File: __init__.pyi

package info (click to toggle)
python-ocp 7.8.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 64,720 kB
  • sloc: cpp: 362,337; pascal: 33; python: 23; makefile: 4
file content (10100 lines) | stat: -rw-r--r-- 593,797 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
import OCP.Geom
from typing import *
from typing import Iterable as iterable
from typing import Iterator as iterator
from numpy import float64
_Shape = Tuple[int, ...]
import OCP.NCollection
import OCP.TColStd
import OCP.gp
import OCP.TColgp
import OCP.Standard
import io
import OCP.GeomAbs
__all__  = [
"Geom_Geometry",
"Geom_AxisPlacement",
"Geom_Axis1Placement",
"Geom_Curve",
"Geom_Surface",
"Geom_BoundedCurve",
"Geom_BoundedSurface",
"Geom_BSplineCurve",
"Geom_BSplineSurface",
"Geom_Point",
"Geom_Conic",
"Geom_Circle",
"Geom_ElementarySurface",
"Geom_BezierCurve",
"Geom_CylindricalSurface",
"Geom_Vector",
"Geom_ConicalSurface",
"Geom_Ellipse",
"Geom_Axis2Placement",
"Geom_SequenceOfBSplineSurface",
"Geom_Hyperbola",
"Geom_Line",
"Geom_OffsetCurve",
"Geom_OffsetSurface",
"Geom_OsculatingSurface",
"Geom_Parabola",
"Geom_Plane",
"Geom_CartesianPoint",
"Geom_RectangularTrimmedSurface",
"Geom_HSequenceOfBSplineSurface",
"Geom_SphericalSurface",
"Geom_BezierSurface",
"Geom_SweptSurface",
"Geom_SurfaceOfRevolution",
"Geom_SurfaceOfLinearExtrusion",
"Geom_ToroidalSurface",
"Geom_Transformation",
"Geom_TrimmedCurve",
"Geom_UndefinedDerivative",
"Geom_UndefinedValue",
"Geom_Direction",
"Geom_VectorWithMagnitude"
]
class Geom_Geometry(OCP.Standard.Standard_Transient):
    """
    The abstract class Geometry for 3D space is the root class of all geometric objects from the Geom package. It describes the common behavior of these objects when: - applying geometric transformations to objects, and - constructing objects by geometric transformation (including copying). Warning Only transformations which do not modify the nature of the geometry can be applied to Geom objects: this is the case with translations, rotations, symmetries and scales; this is also the case with gp_Trsf composite transformations which are used to define the geometric transformations applied using the Transform or Transformed functions. Note: Geometry defines the "prototype" of the abstract method Transform which is defined for each concrete type of derived object. All other transformations are implemented using the Transform method.The abstract class Geometry for 3D space is the root class of all geometric objects from the Geom package. It describes the common behavior of these objects when: - applying geometric transformations to objects, and - constructing objects by geometric transformation (including copying). Warning Only transformations which do not modify the nature of the geometry can be applied to Geom objects: this is the case with translations, rotations, symmetries and scales; this is also the case with gp_Trsf composite transformations which are used to define the geometric transformations applied using the Transform or Transformed functions. Note: Geometry defines the "prototype" of the abstract method Transform which is defined for each concrete type of derived object. All other transformations are implemented using the Transform method.The abstract class Geometry for 3D space is the root class of all geometric objects from the Geom package. It describes the common behavior of these objects when: - applying geometric transformations to objects, and - constructing objects by geometric transformation (including copying). Warning Only transformations which do not modify the nature of the geometry can be applied to Geom objects: this is the case with translations, rotations, symmetries and scales; this is also the case with gp_Trsf composite transformations which are used to define the geometric transformations applied using the Transform or Transformed functions. Note: Geometry defines the "prototype" of the abstract method Transform which is defined for each concrete type of derived object. All other transformations are implemented using the Transform method.
    """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this geometric object.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom).
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_AxisPlacement(Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    The abstract class AxisPlacement describes the common behavior of positioning systems in 3D space, such as axis or coordinate systems. The Geom package provides two implementations of 3D positioning systems: - the axis (Geom_Axis1Placement class), which is defined by: - its origin, also termed the "Location point" of the axis, - its unit vector, termed the "Direction" or "main Direction" of the axis; - the right-handed coordinate system (Geom_Axis2Placement class), which is defined by: - its origin, also termed the "Location point" of the coordinate system, - three orthogonal unit vectors, termed respectively the "X Direction", the "Y Direction" and the "Direction" of the coordinate system. As the coordinate system is right-handed, these unit vectors have the following relation: "Direction" = "X Direction" ^ "Y Direction". The "Direction" is also called the "main Direction" because, when the unit vector is modified, the "X Direction" and "Y Direction" are recomputed, whereas when the "X Direction" or "Y Direction" is modified, the "main Direction" does not change. The axis whose origin is the origin of the positioning system and whose unit vector is its "main Direction" is also called the "Axis" or "main Axis" of the positioning system.The abstract class AxisPlacement describes the common behavior of positioning systems in 3D space, such as axis or coordinate systems. The Geom package provides two implementations of 3D positioning systems: - the axis (Geom_Axis1Placement class), which is defined by: - its origin, also termed the "Location point" of the axis, - its unit vector, termed the "Direction" or "main Direction" of the axis; - the right-handed coordinate system (Geom_Axis2Placement class), which is defined by: - its origin, also termed the "Location point" of the coordinate system, - three orthogonal unit vectors, termed respectively the "X Direction", the "Y Direction" and the "Direction" of the coordinate system. As the coordinate system is right-handed, these unit vectors have the following relation: "Direction" = "X Direction" ^ "Y Direction". The "Direction" is also called the "main Direction" because, when the unit vector is modified, the "X Direction" and "Y Direction" are recomputed, whereas when the "X Direction" or "Y Direction" is modified, the "main Direction" does not change. The axis whose origin is the origin of the positioning system and whose unit vector is its "main Direction" is also called the "Axis" or "main Axis" of the positioning system.The abstract class AxisPlacement describes the common behavior of positioning systems in 3D space, such as axis or coordinate systems. The Geom package provides two implementations of 3D positioning systems: - the axis (Geom_Axis1Placement class), which is defined by: - its origin, also termed the "Location point" of the axis, - its unit vector, termed the "Direction" or "main Direction" of the axis; - the right-handed coordinate system (Geom_Axis2Placement class), which is defined by: - its origin, also termed the "Location point" of the coordinate system, - three orthogonal unit vectors, termed respectively the "X Direction", the "Y Direction" and the "Direction" of the coordinate system. As the coordinate system is right-handed, these unit vectors have the following relation: "Direction" = "X Direction" ^ "Y Direction". The "Direction" is also called the "main Direction" because, when the unit vector is modified, the "X Direction" and "Y Direction" are recomputed, whereas when the "X Direction" or "Y Direction" is modified, the "main Direction" does not change. The axis whose origin is the origin of the positioning system and whose unit vector is its "main Direction" is also called the "Axis" or "main Axis" of the positioning system.
    """
    def Angle(self,Other : Geom_AxisPlacement) -> float: 
        """
        Computes the angular value, in radians, between the "main Direction" of this positioning system and that of positioning system Other. The result is a value between 0 and Pi.
        """
    def Axis(self) -> OCP.gp.gp_Ax1: 
        """
        Returns the main axis of the axis placement. For an "Axis2placement" it is the main axis (Location, Direction ). For an "Axis1Placement" this method returns a copy of <me>.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this geometric object.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def Direction(self) -> OCP.gp.gp_Dir: 
        """
        Returns the main "Direction" of an axis placement.
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def Location(self) -> OCP.gp.gp_Pnt: 
        """
        Returns the Location point (origin) of the axis placement.
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def SetAxis(self,A1 : OCP.gp.gp_Ax1) -> None: 
        """
        Assigns A1 as the "main Axis" of this positioning system. This modifies - its origin, and - its "main Direction". If this positioning system is a Geom_Axis2Placement, then its "X Direction" and "Y Direction" are recomputed. Exceptions For a Geom_Axis2Placement: Standard_ConstructionError if A1 and the previous "X Direction" of the coordinate system are parallel.
        """
    def SetDirection(self,V : OCP.gp.gp_Dir) -> None: 
        """
        Changes the direction of the axis placement. If <me> is an axis placement two axis the main "Direction" is modified and the "XDirection" and "YDirection" are recomputed. Raises ConstructionError only for an axis placement two axis if V and the previous "XDirection" are parallel because it is not possible to calculate the new "XDirection" and the new "YDirection".
        """
    def SetLocation(self,P : OCP.gp.gp_Pnt) -> None: 
        """
        Assigns the point P as the origin of this positioning system.
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom).
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_Axis1Placement(Geom_AxisPlacement, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    Describes an axis in 3D space. An axis is defined by: - its origin, also termed the "Location point" of the axis, - its unit vector, termed the "Direction" of the axis. Note: Geom_Axis1Placement axes provide the same kind of "geometric" services as gp_Ax1 axes but have more complex data structures. The geometric objects provided by the Geom package use gp_Ax1 objects to include axes in their data structures, or to define an axis of symmetry or axis of rotation. Geom_Axis1Placement axes are used in a context where they can be shared by several objects contained inside a common data structure.Describes an axis in 3D space. An axis is defined by: - its origin, also termed the "Location point" of the axis, - its unit vector, termed the "Direction" of the axis. Note: Geom_Axis1Placement axes provide the same kind of "geometric" services as gp_Ax1 axes but have more complex data structures. The geometric objects provided by the Geom package use gp_Ax1 objects to include axes in their data structures, or to define an axis of symmetry or axis of rotation. Geom_Axis1Placement axes are used in a context where they can be shared by several objects contained inside a common data structure.Describes an axis in 3D space. An axis is defined by: - its origin, also termed the "Location point" of the axis, - its unit vector, termed the "Direction" of the axis. Note: Geom_Axis1Placement axes provide the same kind of "geometric" services as gp_Ax1 axes but have more complex data structures. The geometric objects provided by the Geom package use gp_Ax1 objects to include axes in their data structures, or to define an axis of symmetry or axis of rotation. Geom_Axis1Placement axes are used in a context where they can be shared by several objects contained inside a common data structure.
    """
    def Angle(self,Other : Geom_AxisPlacement) -> float: 
        """
        Computes the angular value, in radians, between the "main Direction" of this positioning system and that of positioning system Other. The result is a value between 0 and Pi.
        """
    def Ax1(self) -> OCP.gp.gp_Ax1: 
        """
        Returns a non transient copy of <me>.
        """
    def Axis(self) -> OCP.gp.gp_Ax1: 
        """
        Returns the main axis of the axis placement. For an "Axis2placement" it is the main axis (Location, Direction ). For an "Axis1Placement" this method returns a copy of <me>.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object, which is a copy of this axis.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def Direction(self) -> OCP.gp.gp_Dir: 
        """
        Returns the main "Direction" of an axis placement.
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def Location(self) -> OCP.gp.gp_Pnt: 
        """
        Returns the Location point (origin) of the axis placement.
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def Reverse(self) -> None: 
        """
        Reverses the direction of the axis placement.
        """
    def Reversed(self) -> Geom_Axis1Placement: 
        """
        Returns a copy of <me> reversed.
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def SetAxis(self,A1 : OCP.gp.gp_Ax1) -> None: 
        """
        Assigns A1 as the "main Axis" of this positioning system. This modifies - its origin, and - its "main Direction". If this positioning system is a Geom_Axis2Placement, then its "X Direction" and "Y Direction" are recomputed. Exceptions For a Geom_Axis2Placement: Standard_ConstructionError if A1 and the previous "X Direction" of the coordinate system are parallel.
        """
    def SetDirection(self,V : OCP.gp.gp_Dir) -> None: 
        """
        Assigns V to the unit vector of this axis.
        """
    def SetLocation(self,P : OCP.gp.gp_Pnt) -> None: 
        """
        Assigns the point P as the origin of this positioning system.
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Applies the transformation T to this axis.
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    @overload
    def __init__(self,P : OCP.gp.gp_Pnt,V : OCP.gp.gp_Dir) -> None: ...
    @overload
    def __init__(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_Curve(Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    The abstract class Curve describes the common behavior of curves in 3D space. The Geom package provides numerous concrete classes of derived curves, including lines, circles, conics, Bezier or BSpline curves, etc. The main characteristic of these curves is that they are parameterized. The Geom_Curve class shows: - how to work with the parametric equation of a curve in order to calculate the point of parameter u, together with the vector tangent and the derivative vectors of order 2, 3,..., N at this point; - how to obtain general information about the curve (for example, level of continuity, closed characteristics, periodicity, bounds of the parameter field); - how the parameter changes when a geometric transformation is applied to the curve or when the orientation of the curve is inverted. All curves must have a geometric continuity: a curve is at least "C0". Generally, this property is checked at the time of construction or when the curve is edited. Where this is not the case, the documentation states so explicitly. Warning The Geom package does not prevent the construction of curves with null length or curves which self-intersect.The abstract class Curve describes the common behavior of curves in 3D space. The Geom package provides numerous concrete classes of derived curves, including lines, circles, conics, Bezier or BSpline curves, etc. The main characteristic of these curves is that they are parameterized. The Geom_Curve class shows: - how to work with the parametric equation of a curve in order to calculate the point of parameter u, together with the vector tangent and the derivative vectors of order 2, 3,..., N at this point; - how to obtain general information about the curve (for example, level of continuity, closed characteristics, periodicity, bounds of the parameter field); - how the parameter changes when a geometric transformation is applied to the curve or when the orientation of the curve is inverted. All curves must have a geometric continuity: a curve is at least "C0". Generally, this property is checked at the time of construction or when the curve is edited. Where this is not the case, the documentation states so explicitly. Warning The Geom package does not prevent the construction of curves with null length or curves which self-intersect.The abstract class Curve describes the common behavior of curves in 3D space. The Geom package provides numerous concrete classes of derived curves, including lines, circles, conics, Bezier or BSpline curves, etc. The main characteristic of these curves is that they are parameterized. The Geom_Curve class shows: - how to work with the parametric equation of a curve in order to calculate the point of parameter u, together with the vector tangent and the derivative vectors of order 2, 3,..., N at this point; - how to obtain general information about the curve (for example, level of continuity, closed characteristics, periodicity, bounds of the parameter field); - how the parameter changes when a geometric transformation is applied to the curve or when the orientation of the curve is inverted. All curves must have a geometric continuity: a curve is at least "C0". Generally, this property is checked at the time of construction or when the curve is edited. Where this is not the case, the documentation states so explicitly. Warning The Geom package does not prevent the construction of curves with null length or curves which self-intersect.
    """
    def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape: 
        """
        It is the global continuity of the curve C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, G1 : tangency continuity all along the Curve, G2 : curvature continuity all along the Curve, CN : the order of continuity is infinite.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this geometric object.
        """
    def D0(self,U : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        Returns in P the point of parameter U. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve.
        """
    def D1(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec) -> None: 
        """
        Returns the point P of parameter U and the first derivative V1. Raised if the continuity of the curve is not C1.
        """
    def D2(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec) -> None: 
        """
        Returns the point P of parameter U, the first and second derivatives V1 and V2. Raised if the continuity of the curve is not C2.
        """
    def D3(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec,V3 : OCP.gp.gp_Vec) -> None: 
        """
        Returns the point P of parameter U, the first, the second and the third derivative. Raised if the continuity of the curve is not C3.
        """
    def DN(self,U : float,N : int) -> OCP.gp.gp_Vec: 
        """
        The returned vector gives the value of the derivative for the order of derivation N. Raised if the continuity of the curve is not CN.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def FirstParameter(self) -> float: 
        """
        Returns the value of the first parameter. Warnings : It can be RealFirst from package Standard if the curve is infinite
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    def IsCN(self,N : int) -> bool: 
        """
        Returns true if the degree of continuity of this curve is at least N. Exceptions - Standard_RangeError if N is less than 0.
        """
    def IsClosed(self) -> bool: 
        """
        Returns true if the curve is closed. Some curves such as circle are always closed, others such as line are never closed (by definition). Some Curves such as OffsetCurve can be closed or not. These curves are considered as closed if the distance between the first point and the last point of the curve is lower or equal to the Resolution from package gp which is a fixed criterion independent of the application.
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def IsPeriodic(self) -> bool: 
        """
        Is the parametrization of the curve periodic ? It is possible only if the curve is closed and if the following relation is satisfied : for each parametric value U the distance between the point P(u) and the point P (u + T) is lower or equal to Resolution from package gp, T is the period and must be a constant. There are three possibilities : . the curve is never periodic by definition (SegmentLine) . the curve is always periodic by definition (Circle) . the curve can be defined as periodic (BSpline). In this case a function SetPeriodic allows you to give the shape of the curve. The general rule for this case is : if a curve can be periodic or not the default periodicity set is non periodic and you have to turn (explicitly) the curve into a periodic curve if you want the curve to be periodic.
        """
    def LastParameter(self) -> float: 
        """
        Returns the value of the last parameter. Warnings : It can be RealLast from package Standard if the curve is infinite
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> float: 
        """
        Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.
        """
    def Period(self) -> float: 
        """
        Returns the period of this curve. Exceptions Standard_NoSuchObject if this curve is not periodic.
        """
    def Reverse(self) -> None: 
        """
        Changes the direction of parametrization of <me>. The "FirstParameter" and the "LastParameter" are not changed but the orientation of the curve is modified. If the curve is bounded the StartPoint of the initial curve becomes the EndPoint of the reversed curve and the EndPoint of the initial curve becomes the StartPoint of the reversed curve.
        """
    def Reversed(self) -> Geom_Curve: 
        """
        Returns a copy of <me> reversed.
        """
    def ReversedParameter(self,U : float) -> float: 
        """
        Returns the parameter on the reversed curve for the point of parameter U on <me>.
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom).
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf) -> float: 
        """
        Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def Value(self,U : float) -> OCP.gp.gp_Pnt: 
        """
        Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve. it is implemented with D0.
        """
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_Surface(Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    Describes the common behavior of surfaces in 3D space. The Geom package provides many implementations of concrete derived surfaces, such as planes, cylinders, cones, spheres and tori, surfaces of linear extrusion, surfaces of revolution, Bezier and BSpline surfaces, and so on. The key characteristic of these surfaces is that they are parameterized. Geom_Surface demonstrates: - how to work with the parametric equation of a surface to compute the point of parameters (u, v), and, at this point, the 1st, 2nd ... Nth derivative; - how to find global information about a surface in each parametric direction (for example, level of continuity, whether the surface is closed, its periodicity, the bounds of the parameters and so on); - how the parameters change when geometric transformations are applied to the surface, or the orientation is modified.Describes the common behavior of surfaces in 3D space. The Geom package provides many implementations of concrete derived surfaces, such as planes, cylinders, cones, spheres and tori, surfaces of linear extrusion, surfaces of revolution, Bezier and BSpline surfaces, and so on. The key characteristic of these surfaces is that they are parameterized. Geom_Surface demonstrates: - how to work with the parametric equation of a surface to compute the point of parameters (u, v), and, at this point, the 1st, 2nd ... Nth derivative; - how to find global information about a surface in each parametric direction (for example, level of continuity, whether the surface is closed, its periodicity, the bounds of the parameters and so on); - how the parameters change when geometric transformations are applied to the surface, or the orientation is modified.Describes the common behavior of surfaces in 3D space. The Geom package provides many implementations of concrete derived surfaces, such as planes, cylinders, cones, spheres and tori, surfaces of linear extrusion, surfaces of revolution, Bezier and BSpline surfaces, and so on. The key characteristic of these surfaces is that they are parameterized. Geom_Surface demonstrates: - how to work with the parametric equation of a surface to compute the point of parameters (u, v), and, at this point, the 1st, 2nd ... Nth derivative; - how to find global information about a surface in each parametric direction (for example, level of continuity, whether the surface is closed, its periodicity, the bounds of the parameters and so on); - how the parameters change when geometric transformations are applied to the surface, or the orientation is modified.
    """
    def Bounds(self) -> tuple[float, float, float, float]: 
        """
        Returns the parametric bounds U1, U2, V1 and V2 of this surface. If the surface is infinite, this function can return a value equal to Precision::Infinite: instead of Standard_Real::LastReal.
        """
    def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape: 
        """
        Returns the Global Continuity of the surface in direction U and V : - C0: only geometric continuity, - C1: continuity of the first derivative all along the surface, - C2: continuity of the second derivative all along the surface, - C3: continuity of the third derivative all along the surface, - G1: tangency continuity all along the surface, - G2: curvature continuity all along the surface, - CN: the order of continuity is infinite.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this geometric object.
        """
    def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        Computes the point of parameter U,V on the surface.
        """
    def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None: 
        """
        Computes the point P and the first derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C1.
        """
    def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None: 
        """
        Computes the point P, the first and the second derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C2.
        """
    def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None: 
        """
        Computes the point P, the first,the second and the third derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C2.
        """
    def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec: 
        """
        Computes the derivative of order Nu in the direction U and Nv in the direction V at the point P(U, V).
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    def IsCNu(self,N : int) -> bool: 
        """
        Returns the order of continuity of the surface in the U parametric direction. Raised if N < 0.
        """
    def IsCNv(self,N : int) -> bool: 
        """
        Returns the order of continuity of the surface in the V parametric direction. Raised if N < 0.
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def IsUClosed(self) -> bool: 
        """
        Checks whether this surface is closed in the u parametric direction. Returns true if, in the u parametric direction: taking uFirst and uLast as the parametric bounds in the u parametric direction, for each parameter v, the distance between the points P(uFirst, v) and P(uLast, v) is less than or equal to gp::Resolution().
        """
    def IsUPeriodic(self) -> bool: 
        """
        Checks if this surface is periodic in the u parametric direction. Returns true if: - this surface is closed in the u parametric direction, and - there is a constant T such that the distance between the points P (u, v) and P (u + T, v) (or the points P (u, v) and P (u, v + T)) is less than or equal to gp::Resolution().
        """
    def IsVClosed(self) -> bool: 
        """
        Checks whether this surface is closed in the u parametric direction. Returns true if, in the v parametric direction: taking vFirst and vLast as the parametric bounds in the v parametric direction, for each parameter u, the distance between the points P(u, vFirst) and P(u, vLast) is less than or equal to gp::Resolution().
        """
    def IsVPeriodic(self) -> bool: 
        """
        Checks if this surface is periodic in the v parametric direction. Returns true if: - this surface is closed in the v parametric direction, and - there is a constant T such that the distance between the points P (u, v) and P (u + T, v) (or the points P (u, v) and P (u, v + T)) is less than or equal to gp::Resolution().
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d: 
        """
        Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns an identity transformation
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom).
        """
    def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]: 
        """
        Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method does not change <U> and <V>
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def UIso(self,U : float) -> Geom_Curve: 
        """
        Computes the U isoparametric curve.
        """
    def UPeriod(self) -> float: 
        """
        Returns the period of this surface in the u parametric direction. Raises if the surface is not uperiodic.
        """
    def UReverse(self) -> None: 
        """
        Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified.
        """
    def UReversed(self) -> Geom_Surface: 
        """
        Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def UReversedParameter(self,U : float) -> float: 
        """
        Returns the parameter on the Ureversed surface for the point of parameter U on <me>. is the same point as
        """
    def VIso(self,V : float) -> Geom_Curve: 
        """
        Computes the V isoparametric curve.
        """
    def VPeriod(self) -> float: 
        """
        Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic.
        """
    def VReverse(self) -> None: 
        """
        Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified.
        """
    def VReversed(self) -> Geom_Surface: 
        """
        Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def VReversedParameter(self,V : float) -> float: 
        """
        Returns the parameter on the Vreversed surface for the point of parameter V on <me>. is the same point as
        """
    def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt: 
        """
        Computes the point of parameter (U, V) on the surface.
        """
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_BoundedCurve(Geom_Curve, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    The abstract class BoundedCurve describes the common behavior of bounded curves in 3D space. A bounded curve is limited by two finite values of the parameter, termed respectively "first parameter" and "last parameter". The "first parameter" gives the "start point" of the bounded curve, and the "last parameter" gives the "end point" of the bounded curve. The length of a bounded curve is finite. The Geom package provides three concrete classes of bounded curves: - two frequently used mathematical formulations of complex curves: - Geom_BezierCurve, - Geom_BSplineCurve, and - Geom_TrimmedCurve to trim a curve, i.e. to only take part of the curve limited by two values of the parameter of the basis curve.The abstract class BoundedCurve describes the common behavior of bounded curves in 3D space. A bounded curve is limited by two finite values of the parameter, termed respectively "first parameter" and "last parameter". The "first parameter" gives the "start point" of the bounded curve, and the "last parameter" gives the "end point" of the bounded curve. The length of a bounded curve is finite. The Geom package provides three concrete classes of bounded curves: - two frequently used mathematical formulations of complex curves: - Geom_BezierCurve, - Geom_BSplineCurve, and - Geom_TrimmedCurve to trim a curve, i.e. to only take part of the curve limited by two values of the parameter of the basis curve.The abstract class BoundedCurve describes the common behavior of bounded curves in 3D space. A bounded curve is limited by two finite values of the parameter, termed respectively "first parameter" and "last parameter". The "first parameter" gives the "start point" of the bounded curve, and the "last parameter" gives the "end point" of the bounded curve. The length of a bounded curve is finite. The Geom package provides three concrete classes of bounded curves: - two frequently used mathematical formulations of complex curves: - Geom_BezierCurve, - Geom_BSplineCurve, and - Geom_TrimmedCurve to trim a curve, i.e. to only take part of the curve limited by two values of the parameter of the basis curve.
    """
    def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape: 
        """
        It is the global continuity of the curve C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, G1 : tangency continuity all along the Curve, G2 : curvature continuity all along the Curve, CN : the order of continuity is infinite.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this geometric object.
        """
    def D0(self,U : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        Returns in P the point of parameter U. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve.
        """
    def D1(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec) -> None: 
        """
        Returns the point P of parameter U and the first derivative V1. Raised if the continuity of the curve is not C1.
        """
    def D2(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec) -> None: 
        """
        Returns the point P of parameter U, the first and second derivatives V1 and V2. Raised if the continuity of the curve is not C2.
        """
    def D3(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec,V3 : OCP.gp.gp_Vec) -> None: 
        """
        Returns the point P of parameter U, the first, the second and the third derivative. Raised if the continuity of the curve is not C3.
        """
    def DN(self,U : float,N : int) -> OCP.gp.gp_Vec: 
        """
        The returned vector gives the value of the derivative for the order of derivation N. Raised if the continuity of the curve is not CN.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def EndPoint(self) -> OCP.gp.gp_Pnt: 
        """
        Returns the end point of the curve.
        """
    def FirstParameter(self) -> float: 
        """
        Returns the value of the first parameter. Warnings : It can be RealFirst from package Standard if the curve is infinite
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    def IsCN(self,N : int) -> bool: 
        """
        Returns true if the degree of continuity of this curve is at least N. Exceptions - Standard_RangeError if N is less than 0.
        """
    def IsClosed(self) -> bool: 
        """
        Returns true if the curve is closed. Some curves such as circle are always closed, others such as line are never closed (by definition). Some Curves such as OffsetCurve can be closed or not. These curves are considered as closed if the distance between the first point and the last point of the curve is lower or equal to the Resolution from package gp which is a fixed criterion independent of the application.
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def IsPeriodic(self) -> bool: 
        """
        Is the parametrization of the curve periodic ? It is possible only if the curve is closed and if the following relation is satisfied : for each parametric value U the distance between the point P(u) and the point P (u + T) is lower or equal to Resolution from package gp, T is the period and must be a constant. There are three possibilities : . the curve is never periodic by definition (SegmentLine) . the curve is always periodic by definition (Circle) . the curve can be defined as periodic (BSpline). In this case a function SetPeriodic allows you to give the shape of the curve. The general rule for this case is : if a curve can be periodic or not the default periodicity set is non periodic and you have to turn (explicitly) the curve into a periodic curve if you want the curve to be periodic.
        """
    def LastParameter(self) -> float: 
        """
        Returns the value of the last parameter. Warnings : It can be RealLast from package Standard if the curve is infinite
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> float: 
        """
        Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.
        """
    def Period(self) -> float: 
        """
        Returns the period of this curve. Exceptions Standard_NoSuchObject if this curve is not periodic.
        """
    def Reverse(self) -> None: 
        """
        Changes the direction of parametrization of <me>. The "FirstParameter" and the "LastParameter" are not changed but the orientation of the curve is modified. If the curve is bounded the StartPoint of the initial curve becomes the EndPoint of the reversed curve and the EndPoint of the initial curve becomes the StartPoint of the reversed curve.
        """
    def Reversed(self) -> Geom_Curve: 
        """
        Returns a copy of <me> reversed.
        """
    def ReversedParameter(self,U : float) -> float: 
        """
        Returns the parameter on the reversed curve for the point of parameter U on <me>.
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def StartPoint(self) -> OCP.gp.gp_Pnt: 
        """
        Returns the start point of the curve.
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom).
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf) -> float: 
        """
        Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def Value(self,U : float) -> OCP.gp.gp_Pnt: 
        """
        Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve. it is implemented with D0.
        """
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_BoundedSurface(Geom_Surface, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    The root class for bounded surfaces in 3D space. A bounded surface is defined by a rectangle in its 2D parametric space, i.e. - its u parameter, which ranges between two finite values u0 and u1, referred to as "First u parameter" and "Last u parameter" respectively, and - its v parameter, which ranges between two finite values v0 and v1, referred to as "First v parameter" and the "Last v parameter" respectively. The surface is limited by four curves which are the boundaries of the surface: - its u0 and u1 isoparametric curves in the u parametric direction, and - its v0 and v1 isoparametric curves in the v parametric direction. A bounded surface is finite. The common behavior of all bounded surfaces is described by the Geom_Surface class. The Geom package provides three concrete implementations of bounded surfaces: - Geom_BezierSurface, - Geom_BSplineSurface, and - Geom_RectangularTrimmedSurface. The first two of these implement well known mathematical definitions of complex surfaces, the third trims a surface using four isoparametric curves, i.e. it limits the variation of its parameters to a rectangle in 2D parametric space.The root class for bounded surfaces in 3D space. A bounded surface is defined by a rectangle in its 2D parametric space, i.e. - its u parameter, which ranges between two finite values u0 and u1, referred to as "First u parameter" and "Last u parameter" respectively, and - its v parameter, which ranges between two finite values v0 and v1, referred to as "First v parameter" and the "Last v parameter" respectively. The surface is limited by four curves which are the boundaries of the surface: - its u0 and u1 isoparametric curves in the u parametric direction, and - its v0 and v1 isoparametric curves in the v parametric direction. A bounded surface is finite. The common behavior of all bounded surfaces is described by the Geom_Surface class. The Geom package provides three concrete implementations of bounded surfaces: - Geom_BezierSurface, - Geom_BSplineSurface, and - Geom_RectangularTrimmedSurface. The first two of these implement well known mathematical definitions of complex surfaces, the third trims a surface using four isoparametric curves, i.e. it limits the variation of its parameters to a rectangle in 2D parametric space.The root class for bounded surfaces in 3D space. A bounded surface is defined by a rectangle in its 2D parametric space, i.e. - its u parameter, which ranges between two finite values u0 and u1, referred to as "First u parameter" and "Last u parameter" respectively, and - its v parameter, which ranges between two finite values v0 and v1, referred to as "First v parameter" and the "Last v parameter" respectively. The surface is limited by four curves which are the boundaries of the surface: - its u0 and u1 isoparametric curves in the u parametric direction, and - its v0 and v1 isoparametric curves in the v parametric direction. A bounded surface is finite. The common behavior of all bounded surfaces is described by the Geom_Surface class. The Geom package provides three concrete implementations of bounded surfaces: - Geom_BezierSurface, - Geom_BSplineSurface, and - Geom_RectangularTrimmedSurface. The first two of these implement well known mathematical definitions of complex surfaces, the third trims a surface using four isoparametric curves, i.e. it limits the variation of its parameters to a rectangle in 2D parametric space.
    """
    def Bounds(self) -> tuple[float, float, float, float]: 
        """
        Returns the parametric bounds U1, U2, V1 and V2 of this surface. If the surface is infinite, this function can return a value equal to Precision::Infinite: instead of Standard_Real::LastReal.
        """
    def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape: 
        """
        Returns the Global Continuity of the surface in direction U and V : - C0: only geometric continuity, - C1: continuity of the first derivative all along the surface, - C2: continuity of the second derivative all along the surface, - C3: continuity of the third derivative all along the surface, - G1: tangency continuity all along the surface, - G2: curvature continuity all along the surface, - CN: the order of continuity is infinite.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this geometric object.
        """
    def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        Computes the point of parameter U,V on the surface.
        """
    def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None: 
        """
        Computes the point P and the first derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C1.
        """
    def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None: 
        """
        Computes the point P, the first and the second derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C2.
        """
    def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None: 
        """
        Computes the point P, the first,the second and the third derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C2.
        """
    def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec: 
        """
        Computes the derivative of order Nu in the direction U and Nv in the direction V at the point P(U, V).
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    def IsCNu(self,N : int) -> bool: 
        """
        Returns the order of continuity of the surface in the U parametric direction. Raised if N < 0.
        """
    def IsCNv(self,N : int) -> bool: 
        """
        Returns the order of continuity of the surface in the V parametric direction. Raised if N < 0.
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def IsUClosed(self) -> bool: 
        """
        Checks whether this surface is closed in the u parametric direction. Returns true if, in the u parametric direction: taking uFirst and uLast as the parametric bounds in the u parametric direction, for each parameter v, the distance between the points P(uFirst, v) and P(uLast, v) is less than or equal to gp::Resolution().
        """
    def IsUPeriodic(self) -> bool: 
        """
        Checks if this surface is periodic in the u parametric direction. Returns true if: - this surface is closed in the u parametric direction, and - there is a constant T such that the distance between the points P (u, v) and P (u + T, v) (or the points P (u, v) and P (u, v + T)) is less than or equal to gp::Resolution().
        """
    def IsVClosed(self) -> bool: 
        """
        Checks whether this surface is closed in the u parametric direction. Returns true if, in the v parametric direction: taking vFirst and vLast as the parametric bounds in the v parametric direction, for each parameter u, the distance between the points P(u, vFirst) and P(u, vLast) is less than or equal to gp::Resolution().
        """
    def IsVPeriodic(self) -> bool: 
        """
        Checks if this surface is periodic in the v parametric direction. Returns true if: - this surface is closed in the v parametric direction, and - there is a constant T such that the distance between the points P (u, v) and P (u + T, v) (or the points P (u, v) and P (u, v + T)) is less than or equal to gp::Resolution().
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d: 
        """
        Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns an identity transformation
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom).
        """
    def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]: 
        """
        Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method does not change <U> and <V>
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def UIso(self,U : float) -> Geom_Curve: 
        """
        Computes the U isoparametric curve.
        """
    def UPeriod(self) -> float: 
        """
        Returns the period of this surface in the u parametric direction. Raises if the surface is not uperiodic.
        """
    def UReverse(self) -> None: 
        """
        Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified.
        """
    def UReversed(self) -> Geom_Surface: 
        """
        Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def UReversedParameter(self,U : float) -> float: 
        """
        Returns the parameter on the Ureversed surface for the point of parameter U on <me>. is the same point as
        """
    def VIso(self,V : float) -> Geom_Curve: 
        """
        Computes the V isoparametric curve.
        """
    def VPeriod(self) -> float: 
        """
        Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic.
        """
    def VReverse(self) -> None: 
        """
        Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified.
        """
    def VReversed(self) -> Geom_Surface: 
        """
        Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def VReversedParameter(self,V : float) -> float: 
        """
        Returns the parameter on the Vreversed surface for the point of parameter V on <me>. is the same point as
        """
    def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt: 
        """
        Computes the point of parameter (U, V) on the surface.
        """
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_BSplineCurve(Geom_BoundedCurve, Geom_Curve, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    Definition of the B_spline curve. A B-spline curve can be Uniform or non-uniform Rational or non-rational Periodic or non-periodicDefinition of the B_spline curve. A B-spline curve can be Uniform or non-uniform Rational or non-rational Periodic or non-periodicDefinition of the B_spline curve. A B-spline curve can be Uniform or non-uniform Rational or non-rational Periodic or non-periodic
    """
    def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape: 
        """
        Returns the global continuity of the curve : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, CN : the order of continuity is infinite. For a B-spline curve of degree d if a knot Ui has a multiplicity p the B-spline curve is only Cd-p continuous at Ui. So the global continuity of the curve can't be greater than Cd-p where p is the maximum multiplicity of the interior Knots. In the interior of a knot span the curve is infinitely continuously differentiable.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this BSpline curve.
        """
    def D0(self,U : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        Returns in P the point of parameter U.
        """
    def D1(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec) -> None: 
        """
        Raised if the continuity of the curve is not C1.
        """
    def D2(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec) -> None: 
        """
        Raised if the continuity of the curve is not C2.
        """
    def D3(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec,V3 : OCP.gp.gp_Vec) -> None: 
        """
        Raised if the continuity of the curve is not C3.
        """
    def DN(self,U : float,N : int) -> OCP.gp.gp_Vec: 
        """
        For the point of parameter U of this BSpline curve, computes the vector corresponding to the Nth derivative. Warning On a point where the continuity of the curve is not the one requested, this function impacts the part defined by the parameter with a value greater than U, i.e. the part of the curve to the "right" of the singularity. Exceptions Standard_RangeError if N is less than 1.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Degree(self) -> int: 
        """
        Returns the degree of this BSpline curve. The degree of a Geom_BSplineCurve curve cannot be greater than Geom_BSplineCurve::MaxDegree(). Computation of value and derivatives
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def EndPoint(self) -> OCP.gp.gp_Pnt: 
        """
        Returns the last point of the curve. Warnings : The last point of the curve is different from the last pole of the curve if the multiplicity of the last knot is lower than Degree.
        """
    def FirstParameter(self) -> float: 
        """
        Returns the value of the first parameter of this BSpline curve. This is a knot value. The first parameter is the one of the start point of the BSpline curve.
        """
    def FirstUKnotIndex(self) -> int: 
        """
        Returns the index in the knot array of the knot corresponding to the first or last parameter of this BSpline curve. For a BSpline curve, the first (or last) parameter (which gives the start (or end) point of the curve) is a knot value. However, if the multiplicity of the first (or last) knot is less than Degree + 1, where Degree is the degree of the curve, it is not the first (or last) knot of the curve.
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncreaseDegree(self,Degree : int) -> None: 
        """
        Increases the degree of this BSpline curve to Degree. As a result, the poles, weights and multiplicities tables are modified; the knots table is not changed. Nothing is done if Degree is less than or equal to the current degree. Exceptions Standard_ConstructionError if Degree is greater than Geom_BSplineCurve::MaxDegree().
        """
    @overload
    def IncreaseMultiplicity(self,Index : int,M : int) -> None: 
        """
        Increases the multiplicity of the knot <Index> to <M>.

