface is not necessarily direct: - if it is direct, the trigonometric sense defined by its "main Direction" is the same as the trigonometric sense defined by its two vectors "X Direction" and "Y Direction": "main Direction" = "X Direction" ^ "Y Direction" - if it is indirect, the two definitions of trigonometric sense are opposite: "main Direction" = - "X Direction" ^ "Y Direction"
"""
def Axis(self) -> OCP.gp.gp_Ax1:
"""
Returns the main axis of the surface (ZAxis).
"""
def Bounds(self) -> tuple[float, float, float, float]:
"""
Returns the parametric bounds U1, U2, V1 and V2 of this surface. If the surface is infinite, this function can return a value equal to Precision::Infinite: instead of Standard_Real::LastReal.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
Returns GeomAbs_CN, the global continuity of any elementary surface.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this geometric object.
"""
def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None:
"""
Computes the point of parameter U,V on the surface.
"""
def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None:
"""
Computes the point P and the first derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C1.
"""
def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None:
"""
Computes the point P, the first and the second derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C2.
"""
def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None:
"""
Computes the point P, the first,the second and the third derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C2.
"""
def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec:
"""
Computes the derivative of order Nu in the direction U and Nv in the direction V at the point P(U, V).
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCNu(self,N : int) -> bool:
"""
Returns True.
"""
def IsCNv(self,N : int) -> bool:
"""
Returns True.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsUClosed(self) -> bool:
"""
Checks whether this surface is closed in the u parametric direction. Returns true if, in the u parametric direction: taking uFirst and uLast as the parametric bounds in the u parametric direction, for each parameter v, the distance between the points P(uFirst, v) and P(uLast, v) is less than or equal to gp::Resolution().
"""
def IsUPeriodic(self) -> bool:
"""
Checks if this surface is periodic in the u parametric direction. Returns true if: - this surface is closed in the u parametric direction, and - there is a constant T such that the distance between the points P (u, v) and P (u + T, v) (or the points P (u, v) and P (u, v + T)) is less than or equal to gp::Resolution().
"""
def IsVClosed(self) -> bool:
"""
Checks whether this surface is closed in the u parametric direction. Returns true if, in the v parametric direction: taking vFirst and vLast as the parametric bounds in the v parametric direction, for each parameter u, the distance between the points P(u, vFirst) and P(u, vLast) is less than or equal to gp::Resolution().
"""
def IsVPeriodic(self) -> bool:
"""
Checks if this surface is periodic in the v parametric direction. Returns true if: - this surface is closed in the v parametric direction, and - there is a constant T such that the distance between the points P (u, v) and P (u + T, v) (or the points P (u, v) and P (u, v + T)) is less than or equal to gp::Resolution().
"""
def Location(self) -> OCP.gp.gp_Pnt:
"""
Returns the location point of the local coordinate system of the surface.
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d:
"""
Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns an identity transformation
"""
def Position(self) -> OCP.gp.gp_Ax3:
"""
Returns the local coordinates system of the surface.
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def SetAxis(self,theA1 : OCP.gp.gp_Ax1) -> None:
"""
Changes the main axis (ZAxis) of the elementary surface.
"""
def SetLocation(self,theLoc : OCP.gp.gp_Pnt) -> None:
"""
Changes the location of the local coordinates system of the surface.
"""
def SetPosition(self,theAx3 : OCP.gp.gp_Ax3) -> None:
"""
Changes the local coordinates system of the surface.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom).
"""
def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]:
"""
Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method does not change <U> and <V>
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def UIso(self,U : float) -> Geom_Curve:
"""
Computes the U isoparametric curve.
"""
def UPeriod(self) -> float:
"""
Returns the period of this surface in the u parametric direction. Raises if the surface is not uperiodic.
"""
def UReverse(self) -> None:
"""
Reverses the U parametric direction of the surface.
"""
def UReversed(self) -> Geom_Surface:
"""
Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def UReversedParameter(self,U : float) -> float:
"""
Return the parameter on the Ureversed surface for the point of parameter U on <me>.
"""
def VIso(self,V : float) -> Geom_Curve:
"""
Computes the V isoparametric curve.
"""
def VPeriod(self) -> float:
"""
Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic.
"""
def VReverse(self) -> None:
"""
Reverses the V parametric direction of the surface.
"""
def VReversed(self) -> Geom_Surface:
"""
Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def VReversedParameter(self,V : float) -> float:
"""
Return the parameter on the Vreversed surface for the point of parameter V on <me>.
"""
def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt:
"""
Computes the point of parameter (U, V) on the surface.
"""
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_BezierCurve(Geom_BoundedCurve, Geom_Curve, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
Describes a rational or non-rational Bezier curve - a non-rational Bezier curve is defined by a table of poles (also called control points), - a rational Bezier curve is defined by a table of poles with varying weights. These data are manipulated by two parallel arrays: - the poles table, which is an array of gp_Pnt points, and - the weights table, which is an array of reals. The bounds of these arrays are 1 and "the number of "poles" of the curve. The poles of the curve are "control points" used to deform the curve. The first pole is the start point of the curve, and the last pole is the end point of the curve. The segment that joins the first pole to the second pole is the tangent to the curve at its start point, and the segment that joins the last pole to the second-from-last pole is the tangent to the curve at its end point. It is more difficult to give a geometric signification to the weights but they are useful for providing the exact representations of arcs of a circle or ellipse. Moreover, if the weights of all poles are equal, the curve is polynomial; it is therefore a non-rational curve. The non-rational curve is a special and frequently used case. The weights are defined and used only in the case of a rational curve. The degree of a Bezier curve is equal to the number of poles, minus 1. It must be greater than or equal to 1. However, the degree of a Geom_BezierCurve curve is limited to a value (25) which is defined and controlled by the system. This value is returned by the function MaxDegree. The parameter range for a Bezier curve is [ 0, 1 ]. If the first and last control points of the Bezier curve are the same point then the curve is closed. For example, to create a closed Bezier curve with four control points, you have to give the set of control points P1, P2, P3 and P1. The continuity of a Bezier curve is infinite. It is not possible to build a Bezier curve with negative weights. We consider that a weight value is zero if it is less than or equal to gp::Resolution(). We also consider that two weight values W1 and W2 are equal if: |W2 - W1| <= gp::Resolution(). Warning - When considering the continuity of a closed Bezier curve at the junction point, remember that a curve of this type is never periodic. This means that the derivatives for the parameter u = 0 have no reason to be the same as the derivatives for the parameter u = 1 even if the curve is closed. - The length of a Bezier curve can be null.Describes a rational or non-rational Bezier curve - a non-rational Bezier curve is defined by a table of poles (also called control points), - a rational Bezier curve is defined by a table of poles with varying weights. These data are manipulated by two parallel arrays: - the poles table, which is an array of gp_Pnt points, and - the weights table, which is an array of reals. The bounds of these arrays are 1 and "the number of "poles" of the curve. The poles of the curve are "control points" used to deform the curve. The first pole is the start point of the curve, and the last pole is the end point of the curve. The segment that joins the first pole to the second pole is the tangent to the curve at its start point, and the segment that joins the last pole to the second-from-last pole is the tangent to the curve at its end point. It is more difficult to give a geometric signification to the weights but they are useful for providing the exact representations of arcs of a circle or ellipse. Moreover, if the weights of all poles are equal, the curve is polynomial; it is therefore a non-rational curve. The non-rational curve is a special and frequently used case. The weights are defined and used only in the case of a rational curve. The degree of a Bezier curve is equal to the number of poles, minus 1. It must be greater than or equal to 1. However, the degree of a Geom_BezierCurve curve is limited to a value (25) which is defined and controlled by the system. This value is returned by the function MaxDegree. The parameter range for a Bezier curve is [ 0, 1 ]. If the first and last control points of the Bezier curve are the same point then the curve is closed. For example, to create a closed Bezier curve with four control points, you have to give the set of control points P1, P2, P3 and P1. The continuity of a Bezier curve is infinite. It is not possible to build a Bezier curve with negative weights. We consider that a weight value is zero if it is less than or equal to gp::Resolution(). We also consider that two weight values W1 and W2 are equal if: |W2 - W1| <= gp::Resolution(). Warning - When considering the continuity of a closed Bezier curve at the junction point, remember that a curve of this type is never periodic. This means that the derivatives for the parameter u = 0 have no reason to be the same as the derivatives for the parameter u = 1 even if the curve is closed. - The length of a Bezier curve can be null.Describes a rational or non-rational Bezier curve - a non-rational Bezier curve is defined by a table of poles (also called control points), - a rational Bezier curve is defined by a table of poles with varying weights. These data are manipulated by two parallel arrays: - the poles table, which is an array of gp_Pnt points, and - the weights table, which is an array of reals. The bounds of these arrays are 1 and "the number of "poles" of the curve. The poles of the curve are "control points" used to deform the curve. The first pole is the start point of the curve, and the last pole is the end point of the curve. The segment that joins the first pole to the second pole is the tangent to the curve at its start point, and the segment that joins the last pole to the second-from-last pole is the tangent to the curve at its end point. It is more difficult to give a geometric signification to the weights but they are useful for providing the exact representations of arcs of a circle or ellipse. Moreover, if the weights of all poles are equal, the curve is polynomial; it is therefore a non-rational curve. The non-rational curve is a special and frequently used case. The weights are defined and used only in the case of a rational curve. The degree of a Bezier curve is equal to the number of poles, minus 1. It must be greater than or equal to 1. However, the degree of a Geom_BezierCurve curve is limited to a value (25) which is defined and controlled by the system. This value is returned by the function MaxDegree. The parameter range for a Bezier curve is [ 0, 1 ]. If the first and last control points of the Bezier curve are the same point then the curve is closed. For example, to create a closed Bezier curve with four control points, you have to give the set of control points P1, P2, P3 and P1. The continuity of a Bezier curve is infinite. It is not possible to build a Bezier curve with negative weights. We consider that a weight value is zero if it is less than or equal to gp::Resolution(). We also consider that two weight values W1 and W2 are equal if: |W2 - W1| <= gp::Resolution(). Warning - When considering the continuity of a closed Bezier curve at the junction point, remember that a curve of this type is never periodic. This means that the derivatives for the parameter u = 0 have no reason to be the same as the derivatives for the parameter u = 1 even if the curve is closed. - The length of a Bezier curve can be null.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
a Bezier curve is CN
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this Bezier curve.
"""
def D0(self,U : float,P : OCP.gp.gp_Pnt) -> None:
"""
None
"""
def D1(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec) -> None:
"""
None
"""
def D2(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec) -> None:
"""
None
"""
def D3(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec,V3 : OCP.gp.gp_Vec) -> None:
"""
For this Bezier curve, computes - the point P of parameter U, or - the point P and one or more of the following values: - V1, the first derivative vector, - V2, the second derivative vector, - V3, the third derivative vector. Note: the parameter U can be outside the bounds of the curve.
"""
def DN(self,U : float,N : int) -> OCP.gp.gp_Vec:
"""
For the point of parameter U of this Bezier curve, computes the vector corresponding to the Nth derivative. Note: the parameter U can be outside the bounds of the curve. Exceptions Standard_RangeError if N is less than 1.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Degree(self) -> int:
"""
Returns the polynomial degree of the curve. it is the number of poles - 1 point P and derivatives (V1, V2, V3) computation The Bezier Curve has a Polynomial representation so the parameter U can be out of the bounds of the curve.
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def EndPoint(self) -> OCP.gp.gp_Pnt:
"""
Returns Value (U=1.), it is the last control point of the Bezier curve.
"""
def FirstParameter(self) -> float:
"""
Returns the value of the first parameter of this Bezier curve. This is 0.0, which gives the start point of this Bezier curve
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def Increase(self,Degree : int) -> None:
"""
Increases the degree of a bezier curve. Degree is the new degree of <me>. Raises ConstructionError if Degree is greater than MaxDegree or lower than 2 or lower than the initial degree of <me>.
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
@overload
def InsertPoleAfter(self,Index : int,P : OCP.gp.gp_Pnt,Weight : float) -> None:
"""
Inserts a pole P after the pole of range Index. If the curve <me> is rational the weight value for the new pole of range Index is 1.0. raised if Index is not in the range [1, NbPoles]
Inserts a pole with its weight in the set of poles after the pole of range Index. If the curve was non rational it can become rational if all the weights are not identical. Raised if Index is not in the range [1, NbPoles]
"""
@overload
def InsertPoleAfter(self,Index : int,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def InsertPoleBefore(self,Index : int,P : OCP.gp.gp_Pnt,Weight : float) -> None:
"""
Inserts a pole P before the pole of range Index. If the curve <me> is rational the weight value for the new pole of range Index is 1.0. Raised if Index is not in the range [1, NbPoles]
Inserts a pole with its weight in the set of poles after the pole of range Index. If the curve was non rational it can become rational if all the weights are not identical. Raised if Index is not in the range [1, NbPoles]
"""
@overload
def InsertPoleBefore(self,Index : int,P : OCP.gp.gp_Pnt) -> None: ...
def IsCN(self,N : int) -> bool:
"""
Continuity of the curve, returns True.
"""
def IsClosed(self) -> bool:
"""
Returns True if the distance between the first point and the last point of the curve is lower or equal to the Resolution from package gp.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsPeriodic(self) -> bool:
"""
Returns True if the parametrization of a curve is periodic. (P(u) = P(u + T) T = constante)
"""
def IsRational(self) -> bool:
"""
Returns false if all the weights are identical. The tolerance criterion is Resolution from package gp.
"""
def LastParameter(self) -> float:
"""
Returns the value of the last parameter of this Bezier curve. This is 1.0, which gives the end point of this Bezier curve.
"""
@staticmethod
def MaxDegree_s() -> int:
"""
Returns the value of the maximum polynomial degree of any Geom_BezierCurve curve. This value is 25.
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def NbPoles(self) -> int:
"""
Returns the number of poles of this Bezier curve.
"""
def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> float:
"""
Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.
"""
def Period(self) -> float:
"""
Returns the period of this curve. Exceptions Standard_NoSuchObject if this curve is not periodic.
"""
def Pole(self,Index : int) -> OCP.gp.gp_Pnt:
"""
Returns the pole of range Index. Raised if Index is not in the range [1, NbPoles]
"""
@overload
def Poles(self) -> OCP.TColgp.TColgp_Array1OfPnt:
"""
Returns all the poles of the curve.
Returns all the poles of the curve.
"""
@overload
def Poles(self,P : OCP.TColgp.TColgp_Array1OfPnt) -> None: ...
def RemovePole(self,Index : int) -> None:
"""
Removes the pole of range Index. If the curve was rational it can become non rational. Raised if Index is not in the range [1, NbPoles] Raised if Degree is lower than 2.
"""
def Resolution(self,Tolerance3D : float) -> tuple[float]:
"""
Computes for this Bezier curve the parametric tolerance UTolerance for a given 3D tolerance Tolerance3D. If f(t) is the equation of this Bezier curve, UTolerance ensures that: |t1-t0| < UTolerance ===> |f(t1)-f(t0)| < Tolerance3D
"""
def Reverse(self) -> None:
"""
Reverses the direction of parametrization of <me> Value (NewU) = Value (1 - OldU)
"""
def Reversed(self) -> Geom_Curve:
"""
Returns a copy of <me> reversed.
"""
def ReversedParameter(self,U : float) -> float:
"""
Returns the parameter on the reversed curve for the point of parameter U on <me>.
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def Segment(self,U1 : float,U2 : float) -> None:
"""
Segments the curve between U1 and U2 which can be out of the bounds of the curve. The curve is oriented from U1 to U2. The control points are modified, the first and the last point are not the same but the parametrization range is [0, 1] else it could not be a Bezier curve. Warnings : Even if <me> is not closed it can become closed after the segmentation for example if U1 or U2 are out of the bounds of the curve <me> or if the curve makes loop. After the segmentation the length of a curve can be null.
"""
@overload
def SetPole(self,Index : int,P : OCP.gp.gp_Pnt) -> None:
"""
Substitutes the pole of range index with P. If the curve <me> is rational the weight of range Index is not modified. raiseD if Index is not in the range [1, NbPoles]
Substitutes the pole and the weights of range Index. If the curve <me> is not rational it can become rational if all the weights are not identical. If the curve was rational it can become non rational if all the weights are identical. Raised if Index is not in the range [1, NbPoles] Raised if Weight <= Resolution from package gp
"""
@overload
def SetPole(self,Index : int,P : OCP.gp.gp_Pnt,Weight : float) -> None: ...
def SetWeight(self,Index : int,Weight : float) -> None:
"""
Changes the weight of the pole of range Index. If the curve <me> is not rational it can become rational if all the weights are not identical. If the curve was rational it can become non rational if all the weights are identical. Raised if Index is not in the range [1, NbPoles] Raised if Weight <= Resolution from package gp
"""
def StartPoint(self) -> OCP.gp.gp_Pnt:
"""
Returns Value (U=0.), it is the first control point of the curve.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Applies the transformation T to this Bezier curve.
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf) -> float:
"""
Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def Value(self,U : float) -> OCP.gp.gp_Pnt:
"""
Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve. it is implemented with D0.
"""
def Weight(self,Index : int) -> float:
"""
Returns the weight of range Index. Raised if Index is not in the range [1, NbPoles]
"""
@overload
def Weights(self) -> OCP.TColStd.TColStd_Array1OfReal:
"""
Returns all the weights of the curve.
Returns all the weights of the curve.
"""
@overload
def Weights(self,W : OCP.TColStd.TColStd_Array1OfReal) -> None: ...
@overload
def __init__(self,CurvePoles : OCP.TColgp.TColgp_Array1OfPnt) -> None: ...
@overload
def __init__(self,CurvePoles : OCP.TColgp.TColgp_Array1OfPnt,PoleWeights : OCP.TColStd.TColStd_Array1OfReal) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_CylindricalSurface(Geom_ElementarySurface, Geom_Surface, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
This class defines the infinite cylindrical surface.This class defines the infinite cylindrical surface.This class defines the infinite cylindrical surface.
"""
def Axis(self) -> OCP.gp.gp_Ax1:
"""
Returns the main axis of the surface (ZAxis).
"""
def Bounds(self) -> tuple[float, float, float, float]:
"""
The CylindricalSurface is infinite in the V direction so V1 = Realfirst, V2 = RealLast from package Standard. U1 = 0 and U2 = 2*PI.
"""
def Coefficients(self) -> tuple[float, float, float, float, float, float, float, float, float, float]:
"""
Returns the coefficients of the implicit equation of the quadric in the absolute cartesian coordinate system : These coefficients are normalized.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
Returns GeomAbs_CN, the global continuity of any elementary surface.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this cylinder.
"""
def Cylinder(self) -> OCP.gp.gp_Cylinder:
"""
returns a non transient cylinder with the same geometric properties as <me>.
"""
def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None:
"""
Computes the point P (U, V) on the surface. P (U, V) = Loc + Radius * (cos (U) * XDir + sin (U) * YDir) + V * ZDir where Loc is the origin of the placement plane (XAxis, YAxis) XDir is the direction of the XAxis and YDir the direction of the YAxis.
"""
def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None:
"""
Computes the current point and the first derivatives in the directions U and V.
"""
def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None:
"""
Computes the current point, the first and the second derivatives in the directions U and V.
"""
def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None:
"""
Computes the current point, the first, the second and the third derivatives in the directions U and V.
"""
def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec:
"""
Computes the derivative of order Nu in the direction u and Nv in the direction v. Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCNu(self,N : int) -> bool:
"""
Returns True.
"""
def IsCNv(self,N : int) -> bool:
"""
Returns True.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsUClosed(self) -> bool:
"""
Returns True.
"""
def IsUPeriodic(self) -> bool:
"""
Returns True.
"""
def IsVClosed(self) -> bool:
"""
Returns False.
"""
def IsVPeriodic(self) -> bool:
"""
Returns False.
"""
def Location(self) -> OCP.gp.gp_Pnt:
"""
Returns the location point of the local coordinate system of the surface.
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d:
"""
Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns a scale centered on the U axis with T.ScaleFactor
"""
def Position(self) -> OCP.gp.gp_Ax3:
"""
Returns the local coordinates system of the surface.
"""
def Radius(self) -> float:
"""
Returns the radius of this cylinder.
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def SetAxis(self,theA1 : OCP.gp.gp_Ax1) -> None:
"""
Changes the main axis (ZAxis) of the elementary surface.
"""
def SetCylinder(self,C : OCP.gp.gp_Cylinder) -> None:
"""
Set <me> so that <me> has the same geometric properties as C.
"""
def SetLocation(self,theLoc : OCP.gp.gp_Pnt) -> None:
"""
Changes the location of the local coordinates system of the surface.
"""
def SetPosition(self,theAx3 : OCP.gp.gp_Ax3) -> None:
"""
Changes the local coordinates system of the surface.
"""
def SetRadius(self,R : float) -> None:
"""
Changes the radius of the cylinder. Raised if R < 0.0
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Applies the transformation T to this cylinder.
"""
def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]:
"""
Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method multiplies V by T.ScaleFactor()
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def UIso(self,U : float) -> Geom_Curve:
"""
The UIso curve is a Line. The location point of this line is on the placement plane (XAxis, YAxis) of the surface. This line is parallel to the axis of symmetry of the surface.
"""
def UPeriod(self) -> float:
"""
Returns the period of this surface in the u parametric direction. Raises if the surface is not uperiodic.
"""
def UReverse(self) -> None:
"""
Reverses the U parametric direction of the surface.
"""
def UReversed(self) -> Geom_Surface:
"""
Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def UReversedParameter(self,U : float) -> float:
"""
Return the parameter on the Ureversed surface for the point of parameter U on <me>. Return 2.PI - U.
"""
def VIso(self,V : float) -> Geom_Curve:
"""
The VIso curve is a circle. The start point of this circle (U = 0) is defined with the "XAxis" of the surface. The center of the circle is on the symmetry axis.
"""
def VPeriod(self) -> float:
"""
Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic.
"""
def VReverse(self) -> None:
"""
Reverses the V parametric direction of the surface.
"""
def VReversed(self) -> Geom_Surface:
"""
Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def VReversedParameter(self,V : float) -> float:
"""
Return the parameter on the Vreversed surface for the point of parameter V on <me>. Return -V
"""
def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt:
"""
Computes the point of parameter (U, V) on the surface.
"""
@overload
def __init__(self,A3 : OCP.gp.gp_Ax3,Radius : float) -> None: ...
@overload
def __init__(self,C : OCP.gp.gp_Cylinder) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_Vector(Geom_Geometry, OCP.Standard.Standard_Transient):
"""
The abstract class Vector describes the common behavior of vectors in 3D space. The Geom package provides two concrete classes of vectors: Geom_Direction (unit vector) and Geom_VectorWithMagnitude.The abstract class Vector describes the common behavior of vectors in 3D space. The Geom package provides two concrete classes of vectors: Geom_Direction (unit vector) and Geom_VectorWithMagnitude.The abstract class Vector describes the common behavior of vectors in 3D space. The Geom package provides two concrete classes of vectors: Geom_Direction (unit vector) and Geom_VectorWithMagnitude.
"""
def Angle(self,Other : Geom_Vector) -> float:
"""
Computes the angular value, in radians, between this vector and vector Other. The result is a value between 0 and Pi. Exceptions gp_VectorWithNullMagnitude if: - the magnitude of this vector is less than or equal to gp::Resolution(), or - the magnitude of vector Other is less than or equal to gp::Resolution().
"""
def AngleWithRef(self,Other : Geom_Vector,VRef : Geom_Vector) -> float:
"""
Computes the angular value, in radians, between this vector and vector Other. The result is a value between -Pi and Pi. The vector VRef defines the positive sense of rotation: the angular value is positive if the cross product this ^ Other has the same orientation as VRef (in relation to the plane defined by this vector and vector Other). Otherwise, it is negative. Exceptions Standard_DomainError if this vector, vector Other and vector VRef are coplanar, except if this vector and vector Other are parallel. gp_VectorWithNullMagnitude if the magnitude of this vector, vector Other or vector VRef is less than or equal to gp::Resolution().
"""
def Coord(self) -> tuple[float, float, float]:
"""
Returns the coordinates X, Y and Z of this vector.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this geometric object.
"""
def Cross(self,Other : Geom_Vector) -> None:
"""
Computes the cross product between <me> and <Other>.
"""
def CrossCross(self,V1 : Geom_Vector,V2 : Geom_Vector) -> None:
"""
Computes the triple vector product <me> ^(V1 ^ V2).
"""
def CrossCrossed(self,V1 : Geom_Vector,V2 : Geom_Vector) -> Geom_Vector:
"""
Computes the triple vector product <me> ^(V1 ^ V2).
"""
def Crossed(self,Other : Geom_Vector) -> Geom_Vector:
"""
Computes the cross product between <me> and <Other>. A new direction is returned.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def Dot(self,Other : Geom_Vector) -> float:
"""
Computes the scalar product of this vector and vector Other.
"""
def DotCross(self,V1 : Geom_Vector,V2 : Geom_Vector) -> float:
"""
Computes the triple scalar product. Returns me . (V1 ^ V2)
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def Magnitude(self) -> float:
"""
Returns the Magnitude of <me>.
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def Reverse(self) -> None:
"""
Reverses the vector <me>.
"""
def Reversed(self) -> Geom_Vector:
"""
Returns a copy of <me> reversed.
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def SquareMagnitude(self) -> float:
"""
Returns the square magnitude of <me>.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom).
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def Vec(self) -> OCP.gp.gp_Vec:
"""
Converts this vector into a gp_Vec vector.