        Increases the multiplicities of the knots in [I1,I2] to <M>.
        """
    @overload
    def IncreaseMultiplicity(self,I1 : int,I2 : int,M : int) -> None: ...
    def IncrementMultiplicity(self,I1 : int,I2 : int,M : int) -> None: 
        """
        Increment the multiplicities of the knots in [I1,I2] by <M>.
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    def InsertKnot(self,U : float,M : int=1,ParametricTolerance : float=0.0,Add : bool=True) -> None: 
        """
        Inserts a knot value in the sequence of knots. If <U> is an existing knot the multiplicity is increased by <M>.
        """
    def InsertKnots(self,Knots : OCP.TColStd.TColStd_Array1OfReal,Mults : OCP.TColStd.TColStd_Array1OfInteger,ParametricTolerance : float=0.0,Add : bool=False) -> None: 
        """
        Inserts a set of knots values in the sequence of knots.
        """
    def IsCN(self,N : int) -> bool: 
        """
        Returns the continuity of the curve, the curve is at least C0. Raised if N < 0.
        """
    def IsClosed(self) -> bool: 
        """
        Returns true if the distance between the first point and the last point of the curve is lower or equal to Resolution from package gp. Warnings : The first and the last point can be different from the first pole and the last pole of the curve.
        """
    def IsEqual(self,theOther : Geom_BSplineCurve,thePreci : float) -> bool: 
        """
        Comapare two Bspline curve on identity;
        """
    def IsG1(self,theTf : float,theTl : float,theAngTol : float) -> bool: 
        """
        Check if curve has at least G1 continuity in interval [theTf, theTl] Returns true if IsCN(1) or angle between "left" and "right" first derivatives at knots with C0 continuity is less then theAngTol only knots in interval [theTf, theTl] is checked
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def IsPeriodic(self) -> bool: 
        """
        Returns True if the curve is periodic.
        """
    def IsRational(self) -> bool: 
        """
        Returns True if the weights are not identical. The tolerance criterion is Epsilon of the class Real.
        """
    def Knot(self,Index : int) -> float: 
        """
        Returns the knot of range Index. When there is a knot with a multiplicity greater than 1 the knot is not repeated. The method Multiplicity can be used to get the multiplicity of the Knot. Raised if Index < 1 or Index > NbKnots
        """
    def KnotDistribution(self) -> OCP.GeomAbs.GeomAbs_BSplKnotDistribution: 
        """
        Returns NonUniform or Uniform or QuasiUniform or PiecewiseBezier. If all the knots differ by a positive constant from the preceding knot the BSpline Curve can be : - Uniform if all the knots are of multiplicity 1, - QuasiUniform if all the knots are of multiplicity 1 except for the first and last knot which are of multiplicity Degree + 1, - PiecewiseBezier if the first and last knots have multiplicity Degree + 1 and if interior knots have multiplicity Degree A piecewise Bezier with only two knots is a BezierCurve. else the curve is non uniform. The tolerance criterion is Epsilon from class Real.
        """
    @overload
    def KnotSequence(self,K : OCP.TColStd.TColStd_Array1OfReal) -> None: 
        """
        Returns K, the knots sequence of this BSpline curve. In this sequence, knots with a multiplicity greater than 1 are repeated. In the case of a non-periodic curve the length of the sequence must be equal to the sum of the NbKnots multiplicities of the knots of the curve (where NbKnots is the number of knots of this BSpline curve). This sum is also equal to : NbPoles + Degree + 1 where NbPoles is the number of poles and Degree the degree of this BSpline curve. In the case of a periodic curve, if there are k periodic knots, the period is Knot(k+1) - Knot(1). The initial sequence is built by writing knots 1 to k+1, which are repeated according to their corresponding multiplicities. If Degree is the degree of the curve, the degree of continuity of the curve at the knot of index 1 (or k+1) is equal to c = Degree + 1 - Mult(1). c knots are then inserted at the beginning and end of the initial sequence: - the c values of knots preceding the first item Knot(k+1) in the initial sequence are inserted at the beginning; the period is subtracted from these c values; - the c values of knots following the last item Knot(1) in the initial sequence are inserted at the end; the period is added to these c values. The length of the sequence must therefore be equal to: NbPoles + 2*Degree - Mult(1) + 2. Example For a non-periodic BSpline curve of degree 2 where: - the array of knots is: { k1 k2 k3 k4 }, - with associated multiplicities: { 3 1 2 3 }, the knot sequence is: K = { k1 k1 k1 k2 k3 k3 k4 k4 k4 } For a periodic BSpline curve of degree 4 , which is "C1" continuous at the first knot, and where : - the periodic knots are: { k1 k2 k3 (k4) } (3 periodic knots: the points of parameter k1 and k4 are identical, the period is p = k4 - k1), - with associated multiplicities: { 3 1 2 (3) }, the degree of continuity at knots k1 and k4 is: Degree + 1 - Mult(i) = 2. 2 supplementary knots are added at the beginning and end of the sequence: - at the beginning: the 2 knots preceding k4 minus the period; in this example, this is k3 - p both times; - at the end: the 2 knots following k1 plus the period; in this example, this is k2 + p and k3 + p. The knot sequence is therefore: K = { k3-p k3-p k1 k1 k1 k2 k3 k3 k4 k4 k4 k2+p k3+p } Exceptions Raised if K.Lower() is less than number of first knot in knot sequence with repetitions or K.Upper() is more than number of last knot in knot sequence with repetitions.

        returns the knots of the B-spline curve. Knots with multiplicit greater than 1 are repeated
        """
    @overload
    def KnotSequence(self) -> OCP.TColStd.TColStd_Array1OfReal: ...
    @overload
    def Knots(self) -> OCP.TColStd.TColStd_Array1OfReal: 
        """
        returns the knot values of the B-spline curve; Warning A knot with a multiplicity greater than 1 is not repeated in the knot table. The Multiplicity function can be used to obtain the multiplicity of each knot.

        returns the knot values of the B-spline curve; Warning A knot with a multiplicity greater than 1 is not repeated in the knot table. The Multiplicity function can be used to obtain the multiplicity of each knot.
        """
    @overload
    def Knots(self,K : OCP.TColStd.TColStd_Array1OfReal) -> None: ...
    def LastParameter(self) -> float: 
        """
        Computes the parametric value of the end point of the curve. It is a knot value.
        """
    def LastUKnotIndex(self) -> int: 
        """
        For a BSpline curve the last parameter (which gives the end point of the curve) is a knot value but if the multiplicity of the last knot index is lower than Degree + 1 it is not the last knot of the curve. This method computes the index of the knot corresponding to the last parameter.
        """
    def LocalD0(self,U : float,FromK1 : int,ToK2 : int,P : OCP.gp.gp_Pnt) -> None: 
        """
        Raised if FromK1 = ToK2.
        """
    def LocalD1(self,U : float,FromK1 : int,ToK2 : int,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec) -> None: 
        """
        Raised if the local continuity of the curve is not C1 between the knot K1 and the knot K2. Raised if FromK1 = ToK2.
        """
    def LocalD2(self,U : float,FromK1 : int,ToK2 : int,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec) -> None: 
        """
        Raised if the local continuity of the curve is not C2 between the knot K1 and the knot K2. Raised if FromK1 = ToK2.
        """
    def LocalD3(self,U : float,FromK1 : int,ToK2 : int,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec,V3 : OCP.gp.gp_Vec) -> None: 
        """
        Raised if the local continuity of the curve is not C3 between the knot K1 and the knot K2. Raised if FromK1 = ToK2.
        """
    def LocalDN(self,U : float,FromK1 : int,ToK2 : int,N : int) -> OCP.gp.gp_Vec: 
        """
        Raised if the local continuity of the curve is not CN between the knot K1 and the knot K2. Raised if FromK1 = ToK2. Raised if N < 1.
        """
    def LocalValue(self,U : float,FromK1 : int,ToK2 : int) -> OCP.gp.gp_Pnt: 
        """
        Raised if FromK1 = ToK2.
        """
    def LocateU(self,U : float,ParametricTolerance : float,WithKnotRepetition : bool=False) -> tuple[int, int]: 
        """
        Locates the parametric value U in the sequence of knots. If "WithKnotRepetition" is True we consider the knot's representation with repetition of multiple knot value, otherwise we consider the knot's representation with no repetition of multiple knot values. Knots (I1) <= U <= Knots (I2) . if I1 = I2 U is a knot value (the tolerance criterion ParametricTolerance is used). . if I1 < 1 => U < Knots (1) - Abs(ParametricTolerance) . if I2 > NbKnots => U > Knots (NbKnots) + Abs(ParametricTolerance)
        """
    @staticmethod
    def MaxDegree_s() -> int: 
        """
        Returns the value of the maximum degree of the normalized B-spline basis functions in this package.
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def MovePoint(self,U : float,P : OCP.gp.gp_Pnt,Index1 : int,Index2 : int) -> tuple[int, int]: 
        """
        Moves the point of parameter U of this BSpline curve to P. Index1 and Index2 are the indexes in the table of poles of this BSpline curve of the first and last poles designated to be moved. FirstModifiedPole and LastModifiedPole are the indexes of the first and last poles which are effectively modified. In the event of incompatibility between Index1, Index2 and the value U: - no change is made to this BSpline curve, and - the FirstModifiedPole and LastModifiedPole are returned null. Exceptions Standard_OutOfRange if: - Index1 is greater than or equal to Index2, or - Index1 or Index2 is less than 1 or greater than the number of poles of this BSpline curve.
        """
    def MovePointAndTangent(self,U : float,P : OCP.gp.gp_Pnt,Tangent : OCP.gp.gp_Vec,Tolerance : float,StartingCondition : int,EndingCondition : int) -> tuple[int]: 
        """
        Move a point with parameter U to P. and makes it tangent at U be Tangent. StartingCondition = -1 means first can move EndingCondition = -1 means last point can move StartingCondition = 0 means the first point cannot move EndingCondition = 0 means the last point cannot move StartingCondition = 1 means the first point and tangent cannot move EndingCondition = 1 means the last point and tangent cannot move and so forth ErrorStatus != 0 means that there are not enough degree of freedom with the constrain to deform the curve accordingly
        """
    @overload
    def Multiplicities(self) -> OCP.TColStd.TColStd_Array1OfInteger: 
        """
        Returns the multiplicity of the knots of the curve.

        returns the multiplicity of the knots of the curve.
        """
    @overload
    def Multiplicities(self,M : OCP.TColStd.TColStd_Array1OfInteger) -> None: ...
    def Multiplicity(self,Index : int) -> int: 
        """
        Returns the multiplicity of the knots of range Index. Raised if Index < 1 or Index > NbKnots
        """
    def NbKnots(self) -> int: 
        """
        Returns the number of knots. This method returns the number of knot without repetition of multiple knots.
        """
    def NbPoles(self) -> int: 
        """
        Returns the number of poles
        """
    def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> float: 
        """
        Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.
        """
    def Period(self) -> float: 
        """
        Returns the period of this curve. Exceptions Standard_NoSuchObject if this curve is not periodic.
        """
    def PeriodicNormalization(self) -> tuple[float]: 
        """
        returns the parameter normalized within the period if the curve is periodic : otherwise does not do anything
        """
    def Pole(self,Index : int) -> OCP.gp.gp_Pnt: 
        """
        Returns the pole of range Index. Raised if Index < 1 or Index > NbPoles.
        """
    @overload
    def Poles(self,P : OCP.TColgp.TColgp_Array1OfPnt) -> None: 
        """
        Returns the poles of the B-spline curve;

        Returns the poles of the B-spline curve;
        """
    @overload
    def Poles(self) -> OCP.TColgp.TColgp_Array1OfPnt: ...
    def RemoveKnot(self,Index : int,M : int,Tolerance : float) -> bool: 
        """
        Reduces the multiplicity of the knot of index Index to M. If M is equal to 0, the knot is removed. With a modification of this type, the array of poles is also modified. Two different algorithms are systematically used to compute the new poles of the curve. If, for each pole, the distance between the pole calculated using the first algorithm and the same pole calculated using the second algorithm, is less than Tolerance, this ensures that the curve is not modified by more than Tolerance. Under these conditions, true is returned; otherwise, false is returned. A low tolerance is used to prevent modification of the curve. A high tolerance is used to "smooth" the curve. Exceptions Standard_OutOfRange if Index is outside the bounds of the knots table. pole insertion and pole removing this operation is limited to the Uniform or QuasiUniform BSplineCurve. The knot values are modified . If the BSpline is NonUniform or Piecewise Bezier an exception Construction error is raised.
        """
    def Resolution(self,Tolerance3D : float) -> tuple[float]: 
        """
        Computes for this BSpline curve the parametric tolerance UTolerance for a given 3D tolerance Tolerance3D. If f(t) is the equation of this BSpline curve, UTolerance ensures that: | t1 - t0| < Utolerance ===> |f(t1) - f(t0)| < Tolerance3D
        """
    def Reverse(self) -> None: 
        """
        Changes the direction of parametrization of <me>. The Knot sequence is modified, the FirstParameter and the LastParameter are not modified. The StartPoint of the initial curve becomes the EndPoint of the reversed curve and the EndPoint of the initial curve becomes the StartPoint of the reversed curve.
        """
    def Reversed(self) -> Geom_Curve: 
        """
        Returns a copy of <me> reversed.
        """
    def ReversedParameter(self,U : float) -> float: 
        """
        Returns the parameter on the reversed curve for the point of parameter U on <me>.
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def Segment(self,U1 : float,U2 : float,theTolerance : float=9.999999999999999e-10) -> None: 
        """
        Modifies this BSpline curve by segmenting it between U1 and U2. Either of these values can be outside the bounds of the curve, but U2 must be greater than U1. All data structure tables of this BSpline curve are modified, but the knots located between U1 and U2 are retained. The degree of the curve is not modified.
        """
    @overload
    def SetKnot(self,Index : int,K : float) -> None: 
        """
        Modifies this BSpline curve by assigning the value K to the knot of index Index in the knots table. This is a relatively local modification because K must be such that: Knots(Index - 1) < K < Knots(Index + 1) The second syntax allows you also to increase the multiplicity of the knot to M (but it is not possible to decrease the multiplicity of the knot with this function). Standard_ConstructionError if: - K is not such that: Knots(Index - 1) < K < Knots(Index + 1) - M is greater than the degree of this BSpline curve or lower than the previous multiplicity of knot of index Index in the knots table. Standard_OutOfRange if Index is outside the bounds of the knots table.

        Changes the knot of range Index with its multiplicity. You can increase the multiplicity of a knot but it is not allowed to decrease the multiplicity of an existing knot.
        """
    @overload
    def SetKnot(self,Index : int,K : float,M : int) -> None: ...
    def SetKnots(self,K : OCP.TColStd.TColStd_Array1OfReal) -> None: 
        """
        Modifies this BSpline curve by assigning the array K to its knots table. The multiplicity of the knots is not modified. Exceptions Standard_ConstructionError if the values in the array K are not in ascending order. Standard_OutOfRange if the bounds of the array K are not respectively 1 and the number of knots of this BSpline curve.
        """
    def SetNotPeriodic(self) -> None: 
        """
        Changes this BSpline curve into a non-periodic curve. If this curve is already non-periodic, it is not modified. Note: the poles and knots tables are modified. Warning If this curve is periodic, as the multiplicity of the first and last knots is not modified, and is not equal to Degree + 1, where Degree is the degree of this BSpline curve, the start and end points of the curve are not its first and last poles.
        """
    @overload
    def SetOrigin(self,Index : int) -> None: 
        """
        Assigns the knot of index Index in the knots table as the origin of this periodic BSpline curve. As a consequence, the knots and poles tables are modified. Exceptions Standard_NoSuchObject if this curve is not periodic. Standard_DomainError if Index is outside the bounds of the knots table.

        Set the origin of a periodic curve at Knot U. If U is not a knot of the BSpline a new knot is inserted. KnotVector and poles are modified. Raised if the curve is not periodic
        """
    @overload
    def SetOrigin(self,U : float,Tol : float) -> None: ...
    def SetPeriodic(self) -> None: 
        """
        Changes this BSpline curve into a periodic curve. To become periodic, the curve must first be closed. Next, the knot sequence must be periodic. For this, FirstUKnotIndex and LastUKnotIndex are used to compute I1 and I2, the indexes in the knots array of the knots corresponding to the first and last parameters of this BSpline curve. The period is therefore: Knots(I2) - Knots(I1). Consequently, the knots and poles tables are modified. Exceptions Standard_ConstructionError if this BSpline curve is not closed.
        """
    @overload
    def SetPole(self,Index : int,P : OCP.gp.gp_Pnt) -> None: 
        """
        Modifies this BSpline curve by assigning P to the pole of index Index in the poles table. Exceptions Standard_OutOfRange if Index is outside the bounds of the poles table. Standard_ConstructionError if Weight is negative or null.

        Modifies this BSpline curve by assigning P to the pole of index Index in the poles table. This syntax also allows you to modify the weight of the modified pole, which becomes Weight. In this case, if this BSpline curve is non-rational, it can become rational and vice versa. Exceptions Standard_OutOfRange if Index is outside the bounds of the poles table. Standard_ConstructionError if Weight is negative or null.
        """
    @overload
    def SetPole(self,Index : int,P : OCP.gp.gp_Pnt,Weight : float) -> None: ...
    def SetWeight(self,Index : int,Weight : float) -> None: 
        """
        Changes the weight for the pole of range Index. If the curve was non rational it can become rational. If the curve was rational it can become non rational.
        """
    def StartPoint(self) -> OCP.gp.gp_Pnt: 
        """
        Returns the start point of the curve. Warnings : This point is different from the first pole of the curve if the multiplicity of the first knot is lower than Degree.
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Applies the transformation T to this BSpline curve.
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf) -> float: 
        """
        Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def Value(self,U : float) -> OCP.gp.gp_Pnt: 
        """
        Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve. it is implemented with D0.
        """
    def Weight(self,Index : int) -> float: 
        """
        Returns the weight of the pole of range Index . Raised if Index < 1 or Index > NbPoles.
        """
    @overload
    def Weights(self) -> OCP.TColStd.TColStd_Array1OfReal: 
        """
        Returns the weights of the B-spline curve;

        Returns the weights of the B-spline curve;
        """
    @overload
    def Weights(self,W : OCP.TColStd.TColStd_Array1OfReal) -> None: ...
    @overload
    def __init__(self,Poles : OCP.TColgp.TColgp_Array1OfPnt,Weights : OCP.TColStd.TColStd_Array1OfReal,Knots : OCP.TColStd.TColStd_Array1OfReal,Multiplicities : OCP.TColStd.TColStd_Array1OfInteger,Degree : int,Periodic : bool=False,CheckRational : bool=True) -> None: ...
    @overload
    def __init__(self,Poles : OCP.TColgp.TColgp_Array1OfPnt,Knots : OCP.TColStd.TColStd_Array1OfReal,Multiplicities : OCP.TColStd.TColStd_Array1OfInteger,Degree : int,Periodic : bool=False) -> None: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_BSplineSurface(Geom_BoundedSurface, Geom_Surface, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    Describes a BSpline surface. In each parametric direction, a BSpline surface can be: - uniform or non-uniform, - rational or non-rational, - periodic or non-periodic. A BSpline surface is defined by: - its degrees, in the u and v parametric directions, - its periodic characteristic, in the u and v parametric directions, - a table of poles, also called control points (together with the associated weights if the surface is rational), and - a table of knots, together with the associated multiplicities. The degree of a Geom_BSplineSurface is limited to a value (25) which is defined and controlled by the system. This value is returned by the function MaxDegree. Poles and Weights Poles and Weights are manipulated using two associative double arrays: - the poles table, which is a double array of gp_Pnt points, and - the weights table, which is a double array of reals. The bounds of the poles and weights arrays are: - 1 and NbUPoles for the row bounds (provided that the BSpline surface is not periodic in the u parametric direction), where NbUPoles is the number of poles of the surface in the u parametric direction, and - 1 and NbVPoles for the column bounds (provided that the BSpline surface is not periodic in the v parametric direction), where NbVPoles is the number of poles of the surface in the v parametric direction. The poles of the surface are the points used to shape and reshape the surface. They comprise a rectangular network. If the surface is not periodic: - The points (1, 1), (NbUPoles, 1), (1, NbVPoles), and (NbUPoles, NbVPoles) are the four parametric "corners" of the surface. - The first column of poles and the last column of poles define two BSpline curves which delimit the surface in the v parametric direction. These are the v isoparametric curves corresponding to the two bounds of the v parameter. - The first row of poles and the last row of poles define two BSpline curves which delimit the surface in the u parametric direction. These are the u isoparametric curves corresponding to the two bounds of the u parameter. If the surface is periodic, these geometric properties are not verified. It is more difficult to define a geometrical significance for the weights. However they are useful for representing a quadric surface precisely. Moreover, if the weights of all the poles are equal, the surface has a polynomial equation, and hence is a "non-rational surface". The non-rational surface is a special, but frequently used, case, where all poles have identical weights. The weights are defined and used only in the case of a rational surface. The rational characteristic is defined in each parametric direction. A surface can be rational in the u parametric direction, and non-rational in the v parametric direction. Knots and Multiplicities For a Geom_BSplineSurface the table of knots is made up of two increasing sequences of reals, without repetition, one for each parametric direction. The multiplicities define the repetition of the knots. A BSpline surface comprises multiple contiguous patches, which are themselves polynomial or rational surfaces. The knots are the parameters of the isoparametric curves which limit these contiguous patches. The multiplicity of a knot on a BSpline surface (in a given parametric direction) is related to the degree of continuity of the surface at that knot in that parametric direction: Degree of continuity at knot(i) = Degree - Multi(i) where: - Degree is the degree of the BSpline surface in the given parametric direction, and - Multi(i) is the multiplicity of knot number i in the given parametric direction. There are some special cases, where the knots are regularly spaced in one parametric direction (i.e. the difference between two consecutive knots is a constant). - "Uniform": all the multiplicities are equal to 1. - "Quasi-uniform": all the multiplicities are equal to 1, except for the first and last knots in this parametric direction, and these are equal to Degree + 1. - "Piecewise Bezier": all the multiplicities are equal to Degree except for the first and last knots, which are equal to Degree + 1. This surface is a concatenation of Bezier patches in the given parametric direction. If the BSpline surface is not periodic in a given parametric direction, the bounds of the knots and multiplicities tables are 1 and NbKnots, where NbKnots is the number of knots of the BSpline surface in that parametric direction. If the BSpline surface is periodic in a given parametric direction, and there are k periodic knots and p periodic poles in that parametric direction: - the period is such that: period = Knot(k+1) - Knot(1), and - the poles and knots tables in that parametric direction can be considered as infinite tables, such that: Knot(i+k) = Knot(i) + period, and Pole(i+p) = Pole(i) Note: The data structure tables for a periodic BSpline surface are more complex than those of a non-periodic one. References : . A survey of curve and surface methods in CADG Wolfgang BOHM CAGD 1 (1984) . On de Boor-like algorithms and blossoming Wolfgang BOEHM cagd 5 (1988) . Blossoming and knot insertion algorithms for B-spline curves Ronald N. GOLDMAN . Modelisation des surfaces en CAO, Henri GIAUME Peugeot SA . Curves and Surfaces for Computer Aided Geometric Design, a practical guide Gerald FarinDescribes a BSpline surface. In each parametric direction, a BSpline surface can be: - uniform or non-uniform, - rational or non-rational, - periodic or non-periodic. A BSpline surface is defined by: - its degrees, in the u and v parametric directions, - its periodic characteristic, in the u and v parametric directions, - a table of poles, also called control points (together with the associated weights if the surface is rational), and - a table of knots, together with the associated multiplicities. The degree of a Geom_BSplineSurface is limited to a value (25) which is defined and controlled by the system. This value is returned by the function MaxDegree. Poles and Weights Poles and Weights are manipulated using two associative double arrays: - the poles table, which is a double array of gp_Pnt points, and - the weights table, which is a double array of reals. The bounds of the poles and weights arrays are: - 1 and NbUPoles for the row bounds (provided that the BSpline surface is not periodic in the u parametric direction), where NbUPoles is the number of poles of the surface in the u parametric direction, and - 1 and NbVPoles for the column bounds (provided that the BSpline surface is not periodic in the v parametric direction), where NbVPoles is the number of poles of the surface in the v parametric direction. The poles of the surface are the points used to shape and reshape the surface. They comprise a rectangular network. If the surface is not periodic: - The points (1, 1), (NbUPoles, 1), (1, NbVPoles), and (NbUPoles, NbVPoles) are the four parametric "corners" of the surface. - The first column of poles and the last column of poles define two BSpline curves which delimit the surface in the v parametric direction. These are the v isoparametric curves corresponding to the two bounds of the v parameter. - The first row of poles and the last row of poles define two BSpline curves which delimit the surface in the u parametric direction. These are the u isoparametric curves corresponding to the two bounds of the u parameter. If the surface is periodic, these geometric properties are not verified. It is more difficult to define a geometrical significance for the weights. However they are useful for representing a quadric surface precisely. Moreover, if the weights of all the poles are equal, the surface has a polynomial equation, and hence is a "non-rational surface". The non-rational surface is a special, but frequently used, case, where all poles have identical weights. The weights are defined and used only in the case of a rational surface. The rational characteristic is defined in each parametric direction. A surface can be rational in the u parametric direction, and non-rational in the v parametric direction. Knots and Multiplicities For a Geom_BSplineSurface the table of knots is made up of two increasing sequences of reals, without repetition, one for each parametric direction. The multiplicities define the repetition of the knots. A BSpline surface comprises multiple contiguous patches, which are themselves polynomial or rational surfaces. The knots are the parameters of the isoparametric curves which limit these contiguous patches. The multiplicity of a knot on a BSpline surface (in a given parametric direction) is related to the degree of continuity of the surface at that knot in that parametric direction: Degree of continuity at knot(i) = Degree - Multi(i) where: - Degree is the degree of the BSpline surface in the given parametric direction, and - Multi(i) is the multiplicity of knot number i in the given parametric direction. There are some special cases, where the knots are regularly spaced in one parametric direction (i.e. the difference between two consecutive knots is a constant). - "Uniform": all the multiplicities are equal to 1. - "Quasi-uniform": all the multiplicities are equal to 1, except for the first and last knots in this parametric direction, and these are equal to Degree + 1. - "Piecewise Bezier": all the multiplicities are equal to Degree except for the first and last knots, which are equal to Degree + 1. This surface is a concatenation of Bezier patches in the given parametric direction. If the BSpline surface is not periodic in a given parametric direction, the bounds of the knots and multiplicities tables are 1 and NbKnots, where NbKnots is the number of knots of the BSpline surface in that parametric direction. If the BSpline surface is periodic in a given parametric direction, and there are k periodic knots and p periodic poles in that parametric direction: - the period is such that: period = Knot(k+1) - Knot(1), and - the poles and knots tables in that parametric direction can be considered as infinite tables, such that: Knot(i+k) = Knot(i) + period, and Pole(i+p) = Pole(i) Note: The data structure tables for a periodic BSpline surface are more complex than those of a non-periodic one. References : . A survey of curve and surface methods in CADG Wolfgang BOHM CAGD 1 (1984) . On de Boor-like algorithms and blossoming Wolfgang BOEHM cagd 5 (1988) . Blossoming and knot insertion algorithms for B-spline curves Ronald N. GOLDMAN . Modelisation des surfaces en CAO, Henri GIAUME Peugeot SA . Curves and Surfaces for Computer Aided Geometric Design, a practical guide Gerald FarinDescribes a BSpline surface. In each parametric direction, a BSpline surface can be: - uniform or non-uniform, - rational or non-rational, - periodic or non-periodic. A BSpline surface is defined by: - its degrees, in the u and v parametric directions, - its periodic characteristic, in the u and v parametric directions, - a table of poles, also called control points (together with the associated weights if the surface is rational), and - a table of knots, together with the associated multiplicities. The degree of a Geom_BSplineSurface is limited to a value (25) which is defined and controlled by the system. This value is returned by the function MaxDegree. Poles and Weights Poles and Weights are manipulated using two associative double arrays: - the poles table, which is a double array of gp_Pnt points, and - the weights table, which is a double array of reals. The bounds of the poles and weights arrays are: - 1 and NbUPoles for the row bounds (provided that the BSpline surface is not periodic in the u parametric direction), where NbUPoles is the number of poles of the surface in the u parametric direction, and - 1 and NbVPoles for the column bounds (provided that the BSpline surface is not periodic in the v parametric direction), where NbVPoles is the number of poles of the surface in the v parametric direction. The poles of the surface are the points used to shape and reshape the surface. They comprise a rectangular network. If the surface is not periodic: - The points (1, 1), (NbUPoles, 1), (1, NbVPoles), and (NbUPoles, NbVPoles) are the four parametric "corners" of the surface. - The first column of poles and the last column of poles define two BSpline curves which delimit the surface in the v parametric direction. These are the v isoparametric curves corresponding to the two bounds of the v parameter. - The first row of poles and the last row of poles define two BSpline curves which delimit the surface in the u parametric direction. These are the u isoparametric curves corresponding to the two bounds of the u parameter. If the surface is periodic, these geometric properties are not verified. It is more difficult to define a geometrical significance for the weights. However they are useful for representing a quadric surface precisely. Moreover, if the weights of all the poles are equal, the surface has a polynomial equation, and hence is a "non-rational surface". The non-rational surface is a special, but frequently used, case, where all poles have identical weights. The weights are defined and used only in the case of a rational surface. The rational characteristic is defined in each parametric direction. A surface can be rational in the u parametric direction, and non-rational in the v parametric direction. Knots and Multiplicities For a Geom_BSplineSurface the table of knots is made up of two increasing sequences of reals, without repetition, one for each parametric direction. The multiplicities define the repetition of the knots. A BSpline surface comprises multiple contiguous patches, which are themselves polynomial or rational surfaces. The knots are the parameters of the isoparametric curves which limit these contiguous patches. The multiplicity of a knot on a BSpline surface (in a given parametric direction) is related to the degree of continuity of the surface at that knot in that parametric direction: Degree of continuity at knot(i) = Degree - Multi(i) where: - Degree is the degree of the BSpline surface in the given parametric direction, and - Multi(i) is the multiplicity of knot number i in the given parametric direction. There are some special cases, where the knots are regularly spaced in one parametric direction (i.e. the difference between two consecutive knots is a constant). - "Uniform": all the multiplicities are equal to 1. - "Quasi-uniform": all the multiplicities are equal to 1, except for the first and last knots in this parametric direction, and these are equal to Degree + 1. - "Piecewise Bezier": all the multiplicities are equal to Degree except for the first and last knots, which are equal to Degree + 1. This surface is a concatenation of Bezier patches in the given parametric direction. If the BSpline surface is not periodic in a given parametric direction, the bounds of the knots and multiplicities tables are 1 and NbKnots, where NbKnots is the number of knots of the BSpline surface in that parametric direction. If the BSpline surface is periodic in a given parametric direction, and there are k periodic knots and p periodic poles in that parametric direction: - the period is such that: period = Knot(k+1) - Knot(1), and - the poles and knots tables in that parametric direction can be considered as infinite tables, such that: Knot(i+k) = Knot(i) + period, and Pole(i+p) = Pole(i) Note: The data structure tables for a periodic BSpline surface are more complex than those of a non-periodic one. References : . A survey of curve and surface methods in CADG Wolfgang BOHM CAGD 1 (1984) . On de Boor-like algorithms and blossoming Wolfgang BOEHM cagd 5 (1988) . Blossoming and knot insertion algorithms for B-spline curves Ronald N. GOLDMAN . Modelisation des surfaces en CAO, Henri GIAUME Peugeot SA . Curves and Surfaces for Computer Aided Geometric Design, a practical guide Gerald Farin
    """
    def Bounds(self) -> tuple[float, float, float, float]: 
        """
        Returns the parametric bounds of the surface. Warnings : These parametric values are the bounds of the array of knots UKnots and VKnots only if the first knots and the last knots have a multiplicity equal to UDegree + 1 or VDegree + 1
        """
    def CheckAndSegment(self,U1 : float,U2 : float,V1 : float,V2 : float,theUTolerance : float=9.999999999999999e-10,theVTolerance : float=9.999999999999999e-10) -> None: 
        """
        Segments the surface between U1 and U2 in the U-Direction. between V1 and V2 in the V-Direction.
        """
    def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape: 
        """
        Returns the continuity of the surface : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Surface, C2 : continuity of the second derivative all along the Surface, C3 : continuity of the third derivative all along the Surface, CN : the order of continuity is infinite. A B-spline surface is infinitely continuously differentiable for the couple of parameters U, V such that U != UKnots(i) and V != VKnots(i). The continuity of the surface at a knot value depends on the multiplicity of this knot. Example : If the surface is C1 in the V direction and C2 in the U direction this function returns Shape = C1.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this BSpline surface.
        """
    def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        None
        """
    def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None: 
        """
        Raised if the continuity of the surface is not C1.
        """
    def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None: 
        """
        Raised if the continuity of the surface is not C2.
        """
    def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None: 
        """
        Raised if the continuity of the surface is not C3.
        """
    def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec: 
        """
        Nu is the order of derivation in the U parametric direction and Nv is the order of derivation in the V parametric direction.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def ExchangeUV(self) -> None: 
        """
        Exchanges the u and v parametric directions on this BSpline surface. As a consequence: - the poles and weights tables are transposed, - the knots and multiplicities tables are exchanged, - degrees of continuity, and rational, periodic and uniform characteristics are exchanged, and - the orientation of the surface is inverted.
        """
    def FirstUKnotIndex(self) -> int: 
        """
        Computes the Index of the UKnots which gives the first parametric value of the surface in the U direction. The UIso curve corresponding to this value is a boundary curve of the surface.
        """
    def FirstVKnotIndex(self) -> int: 
        """
        Computes the Index of the VKnots which gives the first parametric value of the surface in the V direction. The VIso curve corresponding to this knot is a boundary curve of the surface.
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncreaseDegree(self,UDegree : int,VDegree : int) -> None: 
        """
        Increases the degrees of this BSpline surface to UDegree and VDegree in the u and v parametric directions respectively. As a result, the tables of poles, weights and multiplicities are modified. The tables of knots is not changed. Note: Nothing is done if the given degree is less than or equal to the current degree in the corresponding parametric direction. Exceptions Standard_ConstructionError if UDegree or VDegree is greater than Geom_BSplineSurface::MaxDegree().
        """
    @overload
    def IncreaseUMultiplicity(self,UIndex : int,M : int) -> None: 
        """
        Increases the multiplicity of the knot of range UIndex in the UKnots sequence. M is the new multiplicity. M must be greater than the previous multiplicity and lower or equal to the degree of the surface in the U parametric direction. Raised if M is not in the range [1, UDegree]

        Increases until order M the multiplicity of the set of knots FromI1,...., ToI2 in the U direction. This method can be used to make a B_spline surface into a PiecewiseBezier B_spline surface. If <me> was uniform, it can become non uniform.
        """
    @overload
    def IncreaseUMultiplicity(self,FromI1 : int,ToI2 : int,M : int) -> None: ...
    @overload
    def IncreaseVMultiplicity(self,VIndex : int,M : int) -> None: 
        """
        Increases the multiplicity of a knot in the V direction. M is the new multiplicity.

        Increases until order M the multiplicity of the set of knots FromI1,...., ToI2 in the V direction. This method can be used to make a BSplineSurface into a PiecewiseBezier B_spline surface. If <me> was uniform, it can become non-uniform.
        """
    @overload
    def IncreaseVMultiplicity(self,FromI1 : int,ToI2 : int,M : int) -> None: ...
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    def IncrementUMultiplicity(self,FromI1 : int,ToI2 : int,Step : int) -> None: 
        """
        Increments the multiplicity of the consecutives uknots FromI1..ToI2 by step. The multiplicity of each knot FromI1,.....,ToI2 must be lower or equal to the UDegree of the B_spline.
        """
    def IncrementVMultiplicity(self,FromI1 : int,ToI2 : int,Step : int) -> None: 
        """
        Increments the multiplicity of the consecutives vknots FromI1..ToI2 by step. The multiplicity of each knot FromI1,.....,ToI2 must be lower or equal to the VDegree of the B_spline.
        """
    def InsertUKnot(self,U : float,M : int,ParametricTolerance : float,Add : bool=True) -> None: 
        """
        Inserts a knot value in the sequence of UKnots. If U is a knot value this method increases the multiplicity of the knot if the previous multiplicity was lower than M else it does nothing. The tolerance criterion is ParametricTolerance. ParametricTolerance should be greater or equal than Resolution from package gp.
        """
    def InsertUKnots(self,Knots : OCP.TColStd.TColStd_Array1OfReal,Mults : OCP.TColStd.TColStd_Array1OfInteger,ParametricTolerance : float=0.0,Add : bool=True) -> None: 
        """
        Inserts into the knots table for the U parametric direction of this BSpline surface: - the values of the array Knots, with their respective multiplicities, Mults. If the knot value to insert already exists in the table, its multiplicity is: - increased by M, if Add is true (the default), or - increased to M, if Add is false. The tolerance criterion used to check the equality of the knots is the larger of the values ParametricTolerance and Standard_Real::Epsilon(val), where val is the knot value to be inserted. Warning - If a given multiplicity coefficient is null, or negative, nothing is done. - The new multiplicity of a knot is limited to the degree of this BSpline surface in the corresponding parametric direction. Exceptions Standard_ConstructionError if a knot value to insert is outside the bounds of this BSpline surface in the specified parametric direction. The comparison uses the precision criterion ParametricTolerance.
        """
    def InsertVKnot(self,V : float,M : int,ParametricTolerance : float,Add : bool=True) -> None: 
        """
        Inserts a knot value in the sequence of VKnots. If V is a knot value this method increases the multiplicity of the knot if the previous multiplicity was lower than M otherwise it does nothing. The tolerance criterion is ParametricTolerance. ParametricTolerance should be greater or equal than Resolution from package gp.
        """
    def InsertVKnots(self,Knots : OCP.TColStd.TColStd_Array1OfReal,Mults : OCP.TColStd.TColStd_Array1OfInteger,ParametricTolerance : float=0.0,Add : bool=True) -> None: 
        """
        Inserts into the knots table for the V parametric direction of this BSpline surface: - the values of the array Knots, with their respective multiplicities, Mults. If the knot value to insert already exists in the table, its multiplicity is: - increased by M, if Add is true (the default), or - increased to M, if Add is false. The tolerance criterion used to check the equality of the knots is the larger of the values ParametricTolerance and Standard_Real::Epsilon(val), where val is the knot value to be inserted. Warning - If a given multiplicity coefficient is null, or negative, nothing is done. - The new multiplicity of a knot is limited to the degree of this BSpline surface in the corresponding parametric direction. Exceptions Standard_ConstructionError if a knot value to insert is outside the bounds of this BSpline surface in the specified parametric direction. The comparison uses the precision criterion ParametricTolerance.
        """
    def IsCNu(self,N : int) -> bool: 
        """
        Returns True if the order of continuity of the surface in the U direction is N. Raised if N < 0.
        """
    def IsCNv(self,N : int) -> bool: 
        """
        Returns True if the order of continuity of the surface in the V direction is N. Raised if N < 0.
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def IsUClosed(self) -> bool: 
        """
        Returns true if the first control points row and the last control points row are identical. The tolerance criterion is Resolution from package gp.
        """
    def IsUPeriodic(self) -> bool: 
        """
        Returns True if the surface is closed in the U direction and if the B-spline has been turned into a periodic surface using the function SetUPeriodic.
        """
    def IsURational(self) -> bool: 
        """
        Returns False if for each row of weights all the weights are identical. The tolerance criterion is resolution from package gp. Example : |1.0, 1.0, 1.0| if Weights = |0.5, 0.5, 0.5| returns False |2.0, 2.0, 2.0|
        """
    def IsVClosed(self) -> bool: 
        """
        Returns true if the first control points column and the last last control points column are identical. The tolerance criterion is Resolution from package gp.
        """
    def IsVPeriodic(self) -> bool: 
        """
        Returns True if the surface is closed in the V direction and if the B-spline has been turned into a periodic surface using the function SetVPeriodic.
        """
    def IsVRational(self) -> bool: 
        """
        Returns False if for each column of weights all the weights are identical. The tolerance criterion is resolution from package gp. Examples : |1.0, 2.0, 0.5| if Weights = |1.0, 2.0, 0.5| returns False |1.0, 2.0, 0.5|
        """
    def LastUKnotIndex(self) -> int: 
        """
        Computes the Index of the UKnots which gives the last parametric value of the surface in the U direction. The UIso curve corresponding to this knot is a boundary curve of the surface.
        """
    def LastVKnotIndex(self) -> int: 
        """
        Computes the Index of the VKnots which gives the last parametric value of the surface in the V direction. The VIso curve corresponding to this knot is a boundary curve of the surface.
        """
    def LocalD0(self,U : float,V : float,FromUK1 : int,ToUK2 : int,FromVK1 : int,ToVK2 : int,P : OCP.gp.gp_Pnt) -> None: 
        """
        Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2.
        """
    def LocalD1(self,U : float,V : float,FromUK1 : int,ToUK2 : int,FromVK1 : int,ToVK2 : int,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None: 
        """
        Raised if the local continuity of the surface is not C1 between the knots FromUK1, ToUK2 and FromVK1, ToVK2. Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2.
        """
    def LocalD2(self,U : float,V : float,FromUK1 : int,ToUK2 : int,FromVK1 : int,ToVK2 : int,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None: 
        """
        Raised if the local continuity of the surface is not C2 between the knots FromUK1, ToUK2 and FromVK1, ToVK2. Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2.
        """
    def LocalD3(self,U : float,V : float,FromUK1 : int,ToUK2 : int,FromVK1 : int,ToVK2 : int,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None: 
        """
        Raised if the local continuity of the surface is not C3 between the knots FromUK1, ToUK2 and FromVK1, ToVK2. Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2.
        """
    def LocalDN(self,U : float,V : float,FromUK1 : int,ToUK2 : int,FromVK1 : int,ToVK2 : int,Nu : int,Nv : int) -> OCP.gp.gp_Vec: 
        """
        Raised if the local continuity of the surface is not CNu between the knots FromUK1, ToUK2 and CNv between the knots FromVK1, ToVK2. Raised if FromUK1 = ToUK2 or FromVK1 = ToVK2.
        """
    def LocalValue(self,U : float,V : float,FromUK1 : int,ToUK2 : int,FromVK1 : int,ToVK2 : int) -> OCP.gp.gp_Pnt: 
        """
        Computes the point of parameter U, V on the BSpline surface patch defines between the knots UK1 UK2, VK1, VK2. U can be out of the bounds [Knot UK1, Knot UK2] and V can be outof the bounds [Knot VK1, Knot VK2] but for the computation we only use the definition of the surface between these knot values. Raises if FromUK1 = ToUK2 or FromVK1 = ToVK2.
        """
    def LocateU(self,U : float,ParametricTolerance : float,WithKnotRepetition : bool=False) -> tuple[int, int]: 
        """
        Locates the parametric value U in the sequence of UKnots. If "WithKnotRepetition" is True we consider the knot's representation with repetition of multiple knot value, otherwise we consider the knot's representation with no repetition of multiple knot values. UKnots (I1) <= U <= UKnots (I2) . if I1 = I2 U is a knot value (the tolerance criterion ParametricTolerance is used). . if I1 < 1 => U < UKnots(1) - Abs(ParametricTolerance) . if I2 > NbUKnots => U > UKnots(NbUKnots)+Abs(ParametricTolerance)
        """
    def LocateV(self,V : float,ParametricTolerance : float,WithKnotRepetition : bool=False) -> tuple[int, int]: 
        """
        Locates the parametric value V in the sequence of knots. If "WithKnotRepetition" is True we consider the knot's representation with repetition of multiple knot value, otherwise we consider the knot's representation with no repetition of multiple knot values. VKnots (I1) <= V <= VKnots (I2) . if I1 = I2 V is a knot value (the tolerance criterion ParametricTolerance is used). . if I1 < 1 => V < VKnots(1) - Abs(ParametricTolerance) . if I2 > NbVKnots => V > VKnots(NbVKnots)+Abs(ParametricTolerance) poles insertion and removing The following methods are available only if the surface is Uniform or QuasiUniform in the considered direction The knot repartition is modified.
        """
    @staticmethod
    def MaxDegree_s() -> int: 
        """
        Returns the value of the maximum degree of the normalized B-spline basis functions in the u and v directions.
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def MovePoint(self,U : float,V : float,P : OCP.gp.gp_Pnt,UIndex1 : int,UIndex2 : int,VIndex1 : int,VIndex2 : int) -> tuple[int, int, int, int]: 
        """
        Move a point with parameter U and V to P. given u,v as parameters) to reach a new position UIndex1, UIndex2, VIndex1, VIndex2: indicates the poles which can be moved if Problem in BSplineBasis calculation, no change for the curve and UFirstIndex, VLastIndex = 0 VFirstIndex, VLastIndex = 0
        """
    def NbUKnots(self) -> int: 
        """
        Returns the number of knots in the U direction.
        """
    def NbUPoles(self) -> int: 
        """
        Returns number of poles in the U direction.
        """
    def NbVKnots(self) -> int: 
        """
        Returns the number of knots in the V direction.
        """
    def NbVPoles(self) -> int: 
        """
        Returns the number of poles in the V direction.
        """
    def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d: 
        """
        Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns an identity transformation
        """
    def PeriodicNormalization(self) -> tuple[float, float]: 
        """
        returns the parameter normalized within the period if the surface is periodic : otherwise does not do anything
        """
    def Pole(self,UIndex : int,VIndex : int) -> OCP.gp.gp_Pnt: 
        """
        Returns the pole of range (UIndex, VIndex).
        """
    @overload
    def Poles(self) -> OCP.TColgp.TColgp_Array2OfPnt: 
        """
        Returns the poles of the B-spline surface.