"""
def X(self) -> float:
"""
Returns the X coordinate of <me>.
"""
def Y(self) -> float:
"""
Returns the Y coordinate of <me>.
"""
def Z(self) -> float:
"""
Returns the Z coordinate of <me>.
"""
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_ConicalSurface(Geom_ElementarySurface, Geom_Surface, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
Describes a cone. A cone is defined by the half-angle (can be negative) at its apex, and is positioned in space by a coordinate system (a gp_Ax3 object) and a reference radius as follows: - The "main Axis" of the coordinate system is the axis of revolution of the cone. - The plane defined by the origin, the "X Direction" and the "Y Direction" of the coordinate system is the reference plane of the cone. The intersection of the cone with this reference plane is a circle of radius equal to the reference radius. - The apex of the cone is on the negative side of the "main Axis" of the coordinate system if the half-angle is positive, and on the positive side if the half-angle is negative. This coordinate system is the "local coordinate system" of the cone. The following apply: - Rotation around its "main Axis", in the trigonometric sense given by the "X Direction" and the "Y Direction", defines the u parametric direction. - Its "X Axis" gives the origin for the u parameter. - Its "main Direction" is the v parametric direction of the cone. - Its origin is the origin of the v parameter. The parametric range of the two parameters is: The parametric equation of the cone is: where: - O, XDir, YDir and ZDir are respectively the origin, the "X Direction", the "Y Direction" and the "Z Direction" of the cone's local coordinate system, - Ang is the half-angle at the apex of the cone, and - R is the reference radius.Describes a cone. A cone is defined by the half-angle (can be negative) at its apex, and is positioned in space by a coordinate system (a gp_Ax3 object) and a reference radius as follows: - The "main Axis" of the coordinate system is the axis of revolution of the cone. - The plane defined by the origin, the "X Direction" and the "Y Direction" of the coordinate system is the reference plane of the cone. The intersection of the cone with this reference plane is a circle of radius equal to the reference radius. - The apex of the cone is on the negative side of the "main Axis" of the coordinate system if the half-angle is positive, and on the positive side if the half-angle is negative. This coordinate system is the "local coordinate system" of the cone. The following apply: - Rotation around its "main Axis", in the trigonometric sense given by the "X Direction" and the "Y Direction", defines the u parametric direction. - Its "X Axis" gives the origin for the u parameter. - Its "main Direction" is the v parametric direction of the cone. - Its origin is the origin of the v parameter. The parametric range of the two parameters is: The parametric equation of the cone is: where: - O, XDir, YDir and ZDir are respectively the origin, the "X Direction", the "Y Direction" and the "Z Direction" of the cone's local coordinate system, - Ang is the half-angle at the apex of the cone, and - R is the reference radius.Describes a cone. A cone is defined by the half-angle (can be negative) at its apex, and is positioned in space by a coordinate system (a gp_Ax3 object) and a reference radius as follows: - The "main Axis" of the coordinate system is the axis of revolution of the cone. - The plane defined by the origin, the "X Direction" and the "Y Direction" of the coordinate system is the reference plane of the cone. The intersection of the cone with this reference plane is a circle of radius equal to the reference radius. - The apex of the cone is on the negative side of the "main Axis" of the coordinate system if the half-angle is positive, and on the positive side if the half-angle is negative. This coordinate system is the "local coordinate system" of the cone. The following apply: - Rotation around its "main Axis", in the trigonometric sense given by the "X Direction" and the "Y Direction", defines the u parametric direction. - Its "X Axis" gives the origin for the u parameter. - Its "main Direction" is the v parametric direction of the cone. - Its origin is the origin of the v parameter. The parametric range of the two parameters is: The parametric equation of the cone is: where: - O, XDir, YDir and ZDir are respectively the origin, the "X Direction", the "Y Direction" and the "Z Direction" of the cone's local coordinate system, - Ang is the half-angle at the apex of the cone, and - R is the reference radius.
"""
def Apex(self) -> OCP.gp.gp_Pnt:
"""
Computes the apex of this cone. It is on the negative side of the axis of revolution of this cone if the half-angle at the apex is positive, and on the positive side of the "main Axis" if the half-angle is negative.
"""
def Axis(self) -> OCP.gp.gp_Ax1:
"""
Returns the main axis of the surface (ZAxis).
"""
def Bounds(self) -> tuple[float, float, float, float]:
"""
The conical surface is infinite in the V direction so V1 = Realfirst from Standard and V2 = RealLast. U1 = 0 and U2 = 2*PI.
"""
def Coefficients(self) -> tuple[float, float, float, float, float, float, float, float, float, float]:
"""
Returns the coefficients of the implicit equation of the quadric in the absolute cartesian coordinate system : These coefficients are normalized.
"""
def Cone(self) -> OCP.gp.gp_Cone:
"""
Returns a non transient cone with the same geometric properties as <me>.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
Returns GeomAbs_CN, the global continuity of any elementary surface.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this cone.
"""
def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None:
"""
Computes the point P (U, V) on the surface. where Loc is the origin of the placement plane (XAxis, YAxis) XDir is the direction of the XAxis and YDir the direction of the YAxis.
"""
def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None:
"""
Computes the current point and the first derivatives in the directions U and V.
"""
def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None:
"""
Computes the current point, the first and the second derivatives in the directions U and V.
"""
def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None:
"""
Computes the current point, the first,the second and the third derivatives in the directions U and V.
"""
def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec:
"""
Computes the derivative of order Nu in the u parametric direction, and Nv in the v parametric direction at the point of parameters (U, V) of this cone. Exceptions Standard_RangeError if: - Nu + Nv is less than 1, - Nu or Nv is negative.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCNu(self,N : int) -> bool:
"""
Returns True.
"""
def IsCNv(self,N : int) -> bool:
"""
Returns True.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsUClosed(self) -> bool:
"""
returns True.
"""
def IsUPeriodic(self) -> bool:
"""
Returns True.
"""
def IsVClosed(self) -> bool:
"""
returns False.
"""
def IsVPeriodic(self) -> bool:
"""
Returns False.
"""
def Location(self) -> OCP.gp.gp_Pnt:
"""
Returns the location point of the local coordinate system of the surface.
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d:
"""
Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns a scale centered on the U axis with T.ScaleFactor
"""
def Position(self) -> OCP.gp.gp_Ax3:
"""
Returns the local coordinates system of the surface.
"""
def RefRadius(self) -> float:
"""
Returns the reference radius of this cone. The reference radius is the radius of the circle formed by the intersection of this cone and its reference plane (i.e. the plane defined by the origin, "X Direction" and "Y Direction" of the local coordinate system of this cone). If the apex of this cone is on the origin of the local coordinate system of this cone, the returned value is 0.
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def SemiAngle(self) -> float:
"""
Returns the semi-angle at the apex of this cone. Attention! Semi-angle can be negative.
"""
def SetAxis(self,theA1 : OCP.gp.gp_Ax1) -> None:
"""
Changes the main axis (ZAxis) of the elementary surface.
"""
def SetCone(self,C : OCP.gp.gp_Cone) -> None:
"""
Set <me> so that <me> has the same geometric properties as C.
"""
def SetLocation(self,theLoc : OCP.gp.gp_Pnt) -> None:
"""
Changes the location of the local coordinates system of the surface.
"""
def SetPosition(self,theAx3 : OCP.gp.gp_Ax3) -> None:
"""
Changes the local coordinates system of the surface.
"""
def SetRadius(self,R : float) -> None:
"""
Changes the radius of the conical surface in the placement plane (Z = 0, V = 0). The local coordinate system is not modified. Raised if R < 0.0
"""
def SetSemiAngle(self,Ang : float) -> None:
"""
Changes the semi angle of the conical surface. Semi-angle can be negative. Its absolute value Abs(Ang) is in range ]0,PI/2[. Raises ConstructionError if Abs(Ang) < Resolution from gp or Abs(Ang) >= PI/2 - Resolution
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Applies the transformation T to this cone.
"""
def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]:
"""
Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method multiplies V by T.ScaleFactor()
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def UIso(self,U : float) -> Geom_Curve:
"""
Builds the U isoparametric line of this cone. The origin of this line is on the reference plane of this cone (i.e. the plane defined by the origin, "X Direction" and "Y Direction" of the local coordinate system of this cone).
"""
def UPeriod(self) -> float:
"""
Returns the period of this surface in the u parametric direction. Raises if the surface is not uperiodic.
"""
def UReverse(self) -> None:
"""
Reverses the U parametric direction of the surface.
"""
def UReversed(self) -> Geom_Surface:
"""
Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def UReversedParameter(self,U : float) -> float:
"""
Eeturn 2.PI - U.
"""
def VIso(self,V : float) -> Geom_Curve:
"""
Builds the V isoparametric circle of this cone. It is the circle on this cone, located in the plane of Z coordinate V*cos(Semi-Angle) in the local coordinate system of this cone. The "Axis" of this circle is the axis of revolution of this cone. Its starting point is defined by the "X Direction" of this cone. Warning If the V isoparametric circle is close to the apex of this cone, the radius of the circle becomes very small. It is possible to have a circle with radius equal to 0.0.
"""
def VPeriod(self) -> float:
"""
Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic.
"""
def VReverse(self) -> None:
"""
Changes the orientation of this cone in the v parametric direction. The bounds of the surface are not changed but the v parametric direction is reversed. As a consequence, for a cone: - the "main Direction" of the local coordinate system is reversed, and - the half-angle at the apex is inverted.
"""
def VReversed(self) -> Geom_Surface:
"""
Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def VReversedParameter(self,V : float) -> float:
"""
Computes the u (or v) parameter on the modified surface, when reversing its u (or v) parametric direction, for any point of u parameter U (or of v parameter V) on this cone. In the case of a cone, these functions return respectively: - 2.*Pi - U, -V.
"""
def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt:
"""
Computes the point of parameter (U, V) on the surface.
"""
@overload
def __init__(self,C : OCP.gp.gp_Cone) -> None: ...
@overload
def __init__(self,A3 : OCP.gp.gp_Ax3,Ang : float,Radius : float) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_Ellipse(Geom_Conic, Geom_Curve, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
Describes an ellipse in 3D space. An ellipse is defined by its major and minor radii and, as with any conic curve, is positioned in space with a right-handed coordinate system (gp_Ax2 object) where: - the origin is the center of the ellipse, - the "X Direction" defines the major axis, and - the "Y Direction" defines the minor axis. The origin, "X Direction" and "Y Direction" of this coordinate system define the plane of the ellipse. The coordinate system is the local coordinate system of the ellipse. The "main Direction" of this coordinate system is the vector normal to the plane of the ellipse. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the ellipse. The "main Direction" of the local coordinate system gives an explicit orientation to the ellipse (definition of the trigonometric sense), determining the direction in which the parameter increases along the ellipse. The Geom_Ellipse ellipse is parameterized by an angle: P(U) = O + MajorRad*Cos(U)*XDir + MinorRad*Sin(U)*YDir where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - MajorRad and MinorRad are the major and minor radii of the ellipse. The "X Axis" of the local coordinate system therefore defines the origin of the parameter of the ellipse. An ellipse is a closed and periodic curve. The period is 2.*Pi and the parameter range is [ 0, 2.*Pi [.Describes an ellipse in 3D space. An ellipse is defined by its major and minor radii and, as with any conic curve, is positioned in space with a right-handed coordinate system (gp_Ax2 object) where: - the origin is the center of the ellipse, - the "X Direction" defines the major axis, and - the "Y Direction" defines the minor axis. The origin, "X Direction" and "Y Direction" of this coordinate system define the plane of the ellipse. The coordinate system is the local coordinate system of the ellipse. The "main Direction" of this coordinate system is the vector normal to the plane of the ellipse. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the ellipse. The "main Direction" of the local coordinate system gives an explicit orientation to the ellipse (definition of the trigonometric sense), determining the direction in which the parameter increases along the ellipse. The Geom_Ellipse ellipse is parameterized by an angle: P(U) = O + MajorRad*Cos(U)*XDir + MinorRad*Sin(U)*YDir where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - MajorRad and MinorRad are the major and minor radii of the ellipse. The "X Axis" of the local coordinate system therefore defines the origin of the parameter of the ellipse. An ellipse is a closed and periodic curve. The period is 2.*Pi and the parameter range is [ 0, 2.*Pi [.Describes an ellipse in 3D space. An ellipse is defined by its major and minor radii and, as with any conic curve, is positioned in space with a right-handed coordinate system (gp_Ax2 object) where: - the origin is the center of the ellipse, - the "X Direction" defines the major axis, and - the "Y Direction" defines the minor axis. The origin, "X Direction" and "Y Direction" of this coordinate system define the plane of the ellipse. The coordinate system is the local coordinate system of the ellipse. The "main Direction" of this coordinate system is the vector normal to the plane of the ellipse. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the ellipse. The "main Direction" of the local coordinate system gives an explicit orientation to the ellipse (definition of the trigonometric sense), determining the direction in which the parameter increases along the ellipse. The Geom_Ellipse ellipse is parameterized by an angle: P(U) = O + MajorRad*Cos(U)*XDir + MinorRad*Sin(U)*YDir where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - MajorRad and MinorRad are the major and minor radii of the ellipse. The "X Axis" of the local coordinate system therefore defines the origin of the parameter of the ellipse. An ellipse is a closed and periodic curve. The period is 2.*Pi and the parameter range is [ 0, 2.*Pi [.
"""
def Axis(self) -> OCP.gp.gp_Ax1:
"""
Returns the "main Axis" of this conic. This axis is normal to the plane of the conic.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
The continuity of the conic is Cn.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this ellipse.
"""
def D0(self,U : float,P : OCP.gp.gp_Pnt) -> None:
"""
Returns in P the point of parameter U. P = C + MajorRadius * Cos (U) * XDir + MinorRadius * Sin (U) * YDir where C is the center of the ellipse , XDir the direction of the "XAxis" and "YDir" the "YAxis" of the ellipse.
"""
def D1(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec) -> None:
"""
None
"""
def D2(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec) -> None:
"""
Returns the point P of parameter U. The vectors V1 and V2 are the first and second derivatives at this point.
"""
def D3(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec,V3 : OCP.gp.gp_Vec) -> None:
"""
Returns the point P of parameter U, the first second and third derivatives V1 V2 and V3.
"""
def DN(self,U : float,N : int) -> OCP.gp.gp_Vec:
"""
For the point of parameter U of this ellipse, computes the vector corresponding to the Nth derivative. Exceptions Standard_RangeError if N is less than 1.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def Directrix1(self) -> OCP.gp.gp_Ax1:
"""
This directrix is the line normal to the XAxis of the ellipse in the local plane (Z = 0) at a distance d = MajorRadius / e from the center of the ellipse, where e is the eccentricity of the ellipse. This line is parallel to the "YAxis". The intersection point between directrix1 and the "XAxis" is the "Location" point of the directrix1. This point is on the positive side of the "XAxis". Raised if Eccentricity = 0.0. (The ellipse degenerates into a circle)
"""
def Directrix2(self) -> OCP.gp.gp_Ax1:
"""
This line is obtained by the symmetrical transformation of "Directrix1" with respect to the "YAxis" of the ellipse.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def Eccentricity(self) -> float:
"""
Returns the eccentricity of the ellipse between 0.0 and 1.0 If f is the distance between the center of the ellipse and the Focus1 then the eccentricity e = f / MajorRadius. Returns 0 if MajorRadius = 0
"""
def Elips(self) -> OCP.gp.gp_Elips:
"""
returns the non transient ellipse from gp with the same
"""
def FirstParameter(self) -> float:
"""
Returns the value of the first parameter of this ellipse. This is respectively: - 0.0, which gives the start point of this ellipse, or The start point and end point of an ellipse are coincident.
"""
def Focal(self) -> float:
"""
Computes the focal distance. It is the distance between the the two focus of the ellipse.
"""
def Focus1(self) -> OCP.gp.gp_Pnt:
"""
Returns the first focus of the ellipse. This focus is on the positive side of the "XAxis" of the ellipse.
"""
def Focus2(self) -> OCP.gp.gp_Pnt:
"""
Returns the second focus of the ellipse. This focus is on the negative side of the "XAxis" of the ellipse.
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCN(self,N : int) -> bool:
"""
Returns True. Raised if N < 0.
"""
def IsClosed(self) -> bool:
"""
return True.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsPeriodic(self) -> bool:
"""
return True.
"""
def LastParameter(self) -> float:
"""
Returns the value of the last parameter of this ellipse. This is respectively: - 2.*Pi, which gives the end point of this ellipse. The start point and end point of an ellipse are coincident.
"""
def Location(self) -> OCP.gp.gp_Pnt:
"""
Returns the location point of the conic. For the circle, the ellipse and the hyperbola it is the center of the conic. For the parabola it is the Apex of the parabola.
"""
def MajorRadius(self) -> float:
"""
Returns the major radius of this ellipse.
"""
def MinorRadius(self) -> float:
"""
Returns the minor radius of this ellipse.
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def Parameter(self) -> float:
"""
Returns p = (1 - e * e) * MajorRadius where e is the eccentricity of the ellipse. Returns 0 if MajorRadius = 0
"""
def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> float:
"""
Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.
"""
def Period(self) -> float:
"""
Returns the period of this curve. Exceptions Standard_NoSuchObject if this curve is not periodic.
"""
def Position(self) -> OCP.gp.gp_Ax2:
"""
Returns the local coordinates system of the conic. The main direction of the Axis2Placement is normal to the plane of the conic. The X direction of the Axis2placement is in the plane of the conic and corresponds to the origin for the conic's parametric value u.
"""
def Reverse(self) -> None:
"""
Reverses the direction of parameterization of <me>. The local coordinate system of the conic is modified.
"""
def Reversed(self) -> Geom_Curve:
"""
Returns a copy of <me> reversed.
"""
def ReversedParameter(self,U : float) -> float:
"""
Computes the parameter on the reversed ellipse for the point of parameter U on this ellipse. For an ellipse, the returned value is: 2.*Pi - U.
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def SetAxis(self,theA1 : OCP.gp.gp_Ax1) -> None:
"""
Changes the orientation of the conic's plane. The normal axis to the plane is A1. The XAxis and the YAxis are recomputed.
"""
def SetElips(self,E : OCP.gp.gp_Elips) -> None:
"""
Converts the gp_Elips ellipse E into this ellipse.
"""
def SetLocation(self,theP : OCP.gp.gp_Pnt) -> None:
"""
changes the location point of the conic.
"""
def SetMajorRadius(self,MajorRadius : float) -> None:
"""
Assigns a value to the major radius of this ellipse. ConstructionError raised if MajorRadius < MinorRadius.
"""
def SetMinorRadius(self,MinorRadius : float) -> None:
"""
Assigns a value to the minor radius of this ellipse. ConstructionError raised if MajorRadius < MinorRadius or if MinorRadius < 0.
"""
def SetPosition(self,theA2 : OCP.gp.gp_Ax2) -> None:
"""
changes the local coordinate system of the conic.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Applies the transformation T to this ellipse.
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf) -> float:
"""
Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def Value(self,U : float) -> OCP.gp.gp_Pnt:
"""
Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve. it is implemented with D0.
"""
def XAxis(self) -> OCP.gp.gp_Ax1:
"""
Returns the XAxis of the conic. This axis defines the origin of parametrization of the conic. This axis is perpendicular to the Axis of the conic. This axis and the Yaxis define the plane of the conic.
"""
def YAxis(self) -> OCP.gp.gp_Ax1:
"""
Returns the YAxis of the conic. The YAxis is perpendicular to the Xaxis. This axis and the Xaxis define the plane of the conic.
"""
@overload
def __init__(self,E : OCP.gp.gp_Elips) -> None: ...
@overload
def __init__(self,A2 : OCP.gp.gp_Ax2,MajorRadius : float,MinorRadius : float) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_Axis2Placement(Geom_AxisPlacement, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
Describes a right-handed coordinate system in 3D space. A coordinate system is defined by: - its origin, also termed the "Location point" of the coordinate system, - three orthogonal unit vectors, termed respectively the "X Direction", "Y Direction" and "Direction" (or "main Direction") of the coordinate system. As a Geom_Axis2Placement coordinate system is right-handed, its "Direction" is always equal to the cross product of its "X Direction" and "Y Direction". The "Direction" of a coordinate system is called the "main Direction" because when this unit vector is modified, the "X Direction" and "Y Direction" are recomputed, whereas when the "X Direction" or "Y Direction" is changed, the "main Direction" is retained. The "main Direction" is also the "Z Direction". Note: Geom_Axis2Placement coordinate systems provide the same kind of "geometric" services as gp_Ax2 coordinate systems but have more complex data structures. The geometric objects provided by the Geom package use gp_Ax2 objects to include coordinate systems in their data structures, or to define the geometric transformations, which are applied to them. Geom_Axis2Placement coordinate systems are used in a context where they can be shared by several objects contained inside a common data structure.Describes a right-handed coordinate system in 3D space. A coordinate system is defined by: - its origin, also termed the "Location point" of the coordinate system, - three orthogonal unit vectors, termed respectively the "X Direction", "Y Direction" and "Direction" (or "main Direction") of the coordinate system. As a Geom_Axis2Placement coordinate system is right-handed, its "Direction" is always equal to the cross product of its "X Direction" and "Y Direction". The "Direction" of a coordinate system is called the "main Direction" because when this unit vector is modified, the "X Direction" and "Y Direction" are recomputed, whereas when the "X Direction" or "Y Direction" is changed, the "main Direction" is retained. The "main Direction" is also the "Z Direction". Note: Geom_Axis2Placement coordinate systems provide the same kind of "geometric" services as gp_Ax2 coordinate systems but have more complex data structures. The geometric objects provided by the Geom package use gp_Ax2 objects to include coordinate systems in their data structures, or to define the geometric transformations, which are applied to them. Geom_Axis2Placement coordinate systems are used in a context where they can be shared by several objects contained inside a common data structure.Describes a right-handed coordinate system in 3D space. A coordinate system is defined by: - its origin, also termed the "Location point" of the coordinate system, - three orthogonal unit vectors, termed respectively the "X Direction", "Y Direction" and "Direction" (or "main Direction") of the coordinate system. As a Geom_Axis2Placement coordinate system is right-handed, its "Direction" is always equal to the cross product of its "X Direction" and "Y Direction". The "Direction" of a coordinate system is called the "main Direction" because when this unit vector is modified, the "X Direction" and "Y Direction" are recomputed, whereas when the "X Direction" or "Y Direction" is changed, the "main Direction" is retained. The "main Direction" is also the "Z Direction". Note: Geom_Axis2Placement coordinate systems provide the same kind of "geometric" services as gp_Ax2 coordinate systems but have more complex data structures. The geometric objects provided by the Geom package use gp_Ax2 objects to include coordinate systems in their data structures, or to define the geometric transformations, which are applied to them. Geom_Axis2Placement coordinate systems are used in a context where they can be shared by several objects contained inside a common data structure.
"""
def Angle(self,Other : Geom_AxisPlacement) -> float:
"""
Computes the angular value, in radians, between the "main Direction" of this positioning system and that of positioning system Other. The result is a value between 0 and Pi.
"""
def Ax2(self) -> OCP.gp.gp_Ax2:
"""
Returns a non transient copy of <me>.
"""
def Axis(self) -> OCP.gp.gp_Ax1:
"""
Returns the main axis of the axis placement. For an "Axis2placement" it is the main axis (Location, Direction ). For an "Axis1Placement" this method returns a copy of <me>.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this coordinate system.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def Direction(self) -> OCP.gp.gp_Dir:
"""
Returns the main "Direction" of an axis placement.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def Location(self) -> OCP.gp.gp_Pnt:
"""
Returns the Location point (origin) of the axis placement.
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def SetAx2(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Assigns the origin and the three unit vectors of A2 to this coordinate system.
"""
def SetAxis(self,A1 : OCP.gp.gp_Ax1) -> None:
"""
Assigns A1 as the "main Axis" of this positioning system. This modifies - its origin, and - its "main Direction". If this positioning system is a Geom_Axis2Placement, then its "X Direction" and "Y Direction" are recomputed. Exceptions For a Geom_Axis2Placement: Standard_ConstructionError if A1 and the previous "X Direction" of the coordinate system are parallel.
"""
def SetDirection(self,V : OCP.gp.gp_Dir) -> None:
"""
Changes the main direction of the axis placement. The "Xdirection" is modified : New XDirection = V ^ (Previous_Xdirection ^ V).
"""
def SetLocation(self,P : OCP.gp.gp_Pnt) -> None:
"""
Assigns the point P as the origin of this positioning system.
"""
def SetXDirection(self,Vx : OCP.gp.gp_Dir) -> None:
"""
Changes the "XDirection" of the axis placement, Vx is the new "XDirection". If Vx is not normal to the main direction then "XDirection" is computed as follow : XDirection = Direction ^ ( Vx ^ Direction). The main direction is not modified. Raised if Vx and "Direction" are parallel.
"""
def SetYDirection(self,Vy : OCP.gp.gp_Dir) -> None:
"""
Changes the "YDirection" of the axis placement, Vy is the new "YDirection". If Vy is not normal to the main direction then "YDirection" is computed as follow : YDirection = Direction ^ ( Vy ^ Direction). The main direction is not modified. The "XDirection" is modified. Raised if Vy and the main direction are parallel.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Transforms an axis placement with a Trsf. The "Location" point, the "XDirection" and the "YDirection" are transformed with T. The resulting main "Direction" of <me> is the cross product between the "XDirection" and the "YDirection" after transformation.
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def XDirection(self) -> OCP.gp.gp_Dir:
"""
Returns the "XDirection". This is a unit vector.