        Returns the poles of the B-spline surface.
        """
    @overload
    def Poles(self,P : OCP.TColgp.TColgp_Array2OfPnt) -> None: ...
    def RemoveUKnot(self,Index : int,M : int,Tolerance : float) -> bool: 
        """
        Reduces to M the multiplicity of the knot of index Index in the U parametric direction. If M is 0, the knot is removed. With a modification of this type, the table of poles is also modified. Two different algorithms are used systematically to compute the new poles of the surface. For each pole, the distance between the pole calculated using the first algorithm and the same pole calculated using the second algorithm, is checked. If this distance is less than Tolerance it ensures that the surface is not modified by more than Tolerance. Under these conditions, the function returns true; otherwise, it returns false. A low tolerance prevents modification of the surface. A high tolerance "smoothes" the surface. Exceptions Standard_OutOfRange if Index is outside the bounds of the knots table of this BSpline surface.
        """
    def RemoveVKnot(self,Index : int,M : int,Tolerance : float) -> bool: 
        """
        Reduces to M the multiplicity of the knot of index Index in the V parametric direction. If M is 0, the knot is removed. With a modification of this type, the table of poles is also modified. Two different algorithms are used systematically to compute the new poles of the surface. For each pole, the distance between the pole calculated using the first algorithm and the same pole calculated using the second algorithm, is checked. If this distance is less than Tolerance it ensures that the surface is not modified by more than Tolerance. Under these conditions, the function returns true; otherwise, it returns false. A low tolerance prevents modification of the surface. A high tolerance "smoothes" the surface. Exceptions Standard_OutOfRange if Index is outside the bounds of the knots table of this BSpline surface.
        """
    def Resolution(self,Tolerance3D : float) -> tuple[float, float]: 
        """
        Computes two tolerance values for this BSpline surface, based on the given tolerance in 3D space Tolerance3D. The tolerances computed are: - UTolerance in the u parametric direction, and - VTolerance in the v parametric direction. If f(u,v) is the equation of this BSpline surface, UTolerance and VTolerance guarantee that : | u1 - u0 | < UTolerance and | v1 - v0 | < VTolerance ====> |f (u1,v1) - f (u0,v0)| < Tolerance3D
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def Segment(self,U1 : float,U2 : float,V1 : float,V2 : float,theUTolerance : float=9.999999999999999e-10,theVTolerance : float=9.999999999999999e-10) -> None: 
        """
        Segments the surface between U1 and U2 in the U-Direction. between V1 and V2 in the V-Direction. The control points are modified, the first and the last point are not the same.
        """
    @overload
    def SetPole(self,UIndex : int,VIndex : int,P : OCP.gp.gp_Pnt,Weight : float) -> None: 
        """
        Substitutes the pole of range (UIndex, VIndex) with P. If the surface is rational the weight of range (UIndex, VIndex) is not modified.

        Substitutes the pole and the weight of range (UIndex, VIndex) with P and W.
        """
    @overload
    def SetPole(self,UIndex : int,VIndex : int,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def SetPoleCol(self,VIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt,CPoleWeights : OCP.TColStd.TColStd_Array1OfReal) -> None: 
        """
        Changes a column of poles or a part of this column. Raised if Vindex < 1 or VIndex > NbVPoles.

        Changes a column of poles or a part of this column with the corresponding weights. If the surface was rational it can become non rational. If the surface was non rational it can become rational. Raised if Vindex < 1 or VIndex > NbVPoles.
        """
    @overload
    def SetPoleCol(self,VIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt) -> None: ...
    @overload
    def SetPoleRow(self,UIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt) -> None: 
        """
        Changes a row of poles or a part of this row with the corresponding weights. If the surface was rational it can become non rational. If the surface was non rational it can become rational. Raised if Uindex < 1 or UIndex > NbUPoles.

        Changes a row of poles or a part of this row. Raised if Uindex < 1 or UIndex > NbUPoles.
        """
    @overload
    def SetPoleRow(self,UIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt,CPoleWeights : OCP.TColStd.TColStd_Array1OfReal) -> None: ...
    @overload
    def SetUKnot(self,UIndex : int,K : float) -> None: 
        """
        Substitutes the UKnots of range UIndex with K.

        Changes the value of the UKnots of range UIndex and increases its multiplicity.
        """
    @overload
    def SetUKnot(self,UIndex : int,K : float,M : int) -> None: ...
    def SetUKnots(self,UK : OCP.TColStd.TColStd_Array1OfReal) -> None: 
        """
        Changes all the U-knots of the surface. The multiplicity of the knots are not modified.
        """
    def SetUNotPeriodic(self) -> None: 
        """
        Sets the surface U not periodic. Changes this BSpline surface into a non-periodic surface along U direction. If this surface is already non-periodic, it is not modified. Note: the poles and knots tables are modified.
        """
    def SetUOrigin(self,Index : int) -> None: 
        """
        Assigns the knot of index Index in the knots table in the corresponding parametric direction to be the origin of this periodic BSpline surface. As a consequence, the knots and poles tables are modified. Exceptions Standard_NoSuchObject if this BSpline surface is not periodic in the given parametric direction. Standard_DomainError if Index is outside the bounds of the knots table in the given parametric direction.
        """
    def SetUPeriodic(self) -> None: 
        """
        Sets the surface U periodic. Modifies this surface to be periodic in the U parametric direction. To become periodic in a given parametric direction a surface must be closed in that parametric direction, and the knot sequence relative to that direction must be periodic. To generate this periodic sequence of knots, the functions FirstUKnotIndex and LastUKnotIndex are used to compute I1 and I2. These are the indexes, in the knot array associated with the given parametric direction, of the knots that correspond to the first and last parameters of this BSpline surface in the given parametric direction. Hence the period is: Knots(I1) - Knots(I2) As a result, the knots and poles tables are modified. Exceptions Standard_ConstructionError if the surface is not closed in the given parametric direction.
        """
    @overload
    def SetVKnot(self,VIndex : int,K : float) -> None: 
        """
        Substitutes the VKnots of range VIndex with K.

        Changes the value of the VKnots of range VIndex and increases its multiplicity.
        """
    @overload
    def SetVKnot(self,VIndex : int,K : float,M : int) -> None: ...
    def SetVKnots(self,VK : OCP.TColStd.TColStd_Array1OfReal) -> None: 
        """
        Changes all the V-knots of the surface. The multiplicity of the knots are not modified.
        """
    def SetVNotPeriodic(self) -> None: 
        """
        Sets the surface V not periodic. Changes this BSpline surface into a non-periodic surface along V direction. If this surface is already non-periodic, it is not modified. Note: the poles and knots tables are modified.
        """
    def SetVOrigin(self,Index : int) -> None: 
        """
        Assigns the knot of index Index in the knots table in the corresponding parametric direction to be the origin of this periodic BSpline surface. As a consequence, the knots and poles tables are modified. Exceptions Standard_NoSuchObject if this BSpline surface is not periodic in the given parametric direction. Standard_DomainError if Index is outside the bounds of the knots table in the given parametric direction.
        """
    def SetVPeriodic(self) -> None: 
        """
        Sets the surface V periodic. Modifies this surface to be periodic in the V parametric direction. To become periodic in a given parametric direction a surface must be closed in that parametric direction, and the knot sequence relative to that direction must be periodic. To generate this periodic sequence of knots, the functions FirstVKnotIndex and LastVKnotIndex are used to compute I1 and I2. These are the indexes, in the knot array associated with the given parametric direction, of the knots that correspond to the first and last parameters of this BSpline surface in the given parametric direction. Hence the period is: Knots(I1) - Knots(I2) As a result, the knots and poles tables are modified. Exceptions Standard_ConstructionError if the surface is not closed in the given parametric direction.
        """
    def SetWeight(self,UIndex : int,VIndex : int,Weight : float) -> None: 
        """
        Changes the weight of the pole of range UIndex, VIndex. If the surface was non rational it can become rational. If the surface was rational it can become non rational.
        """
    def SetWeightCol(self,VIndex : int,CPoleWeights : OCP.TColStd.TColStd_Array1OfReal) -> None: 
        """
        Changes a column of weights of a part of this column.
        """
    def SetWeightRow(self,UIndex : int,CPoleWeights : OCP.TColStd.TColStd_Array1OfReal) -> None: 
        """
        Changes a row of weights or a part of this row.
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Applies the transformation T to this BSpline surface.
        """
    def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]: 
        """
        Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method does not change <U> and <V>
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def UDegree(self) -> int: 
        """
        Returns the degree of the normalized B-splines Ni,n in the U direction.
        """
    @overload
    def UIso(self,U : float,CheckRational : bool) -> Geom_Curve: 
        """
        Computes the U isoparametric curve. A B-spline curve is returned.

        Computes the U isoparametric curve. If CheckRational=False, no try to make it non-rational. A B-spline curve is returned.
        """
    @overload
    def UIso(self,U : float) -> Geom_Curve: ...
    def UKnot(self,UIndex : int) -> float: 
        """
        Returns the Knot value of range UIndex. Raised if UIndex < 1 or UIndex > NbUKnots
        """
    def UKnotDistribution(self) -> OCP.GeomAbs.GeomAbs_BSplKnotDistribution: 
        """
        Returns NonUniform or Uniform or QuasiUniform or PiecewiseBezier. If all the knots differ by a positive constant from the preceding knot in the U direction the B-spline surface can be : - Uniform if all the knots are of multiplicity 1, - QuasiUniform if all the knots are of multiplicity 1 except for the first and last knot which are of multiplicity Degree + 1, - PiecewiseBezier if the first and last knots have multiplicity Degree + 1 and if interior knots have multiplicity Degree otherwise the surface is non uniform in the U direction The tolerance criterion is Resolution from package gp.
        """
    @overload
    def UKnotSequence(self) -> OCP.TColStd.TColStd_Array1OfReal: 
        """
        Returns the uknots sequence. In this sequence the knots with a multiplicity greater than 1 are repeated. Example : Ku = {k1, k1, k1, k2, k3, k3, k4, k4, k4}

        Returns the uknots sequence. In this sequence the knots with a multiplicity greater than 1 are repeated. Example : Ku = {k1, k1, k1, k2, k3, k3, k4, k4, k4}
        """
    @overload
    def UKnotSequence(self,Ku : OCP.TColStd.TColStd_Array1OfReal) -> None: ...
    @overload
    def UKnots(self) -> OCP.TColStd.TColStd_Array1OfReal: 
        """
        Returns the knots in the U direction.

        Returns the knots in the U direction.
        """
    @overload
    def UKnots(self,Ku : OCP.TColStd.TColStd_Array1OfReal) -> None: ...
    @overload
    def UMultiplicities(self) -> OCP.TColStd.TColStd_Array1OfInteger: 
        """
        Returns the multiplicities of the knots in the U direction.

        Returns the multiplicities of the knots in the U direction.
        """
    @overload
    def UMultiplicities(self,Mu : OCP.TColStd.TColStd_Array1OfInteger) -> None: ...
    def UMultiplicity(self,UIndex : int) -> int: 
        """
        Returns the multiplicity value of knot of range UIndex in the u direction. Raised if UIndex < 1 or UIndex > NbUKnots.
        """
    def UPeriod(self) -> float: 
        """
        Returns the period of this surface in the u parametric direction. Raises if the surface is not uperiodic.
        """
    def UReverse(self) -> None: 
        """
        Changes the orientation of this BSpline surface in the U parametric direction. The bounds of the surface are not changed but the given parametric direction is reversed. Hence the orientation of the surface is reversed. The knots and poles tables are modified.
        """
    def UReversed(self) -> Geom_Surface: 
        """
        Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def UReversedParameter(self,U : float) -> float: 
        """
        Computes the u parameter on the modified surface, produced by reversing its U parametric direction, for the point of u parameter U, on this BSpline surface. For a BSpline surface, these functions return respectively: - UFirst + ULast - U, where UFirst, ULast are the values of the first and last parameters of this BSpline surface, in the u parametric directions.
        """
    def VDegree(self) -> int: 
        """
        Returns the degree of the normalized B-splines Ni,d in the V direction.
        """
    @overload
    def VIso(self,V : float) -> Geom_Curve: 
        """
        Computes the V isoparametric curve. A B-spline curve is returned.

        Computes the V isoparametric curve. If CheckRational=False, no try to make it non-rational. A B-spline curve is returned. transformations
        """
    @overload
    def VIso(self,V : float,CheckRational : bool) -> Geom_Curve: ...
    def VKnot(self,VIndex : int) -> float: 
        """
        Returns the Knot value of range VIndex. Raised if VIndex < 1 or VIndex > NbVKnots
        """
    def VKnotDistribution(self) -> OCP.GeomAbs.GeomAbs_BSplKnotDistribution: 
        """
        Returns NonUniform or Uniform or QuasiUniform or PiecewiseBezier. If all the knots differ by a positive constant from the preceding knot in the V direction the B-spline surface can be : - Uniform if all the knots are of multiplicity 1, - QuasiUniform if all the knots are of multiplicity 1 except for the first and last knot which are of multiplicity Degree + 1, - PiecewiseBezier if the first and last knots have multiplicity Degree + 1 and if interior knots have multiplicity Degree otherwise the surface is non uniform in the V direction. The tolerance criterion is Resolution from package gp.
        """
    @overload
    def VKnotSequence(self) -> OCP.TColStd.TColStd_Array1OfReal: 
        """
        Returns the vknots sequence. In this sequence the knots with a multiplicity greater than 1 are repeated. Example : Kv = {k1, k1, k1, k2, k3, k3, k4, k4, k4}

        Returns the vknots sequence. In this sequence the knots with a multiplicity greater than 1 are repeated. Example : Ku = {k1, k1, k1, k2, k3, k3, k4, k4, k4}
        """
    @overload
    def VKnotSequence(self,Kv : OCP.TColStd.TColStd_Array1OfReal) -> None: ...
    @overload
    def VKnots(self,Kv : OCP.TColStd.TColStd_Array1OfReal) -> None: 
        """
        Returns the knots in the V direction.

        Returns the knots in the V direction.
        """
    @overload
    def VKnots(self) -> OCP.TColStd.TColStd_Array1OfReal: ...
    @overload
    def VMultiplicities(self,Mv : OCP.TColStd.TColStd_Array1OfInteger) -> None: 
        """
        Returns the multiplicities of the knots in the V direction.

        Returns the multiplicities of the knots in the V direction.
        """
    @overload
    def VMultiplicities(self) -> OCP.TColStd.TColStd_Array1OfInteger: ...
    def VMultiplicity(self,VIndex : int) -> int: 
        """
        Returns the multiplicity value of knot of range VIndex in the v direction. Raised if VIndex < 1 or VIndex > NbVKnots
        """
    def VPeriod(self) -> float: 
        """
        Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic.
        """
    def VReverse(self) -> None: 
        """
        Changes the orientation of this BSpline surface in the V parametric direction. The bounds of the surface are not changed but the given parametric direction is reversed. Hence the orientation of the surface is reversed. The knots and poles tables are modified.
        """
    def VReversed(self) -> Geom_Surface: 
        """
        Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def VReversedParameter(self,V : float) -> float: 
        """
        Computes the v parameter on the modified surface, produced by reversing its V parametric direction, for the point of v parameter V on this BSpline surface. For a BSpline surface, these functions return respectively: - VFirst + VLast - V, VFirst and VLast are the values of the first and last parameters of this BSpline surface, in the v pametric directions.
        """
    def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt: 
        """
        Computes the point of parameter (U, V) on the surface.
        """
    def Weight(self,UIndex : int,VIndex : int) -> float: 
        """
        Returns the weight value of range UIndex, VIndex.
        """
    @overload
    def Weights(self) -> OCP.TColStd.TColStd_Array2OfReal: 
        """
        Returns the weights of the B-spline surface.

        Returns the weights of the B-spline surface. value and derivatives computation
        """
    @overload
    def Weights(self,W : OCP.TColStd.TColStd_Array2OfReal) -> None: ...
    @overload
    def __init__(self,Poles : OCP.TColgp.TColgp_Array2OfPnt,UKnots : OCP.TColStd.TColStd_Array1OfReal,VKnots : OCP.TColStd.TColStd_Array1OfReal,UMults : OCP.TColStd.TColStd_Array1OfInteger,VMults : OCP.TColStd.TColStd_Array1OfInteger,UDegree : int,VDegree : int,UPeriodic : bool=False,VPeriodic : bool=False) -> None: ...
    @overload
    def __init__(self,Poles : OCP.TColgp.TColgp_Array2OfPnt,Weights : OCP.TColStd.TColStd_Array2OfReal,UKnots : OCP.TColStd.TColStd_Array1OfReal,VKnots : OCP.TColStd.TColStd_Array1OfReal,UMults : OCP.TColStd.TColStd_Array1OfInteger,VMults : OCP.TColStd.TColStd_Array1OfInteger,UDegree : int,VDegree : int,UPeriodic : bool=False,VPeriodic : bool=False) -> None: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_Point(Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    The abstract class Point describes the common behavior of geometric points in 3D space. The Geom package also provides the concrete class Geom_CartesianPoint.The abstract class Point describes the common behavior of geometric points in 3D space. The Geom package also provides the concrete class Geom_CartesianPoint.The abstract class Point describes the common behavior of geometric points in 3D space. The Geom package also provides the concrete class Geom_CartesianPoint.
    """
    def Coord(self) -> tuple[float, float, float]: 
        """
        returns the Coordinates of <me>.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this geometric object.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def Distance(self,Other : Geom_Point) -> float: 
        """
        Computes the distance between <me> and <Other>.
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def Pnt(self) -> OCP.gp.gp_Pnt: 
        """
        returns a non transient copy of <me>
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def SquareDistance(self,Other : Geom_Point) -> float: 
        """
        Computes the square distance between <me> and <Other>.
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom).
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def X(self) -> float: 
        """
        returns the X coordinate of <me>.
        """
    def Y(self) -> float: 
        """
        returns the Y coordinate of <me>.
        """
    def Z(self) -> float: 
        """
        returns the Z coordinate of <me>.
        """
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_Conic(Geom_Curve, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    The abstract class Conic describes the common behavior of conic curves in 3D space and, in particular, their general characteristics. The Geom package provides four concrete classes of conics: Geom_Circle, Geom_Ellipse, Geom_Hyperbola and Geom_Parabola. A conic is positioned in space with a right-handed coordinate system (gp_Ax2 object), where: - the origin is the center of the conic (or the apex in the case of a parabola), - the origin, "X Direction" and "Y Direction" define the plane of the conic. This coordinate system is the local coordinate system of the conic. The "main Direction" of this coordinate system is the vector normal to the plane of the conic. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the conic. The "main Direction" of the local coordinate system gives an explicit orientation to the conic, determining the direction in which the parameter increases along the conic. The "X Axis" of the local coordinate system also defines the origin of the parameter of the conic.The abstract class Conic describes the common behavior of conic curves in 3D space and, in particular, their general characteristics. The Geom package provides four concrete classes of conics: Geom_Circle, Geom_Ellipse, Geom_Hyperbola and Geom_Parabola. A conic is positioned in space with a right-handed coordinate system (gp_Ax2 object), where: - the origin is the center of the conic (or the apex in the case of a parabola), - the origin, "X Direction" and "Y Direction" define the plane of the conic. This coordinate system is the local coordinate system of the conic. The "main Direction" of this coordinate system is the vector normal to the plane of the conic. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the conic. The "main Direction" of the local coordinate system gives an explicit orientation to the conic, determining the direction in which the parameter increases along the conic. The "X Axis" of the local coordinate system also defines the origin of the parameter of the conic.The abstract class Conic describes the common behavior of conic curves in 3D space and, in particular, their general characteristics. The Geom package provides four concrete classes of conics: Geom_Circle, Geom_Ellipse, Geom_Hyperbola and Geom_Parabola. A conic is positioned in space with a right-handed coordinate system (gp_Ax2 object), where: - the origin is the center of the conic (or the apex in the case of a parabola), - the origin, "X Direction" and "Y Direction" define the plane of the conic. This coordinate system is the local coordinate system of the conic. The "main Direction" of this coordinate system is the vector normal to the plane of the conic. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the conic. The "main Direction" of the local coordinate system gives an explicit orientation to the conic, determining the direction in which the parameter increases along the conic. The "X Axis" of the local coordinate system also defines the origin of the parameter of the conic.
    """
    def Axis(self) -> OCP.gp.gp_Ax1: 
        """
        Returns the "main Axis" of this conic. This axis is normal to the plane of the conic.
        """
    def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape: 
        """
        The continuity of the conic is Cn.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this geometric object.
        """
    def D0(self,U : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        Returns in P the point of parameter U. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve.
        """
    def D1(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec) -> None: 
        """
        Returns the point P of parameter U and the first derivative V1. Raised if the continuity of the curve is not C1.
        """
    def D2(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec) -> None: 
        """
        Returns the point P of parameter U, the first and second derivatives V1 and V2. Raised if the continuity of the curve is not C2.
        """
    def D3(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec,V3 : OCP.gp.gp_Vec) -> None: 
        """
        Returns the point P of parameter U, the first, the second and the third derivative. Raised if the continuity of the curve is not C3.
        """
    def DN(self,U : float,N : int) -> OCP.gp.gp_Vec: 
        """
        The returned vector gives the value of the derivative for the order of derivation N. Raised if the continuity of the curve is not CN.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def Eccentricity(self) -> float: 
        """
        Returns the eccentricity value of the conic e. e = 0 for a circle 0 < e < 1 for an ellipse (e = 0 if MajorRadius = MinorRadius) e > 1 for a hyperbola e = 1 for a parabola Exceptions Standard_DomainError in the case of a hyperbola if its major radius is null.
        """
    def FirstParameter(self) -> float: 
        """
        Returns the value of the first parameter. Warnings : It can be RealFirst from package Standard if the curve is infinite
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    def IsCN(self,N : int) -> bool: 
        """
        Returns True. Raised if N < 0.
        """
    def IsClosed(self) -> bool: 
        """
        Returns true if the curve is closed. Some curves such as circle are always closed, others such as line are never closed (by definition). Some Curves such as OffsetCurve can be closed or not. These curves are considered as closed if the distance between the first point and the last point of the curve is lower or equal to the Resolution from package gp which is a fixed criterion independent of the application.
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def IsPeriodic(self) -> bool: 
        """
        Is the parametrization of the curve periodic ? It is possible only if the curve is closed and if the following relation is satisfied : for each parametric value U the distance between the point P(u) and the point P (u + T) is lower or equal to Resolution from package gp, T is the period and must be a constant. There are three possibilities : . the curve is never periodic by definition (SegmentLine) . the curve is always periodic by definition (Circle) . the curve can be defined as periodic (BSpline). In this case a function SetPeriodic allows you to give the shape of the curve. The general rule for this case is : if a curve can be periodic or not the default periodicity set is non periodic and you have to turn (explicitly) the curve into a periodic curve if you want the curve to be periodic.
        """
    def LastParameter(self) -> float: 
        """
        Returns the value of the last parameter. Warnings : It can be RealLast from package Standard if the curve is infinite
        """
    def Location(self) -> OCP.gp.gp_Pnt: 
        """
        Returns the location point of the conic. For the circle, the ellipse and the hyperbola it is the center of the conic. For the parabola it is the Apex of the parabola.
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> float: 
        """
        Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.
        """
    def Period(self) -> float: 
        """
        Returns the period of this curve. Exceptions Standard_NoSuchObject if this curve is not periodic.
        """
    def Position(self) -> OCP.gp.gp_Ax2: 
        """
        Returns the local coordinates system of the conic. The main direction of the Axis2Placement is normal to the plane of the conic. The X direction of the Axis2placement is in the plane of the conic and corresponds to the origin for the conic's parametric value u.
        """
    def Reverse(self) -> None: 
        """
        Reverses the direction of parameterization of <me>. The local coordinate system of the conic is modified.
        """
    def Reversed(self) -> Geom_Curve: 
        """
        Returns a copy of <me> reversed.
        """
    def ReversedParameter(self,U : float) -> float: 
        """
        Returns the parameter on the reversed curve for the point of parameter U on <me>.
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def SetAxis(self,theA1 : OCP.gp.gp_Ax1) -> None: 
        """
        Changes the orientation of the conic's plane. The normal axis to the plane is A1. The XAxis and the YAxis are recomputed.
        """
    def SetLocation(self,theP : OCP.gp.gp_Pnt) -> None: 
        """
        changes the location point of the conic.
        """
    def SetPosition(self,theA2 : OCP.gp.gp_Ax2) -> None: 
        """
        changes the local coordinate system of the conic.
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom).
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf) -> float: 
        """
        Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def Value(self,U : float) -> OCP.gp.gp_Pnt: 
        """
        Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve. it is implemented with D0.
        """
    def XAxis(self) -> OCP.gp.gp_Ax1: 
        """
        Returns the XAxis of the conic. This axis defines the origin of parametrization of the conic. This axis is perpendicular to the Axis of the conic. This axis and the Yaxis define the plane of the conic.
        """
    def YAxis(self) -> OCP.gp.gp_Ax1: 
        """
        Returns the YAxis of the conic. The YAxis is perpendicular to the Xaxis. This axis and the Xaxis define the plane of the conic.
        """
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_Circle(Geom_Conic, Geom_Curve, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    Describes a circle in 3D space. A circle is defined by its radius and, as with any conic curve, is positioned in space with a right-handed coordinate system (gp_Ax2 object) where: - the origin is the center of the circle, and - the origin, "X Direction" and "Y Direction" define the plane of the circle. This coordinate system is the local coordinate system of the circle. The "main Direction" of this coordinate system is the vector normal to the plane of the circle. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the circle. The "main Direction" of the local coordinate system gives an explicit orientation to the circle (definition of the trigonometric sense), determining the direction in which the parameter increases along the circle. The Geom_Circle circle is parameterized by an angle: P(U) = O + R*Cos(U)*XDir + R*Sin(U)*YDir, where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - R is the radius of the circle. The "X Axis" of the local coordinate system therefore defines the origin of the parameter of the circle. The parameter is the angle with this "X Direction". A circle is a closed and periodic curve. The period is 2.*Pi and the parameter range is [ 0, 2.*Pi [.Describes a circle in 3D space. A circle is defined by its radius and, as with any conic curve, is positioned in space with a right-handed coordinate system (gp_Ax2 object) where: - the origin is the center of the circle, and - the origin, "X Direction" and "Y Direction" define the plane of the circle. This coordinate system is the local coordinate system of the circle. The "main Direction" of this coordinate system is the vector normal to the plane of the circle. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the circle. The "main Direction" of the local coordinate system gives an explicit orientation to the circle (definition of the trigonometric sense), determining the direction in which the parameter increases along the circle. The Geom_Circle circle is parameterized by an angle: P(U) = O + R*Cos(U)*XDir + R*Sin(U)*YDir, where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - R is the radius of the circle. The "X Axis" of the local coordinate system therefore defines the origin of the parameter of the circle. The parameter is the angle with this "X Direction". A circle is a closed and periodic curve. The period is 2.*Pi and the parameter range is [ 0, 2.*Pi [.Describes a circle in 3D space. A circle is defined by its radius and, as with any conic curve, is positioned in space with a right-handed coordinate system (gp_Ax2 object) where: - the origin is the center of the circle, and - the origin, "X Direction" and "Y Direction" define the plane of the circle. This coordinate system is the local coordinate system of the circle. The "main Direction" of this coordinate system is the vector normal to the plane of the circle. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the circle. The "main Direction" of the local coordinate system gives an explicit orientation to the circle (definition of the trigonometric sense), determining the direction in which the parameter increases along the circle. The Geom_Circle circle is parameterized by an angle: P(U) = O + R*Cos(U)*XDir + R*Sin(U)*YDir, where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - R is the radius of the circle. The "X Axis" of the local coordinate system therefore defines the origin of the parameter of the circle. The parameter is the angle with this "X Direction". A circle is a closed and periodic curve. The period is 2.*Pi and the parameter range is [ 0, 2.*Pi [.
    """
    def Axis(self) -> OCP.gp.gp_Ax1: 
        """
        Returns the "main Axis" of this conic. This axis is normal to the plane of the conic.
        """
    def Circ(self) -> OCP.gp.gp_Circ: 
        """
        returns the non transient circle from gp with the same geometric properties as <me>.
        """
    def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape: 
        """
        The continuity of the conic is Cn.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this circle.
        """
    def D0(self,U : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        Returns in P the point of parameter U. P = C + R * Cos (U) * XDir + R * Sin (U) * YDir where C is the center of the circle , XDir the XDirection and YDir the YDirection of the circle's local coordinate system.
        """
    def D1(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec) -> None: 
        """
        Returns the point P of parameter U and the first derivative V1.
        """
    def D2(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec) -> None: 
        """
        Returns the point P of parameter U, the first and second derivatives V1 and V2.
        """
    def D3(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec,V3 : OCP.gp.gp_Vec) -> None: 
        """
        Returns the point P of parameter u, the first second and third derivatives V1 V2 and V3.
        """
    def DN(self,U : float,N : int) -> OCP.gp.gp_Vec: 
        """
        The returned vector gives the value of the derivative for the order of derivation N. Raised if N < 1.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def Eccentricity(self) -> float: 
        """
        Returns the eccentricity e = 0 for a circle.
        """
    def FirstParameter(self) -> float: 
        """
        Returns the value of the first parameter of this circle. This is 0.0, which gives the start point of this circle, or The start point and end point of a circle are coincident.
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    def IsCN(self,N : int) -> bool: 
        """
        Returns True. Raised if N < 0.
        """
    def IsClosed(self) -> bool: 
        """
        returns True.
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def IsPeriodic(self) -> bool: 
        """
        returns True.
        """
    def LastParameter(self) -> float: 
        """
        Returns the value of the last parameter of this circle. This is 2.*Pi, which gives the end point of this circle. The start point and end point of a circle are coincident.
        """
    def Location(self) -> OCP.gp.gp_Pnt: 
        """
        Returns the location point of the conic. For the circle, the ellipse and the hyperbola it is the center of the conic. For the parabola it is the Apex of the parabola.
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> float: 
        """
        Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.
        """
    def Period(self) -> float: 
        """
        Returns the period of this curve. Exceptions Standard_NoSuchObject if this curve is not periodic.
        """
    def Position(self) -> OCP.gp.gp_Ax2: 
        """
        Returns the local coordinates system of the conic. The main direction of the Axis2Placement is normal to the plane of the conic. The X direction of the Axis2placement is in the plane of the conic and corresponds to the origin for the conic's parametric value u.
        """
    def Radius(self) -> float: 
        """
        Returns the radius of this circle.
        """
    def Reverse(self) -> None: 
        """
        Reverses the direction of parameterization of <me>. The local coordinate system of the conic is modified.
        """
    def Reversed(self) -> Geom_Curve: 
        """
        Returns a copy of <me> reversed.
        """
    def ReversedParameter(self,U : float) -> float: 
        """
        Computes the parameter on the reversed circle for the point of parameter U on this circle. For a circle, the returned value is: 2.*Pi - U.
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def SetAxis(self,theA1 : OCP.gp.gp_Ax1) -> None: 
        """
        Changes the orientation of the conic's plane. The normal axis to the plane is A1. The XAxis and the YAxis are recomputed.
        """
    def SetCirc(self,C : OCP.gp.gp_Circ) -> None: 
        """
        Set <me> so that <me> has the same geometric properties as C.
        """
    def SetLocation(self,theP : OCP.gp.gp_Pnt) -> None: 
        """
        changes the location point of the conic.
        """
    def SetPosition(self,theA2 : OCP.gp.gp_Ax2) -> None: 
        """
        changes the local coordinate system of the conic.
        """
    def SetRadius(self,R : float) -> None: 
        """
        Assigns the value R to the radius of this circle. Note: it is possible to have a circle with a radius equal to 0.0. Exceptions - Standard_ConstructionError if R is negative.
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Applies the transformation T to this circle.
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf) -> float: 
        """
        Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def Value(self,U : float) -> OCP.gp.gp_Pnt: 
        """
        Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve. it is implemented with D0.
        """
    def XAxis(self) -> OCP.gp.gp_Ax1: 
        """
        Returns the XAxis of the conic. This axis defines the origin of parametrization of the conic. This axis is perpendicular to the Axis of the conic. This axis and the Yaxis define the plane of the conic.
        """
    def YAxis(self) -> OCP.gp.gp_Ax1: 
        """
        Returns the YAxis of the conic. The YAxis is perpendicular to the Xaxis. This axis and the Xaxis define the plane of the conic.
        """
    @overload
    def __init__(self,A2 : OCP.gp.gp_Ax2,Radius : float) -> None: ...
    @overload
    def __init__(self,C : OCP.gp.gp_Circ) -> None: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_ElementarySurface(Geom_Surface, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    Describes the common behavior of surfaces which have a simple parametric equation in a local coordinate system. The Geom package provides several implementations of concrete elementary surfaces: - the plane, and - four simple surfaces of revolution: the cylinder, the cone, the sphere and the torus. An elementary surface inherits the common behavior of Geom_Surface surfaces. Furthermore, it is located in 3D space by a coordinate system (a gp_Ax3 object) which is also its local coordinate system. Any elementary surface is oriented, i.e. the normal vector is always defined, and gives the same orientation to the surface, at any point on the surface. In topology this property is referred to as the "outside region of the surface". This orientation is related to the two parametric directions of the surface. Rotation of a surface around the "main Axis" of its coordinate system, in the trigonometric sense given by the "X Direction" and the "Y Direction" of the coordinate system, defines the u parametric direction of that elementary surface of revolution. This is the default construction mode. It is also possible, however, to change the orientation of a surface by reversing one of the two parametric directions: use the UReverse or VReverse functions to change the orientation of the normal at any point on the surface. Warning The local coordinate system of an elementary surface is not necessarily direct: - if it is direct, the trigonometric sense defined by its "main Direction" is the same as the trigonometric sense defined by its two vectors "X Direction" and "Y Direction": "main Direction" = "X Direction" ^ "Y Direction" - if it is indirect, the two definitions of trigonometric sense are opposite: "main Direction" = - "X Direction" ^ "Y Direction"Describes the common behavior of surfaces which have a simple parametric equation in a local coordinate system. The Geom package provides several implementations of concrete elementary surfaces: - the plane, and - four simple surfaces of revolution: the cylinder, the cone, the sphere and the torus. An elementary surface inherits the common behavior of Geom_Surface surfaces. Furthermore, it is located in 3D space by a coordinate system (a gp_Ax3 object) which is also its local coordinate system. Any elementary surface is oriented, i.e. the normal vector is always defined, and gives the same orientation to the surface, at any point on the surface. In topology this property is referred to as the "outside region of the surface". This orientation is related to the two parametric directions of the surface. Rotation of a surface around the "main Axis" of its coordinate system, in the trigonometric sense given by the "X Direction" and the "Y Direction" of the coordinate system, defines the u parametric direction of that elementary surface of revolution. This is the default construction mode. It is also possible, however, to change the orientation of a surface by reversing one of the two parametric directions: use the UReverse or VReverse functions to change the orientation of the normal at any point on the surface. Warning The local coordinate system of an elementary surface is not necessarily direct: - if it is direct, the trigonometric sense defined by its "main Direction" is the same as the trigonometric sense defined by its two vectors "X Direction" and "Y Direction": "main Direction" = "X Direction" ^ "Y Direction" - if it is indirect, the two definitions of trigonometric sense are opposite: "main Direction" = - "X Direction" ^ "Y Direction"Describes the common behavior of surfaces which have a simple parametric equation in a local coordinate system. The Geom package provides several implementations of concrete elementary surfaces: - the plane, and - four simple surfaces of revolution: the cylinder, the cone, the sphere and the torus. An elementary surface inherits the common behavior of Geom_Surface surfaces. Furthermore, it is located in 3D space by a coordinate system (a gp_Ax3 object) which is also its local coordinate system. Any elementary surface is oriented, i.e. the normal vector is always defined, and gives the same orientation to the surface, at any point on the surface. In topology this property is referred to as the "outside region of the surface". This orientation is related to the two parametric directions of the surface. Rotation of a surface around the "main Axis" of its coordinate system, in the trigonometric sense given by the "X Direction" and the "Y Direction" of the coordinate system, defines the u parametric direction of that elementary surface of revolution. This is the default construction mode. It is also possible, however, to change the orientation of a surface by reversing one of the two parametric directions: use the UReverse or VReverse functions to change the orientation of the normal at any point on the surface. Warning The local coordinate system of an elementary surface is not necessarily direct: - if it is direct, the trigonometric sense defined by its "main Direction" is the same as the trigonometric sense defined by its two vectors "X Direction" and "Y Direction": "main Direction" = "X Direction" ^ "Y Direction" - if it is indirect, the two definitions of trigonometric sense are opposite: "main Direction" = - "X Direction" ^ "Y Direction"
    """
    def Axis(self) -> OCP.gp.gp_Ax1: 
        """
        Returns the main axis of the surface (ZAxis).
        """
    def Bounds(self) -> tuple[float, float, float, float]: 
        """
        Returns the parametric bounds U1, U2, V1 and V2 of this surface. If the surface is infinite, this function can return a value equal to Precision::Infinite: instead of Standard_Real::LastReal.
        """
    def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape: 
        """
        Returns GeomAbs_CN, the global continuity of any elementary surface.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this geometric object.
        """
    def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        Computes the point of parameter U,V on the surface.
        """
    def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None: 
        """
        Computes the point P and the first derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C1.
        """
    def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None: 
        """
        Computes the point P, the first and the second derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C2.
        """
    def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None: 
        """
        Computes the point P, the first,the second and the third derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C2.
        """
    def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec: 
        """
        Computes the derivative of order Nu in the direction U and Nv in the direction V at the point P(U, V).
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    def IsCNu(self,N : int) -> bool: 
        """
        Returns True.
        """
    def IsCNv(self,N : int) -> bool: 
        """
        Returns True.
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def IsUClosed(self) -> bool: 
        """
        Checks whether this surface is closed in the u parametric direction. Returns true if, in the u parametric direction: taking uFirst and uLast as the parametric bounds in the u parametric direction, for each parameter v, the distance between the points P(uFirst, v) and P(uLast, v) is less than or equal to gp::Resolution().
        """
    def IsUPeriodic(self) -> bool: 
        """
        Checks if this surface is periodic in the u parametric direction. Returns true if: - this surface is closed in the u parametric direction, and - there is a constant T such that the distance between the points P (u, v) and P (u + T, v) (or the points P (u, v) and P (u, v + T)) is less than or equal to gp::Resolution().
        """
    def IsVClosed(self) -> bool: 
        """
        Checks whether this surface is closed in the u parametric direction. Returns true if, in the v parametric direction: taking vFirst and vLast as the parametric bounds in the v parametric direction, for each parameter u, the distance between the points P(u, vFirst) and P(u, vLast) is less than or equal to gp::Resolution().
        """
    def IsVPeriodic(self) -> bool: 
        """
        Checks if this surface is periodic in the v parametric direction. Returns true if: - this surface is closed in the v parametric direction, and - there is a constant T such that the distance between the points P (u, v) and P (u + T, v) (or the points P (u, v) and P (u, v + T)) is less than or equal to gp::Resolution().
        """
    def Location(self) -> OCP.gp.gp_Pnt: 
        """
        Returns the location point of the local coordinate system of the surface.
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d: 
        """
        Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns an identity transformation
        """
    def Position(self) -> OCP.gp.gp_Ax3: 
        """
        Returns the local coordinates system of the surface.
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def SetAxis(self,theA1 : OCP.gp.gp_Ax1) -> None: 
        """
        Changes the main axis (ZAxis) of the elementary surface.
        """
    def SetLocation(self,theLoc : OCP.gp.gp_Pnt) -> None: 
        """
        Changes the location of the local coordinates system of the surface.
        """
    def SetPosition(self,theAx3 : OCP.gp.gp_Ax3) -> None: 
        """
        Changes the local coordinates system of the surface.
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom).
        """
    def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]: 
        """
        Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method does not change <U> and <V>
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def UIso(self,U : float) -> Geom_Curve: 
        """
        Computes the U isoparametric curve.
        """
    def UPeriod(self) -> float: 
        """
        Returns the period of this surface in the u parametric direction. Raises if the surface is not uperiodic.
        """
    def UReverse(self) -> None: 
        """
        Reverses the U parametric direction of the surface.
        """
    def UReversed(self) -> Geom_Surface: 
        """
        Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def UReversedParameter(self,U : float) -> float: 
        """
        Return the parameter on the Ureversed surface for the point of parameter U on <me>.
        """
    def VIso(self,V : float) -> Geom_Curve: 
        """
        Computes the V isoparametric curve.
        """
    def VPeriod(self) -> float: 
        """
        Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic.
        """
    def VReverse(self) -> None: 
        """
        Reverses the V parametric direction of the surface.
        """
    def VReversed(self) -> Geom_Surface: 
        """
        Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def VReversedParameter(self,V : float) -> float: 
        """
        Return the parameter on the Vreversed surface for the point of parameter V on <me>.
        """
    def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt: 
        """
        Computes the point of parameter (U, V) on the surface.
        """
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_BezierCurve(Geom_BoundedCurve, Geom_Curve, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    Describes a rational or non-rational Bezier curve - a non-rational Bezier curve is defined by a table of poles (also called control points), - a rational Bezier curve is defined by a table of poles with varying weights. These data are manipulated by two parallel arrays: - the poles table, which is an array of gp_Pnt points, and - the weights table, which is an array of reals. The bounds of these arrays are 1 and "the number of "poles" of the curve. The poles of the curve are "control points" used to deform the curve. The first pole is the start point of the curve, and the last pole is the end point of the curve. The segment that joins the first pole to the second pole is the tangent to the curve at its start point, and the segment that joins the last pole to the second-from-last pole is the tangent to the curve at its end point. It is more difficult to give a geometric signification to the weights but they are useful for providing the exact representations of arcs of a circle or ellipse. Moreover, if the weights of all poles are equal, the curve is polynomial; it is therefore a non-rational curve. The non-rational curve is a special and frequently used case. The weights are defined and used only in the case of a rational curve. The degree of a Bezier curve is equal to the number of poles, minus 1. It must be greater than or equal to 1. However, the degree of a Geom_BezierCurve curve is limited to a value (25) which is defined and controlled by the system. This value is returned by the function MaxDegree. The parameter range for a Bezier curve is [ 0, 1 ]. If the first and last control points of the Bezier curve are the same point then the curve is closed. For example, to create a closed Bezier curve with four control points, you have to give the set of control points P1, P2, P3 and P1. The continuity of a Bezier curve is infinite. It is not possible to build a Bezier curve with negative weights. We consider that a weight value is zero if it is less than or equal to gp::Resolution(). We also consider that two weight values W1 and W2 are equal if: |W2 - W1| <= gp::Resolution(). Warning - When considering the continuity of a closed Bezier curve at the junction point, remember that a curve of this type is never periodic. This means that the derivatives for the parameter u = 0 have no reason to be the same as the derivatives for the parameter u = 1 even if the curve is closed. - The length of a Bezier curve can be null.Describes a rational or non-rational Bezier curve - a non-rational Bezier curve is defined by a table of poles (also called control points), - a rational Bezier curve is defined by a table of poles with varying weights. These data are manipulated by two parallel arrays: - the poles table, which is an array of gp_Pnt points, and - the weights table, which is an array of reals. The bounds of these arrays are 1 and "the number of "poles" of the curve. The poles of the curve are "control points" used to deform the curve. The first pole is the start point of the curve, and the last pole is the end point of the curve. The segment that joins the first pole to the second pole is the tangent to the curve at its start point, and the segment that joins the last pole to the second-from-last pole is the tangent to the curve at its end point. It is more difficult to give a geometric signification to the weights but they are useful for providing the exact representations of arcs of a circle or ellipse. Moreover, if the weights of all poles are equal, the curve is polynomial; it is therefore a non-rational curve. The non-rational curve is a special and frequently used case. The weights are defined and used only in the case of a rational curve. The degree of a Bezier curve is equal to the number of poles, minus 1. It must be greater than or equal to 1. However, the degree of a Geom_BezierCurve curve is limited to a value (25) which is defined and controlled by the system. This value is returned by the function MaxDegree. The parameter range for a Bezier curve is [ 0, 1 ]. If the first and last control points of the Bezier curve are the same point then the curve is closed. For example, to create a closed Bezier curve with four control points, you have to give the set of control points P1, P2, P3 and P1. The continuity of a Bezier curve is infinite. It is not possible to build a Bezier curve with negative weights. We consider that a weight value is zero if it is less than or equal to gp::Resolution(). We also consider that two weight values W1 and W2 are equal if: |W2 - W1| <= gp::Resolution(). Warning - When considering the continuity of a closed Bezier curve at the junction point, remember that a curve of this type is never periodic. This means that the derivatives for the parameter u = 0 have no reason to be the same as the derivatives for the parameter u = 1 even if the curve is closed. - The length of a Bezier curve can be null.Describes a rational or non-rational Bezier curve - a non-rational Bezier curve is defined by a table of poles (also called control points), - a rational Bezier curve is defined by a table of poles with varying weights. These data are manipulated by two parallel arrays: - the poles table, which is an array of gp_Pnt points, and - the weights table, which is an array of reals. The bounds of these arrays are 1 and "the number of "poles" of the curve. The poles of the curve are "control points" used to deform the curve. The first pole is the start point of the curve, and the last pole is the end point of the curve. The segment that joins the first pole to the second pole is the tangent to the curve at its start point, and the segment that joins the last pole to the second-from-last pole is the tangent to the curve at its end point. It is more difficult to give a geometric signification to the weights but they are useful for providing the exact representations of arcs of a circle or ellipse. Moreover, if the weights of all poles are equal, the curve is polynomial; it is therefore a non-rational curve. The non-rational curve is a special and frequently used case. The weights are defined and used only in the case of a rational curve. The degree of a Bezier curve is equal to the number of poles, minus 1. It must be greater than or equal to 1. However, the degree of a Geom_BezierCurve curve is limited to a value (25) which is defined and controlled by the system. This value is returned by the function MaxDegree. The parameter range for a Bezier curve is [ 0, 1 ]. If the first and last control points of the Bezier curve are the same point then the curve is closed. For example, to create a closed Bezier curve with four control points, you have to give the set of control points P1, P2, P3 and P1. The continuity of a Bezier curve is infinite. It is not possible to build a Bezier curve with negative weights. We consider that a weight value is zero if it is less than or equal to gp::Resolution(). We also consider that two weight values W1 and W2 are equal if: |W2 - W1| <= gp::Resolution(). Warning - When considering the continuity of a closed Bezier curve at the junction point, remember that a curve of this type is never periodic. This means that the derivatives for the parameter u = 0 have no reason to be the same as the derivatives for the parameter u = 1 even if the curve is closed. - The length of a Bezier curve can be null.
    """
    def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape: 
        """
        a Bezier curve is CN
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this Bezier curve.
        """
    def D0(self,U : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        None
        """
    def D1(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec) -> None: 
        """
        None
        """
    def D2(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec) -> None: 
        """
        None
        """
    def D3(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec,V3 : OCP.gp.gp_Vec) -> None: 
        """
        For this Bezier curve, computes - the point P of parameter U, or - the point P and one or more of the following values: - V1, the first derivative vector, - V2, the second derivative vector, - V3, the third derivative vector. Note: the parameter U can be outside the bounds of the curve.
        """
    def DN(self,U : float,N : int) -> OCP.gp.gp_Vec: 
        """
        For the point of parameter U of this Bezier curve, computes the vector corresponding to the Nth derivative. Note: the parameter U can be outside the bounds of the curve. Exceptions Standard_RangeError if N is less than 1.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Degree(self) -> int: 
        """
        Returns the polynomial degree of the curve. it is the number of poles - 1 point P and derivatives (V1, V2, V3) computation The Bezier Curve has a Polynomial representation so the parameter U can be out of the bounds of the curve.
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def EndPoint(self) -> OCP.gp.gp_Pnt: 
        """
        Returns Value (U=1.), it is the last control point of the Bezier curve.
        """
    def FirstParameter(self) -> float: 
        """
        Returns the value of the first parameter of this Bezier curve. This is 0.0, which gives the start point of this Bezier curve
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def Increase(self,Degree : int) -> None: 
        """
        Increases the degree of a bezier curve. Degree is the new degree of <me>. Raises ConstructionError if Degree is greater than MaxDegree or lower than 2 or lower than the initial degree of <me>.
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    @overload
    def InsertPoleAfter(self,Index : int,P : OCP.gp.gp_Pnt,Weight : float) -> None: 
        """
        Inserts a pole P after the pole of range Index. If the curve <me> is rational the weight value for the new pole of range Index is 1.0. raised if Index is not in the range [1, NbPoles]

        Inserts a pole with its weight in the set of poles after the pole of range Index. If the curve was non rational it can become rational if all the weights are not identical. Raised if Index is not in the range [1, NbPoles]
        """
    @overload
    def InsertPoleAfter(self,Index : int,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def InsertPoleBefore(self,Index : int,P : OCP.gp.gp_Pnt,Weight : float) -> None: 
        """
        Inserts a pole P before the pole of range Index. If the curve <me> is rational the weight value for the new pole of range Index is 1.0. Raised if Index is not in the range [1, NbPoles]

        Inserts a pole with its weight in the set of poles after the pole of range Index. If the curve was non rational it can become rational if all the weights are not identical. Raised if Index is not in the range [1, NbPoles]
        """
    @overload
    def InsertPoleBefore(self,Index : int,P : OCP.gp.gp_Pnt) -> None: ...
    def IsCN(self,N : int) -> bool: 
        """
        Continuity of the curve, returns True.
        """
    def IsClosed(self) -> bool: 
        """
        Returns True if the distance between the first point and the last point of the curve is lower or equal to the Resolution from package gp.
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def IsPeriodic(self) -> bool: 
        """
        Returns True if the parametrization of a curve is periodic. (P(u) = P(u + T) T = constante)
        """
    def IsRational(self) -> bool: 
        """
        Returns false if all the weights are identical. The tolerance criterion is Resolution from package gp.
        """
    def LastParameter(self) -> float: 
        """
        Returns the value of the last parameter of this Bezier curve. This is 1.0, which gives the end point of this Bezier curve.
        """
    @staticmethod
    def MaxDegree_s() -> int: 
        """
        Returns the value of the maximum polynomial degree of any Geom_BezierCurve curve. This value is 25.
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def NbPoles(self) -> int: 
        """
        Returns the number of poles of this Bezier curve.
        """
    def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> float: 
        """
        Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.
        """
    def Period(self) -> float: 
        """
        Returns the period of this curve. Exceptions Standard_NoSuchObject if this curve is not periodic.
        """
    def Pole(self,Index : int) -> OCP.gp.gp_Pnt: 
        """
        Returns the pole of range Index. Raised if Index is not in the range [1, NbPoles]
        """
    @overload
    def Poles(self) -> OCP.TColgp.TColgp_Array1OfPnt: 
        """
        Returns all the poles of the curve.

        Returns all the poles of the curve.
        """
    @overload
    def Poles(self,P : OCP.TColgp.TColgp_Array1OfPnt) -> None: ...
    def RemovePole(self,Index : int) -> None: 
        """
        Removes the pole of range Index. If the curve was rational it can become non rational. Raised if Index is not in the range [1, NbPoles] Raised if Degree is lower than 2.
        """
    def Resolution(self,Tolerance3D : float) -> tuple[float]: 
        """
        Computes for this Bezier curve the parametric tolerance UTolerance for a given 3D tolerance Tolerance3D. If f(t) is the equation of this Bezier curve, UTolerance ensures that: |t1-t0| < UTolerance ===> |f(t1)-f(t0)| < Tolerance3D
        """
    def Reverse(self) -> None: 
        """
        Reverses the direction of parametrization of <me> Value (NewU) = Value (1 - OldU)
        """
    def Reversed(self) -> Geom_Curve: 
        """
        Returns a copy of <me> reversed.
        """
    def ReversedParameter(self,U : float) -> float: 
        """
        Returns the parameter on the reversed curve for the point of parameter U on <me>.
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def Segment(self,U1 : float,U2 : float) -> None: 
        """
        Segments the curve between U1 and U2 which can be out of the bounds of the curve. The curve is oriented from U1 to U2. The control points are modified, the first and the last point are not the same but the parametrization range is [0, 1] else it could not be a Bezier curve. Warnings : Even if <me> is not closed it can become closed after the segmentation for example if U1 or U2 are out of the bounds of the curve <me> or if the curve makes loop. After the segmentation the length of a curve can be null.
        """
    @overload
    def SetPole(self,Index : int,P : OCP.gp.gp_Pnt) -> None: 
        """
        Substitutes the pole of range index with P. If the curve <me> is rational the weight of range Index is not modified. raiseD if Index is not in the range [1, NbPoles]

        Substitutes the pole and the weights of range Index. If the curve <me> is not rational it can become rational if all the weights are not identical. If the curve was rational it can become non rational if all the weights are identical. Raised if Index is not in the range [1, NbPoles] Raised if Weight <= Resolution from package gp
        """
    @overload
    def SetPole(self,Index : int,P : OCP.gp.gp_Pnt,Weight : float) -> None: ...
    def SetWeight(self,Index : int,Weight : float) -> None: 
        """
        Changes the weight of the pole of range Index. If the curve <me> is not rational it can become rational if all the weights are not identical. If the curve was rational it can become non rational if all the weights are identical. Raised if Index is not in the range [1, NbPoles] Raised if Weight <= Resolution from package gp
        """
    def StartPoint(self) -> OCP.gp.gp_Pnt: 
        """
        Returns Value (U=0.), it is the first control point of the curve.
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Applies the transformation T to this Bezier curve.
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf) -> float: 
        """
        Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def Value(self,U : float) -> OCP.gp.gp_Pnt: 
        """
        Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve. it is implemented with D0.
        """
    def Weight(self,Index : int) -> float: 
        """
        Returns the weight of range Index. Raised if Index is not in the range [1, NbPoles]
        """
    @overload
    def Weights(self) -> OCP.TColStd.TColStd_Array1OfReal: 
        """
        Returns all the weights of the curve.

        Returns all the weights of the curve.
        """
    @overload
    def Weights(self,W : OCP.TColStd.TColStd_Array1OfReal) -> None: ...
    @overload
    def __init__(self,CurvePoles : OCP.TColgp.TColgp_Array1OfPnt) -> None: ...
    @overload
    def __init__(self,CurvePoles : OCP.TColgp.TColgp_Array1OfPnt,PoleWeights : OCP.TColStd.TColStd_Array1OfReal) -> None: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_CylindricalSurface(Geom_ElementarySurface, Geom_Surface, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    This class defines the infinite cylindrical surface.This class defines the infinite cylindrical surface.This class defines the infinite cylindrical surface.
    """
    def Axis(self) -> OCP.gp.gp_Ax1: 
        """
        Returns the main axis of the surface (ZAxis).
        """
    def Bounds(self) -> tuple[float, float, float, float]: 
        """
        The CylindricalSurface is infinite in the V direction so V1 = Realfirst, V2 = RealLast from package Standard. U1 = 0 and U2 = 2*PI.
        """
    def Coefficients(self) -> tuple[float, float, float, float, float, float, float, float, float, float]: 
        """
        Returns the coefficients of the implicit equation of the quadric in the absolute cartesian coordinate system : These coefficients are normalized.
        """
    def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape: 
        """
        Returns GeomAbs_CN, the global continuity of any elementary surface.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this cylinder.
        """
    def Cylinder(self) -> OCP.gp.gp_Cylinder: 
        """
        returns a non transient cylinder with the same geometric properties as <me>.
        """
    def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        Computes the point P (U, V) on the surface. P (U, V) = Loc + Radius * (cos (U) * XDir + sin (U) * YDir) + V * ZDir where Loc is the origin of the placement plane (XAxis, YAxis) XDir is the direction of the XAxis and YDir the direction of the YAxis.
        """
    def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None: 
        """
        Computes the current point and the first derivatives in the directions U and V.
        """
    def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None: 
        """
        Computes the current point, the first and the second derivatives in the directions U and V.
        """
    def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None: 
        """
        Computes the current point, the first, the second and the third derivatives in the directions U and V.
        """
    def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec: 
        """
        Computes the derivative of order Nu in the direction u and Nv in the direction v. Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    def IsCNu(self,N : int) -> bool: 
        """
        Returns True.
        """
    def IsCNv(self,N : int) -> bool: 
        """
        Returns True.
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def IsUClosed(self) -> bool: 
        """
        Returns True.
        """
    def IsUPeriodic(self) -> bool: 
        """
        Returns True.
        """
    def IsVClosed(self) -> bool: 
        """
        Returns False.
        """
    def IsVPeriodic(self) -> bool: 
        """
        Returns False.
        """
    def Location(self) -> OCP.gp.gp_Pnt: 
        """
        Returns the location point of the local coordinate system of the surface.
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d: 
        """
        Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns a scale centered on the U axis with T.ScaleFactor
        """
    def Position(self) -> OCP.gp.gp_Ax3: 
        """
        Returns the local coordinates system of the surface.
        """
    def Radius(self) -> float: 
        """
        Returns the radius of this cylinder.
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def SetAxis(self,theA1 : OCP.gp.gp_Ax1) -> None: 
        """
        Changes the main axis (ZAxis) of the elementary surface.
        """
    def SetCylinder(self,C : OCP.gp.gp_Cylinder) -> None: 
        """
        Set <me> so that <me> has the same geometric properties as C.
        """
    def SetLocation(self,theLoc : OCP.gp.gp_Pnt) -> None: 
        """
        Changes the location of the local coordinates system of the surface.
        """
    def SetPosition(self,theAx3 : OCP.gp.gp_Ax3) -> None: 
        """
        Changes the local coordinates system of the surface.
        """
    def SetRadius(self,R : float) -> None: 
        """
        Changes the radius of the cylinder. Raised if R < 0.0
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Applies the transformation T to this cylinder.
        """
    def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]: 
        """
        Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method multiplies V by T.ScaleFactor()
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def UIso(self,U : float) -> Geom_Curve: 
        """
        The UIso curve is a Line. The location point of this line is on the placement plane (XAxis, YAxis) of the surface. This line is parallel to the axis of symmetry of the surface.
        """
    def UPeriod(self) -> float: 
        """
        Returns the period of this surface in the u parametric direction. Raises if the surface is not uperiodic.
        """
    def UReverse(self) -> None: 
        """
        Reverses the U parametric direction of the surface.
        """
    def UReversed(self) -> Geom_Surface: 
        """
        Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def UReversedParameter(self,U : float) -> float: 
        """
        Return the parameter on the Ureversed surface for the point of parameter U on <me>. Return 2.PI - U.
        """
    def VIso(self,V : float) -> Geom_Curve: 
        """
        The VIso curve is a circle. The start point of this circle (U = 0) is defined with the "XAxis" of the surface. The center of the circle is on the symmetry axis.
        """
    def VPeriod(self) -> float: 
        """
        Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic.
        """
    def VReverse(self) -> None: 
        """
        Reverses the V parametric direction of the surface.
        """
    def VReversed(self) -> Geom_Surface: 
        """
        Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def VReversedParameter(self,V : float) -> float: 
        """
        Return the parameter on the Vreversed surface for the point of parameter V on <me>. Return -V
        """
    def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt: 
        """
        Computes the point of parameter (U, V) on the surface.
        """
    @overload
    def __init__(self,A3 : OCP.gp.gp_Ax3,Radius : float) -> None: ...
    @overload
    def __init__(self,C : OCP.gp.gp_Cylinder) -> None: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_Vector(Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    The abstract class Vector describes the common behavior of vectors in 3D space. The Geom package provides two concrete classes of vectors: Geom_Direction (unit vector) and Geom_VectorWithMagnitude.The abstract class Vector describes the common behavior of vectors in 3D space. The Geom package provides two concrete classes of vectors: Geom_Direction (unit vector) and Geom_VectorWithMagnitude.The abstract class Vector describes the common behavior of vectors in 3D space. The Geom package provides two concrete classes of vectors: Geom_Direction (unit vector) and Geom_VectorWithMagnitude.
    """
    def Angle(self,Other : Geom_Vector) -> float: 
        """
        Computes the angular value, in radians, between this vector and vector Other. The result is a value between 0 and Pi. Exceptions gp_VectorWithNullMagnitude if: - the magnitude of this vector is less than or equal to gp::Resolution(), or - the magnitude of vector Other is less than or equal to gp::Resolution().
        """
    def AngleWithRef(self,Other : Geom_Vector,VRef : Geom_Vector) -> float: 
        """
        Computes the angular value, in radians, between this vector and vector Other. The result is a value between -Pi and Pi. The vector VRef defines the positive sense of rotation: the angular value is positive if the cross product this ^ Other has the same orientation as VRef (in relation to the plane defined by this vector and vector Other). Otherwise, it is negative. Exceptions Standard_DomainError if this vector, vector Other and vector VRef are coplanar, except if this vector and vector Other are parallel. gp_VectorWithNullMagnitude if the magnitude of this vector, vector Other or vector VRef is less than or equal to gp::Resolution().
        """
    def Coord(self) -> tuple[float, float, float]: 
        """
        Returns the coordinates X, Y and Z of this vector.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this geometric object.
        """
    def Cross(self,Other : Geom_Vector) -> None: 
        """
        Computes the cross product between <me> and <Other>.
        """
    def CrossCross(self,V1 : Geom_Vector,V2 : Geom_Vector) -> None: 
        """
        Computes the triple vector product <me> ^(V1 ^ V2).
        """
    def CrossCrossed(self,V1 : Geom_Vector,V2 : Geom_Vector) -> Geom_Vector: 
        """
        Computes the triple vector product <me> ^(V1 ^ V2).
        """
    def Crossed(self,Other : Geom_Vector) -> Geom_Vector: 
        """
        Computes the cross product between <me> and <Other>. A new direction is returned.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def Dot(self,Other : Geom_Vector) -> float: 
        """
        Computes the scalar product of this vector and vector Other.
        """
    def DotCross(self,V1 : Geom_Vector,V2 : Geom_Vector) -> float: 
        """
        Computes the triple scalar product. Returns me . (V1 ^ V2)
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def Magnitude(self) -> float: 
        """
        Returns the Magnitude of <me>.
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def Reverse(self) -> None: 
        """
        Reverses the vector <me>.
        """
    def Reversed(self) -> Geom_Vector: 
        """
        Returns a copy of <me> reversed.
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def SquareMagnitude(self) -> float: 
        """
        Returns the square magnitude of <me>.
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom).
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def Vec(self) -> OCP.gp.gp_Vec: 
        """
        Converts this vector into a gp_Vec vector.
        """
    def X(self) -> float: 
        """
        Returns the X coordinate of <me>.
        """
    def Y(self) -> float: 
        """
        Returns the Y coordinate of <me>.
        """
    def Z(self) -> float: 
        """
        Returns the Z coordinate of <me>.
        """
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_ConicalSurface(Geom_ElementarySurface, Geom_Surface, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    Describes a cone. A cone is defined by the half-angle (can be negative) at its apex, and is positioned in space by a coordinate system (a gp_Ax3 object) and a reference radius as follows: - The "main Axis" of the coordinate system is the axis of revolution of the cone. - The plane defined by the origin, the "X Direction" and the "Y Direction" of the coordinate system is the reference plane of the cone. The intersection of the cone with this reference plane is a circle of radius equal to the reference radius. - The apex of the cone is on the negative side of the "main Axis" of the coordinate system if the half-angle is positive, and on the positive side if the half-angle is negative. This coordinate system is the "local coordinate system" of the cone. The following apply: - Rotation around its "main Axis", in the trigonometric sense given by the "X Direction" and the "Y Direction", defines the u parametric direction. - Its "X Axis" gives the origin for the u parameter. - Its "main Direction" is the v parametric direction of the cone. - Its origin is the origin of the v parameter. The parametric range of the two parameters is: The parametric equation of the cone is: where: - O, XDir, YDir and ZDir are respectively the origin, the "X Direction", the "Y Direction" and the "Z Direction" of the cone's local coordinate system, - Ang is the half-angle at the apex of the cone, and - R is the reference radius.Describes a cone. A cone is defined by the half-angle (can be negative) at its apex, and is positioned in space by a coordinate system (a gp_Ax3 object) and a reference radius as follows: - The "main Axis" of the coordinate system is the axis of revolution of the cone. - The plane defined by the origin, the "X Direction" and the "Y Direction" of the coordinate system is the reference plane of the cone. The intersection of the cone with this reference plane is a circle of radius equal to the reference radius. - The apex of the cone is on the negative side of the "main Axis" of the coordinate system if the half-angle is positive, and on the positive side if the half-angle is negative. This coordinate system is the "local coordinate system" of the cone. The following apply: - Rotation around its "main Axis", in the trigonometric sense given by the "X Direction" and the "Y Direction", defines the u parametric direction. - Its "X Axis" gives the origin for the u parameter. - Its "main Direction" is the v parametric direction of the cone. - Its origin is the origin of the v parameter. The parametric range of the two parameters is: The parametric equation of the cone is: where: - O, XDir, YDir and ZDir are respectively the origin, the "X Direction", the "Y Direction" and the "Z Direction" of the cone's local coordinate system, - Ang is the half-angle at the apex of the cone, and - R is the reference radius.Describes a cone. A cone is defined by the half-angle (can be negative) at its apex, and is positioned in space by a coordinate system (a gp_Ax3 object) and a reference radius as follows: - The "main Axis" of the coordinate system is the axis of revolution of the cone. - The plane defined by the origin, the "X Direction" and the "Y Direction" of the coordinate system is the reference plane of the cone. The intersection of the cone with this reference plane is a circle of radius equal to the reference radius. - The apex of the cone is on the negative side of the "main Axis" of the coordinate system if the half-angle is positive, and on the positive side if the half-angle is negative. This coordinate system is the "local coordinate system" of the cone. The following apply: - Rotation around its "main Axis", in the trigonometric sense given by the "X Direction" and the "Y Direction", defines the u parametric direction. - Its "X Axis" gives the origin for the u parameter. - Its "main Direction" is the v parametric direction of the cone. - Its origin is the origin of the v parameter. The parametric range of the two parameters is: The parametric equation of the cone is: where: - O, XDir, YDir and ZDir are respectively the origin, the "X Direction", the "Y Direction" and the "Z Direction" of the cone's local coordinate system, - Ang is the half-angle at the apex of the cone, and - R is the reference radius.
    """
    def Apex(self) -> OCP.gp.gp_Pnt: 
        """
        Computes the apex of this cone. It is on the negative side of the axis of revolution of this cone if the half-angle at the apex is positive, and on the positive side of the "main Axis" if the half-angle is negative.
        """
    def Axis(self) -> OCP.gp.gp_Ax1: 
        """
        Returns the main axis of the surface (ZAxis).
        """
    def Bounds(self) -> tuple[float, float, float, float]: 
        """
        The conical surface is infinite in the V direction so V1 = Realfirst from Standard and V2 = RealLast. U1 = 0 and U2 = 2*PI.
        """
    def Coefficients(self) -> tuple[float, float, float, float, float, float, float, float, float, float]: 
        """
        Returns the coefficients of the implicit equation of the quadric in the absolute cartesian coordinate system : These coefficients are normalized.
        """
    def Cone(self) -> OCP.gp.gp_Cone: 
        """
        Returns a non transient cone with the same geometric properties as <me>.
        """
    def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape: 
        """
        Returns GeomAbs_CN, the global continuity of any elementary surface.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this cone.
        """
    def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        Computes the point P (U, V) on the surface. where Loc is the origin of the placement plane (XAxis, YAxis) XDir is the direction of the XAxis and YDir the direction of the YAxis.
        """
    def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None: 
        """
        Computes the current point and the first derivatives in the directions U and V.
        """
    def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None: 
        """
        Computes the current point, the first and the second derivatives in the directions U and V.
        """
    def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None: 
        """
        Computes the current point, the first,the second and the third derivatives in the directions U and V.
        """
    def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec: 
        """
        Computes the derivative of order Nu in the u parametric direction, and Nv in the v parametric direction at the point of parameters (U, V) of this cone. Exceptions Standard_RangeError if: - Nu + Nv is less than 1, - Nu or Nv is negative.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    def IsCNu(self,N : int) -> bool: 
        """
        Returns True.
        """
    def IsCNv(self,N : int) -> bool: 
        """
        Returns True.
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def IsUClosed(self) -> bool: 
        """
        returns True.
        """
    def IsUPeriodic(self) -> bool: 
        """
        Returns True.
        """
    def IsVClosed(self) -> bool: 
        """
        returns False.
        """
    def IsVPeriodic(self) -> bool: 
        """
        Returns False.
        """
    def Location(self) -> OCP.gp.gp_Pnt: 
        """
        Returns the location point of the local coordinate system of the surface.
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d: 
        """
        Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns a scale centered on the U axis with T.ScaleFactor
        """
    def Position(self) -> OCP.gp.gp_Ax3: 
        """
        Returns the local coordinates system of the surface.
        """
    def RefRadius(self) -> float: 
        """
        Returns the reference radius of this cone. The reference radius is the radius of the circle formed by the intersection of this cone and its reference plane (i.e. the plane defined by the origin, "X Direction" and "Y Direction" of the local coordinate system of this cone). If the apex of this cone is on the origin of the local coordinate system of this cone, the returned value is 0.
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def SemiAngle(self) -> float: 
        """
        Returns the semi-angle at the apex of this cone. Attention! Semi-angle can be negative.
        """
    def SetAxis(self,theA1 : OCP.gp.gp_Ax1) -> None: 
        """
        Changes the main axis (ZAxis) of the elementary surface.
        """
    def SetCone(self,C : OCP.gp.gp_Cone) -> None: 
        """
        Set <me> so that <me> has the same geometric properties as C.
        """
    def SetLocation(self,theLoc : OCP.gp.gp_Pnt) -> None: 
        """
        Changes the location of the local coordinates system of the surface.
        """
    def SetPosition(self,theAx3 : OCP.gp.gp_Ax3) -> None: 
        """
        Changes the local coordinates system of the surface.
        """
    def SetRadius(self,R : float) -> None: 
        """
        Changes the radius of the conical surface in the placement plane (Z = 0, V = 0). The local coordinate system is not modified. Raised if R < 0.0
        """
    def SetSemiAngle(self,Ang : float) -> None: 
        """
        Changes the semi angle of the conical surface. Semi-angle can be negative. Its absolute value Abs(Ang) is in range ]0,PI/2[. Raises ConstructionError if Abs(Ang) < Resolution from gp or Abs(Ang) >= PI/2 - Resolution
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Applies the transformation T to this cone.
        """
    def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]: 
        """
        Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method multiplies V by T.ScaleFactor()
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def UIso(self,U : float) -> Geom_Curve: 
        """
        Builds the U isoparametric line of this cone. The origin of this line is on the reference plane of this cone (i.e. the plane defined by the origin, "X Direction" and "Y Direction" of the local coordinate system of this cone).
        """
    def UPeriod(self) -> float: 
        """
        Returns the period of this surface in the u parametric direction. Raises if the surface is not uperiodic.
        """
    def UReverse(self) -> None: 
        """
        Reverses the U parametric direction of the surface.
        """
    def UReversed(self) -> Geom_Surface: 
        """
        Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def UReversedParameter(self,U : float) -> float: 
        """
        Eeturn 2.PI - U.
        """
    def VIso(self,V : float) -> Geom_Curve: 
        """
        Builds the V isoparametric circle of this cone. It is the circle on this cone, located in the plane of Z coordinate V*cos(Semi-Angle) in the local coordinate system of this cone. The "Axis" of this circle is the axis of revolution of this cone. Its starting point is defined by the "X Direction" of this cone. Warning If the V isoparametric circle is close to the apex of this cone, the radius of the circle becomes very small. It is possible to have a circle with radius equal to 0.0.
        """
    def VPeriod(self) -> float: 
        """
        Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic.
        """
    def VReverse(self) -> None: 
        """
        Changes the orientation of this cone in the v parametric direction. The bounds of the surface are not changed but the v parametric direction is reversed. As a consequence, for a cone: - the "main Direction" of the local coordinate system is reversed, and - the half-angle at the apex is inverted.
        """
    def VReversed(self) -> Geom_Surface: 
        """
        Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def VReversedParameter(self,V : float) -> float: 
        """
        Computes the u (or v) parameter on the modified surface, when reversing its u (or v) parametric direction, for any point of u parameter U (or of v parameter V) on this cone. In the case of a cone, these functions return respectively: - 2.*Pi - U, -V.
        """
    def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt: 
        """
        Computes the point of parameter (U, V) on the surface.
        """
    @overload
    def __init__(self,C : OCP.gp.gp_Cone) -> None: ...
    @overload
    def __init__(self,A3 : OCP.gp.gp_Ax3,Ang : float,Radius : float) -> None: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_Ellipse(Geom_Conic, Geom_Curve, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    Describes an ellipse in 3D space. An ellipse is defined by its major and minor radii and, as with any conic curve, is positioned in space with a right-handed coordinate system (gp_Ax2 object) where: - the origin is the center of the ellipse, - the "X Direction" defines the major axis, and - the "Y Direction" defines the minor axis. The origin, "X Direction" and "Y Direction" of this coordinate system define the plane of the ellipse. The coordinate system is the local coordinate system of the ellipse. The "main Direction" of this coordinate system is the vector normal to the plane of the ellipse. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the ellipse. The "main Direction" of the local coordinate system gives an explicit orientation to the ellipse (definition of the trigonometric sense), determining the direction in which the parameter increases along the ellipse. The Geom_Ellipse ellipse is parameterized by an angle: P(U) = O + MajorRad*Cos(U)*XDir + MinorRad*Sin(U)*YDir where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - MajorRad and MinorRad are the major and minor radii of the ellipse. The "X Axis" of the local coordinate system therefore defines the origin of the parameter of the ellipse. An ellipse is a closed and periodic curve. The period is 2.*Pi and the parameter range is [ 0, 2.*Pi [.Describes an ellipse in 3D space. An ellipse is defined by its major and minor radii and, as with any conic curve, is positioned in space with a right-handed coordinate system (gp_Ax2 object) where: - the origin is the center of the ellipse, - the "X Direction" defines the major axis, and - the "Y Direction" defines the minor axis. The origin, "X Direction" and "Y Direction" of this coordinate system define the plane of the ellipse. The coordinate system is the local coordinate system of the ellipse. The "main Direction" of this coordinate system is the vector normal to the plane of the ellipse. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the ellipse. The "main Direction" of the local coordinate system gives an explicit orientation to the ellipse (definition of the trigonometric sense), determining the direction in which the parameter increases along the ellipse. The Geom_Ellipse ellipse is parameterized by an angle: P(U) = O + MajorRad*Cos(U)*XDir + MinorRad*Sin(U)*YDir where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - MajorRad and MinorRad are the major and minor radii of the ellipse. The "X Axis" of the local coordinate system therefore defines the origin of the parameter of the ellipse. An ellipse is a closed and periodic curve. The period is 2.*Pi and the parameter range is [ 0, 2.*Pi [.Describes an ellipse in 3D space. An ellipse is defined by its major and minor radii and, as with any conic curve, is positioned in space with a right-handed coordinate system (gp_Ax2 object) where: - the origin is the center of the ellipse, - the "X Direction" defines the major axis, and - the "Y Direction" defines the minor axis. The origin, "X Direction" and "Y Direction" of this coordinate system define the plane of the ellipse. The coordinate system is the local coordinate system of the ellipse. The "main Direction" of this coordinate system is the vector normal to the plane of the ellipse. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the ellipse. The "main Direction" of the local coordinate system gives an explicit orientation to the ellipse (definition of the trigonometric sense), determining the direction in which the parameter increases along the ellipse. The Geom_Ellipse ellipse is parameterized by an angle: P(U) = O + MajorRad*Cos(U)*XDir + MinorRad*Sin(U)*YDir where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - MajorRad and MinorRad are the major and minor radii of the ellipse. The "X Axis" of the local coordinate system therefore defines the origin of the parameter of the ellipse. An ellipse is a closed and periodic curve. The period is 2.*Pi and the parameter range is [ 0, 2.*Pi [.
    """
    def Axis(self) -> OCP.gp.gp_Ax1: 
        """
        Returns the "main Axis" of this conic. This axis is normal to the plane of the conic.
        """
    def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape: 
        """
        The continuity of the conic is Cn.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this ellipse.
        """
    def D0(self,U : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        Returns in P the point of parameter U. P = C + MajorRadius * Cos (U) * XDir + MinorRadius * Sin (U) * YDir where C is the center of the ellipse , XDir the direction of the "XAxis" and "YDir" the "YAxis" of the ellipse.
        """
    def D1(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec) -> None: 
        """
        None
        """
    def D2(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec) -> None: 
        """
        Returns the point P of parameter U. The vectors V1 and V2 are the first and second derivatives at this point.
        """
    def D3(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec,V3 : OCP.gp.gp_Vec) -> None: 
        """
        Returns the point P of parameter U, the first second and third derivatives V1 V2 and V3.
        """
    def DN(self,U : float,N : int) -> OCP.gp.gp_Vec: 
        """
        For the point of parameter U of this ellipse, computes the vector corresponding to the Nth derivative. Exceptions Standard_RangeError if N is less than 1.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def Directrix1(self) -> OCP.gp.gp_Ax1: 
        """
        This directrix is the line normal to the XAxis of the ellipse in the local plane (Z = 0) at a distance d = MajorRadius / e from the center of the ellipse, where e is the eccentricity of the ellipse. This line is parallel to the "YAxis". The intersection point between directrix1 and the "XAxis" is the "Location" point of the directrix1. This point is on the positive side of the "XAxis". Raised if Eccentricity = 0.0. (The ellipse degenerates into a circle)
        """
    def Directrix2(self) -> OCP.gp.gp_Ax1: 
        """
        This line is obtained by the symmetrical transformation of "Directrix1" with respect to the "YAxis" of the ellipse.
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def Eccentricity(self) -> float: 
        """
        Returns the eccentricity of the ellipse between 0.0 and 1.0 If f is the distance between the center of the ellipse and the Focus1 then the eccentricity e = f / MajorRadius. Returns 0 if MajorRadius = 0
        """
    def Elips(self) -> OCP.gp.gp_Elips: 
        """
        returns the non transient ellipse from gp with the same
        """
    def FirstParameter(self) -> float: 
        """
        Returns the value of the first parameter of this ellipse. This is respectively: - 0.0, which gives the start point of this ellipse, or The start point and end point of an ellipse are coincident.
        """
    def Focal(self) -> float: 
        """
        Computes the focal distance. It is the distance between the the two focus of the ellipse.
        """
    def Focus1(self) -> OCP.gp.gp_Pnt: 
        """
        Returns the first focus of the ellipse. This focus is on the positive side of the "XAxis" of the ellipse.
        """
    def Focus2(self) -> OCP.gp.gp_Pnt: 
        """
        Returns the second focus of the ellipse. This focus is on the negative side of the "XAxis" of the ellipse.
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    def IsCN(self,N : int) -> bool: 
        """
        Returns True. Raised if N < 0.
        """
    def IsClosed(self) -> bool: 
        """
        return True.
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def IsPeriodic(self) -> bool: 
        """
        return True.
        """
    def LastParameter(self) -> float: 
        """
        Returns the value of the last parameter of this ellipse. This is respectively: - 2.*Pi, which gives the end point of this ellipse. The start point and end point of an ellipse are coincident.
        """
    def Location(self) -> OCP.gp.gp_Pnt: 
        """
        Returns the location point of the conic. For the circle, the ellipse and the hyperbola it is the center of the conic. For the parabola it is the Apex of the parabola.
        """
    def MajorRadius(self) -> float: 
        """
        Returns the major radius of this ellipse.
        """
    def MinorRadius(self) -> float: 
        """
        Returns the minor radius of this ellipse.
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def Parameter(self) -> float: 
        """
        Returns p = (1 - e * e) * MajorRadius where e is the eccentricity of the ellipse. Returns 0 if MajorRadius = 0
        """
    def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> float: 
        """
        Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.
        """
    def Period(self) -> float: 
        """
        Returns the period of this curve. Exceptions Standard_NoSuchObject if this curve is not periodic.
        """
    def Position(self) -> OCP.gp.gp_Ax2: 
        """
        Returns the local coordinates system of the conic. The main direction of the Axis2Placement is normal to the plane of the conic. The X direction of the Axis2placement is in the plane of the conic and corresponds to the origin for the conic's parametric value u.
        """
    def Reverse(self) -> None: 
        """
        Reverses the direction of parameterization of <me>. The local coordinate system of the conic is modified.
        """
    def Reversed(self) -> Geom_Curve: 
        """
        Returns a copy of <me> reversed.
        """
    def ReversedParameter(self,U : float) -> float: 
        """
        Computes the parameter on the reversed ellipse for the point of parameter U on this ellipse. For an ellipse, the returned value is: 2.*Pi - U.
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def SetAxis(self,theA1 : OCP.gp.gp_Ax1) -> None: 
        """
        Changes the orientation of the conic's plane. The normal axis to the plane is A1. The XAxis and the YAxis are recomputed.
        """
    def SetElips(self,E : OCP.gp.gp_Elips) -> None: 
        """
        Converts the gp_Elips ellipse E into this ellipse.
        """
    def SetLocation(self,theP : OCP.gp.gp_Pnt) -> None: 
        """
        changes the location point of the conic.
        """
    def SetMajorRadius(self,MajorRadius : float) -> None: 
        """
        Assigns a value to the major radius of this ellipse. ConstructionError raised if MajorRadius < MinorRadius.
        """
    def SetMinorRadius(self,MinorRadius : float) -> None: 
        """
        Assigns a value to the minor radius of this ellipse. ConstructionError raised if MajorRadius < MinorRadius or if MinorRadius < 0.
        """
    def SetPosition(self,theA2 : OCP.gp.gp_Ax2) -> None: 
        """
        changes the local coordinate system of the conic.
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Applies the transformation T to this ellipse.
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf) -> float: 
        """
        Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def Value(self,U : float) -> OCP.gp.gp_Pnt: 
        """
        Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve. it is implemented with D0.
        """
    def XAxis(self) -> OCP.gp.gp_Ax1: 
        """
        Returns the XAxis of the conic. This axis defines the origin of parametrization of the conic. This axis is perpendicular to the Axis of the conic. This axis and the Yaxis define the plane of the conic.
        """
    def YAxis(self) -> OCP.gp.gp_Ax1: 
        """
        Returns the YAxis of the conic. The YAxis is perpendicular to the Xaxis. This axis and the Xaxis define the plane of the conic.
        """
    @overload
    def __init__(self,E : OCP.gp.gp_Elips) -> None: ...
    @overload
    def __init__(self,A2 : OCP.gp.gp_Ax2,MajorRadius : float,MinorRadius : float) -> None: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_Axis2Placement(Geom_AxisPlacement, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    Describes a right-handed coordinate system in 3D space. A coordinate system is defined by: - its origin, also termed the "Location point" of the coordinate system, - three orthogonal unit vectors, termed respectively the "X Direction", "Y Direction" and "Direction" (or "main Direction") of the coordinate system. As a Geom_Axis2Placement coordinate system is right-handed, its "Direction" is always equal to the cross product of its "X Direction" and "Y Direction". The "Direction" of a coordinate system is called the "main Direction" because when this unit vector is modified, the "X Direction" and "Y Direction" are recomputed, whereas when the "X Direction" or "Y Direction" is changed, the "main Direction" is retained. The "main Direction" is also the "Z Direction". Note: Geom_Axis2Placement coordinate systems provide the same kind of "geometric" services as gp_Ax2 coordinate systems but have more complex data structures. The geometric objects provided by the Geom package use gp_Ax2 objects to include coordinate systems in their data structures, or to define the geometric transformations, which are applied to them. Geom_Axis2Placement coordinate systems are used in a context where they can be shared by several objects contained inside a common data structure.Describes a right-handed coordinate system in 3D space. A coordinate system is defined by: - its origin, also termed the "Location point" of the coordinate system, - three orthogonal unit vectors, termed respectively the "X Direction", "Y Direction" and "Direction" (or "main Direction") of the coordinate system. As a Geom_Axis2Placement coordinate system is right-handed, its "Direction" is always equal to the cross product of its "X Direction" and "Y Direction". The "Direction" of a coordinate system is called the "main Direction" because when this unit vector is modified, the "X Direction" and "Y Direction" are recomputed, whereas when the "X Direction" or "Y Direction" is changed, the "main Direction" is retained. The "main Direction" is also the "Z Direction". Note: Geom_Axis2Placement coordinate systems provide the same kind of "geometric" services as gp_Ax2 coordinate systems but have more complex data structures. The geometric objects provided by the Geom package use gp_Ax2 objects to include coordinate systems in their data structures, or to define the geometric transformations, which are applied to them. Geom_Axis2Placement coordinate systems are used in a context where they can be shared by several objects contained inside a common data structure.Describes a right-handed coordinate system in 3D space. A coordinate system is defined by: - its origin, also termed the "Location point" of the coordinate system, - three orthogonal unit vectors, termed respectively the "X Direction", "Y Direction" and "Direction" (or "main Direction") of the coordinate system. As a Geom_Axis2Placement coordinate system is right-handed, its "Direction" is always equal to the cross product of its "X Direction" and "Y Direction". The "Direction" of a coordinate system is called the "main Direction" because when this unit vector is modified, the "X Direction" and "Y Direction" are recomputed, whereas when the "X Direction" or "Y Direction" is changed, the "main Direction" is retained. The "main Direction" is also the "Z Direction". Note: Geom_Axis2Placement coordinate systems provide the same kind of "geometric" services as gp_Ax2 coordinate systems but have more complex data structures. The geometric objects provided by the Geom package use gp_Ax2 objects to include coordinate systems in their data structures, or to define the geometric transformations, which are applied to them. Geom_Axis2Placement coordinate systems are used in a context where they can be shared by several objects contained inside a common data structure.
    """
    def Angle(self,Other : Geom_AxisPlacement) -> float: 
        """
        Computes the angular value, in radians, between the "main Direction" of this positioning system and that of positioning system Other. The result is a value between 0 and Pi.
        """
    def Ax2(self) -> OCP.gp.gp_Ax2: 
        """
        Returns a non transient copy of <me>.
        """
    def Axis(self) -> OCP.gp.gp_Ax1: 
        """
        Returns the main axis of the axis placement. For an "Axis2placement" it is the main axis (Location, Direction ). For an "Axis1Placement" this method returns a copy of <me>.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this coordinate system.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def Direction(self) -> OCP.gp.gp_Dir: 
        """
        Returns the main "Direction" of an axis placement.
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def Location(self) -> OCP.gp.gp_Pnt: 
        """
        Returns the Location point (origin) of the axis placement.
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def SetAx2(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Assigns the origin and the three unit vectors of A2 to this coordinate system.
        """
    def SetAxis(self,A1 : OCP.gp.gp_Ax1) -> None: 
        """
        Assigns A1 as the "main Axis" of this positioning system. This modifies - its origin, and - its "main Direction". If this positioning system is a Geom_Axis2Placement, then its "X Direction" and "Y Direction" are recomputed. Exceptions For a Geom_Axis2Placement: Standard_ConstructionError if A1 and the previous "X Direction" of the coordinate system are parallel.
        """
    def SetDirection(self,V : OCP.gp.gp_Dir) -> None: 
        """
        Changes the main direction of the axis placement. The "Xdirection" is modified : New XDirection = V ^ (Previous_Xdirection ^ V).
        """
    def SetLocation(self,P : OCP.gp.gp_Pnt) -> None: 
        """
        Assigns the point P as the origin of this positioning system.
        """
    def SetXDirection(self,Vx : OCP.gp.gp_Dir) -> None: 
        """
        Changes the "XDirection" of the axis placement, Vx is the new "XDirection". If Vx is not normal to the main direction then "XDirection" is computed as follow : XDirection = Direction ^ ( Vx ^ Direction). The main direction is not modified. Raised if Vx and "Direction" are parallel.
        """
    def SetYDirection(self,Vy : OCP.gp.gp_Dir) -> None: 
        """
        Changes the "YDirection" of the axis placement, Vy is the new "YDirection". If Vy is not normal to the main direction then "YDirection" is computed as follow : YDirection = Direction ^ ( Vy ^ Direction). The main direction is not modified. The "XDirection" is modified. Raised if Vy and the main direction are parallel.
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Transforms an axis placement with a Trsf. The "Location" point, the "XDirection" and the "YDirection" are transformed with T. The resulting main "Direction" of <me> is the cross product between the "XDirection" and the "YDirection" after transformation.
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def XDirection(self) -> OCP.gp.gp_Dir: 
        """
        Returns the "XDirection". This is a unit vector.
        """
    def YDirection(self) -> OCP.gp.gp_Dir: 
        """
        Returns the "YDirection". This is a unit vector.
        """
    @overload
    def __init__(self,A2 : OCP.gp.gp_Ax2) -> None: ...
    @overload
    def __init__(self,P : OCP.gp.gp_Pnt,N : OCP.gp.gp_Dir,Vx : OCP.gp.gp_Dir) -> None: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_SequenceOfBSplineSurface(OCP.NCollection.NCollection_BaseSequence):
    """
    Purpose: Definition of a sequence of elements indexed by an Integer in range of 1..n
    """
    def Allocator(self) -> OCP.NCollection.NCollection_BaseAllocator: 
        """
        Returns attached allocator
        """
    @overload
    def Append(self,theItem : Geom_BSplineSurface) -> None: 
        """
        Append one item