"""
def YDirection(self) -> OCP.gp.gp_Dir:
"""
Returns the "YDirection". This is a unit vector.
"""
@overload
def __init__(self,A2 : OCP.gp.gp_Ax2) -> None: ...
@overload
def __init__(self,P : OCP.gp.gp_Pnt,N : OCP.gp.gp_Dir,Vx : OCP.gp.gp_Dir) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_SequenceOfBSplineSurface(OCP.NCollection.NCollection_BaseSequence):
"""
Purpose: Definition of a sequence of elements indexed by an Integer in range of 1..n
"""
def Allocator(self) -> OCP.NCollection.NCollection_BaseAllocator:
"""
Returns attached allocator
"""
@overload
def Append(self,theItem : Geom_BSplineSurface) -> None:
"""
Append one item
Append another sequence (making it empty)
"""
@overload
def Append(self,theSeq : Geom_SequenceOfBSplineSurface) -> None: ...
def Assign(self,theOther : Geom_SequenceOfBSplineSurface) -> Geom_SequenceOfBSplineSurface:
"""
Replace this sequence by the items of theOther. This method does not change the internal allocator.
"""
def ChangeFirst(self) -> Geom_BSplineSurface:
"""
First item access
"""
def ChangeLast(self) -> Geom_BSplineSurface:
"""
Last item access
"""
def ChangeValue(self,theIndex : int) -> Geom_BSplineSurface:
"""
Variable item access by theIndex
"""
def Clear(self,theAllocator : OCP.NCollection.NCollection_BaseAllocator=None) -> None:
"""
Clear the items out, take a new allocator if non null
"""
def Exchange(self,I : int,J : int) -> None:
"""
Exchange two members
"""
def First(self) -> Geom_BSplineSurface:
"""
First item access
"""
@overload
def InsertAfter(self,theIndex : int,theSeq : Geom_SequenceOfBSplineSurface) -> None:
"""
InsertAfter theIndex another sequence (making it empty)
InsertAfter theIndex theItem
"""
@overload
def InsertAfter(self,theIndex : int,theItem : Geom_BSplineSurface) -> None: ...
@overload
def InsertBefore(self,theIndex : int,theSeq : Geom_SequenceOfBSplineSurface) -> None:
"""
InsertBefore theIndex theItem
InsertBefore theIndex another sequence (making it empty)
"""
@overload
def InsertBefore(self,theIndex : int,theItem : Geom_BSplineSurface) -> None: ...
def IsEmpty(self) -> bool:
"""
Empty query
"""
def Last(self) -> Geom_BSplineSurface:
"""
Last item access
"""
def Length(self) -> int:
"""
Number of items
"""
def Lower(self) -> int:
"""
Method for consistency with other collections.
"""
@overload
def Prepend(self,theSeq : Geom_SequenceOfBSplineSurface) -> None:
"""
Prepend one item
Prepend another sequence (making it empty)
"""
@overload
def Prepend(self,theItem : Geom_BSplineSurface) -> None: ...
@overload
def Remove(self,theIndex : int) -> None:
"""
Remove one item
Remove range of items
"""
@overload
def Remove(self,theFromIndex : int,theToIndex : int) -> None: ...
def Reverse(self) -> None:
"""
Reverse sequence
"""
def SetValue(self,theIndex : int,theItem : Geom_BSplineSurface) -> None:
"""
Set item value by theIndex
"""
def Size(self) -> int:
"""
Number of items
"""
def Split(self,theIndex : int,theSeq : Geom_SequenceOfBSplineSurface) -> None:
"""
Split in two sequences
"""
def Upper(self) -> int:
"""
Method for consistency with other collections.
"""
def Value(self,theIndex : int) -> Geom_BSplineSurface:
"""
Constant item access by theIndex
"""
def __bool__(self) -> bool: ...
def __call__(self,theIndex : int) -> Geom_BSplineSurface:
"""
Constant operator()
Variable operator()
"""
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,theOther : Geom_SequenceOfBSplineSurface) -> None: ...
@overload
def __init__(self,theAllocator : OCP.NCollection.NCollection_BaseAllocator) -> None: ...
def __iter__(self) -> Iterator[Geom_BSplineSurface]: ...
def __len__(self) -> int: ...
@staticmethod
def delNode_s(theNode : NCollection_SeqNode,theAl : OCP.NCollection.NCollection_BaseAllocator) -> None:
"""
Static deleter to be passed to BaseSequence
"""
pass
class Geom_Hyperbola(Geom_Conic, Geom_Curve, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
Describes a branch of a hyperbola in 3D space. A hyperbola is defined by its major and minor radii and, as with any conic curve, is positioned in space with a right-handed coordinate system (gp_Ax2 object) where: - the origin is the center of the hyperbola, - the "X Direction" defines the major axis, and - the "Y Direction" defines the minor axis. The origin, "X Direction" and "Y Direction" of this coordinate system define the plane of the hyperbola. The coordinate system is the local coordinate system of the hyperbola. The branch of the hyperbola described is the one located on the positive side of the major axis. The "main Direction" of the local coordinate system is a vector normal to the plane of the hyperbola. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the hyperbola. The "main Direction" of the local coordinate system gives an explicit orientation to the hyperbola, determining the direction in which the parameter increases along the hyperbola. The Geom_Hyperbola hyperbola is parameterized as follows: P(U) = O + MajRad*Cosh(U)*XDir + MinRad*Sinh(U)*YDir, where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - MajRad and MinRad are the major and minor radii of the hyperbola. The "X Axis" of the local coordinate system therefore defines the origin of the parameter of the hyperbola. The parameter range is ] -infinite, +infinite [. The following diagram illustrates the respective positions, in the plane of the hyperbola, of the three branches of hyperbolas constructed using the functions OtherBranch, ConjugateBranch1 and ConjugateBranch2: Defines the main branch of an hyperbola. ^YAxis | FirstConjugateBranch | Other | Main --------------------- C ------------------------------>XAxis Branch | Branch | SecondConjugateBranch | Warning The value of the major radius (on the major axis) can be less than the value of the minor radius (on the minor axis).Describes a branch of a hyperbola in 3D space. A hyperbola is defined by its major and minor radii and, as with any conic curve, is positioned in space with a right-handed coordinate system (gp_Ax2 object) where: - the origin is the center of the hyperbola, - the "X Direction" defines the major axis, and - the "Y Direction" defines the minor axis. The origin, "X Direction" and "Y Direction" of this coordinate system define the plane of the hyperbola. The coordinate system is the local coordinate system of the hyperbola. The branch of the hyperbola described is the one located on the positive side of the major axis. The "main Direction" of the local coordinate system is a vector normal to the plane of the hyperbola. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the hyperbola. The "main Direction" of the local coordinate system gives an explicit orientation to the hyperbola, determining the direction in which the parameter increases along the hyperbola. The Geom_Hyperbola hyperbola is parameterized as follows: P(U) = O + MajRad*Cosh(U)*XDir + MinRad*Sinh(U)*YDir, where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - MajRad and MinRad are the major and minor radii of the hyperbola. The "X Axis" of the local coordinate system therefore defines the origin of the parameter of the hyperbola. The parameter range is ] -infinite, +infinite [. The following diagram illustrates the respective positions, in the plane of the hyperbola, of the three branches of hyperbolas constructed using the functions OtherBranch, ConjugateBranch1 and ConjugateBranch2: Defines the main branch of an hyperbola. ^YAxis | FirstConjugateBranch | Other | Main --------------------- C ------------------------------>XAxis Branch | Branch | SecondConjugateBranch | Warning The value of the major radius (on the major axis) can be less than the value of the minor radius (on the minor axis).Describes a branch of a hyperbola in 3D space. A hyperbola is defined by its major and minor radii and, as with any conic curve, is positioned in space with a right-handed coordinate system (gp_Ax2 object) where: - the origin is the center of the hyperbola, - the "X Direction" defines the major axis, and - the "Y Direction" defines the minor axis. The origin, "X Direction" and "Y Direction" of this coordinate system define the plane of the hyperbola. The coordinate system is the local coordinate system of the hyperbola. The branch of the hyperbola described is the one located on the positive side of the major axis. The "main Direction" of the local coordinate system is a vector normal to the plane of the hyperbola. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the hyperbola. The "main Direction" of the local coordinate system gives an explicit orientation to the hyperbola, determining the direction in which the parameter increases along the hyperbola. The Geom_Hyperbola hyperbola is parameterized as follows: P(U) = O + MajRad*Cosh(U)*XDir + MinRad*Sinh(U)*YDir, where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - MajRad and MinRad are the major and minor radii of the hyperbola. The "X Axis" of the local coordinate system therefore defines the origin of the parameter of the hyperbola. The parameter range is ] -infinite, +infinite [. The following diagram illustrates the respective positions, in the plane of the hyperbola, of the three branches of hyperbolas constructed using the functions OtherBranch, ConjugateBranch1 and ConjugateBranch2: Defines the main branch of an hyperbola. ^YAxis | FirstConjugateBranch | Other | Main --------------------- C ------------------------------>XAxis Branch | Branch | SecondConjugateBranch | Warning The value of the major radius (on the major axis) can be less than the value of the minor radius (on the minor axis).
"""
def Asymptote1(self) -> OCP.gp.gp_Ax1:
"""
In the local coordinate system of the hyperbola the equation of the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the equation of the first asymptote is Y = (B/A)*X. Raises ConstructionError if MajorRadius = 0.0
"""
def Asymptote2(self) -> OCP.gp.gp_Ax1:
"""
In the local coordinate system of the hyperbola the equation of the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the equation of the first asymptote is Y = -(B/A)*X. Raises ConstructionError if MajorRadius = 0.0
"""
def Axis(self) -> OCP.gp.gp_Ax1:
"""
Returns the "main Axis" of this conic. This axis is normal to the plane of the conic.
"""
def ConjugateBranch1(self) -> OCP.gp.gp_Hypr:
"""
This branch of hyperbola is on the positive side of the YAxis of <me>.
"""
def ConjugateBranch2(self) -> OCP.gp.gp_Hypr:
"""
This branch of hyperbola is on the negative side of the YAxis of <me>. Note: The diagram given under the class purpose indicates where these two branches of hyperbola are positioned in relation to this branch of hyperbola.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
The continuity of the conic is Cn.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this hyperbola.
"""
def D0(self,U : float,P : OCP.gp.gp_Pnt) -> None:
"""
Returns in P the point of parameter U. P = C + MajorRadius * Cosh (U) * XDir + MinorRadius * Sinh (U) * YDir where C is the center of the hyperbola , XDir the XDirection and YDir the YDirection of the hyperbola's local coordinate system.
"""
def D1(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec) -> None:
"""
Returns the point P of parameter U and the first derivative V1.
"""
def D2(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec) -> None:
"""
Returns the point P of parameter U, the first and second derivatives V1 and V2.
"""
def D3(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec,V3 : OCP.gp.gp_Vec) -> None:
"""
Returns the point P of parameter U, the first second and third derivatives V1 V2 and V3.
"""
def DN(self,U : float,N : int) -> OCP.gp.gp_Vec:
"""
The returned vector gives the value of the derivative for the order of derivation N. Raised if N < 1.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def Directrix1(self) -> OCP.gp.gp_Ax1:
"""
This directrix is the line normal to the XAxis of the hyperbola in the local plane (Z = 0) at a distance d = MajorRadius / e from the center of the hyperbola, where e is the eccentricity of the hyperbola. This line is parallel to the YAxis. The intersection point between directrix1 and the XAxis is the location point of the directrix1. This point is on the positive side of the XAxis.
"""
def Directrix2(self) -> OCP.gp.gp_Ax1:
"""
This line is obtained by the symmetrical transformation of "directrix1" with respect to the YAxis of the hyperbola.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def Eccentricity(self) -> float:
"""
Returns the eccentricity of the hyperbola (e > 1). If f is the distance between the location of the hyperbola and the Focus1 then the eccentricity e = f / MajorRadius. raised if MajorRadius = 0.0
"""
def FirstParameter(self) -> float:
"""
Returns RealFirst from Standard.
"""
def Focal(self) -> float:
"""
Computes the focal distance. It is the distance between the two focus of the hyperbola.
"""
def Focus1(self) -> OCP.gp.gp_Pnt:
"""
Returns the first focus of the hyperbola. This focus is on the positive side of the XAxis of the hyperbola.
"""
def Focus2(self) -> OCP.gp.gp_Pnt:
"""
Returns the second focus of the hyperbola. This focus is on the negative side of the XAxis of the hyperbola.
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def Hypr(self) -> OCP.gp.gp_Hypr:
"""
returns the non transient parabola from gp with the same geometric properties as <me>.
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCN(self,N : int) -> bool:
"""
Returns True. Raised if N < 0.
"""
def IsClosed(self) -> bool:
"""
Returns False.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsPeriodic(self) -> bool:
"""
return False for an hyperbola.
"""
def LastParameter(self) -> float:
"""
returns RealLast from Standard.
"""
def Location(self) -> OCP.gp.gp_Pnt:
"""
Returns the location point of the conic. For the circle, the ellipse and the hyperbola it is the center of the conic. For the parabola it is the Apex of the parabola.
"""
def MajorRadius(self) -> float:
"""
Returns the major or minor radius of this hyperbola. The major radius is also the distance between the center of the hyperbola and the apex of the main branch (located on the "X Axis" of the hyperbola).
"""
def MinorRadius(self) -> float:
"""
Returns the major or minor radius of this hyperbola. The minor radius is also the distance between the center of the hyperbola and the apex of a conjugate branch (located on the "Y Axis" of the hyperbola).
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def OtherBranch(self) -> OCP.gp.gp_Hypr:
"""
Computes the "other" branch of this hyperbola. This is the symmetrical branch with respect to the center of this hyperbola. Note: The diagram given under the class purpose indicates where the "other" branch is positioned in relation to this branch of the hyperbola.
"""
def Parameter(self) -> float:
"""
Returns p = (e * e - 1) * MajorRadius where e is the eccentricity of the hyperbola. raised if MajorRadius = 0.0
"""
def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> float:
"""
Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.
"""
def Period(self) -> float:
"""
Returns the period of this curve. Exceptions Standard_NoSuchObject if this curve is not periodic.
"""
def Position(self) -> OCP.gp.gp_Ax2:
"""
Returns the local coordinates system of the conic. The main direction of the Axis2Placement is normal to the plane of the conic. The X direction of the Axis2placement is in the plane of the conic and corresponds to the origin for the conic's parametric value u.
"""
def Reverse(self) -> None:
"""
Reverses the direction of parameterization of <me>. The local coordinate system of the conic is modified.
"""
def Reversed(self) -> Geom_Curve:
"""
Returns a copy of <me> reversed.
"""
def ReversedParameter(self,U : float) -> float:
"""
Computes the parameter on the reversed hyperbola, for the point of parameter U on this hyperbola. For a hyperbola, the returned value is: -U.
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def SetAxis(self,theA1 : OCP.gp.gp_Ax1) -> None:
"""
Changes the orientation of the conic's plane. The normal axis to the plane is A1. The XAxis and the YAxis are recomputed.
"""
def SetHypr(self,H : OCP.gp.gp_Hypr) -> None:
"""
Converts the gp_Hypr hyperbola H into this hyperbola.
"""
def SetLocation(self,theP : OCP.gp.gp_Pnt) -> None:
"""
changes the location point of the conic.
"""
def SetMajorRadius(self,MajorRadius : float) -> None:
"""
Assigns a value to the major radius of this hyperbola. Exceptions Standard_ConstructionError if: - MajorRadius is less than 0.0, or - MinorRadius is less than 0.0.Raised if MajorRadius < 0.0
"""
def SetMinorRadius(self,MinorRadius : float) -> None:
"""
Assigns a value to the minor radius of this hyperbola. Exceptions Standard_ConstructionError if: - MajorRadius is less than 0.0, or - MinorRadius is less than 0.0.Raised if MajorRadius < 0.0
"""
def SetPosition(self,theA2 : OCP.gp.gp_Ax2) -> None:
"""
changes the local coordinate system of the conic.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Applies the transformation T to this hyperbola.
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf) -> float:
"""
Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def Value(self,U : float) -> OCP.gp.gp_Pnt:
"""
Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve. it is implemented with D0.
"""
def XAxis(self) -> OCP.gp.gp_Ax1:
"""
Returns the XAxis of the conic. This axis defines the origin of parametrization of the conic. This axis is perpendicular to the Axis of the conic. This axis and the Yaxis define the plane of the conic.
"""
def YAxis(self) -> OCP.gp.gp_Ax1:
"""
Returns the YAxis of the conic. The YAxis is perpendicular to the Xaxis. This axis and the Xaxis define the plane of the conic.
"""
@overload
def __init__(self,A2 : OCP.gp.gp_Ax2,MajorRadius : float,MinorRadius : float) -> None: ...
@overload
def __init__(self,H : OCP.gp.gp_Hypr) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_Line(Geom_Curve, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
Describes an infinite line. A line is defined and positioned in space with an axis (gp_Ax1 object) which gives it an origin and a unit vector. The Geom_Line line is parameterized: P (U) = O + U*Dir, where: - P is the point of parameter U, - O is the origin and Dir the unit vector of its positioning axis. The parameter range is ] -infinite, +infinite [. The orientation of the line is given by the unit vector of its positioning axis.Describes an infinite line. A line is defined and positioned in space with an axis (gp_Ax1 object) which gives it an origin and a unit vector. The Geom_Line line is parameterized: P (U) = O + U*Dir, where: - P is the point of parameter U, - O is the origin and Dir the unit vector of its positioning axis. The parameter range is ] -infinite, +infinite [. The orientation of the line is given by the unit vector of its positioning axis.Describes an infinite line. A line is defined and positioned in space with an axis (gp_Ax1 object) which gives it an origin and a unit vector. The Geom_Line line is parameterized: P (U) = O + U*Dir, where: - P is the point of parameter U, - O is the origin and Dir the unit vector of its positioning axis. The parameter range is ] -infinite, +infinite [. The orientation of the line is given by the unit vector of its positioning axis.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
Returns GeomAbs_CN, which is the global continuity of any line.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this line.
"""
def D0(self,U : float,P : OCP.gp.gp_Pnt) -> None:
"""
Returns in P the point of parameter U. P (U) = O + U * Dir where O is the "Location" point of the line and Dir the direction of the line.
"""
def D1(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec) -> None:
"""
Returns the point P of parameter u and the first derivative V1.
"""
def D2(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec) -> None:
"""
Returns the point P of parameter U, the first and second derivatives V1 and V2. V2 is a vector with null magnitude for a line.
"""
def D3(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec,V3 : OCP.gp.gp_Vec) -> None:
"""
V2 and V3 are vectors with null magnitude for a line.
"""
def DN(self,U : float,N : int) -> OCP.gp.gp_Vec:
"""
The returned vector gives the value of the derivative for the order of derivation N. Raised if N < 1.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def FirstParameter(self) -> float:
"""
Returns the value of the first parameter of this line. This is Standard_Real::RealFirst().
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCN(self,N : int) -> bool:
"""
returns True. Raised if N < 0.
"""
def IsClosed(self) -> bool:
"""
returns False
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsPeriodic(self) -> bool:
"""
returns False
"""
def LastParameter(self) -> float:
"""
Returns the value of the last parameter of this line. This is Standard_Real::RealLast().
"""
def Lin(self) -> OCP.gp.gp_Lin:
"""
Returns non transient line from gp with the same geometric properties as <me>
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> float:
"""
Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.
"""
def Period(self) -> float:
"""
Returns the period of this curve. Exceptions Standard_NoSuchObject if this curve is not periodic.
"""
def Position(self) -> OCP.gp.gp_Ax1:
"""
Returns the positioning axis of this line; this is also its local coordinate system.
"""
def Reverse(self) -> None:
"""
Changes the orientation of this line. As a result, the unit vector of the positioning axis of this line is reversed.
"""
def Reversed(self) -> Geom_Curve:
"""
Returns a copy of <me> reversed.
"""
def ReversedParameter(self,U : float) -> float:
"""
Computes the parameter on the reversed line for the point of parameter U on this line. For a line, the returned value is -U.
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def SetDirection(self,V : OCP.gp.gp_Dir) -> None:
"""
changes the direction of the line.
"""
def SetLin(self,L : OCP.gp.gp_Lin) -> None:
"""
Set <me> so that <me> has the same geometric properties as L.
"""
def SetLocation(self,P : OCP.gp.gp_Pnt) -> None:
"""
changes the "Location" point (origin) of the line.
"""
def SetPosition(self,A1 : OCP.gp.gp_Ax1) -> None:
"""
changes the "Location" and a the "Direction" of <me>.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Applies the transformation T to this line.
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf) -> float:
"""
Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def Value(self,U : float) -> OCP.gp.gp_Pnt:
"""
Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve. it is implemented with D0.
"""
@overload
def __init__(self,L : OCP.gp.gp_Lin) -> None: ...
@overload
def __init__(self,P : OCP.gp.gp_Pnt,V : OCP.gp.gp_Dir) -> None: ...
@overload
def __init__(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_OffsetCurve(Geom_Curve, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
This class implements the basis services for an offset curve in 3D space. The Offset curve in this package can be a self intersecting curve even if the basis curve does not self-intersect. The self intersecting portions are not deleted at the construction time. An offset curve is a curve at constant distance (Offset) from a basis curve in a reference direction V. The offset curve takes its parametrization from the basis curve. The Offset curve is in the direction of the normal N defined with the cross product T^V, where the vector T is given by the first derivative on the basis curve with non zero length. The distance offset may be positive or negative to indicate the preferred side of the curve : . distance offset >0 => the curve is in the direction of N . distance offset <0 => the curve is in the direction of - NThis class implements the basis services for an offset curve in 3D space. The Offset curve in this package can be a self intersecting curve even if the basis curve does not self-intersect. The self intersecting portions are not deleted at the construction time. An offset curve is a curve at constant distance (Offset) from a basis curve in a reference direction V. The offset curve takes its parametrization from the basis curve. The Offset curve is in the direction of the normal N defined with the cross product T^V, where the vector T is given by the first derivative on the basis curve with non zero length. The distance offset may be positive or negative to indicate the preferred side of the curve : . distance offset >0 => the curve is in the direction of N . distance offset <0 => the curve is in the direction of - NThis class implements the basis services for an offset curve in 3D space. The Offset curve in this package can be a self intersecting curve even if the basis curve does not self-intersect. The self intersecting portions are not deleted at the construction time. An offset curve is a curve at constant distance (Offset) from a basis curve in a reference direction V. The offset curve takes its parametrization from the basis curve. The Offset curve is in the direction of the normal N defined with the cross product T^V, where the vector T is given by the first derivative on the basis curve with non zero length. The distance offset may be positive or negative to indicate the preferred side of the curve : . distance offset >0 => the curve is in the direction of N . distance offset <0 => the curve is in the direction of - N
"""
def BasisCurve(self) -> Geom_Curve:
"""
Returns the basis curve of this offset curve. Note: The basis curve can be an offset curve.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
Returns the global continuity of this offset curve as a value of the GeomAbs_Shape enumeration. The degree of continuity of this offset curve is equal to the degree of continuity of the basis curve minus 1. Continuity of the Offset curve : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, G1 : tangency continuity all along the Curve, G2 : curvature continuity all along the Curve, CN : the order of continuity is infinite. Warnings : Returns the continuity of the basis curve - 1. The offset curve must have a unique offset direction defined at any point.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this offset curve.
"""
def D0(self,U : float,P : OCP.gp.gp_Pnt) -> None:
"""
Warning! this should not be called if the basis curve is not at least C1. Nevertheless if used on portion where the curve is C1, it is OK
"""
def D1(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec) -> None:
"""
Warning! this should not be called if the continuity of the basis curve is not C2. Nevertheless, it's OK to use it on portion where the curve is C2
"""
def D2(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec) -> None:
"""
Warning! this should not be called if the continuity of the basis curve is not C3. Nevertheless, it's OK to use it on portion where the curve is C3
"""
def D3(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec,V3 : OCP.gp.gp_Vec) -> None:
"""
None
"""
def DN(self,U : float,N : int) -> OCP.gp.gp_Vec:
"""
The returned vector gives the value of the derivative for the order of derivation N.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def Direction(self) -> OCP.gp.gp_Dir:
"""
Returns the reference vector of this offset curve. Value and derivatives Warnings : The exception UndefinedValue or UndefinedDerivative is raised if it is not possible to compute a unique offset direction. If T is the first derivative with not null length and V the offset direction the relation ||T(U) ^ V|| != 0 must be satisfied to evaluate the offset curve. No check is done at the creation time and we suppose in this package that the offset curve is well defined.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def FirstParameter(self) -> float:
"""
Returns the value of the first parameter of this offset curve. The first parameter corresponds to the start point of the curve. Note: the first and last parameters of this offset curve are also the ones of its basis curve.
"""
def GetBasisCurveContinuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
Returns continuity of the basis curve.
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCN(self,N : int) -> bool:
"""
Returns true if the degree of continuity of the basis curve of this offset curve is at least N + 1. This method answer True if the continuity of the basis curve is N + 1. We suppose in this class that a normal direction to the basis curve (used to compute the offset curve) is defined at any point on the basis curve. Raised if N < 0.
"""
def IsClosed(self) -> bool:
"""
Returns True if the distance between the start point and the end point of the curve is lower or equal to Resolution from package gp.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsPeriodic(self) -> bool:
"""
Returns true if this offset curve is periodic, i.e. if the basis curve of this offset curve is periodic.