        Append another sequence (making it empty)
        """
    @overload
    def Append(self,theSeq : Geom_SequenceOfBSplineSurface) -> None: ...
    def Assign(self,theOther : Geom_SequenceOfBSplineSurface) -> Geom_SequenceOfBSplineSurface: 
        """
        Replace this sequence by the items of theOther. This method does not change the internal allocator.
        """
    def ChangeFirst(self) -> Geom_BSplineSurface: 
        """
        First item access
        """
    def ChangeLast(self) -> Geom_BSplineSurface: 
        """
        Last item access
        """
    def ChangeValue(self,theIndex : int) -> Geom_BSplineSurface: 
        """
        Variable item access by theIndex
        """
    def Clear(self,theAllocator : OCP.NCollection.NCollection_BaseAllocator=None) -> None: 
        """
        Clear the items out, take a new allocator if non null
        """
    def Exchange(self,I : int,J : int) -> None: 
        """
        Exchange two members
        """
    def First(self) -> Geom_BSplineSurface: 
        """
        First item access
        """
    @overload
    def InsertAfter(self,theIndex : int,theSeq : Geom_SequenceOfBSplineSurface) -> None: 
        """
        InsertAfter theIndex another sequence (making it empty)

        InsertAfter theIndex theItem
        """
    @overload
    def InsertAfter(self,theIndex : int,theItem : Geom_BSplineSurface) -> None: ...
    @overload
    def InsertBefore(self,theIndex : int,theSeq : Geom_SequenceOfBSplineSurface) -> None: 
        """
        InsertBefore theIndex theItem

        InsertBefore theIndex another sequence (making it empty)
        """
    @overload
    def InsertBefore(self,theIndex : int,theItem : Geom_BSplineSurface) -> None: ...
    def IsEmpty(self) -> bool: 
        """
        Empty query
        """
    def Last(self) -> Geom_BSplineSurface: 
        """
        Last item access
        """
    def Length(self) -> int: 
        """
        Number of items
        """
    def Lower(self) -> int: 
        """
        Method for consistency with other collections.
        """
    @overload
    def Prepend(self,theSeq : Geom_SequenceOfBSplineSurface) -> None: 
        """
        Prepend one item

        Prepend another sequence (making it empty)
        """
    @overload
    def Prepend(self,theItem : Geom_BSplineSurface) -> None: ...
    @overload
    def Remove(self,theIndex : int) -> None: 
        """
        Remove one item

        Remove range of items
        """
    @overload
    def Remove(self,theFromIndex : int,theToIndex : int) -> None: ...
    def Reverse(self) -> None: 
        """
        Reverse sequence
        """
    def SetValue(self,theIndex : int,theItem : Geom_BSplineSurface) -> None: 
        """
        Set item value by theIndex
        """
    def Size(self) -> int: 
        """
        Number of items
        """
    def Split(self,theIndex : int,theSeq : Geom_SequenceOfBSplineSurface) -> None: 
        """
        Split in two sequences
        """
    def Upper(self) -> int: 
        """
        Method for consistency with other collections.
        """
    def Value(self,theIndex : int) -> Geom_BSplineSurface: 
        """
        Constant item access by theIndex
        """
    def __bool__(self) -> bool: ...
    def __call__(self,theIndex : int) -> Geom_BSplineSurface: 
        """
        Constant operator()