"""
def LastParameter(self) -> float:
"""
Returns the value of the last parameter of this offset curve. The last parameter corresponds to the end point. Note: the first and last parameters of this offset curve are also the ones of its basis curve.
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def Offset(self) -> float:
"""
Returns the offset value of this offset curve.
"""
def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> float:
"""
Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.
"""
def Period(self) -> float:
"""
Returns the period of this offset curve, i.e. the period of the basis curve of this offset curve. Exceptions Standard_NoSuchObject if the basis curve is not periodic.
"""
def Reverse(self) -> None:
"""
Changes the orientation of this offset curve. As a result: - the basis curve is reversed, - the start point of the initial curve becomes the end point of the reversed curve, - the end point of the initial curve becomes the start point of the reversed curve, and - the first and last parameters are recomputed.
"""
def Reversed(self) -> Geom_Curve:
"""
Returns a copy of <me> reversed.
"""
def ReversedParameter(self,U : float) -> float:
"""
Computes the parameter on the reversed curve for the point of parameter U on this offset curve.
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def SetBasisCurve(self,C : Geom_Curve,isNotCheckC0 : bool=False) -> None:
"""
Changes this offset curve by assigning C as the basis curve from which it is built. If isNotCheckC0 = TRUE checking if basis curve has C0-continuity is not made. Exceptions Standard_ConstructionError if the curve C is not at least "C1" continuous.
"""
def SetDirection(self,V : OCP.gp.gp_Dir) -> None:
"""
Changes this offset curve by assigning V as the reference vector used to compute the offset direction.
"""
def SetOffsetValue(self,D : float) -> None:
"""
Changes this offset curve by assigning D as the offset value.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Applies the transformation T to this offset curve. Note: the basis curve is also modified.
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf) -> float:
"""
Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>. me->Transformed(T)->Value(me->TransformedParameter(U,T)) is the same point as me->Value(U).Transformed(T) This methods calls the basis curve method.
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def Value(self,U : float) -> OCP.gp.gp_Pnt:
"""
Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve. it is implemented with D0.
"""
def __init__(self,C : Geom_Curve,Offset : float,V : OCP.gp.gp_Dir,isNotCheckC0 : bool=False) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_OffsetSurface(Geom_Surface, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
Describes an offset surface in 3D space. An offset surface is defined by: - the basis surface to which it is parallel, and - the distance between the offset surface and its basis surface. A point on the offset surface is built by measuring the offset value along the normal vector at a point on the basis surface. This normal vector is given by the cross product D1u^D1v, where D1u and D1v are the vectors tangential to the basis surface in the u and v parametric directions at this point. The side of the basis surface on which the offset is measured depends on the sign of the offset value. A Geom_OffsetSurface surface can be self-intersecting, even if the basis surface does not self-intersect. The self-intersecting portions are not deleted at the time of construction. Warning There must be only one normal vector defined at any point on the basis surface. This must be verified by the user as no check is made at the time of construction to detect points with multiple possible normal directions (for example, the top of a conical surface).Describes an offset surface in 3D space. An offset surface is defined by: - the basis surface to which it is parallel, and - the distance between the offset surface and its basis surface. A point on the offset surface is built by measuring the offset value along the normal vector at a point on the basis surface. This normal vector is given by the cross product D1u^D1v, where D1u and D1v are the vectors tangential to the basis surface in the u and v parametric directions at this point. The side of the basis surface on which the offset is measured depends on the sign of the offset value. A Geom_OffsetSurface surface can be self-intersecting, even if the basis surface does not self-intersect. The self-intersecting portions are not deleted at the time of construction. Warning There must be only one normal vector defined at any point on the basis surface. This must be verified by the user as no check is made at the time of construction to detect points with multiple possible normal directions (for example, the top of a conical surface).Describes an offset surface in 3D space. An offset surface is defined by: - the basis surface to which it is parallel, and - the distance between the offset surface and its basis surface. A point on the offset surface is built by measuring the offset value along the normal vector at a point on the basis surface. This normal vector is given by the cross product D1u^D1v, where D1u and D1v are the vectors tangential to the basis surface in the u and v parametric directions at this point. The side of the basis surface on which the offset is measured depends on the sign of the offset value. A Geom_OffsetSurface surface can be self-intersecting, even if the basis surface does not self-intersect. The self-intersecting portions are not deleted at the time of construction. Warning There must be only one normal vector defined at any point on the basis surface. This must be verified by the user as no check is made at the time of construction to detect points with multiple possible normal directions (for example, the top of a conical surface).
"""
def BasisSurface(self) -> Geom_Surface:
"""
Returns the basis surface of this offset surface. Note: The basis surface can be an offset surface.
"""
def Bounds(self) -> tuple[float, float, float, float]:
"""
Returns the parametric bounds U1, U2, V1 and V2 of this offset surface. If the surface is infinite, this function can return: - Standard_Real::RealFirst(), or - Standard_Real::RealLast().
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
This method returns the continuity of the basis surface - 1. Continuity of the Offset surface : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Surface, C2 : continuity of the second derivative all along the Surface, C3 : continuity of the third derivative all along the Surface, CN : the order of continuity is infinite. Example : If the basis surface is C2 in the V direction and C3 in the U direction Shape = C1. Warnings : If the basis surface has a unique normal direction defined at any point this method gives the continuity of the offset surface otherwise the effective continuity can be lower than the continuity of the basis surface - 1.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this offset surface.
"""
def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None:
"""
where is the normal direction of the basis surface. Pbasis, D1Ubasis, D1Vbasis are the point and the first derivatives on the basis surface. If Ndir is undefined this method computes an approached normal direction using the following limited development: with Eps->0 which requires to compute the second derivatives on the basis surface. If the normal direction cannot be approximate for this order of derivation the exception UndefinedValue is raised.
"""
def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None:
"""
Raised if the continuity of the basis surface is not C2.
"""
def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None:
"""
Raised if the continuity of the basis surface is not C3.
"""
def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None:
"""
Raised if the continuity of the basis surface is not C4.
"""
def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec:
"""
Computes the derivative of order Nu in the direction u and Nv in the direction v.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetBasisSurfContinuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
Returns continuity of the basis surface.
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCNu(self,N : int) -> bool:
"""
This method answer True if the continuity of the basis surface is N + 1 in the U parametric direction. We suppose in this class that a unique normal is defined at any point on the basis surface. Raised if N <0.
"""
def IsCNv(self,N : int) -> bool:
"""
This method answer True if the continuity of the basis surface is N + 1 in the V parametric direction. We suppose in this class that a unique normal is defined at any point on the basis surface. Raised if N <0.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsUClosed(self) -> bool:
"""
Checks whether this offset surface is closed in the u parametric direction. Returns true if, taking uFirst and uLast as the parametric bounds in the u parametric direction, the distance between the points P(uFirst,v) and P(uLast,v) is less than or equal to gp::Resolution() for each value of the parameter v.
"""
def IsUPeriodic(self) -> bool:
"""
Returns true if this offset surface is periodic in the u parametric direction, i.e. if the basis surface of this offset surface is periodic in this direction.
"""
def IsVClosed(self) -> bool:
"""
Checks whether this offset surface is closed in the u or v parametric direction. Returns true if taking vFirst and vLast as the parametric bounds in the v parametric direction, the distance between the points P(u,vFirst) and P(u,vLast) is less than or equal to gp::Resolution() for each value of the parameter u.
"""
def IsVPeriodic(self) -> bool:
"""
Returns true if this offset surface is periodic in the v parametric direction, i.e. if the basis surface of this offset surface is periodic in this direction.
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def Offset(self) -> float:
"""
Returns the offset value of this offset surface.
"""
def OsculatingSurface(self) -> Geom_OsculatingSurface:
"""
Returns osculating surface if base surface is B-spline or Bezier
"""
def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d:
"""
Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method calls the basis surface method.
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def SetBasisSurface(self,S : Geom_Surface,isNotCheckC0 : bool=False) -> None:
"""
Raised if S is not at least C1. Warnings : No check is done to verify that a unique normal direction is defined at any point of the basis surface S. If isNotCheckC0 = TRUE checking if basis surface has C0-continuity is not made. Exceptions Standard_ConstructionError if the surface S is not at least "C1" continuous.
"""
def SetOffsetValue(self,D : float) -> None:
"""
Changes this offset surface by assigning D as the offset value.
"""
def Surface(self) -> Geom_Surface:
"""
returns an equivalent surface of the offset surface when the basis surface is a canonic surface or a rectangular limited surface on canonic surface or if the offset is null.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Applies the transformation T to this offset surface. Note: the basis surface is also modified.
"""
def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]:
"""
Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method calls the basis surface method.
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def UIso(self,U : float) -> Geom_Curve:
"""
Computes the U isoparametric curve.
"""
def UOsculatingSurface(self,U : float,V : float,IsOpposite : bool,UOsculSurf : Geom_BSplineSurface) -> bool:
"""
if Standard_True, L is the local osculating surface along U at the point U,V. It means that DL/DU is collinear to DS/DU . If IsOpposite == Standard_True these vectors have opposite direction.
"""
def UPeriod(self) -> float:
"""
Returns the period of this offset surface in the u parametric direction respectively, i.e. the period of the basis surface of this offset surface in this parametric direction. raises if the surface is not uperiodic.
"""
def UReverse(self) -> None:
"""
Changes the orientation of this offset surface in the u parametric direction. The bounds of the surface are not changed but the given parametric direction is reversed.
"""
def UReversed(self) -> Geom_Surface:
"""
Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def UReversedParameter(self,U : float) -> float:
"""
Computes the u parameter on the modified surface, produced by reversing the u parametric direction of this offset surface, for any point of u parameter U on this offset surface.
"""
def VIso(self,V : float) -> Geom_Curve:
"""
Computes the V isoparametric curve.
"""
def VOsculatingSurface(self,U : float,V : float,IsOpposite : bool,VOsculSurf : Geom_BSplineSurface) -> bool:
"""
if Standard_True, L is the local osculating surface along V at the point U,V. It means that DL/DV is collinear to DS/DV . If IsOpposite == Standard_True these vectors have opposite direction.
"""
def VPeriod(self) -> float:
"""
Returns the period of this offset surface in the v parametric direction respectively, i.e. the period of the basis surface of this offset surface in this parametric direction. raises if the surface is not vperiodic.
"""
def VReverse(self) -> None:
"""
Changes the orientation of this offset surface in the v parametric direction. The bounds of the surface are not changed but the given parametric direction is reversed.
"""
def VReversed(self) -> Geom_Surface:
"""
Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def VReversedParameter(self,V : float) -> float:
"""
Computes the v parameter on the modified surface, produced by reversing the or v parametric direction of this offset surface, for any point of v parameter V on this offset surface.
"""
def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt:
"""
Computes the point of parameter (U, V) on the surface.
"""
def __init__(self,S : Geom_Surface,Offset : float,isNotCheckC0 : bool=False) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_OsculatingSurface(OCP.Standard.Standard_Transient):
def BasisSurface(self) -> Geom_Surface:
"""
None
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def Init(self,BS : Geom_Surface,Tol : float) -> None:
"""
None
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Tolerance(self) -> float:
"""
None
"""
def UOscSurf(self,U : float,V : float,t : bool,L : Geom_BSplineSurface) -> bool:
"""
if Standard_True, L is the local osculating surface along U at the point U,V.
"""
def VOscSurf(self,U : float,V : float,t : bool,L : Geom_BSplineSurface) -> bool:
"""
if Standard_True, L is the local osculating surface along V at the point U,V.
"""
@overload
def __init__(self,BS : Geom_Surface,Tol : float) -> None: ...
@overload
def __init__(self) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_Parabola(Geom_Conic, Geom_Curve, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
Describes a parabola in 3D space. A parabola is defined by its focal length (i.e. the distance between its focus and its apex) and is positioned in space with a coordinate system (gp_Ax2 object) where: - the origin is the apex of the parabola, - the "X Axis" defines the axis of symmetry; the parabola is on the positive side of this axis, - the origin, "X Direction" and "Y Direction" define the plane of the parabola. This coordinate system is the local coordinate system of the parabola. The "main Direction" of this coordinate system is a vector normal to the plane of the parabola. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the parabola. The "main Direction" of the local coordinate system gives an explicit orientation to the parabola, determining the direction in which the parameter increases along the parabola. The Geom_Parabola parabola is parameterized as follows: P(U) = O + U*U/(4.*F)*XDir + U*YDir where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - F is the focal length of the parabola. The parameter of the parabola is therefore its Y coordinate in the local coordinate system, with the "X Axis" of the local coordinate system defining the origin of the parameter. The parameter range is ] -infinite, +infinite [.Describes a parabola in 3D space. A parabola is defined by its focal length (i.e. the distance between its focus and its apex) and is positioned in space with a coordinate system (gp_Ax2 object) where: - the origin is the apex of the parabola, - the "X Axis" defines the axis of symmetry; the parabola is on the positive side of this axis, - the origin, "X Direction" and "Y Direction" define the plane of the parabola. This coordinate system is the local coordinate system of the parabola. The "main Direction" of this coordinate system is a vector normal to the plane of the parabola. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the parabola. The "main Direction" of the local coordinate system gives an explicit orientation to the parabola, determining the direction in which the parameter increases along the parabola. The Geom_Parabola parabola is parameterized as follows: P(U) = O + U*U/(4.*F)*XDir + U*YDir where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - F is the focal length of the parabola. The parameter of the parabola is therefore its Y coordinate in the local coordinate system, with the "X Axis" of the local coordinate system defining the origin of the parameter. The parameter range is ] -infinite, +infinite [.Describes a parabola in 3D space. A parabola is defined by its focal length (i.e. the distance between its focus and its apex) and is positioned in space with a coordinate system (gp_Ax2 object) where: - the origin is the apex of the parabola, - the "X Axis" defines the axis of symmetry; the parabola is on the positive side of this axis, - the origin, "X Direction" and "Y Direction" define the plane of the parabola. This coordinate system is the local coordinate system of the parabola. The "main Direction" of this coordinate system is a vector normal to the plane of the parabola. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the parabola. The "main Direction" of the local coordinate system gives an explicit orientation to the parabola, determining the direction in which the parameter increases along the parabola. The Geom_Parabola parabola is parameterized as follows: P(U) = O + U*U/(4.*F)*XDir + U*YDir where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - F is the focal length of the parabola. The parameter of the parabola is therefore its Y coordinate in the local coordinate system, with the "X Axis" of the local coordinate system defining the origin of the parameter. The parameter range is ] -infinite, +infinite [.
"""
def Axis(self) -> OCP.gp.gp_Ax1:
"""
Returns the "main Axis" of this conic. This axis is normal to the plane of the conic.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
The continuity of the conic is Cn.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this parabola.
"""
def D0(self,U : float,P : OCP.gp.gp_Pnt) -> None:
"""
Returns in P the point of parameter U. If U = 0 the returned point is the origin of the XAxis and the YAxis of the parabola and it is the vertex of the parabola. P = S + F * (U * U * XDir + * U * YDir) where S is the vertex of the parabola, XDir the XDirection and YDir the YDirection of the parabola's local coordinate system.
"""
def D1(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec) -> None:
"""
Returns the point P of parameter U and the first derivative V1.
"""
def D2(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec) -> None:
"""
Returns the point P of parameter U, the first and second derivatives V1 and V2.
"""
def D3(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec,V3 : OCP.gp.gp_Vec) -> None:
"""
Returns the point P of parameter U, the first second and third derivatives V1 V2 and V3.
"""
def DN(self,U : float,N : int) -> OCP.gp.gp_Vec:
"""
For the point of parameter U of this parabola, computes the vector corresponding to the Nth derivative. Exceptions Standard_RangeError if N is less than 1.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def Directrix(self) -> OCP.gp.gp_Ax1:
"""
Computes the directrix of this parabola. This is a line normal to the axis of symmetry, in the plane of this parabola, located on the negative side of its axis of symmetry, at a distance from the apex equal to the focal length. The directrix is returned as an axis (gp_Ax1 object), where the origin is located on the "X Axis" of this parabola.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def Eccentricity(self) -> float:
"""
Returns 1. (which is the eccentricity of any parabola).
"""
def FirstParameter(self) -> float:
"""
Returns the value of the first or last parameter of this parabola. This is, respectively: - Standard_Real::RealFirst(), or - Standard_Real::RealLast().
"""
def Focal(self) -> float:
"""
Computes the focal distance of this parabola The focal distance is the distance between the apex and the focus of the parabola.
"""
def Focus(self) -> OCP.gp.gp_Pnt:
"""
Computes the focus of this parabola. The focus is on the positive side of the "X Axis" of the local coordinate system of the parabola.
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCN(self,N : int) -> bool:
"""
Returns True. Raised if N < 0.
"""
def IsClosed(self) -> bool:
"""
Returns False
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsPeriodic(self) -> bool:
"""
Returns False
"""
def LastParameter(self) -> float:
"""
Returns the value of the first or last parameter of this parabola. This is, respectively: - Standard_Real::RealFirst(), or - Standard_Real::RealLast().
"""
def Location(self) -> OCP.gp.gp_Pnt:
"""
Returns the location point of the conic. For the circle, the ellipse and the hyperbola it is the center of the conic. For the parabola it is the Apex of the parabola.
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def Parab(self) -> OCP.gp.gp_Parab:
"""
Returns the non transient parabola from gp with the same geometric properties as <me>.
"""
def Parameter(self) -> float:
"""
Computes the parameter of this parabola which is the distance between its focus and its directrix. This distance is twice the focal length. If P is the parameter of the parabola, the equation of the parabola in its local coordinate system is: Y**2 = 2.*P*X.
"""
def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> float:
"""
Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.
"""
def Period(self) -> float:
"""
Returns the period of this curve. Exceptions Standard_NoSuchObject if this curve is not periodic.
"""
def Position(self) -> OCP.gp.gp_Ax2:
"""
Returns the local coordinates system of the conic. The main direction of the Axis2Placement is normal to the plane of the conic. The X direction of the Axis2placement is in the plane of the conic and corresponds to the origin for the conic's parametric value u.
"""
def Reverse(self) -> None:
"""
Reverses the direction of parameterization of <me>. The local coordinate system of the conic is modified.
"""
def Reversed(self) -> Geom_Curve:
"""
Returns a copy of <me> reversed.
"""
def ReversedParameter(self,U : float) -> float:
"""
Computes the parameter on the reversed parabola, for the point of parameter U on this parabola. For a parabola, the returned value is: -U.
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def SetAxis(self,theA1 : OCP.gp.gp_Ax1) -> None:
"""
Changes the orientation of the conic's plane. The normal axis to the plane is A1. The XAxis and the YAxis are recomputed.
"""
def SetFocal(self,Focal : float) -> None:
"""
Assigns the value Focal to the focal distance of this parabola. Exceptions Standard_ConstructionError if Focal is negative.
"""
def SetLocation(self,theP : OCP.gp.gp_Pnt) -> None:
"""
changes the location point of the conic.
"""
def SetParab(self,Prb : OCP.gp.gp_Parab) -> None:
"""
Converts the gp_Parab parabola Prb into this parabola.
"""
def SetPosition(self,theA2 : OCP.gp.gp_Ax2) -> None:
"""
changes the local coordinate system of the conic.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Applies the transformation T to this parabola.
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf) -> float:
"""
Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def Value(self,U : float) -> OCP.gp.gp_Pnt:
"""
Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve. it is implemented with D0.
"""
def XAxis(self) -> OCP.gp.gp_Ax1:
"""
Returns the XAxis of the conic. This axis defines the origin of parametrization of the conic. This axis is perpendicular to the Axis of the conic. This axis and the Yaxis define the plane of the conic.
"""
def YAxis(self) -> OCP.gp.gp_Ax1:
"""
Returns the YAxis of the conic. The YAxis is perpendicular to the Xaxis. This axis and the Xaxis define the plane of the conic.
"""
@overload
def __init__(self,D : OCP.gp.gp_Ax1,F : OCP.gp.gp_Pnt) -> None: ...
@overload
def __init__(self,Prb : OCP.gp.gp_Parab) -> None: ...
@overload
def __init__(self,A2 : OCP.gp.gp_Ax2,Focal : float) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_Plane(Geom_ElementarySurface, Geom_Surface, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
Describes a plane in 3D space. A plane is positioned in space by a coordinate system (a gp_Ax3 object) such that the plane is defined by the origin, "X Direction" and "Y Direction" of this coordinate system. This coordinate system is the "local coordinate system" of the plane. The following apply: - Its "X Direction" and "Y Direction" are respectively the u and v parametric directions of the plane. - Its origin is the origin of the u and v parameters (also called the "origin" of the plane). - Its "main Direction" is a vector normal to the plane. This normal vector gives the orientation of the plane only if the local coordinate system is "direct". (The orientation of the plane is always defined by the "X Direction" and the "Y Direction" of its local coordinate system.) The parametric equation of the plane is: where O, XDir and YDir are respectively the origin, the "X Direction" and the "Y Direction" of the local coordinate system of the plane. The parametric range of the two parameters u and v is ] -infinity, +infinity [.Describes a plane in 3D space. A plane is positioned in space by a coordinate system (a gp_Ax3 object) such that the plane is defined by the origin, "X Direction" and "Y Direction" of this coordinate system. This coordinate system is the "local coordinate system" of the plane. The following apply: - Its "X Direction" and "Y Direction" are respectively the u and v parametric directions of the plane. - Its origin is the origin of the u and v parameters (also called the "origin" of the plane). - Its "main Direction" is a vector normal to the plane. This normal vector gives the orientation of the plane only if the local coordinate system is "direct". (The orientation of the plane is always defined by the "X Direction" and the "Y Direction" of its local coordinate system.) The parametric equation of the plane is: where O, XDir and YDir are respectively the origin, the "X Direction" and the "Y Direction" of the local coordinate system of the plane. The parametric range of the two parameters u and v is ] -infinity, +infinity [.Describes a plane in 3D space. A plane is positioned in space by a coordinate system (a gp_Ax3 object) such that the plane is defined by the origin, "X Direction" and "Y Direction" of this coordinate system. This coordinate system is the "local coordinate system" of the plane. The following apply: - Its "X Direction" and "Y Direction" are respectively the u and v parametric directions of the plane. - Its origin is the origin of the u and v parameters (also called the "origin" of the plane). - Its "main Direction" is a vector normal to the plane. This normal vector gives the orientation of the plane only if the local coordinate system is "direct". (The orientation of the plane is always defined by the "X Direction" and the "Y Direction" of its local coordinate system.) The parametric equation of the plane is: where O, XDir and YDir are respectively the origin, the "X Direction" and the "Y Direction" of the local coordinate system of the plane. The parametric range of the two parameters u and v is ] -infinity, +infinity [.
"""
def Axis(self) -> OCP.gp.gp_Ax1:
"""
Returns the main axis of the surface (ZAxis).
"""
def Bounds(self) -> tuple[float, float, float, float]:
"""
Returns the parametric bounds U1, U2, V1 and V2 of this plane. Because a plane is an infinite surface, the following is always true: - U1 = V1 = Standard_Real::RealFirst() - U2 = V2 = Standard_Real::RealLast().
"""
def Coefficients(self) -> tuple[float, float, float, float]:
"""
Computes the normalized coefficients of the plane's cartesian equation:
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
Returns GeomAbs_CN, the global continuity of any elementary surface.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this plane.
"""
def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None:
"""
Computes the point P (U, V) on <me>. where O is the "Location" point of the plane, XDir the "XDirection" and YDir the "YDirection" of the plane's local coordinate system.
"""
def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None:
"""
Computes the current point and the first derivatives in the directions U and V.
"""
def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None:
"""
Computes the current point, the first and the second derivatives in the directions U and V.
"""
def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None:
"""
Computes the current point, the first,the second and the third derivatives in the directions U and V.
"""
def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec:
"""
Computes the derivative of order Nu in the direction u and Nv in the direction v. Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCNu(self,N : int) -> bool:
"""
Returns True.
"""
def IsCNv(self,N : int) -> bool:
"""
Returns True.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsUClosed(self) -> bool:
"""
return False
"""
def IsUPeriodic(self) -> bool:
"""
return False.
"""
def IsVClosed(self) -> bool:
"""
return False
"""
def IsVPeriodic(self) -> bool:
"""
return False.
"""
def Location(self) -> OCP.gp.gp_Pnt:
"""
Returns the location point of the local coordinate system of the surface.
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d:
"""
Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns a scale centered on the origin with T.ScaleFactor
"""
def Pln(self) -> OCP.gp.gp_Pln:
"""
Converts this plane into a gp_Pln plane.
"""
def Position(self) -> OCP.gp.gp_Ax3:
"""
Returns the local coordinates system of the surface.
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def SetAxis(self,theA1 : OCP.gp.gp_Ax1) -> None:
"""
Changes the main axis (ZAxis) of the elementary surface.
"""
def SetLocation(self,theLoc : OCP.gp.gp_Pnt) -> None:
"""
Changes the location of the local coordinates system of the surface.
"""
def SetPln(self,Pl : OCP.gp.gp_Pln) -> None:
"""
Set <me> so that <me> has the same geometric properties as Pl.
"""
def SetPosition(self,theAx3 : OCP.gp.gp_Ax3) -> None:
"""
Changes the local coordinates system of the surface.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Applies the transformation T to this plane.
"""
def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]:
"""
Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method multiplies U and V by T.ScaleFactor()
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def UIso(self,U : float) -> Geom_Curve:
"""
Computes the U isoparametric curve. This is a Line parallel to the YAxis of the plane.
"""
def UPeriod(self) -> float:
"""
Returns the period of this surface in the u parametric direction. Raises if the surface is not uperiodic.