        Variable operator()
        """
    @overload
    def __init__(self) -> None: ...
    @overload
    def __init__(self,theOther : Geom_SequenceOfBSplineSurface) -> None: ...
    @overload
    def __init__(self,theAllocator : OCP.NCollection.NCollection_BaseAllocator) -> None: ...
    def __iter__(self) -> Iterator[Geom_BSplineSurface]: ...
    def __len__(self) -> int: ...
    @staticmethod
    def delNode_s(theNode : NCollection_SeqNode,theAl : OCP.NCollection.NCollection_BaseAllocator) -> None: 
        """
        Static deleter to be passed to BaseSequence
        """
    pass
class Geom_Hyperbola(Geom_Conic, Geom_Curve, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    Describes a branch of a hyperbola in 3D space. A hyperbola is defined by its major and minor radii and, as with any conic curve, is positioned in space with a right-handed coordinate system (gp_Ax2 object) where: - the origin is the center of the hyperbola, - the "X Direction" defines the major axis, and - the "Y Direction" defines the minor axis. The origin, "X Direction" and "Y Direction" of this coordinate system define the plane of the hyperbola. The coordinate system is the local coordinate system of the hyperbola. The branch of the hyperbola described is the one located on the positive side of the major axis. The "main Direction" of the local coordinate system is a vector normal to the plane of the hyperbola. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the hyperbola. The "main Direction" of the local coordinate system gives an explicit orientation to the hyperbola, determining the direction in which the parameter increases along the hyperbola. The Geom_Hyperbola hyperbola is parameterized as follows: P(U) = O + MajRad*Cosh(U)*XDir + MinRad*Sinh(U)*YDir, where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - MajRad and MinRad are the major and minor radii of the hyperbola. The "X Axis" of the local coordinate system therefore defines the origin of the parameter of the hyperbola. The parameter range is ] -infinite, +infinite [. The following diagram illustrates the respective positions, in the plane of the hyperbola, of the three branches of hyperbolas constructed using the functions OtherBranch, ConjugateBranch1 and ConjugateBranch2: Defines the main branch of an hyperbola. ^YAxis | FirstConjugateBranch | Other | Main --------------------- C ------------------------------>XAxis Branch | Branch | SecondConjugateBranch | Warning The value of the major radius (on the major axis) can be less than the value of the minor radius (on the minor axis).Describes a branch of a hyperbola in 3D space. A hyperbola is defined by its major and minor radii and, as with any conic curve, is positioned in space with a right-handed coordinate system (gp_Ax2 object) where: - the origin is the center of the hyperbola, - the "X Direction" defines the major axis, and - the "Y Direction" defines the minor axis. The origin, "X Direction" and "Y Direction" of this coordinate system define the plane of the hyperbola. The coordinate system is the local coordinate system of the hyperbola. The branch of the hyperbola described is the one located on the positive side of the major axis. The "main Direction" of the local coordinate system is a vector normal to the plane of the hyperbola. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the hyperbola. The "main Direction" of the local coordinate system gives an explicit orientation to the hyperbola, determining the direction in which the parameter increases along the hyperbola. The Geom_Hyperbola hyperbola is parameterized as follows: P(U) = O + MajRad*Cosh(U)*XDir + MinRad*Sinh(U)*YDir, where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - MajRad and MinRad are the major and minor radii of the hyperbola. The "X Axis" of the local coordinate system therefore defines the origin of the parameter of the hyperbola. The parameter range is ] -infinite, +infinite [. The following diagram illustrates the respective positions, in the plane of the hyperbola, of the three branches of hyperbolas constructed using the functions OtherBranch, ConjugateBranch1 and ConjugateBranch2: Defines the main branch of an hyperbola. ^YAxis | FirstConjugateBranch | Other | Main --------------------- C ------------------------------>XAxis Branch | Branch | SecondConjugateBranch | Warning The value of the major radius (on the major axis) can be less than the value of the minor radius (on the minor axis).Describes a branch of a hyperbola in 3D space. A hyperbola is defined by its major and minor radii and, as with any conic curve, is positioned in space with a right-handed coordinate system (gp_Ax2 object) where: - the origin is the center of the hyperbola, - the "X Direction" defines the major axis, and - the "Y Direction" defines the minor axis. The origin, "X Direction" and "Y Direction" of this coordinate system define the plane of the hyperbola. The coordinate system is the local coordinate system of the hyperbola. The branch of the hyperbola described is the one located on the positive side of the major axis. The "main Direction" of the local coordinate system is a vector normal to the plane of the hyperbola. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the hyperbola. The "main Direction" of the local coordinate system gives an explicit orientation to the hyperbola, determining the direction in which the parameter increases along the hyperbola. The Geom_Hyperbola hyperbola is parameterized as follows: P(U) = O + MajRad*Cosh(U)*XDir + MinRad*Sinh(U)*YDir, where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - MajRad and MinRad are the major and minor radii of the hyperbola. The "X Axis" of the local coordinate system therefore defines the origin of the parameter of the hyperbola. The parameter range is ] -infinite, +infinite [. The following diagram illustrates the respective positions, in the plane of the hyperbola, of the three branches of hyperbolas constructed using the functions OtherBranch, ConjugateBranch1 and ConjugateBranch2: Defines the main branch of an hyperbola. ^YAxis | FirstConjugateBranch | Other | Main --------------------- C ------------------------------>XAxis Branch | Branch | SecondConjugateBranch | Warning The value of the major radius (on the major axis) can be less than the value of the minor radius (on the minor axis).
    """
    def Asymptote1(self) -> OCP.gp.gp_Ax1: 
        """
        In the local coordinate system of the hyperbola the equation of the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the equation of the first asymptote is Y = (B/A)*X. Raises ConstructionError if MajorRadius = 0.0
        """
    def Asymptote2(self) -> OCP.gp.gp_Ax1: 
        """
        In the local coordinate system of the hyperbola the equation of the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the equation of the first asymptote is Y = -(B/A)*X. Raises ConstructionError if MajorRadius = 0.0
        """
    def Axis(self) -> OCP.gp.gp_Ax1: 
        """
        Returns the "main Axis" of this conic. This axis is normal to the plane of the conic.
        """
    def ConjugateBranch1(self) -> OCP.gp.gp_Hypr: 
        """
        This branch of hyperbola is on the positive side of the YAxis of <me>.
        """
    def ConjugateBranch2(self) -> OCP.gp.gp_Hypr: 
        """
        This branch of hyperbola is on the negative side of the YAxis of <me>. Note: The diagram given under the class purpose indicates where these two branches of hyperbola are positioned in relation to this branch of hyperbola.
        """
    def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape: 
        """
        The continuity of the conic is Cn.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this hyperbola.
        """
    def D0(self,U : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        Returns in P the point of parameter U. P = C + MajorRadius * Cosh (U) * XDir + MinorRadius * Sinh (U) * YDir where C is the center of the hyperbola , XDir the XDirection and YDir the YDirection of the hyperbola's local coordinate system.
        """
    def D1(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec) -> None: 
        """
        Returns the point P of parameter U and the first derivative V1.
        """
    def D2(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec) -> None: 
        """
        Returns the point P of parameter U, the first and second derivatives V1 and V2.
        """
    def D3(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec,V3 : OCP.gp.gp_Vec) -> None: 
        """
        Returns the point P of parameter U, the first second and third derivatives V1 V2 and V3.
        """
    def DN(self,U : float,N : int) -> OCP.gp.gp_Vec: 
        """
        The returned vector gives the value of the derivative for the order of derivation N. Raised if N < 1.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def Directrix1(self) -> OCP.gp.gp_Ax1: 
        """
        This directrix is the line normal to the XAxis of the hyperbola in the local plane (Z = 0) at a distance d = MajorRadius / e from the center of the hyperbola, where e is the eccentricity of the hyperbola. This line is parallel to the YAxis. The intersection point between directrix1 and the XAxis is the location point of the directrix1. This point is on the positive side of the XAxis.
        """
    def Directrix2(self) -> OCP.gp.gp_Ax1: 
        """
        This line is obtained by the symmetrical transformation of "directrix1" with respect to the YAxis of the hyperbola.
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def Eccentricity(self) -> float: 
        """
        Returns the eccentricity of the hyperbola (e > 1). If f is the distance between the location of the hyperbola and the Focus1 then the eccentricity e = f / MajorRadius. raised if MajorRadius = 0.0
        """
    def FirstParameter(self) -> float: 
        """
        Returns RealFirst from Standard.
        """
    def Focal(self) -> float: 
        """
        Computes the focal distance. It is the distance between the two focus of the hyperbola.
        """
    def Focus1(self) -> OCP.gp.gp_Pnt: 
        """
        Returns the first focus of the hyperbola. This focus is on the positive side of the XAxis of the hyperbola.
        """
    def Focus2(self) -> OCP.gp.gp_Pnt: 
        """
        Returns the second focus of the hyperbola. This focus is on the negative side of the XAxis of the hyperbola.
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def Hypr(self) -> OCP.gp.gp_Hypr: 
        """
        returns the non transient parabola from gp with the same geometric properties as <me>.
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    def IsCN(self,N : int) -> bool: 
        """
        Returns True. Raised if N < 0.
        """
    def IsClosed(self) -> bool: 
        """
        Returns False.
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def IsPeriodic(self) -> bool: 
        """
        return False for an hyperbola.
        """
    def LastParameter(self) -> float: 
        """
        returns RealLast from Standard.
        """
    def Location(self) -> OCP.gp.gp_Pnt: 
        """
        Returns the location point of the conic. For the circle, the ellipse and the hyperbola it is the center of the conic. For the parabola it is the Apex of the parabola.
        """
    def MajorRadius(self) -> float: 
        """
        Returns the major or minor radius of this hyperbola. The major radius is also the distance between the center of the hyperbola and the apex of the main branch (located on the "X Axis" of the hyperbola).
        """
    def MinorRadius(self) -> float: 
        """
        Returns the major or minor radius of this hyperbola. The minor radius is also the distance between the center of the hyperbola and the apex of a conjugate branch (located on the "Y Axis" of the hyperbola).
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def OtherBranch(self) -> OCP.gp.gp_Hypr: 
        """
        Computes the "other" branch of this hyperbola. This is the symmetrical branch with respect to the center of this hyperbola. Note: The diagram given under the class purpose indicates where the "other" branch is positioned in relation to this branch of the hyperbola.
        """
    def Parameter(self) -> float: 
        """
        Returns p = (e * e - 1) * MajorRadius where e is the eccentricity of the hyperbola. raised if MajorRadius = 0.0
        """
    def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> float: 
        """
        Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.
        """
    def Period(self) -> float: 
        """
        Returns the period of this curve. Exceptions Standard_NoSuchObject if this curve is not periodic.
        """
    def Position(self) -> OCP.gp.gp_Ax2: 
        """
        Returns the local coordinates system of the conic. The main direction of the Axis2Placement is normal to the plane of the conic. The X direction of the Axis2placement is in the plane of the conic and corresponds to the origin for the conic's parametric value u.
        """
    def Reverse(self) -> None: 
        """
        Reverses the direction of parameterization of <me>. The local coordinate system of the conic is modified.
        """
    def Reversed(self) -> Geom_Curve: 
        """
        Returns a copy of <me> reversed.
        """
    def ReversedParameter(self,U : float) -> float: 
        """
        Computes the parameter on the reversed hyperbola, for the point of parameter U on this hyperbola. For a hyperbola, the returned value is: -U.
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def SetAxis(self,theA1 : OCP.gp.gp_Ax1) -> None: 
        """
        Changes the orientation of the conic's plane. The normal axis to the plane is A1. The XAxis and the YAxis are recomputed.
        """
    def SetHypr(self,H : OCP.gp.gp_Hypr) -> None: 
        """
        Converts the gp_Hypr hyperbola H into this hyperbola.
        """
    def SetLocation(self,theP : OCP.gp.gp_Pnt) -> None: 
        """
        changes the location point of the conic.
        """
    def SetMajorRadius(self,MajorRadius : float) -> None: 
        """
        Assigns a value to the major radius of this hyperbola. Exceptions Standard_ConstructionError if: - MajorRadius is less than 0.0, or - MinorRadius is less than 0.0.Raised if MajorRadius < 0.0
        """
    def SetMinorRadius(self,MinorRadius : float) -> None: 
        """
        Assigns a value to the minor radius of this hyperbola. Exceptions Standard_ConstructionError if: - MajorRadius is less than 0.0, or - MinorRadius is less than 0.0.Raised if MajorRadius < 0.0
        """
    def SetPosition(self,theA2 : OCP.gp.gp_Ax2) -> None: 
        """
        changes the local coordinate system of the conic.
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Applies the transformation T to this hyperbola.
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf) -> float: 
        """
        Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def Value(self,U : float) -> OCP.gp.gp_Pnt: 
        """
        Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve. it is implemented with D0.
        """
    def XAxis(self) -> OCP.gp.gp_Ax1: 
        """
        Returns the XAxis of the conic. This axis defines the origin of parametrization of the conic. This axis is perpendicular to the Axis of the conic. This axis and the Yaxis define the plane of the conic.
        """
    def YAxis(self) -> OCP.gp.gp_Ax1: 
        """
        Returns the YAxis of the conic. The YAxis is perpendicular to the Xaxis. This axis and the Xaxis define the plane of the conic.
        """
    @overload
    def __init__(self,A2 : OCP.gp.gp_Ax2,MajorRadius : float,MinorRadius : float) -> None: ...
    @overload
    def __init__(self,H : OCP.gp.gp_Hypr) -> None: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_Line(Geom_Curve, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    Describes an infinite line. A line is defined and positioned in space with an axis (gp_Ax1 object) which gives it an origin and a unit vector. The Geom_Line line is parameterized: P (U) = O + U*Dir, where: - P is the point of parameter U, - O is the origin and Dir the unit vector of its positioning axis. The parameter range is ] -infinite, +infinite [. The orientation of the line is given by the unit vector of its positioning axis.Describes an infinite line. A line is defined and positioned in space with an axis (gp_Ax1 object) which gives it an origin and a unit vector. The Geom_Line line is parameterized: P (U) = O + U*Dir, where: - P is the point of parameter U, - O is the origin and Dir the unit vector of its positioning axis. The parameter range is ] -infinite, +infinite [. The orientation of the line is given by the unit vector of its positioning axis.Describes an infinite line. A line is defined and positioned in space with an axis (gp_Ax1 object) which gives it an origin and a unit vector. The Geom_Line line is parameterized: P (U) = O + U*Dir, where: - P is the point of parameter U, - O is the origin and Dir the unit vector of its positioning axis. The parameter range is ] -infinite, +infinite [. The orientation of the line is given by the unit vector of its positioning axis.
    """
    def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape: 
        """
        Returns GeomAbs_CN, which is the global continuity of any line.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this line.
        """
    def D0(self,U : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        Returns in P the point of parameter U. P (U) = O + U * Dir where O is the "Location" point of the line and Dir the direction of the line.
        """
    def D1(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec) -> None: 
        """
        Returns the point P of parameter u and the first derivative V1.
        """
    def D2(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec) -> None: 
        """
        Returns the point P of parameter U, the first and second derivatives V1 and V2. V2 is a vector with null magnitude for a line.
        """
    def D3(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec,V3 : OCP.gp.gp_Vec) -> None: 
        """
        V2 and V3 are vectors with null magnitude for a line.
        """
    def DN(self,U : float,N : int) -> OCP.gp.gp_Vec: 
        """
        The returned vector gives the value of the derivative for the order of derivation N. Raised if N < 1.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def FirstParameter(self) -> float: 
        """
        Returns the value of the first parameter of this line. This is Standard_Real::RealFirst().
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    def IsCN(self,N : int) -> bool: 
        """
        returns True. Raised if N < 0.
        """
    def IsClosed(self) -> bool: 
        """
        returns False
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def IsPeriodic(self) -> bool: 
        """
        returns False
        """
    def LastParameter(self) -> float: 
        """
        Returns the value of the last parameter of this line. This is Standard_Real::RealLast().
        """
    def Lin(self) -> OCP.gp.gp_Lin: 
        """
        Returns non transient line from gp with the same geometric properties as <me>
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> float: 
        """
        Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.
        """
    def Period(self) -> float: 
        """
        Returns the period of this curve. Exceptions Standard_NoSuchObject if this curve is not periodic.
        """
    def Position(self) -> OCP.gp.gp_Ax1: 
        """
        Returns the positioning axis of this line; this is also its local coordinate system.
        """
    def Reverse(self) -> None: 
        """
        Changes the orientation of this line. As a result, the unit vector of the positioning axis of this line is reversed.
        """
    def Reversed(self) -> Geom_Curve: 
        """
        Returns a copy of <me> reversed.
        """
    def ReversedParameter(self,U : float) -> float: 
        """
        Computes the parameter on the reversed line for the point of parameter U on this line. For a line, the returned value is -U.
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def SetDirection(self,V : OCP.gp.gp_Dir) -> None: 
        """
        changes the direction of the line.
        """
    def SetLin(self,L : OCP.gp.gp_Lin) -> None: 
        """
        Set <me> so that <me> has the same geometric properties as L.
        """
    def SetLocation(self,P : OCP.gp.gp_Pnt) -> None: 
        """
        changes the "Location" point (origin) of the line.
        """
    def SetPosition(self,A1 : OCP.gp.gp_Ax1) -> None: 
        """
        changes the "Location" and a the "Direction" of <me>.
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Applies the transformation T to this line.
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf) -> float: 
        """
        Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def Value(self,U : float) -> OCP.gp.gp_Pnt: 
        """
        Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve. it is implemented with D0.
        """
    @overload
    def __init__(self,L : OCP.gp.gp_Lin) -> None: ...
    @overload
    def __init__(self,P : OCP.gp.gp_Pnt,V : OCP.gp.gp_Dir) -> None: ...
    @overload
    def __init__(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_OffsetCurve(Geom_Curve, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    This class implements the basis services for an offset curve in 3D space. The Offset curve in this package can be a self intersecting curve even if the basis curve does not self-intersect. The self intersecting portions are not deleted at the construction time. An offset curve is a curve at constant distance (Offset) from a basis curve in a reference direction V. The offset curve takes its parametrization from the basis curve. The Offset curve is in the direction of the normal N defined with the cross product T^V, where the vector T is given by the first derivative on the basis curve with non zero length. The distance offset may be positive or negative to indicate the preferred side of the curve : . distance offset >0 => the curve is in the direction of N . distance offset <0 => the curve is in the direction of - NThis class implements the basis services for an offset curve in 3D space. The Offset curve in this package can be a self intersecting curve even if the basis curve does not self-intersect. The self intersecting portions are not deleted at the construction time. An offset curve is a curve at constant distance (Offset) from a basis curve in a reference direction V. The offset curve takes its parametrization from the basis curve. The Offset curve is in the direction of the normal N defined with the cross product T^V, where the vector T is given by the first derivative on the basis curve with non zero length. The distance offset may be positive or negative to indicate the preferred side of the curve : . distance offset >0 => the curve is in the direction of N . distance offset <0 => the curve is in the direction of - NThis class implements the basis services for an offset curve in 3D space. The Offset curve in this package can be a self intersecting curve even if the basis curve does not self-intersect. The self intersecting portions are not deleted at the construction time. An offset curve is a curve at constant distance (Offset) from a basis curve in a reference direction V. The offset curve takes its parametrization from the basis curve. The Offset curve is in the direction of the normal N defined with the cross product T^V, where the vector T is given by the first derivative on the basis curve with non zero length. The distance offset may be positive or negative to indicate the preferred side of the curve : . distance offset >0 => the curve is in the direction of N . distance offset <0 => the curve is in the direction of - N
    """
    def BasisCurve(self) -> Geom_Curve: 
        """
        Returns the basis curve of this offset curve. Note: The basis curve can be an offset curve.
        """
    def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape: 
        """
        Returns the global continuity of this offset curve as a value of the GeomAbs_Shape enumeration. The degree of continuity of this offset curve is equal to the degree of continuity of the basis curve minus 1. Continuity of the Offset curve : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, G1 : tangency continuity all along the Curve, G2 : curvature continuity all along the Curve, CN : the order of continuity is infinite. Warnings : Returns the continuity of the basis curve - 1. The offset curve must have a unique offset direction defined at any point.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this offset curve.
        """
    def D0(self,U : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        Warning! this should not be called if the basis curve is not at least C1. Nevertheless if used on portion where the curve is C1, it is OK
        """
    def D1(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec) -> None: 
        """
        Warning! this should not be called if the continuity of the basis curve is not C2. Nevertheless, it's OK to use it on portion where the curve is C2
        """
    def D2(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec) -> None: 
        """
        Warning! this should not be called if the continuity of the basis curve is not C3. Nevertheless, it's OK to use it on portion where the curve is C3
        """
    def D3(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec,V3 : OCP.gp.gp_Vec) -> None: 
        """
        None
        """
    def DN(self,U : float,N : int) -> OCP.gp.gp_Vec: 
        """
        The returned vector gives the value of the derivative for the order of derivation N.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def Direction(self) -> OCP.gp.gp_Dir: 
        """
        Returns the reference vector of this offset curve. Value and derivatives Warnings : The exception UndefinedValue or UndefinedDerivative is raised if it is not possible to compute a unique offset direction. If T is the first derivative with not null length and V the offset direction the relation ||T(U) ^ V|| != 0 must be satisfied to evaluate the offset curve. No check is done at the creation time and we suppose in this package that the offset curve is well defined.
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def FirstParameter(self) -> float: 
        """
        Returns the value of the first parameter of this offset curve. The first parameter corresponds to the start point of the curve. Note: the first and last parameters of this offset curve are also the ones of its basis curve.
        """
    def GetBasisCurveContinuity(self) -> OCP.GeomAbs.GeomAbs_Shape: 
        """
        Returns continuity of the basis curve.
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    def IsCN(self,N : int) -> bool: 
        """
        Returns true if the degree of continuity of the basis curve of this offset curve is at least N + 1. This method answer True if the continuity of the basis curve is N + 1. We suppose in this class that a normal direction to the basis curve (used to compute the offset curve) is defined at any point on the basis curve. Raised if N < 0.
        """
    def IsClosed(self) -> bool: 
        """
        Returns True if the distance between the start point and the end point of the curve is lower or equal to Resolution from package gp.
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def IsPeriodic(self) -> bool: 
        """
        Returns true if this offset curve is periodic, i.e. if the basis curve of this offset curve is periodic.
        """
    def LastParameter(self) -> float: 
        """
        Returns the value of the last parameter of this offset curve. The last parameter corresponds to the end point. Note: the first and last parameters of this offset curve are also the ones of its basis curve.
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def Offset(self) -> float: 
        """
        Returns the offset value of this offset curve.
        """
    def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> float: 
        """
        Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.
        """
    def Period(self) -> float: 
        """
        Returns the period of this offset curve, i.e. the period of the basis curve of this offset curve. Exceptions Standard_NoSuchObject if the basis curve is not periodic.
        """
    def Reverse(self) -> None: 
        """
        Changes the orientation of this offset curve. As a result: - the basis curve is reversed, - the start point of the initial curve becomes the end point of the reversed curve, - the end point of the initial curve becomes the start point of the reversed curve, and - the first and last parameters are recomputed.
        """
    def Reversed(self) -> Geom_Curve: 
        """
        Returns a copy of <me> reversed.
        """
    def ReversedParameter(self,U : float) -> float: 
        """
        Computes the parameter on the reversed curve for the point of parameter U on this offset curve.
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def SetBasisCurve(self,C : Geom_Curve,isNotCheckC0 : bool=False) -> None: 
        """
        Changes this offset curve by assigning C as the basis curve from which it is built. If isNotCheckC0 = TRUE checking if basis curve has C0-continuity is not made. Exceptions Standard_ConstructionError if the curve C is not at least "C1" continuous.
        """
    def SetDirection(self,V : OCP.gp.gp_Dir) -> None: 
        """
        Changes this offset curve by assigning V as the reference vector used to compute the offset direction.
        """
    def SetOffsetValue(self,D : float) -> None: 
        """
        Changes this offset curve by assigning D as the offset value.
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Applies the transformation T to this offset curve. Note: the basis curve is also modified.
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf) -> float: 
        """
        Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>. me->Transformed(T)->Value(me->TransformedParameter(U,T)) is the same point as me->Value(U).Transformed(T) This methods calls the basis curve method.
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def Value(self,U : float) -> OCP.gp.gp_Pnt: 
        """
        Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve. it is implemented with D0.
        """
    def __init__(self,C : Geom_Curve,Offset : float,V : OCP.gp.gp_Dir,isNotCheckC0 : bool=False) -> None: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_OffsetSurface(Geom_Surface, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    Describes an offset surface in 3D space. An offset surface is defined by: - the basis surface to which it is parallel, and - the distance between the offset surface and its basis surface. A point on the offset surface is built by measuring the offset value along the normal vector at a point on the basis surface. This normal vector is given by the cross product D1u^D1v, where D1u and D1v are the vectors tangential to the basis surface in the u and v parametric directions at this point. The side of the basis surface on which the offset is measured depends on the sign of the offset value. A Geom_OffsetSurface surface can be self-intersecting, even if the basis surface does not self-intersect. The self-intersecting portions are not deleted at the time of construction. Warning There must be only one normal vector defined at any point on the basis surface. This must be verified by the user as no check is made at the time of construction to detect points with multiple possible normal directions (for example, the top of a conical surface).Describes an offset surface in 3D space. An offset surface is defined by: - the basis surface to which it is parallel, and - the distance between the offset surface and its basis surface. A point on the offset surface is built by measuring the offset value along the normal vector at a point on the basis surface. This normal vector is given by the cross product D1u^D1v, where D1u and D1v are the vectors tangential to the basis surface in the u and v parametric directions at this point. The side of the basis surface on which the offset is measured depends on the sign of the offset value. A Geom_OffsetSurface surface can be self-intersecting, even if the basis surface does not self-intersect. The self-intersecting portions are not deleted at the time of construction. Warning There must be only one normal vector defined at any point on the basis surface. This must be verified by the user as no check is made at the time of construction to detect points with multiple possible normal directions (for example, the top of a conical surface).Describes an offset surface in 3D space. An offset surface is defined by: - the basis surface to which it is parallel, and - the distance between the offset surface and its basis surface. A point on the offset surface is built by measuring the offset value along the normal vector at a point on the basis surface. This normal vector is given by the cross product D1u^D1v, where D1u and D1v are the vectors tangential to the basis surface in the u and v parametric directions at this point. The side of the basis surface on which the offset is measured depends on the sign of the offset value. A Geom_OffsetSurface surface can be self-intersecting, even if the basis surface does not self-intersect. The self-intersecting portions are not deleted at the time of construction. Warning There must be only one normal vector defined at any point on the basis surface. This must be verified by the user as no check is made at the time of construction to detect points with multiple possible normal directions (for example, the top of a conical surface).
    """
    def BasisSurface(self) -> Geom_Surface: 
        """
        Returns the basis surface of this offset surface. Note: The basis surface can be an offset surface.
        """
    def Bounds(self) -> tuple[float, float, float, float]: 
        """
        Returns the parametric bounds U1, U2, V1 and V2 of this offset surface. If the surface is infinite, this function can return: - Standard_Real::RealFirst(), or - Standard_Real::RealLast().
        """
    def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape: 
        """
        This method returns the continuity of the basis surface - 1. Continuity of the Offset surface : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Surface, C2 : continuity of the second derivative all along the Surface, C3 : continuity of the third derivative all along the Surface, CN : the order of continuity is infinite. Example : If the basis surface is C2 in the V direction and C3 in the U direction Shape = C1. Warnings : If the basis surface has a unique normal direction defined at any point this method gives the continuity of the offset surface otherwise the effective continuity can be lower than the continuity of the basis surface - 1.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this offset surface.
        """
    def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        where is the normal direction of the basis surface. Pbasis, D1Ubasis, D1Vbasis are the point and the first derivatives on the basis surface. If Ndir is undefined this method computes an approached normal direction using the following limited development: with Eps->0 which requires to compute the second derivatives on the basis surface. If the normal direction cannot be approximate for this order of derivation the exception UndefinedValue is raised.
        """
    def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None: 
        """
        Raised if the continuity of the basis surface is not C2.
        """
    def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None: 
        """
        Raised if the continuity of the basis surface is not C3.
        """
    def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None: 
        """
        Raised if the continuity of the basis surface is not C4.
        """
    def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec: 
        """
        Computes the derivative of order Nu in the direction u and Nv in the direction v.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def GetBasisSurfContinuity(self) -> OCP.GeomAbs.GeomAbs_Shape: 
        """
        Returns continuity of the basis surface.
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    def IsCNu(self,N : int) -> bool: 
        """
        This method answer True if the continuity of the basis surface is N + 1 in the U parametric direction. We suppose in this class that a unique normal is defined at any point on the basis surface. Raised if N <0.
        """
    def IsCNv(self,N : int) -> bool: 
        """
        This method answer True if the continuity of the basis surface is N + 1 in the V parametric direction. We suppose in this class that a unique normal is defined at any point on the basis surface. Raised if N <0.
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def IsUClosed(self) -> bool: 
        """
        Checks whether this offset surface is closed in the u parametric direction. Returns true if, taking uFirst and uLast as the parametric bounds in the u parametric direction, the distance between the points P(uFirst,v) and P(uLast,v) is less than or equal to gp::Resolution() for each value of the parameter v.
        """
    def IsUPeriodic(self) -> bool: 
        """
        Returns true if this offset surface is periodic in the u parametric direction, i.e. if the basis surface of this offset surface is periodic in this direction.
        """
    def IsVClosed(self) -> bool: 
        """
        Checks whether this offset surface is closed in the u or v parametric direction. Returns true if taking vFirst and vLast as the parametric bounds in the v parametric direction, the distance between the points P(u,vFirst) and P(u,vLast) is less than or equal to gp::Resolution() for each value of the parameter u.
        """
    def IsVPeriodic(self) -> bool: 
        """
        Returns true if this offset surface is periodic in the v parametric direction, i.e. if the basis surface of this offset surface is periodic in this direction.
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def Offset(self) -> float: 
        """
        Returns the offset value of this offset surface.
        """
    def OsculatingSurface(self) -> Geom_OsculatingSurface: 
        """
        Returns osculating surface if base surface is B-spline or Bezier
        """
    def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d: 
        """
        Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method calls the basis surface method.
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def SetBasisSurface(self,S : Geom_Surface,isNotCheckC0 : bool=False) -> None: 
        """
        Raised if S is not at least C1. Warnings : No check is done to verify that a unique normal direction is defined at any point of the basis surface S. If isNotCheckC0 = TRUE checking if basis surface has C0-continuity is not made. Exceptions Standard_ConstructionError if the surface S is not at least "C1" continuous.
        """
    def SetOffsetValue(self,D : float) -> None: 
        """
        Changes this offset surface by assigning D as the offset value.
        """
    def Surface(self) -> Geom_Surface: 
        """
        returns an equivalent surface of the offset surface when the basis surface is a canonic surface or a rectangular limited surface on canonic surface or if the offset is null.
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Applies the transformation T to this offset surface. Note: the basis surface is also modified.
        """
    def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]: 
        """
        Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method calls the basis surface method.
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def UIso(self,U : float) -> Geom_Curve: 
        """
        Computes the U isoparametric curve.
        """
    def UOsculatingSurface(self,U : float,V : float,IsOpposite : bool,UOsculSurf : Geom_BSplineSurface) -> bool: 
        """
        if Standard_True, L is the local osculating surface along U at the point U,V. It means that DL/DU is collinear to DS/DU . If IsOpposite == Standard_True these vectors have opposite direction.
        """
    def UPeriod(self) -> float: 
        """
        Returns the period of this offset surface in the u parametric direction respectively, i.e. the period of the basis surface of this offset surface in this parametric direction. raises if the surface is not uperiodic.
        """
    def UReverse(self) -> None: 
        """
        Changes the orientation of this offset surface in the u parametric direction. The bounds of the surface are not changed but the given parametric direction is reversed.
        """
    def UReversed(self) -> Geom_Surface: 
        """
        Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def UReversedParameter(self,U : float) -> float: 
        """
        Computes the u parameter on the modified surface, produced by reversing the u parametric direction of this offset surface, for any point of u parameter U on this offset surface.
        """
    def VIso(self,V : float) -> Geom_Curve: 
        """
        Computes the V isoparametric curve.
        """
    def VOsculatingSurface(self,U : float,V : float,IsOpposite : bool,VOsculSurf : Geom_BSplineSurface) -> bool: 
        """
        if Standard_True, L is the local osculating surface along V at the point U,V. It means that DL/DV is collinear to DS/DV . If IsOpposite == Standard_True these vectors have opposite direction.
        """
    def VPeriod(self) -> float: 
        """
        Returns the period of this offset surface in the v parametric direction respectively, i.e. the period of the basis surface of this offset surface in this parametric direction. raises if the surface is not vperiodic.
        """
    def VReverse(self) -> None: 
        """
        Changes the orientation of this offset surface in the v parametric direction. The bounds of the surface are not changed but the given parametric direction is reversed.
        """
    def VReversed(self) -> Geom_Surface: 
        """
        Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def VReversedParameter(self,V : float) -> float: 
        """
        Computes the v parameter on the modified surface, produced by reversing the or v parametric direction of this offset surface, for any point of v parameter V on this offset surface.
        """
    def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt: 
        """
        Computes the point of parameter (U, V) on the surface.
        """
    def __init__(self,S : Geom_Surface,Offset : float,isNotCheckC0 : bool=False) -> None: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_OsculatingSurface(OCP.Standard.Standard_Transient):
    def BasisSurface(self) -> Geom_Surface: 
        """
        None
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    def Init(self,BS : Geom_Surface,Tol : float) -> None: 
        """
        None
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Tolerance(self) -> float: 
        """
        None
        """
    def UOscSurf(self,U : float,V : float,t : bool,L : Geom_BSplineSurface) -> bool: 
        """
        if Standard_True, L is the local osculating surface along U at the point U,V.
        """
    def VOscSurf(self,U : float,V : float,t : bool,L : Geom_BSplineSurface) -> bool: 
        """
        if Standard_True, L is the local osculating surface along V at the point U,V.
        """
    @overload
    def __init__(self,BS : Geom_Surface,Tol : float) -> None: ...
    @overload
    def __init__(self) -> None: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_Parabola(Geom_Conic, Geom_Curve, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    Describes a parabola in 3D space. A parabola is defined by its focal length (i.e. the distance between its focus and its apex) and is positioned in space with a coordinate system (gp_Ax2 object) where: - the origin is the apex of the parabola, - the "X Axis" defines the axis of symmetry; the parabola is on the positive side of this axis, - the origin, "X Direction" and "Y Direction" define the plane of the parabola. This coordinate system is the local coordinate system of the parabola. The "main Direction" of this coordinate system is a vector normal to the plane of the parabola. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the parabola. The "main Direction" of the local coordinate system gives an explicit orientation to the parabola, determining the direction in which the parameter increases along the parabola. The Geom_Parabola parabola is parameterized as follows: P(U) = O + U*U/(4.*F)*XDir + U*YDir where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - F is the focal length of the parabola. The parameter of the parabola is therefore its Y coordinate in the local coordinate system, with the "X Axis" of the local coordinate system defining the origin of the parameter. The parameter range is ] -infinite, +infinite [.Describes a parabola in 3D space. A parabola is defined by its focal length (i.e. the distance between its focus and its apex) and is positioned in space with a coordinate system (gp_Ax2 object) where: - the origin is the apex of the parabola, - the "X Axis" defines the axis of symmetry; the parabola is on the positive side of this axis, - the origin, "X Direction" and "Y Direction" define the plane of the parabola. This coordinate system is the local coordinate system of the parabola. The "main Direction" of this coordinate system is a vector normal to the plane of the parabola. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the parabola. The "main Direction" of the local coordinate system gives an explicit orientation to the parabola, determining the direction in which the parameter increases along the parabola. The Geom_Parabola parabola is parameterized as follows: P(U) = O + U*U/(4.*F)*XDir + U*YDir where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - F is the focal length of the parabola. The parameter of the parabola is therefore its Y coordinate in the local coordinate system, with the "X Axis" of the local coordinate system defining the origin of the parameter. The parameter range is ] -infinite, +infinite [.Describes a parabola in 3D space. A parabola is defined by its focal length (i.e. the distance between its focus and its apex) and is positioned in space with a coordinate system (gp_Ax2 object) where: - the origin is the apex of the parabola, - the "X Axis" defines the axis of symmetry; the parabola is on the positive side of this axis, - the origin, "X Direction" and "Y Direction" define the plane of the parabola. This coordinate system is the local coordinate system of the parabola. The "main Direction" of this coordinate system is a vector normal to the plane of the parabola. The axis, of which the origin and unit vector are respectively the origin and "main Direction" of the local coordinate system, is termed the "Axis" or "main Axis" of the parabola. The "main Direction" of the local coordinate system gives an explicit orientation to the parabola, determining the direction in which the parameter increases along the parabola. The Geom_Parabola parabola is parameterized as follows: P(U) = O + U*U/(4.*F)*XDir + U*YDir where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - F is the focal length of the parabola. The parameter of the parabola is therefore its Y coordinate in the local coordinate system, with the "X Axis" of the local coordinate system defining the origin of the parameter. The parameter range is ] -infinite, +infinite [.
    """
    def Axis(self) -> OCP.gp.gp_Ax1: 
        """
        Returns the "main Axis" of this conic. This axis is normal to the plane of the conic.
        """
    def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape: 
        """
        The continuity of the conic is Cn.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this parabola.
        """
    def D0(self,U : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        Returns in P the point of parameter U. If U = 0 the returned point is the origin of the XAxis and the YAxis of the parabola and it is the vertex of the parabola. P = S + F * (U * U * XDir + * U * YDir) where S is the vertex of the parabola, XDir the XDirection and YDir the YDirection of the parabola's local coordinate system.
        """
    def D1(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec) -> None: 
        """
        Returns the point P of parameter U and the first derivative V1.
        """
    def D2(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec) -> None: 
        """
        Returns the point P of parameter U, the first and second derivatives V1 and V2.
        """
    def D3(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec,V3 : OCP.gp.gp_Vec) -> None: 
        """
        Returns the point P of parameter U, the first second and third derivatives V1 V2 and V3.
        """
    def DN(self,U : float,N : int) -> OCP.gp.gp_Vec: 
        """
        For the point of parameter U of this parabola, computes the vector corresponding to the Nth derivative. Exceptions Standard_RangeError if N is less than 1.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def Directrix(self) -> OCP.gp.gp_Ax1: 
        """
        Computes the directrix of this parabola. This is a line normal to the axis of symmetry, in the plane of this parabola, located on the negative side of its axis of symmetry, at a distance from the apex equal to the focal length. The directrix is returned as an axis (gp_Ax1 object), where the origin is located on the "X Axis" of this parabola.
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def Eccentricity(self) -> float: 
        """
        Returns 1. (which is the eccentricity of any parabola).
        """
    def FirstParameter(self) -> float: 
        """
        Returns the value of the first or last parameter of this parabola. This is, respectively: - Standard_Real::RealFirst(), or - Standard_Real::RealLast().
        """
    def Focal(self) -> float: 
        """
        Computes the focal distance of this parabola The focal distance is the distance between the apex and the focus of the parabola.
        """
    def Focus(self) -> OCP.gp.gp_Pnt: 
        """
        Computes the focus of this parabola. The focus is on the positive side of the "X Axis" of the local coordinate system of the parabola.
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    def IsCN(self,N : int) -> bool: 
        """
        Returns True. Raised if N < 0.
        """
    def IsClosed(self) -> bool: 
        """
        Returns False
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def IsPeriodic(self) -> bool: 
        """
        Returns False
        """
    def LastParameter(self) -> float: 
        """
        Returns the value of the first or last parameter of this parabola. This is, respectively: - Standard_Real::RealFirst(), or - Standard_Real::RealLast().
        """
    def Location(self) -> OCP.gp.gp_Pnt: 
        """
        Returns the location point of the conic. For the circle, the ellipse and the hyperbola it is the center of the conic. For the parabola it is the Apex of the parabola.
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def Parab(self) -> OCP.gp.gp_Parab: 
        """
        Returns the non transient parabola from gp with the same geometric properties as <me>.
        """
    def Parameter(self) -> float: 
        """
        Computes the parameter of this parabola which is the distance between its focus and its directrix. This distance is twice the focal length. If P is the parameter of the parabola, the equation of the parabola in its local coordinate system is: Y**2 = 2.*P*X.
        """
    def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> float: 
        """
        Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.
        """
    def Period(self) -> float: 
        """
        Returns the period of this curve. Exceptions Standard_NoSuchObject if this curve is not periodic.
        """
    def Position(self) -> OCP.gp.gp_Ax2: 
        """
        Returns the local coordinates system of the conic. The main direction of the Axis2Placement is normal to the plane of the conic. The X direction of the Axis2placement is in the plane of the conic and corresponds to the origin for the conic's parametric value u.
        """
    def Reverse(self) -> None: 
        """
        Reverses the direction of parameterization of <me>. The local coordinate system of the conic is modified.
        """
    def Reversed(self) -> Geom_Curve: 
        """
        Returns a copy of <me> reversed.
        """
    def ReversedParameter(self,U : float) -> float: 
        """
        Computes the parameter on the reversed parabola, for the point of parameter U on this parabola. For a parabola, the returned value is: -U.
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def SetAxis(self,theA1 : OCP.gp.gp_Ax1) -> None: 
        """
        Changes the orientation of the conic's plane. The normal axis to the plane is A1. The XAxis and the YAxis are recomputed.
        """
    def SetFocal(self,Focal : float) -> None: 
        """
        Assigns the value Focal to the focal distance of this parabola. Exceptions Standard_ConstructionError if Focal is negative.
        """
    def SetLocation(self,theP : OCP.gp.gp_Pnt) -> None: 
        """
        changes the location point of the conic.
        """
    def SetParab(self,Prb : OCP.gp.gp_Parab) -> None: 
        """
        Converts the gp_Parab parabola Prb into this parabola.
        """
    def SetPosition(self,theA2 : OCP.gp.gp_Ax2) -> None: 
        """
        changes the local coordinate system of the conic.
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Applies the transformation T to this parabola.
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf) -> float: 
        """
        Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def Value(self,U : float) -> OCP.gp.gp_Pnt: 
        """
        Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve. it is implemented with D0.
        """
    def XAxis(self) -> OCP.gp.gp_Ax1: 
        """
        Returns the XAxis of the conic. This axis defines the origin of parametrization of the conic. This axis is perpendicular to the Axis of the conic. This axis and the Yaxis define the plane of the conic.
        """
    def YAxis(self) -> OCP.gp.gp_Ax1: 
        """
        Returns the YAxis of the conic. The YAxis is perpendicular to the Xaxis. This axis and the Xaxis define the plane of the conic.
        """
    @overload
    def __init__(self,D : OCP.gp.gp_Ax1,F : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def __init__(self,Prb : OCP.gp.gp_Parab) -> None: ...
    @overload
    def __init__(self,A2 : OCP.gp.gp_Ax2,Focal : float) -> None: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_Plane(Geom_ElementarySurface, Geom_Surface, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    Describes a plane in 3D space. A plane is positioned in space by a coordinate system (a gp_Ax3 object) such that the plane is defined by the origin, "X Direction" and "Y Direction" of this coordinate system. This coordinate system is the "local coordinate system" of the plane. The following apply: - Its "X Direction" and "Y Direction" are respectively the u and v parametric directions of the plane. - Its origin is the origin of the u and v parameters (also called the "origin" of the plane). - Its "main Direction" is a vector normal to the plane. This normal vector gives the orientation of the plane only if the local coordinate system is "direct". (The orientation of the plane is always defined by the "X Direction" and the "Y Direction" of its local coordinate system.) The parametric equation of the plane is: where O, XDir and YDir are respectively the origin, the "X Direction" and the "Y Direction" of the local coordinate system of the plane. The parametric range of the two parameters u and v is ] -infinity, +infinity [.Describes a plane in 3D space. A plane is positioned in space by a coordinate system (a gp_Ax3 object) such that the plane is defined by the origin, "X Direction" and "Y Direction" of this coordinate system. This coordinate system is the "local coordinate system" of the plane. The following apply: - Its "X Direction" and "Y Direction" are respectively the u and v parametric directions of the plane. - Its origin is the origin of the u and v parameters (also called the "origin" of the plane). - Its "main Direction" is a vector normal to the plane. This normal vector gives the orientation of the plane only if the local coordinate system is "direct". (The orientation of the plane is always defined by the "X Direction" and the "Y Direction" of its local coordinate system.) The parametric equation of the plane is: where O, XDir and YDir are respectively the origin, the "X Direction" and the "Y Direction" of the local coordinate system of the plane. The parametric range of the two parameters u and v is ] -infinity, +infinity [.Describes a plane in 3D space. A plane is positioned in space by a coordinate system (a gp_Ax3 object) such that the plane is defined by the origin, "X Direction" and "Y Direction" of this coordinate system. This coordinate system is the "local coordinate system" of the plane. The following apply: - Its "X Direction" and "Y Direction" are respectively the u and v parametric directions of the plane. - Its origin is the origin of the u and v parameters (also called the "origin" of the plane). - Its "main Direction" is a vector normal to the plane. This normal vector gives the orientation of the plane only if the local coordinate system is "direct". (The orientation of the plane is always defined by the "X Direction" and the "Y Direction" of its local coordinate system.) The parametric equation of the plane is: where O, XDir and YDir are respectively the origin, the "X Direction" and the "Y Direction" of the local coordinate system of the plane. The parametric range of the two parameters u and v is ] -infinity, +infinity [.
    """
    def Axis(self) -> OCP.gp.gp_Ax1: 
        """
        Returns the main axis of the surface (ZAxis).
        """
    def Bounds(self) -> tuple[float, float, float, float]: 
        """
        Returns the parametric bounds U1, U2, V1 and V2 of this plane. Because a plane is an infinite surface, the following is always true: - U1 = V1 = Standard_Real::RealFirst() - U2 = V2 = Standard_Real::RealLast().
        """
    def Coefficients(self) -> tuple[float, float, float, float]: 
        """
        Computes the normalized coefficients of the plane's cartesian equation:
        """
    def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape: 
        """
        Returns GeomAbs_CN, the global continuity of any elementary surface.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this plane.
        """
    def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        Computes the point P (U, V) on <me>. where O is the "Location" point of the plane, XDir the "XDirection" and YDir the "YDirection" of the plane's local coordinate system.
        """
    def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None: 
        """
        Computes the current point and the first derivatives in the directions U and V.
        """
    def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None: 
        """
        Computes the current point, the first and the second derivatives in the directions U and V.
        """
    def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None: 
        """
        Computes the current point, the first,the second and the third derivatives in the directions U and V.
        """
    def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec: 
        """
        Computes the derivative of order Nu in the direction u and Nv in the direction v. Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    def IsCNu(self,N : int) -> bool: 
        """
        Returns True.
        """
    def IsCNv(self,N : int) -> bool: 
        """
        Returns True.
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def IsUClosed(self) -> bool: 
        """
        return False
        """
    def IsUPeriodic(self) -> bool: 
        """
        return False.
        """
    def IsVClosed(self) -> bool: 
        """
        return False
        """
    def IsVPeriodic(self) -> bool: 
        """
        return False.
        """
    def Location(self) -> OCP.gp.gp_Pnt: 
        """
        Returns the location point of the local coordinate system of the surface.
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d: 
        """
        Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns a scale centered on the origin with T.ScaleFactor
        """
    def Pln(self) -> OCP.gp.gp_Pln: 
        """
        Converts this plane into a gp_Pln plane.
        """
    def Position(self) -> OCP.gp.gp_Ax3: 
        """
        Returns the local coordinates system of the surface.
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def SetAxis(self,theA1 : OCP.gp.gp_Ax1) -> None: 
        """
        Changes the main axis (ZAxis) of the elementary surface.
        """
    def SetLocation(self,theLoc : OCP.gp.gp_Pnt) -> None: 
        """
        Changes the location of the local coordinates system of the surface.
        """
    def SetPln(self,Pl : OCP.gp.gp_Pln) -> None: 
        """
        Set <me> so that <me> has the same geometric properties as Pl.
        """
    def SetPosition(self,theAx3 : OCP.gp.gp_Ax3) -> None: 
        """
        Changes the local coordinates system of the surface.
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Applies the transformation T to this plane.
        """
    def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]: 
        """
        Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method multiplies U and V by T.ScaleFactor()
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def UIso(self,U : float) -> Geom_Curve: 
        """
        Computes the U isoparametric curve. This is a Line parallel to the YAxis of the plane.
        """
    def UPeriod(self) -> float: 
        """
        Returns the period of this surface in the u parametric direction. Raises if the surface is not uperiodic.
        """
    def UReverse(self) -> None: 
        """
        Changes the orientation of this plane in the u (or v) parametric direction. The bounds of the plane are not changed but the given parametric direction is reversed. Hence the orientation of the surface is reversed.
        """
    def UReversed(self) -> Geom_Surface: 
        """
        Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def UReversedParameter(self,U : float) -> float: 
        """
        Computes the u parameter on the modified plane, produced when reversing the u parametric of this plane, for any point of u parameter U on this plane. In the case of a plane, these methods return - -U.
        """
    def VIso(self,V : float) -> Geom_Curve: 
        """
        Computes the V isoparametric curve. This is a Line parallel to the XAxis of the plane.
        """
    def VPeriod(self) -> float: 
        """
        Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic.
        """
    def VReverse(self) -> None: 
        """
        Changes the orientation of this plane in the u (or v) parametric direction. The bounds of the plane are not changed but the given parametric direction is reversed. Hence the orientation of the surface is reversed.
        """
    def VReversed(self) -> Geom_Surface: 
        """
        Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def VReversedParameter(self,V : float) -> float: 
        """
        Computes the v parameter on the modified plane, produced when reversing the v parametric of this plane, for any point of v parameter V on this plane. In the case of a plane, these methods return -V.
        """
    def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt: 
        """
        Computes the point of parameter (U, V) on the surface.
        """
    @overload
    def __init__(self,A : float,B : float,C : float,D : float) -> None: ...
    @overload
    def __init__(self,P : OCP.gp.gp_Pnt,V : OCP.gp.gp_Dir) -> None: ...
    @overload
    def __init__(self,Pl : OCP.gp.gp_Pln) -> None: ...
    @overload
    def __init__(self,A3 : OCP.gp.gp_Ax3) -> None: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_CartesianPoint(Geom_Point, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    Describes a point in 3D space. A Geom_CartesianPoint is defined by a gp_Pnt point, with its three Cartesian coordinates X, Y and Z.Describes a point in 3D space. A Geom_CartesianPoint is defined by a gp_Pnt point, with its three Cartesian coordinates X, Y and Z.Describes a point in 3D space. A Geom_CartesianPoint is defined by a gp_Pnt point, with its three Cartesian coordinates X, Y and Z.
    """
    def Coord(self) -> tuple[float, float, float]: 
        """
        Returns the coordinates of <me>.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this point.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def Distance(self,Other : Geom_Point) -> float: 
        """
        Computes the distance between <me> and <Other>.
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def Pnt(self) -> OCP.gp.gp_Pnt: 
        """
        Returns a non transient cartesian point with the same coordinates as <me>.
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def SetCoord(self,X : float,Y : float,Z : float) -> None: 
        """
        Assigns the coordinates X, Y and Z to this point.
        """
    def SetPnt(self,P : OCP.gp.gp_Pnt) -> None: 
        """
        Set <me> to P.X(), P.Y(), P.Z() coordinates.
        """
    def SetX(self,X : float) -> None: 
        """
        Changes the X coordinate of me.
        """
    def SetY(self,Y : float) -> None: 
        """
        Changes the Y coordinate of me.
        """
    def SetZ(self,Z : float) -> None: 
        """
        Changes the Z coordinate of me.
        """
    def SquareDistance(self,Other : Geom_Point) -> float: 
        """
        Computes the square distance between <me> and <Other>.
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Applies the transformation T to this point.
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def X(self) -> float: 
        """
        Returns the X coordinate of <me>.
        """
    def Y(self) -> float: 
        """
        Returns the Y coordinate of <me>.
        """
    def Z(self) -> float: 
        """
        Returns the Z coordinate of <me>.
        """
    @overload
    def __init__(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def __init__(self,X : float,Y : float,Z : float) -> None: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_RectangularTrimmedSurface(Geom_BoundedSurface, Geom_Surface, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    Describes a portion of a surface (a patch) limited by two values of the u parameter in the u parametric direction, and two values of the v parameter in the v parametric direction. The domain of the trimmed surface must be within the domain of the surface being trimmed. The trimmed surface is defined by: - the basis surface, and - the values (umin, umax) and (vmin, vmax) which limit it in the u and v parametric directions. The trimmed surface is built from a copy of the basis surface. Therefore, when the basis surface is modified the trimmed surface is not changed. Consequently, the trimmed surface does not necessarily have the same orientation as the basis surface. Warning: The case of surface being trimmed is periodic and parametrics values are outside the domain is possible. But, domain of the trimmed surface can be translated by (n X) the period.Describes a portion of a surface (a patch) limited by two values of the u parameter in the u parametric direction, and two values of the v parameter in the v parametric direction. The domain of the trimmed surface must be within the domain of the surface being trimmed. The trimmed surface is defined by: - the basis surface, and - the values (umin, umax) and (vmin, vmax) which limit it in the u and v parametric directions. The trimmed surface is built from a copy of the basis surface. Therefore, when the basis surface is modified the trimmed surface is not changed. Consequently, the trimmed surface does not necessarily have the same orientation as the basis surface. Warning: The case of surface being trimmed is periodic and parametrics values are outside the domain is possible. But, domain of the trimmed surface can be translated by (n X) the period.Describes a portion of a surface (a patch) limited by two values of the u parameter in the u parametric direction, and two values of the v parameter in the v parametric direction. The domain of the trimmed surface must be within the domain of the surface being trimmed. The trimmed surface is defined by: - the basis surface, and - the values (umin, umax) and (vmin, vmax) which limit it in the u and v parametric directions. The trimmed surface is built from a copy of the basis surface. Therefore, when the basis surface is modified the trimmed surface is not changed. Consequently, the trimmed surface does not necessarily have the same orientation as the basis surface. Warning: The case of surface being trimmed is periodic and parametrics values are outside the domain is possible. But, domain of the trimmed surface can be translated by (n X) the period.
    """
    def BasisSurface(self) -> Geom_Surface: 
        """
        Returns the Basis surface of <me>.
        """
    def Bounds(self) -> tuple[float, float, float, float]: 
        """
        Returns the parametric bounds U1, U2, V1 and V2 of this patch.
        """
    def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape: 
        """
        Returns the continuity of the surface : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Surface, C2 : continuity of the second derivative all along the Surface, C3 : continuity of the third derivative all along the Surface, CN : the order of continuity is infinite.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this patch.
        """
    def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        Can be raised if the basis surface is an OffsetSurface.
        """
    def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None: 
        """
        The returned derivatives have the same orientation as the derivatives of the basis surface even if the trimmed surface has not the same parametric orientation. Warning! UndefinedDerivative raised if the continuity of the surface is not C1.
        """
    def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None: 
        """
        The returned derivatives have the same orientation as the derivatives of the basis surface even if the trimmed surface has not the same parametric orientation. Warning! UndefinedDerivative raised if the continuity of the surface is not C2.
        """
    def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None: 
        """
        The returned derivatives have the same orientation as the derivatives of the basis surface even if the trimmed surface has not the same parametric orientation. Warning UndefinedDerivative raised if the continuity of the surface is not C3.
        """
    def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec: 
        """
        The returned derivative has the same orientation as the derivative of the basis surface even if the trimmed surface has not the same parametric orientation. Warning! UndefinedDerivative raised if the continuity of the surface is not CNu in the U parametric direction and CNv in the V parametric direction. RangeError Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    def IsCNu(self,N : int) -> bool: 
        """
        Returns true if the order of derivation in the U parametric direction is N. Raised if N < 0.
        """
    def IsCNv(self,N : int) -> bool: 
        """
        Returns true if the order of derivation in the V parametric direction is N. Raised if N < 0.
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def IsUClosed(self) -> bool: 
        """
        Returns true if this patch is closed in the given parametric direction.
        """
    def IsUPeriodic(self) -> bool: 
        """
        Returns true if this patch is periodic and not trimmed in the given parametric direction.
        """
    def IsVClosed(self) -> bool: 
        """
        Returns true if this patch is closed in the given parametric direction.
        """
    def IsVPeriodic(self) -> bool: 
        """
        Returns true if this patch is periodic and not trimmed in the given parametric direction.
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d: 
        """
        Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method calls the basis surface method.
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    @overload
    def SetTrim(self,Param1 : float,Param2 : float,UTrim : bool,Sense : bool=True) -> None: 
        """
        Modifies this patch by changing the trim values applied to the original surface The u parametric direction of this patch is oriented from U1 to U2. The v parametric direction of this patch is oriented from V1 to V2. USense and VSense are used for the construction only if the surface is periodic in the corresponding parametric direction, and define the available part of the surface; by default in this case, this patch has the same orientation as the basis surface. Raised if The BasisSurface is not periodic in the UDirection and U1 or U2 are out of the bounds of the BasisSurface. The BasisSurface is not periodic in the VDirection and V1 or V2 are out of the bounds of the BasisSurface. U1 = U2 or V1 = V2

        Modifies this patch by changing the trim values applied to the original surface The basis surface is trimmed only in one parametric direction: if UTrim is true, the surface is trimmed in the u parametric direction; if it is false, it is trimmed in the v parametric direction. In the "trimmed" direction, this patch is oriented from Param1 to Param2. If the basis surface is periodic in the "trimmed" direction, Sense defines its available part. By default in this case, this patch has the same orientation as the basis surface in this parametric direction. If the basis surface is closed or periodic in the other parametric direction (i.e. not the "trimmed" direction), this patch has the same characteristics as the basis surface in that parametric direction. Raised if The BasisSurface is not periodic in the considered direction and Param1 or Param2 are out of the bounds of the BasisSurface. Param1 = Param2
        """
    @overload
    def SetTrim(self,U1 : float,U2 : float,V1 : float,V2 : float,USense : bool=True,VSense : bool=True) -> None: ...
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Applies the transformation T to this patch. Warning As a consequence, the basis surface included in the data structure of this patch is also modified.
        """
    def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]: 
        """
        Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method calls the basis surface method.
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def UIso(self,U : float) -> Geom_Curve: 
        """
        computes the U isoparametric curve.
        """
    def UPeriod(self) -> float: 
        """
        Returns the period of this patch in the u parametric direction. raises if the surface is not uperiodic.
        """
    def UReverse(self) -> None: 
        """
        Changes the orientation of this patch in the u parametric direction. The bounds of the surface are not changed, but the given parametric direction is reversed. Hence the orientation of the surface is reversed.
        """
    def UReversed(self) -> Geom_Surface: 
        """
        Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def UReversedParameter(self,U : float) -> float: 
        """
        Computes the u parameter on the modified surface, produced by when reversing its u parametric direction, for any point of u parameter U on this patch.
        """
    def VIso(self,V : float) -> Geom_Curve: 
        """
        Computes the V isoparametric curve.
        """
    def VPeriod(self) -> float: 
        """
        Returns the period of this patch in the v parametric direction. raises if the surface is not vperiodic. value and derivatives
        """
    def VReverse(self) -> None: 
        """
        Changes the orientation of this patch in the v parametric direction. The bounds of the surface are not changed, but the given parametric direction is reversed. Hence the orientation of the surface is reversed.
        """
    def VReversed(self) -> Geom_Surface: 
        """
        Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def VReversedParameter(self,V : float) -> float: 
        """
        Computes the v parameter on the modified surface, produced by when reversing its v parametric direction, for any point of v parameter V on this patch.
        """
    def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt: 
        """
        Computes the point of parameter (U, V) on the surface.
        """
    @overload
    def __init__(self,S : Geom_Surface,U1 : float,U2 : float,V1 : float,V2 : float,USense : bool=True,VSense : bool=True) -> None: ...
    @overload
    def __init__(self,S : Geom_Surface,Param1 : float,Param2 : float,UTrim : bool,Sense : bool=True) -> None: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_HSequenceOfBSplineSurface(Geom_SequenceOfBSplineSurface, OCP.NCollection.NCollection_BaseSequence, OCP.Standard.Standard_Transient):
    def Allocator(self) -> OCP.NCollection.NCollection_BaseAllocator: 
        """
        Returns attached allocator
        """
    @overload
    def Append(self,theSequence : Geom_SequenceOfBSplineSurface) -> None: 
        """
        None

        None
        """
    @overload
    def Append(self,theItem : Geom_BSplineSurface) -> None: ...
    def Assign(self,theOther : Geom_SequenceOfBSplineSurface) -> Geom_SequenceOfBSplineSurface: 
        """
        Replace this sequence by the items of theOther. This method does not change the internal allocator.
        """
    def ChangeFirst(self) -> Geom_BSplineSurface: 
        """
        First item access
        """
    def ChangeLast(self) -> Geom_BSplineSurface: 
        """
        Last item access
        """
    def ChangeSequence(self) -> Geom_SequenceOfBSplineSurface: 
        """
        None
        """
    def ChangeValue(self,theIndex : int) -> Geom_BSplineSurface: 
        """
        Variable item access by theIndex
        """
    def Clear(self,theAllocator : OCP.NCollection.NCollection_BaseAllocator=None) -> None: 
        """
        Clear the items out, take a new allocator if non null
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def Exchange(self,I : int,J : int) -> None: 
        """
        Exchange two members
        """
    def First(self) -> Geom_BSplineSurface: 
        """
        First item access
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    @overload
    def InsertAfter(self,theIndex : int,theSeq : Geom_SequenceOfBSplineSurface) -> None: 
        """
        InsertAfter theIndex another sequence (making it empty)