"""
def UReverse(self) -> None:
"""
Changes the orientation of this plane in the u (or v) parametric direction. The bounds of the plane are not changed but the given parametric direction is reversed. Hence the orientation of the surface is reversed.
"""
def UReversed(self) -> Geom_Surface:
"""
Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def UReversedParameter(self,U : float) -> float:
"""
Computes the u parameter on the modified plane, produced when reversing the u parametric of this plane, for any point of u parameter U on this plane. In the case of a plane, these methods return - -U.
"""
def VIso(self,V : float) -> Geom_Curve:
"""
Computes the V isoparametric curve. This is a Line parallel to the XAxis of the plane.
"""
def VPeriod(self) -> float:
"""
Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic.
"""
def VReverse(self) -> None:
"""
Changes the orientation of this plane in the u (or v) parametric direction. The bounds of the plane are not changed but the given parametric direction is reversed. Hence the orientation of the surface is reversed.
"""
def VReversed(self) -> Geom_Surface:
"""
Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def VReversedParameter(self,V : float) -> float:
"""
Computes the v parameter on the modified plane, produced when reversing the v parametric of this plane, for any point of v parameter V on this plane. In the case of a plane, these methods return -V.
"""
def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt:
"""
Computes the point of parameter (U, V) on the surface.
"""
@overload
def __init__(self,A : float,B : float,C : float,D : float) -> None: ...
@overload
def __init__(self,P : OCP.gp.gp_Pnt,V : OCP.gp.gp_Dir) -> None: ...
@overload
def __init__(self,Pl : OCP.gp.gp_Pln) -> None: ...
@overload
def __init__(self,A3 : OCP.gp.gp_Ax3) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_CartesianPoint(Geom_Point, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
Describes a point in 3D space. A Geom_CartesianPoint is defined by a gp_Pnt point, with its three Cartesian coordinates X, Y and Z.Describes a point in 3D space. A Geom_CartesianPoint is defined by a gp_Pnt point, with its three Cartesian coordinates X, Y and Z.Describes a point in 3D space. A Geom_CartesianPoint is defined by a gp_Pnt point, with its three Cartesian coordinates X, Y and Z.
"""
def Coord(self) -> tuple[float, float, float]:
"""
Returns the coordinates of <me>.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this point.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def Distance(self,Other : Geom_Point) -> float:
"""
Computes the distance between <me> and <Other>.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def Pnt(self) -> OCP.gp.gp_Pnt:
"""
Returns a non transient cartesian point with the same coordinates as <me>.
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def SetCoord(self,X : float,Y : float,Z : float) -> None:
"""
Assigns the coordinates X, Y and Z to this point.
"""
def SetPnt(self,P : OCP.gp.gp_Pnt) -> None:
"""
Set <me> to P.X(), P.Y(), P.Z() coordinates.
"""
def SetX(self,X : float) -> None:
"""
Changes the X coordinate of me.
"""
def SetY(self,Y : float) -> None:
"""
Changes the Y coordinate of me.
"""
def SetZ(self,Z : float) -> None:
"""
Changes the Z coordinate of me.
"""
def SquareDistance(self,Other : Geom_Point) -> float:
"""
Computes the square distance between <me> and <Other>.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Applies the transformation T to this point.
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def X(self) -> float:
"""
Returns the X coordinate of <me>.
"""
def Y(self) -> float:
"""
Returns the Y coordinate of <me>.
"""
def Z(self) -> float:
"""
Returns the Z coordinate of <me>.
"""
@overload
def __init__(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def __init__(self,X : float,Y : float,Z : float) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_RectangularTrimmedSurface(Geom_BoundedSurface, Geom_Surface, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
Describes a portion of a surface (a patch) limited by two values of the u parameter in the u parametric direction, and two values of the v parameter in the v parametric direction. The domain of the trimmed surface must be within the domain of the surface being trimmed. The trimmed surface is defined by: - the basis surface, and - the values (umin, umax) and (vmin, vmax) which limit it in the u and v parametric directions. The trimmed surface is built from a copy of the basis surface. Therefore, when the basis surface is modified the trimmed surface is not changed. Consequently, the trimmed surface does not necessarily have the same orientation as the basis surface. Warning: The case of surface being trimmed is periodic and parametrics values are outside the domain is possible. But, domain of the trimmed surface can be translated by (n X) the period.Describes a portion of a surface (a patch) limited by two values of the u parameter in the u parametric direction, and two values of the v parameter in the v parametric direction. The domain of the trimmed surface must be within the domain of the surface being trimmed. The trimmed surface is defined by: - the basis surface, and - the values (umin, umax) and (vmin, vmax) which limit it in the u and v parametric directions. The trimmed surface is built from a copy of the basis surface. Therefore, when the basis surface is modified the trimmed surface is not changed. Consequently, the trimmed surface does not necessarily have the same orientation as the basis surface. Warning: The case of surface being trimmed is periodic and parametrics values are outside the domain is possible. But, domain of the trimmed surface can be translated by (n X) the period.Describes a portion of a surface (a patch) limited by two values of the u parameter in the u parametric direction, and two values of the v parameter in the v parametric direction. The domain of the trimmed surface must be within the domain of the surface being trimmed. The trimmed surface is defined by: - the basis surface, and - the values (umin, umax) and (vmin, vmax) which limit it in the u and v parametric directions. The trimmed surface is built from a copy of the basis surface. Therefore, when the basis surface is modified the trimmed surface is not changed. Consequently, the trimmed surface does not necessarily have the same orientation as the basis surface. Warning: The case of surface being trimmed is periodic and parametrics values are outside the domain is possible. But, domain of the trimmed surface can be translated by (n X) the period.
"""
def BasisSurface(self) -> Geom_Surface:
"""
Returns the Basis surface of <me>.
"""
def Bounds(self) -> tuple[float, float, float, float]:
"""
Returns the parametric bounds U1, U2, V1 and V2 of this patch.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
Returns the continuity of the surface : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Surface, C2 : continuity of the second derivative all along the Surface, C3 : continuity of the third derivative all along the Surface, CN : the order of continuity is infinite.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this patch.
"""
def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None:
"""
Can be raised if the basis surface is an OffsetSurface.
"""
def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None:
"""
The returned derivatives have the same orientation as the derivatives of the basis surface even if the trimmed surface has not the same parametric orientation. Warning! UndefinedDerivative raised if the continuity of the surface is not C1.
"""
def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None:
"""
The returned derivatives have the same orientation as the derivatives of the basis surface even if the trimmed surface has not the same parametric orientation. Warning! UndefinedDerivative raised if the continuity of the surface is not C2.
"""
def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None:
"""
The returned derivatives have the same orientation as the derivatives of the basis surface even if the trimmed surface has not the same parametric orientation. Warning UndefinedDerivative raised if the continuity of the surface is not C3.
"""
def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec:
"""
The returned derivative has the same orientation as the derivative of the basis surface even if the trimmed surface has not the same parametric orientation. Warning! UndefinedDerivative raised if the continuity of the surface is not CNu in the U parametric direction and CNv in the V parametric direction. RangeError Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCNu(self,N : int) -> bool:
"""
Returns true if the order of derivation in the U parametric direction is N. Raised if N < 0.
"""
def IsCNv(self,N : int) -> bool:
"""
Returns true if the order of derivation in the V parametric direction is N. Raised if N < 0.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsUClosed(self) -> bool:
"""
Returns true if this patch is closed in the given parametric direction.
"""
def IsUPeriodic(self) -> bool:
"""
Returns true if this patch is periodic and not trimmed in the given parametric direction.
"""
def IsVClosed(self) -> bool:
"""
Returns true if this patch is closed in the given parametric direction.
"""
def IsVPeriodic(self) -> bool:
"""
Returns true if this patch is periodic and not trimmed in the given parametric direction.
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d:
"""
Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method calls the basis surface method.
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
@overload
def SetTrim(self,Param1 : float,Param2 : float,UTrim : bool,Sense : bool=True) -> None:
"""
Modifies this patch by changing the trim values applied to the original surface The u parametric direction of this patch is oriented from U1 to U2. The v parametric direction of this patch is oriented from V1 to V2. USense and VSense are used for the construction only if the surface is periodic in the corresponding parametric direction, and define the available part of the surface; by default in this case, this patch has the same orientation as the basis surface. Raised if The BasisSurface is not periodic in the UDirection and U1 or U2 are out of the bounds of the BasisSurface. The BasisSurface is not periodic in the VDirection and V1 or V2 are out of the bounds of the BasisSurface. U1 = U2 or V1 = V2
Modifies this patch by changing the trim values applied to the original surface The basis surface is trimmed only in one parametric direction: if UTrim is true, the surface is trimmed in the u parametric direction; if it is false, it is trimmed in the v parametric direction. In the "trimmed" direction, this patch is oriented from Param1 to Param2. If the basis surface is periodic in the "trimmed" direction, Sense defines its available part. By default in this case, this patch has the same orientation as the basis surface in this parametric direction. If the basis surface is closed or periodic in the other parametric direction (i.e. not the "trimmed" direction), this patch has the same characteristics as the basis surface in that parametric direction. Raised if The BasisSurface is not periodic in the considered direction and Param1 or Param2 are out of the bounds of the BasisSurface. Param1 = Param2
"""
@overload
def SetTrim(self,U1 : float,U2 : float,V1 : float,V2 : float,USense : bool=True,VSense : bool=True) -> None: ...
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Applies the transformation T to this patch. Warning As a consequence, the basis surface included in the data structure of this patch is also modified.
"""
def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]:
"""
Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method calls the basis surface method.
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def UIso(self,U : float) -> Geom_Curve:
"""
computes the U isoparametric curve.
"""
def UPeriod(self) -> float:
"""
Returns the period of this patch in the u parametric direction. raises if the surface is not uperiodic.
"""
def UReverse(self) -> None:
"""
Changes the orientation of this patch in the u parametric direction. The bounds of the surface are not changed, but the given parametric direction is reversed. Hence the orientation of the surface is reversed.
"""
def UReversed(self) -> Geom_Surface:
"""
Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def UReversedParameter(self,U : float) -> float:
"""
Computes the u parameter on the modified surface, produced by when reversing its u parametric direction, for any point of u parameter U on this patch.
"""
def VIso(self,V : float) -> Geom_Curve:
"""
Computes the V isoparametric curve.
"""
def VPeriod(self) -> float:
"""
Returns the period of this patch in the v parametric direction. raises if the surface is not vperiodic. value and derivatives
"""
def VReverse(self) -> None:
"""
Changes the orientation of this patch in the v parametric direction. The bounds of the surface are not changed, but the given parametric direction is reversed. Hence the orientation of the surface is reversed.
"""
def VReversed(self) -> Geom_Surface:
"""
Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def VReversedParameter(self,V : float) -> float:
"""
Computes the v parameter on the modified surface, produced by when reversing its v parametric direction, for any point of v parameter V on this patch.
"""
def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt:
"""
Computes the point of parameter (U, V) on the surface.
"""
@overload
def __init__(self,S : Geom_Surface,U1 : float,U2 : float,V1 : float,V2 : float,USense : bool=True,VSense : bool=True) -> None: ...
@overload
def __init__(self,S : Geom_Surface,Param1 : float,Param2 : float,UTrim : bool,Sense : bool=True) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_HSequenceOfBSplineSurface(Geom_SequenceOfBSplineSurface, OCP.NCollection.NCollection_BaseSequence, OCP.Standard.Standard_Transient):
def Allocator(self) -> OCP.NCollection.NCollection_BaseAllocator:
"""
Returns attached allocator
"""
@overload
def Append(self,theSequence : Geom_SequenceOfBSplineSurface) -> None:
"""
None
None
"""
@overload
def Append(self,theItem : Geom_BSplineSurface) -> None: ...
def Assign(self,theOther : Geom_SequenceOfBSplineSurface) -> Geom_SequenceOfBSplineSurface:
"""
Replace this sequence by the items of theOther. This method does not change the internal allocator.
"""
def ChangeFirst(self) -> Geom_BSplineSurface:
"""
First item access
"""
def ChangeLast(self) -> Geom_BSplineSurface:
"""
Last item access
"""
def ChangeSequence(self) -> Geom_SequenceOfBSplineSurface:
"""
None
"""
def ChangeValue(self,theIndex : int) -> Geom_BSplineSurface:
"""
Variable item access by theIndex
"""
def Clear(self,theAllocator : OCP.NCollection.NCollection_BaseAllocator=None) -> None:
"""
Clear the items out, take a new allocator if non null
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def Exchange(self,I : int,J : int) -> None:
"""
Exchange two members
"""
def First(self) -> Geom_BSplineSurface:
"""
First item access
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
@overload
def InsertAfter(self,theIndex : int,theSeq : Geom_SequenceOfBSplineSurface) -> None:
"""
InsertAfter theIndex another sequence (making it empty)
InsertAfter theIndex theItem
"""
@overload
def InsertAfter(self,theIndex : int,theItem : Geom_BSplineSurface) -> None: ...
@overload
def InsertBefore(self,theIndex : int,theSeq : Geom_SequenceOfBSplineSurface) -> None:
"""
InsertBefore theIndex theItem
InsertBefore theIndex another sequence (making it empty)
"""
@overload
def InsertBefore(self,theIndex : int,theItem : Geom_BSplineSurface) -> None: ...
def IsEmpty(self) -> bool:
"""
Empty query
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def Last(self) -> Geom_BSplineSurface:
"""
Last item access
"""
def Length(self) -> int:
"""
Number of items
"""
def Lower(self) -> int:
"""
Method for consistency with other collections.
"""
@overload
def Prepend(self,theSeq : Geom_SequenceOfBSplineSurface) -> None:
"""
Prepend one item
Prepend another sequence (making it empty)
"""
@overload
def Prepend(self,theItem : Geom_BSplineSurface) -> None: ...
@overload
def Remove(self,theIndex : int) -> None:
"""
Remove one item
Remove range of items
"""
@overload
def Remove(self,theFromIndex : int,theToIndex : int) -> None: ...
def Reverse(self) -> None:
"""
Reverse sequence
"""
def Sequence(self) -> Geom_SequenceOfBSplineSurface:
"""
None
"""
def SetValue(self,theIndex : int,theItem : Geom_BSplineSurface) -> None:
"""
Set item value by theIndex
"""
def Size(self) -> int:
"""
Number of items
"""
def Split(self,theIndex : int,theSeq : Geom_SequenceOfBSplineSurface) -> None:
"""
Split in two sequences
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Upper(self) -> int:
"""
Method for consistency with other collections.
"""
def Value(self,theIndex : int) -> Geom_BSplineSurface:
"""
Constant item access by theIndex
"""
def __bool__(self) -> bool: ...
def __call__(self,theIndex : int) -> Geom_BSplineSurface:
"""
Constant operator()
Variable operator()
"""
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,theOther : Geom_SequenceOfBSplineSurface) -> None: ...
def __iter__(self) -> Iterator[Geom_BSplineSurface]: ...
def __len__(self) -> int: ...
@staticmethod
def delNode_s(theNode : NCollection_SeqNode,theAl : OCP.NCollection.NCollection_BaseAllocator) -> None:
"""
Static deleter to be passed to BaseSequence
"""
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_SphericalSurface(Geom_ElementarySurface, Geom_Surface, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
Describes a sphere. A sphere is defined by its radius, and is positioned in space by a coordinate system (a gp_Ax3 object), the origin of which is the center of the sphere. This coordinate system is the "local coordinate system" of the sphere. The following apply: - Rotation around its "main Axis", in the trigonometric sense given by the "X Direction" and the "Y Direction", defines the u parametric direction. - Its "X Axis" gives the origin for the u parameter. - The "reference meridian" of the sphere is a half-circle, of radius equal to the radius of the sphere. It is located in the plane defined by the origin, "X Direction" and "main Direction", centered on the origin, and positioned on the positive side of the "X Axis". - Rotation around the "Y Axis" gives the v parameter on the reference meridian. - The "X Axis" gives the origin of the v parameter on the reference meridian. - The v parametric direction is oriented by the "main Direction", i.e. when v increases, the Z coordinate increases. (This implies that the "Y Direction" orients the reference meridian only when the local coordinate system is indirect.) - The u isoparametric curve is a half-circle obtained by rotating the reference meridian of the sphere through an angle u around the "main Axis", in the trigonometric sense defined by the "X Direction" and the "Y Direction". The parametric equation of the sphere is: P(u,v) = O + R*cos(v)*(cos(u)*XDir + sin(u)*YDir)+R*sin(v)*ZDir where: - O, XDir, YDir and ZDir are respectively the origin, the "X Direction", the "Y Direction" and the "Z Direction" of its local coordinate system, and - R is the radius of the sphere. The parametric range of the two parameters is: - [ 0, 2.*Pi ] for u, and - [ - Pi/2., + Pi/2. ] for v.Describes a sphere. A sphere is defined by its radius, and is positioned in space by a coordinate system (a gp_Ax3 object), the origin of which is the center of the sphere. This coordinate system is the "local coordinate system" of the sphere. The following apply: - Rotation around its "main Axis", in the trigonometric sense given by the "X Direction" and the "Y Direction", defines the u parametric direction. - Its "X Axis" gives the origin for the u parameter. - The "reference meridian" of the sphere is a half-circle, of radius equal to the radius of the sphere. It is located in the plane defined by the origin, "X Direction" and "main Direction", centered on the origin, and positioned on the positive side of the "X Axis". - Rotation around the "Y Axis" gives the v parameter on the reference meridian. - The "X Axis" gives the origin of the v parameter on the reference meridian. - The v parametric direction is oriented by the "main Direction", i.e. when v increases, the Z coordinate increases. (This implies that the "Y Direction" orients the reference meridian only when the local coordinate system is indirect.) - The u isoparametric curve is a half-circle obtained by rotating the reference meridian of the sphere through an angle u around the "main Axis", in the trigonometric sense defined by the "X Direction" and the "Y Direction". The parametric equation of the sphere is: P(u,v) = O + R*cos(v)*(cos(u)*XDir + sin(u)*YDir)+R*sin(v)*ZDir where: - O, XDir, YDir and ZDir are respectively the origin, the "X Direction", the "Y Direction" and the "Z Direction" of its local coordinate system, and - R is the radius of the sphere. The parametric range of the two parameters is: - [ 0, 2.*Pi ] for u, and - [ - Pi/2., + Pi/2. ] for v.Describes a sphere. A sphere is defined by its radius, and is positioned in space by a coordinate system (a gp_Ax3 object), the origin of which is the center of the sphere. This coordinate system is the "local coordinate system" of the sphere. The following apply: - Rotation around its "main Axis", in the trigonometric sense given by the "X Direction" and the "Y Direction", defines the u parametric direction. - Its "X Axis" gives the origin for the u parameter. - The "reference meridian" of the sphere is a half-circle, of radius equal to the radius of the sphere. It is located in the plane defined by the origin, "X Direction" and "main Direction", centered on the origin, and positioned on the positive side of the "X Axis". - Rotation around the "Y Axis" gives the v parameter on the reference meridian. - The "X Axis" gives the origin of the v parameter on the reference meridian. - The v parametric direction is oriented by the "main Direction", i.e. when v increases, the Z coordinate increases. (This implies that the "Y Direction" orients the reference meridian only when the local coordinate system is indirect.) - The u isoparametric curve is a half-circle obtained by rotating the reference meridian of the sphere through an angle u around the "main Axis", in the trigonometric sense defined by the "X Direction" and the "Y Direction". The parametric equation of the sphere is: P(u,v) = O + R*cos(v)*(cos(u)*XDir + sin(u)*YDir)+R*sin(v)*ZDir where: - O, XDir, YDir and ZDir are respectively the origin, the "X Direction", the "Y Direction" and the "Z Direction" of its local coordinate system, and - R is the radius of the sphere. The parametric range of the two parameters is: - [ 0, 2.*Pi ] for u, and - [ - Pi/2., + Pi/2. ] for v.
"""
def Area(self) -> float:
"""
Computes the aera of the spherical surface.
"""
def Axis(self) -> OCP.gp.gp_Ax1:
"""
Returns the main axis of the surface (ZAxis).
"""
def Bounds(self) -> tuple[float, float, float, float]:
"""
Returns the parametric bounds U1, U2, V1 and V2 of this sphere. For a sphere: U1 = 0, U2 = 2*PI, V1 = -PI/2, V2 = PI/2.
"""
def Coefficients(self) -> tuple[float, float, float, float, float, float, float, float, float, float]:
"""
Returns the coefficients of the implicit equation of the quadric in the absolute cartesian coordinates system : These coefficients are normalized. A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) + 2.(C1.X + C2.Y + C3.Z) + D = 0.0
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
Returns GeomAbs_CN, the global continuity of any elementary surface.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this sphere.
"""
def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None:
"""
Computes the point P (U, V) on the surface. P (U, V) = Loc + Radius * Sin (V) * Zdir + Radius * Cos (V) * (cos (U) * XDir + sin (U) * YDir) where Loc is the origin of the placement plane (XAxis, YAxis) XDir is the direction of the XAxis and YDir the direction of the YAxis and ZDir the direction of the ZAxis.
"""
def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None:
"""
Computes the current point and the first derivatives in the directions U and V.
"""
def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None:
"""
Computes the current point, the first and the second derivatives in the directions U and V.
"""
def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None:
"""
Computes the current point, the first,the second and the third derivatives in the directions U and V.
"""
def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec:
"""
Computes the derivative of order Nu in the direction u and Nv in the direction v. Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCNu(self,N : int) -> bool:
"""
Returns True.
"""
def IsCNv(self,N : int) -> bool:
"""
Returns True.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsUClosed(self) -> bool:
"""
Returns True.
"""
def IsUPeriodic(self) -> bool:
"""
Returns True.
"""
def IsVClosed(self) -> bool:
"""
Returns False.
"""
def IsVPeriodic(self) -> bool:
"""
Returns False.
"""
def Location(self) -> OCP.gp.gp_Pnt:
"""
Returns the location point of the local coordinate system of the surface.
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d:
"""
Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns an identity transformation
"""
def Position(self) -> OCP.gp.gp_Ax3:
"""
Returns the local coordinates system of the surface.
"""
def Radius(self) -> float:
"""
Computes the coefficients of the implicit equation of this quadric in the absolute Cartesian coordinate system: A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) + 2.(C1.X + C2.Y + C3.Z) + D = 0.0 An implicit normalization is applied (i.e. A1 = A2 = 1. in the local coordinate system of this sphere).
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def SetAxis(self,theA1 : OCP.gp.gp_Ax1) -> None:
"""
Changes the main axis (ZAxis) of the elementary surface.
"""
def SetLocation(self,theLoc : OCP.gp.gp_Pnt) -> None:
"""
Changes the location of the local coordinates system of the surface.
"""
def SetPosition(self,theAx3 : OCP.gp.gp_Ax3) -> None:
"""
Changes the local coordinates system of the surface.
"""
def SetRadius(self,R : float) -> None:
"""
Assigns the value R to the radius of this sphere. Exceptions Standard_ConstructionError if R is less than 0.0.
"""
def SetSphere(self,S : OCP.gp.gp_Sphere) -> None:
"""
Converts the gp_Sphere S into this sphere.
"""
def Sphere(self) -> OCP.gp.gp_Sphere:
"""
Returns a non persistent sphere with the same geometric properties as <me>.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Applies the transformation T to this sphere.
"""
def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]:
"""
Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method does not change <U> and <V>
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def UIso(self,U : float) -> Geom_Curve:
"""
Computes the U isoparametric curve. The U isoparametric curves of the surface are defined by the section of the spherical surface with plane obtained by rotation of the plane (Location, XAxis, ZAxis) around ZAxis. This plane defines the origin of parametrization u. For a SphericalSurface the UIso curve is a Circle. Warnings : The radius of this circle can be zero.
"""
def UPeriod(self) -> float:
"""
Returns the period of this surface in the u parametric direction. Raises if the surface is not uperiodic.
"""
def UReverse(self) -> None:
"""
Reverses the U parametric direction of the surface.
"""
def UReversed(self) -> Geom_Surface:
"""
Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def UReversedParameter(self,U : float) -> float:
"""
Computes the u parameter on the modified surface, when reversing its u parametric direction, for any point of u parameter U on this sphere. In the case of a sphere, these functions returns 2.PI - U.
"""
def VIso(self,V : float) -> Geom_Curve:
"""
Computes the V isoparametric curve. The V isoparametric curves of the surface are defined by the section of the spherical surface with plane parallel to the plane (Location, XAxis, YAxis). This plane defines the origin of parametrization V. Be careful if V is close to PI/2 or 3*PI/2 the radius of the circle becomes tiny. It is not forbidden in this toolkit to create circle with radius = 0.0 For a SphericalSurface the VIso curve is a Circle. Warnings : The radius of this circle can be zero.
"""
def VPeriod(self) -> float:
"""
Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic.
"""
def VReverse(self) -> None:
"""
Reverses the V parametric direction of the surface.
"""
def VReversed(self) -> Geom_Surface:
"""
Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def VReversedParameter(self,V : float) -> float:
"""
Computes the v parameter on the modified surface, when reversing its v parametric direction, for any point of v parameter V on this sphere. In the case of a sphere, these functions returns -U.
"""
def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt:
"""
Computes the point of parameter (U, V) on the surface.
"""
def Volume(self) -> float:
"""
Computes the volume of the spherical surface.
"""
@overload
def __init__(self,A3 : OCP.gp.gp_Ax3,Radius : float) -> None: ...
@overload
def __init__(self,S : OCP.gp.gp_Sphere) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_BezierSurface(Geom_BoundedSurface, Geom_Surface, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
Describes a rational or non-rational Bezier surface. - A non-rational Bezier surface is defined by a table of poles (also known as control points). - A rational Bezier surface is defined by a table of poles with varying associated weights. This data is manipulated using two associative 2D arrays: - the poles table, which is a 2D array of gp_Pnt, and - the weights table, which is a 2D array of reals. The bounds of these arrays are: - 1 and NbUPoles for the row bounds, where NbUPoles is the number of poles of the surface in the u parametric direction, and - 1 and NbVPoles for the column bounds, where NbVPoles is the number of poles of the surface in the v parametric direction. The poles of the surface, the "control points", are the points used to shape and reshape the surface. They comprise a rectangular network of points: - The points (1, 1), (NbUPoles, 1), (1, NbVPoles) and (NbUPoles, NbVPoles) are the four parametric "corners" of the surface. - The first column of poles and the last column of poles define two Bezier curves which delimit the surface in the v parametric direction. These are the v isoparametric curves corresponding to values 0 and 1 of the v parameter. - The first row of poles and the last row of poles define two Bezier curves which delimit the surface in the u parametric direction. These are the u isoparametric curves corresponding to values 0 and 1 of the u parameter. It is more difficult to define a geometrical significance for the weights. However they are useful for representing a quadric surface precisely. Moreover, if the weights of all the poles are equal, the surface has a polynomial equation, and hence is a "non-rational surface". The non-rational surface is a special, but frequently used, case, where all poles have identical weights. The weights are defined and used only in the case of a rational surface. This rational characteristic is defined in each parametric direction. Hence, a surface can be rational in the u parametric direction, and non-rational in the v parametric direction. Likewise, the degree of a surface is defined in each parametric direction. The degree of a Bezier surface in a given parametric direction is equal to the number of poles of the surface in that parametric direction, minus 1. This must be greater than or equal to 1. However, the degree for a Geom_BezierSurface is limited to a value of (25) which is defined and controlled by the system. This value is returned by the function MaxDegree. The parameter range for a Bezier surface is [ 0, 1 ] in the two parametric directions. A Bezier surface can also be closed, or open, in each parametric direction. If the first row of poles is identical to the last row of poles, the surface is closed in the u parametric direction. If the first column of poles is identical to the last column of poles, the surface is closed in the v parametric direction. The continuity of a Bezier surface is infinite in the u parametric direction and the in v parametric direction. Note: It is not possible to build a Bezier surface with negative weights. Any weight value that is less than, or equal to, gp::Resolution() is considered to be zero. Two weight values, W1 and W2, are considered equal if: |W2-W1| <= gp::Resolution()Describes a rational or non-rational Bezier surface. - A non-rational Bezier surface is defined by a table of poles (also known as control points). - A rational Bezier surface is defined by a table of poles with varying associated weights. This data is manipulated using two associative 2D arrays: - the poles table, which is a 2D array of gp_Pnt, and - the weights table, which is a 2D array of reals. The bounds of these arrays are: - 1 and NbUPoles for the row bounds, where NbUPoles is the number of poles of the surface in the u parametric direction, and - 1 and NbVPoles for the column bounds, where NbVPoles is the number of poles of the surface in the v parametric direction. The poles of the surface, the "control points", are the points used to shape and reshape the surface. They comprise a rectangular network of points: - The points (1, 1), (NbUPoles, 1), (1, NbVPoles) and (NbUPoles, NbVPoles) are the four parametric "corners" of the surface. - The first column of poles and the last column of poles define two Bezier curves which delimit the surface in the v parametric direction. These are the v isoparametric curves corresponding to values 0 and 1 of the v parameter. - The first row of poles and the last row of poles define two Bezier curves which delimit the surface in the u parametric direction. These are the u isoparametric curves corresponding to values 0 and 1 of the u parameter. It is more difficult to define a geometrical significance for the weights. However they are useful for representing a quadric surface precisely. Moreover, if the weights of all the poles are equal, the surface has a polynomial equation, and hence is a "non-rational surface". The non-rational surface is a special, but frequently used, case, where all poles have identical weights. The weights are defined and used only in the case of a rational surface. This rational characteristic is defined in each parametric direction. Hence, a surface can be rational in the u parametric direction, and non-rational in the v parametric direction. Likewise, the degree of a surface is defined in each parametric direction. The degree of a Bezier surface in a given parametric direction is equal to the number of poles of the surface in that parametric direction, minus 1. This must be greater than or equal to 1. However, the degree for a Geom_BezierSurface is limited to a value of (25) which is defined and controlled by the system. This value is returned by the function MaxDegree. The parameter range for a Bezier surface is [ 0, 1 ] in the two parametric directions. A Bezier surface can also be closed, or open, in each parametric direction. If the first row of poles is identical to the last row of poles, the surface is closed in the u parametric direction. If the first column of poles is identical to the last column of poles, the surface is closed in the v parametric direction. The continuity of a Bezier surface is infinite in the u parametric direction and the in v parametric direction. Note: It is not possible to build a Bezier surface with negative weights. Any weight value that is less than, or equal to, gp::Resolution() is considered to be zero. Two weight values, W1 and W2, are considered equal if: |W2-W1| <= gp::Resolution()Describes a rational or non-rational Bezier surface. - A non-rational Bezier surface is defined by a table of poles (also known as control points). - A rational Bezier surface is defined by a table of poles with varying associated weights. This data is manipulated using two associative 2D arrays: - the poles table, which is a 2D array of gp_Pnt, and - the weights table, which is a 2D array of reals. The bounds of these arrays are: - 1 and NbUPoles for the row bounds, where NbUPoles is the number of poles of the surface in the u parametric direction, and - 1 and NbVPoles for the column bounds, where NbVPoles is the number of poles of the surface in the v parametric direction. The poles of the surface, the "control points", are the points used to shape and reshape the surface. They comprise a rectangular network of points: - The points (1, 1), (NbUPoles, 1), (1, NbVPoles) and (NbUPoles, NbVPoles) are the four parametric "corners" of the surface. - The first column of poles and the last column of poles define two Bezier curves which delimit the surface in the v parametric direction. These are the v isoparametric curves corresponding to values 0 and 1 of the v parameter. - The first row of poles and the last row of poles define two Bezier curves which delimit the surface in the u parametric direction. These are the u isoparametric curves corresponding to values 0 and 1 of the u parameter. It is more difficult to define a geometrical significance for the weights. However they are useful for representing a quadric surface precisely. Moreover, if the weights of all the poles are equal, the surface has a polynomial equation, and hence is a "non-rational surface". The non-rational surface is a special, but frequently used, case, where all poles have identical weights. The weights are defined and used only in the case of a rational surface. This rational characteristic is defined in each parametric direction. Hence, a surface can be rational in the u parametric direction, and non-rational in the v parametric direction. Likewise, the degree of a surface is defined in each parametric direction. The degree of a Bezier surface in a given parametric direction is equal to the number of poles of the surface in that parametric direction, minus 1. This must be greater than or equal to 1. However, the degree for a Geom_BezierSurface is limited to a value of (25) which is defined and controlled by the system. This value is returned by the function MaxDegree. The parameter range for a Bezier surface is [ 0, 1 ] in the two parametric directions. A Bezier surface can also be closed, or open, in each parametric direction. If the first row of poles is identical to the last row of poles, the surface is closed in the u parametric direction. If the first column of poles is identical to the last column of poles, the surface is closed in the v parametric direction. The continuity of a Bezier surface is infinite in the u parametric direction and the in v parametric direction. Note: It is not possible to build a Bezier surface with negative weights. Any weight value that is less than, or equal to, gp::Resolution() is considered to be zero. Two weight values, W1 and W2, are considered equal if: |W2-W1| <= gp::Resolution()
"""
def Bounds(self) -> tuple[float, float, float, float]:
"""
Returns the parametric bounds U1, U2, V1 and V2 of this Bezier surface. In the case of a Bezier surface, this function returns U1 = 0, V1 = 0, U2 = 1, V2 = 1.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
Returns the continuity of the surface CN : the order of continuity is infinite.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this Bezier surface.
"""
def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None:
"""
None
"""
def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None:
"""
None
"""
def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None:
"""
None
"""
def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None:
"""
Computes P, the point of parameters (U, V) of this Bezier surface, and - one or more of the following sets of vectors: - D1U and D1V, the first derivative vectors at this point, - D2U, D2V and D2UV, the second derivative vectors at this point, - D3U, D3V, D3UUV and D3UVV, the third derivative vectors at this point. Note: The parameters U and V can be outside the bounds of the surface.
"""
def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec:
"""
Computes the derivative of order Nu in the u parametric direction, and Nv in the v parametric direction, at the point of parameters (U, V) of this Bezier surface. Note: The parameters U and V can be outside the bounds of the surface. Exceptions Standard_RangeError if: - Nu + Nv is less than 1, or Nu or Nv is negative.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def ExchangeUV(self) -> None:
"""
Exchanges the direction U and V on a Bezier surface As a consequence: - the poles and weights tables are transposed, - degrees, rational characteristics and so on are exchanged between the two parametric directions, and - the orientation of the surface is reversed.
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def Increase(self,UDeg : int,VDeg : int) -> None:
"""
Increases the degree of this Bezier surface in the two parametric directions.
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
@overload
def InsertPoleColAfter(self,VIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt,CPoleWeights : OCP.TColStd.TColStd_Array1OfReal) -> None:
"""
Inserts a column of poles. If the surface is rational the weights values associated with CPoles are equal defaulted to 1.
Inserts a column of poles and weights. If the surface was non-rational it can become rational.
"""
@overload
def InsertPoleColAfter(self,VIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt) -> None: ...
@overload
def InsertPoleColBefore(self,VIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt,CPoleWeights : OCP.TColStd.TColStd_Array1OfReal) -> None:
"""
Inserts a column of poles. If the surface is rational the weights values associated with CPoles are equal defaulted to 1.
Inserts a column of poles and weights. If the surface was non-rational it can become rational.
"""
@overload
def InsertPoleColBefore(self,VIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt) -> None: ...
@overload
def InsertPoleRowAfter(self,UIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt) -> None:
"""
Inserts a row of poles. If the surface is rational the weights values associated with CPoles are equal defaulted to 1.
Inserts a row of poles and weights. If the surface was non-rational it can become rational.
"""
@overload
def InsertPoleRowAfter(self,UIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt,CPoleWeights : OCP.TColStd.TColStd_Array1OfReal) -> None: ...
@overload
def InsertPoleRowBefore(self,UIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt,CPoleWeights : OCP.TColStd.TColStd_Array1OfReal) -> None:
"""
Inserts a row of poles. If the surface is rational the weights values associated with CPoles are equal defaulted to 1.
Inserts a row of poles and weights. If the surface was non-rational it can become rational.
"""
@overload
def InsertPoleRowBefore(self,UIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt) -> None: ...
def IsCNu(self,N : int) -> bool:
"""
Returns True, a Bezier surface is always CN
"""
def IsCNv(self,N : int) -> bool:
"""
Returns True, a BezierSurface is always CN
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsUClosed(self) -> bool:
"""
Returns True if the first control points row and the last control points row are identical. The tolerance criterion is Resolution from package gp.
"""
def IsUPeriodic(self) -> bool:
"""
Returns False.
"""
def IsURational(self) -> bool:
"""
Returns False if the weights are identical in the U direction, The tolerance criterion is Resolution from package gp. Example : |1.0, 1.0, 1.0| if Weights = |0.5, 0.5, 0.5| returns False |2.0, 2.0, 2.0|
"""
def IsVClosed(self) -> bool:
"""
Returns True if the first control points column and the last control points column are identical. The tolerance criterion is Resolution from package gp.
"""
def IsVPeriodic(self) -> bool:
"""
Returns False.
"""
def IsVRational(self) -> bool:
"""
Returns False if the weights are identical in the V direction, The tolerance criterion is Resolution from package gp. Example : |1.0, 2.0, 0.5| if Weights = |1.0, 2.0, 0.5| returns False |1.0, 2.0, 0.5|
"""
@staticmethod
def MaxDegree_s() -> int:
"""
Returns the value of the maximum polynomial degree of a Bezier surface. This value is 25.
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def NbUPoles(self) -> int:
"""
Returns the number of poles in the U direction.
"""
def NbVPoles(self) -> int:
"""
Returns the number of poles in the V direction.
"""
def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d:
"""
Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns an identity transformation
"""
def Pole(self,UIndex : int,VIndex : int) -> OCP.gp.gp_Pnt:
"""
Returns the pole of range UIndex, VIndex Raised if UIndex < 1 or UIndex > NbUPoles, or VIndex < 1 or VIndex > NbVPoles.
"""
@overload
def Poles(self,P : OCP.TColgp.TColgp_Array2OfPnt) -> None:
"""
Returns the poles of the Bezier surface.
Returns the poles of the Bezier surface.
"""
@overload
def Poles(self) -> OCP.TColgp.TColgp_Array2OfPnt: ...
def RemovePoleCol(self,VIndex : int) -> None:
"""
Removes a column of poles. If the surface was rational it can become non-rational.
"""
def RemovePoleRow(self,UIndex : int) -> None:
"""
Removes a row of poles. If the surface was rational it can become non-rational.
"""
def Resolution(self,Tolerance3D : float) -> tuple[float, float]:
"""
Computes two tolerance values for this Bezier surface, based on the given tolerance in 3D space Tolerance3D. The tolerances computed are: - UTolerance in the u parametric direction, and - VTolerance in the v parametric direction. If f(u,v) is the equation of this Bezier surface, UTolerance and VTolerance guarantee that: | u1 - u0 | < UTolerance and | v1 - v0 | < VTolerance ====> |f (u1,v1) - f (u0,v0)| < Tolerance3D
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def Segment(self,U1 : float,U2 : float,V1 : float,V2 : float) -> None:
"""
Modifies this Bezier surface by segmenting it between U1 and U2 in the u parametric direction, and between V1 and V2 in the v parametric direction. U1, U2, V1, and V2 can be outside the bounds of this surface. - U1 and U2 isoparametric Bezier curves, segmented between V1 and V2, become the two bounds of the surface in the v parametric direction (0. and 1. u isoparametric curves). - V1 and V2 isoparametric Bezier curves, segmented between U1 and U2, become the two bounds of the surface in the u parametric direction (0. and 1. v isoparametric curves). The poles and weights tables are modified, but the degree of this surface in the u and v parametric directions does not change. U1 can be greater than U2, and V1 can be greater than V2. In these cases, the corresponding parametric direction is inverted. The orientation of the surface is inverted if one (and only one) parametric direction is inverted.
"""
@overload
def SetPole(self,UIndex : int,VIndex : int,P : OCP.gp.gp_Pnt) -> None:
"""
Modifies a pole value. If the surface is rational the weight of range (UIndex, VIndex) is not modified.
Substitutes the pole and the weight of range UIndex, VIndex. If the surface <me> is not rational it can become rational. if the surface was rational it can become non-rational.
"""
@overload
def SetPole(self,UIndex : int,VIndex : int,P : OCP.gp.gp_Pnt,Weight : float) -> None: ...
@overload
def SetPoleCol(self,VIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt) -> None:
"""
Modifies a column of poles. The length of CPoles can be lower but not greater than NbUPoles so you can modify just a part of the column. Raised if VIndex < 1 or VIndex > NbVPoles
Modifies a column of poles. If the surface was rational it can become non-rational If the surface was non-rational it can become rational. The length of CPoles can be lower but not greater than NbUPoles so you can modify just a part of the column. Raised if VIndex < 1 or VIndex > NbVPoles
"""
@overload
def SetPoleCol(self,VIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt,CPoleWeights : OCP.TColStd.TColStd_Array1OfReal) -> None: ...
@overload
def SetPoleRow(self,UIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt) -> None:
"""
Modifies a row of poles. The length of CPoles can be lower but not greater than NbVPoles so you can modify just a part of the row. Raised if UIndex < 1 or UIndex > NbUPoles
Modifies a row of poles and weights. If the surface was rational it can become non-rational. If the surface was non-rational it can become rational. The length of CPoles can be lower but not greater than NbVPoles so you can modify just a part of the row. Raised if UIndex < 1 or UIndex > NbUPoles
"""
@overload
def SetPoleRow(self,UIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt,CPoleWeights : OCP.TColStd.TColStd_Array1OfReal) -> None: ...
def SetWeight(self,UIndex : int,VIndex : int,Weight : float) -> None:
"""
Modifies the weight of the pole of range UIndex, VIndex. If the surface was non-rational it can become rational. If the surface was rational it can become non-rational.
"""
def SetWeightCol(self,VIndex : int,CPoleWeights : OCP.TColStd.TColStd_Array1OfReal) -> None:
"""
Modifies a column of weights. If the surface was rational it can become non-rational. If the surface was non-rational it can become rational. The length of CPoleWeights can be lower but not greater than NbUPoles. Raised if VIndex < 1 or VIndex > NbVPoles
"""
def SetWeightRow(self,UIndex : int,CPoleWeights : OCP.TColStd.TColStd_Array1OfReal) -> None:
"""
Modifies a row of weights. If the surface was rational it can become non-rational. If the surface was non-rational it can become rational. The length of CPoleWeights can be lower but not greater than NbVPoles. Raised if UIndex < 1 or UIndex > NbUPoles
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Applies the transformation T to this Bezier surface.
"""
def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]:
"""
Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method does not change <U> and <V>
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def UDegree(self) -> int:
"""
Returns the degree of the surface in the U direction it is NbUPoles - 1
"""
def UIso(self,U : float) -> Geom_Curve:
"""
Computes the U isoparametric curve. For a Bezier surface the UIso curve is a Bezier curve.
"""
def UPeriod(self) -> float:
"""
Returns the period of this surface in the u parametric direction. Raises if the surface is not uperiodic.
"""
def UReverse(self) -> None:
"""
Changes the orientation of this Bezier surface in the u parametric direction. The bounds of the surface are not changed, but the given parametric direction is reversed. Hence, the orientation of the surface is reversed.
"""
def UReversed(self) -> Geom_Surface:
"""
Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def UReversedParameter(self,U : float) -> float:
"""
Computes the u (or v) parameter on the modified surface, produced by reversing its u (or v) parametric direction, for any point of u parameter U (or of v parameter V) on this Bezier surface. In the case of a Bezier surface, these functions return respectively: - 1.-U, or 1.-V.
"""
def VDegree(self) -> int:
"""
Returns the degree of the surface in the V direction it is NbVPoles - 1
"""
def VIso(self,V : float) -> Geom_Curve:
"""
Computes the V isoparametric curve. For a Bezier surface the VIso curve is a Bezier curve.
"""
def VPeriod(self) -> float:
"""
Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic.
"""
def VReverse(self) -> None:
"""
Changes the orientation of this Bezier surface in the v parametric direction. The bounds of the surface are not changed, but the given parametric direction is reversed. Hence, the orientation of the surface is reversed.
"""
def VReversed(self) -> Geom_Surface:
"""
Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def VReversedParameter(self,V : float) -> float:
"""
Computes the u (or v) parameter on the modified surface, produced by reversing its u (or v) parametric direction, for any point of u parameter U (or of v parameter V) on this Bezier surface. In the case of a Bezier surface, these functions return respectively: - 1.-U, or 1.-V.
"""
def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt:
"""
Computes the point of parameter (U, V) on the surface.
"""
def Weight(self,UIndex : int,VIndex : int) -> float:
"""
Returns the weight of range UIndex, VIndex
"""
@overload
def Weights(self) -> OCP.TColStd.TColStd_Array2OfReal:
"""
Returns the weights of the Bezier surface.
Returns the weights of the Bezier surface.
"""
@overload
def Weights(self,W : OCP.TColStd.TColStd_Array2OfReal) -> None: ...
@overload
def __init__(self,SurfacePoles : OCP.TColgp.TColgp_Array2OfPnt,PoleWeights : OCP.TColStd.TColStd_Array2OfReal) -> None: ...
@overload
def __init__(self,SurfacePoles : OCP.TColgp.TColgp_Array2OfPnt) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_SweptSurface(Geom_Surface, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
Describes the common behavior for surfaces constructed by sweeping a curve with another curve. The Geom package provides two concrete derived surfaces: surface of revolution (a revolved surface), and surface of linear extrusion (an extruded surface).Describes the common behavior for surfaces constructed by sweeping a curve with another curve. The Geom package provides two concrete derived surfaces: surface of revolution (a revolved surface), and surface of linear extrusion (an extruded surface).Describes the common behavior for surfaces constructed by sweeping a curve with another curve. The Geom package provides two concrete derived surfaces: surface of revolution (a revolved surface), and surface of linear extrusion (an extruded surface).
"""
def BasisCurve(self) -> Geom_Curve:
"""
Returns the referenced curve of the surface. For a surface of revolution it is the revolution curve, for a surface of linear extrusion it is the extruded curve.
"""
def Bounds(self) -> tuple[float, float, float, float]:
"""
Returns the parametric bounds U1, U2, V1 and V2 of this surface. If the surface is infinite, this function can return a value equal to Precision::Infinite: instead of Standard_Real::LastReal.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
returns the continuity of the surface : C0 : only geometric continuity, C1 : continuity of the first derivative all along the surface, C2 : continuity of the second derivative all along the surface, C3 : continuity of the third derivative all along the surface, G1 : tangency continuity all along the surface, G2 : curvature continuity all along the surface, CN : the order of continuity is infinite.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this geometric object.
"""
def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None:
"""
Computes the point of parameter U,V on the surface.
"""
def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None:
"""
Computes the point P and the first derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C1.
"""
def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None:
"""
Computes the point P, the first and the second derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C2.
"""
def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None:
"""
Computes the point P, the first,the second and the third derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C2.
"""
def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec:
"""
Computes the derivative of order Nu in the direction U and Nv in the direction V at the point P(U, V).
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def Direction(self) -> OCP.gp.gp_Dir:
"""
Returns the reference direction of the swept surface. For a surface of revolution it is the direction of the revolution axis, for a surface of linear extrusion it is the direction of extrusion.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCNu(self,N : int) -> bool:
"""
Returns the order of continuity of the surface in the U parametric direction. Raised if N < 0.
"""
def IsCNv(self,N : int) -> bool:
"""
Returns the order of continuity of the surface in the V parametric direction. Raised if N < 0.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsUClosed(self) -> bool:
"""
Checks whether this surface is closed in the u parametric direction. Returns true if, in the u parametric direction: taking uFirst and uLast as the parametric bounds in the u parametric direction, for each parameter v, the distance between the points P(uFirst, v) and P(uLast, v) is less than or equal to gp::Resolution().
"""
def IsUPeriodic(self) -> bool:
"""
Checks if this surface is periodic in the u parametric direction. Returns true if: - this surface is closed in the u parametric direction, and - there is a constant T such that the distance between the points P (u, v) and P (u + T, v) (or the points P (u, v) and P (u, v + T)) is less than or equal to gp::Resolution().
"""
def IsVClosed(self) -> bool:
"""
Checks whether this surface is closed in the u parametric direction. Returns true if, in the v parametric direction: taking vFirst and vLast as the parametric bounds in the v parametric direction, for each parameter u, the distance between the points P(u, vFirst) and P(u, vLast) is less than or equal to gp::Resolution().
"""
def IsVPeriodic(self) -> bool:
"""
Checks if this surface is periodic in the v parametric direction. Returns true if: - this surface is closed in the v parametric direction, and - there is a constant T such that the distance between the points P (u, v) and P (u + T, v) (or the points P (u, v) and P (u, v + T)) is less than or equal to gp::Resolution().
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d:
"""
Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns an identity transformation
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom).
"""
def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]:
"""
Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method does not change <U> and <V>
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def UIso(self,U : float) -> Geom_Curve:
"""
Computes the U isoparametric curve.
"""
def UPeriod(self) -> float:
"""
Returns the period of this surface in the u parametric direction. Raises if the surface is not uperiodic.
"""
def UReverse(self) -> None:
"""
Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified.
"""
def UReversed(self) -> Geom_Surface:
"""
Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def UReversedParameter(self,U : float) -> float:
"""
Returns the parameter on the Ureversed surface for the point of parameter U on <me>. is the same point as
"""
def VIso(self,V : float) -> Geom_Curve:
"""
Computes the V isoparametric curve.
"""
def VPeriod(self) -> float:
"""
Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic.
"""
def VReverse(self) -> None:
"""
Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified.
"""
def VReversed(self) -> Geom_Surface:
"""
Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def VReversedParameter(self,V : float) -> float:
"""
Returns the parameter on the Vreversed surface for the point of parameter V on <me>. is the same point as
"""
def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt:
"""
Computes the point of parameter (U, V) on the surface.