        InsertAfter theIndex theItem
        """
    @overload
    def InsertAfter(self,theIndex : int,theItem : Geom_BSplineSurface) -> None: ...
    @overload
    def InsertBefore(self,theIndex : int,theSeq : Geom_SequenceOfBSplineSurface) -> None: 
        """
        InsertBefore theIndex theItem

        InsertBefore theIndex another sequence (making it empty)
        """
    @overload
    def InsertBefore(self,theIndex : int,theItem : Geom_BSplineSurface) -> None: ...
    def IsEmpty(self) -> bool: 
        """
        Empty query
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def Last(self) -> Geom_BSplineSurface: 
        """
        Last item access
        """
    def Length(self) -> int: 
        """
        Number of items
        """
    def Lower(self) -> int: 
        """
        Method for consistency with other collections.
        """
    @overload
    def Prepend(self,theSeq : Geom_SequenceOfBSplineSurface) -> None: 
        """
        Prepend one item

        Prepend another sequence (making it empty)
        """
    @overload
    def Prepend(self,theItem : Geom_BSplineSurface) -> None: ...
    @overload
    def Remove(self,theIndex : int) -> None: 
        """
        Remove one item

        Remove range of items
        """
    @overload
    def Remove(self,theFromIndex : int,theToIndex : int) -> None: ...
    def Reverse(self) -> None: 
        """
        Reverse sequence
        """
    def Sequence(self) -> Geom_SequenceOfBSplineSurface: 
        """
        None
        """
    def SetValue(self,theIndex : int,theItem : Geom_BSplineSurface) -> None: 
        """
        Set item value by theIndex
        """
    def Size(self) -> int: 
        """
        Number of items
        """
    def Split(self,theIndex : int,theSeq : Geom_SequenceOfBSplineSurface) -> None: 
        """
        Split in two sequences
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Upper(self) -> int: 
        """
        Method for consistency with other collections.
        """
    def Value(self,theIndex : int) -> Geom_BSplineSurface: 
        """
        Constant item access by theIndex
        """
    def __bool__(self) -> bool: ...
    def __call__(self,theIndex : int) -> Geom_BSplineSurface: 
        """
        Constant operator()

        Variable operator()
        """
    @overload
    def __init__(self) -> None: ...
    @overload
    def __init__(self,theOther : Geom_SequenceOfBSplineSurface) -> None: ...
    def __iter__(self) -> Iterator[Geom_BSplineSurface]: ...
    def __len__(self) -> int: ...
    @staticmethod
    def delNode_s(theNode : NCollection_SeqNode,theAl : OCP.NCollection.NCollection_BaseAllocator) -> None: 
        """
        Static deleter to be passed to BaseSequence
        """
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_SphericalSurface(Geom_ElementarySurface, Geom_Surface, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    Describes a sphere. A sphere is defined by its radius, and is positioned in space by a coordinate system (a gp_Ax3 object), the origin of which is the center of the sphere. This coordinate system is the "local coordinate system" of the sphere. The following apply: - Rotation around its "main Axis", in the trigonometric sense given by the "X Direction" and the "Y Direction", defines the u parametric direction. - Its "X Axis" gives the origin for the u parameter. - The "reference meridian" of the sphere is a half-circle, of radius equal to the radius of the sphere. It is located in the plane defined by the origin, "X Direction" and "main Direction", centered on the origin, and positioned on the positive side of the "X Axis". - Rotation around the "Y Axis" gives the v parameter on the reference meridian. - The "X Axis" gives the origin of the v parameter on the reference meridian. - The v parametric direction is oriented by the "main Direction", i.e. when v increases, the Z coordinate increases. (This implies that the "Y Direction" orients the reference meridian only when the local coordinate system is indirect.) - The u isoparametric curve is a half-circle obtained by rotating the reference meridian of the sphere through an angle u around the "main Axis", in the trigonometric sense defined by the "X Direction" and the "Y Direction". The parametric equation of the sphere is: P(u,v) = O + R*cos(v)*(cos(u)*XDir + sin(u)*YDir)+R*sin(v)*ZDir where: - O, XDir, YDir and ZDir are respectively the origin, the "X Direction", the "Y Direction" and the "Z Direction" of its local coordinate system, and - R is the radius of the sphere. The parametric range of the two parameters is: - [ 0, 2.*Pi ] for u, and - [ - Pi/2., + Pi/2. ] for v.Describes a sphere. A sphere is defined by its radius, and is positioned in space by a coordinate system (a gp_Ax3 object), the origin of which is the center of the sphere. This coordinate system is the "local coordinate system" of the sphere. The following apply: - Rotation around its "main Axis", in the trigonometric sense given by the "X Direction" and the "Y Direction", defines the u parametric direction. - Its "X Axis" gives the origin for the u parameter. - The "reference meridian" of the sphere is a half-circle, of radius equal to the radius of the sphere. It is located in the plane defined by the origin, "X Direction" and "main Direction", centered on the origin, and positioned on the positive side of the "X Axis". - Rotation around the "Y Axis" gives the v parameter on the reference meridian. - The "X Axis" gives the origin of the v parameter on the reference meridian. - The v parametric direction is oriented by the "main Direction", i.e. when v increases, the Z coordinate increases. (This implies that the "Y Direction" orients the reference meridian only when the local coordinate system is indirect.) - The u isoparametric curve is a half-circle obtained by rotating the reference meridian of the sphere through an angle u around the "main Axis", in the trigonometric sense defined by the "X Direction" and the "Y Direction". The parametric equation of the sphere is: P(u,v) = O + R*cos(v)*(cos(u)*XDir + sin(u)*YDir)+R*sin(v)*ZDir where: - O, XDir, YDir and ZDir are respectively the origin, the "X Direction", the "Y Direction" and the "Z Direction" of its local coordinate system, and - R is the radius of the sphere. The parametric range of the two parameters is: - [ 0, 2.*Pi ] for u, and - [ - Pi/2., + Pi/2. ] for v.Describes a sphere. A sphere is defined by its radius, and is positioned in space by a coordinate system (a gp_Ax3 object), the origin of which is the center of the sphere. This coordinate system is the "local coordinate system" of the sphere. The following apply: - Rotation around its "main Axis", in the trigonometric sense given by the "X Direction" and the "Y Direction", defines the u parametric direction. - Its "X Axis" gives the origin for the u parameter. - The "reference meridian" of the sphere is a half-circle, of radius equal to the radius of the sphere. It is located in the plane defined by the origin, "X Direction" and "main Direction", centered on the origin, and positioned on the positive side of the "X Axis". - Rotation around the "Y Axis" gives the v parameter on the reference meridian. - The "X Axis" gives the origin of the v parameter on the reference meridian. - The v parametric direction is oriented by the "main Direction", i.e. when v increases, the Z coordinate increases. (This implies that the "Y Direction" orients the reference meridian only when the local coordinate system is indirect.) - The u isoparametric curve is a half-circle obtained by rotating the reference meridian of the sphere through an angle u around the "main Axis", in the trigonometric sense defined by the "X Direction" and the "Y Direction". The parametric equation of the sphere is: P(u,v) = O + R*cos(v)*(cos(u)*XDir + sin(u)*YDir)+R*sin(v)*ZDir where: - O, XDir, YDir and ZDir are respectively the origin, the "X Direction", the "Y Direction" and the "Z Direction" of its local coordinate system, and - R is the radius of the sphere. The parametric range of the two parameters is: - [ 0, 2.*Pi ] for u, and - [ - Pi/2., + Pi/2. ] for v.
    """
    def Area(self) -> float: 
        """
        Computes the aera of the spherical surface.
        """
    def Axis(self) -> OCP.gp.gp_Ax1: 
        """
        Returns the main axis of the surface (ZAxis).
        """
    def Bounds(self) -> tuple[float, float, float, float]: 
        """
        Returns the parametric bounds U1, U2, V1 and V2 of this sphere. For a sphere: U1 = 0, U2 = 2*PI, V1 = -PI/2, V2 = PI/2.
        """
    def Coefficients(self) -> tuple[float, float, float, float, float, float, float, float, float, float]: 
        """
        Returns the coefficients of the implicit equation of the quadric in the absolute cartesian coordinates system : These coefficients are normalized. A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) + 2.(C1.X + C2.Y + C3.Z) + D = 0.0
        """
    def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape: 
        """
        Returns GeomAbs_CN, the global continuity of any elementary surface.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this sphere.
        """
    def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        Computes the point P (U, V) on the surface. P (U, V) = Loc + Radius * Sin (V) * Zdir + Radius * Cos (V) * (cos (U) * XDir + sin (U) * YDir) where Loc is the origin of the placement plane (XAxis, YAxis) XDir is the direction of the XAxis and YDir the direction of the YAxis and ZDir the direction of the ZAxis.
        """
    def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None: 
        """
        Computes the current point and the first derivatives in the directions U and V.
        """
    def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None: 
        """
        Computes the current point, the first and the second derivatives in the directions U and V.
        """
    def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None: 
        """
        Computes the current point, the first,the second and the third derivatives in the directions U and V.
        """
    def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec: 
        """
        Computes the derivative of order Nu in the direction u and Nv in the direction v. Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    def IsCNu(self,N : int) -> bool: 
        """
        Returns True.
        """
    def IsCNv(self,N : int) -> bool: 
        """
        Returns True.
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def IsUClosed(self) -> bool: 
        """
        Returns True.
        """
    def IsUPeriodic(self) -> bool: 
        """
        Returns True.
        """
    def IsVClosed(self) -> bool: 
        """
        Returns False.
        """
    def IsVPeriodic(self) -> bool: 
        """
        Returns False.
        """
    def Location(self) -> OCP.gp.gp_Pnt: 
        """
        Returns the location point of the local coordinate system of the surface.
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d: 
        """
        Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns an identity transformation
        """
    def Position(self) -> OCP.gp.gp_Ax3: 
        """
        Returns the local coordinates system of the surface.
        """
    def Radius(self) -> float: 
        """
        Computes the coefficients of the implicit equation of this quadric in the absolute Cartesian coordinate system: A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) + 2.(C1.X + C2.Y + C3.Z) + D = 0.0 An implicit normalization is applied (i.e. A1 = A2 = 1. in the local coordinate system of this sphere).
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def SetAxis(self,theA1 : OCP.gp.gp_Ax1) -> None: 
        """
        Changes the main axis (ZAxis) of the elementary surface.
        """
    def SetLocation(self,theLoc : OCP.gp.gp_Pnt) -> None: 
        """
        Changes the location of the local coordinates system of the surface.
        """
    def SetPosition(self,theAx3 : OCP.gp.gp_Ax3) -> None: 
        """
        Changes the local coordinates system of the surface.
        """
    def SetRadius(self,R : float) -> None: 
        """
        Assigns the value R to the radius of this sphere. Exceptions Standard_ConstructionError if R is less than 0.0.
        """
    def SetSphere(self,S : OCP.gp.gp_Sphere) -> None: 
        """
        Converts the gp_Sphere S into this sphere.
        """
    def Sphere(self) -> OCP.gp.gp_Sphere: 
        """
        Returns a non persistent sphere with the same geometric properties as <me>.
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Applies the transformation T to this sphere.
        """
    def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]: 
        """
        Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method does not change <U> and <V>
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def UIso(self,U : float) -> Geom_Curve: 
        """
        Computes the U isoparametric curve. The U isoparametric curves of the surface are defined by the section of the spherical surface with plane obtained by rotation of the plane (Location, XAxis, ZAxis) around ZAxis. This plane defines the origin of parametrization u. For a SphericalSurface the UIso curve is a Circle. Warnings : The radius of this circle can be zero.
        """
    def UPeriod(self) -> float: 
        """
        Returns the period of this surface in the u parametric direction. Raises if the surface is not uperiodic.
        """
    def UReverse(self) -> None: 
        """
        Reverses the U parametric direction of the surface.
        """
    def UReversed(self) -> Geom_Surface: 
        """
        Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def UReversedParameter(self,U : float) -> float: 
        """
        Computes the u parameter on the modified surface, when reversing its u parametric direction, for any point of u parameter U on this sphere. In the case of a sphere, these functions returns 2.PI - U.
        """
    def VIso(self,V : float) -> Geom_Curve: 
        """
        Computes the V isoparametric curve. The V isoparametric curves of the surface are defined by the section of the spherical surface with plane parallel to the plane (Location, XAxis, YAxis). This plane defines the origin of parametrization V. Be careful if V is close to PI/2 or 3*PI/2 the radius of the circle becomes tiny. It is not forbidden in this toolkit to create circle with radius = 0.0 For a SphericalSurface the VIso curve is a Circle. Warnings : The radius of this circle can be zero.
        """
    def VPeriod(self) -> float: 
        """
        Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic.
        """
    def VReverse(self) -> None: 
        """
        Reverses the V parametric direction of the surface.
        """
    def VReversed(self) -> Geom_Surface: 
        """
        Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def VReversedParameter(self,V : float) -> float: 
        """
        Computes the v parameter on the modified surface, when reversing its v parametric direction, for any point of v parameter V on this sphere. In the case of a sphere, these functions returns -U.
        """
    def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt: 
        """
        Computes the point of parameter (U, V) on the surface.
        """
    def Volume(self) -> float: 
        """
        Computes the volume of the spherical surface.
        """
    @overload
    def __init__(self,A3 : OCP.gp.gp_Ax3,Radius : float) -> None: ...
    @overload
    def __init__(self,S : OCP.gp.gp_Sphere) -> None: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_BezierSurface(Geom_BoundedSurface, Geom_Surface, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    Describes a rational or non-rational Bezier surface. - A non-rational Bezier surface is defined by a table of poles (also known as control points). - A rational Bezier surface is defined by a table of poles with varying associated weights. This data is manipulated using two associative 2D arrays: - the poles table, which is a 2D array of gp_Pnt, and - the weights table, which is a 2D array of reals. The bounds of these arrays are: - 1 and NbUPoles for the row bounds, where NbUPoles is the number of poles of the surface in the u parametric direction, and - 1 and NbVPoles for the column bounds, where NbVPoles is the number of poles of the surface in the v parametric direction. The poles of the surface, the "control points", are the points used to shape and reshape the surface. They comprise a rectangular network of points: - The points (1, 1), (NbUPoles, 1), (1, NbVPoles) and (NbUPoles, NbVPoles) are the four parametric "corners" of the surface. - The first column of poles and the last column of poles define two Bezier curves which delimit the surface in the v parametric direction. These are the v isoparametric curves corresponding to values 0 and 1 of the v parameter. - The first row of poles and the last row of poles define two Bezier curves which delimit the surface in the u parametric direction. These are the u isoparametric curves corresponding to values 0 and 1 of the u parameter. It is more difficult to define a geometrical significance for the weights. However they are useful for representing a quadric surface precisely. Moreover, if the weights of all the poles are equal, the surface has a polynomial equation, and hence is a "non-rational surface". The non-rational surface is a special, but frequently used, case, where all poles have identical weights. The weights are defined and used only in the case of a rational surface. This rational characteristic is defined in each parametric direction. Hence, a surface can be rational in the u parametric direction, and non-rational in the v parametric direction. Likewise, the degree of a surface is defined in each parametric direction. The degree of a Bezier surface in a given parametric direction is equal to the number of poles of the surface in that parametric direction, minus 1. This must be greater than or equal to 1. However, the degree for a Geom_BezierSurface is limited to a value of (25) which is defined and controlled by the system. This value is returned by the function MaxDegree. The parameter range for a Bezier surface is [ 0, 1 ] in the two parametric directions. A Bezier surface can also be closed, or open, in each parametric direction. If the first row of poles is identical to the last row of poles, the surface is closed in the u parametric direction. If the first column of poles is identical to the last column of poles, the surface is closed in the v parametric direction. The continuity of a Bezier surface is infinite in the u parametric direction and the in v parametric direction. Note: It is not possible to build a Bezier surface with negative weights. Any weight value that is less than, or equal to, gp::Resolution() is considered to be zero. Two weight values, W1 and W2, are considered equal if: |W2-W1| <= gp::Resolution()Describes a rational or non-rational Bezier surface. - A non-rational Bezier surface is defined by a table of poles (also known as control points). - A rational Bezier surface is defined by a table of poles with varying associated weights. This data is manipulated using two associative 2D arrays: - the poles table, which is a 2D array of gp_Pnt, and - the weights table, which is a 2D array of reals. The bounds of these arrays are: - 1 and NbUPoles for the row bounds, where NbUPoles is the number of poles of the surface in the u parametric direction, and - 1 and NbVPoles for the column bounds, where NbVPoles is the number of poles of the surface in the v parametric direction. The poles of the surface, the "control points", are the points used to shape and reshape the surface. They comprise a rectangular network of points: - The points (1, 1), (NbUPoles, 1), (1, NbVPoles) and (NbUPoles, NbVPoles) are the four parametric "corners" of the surface. - The first column of poles and the last column of poles define two Bezier curves which delimit the surface in the v parametric direction. These are the v isoparametric curves corresponding to values 0 and 1 of the v parameter. - The first row of poles and the last row of poles define two Bezier curves which delimit the surface in the u parametric direction. These are the u isoparametric curves corresponding to values 0 and 1 of the u parameter. It is more difficult to define a geometrical significance for the weights. However they are useful for representing a quadric surface precisely. Moreover, if the weights of all the poles are equal, the surface has a polynomial equation, and hence is a "non-rational surface". The non-rational surface is a special, but frequently used, case, where all poles have identical weights. The weights are defined and used only in the case of a rational surface. This rational characteristic is defined in each parametric direction. Hence, a surface can be rational in the u parametric direction, and non-rational in the v parametric direction. Likewise, the degree of a surface is defined in each parametric direction. The degree of a Bezier surface in a given parametric direction is equal to the number of poles of the surface in that parametric direction, minus 1. This must be greater than or equal to 1. However, the degree for a Geom_BezierSurface is limited to a value of (25) which is defined and controlled by the system. This value is returned by the function MaxDegree. The parameter range for a Bezier surface is [ 0, 1 ] in the two parametric directions. A Bezier surface can also be closed, or open, in each parametric direction. If the first row of poles is identical to the last row of poles, the surface is closed in the u parametric direction. If the first column of poles is identical to the last column of poles, the surface is closed in the v parametric direction. The continuity of a Bezier surface is infinite in the u parametric direction and the in v parametric direction. Note: It is not possible to build a Bezier surface with negative weights. Any weight value that is less than, or equal to, gp::Resolution() is considered to be zero. Two weight values, W1 and W2, are considered equal if: |W2-W1| <= gp::Resolution()Describes a rational or non-rational Bezier surface. - A non-rational Bezier surface is defined by a table of poles (also known as control points). - A rational Bezier surface is defined by a table of poles with varying associated weights. This data is manipulated using two associative 2D arrays: - the poles table, which is a 2D array of gp_Pnt, and - the weights table, which is a 2D array of reals. The bounds of these arrays are: - 1 and NbUPoles for the row bounds, where NbUPoles is the number of poles of the surface in the u parametric direction, and - 1 and NbVPoles for the column bounds, where NbVPoles is the number of poles of the surface in the v parametric direction. The poles of the surface, the "control points", are the points used to shape and reshape the surface. They comprise a rectangular network of points: - The points (1, 1), (NbUPoles, 1), (1, NbVPoles) and (NbUPoles, NbVPoles) are the four parametric "corners" of the surface. - The first column of poles and the last column of poles define two Bezier curves which delimit the surface in the v parametric direction. These are the v isoparametric curves corresponding to values 0 and 1 of the v parameter. - The first row of poles and the last row of poles define two Bezier curves which delimit the surface in the u parametric direction. These are the u isoparametric curves corresponding to values 0 and 1 of the u parameter. It is more difficult to define a geometrical significance for the weights. However they are useful for representing a quadric surface precisely. Moreover, if the weights of all the poles are equal, the surface has a polynomial equation, and hence is a "non-rational surface". The non-rational surface is a special, but frequently used, case, where all poles have identical weights. The weights are defined and used only in the case of a rational surface. This rational characteristic is defined in each parametric direction. Hence, a surface can be rational in the u parametric direction, and non-rational in the v parametric direction. Likewise, the degree of a surface is defined in each parametric direction. The degree of a Bezier surface in a given parametric direction is equal to the number of poles of the surface in that parametric direction, minus 1. This must be greater than or equal to 1. However, the degree for a Geom_BezierSurface is limited to a value of (25) which is defined and controlled by the system. This value is returned by the function MaxDegree. The parameter range for a Bezier surface is [ 0, 1 ] in the two parametric directions. A Bezier surface can also be closed, or open, in each parametric direction. If the first row of poles is identical to the last row of poles, the surface is closed in the u parametric direction. If the first column of poles is identical to the last column of poles, the surface is closed in the v parametric direction. The continuity of a Bezier surface is infinite in the u parametric direction and the in v parametric direction. Note: It is not possible to build a Bezier surface with negative weights. Any weight value that is less than, or equal to, gp::Resolution() is considered to be zero. Two weight values, W1 and W2, are considered equal if: |W2-W1| <= gp::Resolution()
    """
    def Bounds(self) -> tuple[float, float, float, float]: 
        """
        Returns the parametric bounds U1, U2, V1 and V2 of this Bezier surface. In the case of a Bezier surface, this function returns U1 = 0, V1 = 0, U2 = 1, V2 = 1.
        """
    def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape: 
        """
        Returns the continuity of the surface CN : the order of continuity is infinite.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this Bezier surface.
        """
    def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        None
        """
    def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None: 
        """
        None
        """
    def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None: 
        """
        None
        """
    def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None: 
        """
        Computes P, the point of parameters (U, V) of this Bezier surface, and - one or more of the following sets of vectors: - D1U and D1V, the first derivative vectors at this point, - D2U, D2V and D2UV, the second derivative vectors at this point, - D3U, D3V, D3UUV and D3UVV, the third derivative vectors at this point. Note: The parameters U and V can be outside the bounds of the surface.
        """
    def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec: 
        """
        Computes the derivative of order Nu in the u parametric direction, and Nv in the v parametric direction, at the point of parameters (U, V) of this Bezier surface. Note: The parameters U and V can be outside the bounds of the surface. Exceptions Standard_RangeError if: - Nu + Nv is less than 1, or Nu or Nv is negative.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def ExchangeUV(self) -> None: 
        """
        Exchanges the direction U and V on a Bezier surface As a consequence: - the poles and weights tables are transposed, - degrees, rational characteristics and so on are exchanged between the two parametric directions, and - the orientation of the surface is reversed.
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def Increase(self,UDeg : int,VDeg : int) -> None: 
        """
        Increases the degree of this Bezier surface in the two parametric directions.
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    @overload
    def InsertPoleColAfter(self,VIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt,CPoleWeights : OCP.TColStd.TColStd_Array1OfReal) -> None: 
        """
        Inserts a column of poles. If the surface is rational the weights values associated with CPoles are equal defaulted to 1.

        Inserts a column of poles and weights. If the surface was non-rational it can become rational.
        """
    @overload
    def InsertPoleColAfter(self,VIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt) -> None: ...
    @overload
    def InsertPoleColBefore(self,VIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt,CPoleWeights : OCP.TColStd.TColStd_Array1OfReal) -> None: 
        """
        Inserts a column of poles. If the surface is rational the weights values associated with CPoles are equal defaulted to 1.

        Inserts a column of poles and weights. If the surface was non-rational it can become rational.
        """
    @overload
    def InsertPoleColBefore(self,VIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt) -> None: ...
    @overload
    def InsertPoleRowAfter(self,UIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt) -> None: 
        """
        Inserts a row of poles. If the surface is rational the weights values associated with CPoles are equal defaulted to 1.

        Inserts a row of poles and weights. If the surface was non-rational it can become rational.
        """
    @overload
    def InsertPoleRowAfter(self,UIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt,CPoleWeights : OCP.TColStd.TColStd_Array1OfReal) -> None: ...
    @overload
    def InsertPoleRowBefore(self,UIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt,CPoleWeights : OCP.TColStd.TColStd_Array1OfReal) -> None: 
        """
        Inserts a row of poles. If the surface is rational the weights values associated with CPoles are equal defaulted to 1.

        Inserts a row of poles and weights. If the surface was non-rational it can become rational.
        """
    @overload
    def InsertPoleRowBefore(self,UIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt) -> None: ...
    def IsCNu(self,N : int) -> bool: 
        """
        Returns True, a Bezier surface is always CN
        """
    def IsCNv(self,N : int) -> bool: 
        """
        Returns True, a BezierSurface is always CN
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def IsUClosed(self) -> bool: 
        """
        Returns True if the first control points row and the last control points row are identical. The tolerance criterion is Resolution from package gp.
        """
    def IsUPeriodic(self) -> bool: 
        """
        Returns False.
        """
    def IsURational(self) -> bool: 
        """
        Returns False if the weights are identical in the U direction, The tolerance criterion is Resolution from package gp. Example : |1.0, 1.0, 1.0| if Weights = |0.5, 0.5, 0.5| returns False |2.0, 2.0, 2.0|
        """
    def IsVClosed(self) -> bool: 
        """
        Returns True if the first control points column and the last control points column are identical. The tolerance criterion is Resolution from package gp.
        """
    def IsVPeriodic(self) -> bool: 
        """
        Returns False.
        """
    def IsVRational(self) -> bool: 
        """
        Returns False if the weights are identical in the V direction, The tolerance criterion is Resolution from package gp. Example : |1.0, 2.0, 0.5| if Weights = |1.0, 2.0, 0.5| returns False |1.0, 2.0, 0.5|
        """
    @staticmethod
    def MaxDegree_s() -> int: 
        """
        Returns the value of the maximum polynomial degree of a Bezier surface. This value is 25.
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def NbUPoles(self) -> int: 
        """
        Returns the number of poles in the U direction.
        """
    def NbVPoles(self) -> int: 
        """
        Returns the number of poles in the V direction.
        """
    def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d: 
        """
        Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns an identity transformation
        """
    def Pole(self,UIndex : int,VIndex : int) -> OCP.gp.gp_Pnt: 
        """
        Returns the pole of range UIndex, VIndex Raised if UIndex < 1 or UIndex > NbUPoles, or VIndex < 1 or VIndex > NbVPoles.
        """
    @overload
    def Poles(self,P : OCP.TColgp.TColgp_Array2OfPnt) -> None: 
        """
        Returns the poles of the Bezier surface.

        Returns the poles of the Bezier surface.
        """
    @overload
    def Poles(self) -> OCP.TColgp.TColgp_Array2OfPnt: ...
    def RemovePoleCol(self,VIndex : int) -> None: 
        """
        Removes a column of poles. If the surface was rational it can become non-rational.
        """
    def RemovePoleRow(self,UIndex : int) -> None: 
        """
        Removes a row of poles. If the surface was rational it can become non-rational.
        """
    def Resolution(self,Tolerance3D : float) -> tuple[float, float]: 
        """
        Computes two tolerance values for this Bezier surface, based on the given tolerance in 3D space Tolerance3D. The tolerances computed are: - UTolerance in the u parametric direction, and - VTolerance in the v parametric direction. If f(u,v) is the equation of this Bezier surface, UTolerance and VTolerance guarantee that: | u1 - u0 | < UTolerance and | v1 - v0 | < VTolerance ====> |f (u1,v1) - f (u0,v0)| < Tolerance3D
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def Segment(self,U1 : float,U2 : float,V1 : float,V2 : float) -> None: 
        """
        Modifies this Bezier surface by segmenting it between U1 and U2 in the u parametric direction, and between V1 and V2 in the v parametric direction. U1, U2, V1, and V2 can be outside the bounds of this surface. - U1 and U2 isoparametric Bezier curves, segmented between V1 and V2, become the two bounds of the surface in the v parametric direction (0. and 1. u isoparametric curves). - V1 and V2 isoparametric Bezier curves, segmented between U1 and U2, become the two bounds of the surface in the u parametric direction (0. and 1. v isoparametric curves). The poles and weights tables are modified, but the degree of this surface in the u and v parametric directions does not change. U1 can be greater than U2, and V1 can be greater than V2. In these cases, the corresponding parametric direction is inverted. The orientation of the surface is inverted if one (and only one) parametric direction is inverted.
        """
    @overload
    def SetPole(self,UIndex : int,VIndex : int,P : OCP.gp.gp_Pnt) -> None: 
        """
        Modifies a pole value. If the surface is rational the weight of range (UIndex, VIndex) is not modified.

        Substitutes the pole and the weight of range UIndex, VIndex. If the surface <me> is not rational it can become rational. if the surface was rational it can become non-rational.
        """
    @overload
    def SetPole(self,UIndex : int,VIndex : int,P : OCP.gp.gp_Pnt,Weight : float) -> None: ...
    @overload
    def SetPoleCol(self,VIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt) -> None: 
        """
        Modifies a column of poles. The length of CPoles can be lower but not greater than NbUPoles so you can modify just a part of the column. Raised if VIndex < 1 or VIndex > NbVPoles

        Modifies a column of poles. If the surface was rational it can become non-rational If the surface was non-rational it can become rational. The length of CPoles can be lower but not greater than NbUPoles so you can modify just a part of the column. Raised if VIndex < 1 or VIndex > NbVPoles
        """
    @overload
    def SetPoleCol(self,VIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt,CPoleWeights : OCP.TColStd.TColStd_Array1OfReal) -> None: ...
    @overload
    def SetPoleRow(self,UIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt) -> None: 
        """
        Modifies a row of poles. The length of CPoles can be lower but not greater than NbVPoles so you can modify just a part of the row. Raised if UIndex < 1 or UIndex > NbUPoles

        Modifies a row of poles and weights. If the surface was rational it can become non-rational. If the surface was non-rational it can become rational. The length of CPoles can be lower but not greater than NbVPoles so you can modify just a part of the row. Raised if UIndex < 1 or UIndex > NbUPoles
        """
    @overload
    def SetPoleRow(self,UIndex : int,CPoles : OCP.TColgp.TColgp_Array1OfPnt,CPoleWeights : OCP.TColStd.TColStd_Array1OfReal) -> None: ...
    def SetWeight(self,UIndex : int,VIndex : int,Weight : float) -> None: 
        """
        Modifies the weight of the pole of range UIndex, VIndex. If the surface was non-rational it can become rational. If the surface was rational it can become non-rational.
        """
    def SetWeightCol(self,VIndex : int,CPoleWeights : OCP.TColStd.TColStd_Array1OfReal) -> None: 
        """
        Modifies a column of weights. If the surface was rational it can become non-rational. If the surface was non-rational it can become rational. The length of CPoleWeights can be lower but not greater than NbUPoles. Raised if VIndex < 1 or VIndex > NbVPoles
        """
    def SetWeightRow(self,UIndex : int,CPoleWeights : OCP.TColStd.TColStd_Array1OfReal) -> None: 
        """
        Modifies a row of weights. If the surface was rational it can become non-rational. If the surface was non-rational it can become rational. The length of CPoleWeights can be lower but not greater than NbVPoles. Raised if UIndex < 1 or UIndex > NbUPoles
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Applies the transformation T to this Bezier surface.
        """
    def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]: 
        """
        Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method does not change <U> and <V>
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def UDegree(self) -> int: 
        """
        Returns the degree of the surface in the U direction it is NbUPoles - 1
        """
    def UIso(self,U : float) -> Geom_Curve: 
        """
        Computes the U isoparametric curve. For a Bezier surface the UIso curve is a Bezier curve.
        """
    def UPeriod(self) -> float: 
        """
        Returns the period of this surface in the u parametric direction. Raises if the surface is not uperiodic.
        """
    def UReverse(self) -> None: 
        """
        Changes the orientation of this Bezier surface in the u parametric direction. The bounds of the surface are not changed, but the given parametric direction is reversed. Hence, the orientation of the surface is reversed.
        """
    def UReversed(self) -> Geom_Surface: 
        """
        Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def UReversedParameter(self,U : float) -> float: 
        """
        Computes the u (or v) parameter on the modified surface, produced by reversing its u (or v) parametric direction, for any point of u parameter U (or of v parameter V) on this Bezier surface. In the case of a Bezier surface, these functions return respectively: - 1.-U, or 1.-V.
        """
    def VDegree(self) -> int: 
        """
        Returns the degree of the surface in the V direction it is NbVPoles - 1
        """
    def VIso(self,V : float) -> Geom_Curve: 
        """
        Computes the V isoparametric curve. For a Bezier surface the VIso curve is a Bezier curve.
        """
    def VPeriod(self) -> float: 
        """
        Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic.
        """
    def VReverse(self) -> None: 
        """
        Changes the orientation of this Bezier surface in the v parametric direction. The bounds of the surface are not changed, but the given parametric direction is reversed. Hence, the orientation of the surface is reversed.
        """
    def VReversed(self) -> Geom_Surface: 
        """
        Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def VReversedParameter(self,V : float) -> float: 
        """
        Computes the u (or v) parameter on the modified surface, produced by reversing its u (or v) parametric direction, for any point of u parameter U (or of v parameter V) on this Bezier surface. In the case of a Bezier surface, these functions return respectively: - 1.-U, or 1.-V.
        """
    def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt: 
        """
        Computes the point of parameter (U, V) on the surface.
        """
    def Weight(self,UIndex : int,VIndex : int) -> float: 
        """
        Returns the weight of range UIndex, VIndex
        """
    @overload
    def Weights(self) -> OCP.TColStd.TColStd_Array2OfReal: 
        """
        Returns the weights of the Bezier surface.