"""
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_SurfaceOfRevolution(Geom_SweptSurface, Geom_Surface, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
Describes a surface of revolution (revolved surface). Such a surface is obtained by rotating a curve (called the "meridian") through a complete revolution about an axis (referred to as the "axis of revolution"). The curve and the axis must be in the same plane (the "reference plane" of the surface). Rotation around the axis of revolution in the trigonometric sense defines the u parametric direction. So the u parameter is an angle, and its origin is given by the position of the meridian on the surface. The parametric range for the u parameter is: [ 0, 2.*Pi ] The v parameter is that of the meridian. Note: A surface of revolution is built from a copy of the original meridian. As a result the original meridian is not modified when the surface is modified. The form of a surface of revolution is typically a general revolution surface (GeomAbs_RevolutionForm). It can be: - a conical surface, if the meridian is a line or a trimmed line (GeomAbs_ConicalForm), - a cylindrical surface, if the meridian is a line or a trimmed line parallel to the axis of revolution (GeomAbs_CylindricalForm), - a planar surface if the meridian is a line or a trimmed line perpendicular to the axis of revolution of the surface (GeomAbs_PlanarForm), - a toroidal surface, if the meridian is a circle or a trimmed circle (GeomAbs_ToroidalForm), or - a spherical surface, if the meridian is a circle, the center of which is located on the axis of the revolved surface (GeomAbs_SphericalForm). Warning Be careful not to construct a surface of revolution where the curve and the axis or revolution are not defined in the same plane. If you do not have a correct configuration, you can correct your initial curve, using a cylindrical projection in the reference plane.Describes a surface of revolution (revolved surface). Such a surface is obtained by rotating a curve (called the "meridian") through a complete revolution about an axis (referred to as the "axis of revolution"). The curve and the axis must be in the same plane (the "reference plane" of the surface). Rotation around the axis of revolution in the trigonometric sense defines the u parametric direction. So the u parameter is an angle, and its origin is given by the position of the meridian on the surface. The parametric range for the u parameter is: [ 0, 2.*Pi ] The v parameter is that of the meridian. Note: A surface of revolution is built from a copy of the original meridian. As a result the original meridian is not modified when the surface is modified. The form of a surface of revolution is typically a general revolution surface (GeomAbs_RevolutionForm). It can be: - a conical surface, if the meridian is a line or a trimmed line (GeomAbs_ConicalForm), - a cylindrical surface, if the meridian is a line or a trimmed line parallel to the axis of revolution (GeomAbs_CylindricalForm), - a planar surface if the meridian is a line or a trimmed line perpendicular to the axis of revolution of the surface (GeomAbs_PlanarForm), - a toroidal surface, if the meridian is a circle or a trimmed circle (GeomAbs_ToroidalForm), or - a spherical surface, if the meridian is a circle, the center of which is located on the axis of the revolved surface (GeomAbs_SphericalForm). Warning Be careful not to construct a surface of revolution where the curve and the axis or revolution are not defined in the same plane. If you do not have a correct configuration, you can correct your initial curve, using a cylindrical projection in the reference plane.Describes a surface of revolution (revolved surface). Such a surface is obtained by rotating a curve (called the "meridian") through a complete revolution about an axis (referred to as the "axis of revolution"). The curve and the axis must be in the same plane (the "reference plane" of the surface). Rotation around the axis of revolution in the trigonometric sense defines the u parametric direction. So the u parameter is an angle, and its origin is given by the position of the meridian on the surface. The parametric range for the u parameter is: [ 0, 2.*Pi ] The v parameter is that of the meridian. Note: A surface of revolution is built from a copy of the original meridian. As a result the original meridian is not modified when the surface is modified. The form of a surface of revolution is typically a general revolution surface (GeomAbs_RevolutionForm). It can be: - a conical surface, if the meridian is a line or a trimmed line (GeomAbs_ConicalForm), - a cylindrical surface, if the meridian is a line or a trimmed line parallel to the axis of revolution (GeomAbs_CylindricalForm), - a planar surface if the meridian is a line or a trimmed line perpendicular to the axis of revolution of the surface (GeomAbs_PlanarForm), - a toroidal surface, if the meridian is a circle or a trimmed circle (GeomAbs_ToroidalForm), or - a spherical surface, if the meridian is a circle, the center of which is located on the axis of the revolved surface (GeomAbs_SphericalForm). Warning Be careful not to construct a surface of revolution where the curve and the axis or revolution are not defined in the same plane. If you do not have a correct configuration, you can correct your initial curve, using a cylindrical projection in the reference plane.
"""
def Axis(self) -> OCP.gp.gp_Ax1:
"""
Returns the revolution axis of the surface.
"""
def BasisCurve(self) -> Geom_Curve:
"""
Returns the referenced curve of the surface. For a surface of revolution it is the revolution curve, for a surface of linear extrusion it is the extruded curve.
"""
def Bounds(self) -> tuple[float, float, float, float]:
"""
Returns the parametric bounds U1, U2 , V1 and V2 of this surface. A surface of revolution is always complete, so U1 = 0, U2 = 2*PI.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
returns the continuity of the surface : C0 : only geometric continuity, C1 : continuity of the first derivative all along the surface, C2 : continuity of the second derivative all along the surface, C3 : continuity of the third derivative all along the surface, G1 : tangency continuity all along the surface, G2 : curvature continuity all along the surface, CN : the order of continuity is infinite.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this surface of revolution.
"""
def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None:
"""
Computes the point P (U, V) on the surface. U is the angle of the rotation around the revolution axis. The direction of this axis gives the sense of rotation. V is the parameter of the revolved curve.
"""
def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None:
"""
Computes the current point and the first derivatives in the directions U and V. Raised if the continuity of the surface is not C1.
"""
def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None:
"""
Computes the current point, the first and the second derivatives in the directions U and V. Raised if the continuity of the surface is not C2.
"""
def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None:
"""
Computes the current point, the first,the second and the third derivatives in the directions U and V. Raised if the continuity of the surface is not C3.
"""
def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec:
"""
Computes the derivative of order Nu in the direction u and Nv in the direction v.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def Direction(self) -> OCP.gp.gp_Dir:
"""
Returns the reference direction of the swept surface. For a surface of revolution it is the direction of the revolution axis, for a surface of linear extrusion it is the direction of extrusion.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCNu(self,N : int) -> bool:
"""
IsCNu always returns true.
"""
def IsCNv(self,N : int) -> bool:
"""
IsCNv returns true if the degree of continuity of the meridian of this surface of revolution is at least N. Raised if N < 0.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsUClosed(self) -> bool:
"""
IsUClosed always returns true.
"""
def IsUPeriodic(self) -> bool:
"""
Returns True.
"""
def IsVClosed(self) -> bool:
"""
IsVClosed returns true if the meridian of this surface of revolution is closed.
"""
def IsVPeriodic(self) -> bool:
"""
IsVPeriodic returns true if the meridian of this surface of revolution is periodic.
"""
def Location(self) -> OCP.gp.gp_Pnt:
"""
Returns the location point of the axis of revolution.
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d:
"""
Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns a scale centered on the U axis with BasisCurve()->ParametricTransformation(T)
"""
def ReferencePlane(self) -> OCP.gp.gp_Ax2:
"""
Computes the position of the reference plane of the surface defined by the basis curve and the symmetry axis. The location point is the location point of the revolution's axis, the XDirection of the plane is given by the revolution's axis and the orientation of the normal to the plane is given by the sense of revolution.
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def SetAxis(self,A1 : OCP.gp.gp_Ax1) -> None:
"""
Changes the axis of revolution. Warnings : It is not checked that the axis is in the plane of the revolved curve.
"""
def SetBasisCurve(self,C : Geom_Curve) -> None:
"""
Changes the revolved curve of the surface. Warnings : It is not checked that the curve C is planar and that the surface axis is in the plane of the curve. It is not checked that the revolved curve C doesn't self-intersects.
"""
def SetDirection(self,V : OCP.gp.gp_Dir) -> None:
"""
Changes the direction of the revolution axis. Warnings : It is not checked that the axis is in the plane of the revolved curve.
"""
def SetLocation(self,P : OCP.gp.gp_Pnt) -> None:
"""
Changes the location point of the revolution axis. Warnings : It is not checked that the axis is in the plane of the revolved curve.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Applies the transformation T to this surface of revolution.
"""
def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]:
"""
Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method multiplies V by BasisCurve()->ParametricTransformation(T)
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def UIso(self,U : float) -> Geom_Curve:
"""
Computes the U isoparametric curve of this surface of revolution. It is the curve obtained by rotating the meridian through an angle U about the axis of revolution.
"""
def UPeriod(self) -> float:
"""
Returns the period of this surface in the u parametric direction. Raises if the surface is not uperiodic.
"""
def UReverse(self) -> None:
"""
Changes the orientation of this surface of revolution in the u parametric direction. The bounds of the surface are not changed but the given parametric direction is reversed. Hence the orientation of the surface is reversed. As a consequence: - UReverse reverses the direction of the axis of revolution of this surface,
"""
def UReversed(self) -> Geom_Surface:
"""
Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def UReversedParameter(self,U : float) -> float:
"""
Computes the u parameter on the modified surface, when reversing its u parametric direction, for any point of u parameter U on this surface of revolution. In the case of a revolved surface: - UReversedParameter returns 2.*Pi - U
"""
def VIso(self,V : float) -> Geom_Curve:
"""
Computes the U isoparametric curve of this surface of revolution. It is the curve obtained by rotating the meridian through an angle U about the axis of revolution.
"""
def VPeriod(self) -> float:
"""
Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic.
"""
def VReverse(self) -> None:
"""
Changes the orientation of this surface of revolution in the v parametric direction. The bounds of the surface are not changed but the given parametric direction is reversed. Hence the orientation of the surface is reversed. As a consequence: - VReverse reverses the meridian of this surface of revolution.
"""
def VReversed(self) -> Geom_Surface:
"""
Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def VReversedParameter(self,V : float) -> float:
"""
Computes the v parameter on the modified surface, when reversing its v parametric direction, for any point of v parameter V on this surface of revolution. In the case of a revolved surface: - VReversedParameter returns the reversed parameter given by the function ReversedParameter called with V on the meridian.
"""
def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt:
"""
Computes the point of parameter (U, V) on the surface.
"""
def __init__(self,C : Geom_Curve,A1 : OCP.gp.gp_Ax1) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_SurfaceOfLinearExtrusion(Geom_SweptSurface, Geom_Surface, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
Describes a surface of linear extrusion ("extruded surface"), e.g. a generalized cylinder. Such a surface is obtained by sweeping a curve (called the "extruded curve" or "basis") in a given direction (referred to as the "direction of extrusion" and defined by a unit vector). The u parameter is along the extruded curve. The v parameter is along the direction of extrusion. The parameter range for the u parameter is defined by the reference curve. The parameter range for the v parameter is ] - infinity, + infinity [. The position of the curve gives the origin of the v parameter. The surface is "CN" in the v parametric direction. The form of a surface of linear extrusion is generally a ruled surface (GeomAbs_RuledForm). It can be: - a cylindrical surface, if the extruded curve is a circle, or a trimmed circle, with an axis parallel to the direction of extrusion (GeomAbs_CylindricalForm), or - a planar surface, if the extruded curve is a line (GeomAbs_PlanarForm). Note: The surface of extrusion is built from a copy of the original basis curve, so the original curve is not modified when the surface is modified. Warning Degenerate surfaces are not detected. A degenerate surface is obtained, for example, when the extruded curve is a line and the direction of extrusion is parallel to that line.Describes a surface of linear extrusion ("extruded surface"), e.g. a generalized cylinder. Such a surface is obtained by sweeping a curve (called the "extruded curve" or "basis") in a given direction (referred to as the "direction of extrusion" and defined by a unit vector). The u parameter is along the extruded curve. The v parameter is along the direction of extrusion. The parameter range for the u parameter is defined by the reference curve. The parameter range for the v parameter is ] - infinity, + infinity [. The position of the curve gives the origin of the v parameter. The surface is "CN" in the v parametric direction. The form of a surface of linear extrusion is generally a ruled surface (GeomAbs_RuledForm). It can be: - a cylindrical surface, if the extruded curve is a circle, or a trimmed circle, with an axis parallel to the direction of extrusion (GeomAbs_CylindricalForm), or - a planar surface, if the extruded curve is a line (GeomAbs_PlanarForm). Note: The surface of extrusion is built from a copy of the original basis curve, so the original curve is not modified when the surface is modified. Warning Degenerate surfaces are not detected. A degenerate surface is obtained, for example, when the extruded curve is a line and the direction of extrusion is parallel to that line.Describes a surface of linear extrusion ("extruded surface"), e.g. a generalized cylinder. Such a surface is obtained by sweeping a curve (called the "extruded curve" or "basis") in a given direction (referred to as the "direction of extrusion" and defined by a unit vector). The u parameter is along the extruded curve. The v parameter is along the direction of extrusion. The parameter range for the u parameter is defined by the reference curve. The parameter range for the v parameter is ] - infinity, + infinity [. The position of the curve gives the origin of the v parameter. The surface is "CN" in the v parametric direction. The form of a surface of linear extrusion is generally a ruled surface (GeomAbs_RuledForm). It can be: - a cylindrical surface, if the extruded curve is a circle, or a trimmed circle, with an axis parallel to the direction of extrusion (GeomAbs_CylindricalForm), or - a planar surface, if the extruded curve is a line (GeomAbs_PlanarForm). Note: The surface of extrusion is built from a copy of the original basis curve, so the original curve is not modified when the surface is modified. Warning Degenerate surfaces are not detected. A degenerate surface is obtained, for example, when the extruded curve is a line and the direction of extrusion is parallel to that line.
"""
def BasisCurve(self) -> Geom_Curve:
"""
Returns the referenced curve of the surface. For a surface of revolution it is the revolution curve, for a surface of linear extrusion it is the extruded curve.
"""
def Bounds(self) -> tuple[float, float, float, float]:
"""
Returns the parametric bounds U1, U2, V1 and V2 of this surface of linear extrusion. A surface of linear extrusion is infinite in the v parametric direction, so: - V1 = Standard_Real::RealFirst() - V2 = Standard_Real::RealLast().
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
returns the continuity of the surface : C0 : only geometric continuity, C1 : continuity of the first derivative all along the surface, C2 : continuity of the second derivative all along the surface, C3 : continuity of the third derivative all along the surface, G1 : tangency continuity all along the surface, G2 : curvature continuity all along the surface, CN : the order of continuity is infinite.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this surface of linear extrusion.
"""
def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None:
"""
Computes the point P (U, V) on the surface. The parameter U is the parameter on the extruded curve. The parametrization V is a linear parametrization, and the direction of parametrization is the direction of extrusion. If the point is on the extruded curve, V = 0.0
"""
def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None:
"""
Computes the current point and the first derivatives in the directions U and V. Raises UndefinedDerivative if the continuity of the surface is not C1.
"""
def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None:
"""
--- Purpose ; Computes the current point, the first and the second derivatives in the directions U and V. Raises UndefinedDerivative if the continuity of the surface is not C2.
"""
def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None:
"""
Computes the current point, the first,the second and the third derivatives in the directions U and V. Raises UndefinedDerivative if the continuity of the surface is not C3.
"""
def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec:
"""
Computes the derivative of order Nu in the direction u and Nv in the direction v. Raises UndefinedDerivative if the continuity of the surface is not CNu in the u direction and CNv in the v direction. Raises RangeError if Nu + Nv < 1 or Nu < 0 or Nv < 0.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def Direction(self) -> OCP.gp.gp_Dir:
"""
Returns the reference direction of the swept surface. For a surface of revolution it is the direction of the revolution axis, for a surface of linear extrusion it is the direction of extrusion.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCNu(self,N : int) -> bool:
"""
IsCNu returns true if the degree of continuity for the "basis curve" of this surface of linear extrusion is at least N. Raises RangeError if N < 0.
"""
def IsCNv(self,N : int) -> bool:
"""
IsCNv always returns true.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsUClosed(self) -> bool:
"""
IsUClosed returns true if the "basis curve" of this surface of linear extrusion is closed.
"""
def IsUPeriodic(self) -> bool:
"""
IsUPeriodic returns true if the "basis curve" of this surface of linear extrusion is periodic.
"""
def IsVClosed(self) -> bool:
"""
IsVClosed always returns false.
"""
def IsVPeriodic(self) -> bool:
"""
IsVPeriodic always returns false.
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d:
"""
Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns a scale U by BasisCurve()->ParametricTransformation(T) V by T.ScaleFactor()
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def SetBasisCurve(self,C : Geom_Curve) -> None:
"""
Modifies this surface of linear extrusion by redefining its "basis curve" (the "extruded curve").
"""
def SetDirection(self,V : OCP.gp.gp_Dir) -> None:
"""
Assigns V as the "direction of extrusion" for this surface of linear extrusion.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Applies the transformation T to this surface of linear extrusion.
"""
def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]:
"""
Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method multiplies: U by BasisCurve()->ParametricTransformation(T) V by T.ScaleFactor()
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def UIso(self,U : float) -> Geom_Curve:
"""
Computes the U isoparametric curve of this surface of linear extrusion. This is the line parallel to the direction of extrusion, passing through the point of parameter U of the basis curve.
"""
def UPeriod(self) -> float:
"""
Returns the period of this surface in the u parametric direction. Raises if the surface is not uperiodic.
"""
def UReverse(self) -> None:
"""
Changes the orientation of this surface of linear extrusion in the u parametric direction. The bounds of the surface are not changed, but the given parametric direction is reversed. Hence the orientation of the surface is reversed. In the case of a surface of linear extrusion: - UReverse reverses the basis curve, and - VReverse reverses the direction of linear extrusion.
"""
def UReversed(self) -> Geom_Surface:
"""
Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def UReversedParameter(self,U : float) -> float:
"""
Computes the u parameter on the modified surface, produced by reversing its u parametric direction, for any point of u parameter U on this surface of linear extrusion. In the case of an extruded surface: - UReverseParameter returns the reversed parameter given by the function ReversedParameter called with U on the basis curve,
"""
def VIso(self,V : float) -> Geom_Curve:
"""
Computes the V isoparametric curve of this surface of linear extrusion. This curve is obtained by translating the extruded curve in the direction of extrusion, with the magnitude V.
"""
def VPeriod(self) -> float:
"""
Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic.
"""
def VReverse(self) -> None:
"""
Changes the orientation of this surface of linear extrusion in the v parametric direction. The bounds of the surface are not changed, but the given parametric direction is reversed. Hence the orientation of the surface is reversed. In the case of a surface of linear extrusion: - UReverse reverses the basis curve, and - VReverse reverses the direction of linear extrusion.
"""
def VReversed(self) -> Geom_Surface:
"""
Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def VReversedParameter(self,V : float) -> float:
"""
Computes the v parameter on the modified surface, produced by reversing its u v parametric direction, for any point of v parameter V on this surface of linear extrusion. In the case of an extruded surface VReverse returns -V.
"""
def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt:
"""
Computes the point of parameter (U, V) on the surface.
"""
def __init__(self,C : Geom_Curve,V : OCP.gp.gp_Dir) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_ToroidalSurface(Geom_ElementarySurface, Geom_Surface, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
Describes a torus. A torus is defined by its major and minor radii, and positioned in space with a coordinate system (a gp_Ax3 object) as follows: - The origin is the center of the torus. - The surface is obtained by rotating a circle around the "main Direction". This circle has a radius equal to the minor radius, and is located in the plane defined by the origin, "X Direction" and "main Direction". It is centered on the "X Axis", on its positive side, and positioned at a distance from the origin equal to the major radius. This circle is the "reference circle" of the torus. - The plane defined by the origin, the "X Direction" and the "Y Direction" is called the "reference plane" of the torus. This coordinate system is the "local coordinate system" of the torus. The following apply: - Rotation around its "main Axis", in the trigonometric sense given by "X Direction" and "Y Direction", defines the u parametric direction. - The "X Axis" gives the origin for the u parameter. - Rotation around an axis parallel to the "Y Axis" and passing through the center of the "reference circle" gives the v parameter on the "reference circle". - The "X Axis" gives the origin of the v parameter on the "reference circle". - The v parametric direction is oriented by the inverse of the "main Direction", i.e. near 0, as v increases, the Z coordinate decreases. (This implies that the "Y Direction" orients the reference circle only when the local coordinate system is direct.) - The u isoparametric curve is a circle obtained by rotating the "reference circle" of the torus through an angle u about the "main Axis". The parametric equation of the torus is : P(u, v) = O + (R + r*cos(v)) * (cos(u)*XDir + sin(u)*YDir ) + r*sin(v)*ZDir, where: - O, XDir, YDir and ZDir are respectively the origin, the "X Direction", the "Y Direction" and the "Z Direction" of the local coordinate system, - r and R are, respectively, the minor and major radius. The parametric range of the two parameters is: - [ 0, 2.*Pi ] for u - [ 0, 2.*Pi ] for vDescribes a torus. A torus is defined by its major and minor radii, and positioned in space with a coordinate system (a gp_Ax3 object) as follows: - The origin is the center of the torus. - The surface is obtained by rotating a circle around the "main Direction". This circle has a radius equal to the minor radius, and is located in the plane defined by the origin, "X Direction" and "main Direction". It is centered on the "X Axis", on its positive side, and positioned at a distance from the origin equal to the major radius. This circle is the "reference circle" of the torus. - The plane defined by the origin, the "X Direction" and the "Y Direction" is called the "reference plane" of the torus. This coordinate system is the "local coordinate system" of the torus. The following apply: - Rotation around its "main Axis", in the trigonometric sense given by "X Direction" and "Y Direction", defines the u parametric direction. - The "X Axis" gives the origin for the u parameter. - Rotation around an axis parallel to the "Y Axis" and passing through the center of the "reference circle" gives the v parameter on the "reference circle". - The "X Axis" gives the origin of the v parameter on the "reference circle". - The v parametric direction is oriented by the inverse of the "main Direction", i.e. near 0, as v increases, the Z coordinate decreases. (This implies that the "Y Direction" orients the reference circle only when the local coordinate system is direct.) - The u isoparametric curve is a circle obtained by rotating the "reference circle" of the torus through an angle u about the "main Axis". The parametric equation of the torus is : P(u, v) = O + (R + r*cos(v)) * (cos(u)*XDir + sin(u)*YDir ) + r*sin(v)*ZDir, where: - O, XDir, YDir and ZDir are respectively the origin, the "X Direction", the "Y Direction" and the "Z Direction" of the local coordinate system, - r and R are, respectively, the minor and major radius. The parametric range of the two parameters is: - [ 0, 2.*Pi ] for u - [ 0, 2.*Pi ] for vDescribes a torus. A torus is defined by its major and minor radii, and positioned in space with a coordinate system (a gp_Ax3 object) as follows: - The origin is the center of the torus. - The surface is obtained by rotating a circle around the "main Direction". This circle has a radius equal to the minor radius, and is located in the plane defined by the origin, "X Direction" and "main Direction". It is centered on the "X Axis", on its positive side, and positioned at a distance from the origin equal to the major radius. This circle is the "reference circle" of the torus. - The plane defined by the origin, the "X Direction" and the "Y Direction" is called the "reference plane" of the torus. This coordinate system is the "local coordinate system" of the torus. The following apply: - Rotation around its "main Axis", in the trigonometric sense given by "X Direction" and "Y Direction", defines the u parametric direction. - The "X Axis" gives the origin for the u parameter. - Rotation around an axis parallel to the "Y Axis" and passing through the center of the "reference circle" gives the v parameter on the "reference circle". - The "X Axis" gives the origin of the v parameter on the "reference circle". - The v parametric direction is oriented by the inverse of the "main Direction", i.e. near 0, as v increases, the Z coordinate decreases. (This implies that the "Y Direction" orients the reference circle only when the local coordinate system is direct.) - The u isoparametric curve is a circle obtained by rotating the "reference circle" of the torus through an angle u about the "main Axis". The parametric equation of the torus is : P(u, v) = O + (R + r*cos(v)) * (cos(u)*XDir + sin(u)*YDir ) + r*sin(v)*ZDir, where: - O, XDir, YDir and ZDir are respectively the origin, the "X Direction", the "Y Direction" and the "Z Direction" of the local coordinate system, - r and R are, respectively, the minor and major radius. The parametric range of the two parameters is: - [ 0, 2.*Pi ] for u - [ 0, 2.*Pi ] for v
"""
def Area(self) -> float:
"""
Computes the aera of the surface.
"""
def Axis(self) -> OCP.gp.gp_Ax1:
"""
Returns the main axis of the surface (ZAxis).
"""
def Bounds(self) -> tuple[float, float, float, float]:
"""
Returns the parametric bounds U1, U2, V1 and V2 of this torus. For a torus: U1 = V1 = 0 and U2 = V2 = 2*PI .
"""
def Coefficients(self,Coef : OCP.TColStd.TColStd_Array1OfReal) -> None:
"""
Returns the coefficients of the implicit equation of the surface in the absolute cartesian coordinate system : Coef(1) * X**4 + Coef(2) * Y**4 + Coef(3) * Z**4 + Coef(4) * X**3 * Y + Coef(5) * X**3 * Z + Coef(6) * Y**3 * X + Coef(7) * Y**3 * Z + Coef(8) * Z**3 * X + Coef(9) * Z**3 * Y + Coef(10) * X**2 * Y**2 + Coef(11) * X**2 * Z**2 + Coef(12) * Y**2 * Z**2 + Coef(13) * X**3 + Coef(14) * Y**3 + Coef(15) * Z**3 + Coef(16) * X**2 * Y + Coef(17) * X**2 * Z + Coef(18) * Y**2 * X + Coef(19) * Y**2 * Z + Coef(20) * Z**2 * X + Coef(21) * Z**2 * Y + Coef(22) * X**2 + Coef(23) * Y**2 + Coef(24) * Z**2 + Coef(25) * X * Y + Coef(26) * X * Z + Coef(27) * Y * Z + Coef(28) * X + Coef(29) * Y + Coef(30) * Z + Coef(31) = 0.0 Raised if the length of Coef is lower than 31.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
Returns GeomAbs_CN, the global continuity of any elementary surface.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this torus.
"""
def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None:
"""
Computes the point P (U, V) on the surface. P (U, V) = Loc + MinorRadius * Sin (V) * Zdir + (MajorRadius + MinorRadius * Cos(V)) * (cos (U) * XDir + sin (U) * YDir) where Loc is the origin of the placement plane (XAxis, YAxis) XDir is the direction of the XAxis and YDir the direction of the YAxis and ZDir the direction of the ZAxis.
"""
def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None:
"""
Computes the current point and the first derivatives in the directions U and V.
"""
def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None:
"""
Computes the current point, the first and the second derivatives in the directions U and V.
"""
def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None:
"""
Computes the current point, the first,the second and the third derivatives in the directions U and V.
"""
def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec:
"""
Computes the derivative of order Nu in the direction u and Nv in the direction v. Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCNu(self,N : int) -> bool:
"""
Returns True.
"""
def IsCNv(self,N : int) -> bool:
"""
Returns True.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsUClosed(self) -> bool:
"""
Returns True.
"""
def IsUPeriodic(self) -> bool:
"""
Returns True.
"""
def IsVClosed(self) -> bool:
"""
Returns True.
"""
def IsVPeriodic(self) -> bool:
"""
Returns True.
"""
def Location(self) -> OCP.gp.gp_Pnt:
"""
Returns the location point of the local coordinate system of the surface.
"""
def MajorRadius(self) -> float:
"""
Returns the major radius, or the minor radius, of this torus.
"""
def MinorRadius(self) -> float:
"""
Returns the major radius, or the minor radius, of this torus.
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d:
"""
Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns an identity transformation
"""
def Position(self) -> OCP.gp.gp_Ax3:
"""
Returns the local coordinates system of the surface.
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def SetAxis(self,theA1 : OCP.gp.gp_Ax1) -> None:
"""
Changes the main axis (ZAxis) of the elementary surface.
"""
def SetLocation(self,theLoc : OCP.gp.gp_Pnt) -> None:
"""
Changes the location of the local coordinates system of the surface.
"""
def SetMajorRadius(self,MajorRadius : float) -> None:
"""
Modifies this torus by changing its major radius. Exceptions Standard_ConstructionError if: - MajorRadius is negative, or - MajorRadius - r is less than or equal to gp::Resolution(), where r is the minor radius of this torus.
"""
def SetMinorRadius(self,MinorRadius : float) -> None:
"""
Modifies this torus by changing its minor radius. Exceptions Standard_ConstructionError if: - MinorRadius is negative, or - R - MinorRadius is less than or equal to gp::Resolution(), where R is the major radius of this torus.
"""
def SetPosition(self,theAx3 : OCP.gp.gp_Ax3) -> None:
"""
Changes the local coordinates system of the surface.
"""
def SetTorus(self,T : OCP.gp.gp_Torus) -> None:
"""
Converts the gp_Torus torus T into this torus.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Torus(self) -> OCP.gp.gp_Torus:
"""
Returns the non transient torus with the same geometric properties as <me>.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Applies the transformation T to this torus.
"""
def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]:
"""
Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method does not change <U> and <V>
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def UIso(self,U : float) -> Geom_Curve:
"""
Computes the U isoparametric curve.
"""
def UPeriod(self) -> float:
"""
Returns the period of this surface in the u parametric direction. Raises if the surface is not uperiodic.
"""
def UReverse(self) -> None:
"""
Reverses the U parametric direction of the surface.
"""
def UReversed(self) -> Geom_Surface:
"""
Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def UReversedParameter(self,U : float) -> float:
"""
Return the parameter on the Ureversed surface for the point of parameter U on <me>. Return 2.PI - U.
"""
def VIso(self,V : float) -> Geom_Curve:
"""
Computes the V isoparametric curve.
"""
def VPeriod(self) -> float:
"""
Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic.
"""
def VReverse(self) -> None:
"""
Reverses the V parametric direction of the surface.
"""
def VReversed(self) -> Geom_Surface:
"""
Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
"""
def VReversedParameter(self,U : float) -> float:
"""
Return the parameter on the Ureversed surface for the point of parameter U on <me>. Return 2.PI - U.
"""
def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt:
"""
Computes the point of parameter (U, V) on the surface.
"""
def Volume(self) -> float:
"""
Computes the volume.
"""
@overload
def __init__(self,T : OCP.gp.gp_Torus) -> None: ...
@overload
def __init__(self,A3 : OCP.gp.gp_Ax3,MajorRadius : float,MinorRadius : float) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_Transformation(OCP.Standard.Standard_Transient):
"""
Describes how to construct the following elementary transformations - translations, - rotations, - symmetries, - scales. The Transformation class can also be used to construct complex transformations by combining these elementary transformations. However, these transformations can never change the type of an object. For example, the projection transformation can change a circle into an ellipse, and therefore change the real type of the object. Such a transformation is forbidden in this environment and cannot be a Geom_Transformation. The transformation can be represented as follow :Describes how to construct the following elementary transformations - translations, - rotations, - symmetries, - scales. The Transformation class can also be used to construct complex transformations by combining these elementary transformations. However, these transformations can never change the type of an object. For example, the projection transformation can change a circle into an ellipse, and therefore change the real type of the object. Such a transformation is forbidden in this environment and cannot be a Geom_Transformation. The transformation can be represented as follow :
"""
def Copy(self) -> Geom_Transformation:
"""
Creates a new object which is a copy of this transformation.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def Form(self) -> OCP.gp.gp_TrsfForm:
"""
Returns the nature of this transformation as a value of the gp_TrsfForm enumeration.
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def Invert(self) -> None:
"""
Raised if the transformation is singular. This means that the ScaleFactor is lower or equal to Resolution from package gp.
"""
def Inverted(self) -> Geom_Transformation:
"""
Raised if the transformation is singular. This means that the ScaleFactor is lower or equal to Resolution from package gp.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsNegative(self) -> bool:
"""
Checks whether this transformation is an indirect transformation: returns true if the determinant of the matrix of the vectorial part of the transformation is less than 0.
"""
def Multiplied(self,Other : Geom_Transformation) -> Geom_Transformation:
"""
Computes the transformation composed with Other and <me>. <me> * Other. Returns a new transformation
"""
def Multiply(self,theOther : Geom_Transformation) -> None:
"""
Computes the transformation composed with Other and <me> . <me> = <me> * Other.
"""
def Power(self,N : int) -> None:
"""
Computes the following composition of transformations if N > 0 <me> * <me> * .......* <me>. if N = 0 Identity if N < 0 <me>.Invert() * .........* <me>.Invert()
"""
def Powered(self,N : int) -> Geom_Transformation:
"""
Raised if N < 0 and if the transformation is not inversible
"""
def PreMultiply(self,Other : Geom_Transformation) -> None:
"""
Computes the matrix of the transformation composed with <me> and Other. <me> = Other * <me>
"""
def ScaleFactor(self) -> float:
"""
Returns the scale value of the transformation.
"""
@overload
def SetMirror(self,theA2 : OCP.gp.gp_Ax2) -> None:
"""
Makes the transformation into a symmetrical transformation with respect to a point P. P is the center of the symmetry.
Makes the transformation into a symmetrical transformation with respect to an axis A1. A1 is the center of the axial symmetry.
Makes the transformation into a symmetrical transformation with respect to a plane. The plane of the symmetry is defined with the axis placement A2. It is the plane (Location, XDirection, YDirection).
"""
@overload
def SetMirror(self,theA1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def SetMirror(self,thePnt : OCP.gp.gp_Pnt) -> None: ...
def SetRotation(self,theA1 : OCP.gp.gp_Ax1,theAng : float) -> None:
"""
Makes the transformation into a rotation. A1 is the axis rotation and Ang is the angular value of the rotation in radians.
"""
def SetScale(self,thePnt : OCP.gp.gp_Pnt,theScale : float) -> None:
"""
Makes the transformation into a scale. P is the center of the scale and S is the scaling value.
"""
@overload
def SetTransformation(self,theFromSystem1 : OCP.gp.gp_Ax3,theToSystem2 : OCP.gp.gp_Ax3) -> None:
"""
Makes a transformation allowing passage from the coordinate system "FromSystem1" to the coordinate system "ToSystem2". Example : In a C++ implementation : Real x1, y1, z1; // are the coordinates of a point in the // local system FromSystem1 Real x2, y2, z2; // are the coordinates of a point in the // local system ToSystem2 gp_Pnt P1 (x1, y1, z1) Geom_Transformation T; T.SetTransformation (FromSystem1, ToSystem2); gp_Pnt P2 = P1.Transformed (T); P2.Coord (x2, y2, z2);
Makes the transformation allowing passage from the basic coordinate system {P(0.,0.,0.), VX (1.,0.,0.), VY (0.,1.,0.), VZ (0., 0. ,1.) } to the local coordinate system defined with the Ax2 ToSystem. Same utilisation as the previous method. FromSystem1 is defaulted to the absolute coordinate system.
"""
@overload
def SetTransformation(self,theToSystem : OCP.gp.gp_Ax3) -> None: ...
@overload
def SetTranslation(self,theVec : OCP.gp.gp_Vec) -> None:
"""
Makes the transformation into a translation. V is the vector of the translation.
Makes the transformation into a translation from the point P1 to the point P2.
"""
@overload
def SetTranslation(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: ...
def SetTrsf(self,theTrsf : OCP.gp.gp_Trsf) -> None:
"""
Converts the gp_Trsf transformation T into this transformation.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transforms(self) -> tuple[float, float, float]:
"""
Applies the transformation <me> to the triplet {X, Y, Z}.
"""
def Trsf(self) -> OCP.gp.gp_Trsf:
"""
Returns a non transient copy of <me>.
"""
def Value(self,theRow : int,theCol : int) -> float:
"""
Returns the coefficients of the global matrix of transformation. It is a 3 rows X 4 columns matrix.
"""
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,T : OCP.gp.gp_Trsf) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_TrimmedCurve(Geom_BoundedCurve, Geom_Curve, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
Describes a portion of a curve (termed the "basis curve") limited by two parameter values inside the parametric domain of the basis curve. The trimmed curve is defined by: - the basis curve, and - the two parameter values which limit it. The trimmed curve can either have the same orientation as the basis curve or the opposite orientation.Describes a portion of a curve (termed the "basis curve") limited by two parameter values inside the parametric domain of the basis curve. The trimmed curve is defined by: - the basis curve, and - the two parameter values which limit it. The trimmed curve can either have the same orientation as the basis curve or the opposite orientation.Describes a portion of a curve (termed the "basis curve") limited by two parameter values inside the parametric domain of the basis curve. The trimmed curve is defined by: - the basis curve, and - the two parameter values which limit it. The trimmed curve can either have the same orientation as the basis curve or the opposite orientation.
"""
def BasisCurve(self) -> Geom_Curve:
"""
Returns the basis curve. Warning This function does not return a constant reference. Consequently, any modification of the returned value directly modifies the trimmed curve.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
Returns the continuity of the curve : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, CN : the order of continuity is infinite.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this trimmed curve.
"""
def D0(self,U : float,P : OCP.gp.gp_Pnt) -> None:
"""
Returns in P the point of parameter U.
"""
def D1(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec) -> None:
"""
Raised if the continuity of the curve is not C1.
"""
def D2(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec) -> None:
"""
Raised if the continuity of the curve is not C2.
"""
def D3(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec,V3 : OCP.gp.gp_Vec) -> None:
"""
Raised if the continuity of the curve is not C3.
"""
def DN(self,U : float,N : int) -> OCP.gp.gp_Vec:
"""
N is the order of derivation. Raised if the continuity of the curve is not CN. Raised if N < 1. geometric transformations
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def EndPoint(self) -> OCP.gp.gp_Pnt:
"""
Returns the end point of <me>. This point is the evaluation of the curve for the "LastParameter".
"""
def FirstParameter(self) -> float:
"""
Returns the value of the first parameter of <me>. The first parameter is the parameter of the "StartPoint" of the trimmed curve.
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCN(self,N : int) -> bool:
"""
Returns true if the degree of continuity of the basis curve of this trimmed curve is at least N. A trimmed curve is at least "C0" continuous. Warnings : The continuity of the trimmed curve can be greater than the continuity of the basis curve because you consider only a part of the basis curve. Raised if N < 0.
"""
def IsClosed(self) -> bool:
"""
Returns True if the distance between the StartPoint and the EndPoint is lower or equal to Resolution from package gp.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsPeriodic(self) -> bool:
"""
Always returns FALSE (independently of the type of basis curve).
"""
def LastParameter(self) -> float:
"""
Returns the value of the last parameter of <me>. The last parameter is the parameter of the "EndPoint" of the trimmed curve.
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> float:
"""
Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.
"""
def Period(self) -> float:
"""
Returns the period of the basis curve of this trimmed curve. Exceptions Standard_NoSuchObject if the basis curve is not periodic.
"""
def Reverse(self) -> None:
"""
Changes the orientation of this trimmed curve. As a result: - the basis curve is reversed, - the start point of the initial curve becomes the end point of the reversed curve, - the end point of the initial curve becomes the start point of the reversed curve, - the first and last parameters are recomputed. If the trimmed curve was defined by: - a basis curve whose parameter range is [ 0., 1. ], - the two trim values U1 (first parameter) and U2 (last parameter), the reversed trimmed curve is defined by: - the reversed basis curve, whose parameter range is still [ 0., 1. ], - the two trim values 1. - U2 (first parameter) and 1. - U1 (last parameter).
"""
def Reversed(self) -> Geom_Curve:
"""
Returns a copy of <me> reversed.
"""
def ReversedParameter(self,U : float) -> float:
"""
Computes the parameter on the reversed curve for the point of parameter U on this trimmed curve.
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def SetTrim(self,U1 : float,U2 : float,Sense : bool=True,theAdjustPeriodic : bool=True) -> None:
"""
Changes this trimmed curve, by redefining the parameter values U1 and U2 which limit its basis curve. Note: If the basis curve is periodic, the trimmed curve has the same orientation as the basis curve if Sense is true (default value) or the opposite orientation if Sense is false. Warning If the basis curve is periodic and theAdjustPeriodic is True, the bounds of the trimmed curve may be different from U1 and U2 if the parametric origin of the basis curve is within the arc of the trimmed curve. In this case, the modified parameter will be equal to U1 or U2 plus or minus the period. When theAdjustPeriodic is False, parameters U1 and U2 will be the same, without adjustment into the first period. Exceptions Standard_ConstructionError if: - the basis curve is not periodic, and either U1 or U2 are outside the bounds of the basis curve, or - U1 is equal to U2.
"""
def StartPoint(self) -> OCP.gp.gp_Pnt:
"""
Returns the start point of <me>. This point is the evaluation of the curve from the "FirstParameter". value and derivatives Warnings : The returned derivatives have the same orientation as the derivatives of the basis curve even if the trimmed curve has not the same orientation as the basis curve.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Applies the transformation T to this trimmed curve. Warning The basis curve is also modified.
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf) -> float:
"""
Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def Value(self,U : float) -> OCP.gp.gp_Pnt:
"""
Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve. it is implemented with D0.
"""
def __init__(self,C : Geom_Curve,U1 : float,U2 : float,Sense : bool=True,theAdjustPeriodic : bool=True) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_UndefinedDerivative(Exception, BaseException):
class type():
pass
__cause__: getset_descriptor # value = <attribute '__cause__' of 'BaseException' objects>
__context__: getset_descriptor # value = <attribute '__context__' of 'BaseException' objects>
__dict__: mappingproxy # value = mappingproxy({'__module__': 'OCP.Geom', '__weakref__': <attribute '__weakref__' of 'Geom_UndefinedDerivative' objects>, '__doc__': None})
__suppress_context__: member_descriptor # value = <member '__suppress_context__' of 'BaseException' objects>
__traceback__: getset_descriptor # value = <attribute '__traceback__' of 'BaseException' objects>
__weakref__: getset_descriptor # value = <attribute '__weakref__' of 'Geom_UndefinedDerivative' objects>
args: getset_descriptor # value = <attribute 'args' of 'BaseException' objects>
pass
class Geom_UndefinedValue(Exception, BaseException):
class type():
pass
__cause__: getset_descriptor # value = <attribute '__cause__' of 'BaseException' objects>
__context__: getset_descriptor # value = <attribute '__context__' of 'BaseException' objects>
__dict__: mappingproxy # value = mappingproxy({'__module__': 'OCP.Geom', '__weakref__': <attribute '__weakref__' of 'Geom_UndefinedValue' objects>, '__doc__': None})
__suppress_context__: member_descriptor # value = <member '__suppress_context__' of 'BaseException' objects>
__traceback__: getset_descriptor # value = <attribute '__traceback__' of 'BaseException' objects>
__weakref__: getset_descriptor # value = <attribute '__weakref__' of 'Geom_UndefinedValue' objects>
args: getset_descriptor # value = <attribute 'args' of 'BaseException' objects>
pass
class Geom_Direction(Geom_Vector, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
The class Direction specifies a vector that is never null. It is a unit vector.The class Direction specifies a vector that is never null. It is a unit vector.The class Direction specifies a vector that is never null. It is a unit vector.
"""
def Angle(self,Other : Geom_Vector) -> float:
"""
Computes the angular value, in radians, between this vector and vector Other. The result is a value between 0 and Pi. Exceptions gp_VectorWithNullMagnitude if: - the magnitude of this vector is less than or equal to gp::Resolution(), or - the magnitude of vector Other is less than or equal to gp::Resolution().
"""
def AngleWithRef(self,Other : Geom_Vector,VRef : Geom_Vector) -> float:
"""
Computes the angular value, in radians, between this vector and vector Other. The result is a value between -Pi and Pi. The vector VRef defines the positive sense of rotation: the angular value is positive if the cross product this ^ Other has the same orientation as VRef (in relation to the plane defined by this vector and vector Other). Otherwise, it is negative. Exceptions Standard_DomainError if this vector, vector Other and vector VRef are coplanar, except if this vector and vector Other are parallel. gp_VectorWithNullMagnitude if the magnitude of this vector, vector Other or vector VRef is less than or equal to gp::Resolution().
"""
def Coord(self) -> tuple[float, float, float]:
"""
Returns the coordinates X, Y and Z of this vector.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this unit vector.
"""
def Cross(self,Other : Geom_Vector) -> None:
"""
Computes the cross product between <me> and <Other>.
"""
def CrossCross(self,V1 : Geom_Vector,V2 : Geom_Vector) -> None:
"""
Computes the triple vector product <me> ^(V1 ^ V2).
"""
def CrossCrossed(self,V1 : Geom_Vector,V2 : Geom_Vector) -> Geom_Vector:
"""
Computes the triple vector product <me> ^(V1 ^ V2).
"""
def Crossed(self,Other : Geom_Vector) -> Geom_Vector:
"""
Computes the cross product between <me> and <Other>. A new direction is returned.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def Dir(self) -> OCP.gp.gp_Dir:
"""
Returns the non transient direction with the same coordinates as <me>.
"""
def Dot(self,Other : Geom_Vector) -> float:
"""
Computes the scalar product of this vector and vector Other.
"""
def DotCross(self,V1 : Geom_Vector,V2 : Geom_Vector) -> float:
"""
Computes the triple scalar product. Returns me . (V1 ^ V2)
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def Magnitude(self) -> float:
"""
returns 1.0 which is the magnitude of any unit vector.
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def Reverse(self) -> None:
"""
Reverses the vector <me>.
"""
def Reversed(self) -> Geom_Vector:
"""
Returns a copy of <me> reversed.
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def SetCoord(self,X : float,Y : float,Z : float) -> None:
"""
Sets <me> to X,Y,Z coordinates.
"""
def SetDir(self,V : OCP.gp.gp_Dir) -> None:
"""
Converts the gp_Dir unit vector V into this unit vector.
"""
def SetX(self,X : float) -> None:
"""
Changes the X coordinate of <me>.
"""
def SetY(self,Y : float) -> None:
"""
Changes the Y coordinate of <me>.
"""
def SetZ(self,Z : float) -> None:
"""
Changes the Z coordinate of <me>.
"""
def SquareMagnitude(self) -> float:
"""
returns 1.0 which is the square magnitude of any unit vector.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Applies the transformation T to this unit vector, then normalizes it.
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def Vec(self) -> OCP.gp.gp_Vec:
"""
Converts this vector into a gp_Vec vector.
"""
def X(self) -> float:
"""
Returns the X coordinate of <me>.
"""
def Y(self) -> float:
"""
Returns the Y coordinate of <me>.
"""
def Z(self) -> float:
"""
Returns the Z coordinate of <me>.
"""
@overload
def __init__(self,X : float,Y : float,Z : float) -> None: ...
@overload
def __init__(self,V : OCP.gp.gp_Dir) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom_VectorWithMagnitude(Geom_Vector, Geom_Geometry, OCP.Standard.Standard_Transient):
"""
Defines a vector with magnitude. A vector with magnitude can have a zero length.Defines a vector with magnitude. A vector with magnitude can have a zero length.Defines a vector with magnitude. A vector with magnitude can have a zero length.
"""
def Add(self,Other : Geom_Vector) -> None:
"""
Adds the Vector Other to <me>.
"""
def Added(self,Other : Geom_Vector) -> Geom_VectorWithMagnitude:
"""
Adds the vector Other to <me>.
"""
def Angle(self,Other : Geom_Vector) -> float:
"""
Computes the angular value, in radians, between this vector and vector Other. The result is a value between 0 and Pi. Exceptions gp_VectorWithNullMagnitude if: - the magnitude of this vector is less than or equal to gp::Resolution(), or - the magnitude of vector Other is less than or equal to gp::Resolution().
"""
def AngleWithRef(self,Other : Geom_Vector,VRef : Geom_Vector) -> float:
"""
Computes the angular value, in radians, between this vector and vector Other. The result is a value between -Pi and Pi. The vector VRef defines the positive sense of rotation: the angular value is positive if the cross product this ^ Other has the same orientation as VRef (in relation to the plane defined by this vector and vector Other). Otherwise, it is negative. Exceptions Standard_DomainError if this vector, vector Other and vector VRef are coplanar, except if this vector and vector Other are parallel. gp_VectorWithNullMagnitude if the magnitude of this vector, vector Other or vector VRef is less than or equal to gp::Resolution().
"""
def Coord(self) -> tuple[float, float, float]:
"""
Returns the coordinates X, Y and Z of this vector.
"""
def Copy(self) -> Geom_Geometry:
"""
Creates a new object which is a copy of this vector.
"""
def Cross(self,Other : Geom_Vector) -> None:
"""
Computes the cross product between <me> and Other <me> ^ Other.
"""
def CrossCross(self,V1 : Geom_Vector,V2 : Geom_Vector) -> None:
"""
Computes the triple vector product <me> ^ (V1 ^ V2).
"""
def CrossCrossed(self,V1 : Geom_Vector,V2 : Geom_Vector) -> Geom_Vector:
"""
Computes the triple vector product <me> ^ (V1 ^ V2). A new vector is returned.
"""
def Crossed(self,Other : Geom_Vector) -> Geom_Vector:
"""
Computes the cross product between <me> and Other <me> ^ Other. A new vector is returned.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def Divide(self,Scalar : float) -> None:
"""
Divides <me> by a scalar.
"""
def Divided(self,Scalar : float) -> Geom_VectorWithMagnitude:
"""
Divides <me> by a scalar. A new vector is returned.
"""
def Dot(self,Other : Geom_Vector) -> float:
"""
Computes the scalar product of this vector and vector Other.
"""
def DotCross(self,V1 : Geom_Vector,V2 : Geom_Vector) -> float:
"""
Computes the triple scalar product. Returns me . (V1 ^ V2)
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def Magnitude(self) -> float:
"""
Returns the magnitude of <me>.
"""
@overload
def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
None
"""
@overload
def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
@overload
def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
def Multiplied(self,Scalar : float) -> Geom_VectorWithMagnitude:
"""
Computes the product of the vector <me> by a scalar. A new vector is returned.
"""
def Multiply(self,Scalar : float) -> None:
"""
Computes the product of the vector <me> by a scalar.
"""
def Normalize(self) -> None:
"""
Normalizes <me>.
"""
def Normalized(self) -> Geom_VectorWithMagnitude:
"""
Returns a copy of <me> Normalized.
"""
def Reverse(self) -> None:
"""
Reverses the vector <me>.
"""
def Reversed(self) -> Geom_Vector:
"""
Returns a copy of <me> reversed.
"""
def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None:
"""
Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry:
"""
None
"""
def SetCoord(self,X : float,Y : float,Z : float) -> None:
"""
Assigns the values X, Y and Z to the coordinates of this vector.
"""
def SetVec(self,V : OCP.gp.gp_Vec) -> None:
"""
Converts the gp_Vec vector V into this vector.
"""
def SetX(self,X : float) -> None:
"""
Changes the X coordinate of <me>.
"""
def SetY(self,Y : float) -> None:
"""
Changes the Y coordinate of <me>
"""
def SetZ(self,Z : float) -> None:
"""
Changes the Z coordinate of <me>.
"""
def SquareMagnitude(self) -> float:
"""
Returns the square magnitude of <me>.
"""
def Subtract(self,Other : Geom_Vector) -> None:
"""
Subtracts the Vector Other to <me>.
"""
def Subtracted(self,Other : Geom_Vector) -> Geom_VectorWithMagnitude:
"""
Subtracts the vector Other to <me>. A new vector is returned.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf) -> None:
"""
Applies the transformation T to this vector.
"""
def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
def Vec(self) -> OCP.gp.gp_Vec:
"""
Converts this vector into a gp_Vec vector.
"""
def X(self) -> float:
"""
Returns the X coordinate of <me>.
"""
def Y(self) -> float:
"""
Returns the Y coordinate of <me>.
"""
def Z(self) -> float:
"""
Returns the Z coordinate of <me>.
"""
@overload
def __init__(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: ...
@overload
def __init__(self,X : float,Y : float,Z : float) -> None: ...
@overload
def __init__(self,V : OCP.gp.gp_Vec) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
|