        Returns the weights of the Bezier surface.
        """
    @overload
    def Weights(self,W : OCP.TColStd.TColStd_Array2OfReal) -> None: ...
    @overload
    def __init__(self,SurfacePoles : OCP.TColgp.TColgp_Array2OfPnt,PoleWeights : OCP.TColStd.TColStd_Array2OfReal) -> None: ...
    @overload
    def __init__(self,SurfacePoles : OCP.TColgp.TColgp_Array2OfPnt) -> None: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_SweptSurface(Geom_Surface, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    Describes the common behavior for surfaces constructed by sweeping a curve with another curve. The Geom package provides two concrete derived surfaces: surface of revolution (a revolved surface), and surface of linear extrusion (an extruded surface).Describes the common behavior for surfaces constructed by sweeping a curve with another curve. The Geom package provides two concrete derived surfaces: surface of revolution (a revolved surface), and surface of linear extrusion (an extruded surface).Describes the common behavior for surfaces constructed by sweeping a curve with another curve. The Geom package provides two concrete derived surfaces: surface of revolution (a revolved surface), and surface of linear extrusion (an extruded surface).
    """
    def BasisCurve(self) -> Geom_Curve: 
        """
        Returns the referenced curve of the surface. For a surface of revolution it is the revolution curve, for a surface of linear extrusion it is the extruded curve.
        """
    def Bounds(self) -> tuple[float, float, float, float]: 
        """
        Returns the parametric bounds U1, U2, V1 and V2 of this surface. If the surface is infinite, this function can return a value equal to Precision::Infinite: instead of Standard_Real::LastReal.
        """
    def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape: 
        """
        returns the continuity of the surface : C0 : only geometric continuity, C1 : continuity of the first derivative all along the surface, C2 : continuity of the second derivative all along the surface, C3 : continuity of the third derivative all along the surface, G1 : tangency continuity all along the surface, G2 : curvature continuity all along the surface, CN : the order of continuity is infinite.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this geometric object.
        """
    def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        Computes the point of parameter U,V on the surface.
        """
    def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None: 
        """
        Computes the point P and the first derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C1.
        """
    def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None: 
        """
        Computes the point P, the first and the second derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C2.
        """
    def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None: 
        """
        Computes the point P, the first,the second and the third derivatives in the directions U and V at this point. Raised if the continuity of the surface is not C2.
        """
    def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec: 
        """
        Computes the derivative of order Nu in the direction U and Nv in the direction V at the point P(U, V).
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def Direction(self) -> OCP.gp.gp_Dir: 
        """
        Returns the reference direction of the swept surface. For a surface of revolution it is the direction of the revolution axis, for a surface of linear extrusion it is the direction of extrusion.
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    def IsCNu(self,N : int) -> bool: 
        """
        Returns the order of continuity of the surface in the U parametric direction. Raised if N < 0.
        """
    def IsCNv(self,N : int) -> bool: 
        """
        Returns the order of continuity of the surface in the V parametric direction. Raised if N < 0.
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def IsUClosed(self) -> bool: 
        """
        Checks whether this surface is closed in the u parametric direction. Returns true if, in the u parametric direction: taking uFirst and uLast as the parametric bounds in the u parametric direction, for each parameter v, the distance between the points P(uFirst, v) and P(uLast, v) is less than or equal to gp::Resolution().
        """
    def IsUPeriodic(self) -> bool: 
        """
        Checks if this surface is periodic in the u parametric direction. Returns true if: - this surface is closed in the u parametric direction, and - there is a constant T such that the distance between the points P (u, v) and P (u + T, v) (or the points P (u, v) and P (u, v + T)) is less than or equal to gp::Resolution().
        """
    def IsVClosed(self) -> bool: 
        """
        Checks whether this surface is closed in the u parametric direction. Returns true if, in the v parametric direction: taking vFirst and vLast as the parametric bounds in the v parametric direction, for each parameter u, the distance between the points P(u, vFirst) and P(u, vLast) is less than or equal to gp::Resolution().
        """
    def IsVPeriodic(self) -> bool: 
        """
        Checks if this surface is periodic in the v parametric direction. Returns true if: - this surface is closed in the v parametric direction, and - there is a constant T such that the distance between the points P (u, v) and P (u + T, v) (or the points P (u, v) and P (u, v + T)) is less than or equal to gp::Resolution().
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d: 
        """
        Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns an identity transformation
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom).
        """
    def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]: 
        """
        Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method does not change <U> and <V>
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def UIso(self,U : float) -> Geom_Curve: 
        """
        Computes the U isoparametric curve.
        """
    def UPeriod(self) -> float: 
        """
        Returns the period of this surface in the u parametric direction. Raises if the surface is not uperiodic.
        """
    def UReverse(self) -> None: 
        """
        Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified.
        """
    def UReversed(self) -> Geom_Surface: 
        """
        Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def UReversedParameter(self,U : float) -> float: 
        """
        Returns the parameter on the Ureversed surface for the point of parameter U on <me>. is the same point as
        """
    def VIso(self,V : float) -> Geom_Curve: 
        """
        Computes the V isoparametric curve.
        """
    def VPeriod(self) -> float: 
        """
        Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic.
        """
    def VReverse(self) -> None: 
        """
        Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified.
        """
    def VReversed(self) -> Geom_Surface: 
        """
        Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def VReversedParameter(self,V : float) -> float: 
        """
        Returns the parameter on the Vreversed surface for the point of parameter V on <me>. is the same point as
        """
    def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt: 
        """
        Computes the point of parameter (U, V) on the surface.
        """
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_SurfaceOfRevolution(Geom_SweptSurface, Geom_Surface, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    Describes a surface of revolution (revolved surface). Such a surface is obtained by rotating a curve (called the "meridian") through a complete revolution about an axis (referred to as the "axis of revolution"). The curve and the axis must be in the same plane (the "reference plane" of the surface). Rotation around the axis of revolution in the trigonometric sense defines the u parametric direction. So the u parameter is an angle, and its origin is given by the position of the meridian on the surface. The parametric range for the u parameter is: [ 0, 2.*Pi ] The v parameter is that of the meridian. Note: A surface of revolution is built from a copy of the original meridian. As a result the original meridian is not modified when the surface is modified. The form of a surface of revolution is typically a general revolution surface (GeomAbs_RevolutionForm). It can be: - a conical surface, if the meridian is a line or a trimmed line (GeomAbs_ConicalForm), - a cylindrical surface, if the meridian is a line or a trimmed line parallel to the axis of revolution (GeomAbs_CylindricalForm), - a planar surface if the meridian is a line or a trimmed line perpendicular to the axis of revolution of the surface (GeomAbs_PlanarForm), - a toroidal surface, if the meridian is a circle or a trimmed circle (GeomAbs_ToroidalForm), or - a spherical surface, if the meridian is a circle, the center of which is located on the axis of the revolved surface (GeomAbs_SphericalForm). Warning Be careful not to construct a surface of revolution where the curve and the axis or revolution are not defined in the same plane. If you do not have a correct configuration, you can correct your initial curve, using a cylindrical projection in the reference plane.Describes a surface of revolution (revolved surface). Such a surface is obtained by rotating a curve (called the "meridian") through a complete revolution about an axis (referred to as the "axis of revolution"). The curve and the axis must be in the same plane (the "reference plane" of the surface). Rotation around the axis of revolution in the trigonometric sense defines the u parametric direction. So the u parameter is an angle, and its origin is given by the position of the meridian on the surface. The parametric range for the u parameter is: [ 0, 2.*Pi ] The v parameter is that of the meridian. Note: A surface of revolution is built from a copy of the original meridian. As a result the original meridian is not modified when the surface is modified. The form of a surface of revolution is typically a general revolution surface (GeomAbs_RevolutionForm). It can be: - a conical surface, if the meridian is a line or a trimmed line (GeomAbs_ConicalForm), - a cylindrical surface, if the meridian is a line or a trimmed line parallel to the axis of revolution (GeomAbs_CylindricalForm), - a planar surface if the meridian is a line or a trimmed line perpendicular to the axis of revolution of the surface (GeomAbs_PlanarForm), - a toroidal surface, if the meridian is a circle or a trimmed circle (GeomAbs_ToroidalForm), or - a spherical surface, if the meridian is a circle, the center of which is located on the axis of the revolved surface (GeomAbs_SphericalForm). Warning Be careful not to construct a surface of revolution where the curve and the axis or revolution are not defined in the same plane. If you do not have a correct configuration, you can correct your initial curve, using a cylindrical projection in the reference plane.Describes a surface of revolution (revolved surface). Such a surface is obtained by rotating a curve (called the "meridian") through a complete revolution about an axis (referred to as the "axis of revolution"). The curve and the axis must be in the same plane (the "reference plane" of the surface). Rotation around the axis of revolution in the trigonometric sense defines the u parametric direction. So the u parameter is an angle, and its origin is given by the position of the meridian on the surface. The parametric range for the u parameter is: [ 0, 2.*Pi ] The v parameter is that of the meridian. Note: A surface of revolution is built from a copy of the original meridian. As a result the original meridian is not modified when the surface is modified. The form of a surface of revolution is typically a general revolution surface (GeomAbs_RevolutionForm). It can be: - a conical surface, if the meridian is a line or a trimmed line (GeomAbs_ConicalForm), - a cylindrical surface, if the meridian is a line or a trimmed line parallel to the axis of revolution (GeomAbs_CylindricalForm), - a planar surface if the meridian is a line or a trimmed line perpendicular to the axis of revolution of the surface (GeomAbs_PlanarForm), - a toroidal surface, if the meridian is a circle or a trimmed circle (GeomAbs_ToroidalForm), or - a spherical surface, if the meridian is a circle, the center of which is located on the axis of the revolved surface (GeomAbs_SphericalForm). Warning Be careful not to construct a surface of revolution where the curve and the axis or revolution are not defined in the same plane. If you do not have a correct configuration, you can correct your initial curve, using a cylindrical projection in the reference plane.
    """
    def Axis(self) -> OCP.gp.gp_Ax1: 
        """
        Returns the revolution axis of the surface.
        """
    def BasisCurve(self) -> Geom_Curve: 
        """
        Returns the referenced curve of the surface. For a surface of revolution it is the revolution curve, for a surface of linear extrusion it is the extruded curve.
        """
    def Bounds(self) -> tuple[float, float, float, float]: 
        """
        Returns the parametric bounds U1, U2 , V1 and V2 of this surface. A surface of revolution is always complete, so U1 = 0, U2 = 2*PI.
        """
    def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape: 
        """
        returns the continuity of the surface : C0 : only geometric continuity, C1 : continuity of the first derivative all along the surface, C2 : continuity of the second derivative all along the surface, C3 : continuity of the third derivative all along the surface, G1 : tangency continuity all along the surface, G2 : curvature continuity all along the surface, CN : the order of continuity is infinite.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this surface of revolution.
        """
    def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        Computes the point P (U, V) on the surface. U is the angle of the rotation around the revolution axis. The direction of this axis gives the sense of rotation. V is the parameter of the revolved curve.
        """
    def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None: 
        """
        Computes the current point and the first derivatives in the directions U and V. Raised if the continuity of the surface is not C1.
        """
    def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None: 
        """
        Computes the current point, the first and the second derivatives in the directions U and V. Raised if the continuity of the surface is not C2.
        """
    def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None: 
        """
        Computes the current point, the first,the second and the third derivatives in the directions U and V. Raised if the continuity of the surface is not C3.
        """
    def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec: 
        """
        Computes the derivative of order Nu in the direction u and Nv in the direction v.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def Direction(self) -> OCP.gp.gp_Dir: 
        """
        Returns the reference direction of the swept surface. For a surface of revolution it is the direction of the revolution axis, for a surface of linear extrusion it is the direction of extrusion.
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    def IsCNu(self,N : int) -> bool: 
        """
        IsCNu always returns true.
        """
    def IsCNv(self,N : int) -> bool: 
        """
        IsCNv returns true if the degree of continuity of the meridian of this surface of revolution is at least N. Raised if N < 0.
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def IsUClosed(self) -> bool: 
        """
        IsUClosed always returns true.
        """
    def IsUPeriodic(self) -> bool: 
        """
        Returns True.
        """
    def IsVClosed(self) -> bool: 
        """
        IsVClosed returns true if the meridian of this surface of revolution is closed.
        """
    def IsVPeriodic(self) -> bool: 
        """
        IsVPeriodic returns true if the meridian of this surface of revolution is periodic.
        """
    def Location(self) -> OCP.gp.gp_Pnt: 
        """
        Returns the location point of the axis of revolution.
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d: 
        """
        Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns a scale centered on the U axis with BasisCurve()->ParametricTransformation(T)
        """
    def ReferencePlane(self) -> OCP.gp.gp_Ax2: 
        """
        Computes the position of the reference plane of the surface defined by the basis curve and the symmetry axis. The location point is the location point of the revolution's axis, the XDirection of the plane is given by the revolution's axis and the orientation of the normal to the plane is given by the sense of revolution.
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def SetAxis(self,A1 : OCP.gp.gp_Ax1) -> None: 
        """
        Changes the axis of revolution. Warnings : It is not checked that the axis is in the plane of the revolved curve.
        """
    def SetBasisCurve(self,C : Geom_Curve) -> None: 
        """
        Changes the revolved curve of the surface. Warnings : It is not checked that the curve C is planar and that the surface axis is in the plane of the curve. It is not checked that the revolved curve C doesn't self-intersects.
        """
    def SetDirection(self,V : OCP.gp.gp_Dir) -> None: 
        """
        Changes the direction of the revolution axis. Warnings : It is not checked that the axis is in the plane of the revolved curve.
        """
    def SetLocation(self,P : OCP.gp.gp_Pnt) -> None: 
        """
        Changes the location point of the revolution axis. Warnings : It is not checked that the axis is in the plane of the revolved curve.
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Applies the transformation T to this surface of revolution.
        """
    def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]: 
        """
        Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method multiplies V by BasisCurve()->ParametricTransformation(T)
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def UIso(self,U : float) -> Geom_Curve: 
        """
        Computes the U isoparametric curve of this surface of revolution. It is the curve obtained by rotating the meridian through an angle U about the axis of revolution.
        """
    def UPeriod(self) -> float: 
        """
        Returns the period of this surface in the u parametric direction. Raises if the surface is not uperiodic.
        """
    def UReverse(self) -> None: 
        """
        Changes the orientation of this surface of revolution in the u parametric direction. The bounds of the surface are not changed but the given parametric direction is reversed. Hence the orientation of the surface is reversed. As a consequence: - UReverse reverses the direction of the axis of revolution of this surface,
        """
    def UReversed(self) -> Geom_Surface: 
        """
        Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def UReversedParameter(self,U : float) -> float: 
        """
        Computes the u parameter on the modified surface, when reversing its u parametric direction, for any point of u parameter U on this surface of revolution. In the case of a revolved surface: - UReversedParameter returns 2.*Pi - U
        """
    def VIso(self,V : float) -> Geom_Curve: 
        """
        Computes the U isoparametric curve of this surface of revolution. It is the curve obtained by rotating the meridian through an angle U about the axis of revolution.
        """
    def VPeriod(self) -> float: 
        """
        Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic.
        """
    def VReverse(self) -> None: 
        """
        Changes the orientation of this surface of revolution in the v parametric direction. The bounds of the surface are not changed but the given parametric direction is reversed. Hence the orientation of the surface is reversed. As a consequence: - VReverse reverses the meridian of this surface of revolution.
        """
    def VReversed(self) -> Geom_Surface: 
        """
        Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def VReversedParameter(self,V : float) -> float: 
        """
        Computes the v parameter on the modified surface, when reversing its v parametric direction, for any point of v parameter V on this surface of revolution. In the case of a revolved surface: - VReversedParameter returns the reversed parameter given by the function ReversedParameter called with V on the meridian.
        """
    def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt: 
        """
        Computes the point of parameter (U, V) on the surface.
        """
    def __init__(self,C : Geom_Curve,A1 : OCP.gp.gp_Ax1) -> None: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_SurfaceOfLinearExtrusion(Geom_SweptSurface, Geom_Surface, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    Describes a surface of linear extrusion ("extruded surface"), e.g. a generalized cylinder. Such a surface is obtained by sweeping a curve (called the "extruded curve" or "basis") in a given direction (referred to as the "direction of extrusion" and defined by a unit vector). The u parameter is along the extruded curve. The v parameter is along the direction of extrusion. The parameter range for the u parameter is defined by the reference curve. The parameter range for the v parameter is ] - infinity, + infinity [. The position of the curve gives the origin of the v parameter. The surface is "CN" in the v parametric direction. The form of a surface of linear extrusion is generally a ruled surface (GeomAbs_RuledForm). It can be: - a cylindrical surface, if the extruded curve is a circle, or a trimmed circle, with an axis parallel to the direction of extrusion (GeomAbs_CylindricalForm), or - a planar surface, if the extruded curve is a line (GeomAbs_PlanarForm). Note: The surface of extrusion is built from a copy of the original basis curve, so the original curve is not modified when the surface is modified. Warning Degenerate surfaces are not detected. A degenerate surface is obtained, for example, when the extruded curve is a line and the direction of extrusion is parallel to that line.Describes a surface of linear extrusion ("extruded surface"), e.g. a generalized cylinder. Such a surface is obtained by sweeping a curve (called the "extruded curve" or "basis") in a given direction (referred to as the "direction of extrusion" and defined by a unit vector). The u parameter is along the extruded curve. The v parameter is along the direction of extrusion. The parameter range for the u parameter is defined by the reference curve. The parameter range for the v parameter is ] - infinity, + infinity [. The position of the curve gives the origin of the v parameter. The surface is "CN" in the v parametric direction. The form of a surface of linear extrusion is generally a ruled surface (GeomAbs_RuledForm). It can be: - a cylindrical surface, if the extruded curve is a circle, or a trimmed circle, with an axis parallel to the direction of extrusion (GeomAbs_CylindricalForm), or - a planar surface, if the extruded curve is a line (GeomAbs_PlanarForm). Note: The surface of extrusion is built from a copy of the original basis curve, so the original curve is not modified when the surface is modified. Warning Degenerate surfaces are not detected. A degenerate surface is obtained, for example, when the extruded curve is a line and the direction of extrusion is parallel to that line.Describes a surface of linear extrusion ("extruded surface"), e.g. a generalized cylinder. Such a surface is obtained by sweeping a curve (called the "extruded curve" or "basis") in a given direction (referred to as the "direction of extrusion" and defined by a unit vector). The u parameter is along the extruded curve. The v parameter is along the direction of extrusion. The parameter range for the u parameter is defined by the reference curve. The parameter range for the v parameter is ] - infinity, + infinity [. The position of the curve gives the origin of the v parameter. The surface is "CN" in the v parametric direction. The form of a surface of linear extrusion is generally a ruled surface (GeomAbs_RuledForm). It can be: - a cylindrical surface, if the extruded curve is a circle, or a trimmed circle, with an axis parallel to the direction of extrusion (GeomAbs_CylindricalForm), or - a planar surface, if the extruded curve is a line (GeomAbs_PlanarForm). Note: The surface of extrusion is built from a copy of the original basis curve, so the original curve is not modified when the surface is modified. Warning Degenerate surfaces are not detected. A degenerate surface is obtained, for example, when the extruded curve is a line and the direction of extrusion is parallel to that line.
    """
    def BasisCurve(self) -> Geom_Curve: 
        """
        Returns the referenced curve of the surface. For a surface of revolution it is the revolution curve, for a surface of linear extrusion it is the extruded curve.
        """
    def Bounds(self) -> tuple[float, float, float, float]: 
        """
        Returns the parametric bounds U1, U2, V1 and V2 of this surface of linear extrusion. A surface of linear extrusion is infinite in the v parametric direction, so: - V1 = Standard_Real::RealFirst() - V2 = Standard_Real::RealLast().
        """
    def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape: 
        """
        returns the continuity of the surface : C0 : only geometric continuity, C1 : continuity of the first derivative all along the surface, C2 : continuity of the second derivative all along the surface, C3 : continuity of the third derivative all along the surface, G1 : tangency continuity all along the surface, G2 : curvature continuity all along the surface, CN : the order of continuity is infinite.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this surface of linear extrusion.
        """
    def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        Computes the point P (U, V) on the surface. The parameter U is the parameter on the extruded curve. The parametrization V is a linear parametrization, and the direction of parametrization is the direction of extrusion. If the point is on the extruded curve, V = 0.0
        """
    def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None: 
        """
        Computes the current point and the first derivatives in the directions U and V. Raises UndefinedDerivative if the continuity of the surface is not C1.
        """
    def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None: 
        """
        --- Purpose ; Computes the current point, the first and the second derivatives in the directions U and V. Raises UndefinedDerivative if the continuity of the surface is not C2.
        """
    def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None: 
        """
        Computes the current point, the first,the second and the third derivatives in the directions U and V. Raises UndefinedDerivative if the continuity of the surface is not C3.
        """
    def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec: 
        """
        Computes the derivative of order Nu in the direction u and Nv in the direction v. Raises UndefinedDerivative if the continuity of the surface is not CNu in the u direction and CNv in the v direction. Raises RangeError if Nu + Nv < 1 or Nu < 0 or Nv < 0.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def Direction(self) -> OCP.gp.gp_Dir: 
        """
        Returns the reference direction of the swept surface. For a surface of revolution it is the direction of the revolution axis, for a surface of linear extrusion it is the direction of extrusion.
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    def IsCNu(self,N : int) -> bool: 
        """
        IsCNu returns true if the degree of continuity for the "basis curve" of this surface of linear extrusion is at least N. Raises RangeError if N < 0.
        """
    def IsCNv(self,N : int) -> bool: 
        """
        IsCNv always returns true.
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def IsUClosed(self) -> bool: 
        """
        IsUClosed returns true if the "basis curve" of this surface of linear extrusion is closed.
        """
    def IsUPeriodic(self) -> bool: 
        """
        IsUPeriodic returns true if the "basis curve" of this surface of linear extrusion is periodic.
        """
    def IsVClosed(self) -> bool: 
        """
        IsVClosed always returns false.
        """
    def IsVPeriodic(self) -> bool: 
        """
        IsVPeriodic always returns false.
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d: 
        """
        Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns a scale U by BasisCurve()->ParametricTransformation(T) V by T.ScaleFactor()
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def SetBasisCurve(self,C : Geom_Curve) -> None: 
        """
        Modifies this surface of linear extrusion by redefining its "basis curve" (the "extruded curve").
        """
    def SetDirection(self,V : OCP.gp.gp_Dir) -> None: 
        """
        Assigns V as the "direction of extrusion" for this surface of linear extrusion.
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Applies the transformation T to this surface of linear extrusion.
        """
    def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]: 
        """
        Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method multiplies: U by BasisCurve()->ParametricTransformation(T) V by T.ScaleFactor()
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def UIso(self,U : float) -> Geom_Curve: 
        """
        Computes the U isoparametric curve of this surface of linear extrusion. This is the line parallel to the direction of extrusion, passing through the point of parameter U of the basis curve.
        """
    def UPeriod(self) -> float: 
        """
        Returns the period of this surface in the u parametric direction. Raises if the surface is not uperiodic.
        """
    def UReverse(self) -> None: 
        """
        Changes the orientation of this surface of linear extrusion in the u parametric direction. The bounds of the surface are not changed, but the given parametric direction is reversed. Hence the orientation of the surface is reversed. In the case of a surface of linear extrusion: - UReverse reverses the basis curve, and - VReverse reverses the direction of linear extrusion.
        """
    def UReversed(self) -> Geom_Surface: 
        """
        Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def UReversedParameter(self,U : float) -> float: 
        """
        Computes the u parameter on the modified surface, produced by reversing its u parametric direction, for any point of u parameter U on this surface of linear extrusion. In the case of an extruded surface: - UReverseParameter returns the reversed parameter given by the function ReversedParameter called with U on the basis curve,
        """
    def VIso(self,V : float) -> Geom_Curve: 
        """
        Computes the V isoparametric curve of this surface of linear extrusion. This curve is obtained by translating the extruded curve in the direction of extrusion, with the magnitude V.
        """
    def VPeriod(self) -> float: 
        """
        Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic.
        """
    def VReverse(self) -> None: 
        """
        Changes the orientation of this surface of linear extrusion in the v parametric direction. The bounds of the surface are not changed, but the given parametric direction is reversed. Hence the orientation of the surface is reversed. In the case of a surface of linear extrusion: - UReverse reverses the basis curve, and - VReverse reverses the direction of linear extrusion.
        """
    def VReversed(self) -> Geom_Surface: 
        """
        Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def VReversedParameter(self,V : float) -> float: 
        """
        Computes the v parameter on the modified surface, produced by reversing its u v parametric direction, for any point of v parameter V on this surface of linear extrusion. In the case of an extruded surface VReverse returns -V.
        """
    def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt: 
        """
        Computes the point of parameter (U, V) on the surface.
        """
    def __init__(self,C : Geom_Curve,V : OCP.gp.gp_Dir) -> None: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_ToroidalSurface(Geom_ElementarySurface, Geom_Surface, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    Describes a torus. A torus is defined by its major and minor radii, and positioned in space with a coordinate system (a gp_Ax3 object) as follows: - The origin is the center of the torus. - The surface is obtained by rotating a circle around the "main Direction". This circle has a radius equal to the minor radius, and is located in the plane defined by the origin, "X Direction" and "main Direction". It is centered on the "X Axis", on its positive side, and positioned at a distance from the origin equal to the major radius. This circle is the "reference circle" of the torus. - The plane defined by the origin, the "X Direction" and the "Y Direction" is called the "reference plane" of the torus. This coordinate system is the "local coordinate system" of the torus. The following apply: - Rotation around its "main Axis", in the trigonometric sense given by "X Direction" and "Y Direction", defines the u parametric direction. - The "X Axis" gives the origin for the u parameter. - Rotation around an axis parallel to the "Y Axis" and passing through the center of the "reference circle" gives the v parameter on the "reference circle". - The "X Axis" gives the origin of the v parameter on the "reference circle". - The v parametric direction is oriented by the inverse of the "main Direction", i.e. near 0, as v increases, the Z coordinate decreases. (This implies that the "Y Direction" orients the reference circle only when the local coordinate system is direct.) - The u isoparametric curve is a circle obtained by rotating the "reference circle" of the torus through an angle u about the "main Axis". The parametric equation of the torus is : P(u, v) = O + (R + r*cos(v)) * (cos(u)*XDir + sin(u)*YDir ) + r*sin(v)*ZDir, where: - O, XDir, YDir and ZDir are respectively the origin, the "X Direction", the "Y Direction" and the "Z Direction" of the local coordinate system, - r and R are, respectively, the minor and major radius. The parametric range of the two parameters is: - [ 0, 2.*Pi ] for u - [ 0, 2.*Pi ] for vDescribes a torus. A torus is defined by its major and minor radii, and positioned in space with a coordinate system (a gp_Ax3 object) as follows: - The origin is the center of the torus. - The surface is obtained by rotating a circle around the "main Direction". This circle has a radius equal to the minor radius, and is located in the plane defined by the origin, "X Direction" and "main Direction". It is centered on the "X Axis", on its positive side, and positioned at a distance from the origin equal to the major radius. This circle is the "reference circle" of the torus. - The plane defined by the origin, the "X Direction" and the "Y Direction" is called the "reference plane" of the torus. This coordinate system is the "local coordinate system" of the torus. The following apply: - Rotation around its "main Axis", in the trigonometric sense given by "X Direction" and "Y Direction", defines the u parametric direction. - The "X Axis" gives the origin for the u parameter. - Rotation around an axis parallel to the "Y Axis" and passing through the center of the "reference circle" gives the v parameter on the "reference circle". - The "X Axis" gives the origin of the v parameter on the "reference circle". - The v parametric direction is oriented by the inverse of the "main Direction", i.e. near 0, as v increases, the Z coordinate decreases. (This implies that the "Y Direction" orients the reference circle only when the local coordinate system is direct.) - The u isoparametric curve is a circle obtained by rotating the "reference circle" of the torus through an angle u about the "main Axis". The parametric equation of the torus is : P(u, v) = O + (R + r*cos(v)) * (cos(u)*XDir + sin(u)*YDir ) + r*sin(v)*ZDir, where: - O, XDir, YDir and ZDir are respectively the origin, the "X Direction", the "Y Direction" and the "Z Direction" of the local coordinate system, - r and R are, respectively, the minor and major radius. The parametric range of the two parameters is: - [ 0, 2.*Pi ] for u - [ 0, 2.*Pi ] for vDescribes a torus. A torus is defined by its major and minor radii, and positioned in space with a coordinate system (a gp_Ax3 object) as follows: - The origin is the center of the torus. - The surface is obtained by rotating a circle around the "main Direction". This circle has a radius equal to the minor radius, and is located in the plane defined by the origin, "X Direction" and "main Direction". It is centered on the "X Axis", on its positive side, and positioned at a distance from the origin equal to the major radius. This circle is the "reference circle" of the torus. - The plane defined by the origin, the "X Direction" and the "Y Direction" is called the "reference plane" of the torus. This coordinate system is the "local coordinate system" of the torus. The following apply: - Rotation around its "main Axis", in the trigonometric sense given by "X Direction" and "Y Direction", defines the u parametric direction. - The "X Axis" gives the origin for the u parameter. - Rotation around an axis parallel to the "Y Axis" and passing through the center of the "reference circle" gives the v parameter on the "reference circle". - The "X Axis" gives the origin of the v parameter on the "reference circle". - The v parametric direction is oriented by the inverse of the "main Direction", i.e. near 0, as v increases, the Z coordinate decreases. (This implies that the "Y Direction" orients the reference circle only when the local coordinate system is direct.) - The u isoparametric curve is a circle obtained by rotating the "reference circle" of the torus through an angle u about the "main Axis". The parametric equation of the torus is : P(u, v) = O + (R + r*cos(v)) * (cos(u)*XDir + sin(u)*YDir ) + r*sin(v)*ZDir, where: - O, XDir, YDir and ZDir are respectively the origin, the "X Direction", the "Y Direction" and the "Z Direction" of the local coordinate system, - r and R are, respectively, the minor and major radius. The parametric range of the two parameters is: - [ 0, 2.*Pi ] for u - [ 0, 2.*Pi ] for v
    """
    def Area(self) -> float: 
        """
        Computes the aera of the surface.
        """
    def Axis(self) -> OCP.gp.gp_Ax1: 
        """
        Returns the main axis of the surface (ZAxis).
        """
    def Bounds(self) -> tuple[float, float, float, float]: 
        """
        Returns the parametric bounds U1, U2, V1 and V2 of this torus. For a torus: U1 = V1 = 0 and U2 = V2 = 2*PI .
        """
    def Coefficients(self,Coef : OCP.TColStd.TColStd_Array1OfReal) -> None: 
        """
        Returns the coefficients of the implicit equation of the surface in the absolute cartesian coordinate system : Coef(1) * X**4 + Coef(2) * Y**4 + Coef(3) * Z**4 + Coef(4) * X**3 * Y + Coef(5) * X**3 * Z + Coef(6) * Y**3 * X + Coef(7) * Y**3 * Z + Coef(8) * Z**3 * X + Coef(9) * Z**3 * Y + Coef(10) * X**2 * Y**2 + Coef(11) * X**2 * Z**2 + Coef(12) * Y**2 * Z**2 + Coef(13) * X**3 + Coef(14) * Y**3 + Coef(15) * Z**3 + Coef(16) * X**2 * Y + Coef(17) * X**2 * Z + Coef(18) * Y**2 * X + Coef(19) * Y**2 * Z + Coef(20) * Z**2 * X + Coef(21) * Z**2 * Y + Coef(22) * X**2 + Coef(23) * Y**2 + Coef(24) * Z**2 + Coef(25) * X * Y + Coef(26) * X * Z + Coef(27) * Y * Z + Coef(28) * X + Coef(29) * Y + Coef(30) * Z + Coef(31) = 0.0 Raised if the length of Coef is lower than 31.
        """
    def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape: 
        """
        Returns GeomAbs_CN, the global continuity of any elementary surface.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this torus.
        """
    def D0(self,U : float,V : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        Computes the point P (U, V) on the surface. P (U, V) = Loc + MinorRadius * Sin (V) * Zdir + (MajorRadius + MinorRadius * Cos(V)) * (cos (U) * XDir + sin (U) * YDir) where Loc is the origin of the placement plane (XAxis, YAxis) XDir is the direction of the XAxis and YDir the direction of the YAxis and ZDir the direction of the ZAxis.
        """
    def D1(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec) -> None: 
        """
        Computes the current point and the first derivatives in the directions U and V.
        """
    def D2(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec) -> None: 
        """
        Computes the current point, the first and the second derivatives in the directions U and V.
        """
    def D3(self,U : float,V : float,P : OCP.gp.gp_Pnt,D1U : OCP.gp.gp_Vec,D1V : OCP.gp.gp_Vec,D2U : OCP.gp.gp_Vec,D2V : OCP.gp.gp_Vec,D2UV : OCP.gp.gp_Vec,D3U : OCP.gp.gp_Vec,D3V : OCP.gp.gp_Vec,D3UUV : OCP.gp.gp_Vec,D3UVV : OCP.gp.gp_Vec) -> None: 
        """
        Computes the current point, the first,the second and the third derivatives in the directions U and V.
        """
    def DN(self,U : float,V : float,Nu : int,Nv : int) -> OCP.gp.gp_Vec: 
        """
        Computes the derivative of order Nu in the direction u and Nv in the direction v. Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    def IsCNu(self,N : int) -> bool: 
        """
        Returns True.
        """
    def IsCNv(self,N : int) -> bool: 
        """
        Returns True.
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def IsUClosed(self) -> bool: 
        """
        Returns True.
        """
    def IsUPeriodic(self) -> bool: 
        """
        Returns True.
        """
    def IsVClosed(self) -> bool: 
        """
        Returns True.
        """
    def IsVPeriodic(self) -> bool: 
        """
        Returns True.
        """
    def Location(self) -> OCP.gp.gp_Pnt: 
        """
        Returns the location point of the local coordinate system of the surface.
        """
    def MajorRadius(self) -> float: 
        """
        Returns the major radius, or the minor radius, of this torus.
        """
    def MinorRadius(self) -> float: 
        """
        Returns the major radius, or the minor radius, of this torus.
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> OCP.gp.gp_GTrsf2d: 
        """
        Returns a 2d transformation used to find the new parameters of a point on the transformed surface. is the same point as Where U',V' are obtained by transforming U,V with the 2d transformation returned by This method returns an identity transformation
        """
    def Position(self) -> OCP.gp.gp_Ax3: 
        """
        Returns the local coordinates system of the surface.
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def SetAxis(self,theA1 : OCP.gp.gp_Ax1) -> None: 
        """
        Changes the main axis (ZAxis) of the elementary surface.
        """
    def SetLocation(self,theLoc : OCP.gp.gp_Pnt) -> None: 
        """
        Changes the location of the local coordinates system of the surface.
        """
    def SetMajorRadius(self,MajorRadius : float) -> None: 
        """
        Modifies this torus by changing its major radius. Exceptions Standard_ConstructionError if: - MajorRadius is negative, or - MajorRadius - r is less than or equal to gp::Resolution(), where r is the minor radius of this torus.
        """
    def SetMinorRadius(self,MinorRadius : float) -> None: 
        """
        Modifies this torus by changing its minor radius. Exceptions Standard_ConstructionError if: - MinorRadius is negative, or - R - MinorRadius is less than or equal to gp::Resolution(), where R is the major radius of this torus.
        """
    def SetPosition(self,theAx3 : OCP.gp.gp_Ax3) -> None: 
        """
        Changes the local coordinates system of the surface.
        """
    def SetTorus(self,T : OCP.gp.gp_Torus) -> None: 
        """
        Converts the gp_Torus torus T into this torus.
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Torus(self) -> OCP.gp.gp_Torus: 
        """
        Returns the non transient torus with the same geometric properties as <me>.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Applies the transformation T to this torus.
        """
    def TransformParameters(self,T : OCP.gp.gp_Trsf) -> tuple[float, float]: 
        """
        Computes the parameters on the transformed surface for the transform of the point of parameters U,V on <me>. is the same point as Where U',V' are the new values of U,V after calling This method does not change <U> and <V>
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def UIso(self,U : float) -> Geom_Curve: 
        """
        Computes the U isoparametric curve.
        """
    def UPeriod(self) -> float: 
        """
        Returns the period of this surface in the u parametric direction. Raises if the surface is not uperiodic.
        """
    def UReverse(self) -> None: 
        """
        Reverses the U parametric direction of the surface.
        """
    def UReversed(self) -> Geom_Surface: 
        """
        Reverses the U direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def UReversedParameter(self,U : float) -> float: 
        """
        Return the parameter on the Ureversed surface for the point of parameter U on <me>. Return 2.PI - U.
        """
    def VIso(self,V : float) -> Geom_Curve: 
        """
        Computes the V isoparametric curve.
        """
    def VPeriod(self) -> float: 
        """
        Returns the period of this surface in the v parametric direction. raises if the surface is not vperiodic.
        """
    def VReverse(self) -> None: 
        """
        Reverses the V parametric direction of the surface.
        """
    def VReversed(self) -> Geom_Surface: 
        """
        Reverses the V direction of parametrization of <me>. The bounds of the surface are not modified. A copy of <me> is returned.
        """
    def VReversedParameter(self,U : float) -> float: 
        """
        Return the parameter on the Ureversed surface for the point of parameter U on <me>. Return 2.PI - U.
        """
    def Value(self,U : float,V : float) -> OCP.gp.gp_Pnt: 
        """
        Computes the point of parameter (U, V) on the surface.
        """
    def Volume(self) -> float: 
        """
        Computes the volume.
        """
    @overload
    def __init__(self,T : OCP.gp.gp_Torus) -> None: ...
    @overload
    def __init__(self,A3 : OCP.gp.gp_Ax3,MajorRadius : float,MinorRadius : float) -> None: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_Transformation(OCP.Standard.Standard_Transient):
    """
    Describes how to construct the following elementary transformations - translations, - rotations, - symmetries, - scales. The Transformation class can also be used to construct complex transformations by combining these elementary transformations. However, these transformations can never change the type of an object. For example, the projection transformation can change a circle into an ellipse, and therefore change the real type of the object. Such a transformation is forbidden in this environment and cannot be a Geom_Transformation. The transformation can be represented as follow :Describes how to construct the following elementary transformations - translations, - rotations, - symmetries, - scales. The Transformation class can also be used to construct complex transformations by combining these elementary transformations. However, these transformations can never change the type of an object. For example, the projection transformation can change a circle into an ellipse, and therefore change the real type of the object. Such a transformation is forbidden in this environment and cannot be a Geom_Transformation. The transformation can be represented as follow :
    """
    def Copy(self) -> Geom_Transformation: 
        """
        Creates a new object which is a copy of this transformation.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def Form(self) -> OCP.gp.gp_TrsfForm: 
        """
        Returns the nature of this transformation as a value of the gp_TrsfForm enumeration.
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    def Invert(self) -> None: 
        """
        Raised if the transformation is singular. This means that the ScaleFactor is lower or equal to Resolution from package gp.
        """
    def Inverted(self) -> Geom_Transformation: 
        """
        Raised if the transformation is singular. This means that the ScaleFactor is lower or equal to Resolution from package gp.
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def IsNegative(self) -> bool: 
        """
        Checks whether this transformation is an indirect transformation: returns true if the determinant of the matrix of the vectorial part of the transformation is less than 0.
        """
    def Multiplied(self,Other : Geom_Transformation) -> Geom_Transformation: 
        """
        Computes the transformation composed with Other and <me>. <me> * Other. Returns a new transformation
        """
    def Multiply(self,theOther : Geom_Transformation) -> None: 
        """
        Computes the transformation composed with Other and <me> . <me> = <me> * Other.
        """
    def Power(self,N : int) -> None: 
        """
        Computes the following composition of transformations if N > 0 <me> * <me> * .......* <me>. if N = 0 Identity if N < 0 <me>.Invert() * .........* <me>.Invert()
        """
    def Powered(self,N : int) -> Geom_Transformation: 
        """
        Raised if N < 0 and if the transformation is not inversible
        """
    def PreMultiply(self,Other : Geom_Transformation) -> None: 
        """
        Computes the matrix of the transformation composed with <me> and Other. <me> = Other * <me>
        """
    def ScaleFactor(self) -> float: 
        """
        Returns the scale value of the transformation.
        """
    @overload
    def SetMirror(self,theA2 : OCP.gp.gp_Ax2) -> None: 
        """
        Makes the transformation into a symmetrical transformation with respect to a point P. P is the center of the symmetry.

        Makes the transformation into a symmetrical transformation with respect to an axis A1. A1 is the center of the axial symmetry.

        Makes the transformation into a symmetrical transformation with respect to a plane. The plane of the symmetry is defined with the axis placement A2. It is the plane (Location, XDirection, YDirection).
        """
    @overload
    def SetMirror(self,theA1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def SetMirror(self,thePnt : OCP.gp.gp_Pnt) -> None: ...
    def SetRotation(self,theA1 : OCP.gp.gp_Ax1,theAng : float) -> None: 
        """
        Makes the transformation into a rotation. A1 is the axis rotation and Ang is the angular value of the rotation in radians.
        """
    def SetScale(self,thePnt : OCP.gp.gp_Pnt,theScale : float) -> None: 
        """
        Makes the transformation into a scale. P is the center of the scale and S is the scaling value.
        """
    @overload
    def SetTransformation(self,theFromSystem1 : OCP.gp.gp_Ax3,theToSystem2 : OCP.gp.gp_Ax3) -> None: 
        """
        Makes a transformation allowing passage from the coordinate system "FromSystem1" to the coordinate system "ToSystem2". Example : In a C++ implementation : Real x1, y1, z1; // are the coordinates of a point in the // local system FromSystem1 Real x2, y2, z2; // are the coordinates of a point in the // local system ToSystem2 gp_Pnt P1 (x1, y1, z1) Geom_Transformation T; T.SetTransformation (FromSystem1, ToSystem2); gp_Pnt P2 = P1.Transformed (T); P2.Coord (x2, y2, z2);

        Makes the transformation allowing passage from the basic coordinate system {P(0.,0.,0.), VX (1.,0.,0.), VY (0.,1.,0.), VZ (0., 0. ,1.) } to the local coordinate system defined with the Ax2 ToSystem. Same utilisation as the previous method. FromSystem1 is defaulted to the absolute coordinate system.
        """
    @overload
    def SetTransformation(self,theToSystem : OCP.gp.gp_Ax3) -> None: ...
    @overload
    def SetTranslation(self,theVec : OCP.gp.gp_Vec) -> None: 
        """
        Makes the transformation into a translation. V is the vector of the translation.

        Makes the transformation into a translation from the point P1 to the point P2.
        """
    @overload
    def SetTranslation(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: ...
    def SetTrsf(self,theTrsf : OCP.gp.gp_Trsf) -> None: 
        """
        Converts the gp_Trsf transformation T into this transformation.
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transforms(self) -> tuple[float, float, float]: 
        """
        Applies the transformation <me> to the triplet {X, Y, Z}.
        """
    def Trsf(self) -> OCP.gp.gp_Trsf: 
        """
        Returns a non transient copy of <me>.
        """
    def Value(self,theRow : int,theCol : int) -> float: 
        """
        Returns the coefficients of the global matrix of transformation. It is a 3 rows X 4 columns matrix.
        """
    @overload
    def __init__(self) -> None: ...
    @overload
    def __init__(self,T : OCP.gp.gp_Trsf) -> None: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_TrimmedCurve(Geom_BoundedCurve, Geom_Curve, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    Describes a portion of a curve (termed the "basis curve") limited by two parameter values inside the parametric domain of the basis curve. The trimmed curve is defined by: - the basis curve, and - the two parameter values which limit it. The trimmed curve can either have the same orientation as the basis curve or the opposite orientation.Describes a portion of a curve (termed the "basis curve") limited by two parameter values inside the parametric domain of the basis curve. The trimmed curve is defined by: - the basis curve, and - the two parameter values which limit it. The trimmed curve can either have the same orientation as the basis curve or the opposite orientation.Describes a portion of a curve (termed the "basis curve") limited by two parameter values inside the parametric domain of the basis curve. The trimmed curve is defined by: - the basis curve, and - the two parameter values which limit it. The trimmed curve can either have the same orientation as the basis curve or the opposite orientation.
    """
    def BasisCurve(self) -> Geom_Curve: 
        """
        Returns the basis curve. Warning This function does not return a constant reference. Consequently, any modification of the returned value directly modifies the trimmed curve.
        """
    def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape: 
        """
        Returns the continuity of the curve : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, CN : the order of continuity is infinite.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this trimmed curve.
        """
    def D0(self,U : float,P : OCP.gp.gp_Pnt) -> None: 
        """
        Returns in P the point of parameter U.
        """
    def D1(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec) -> None: 
        """
        Raised if the continuity of the curve is not C1.
        """
    def D2(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec) -> None: 
        """
        Raised if the continuity of the curve is not C2.
        """
    def D3(self,U : float,P : OCP.gp.gp_Pnt,V1 : OCP.gp.gp_Vec,V2 : OCP.gp.gp_Vec,V3 : OCP.gp.gp_Vec) -> None: 
        """
        Raised if the continuity of the curve is not C3.
        """
    def DN(self,U : float,N : int) -> OCP.gp.gp_Vec: 
        """
        N is the order of derivation. Raised if the continuity of the curve is not CN. Raised if N < 1. geometric transformations
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def EndPoint(self) -> OCP.gp.gp_Pnt: 
        """
        Returns the end point of <me>. This point is the evaluation of the curve for the "LastParameter".
        """
    def FirstParameter(self) -> float: 
        """
        Returns the value of the first parameter of <me>. The first parameter is the parameter of the "StartPoint" of the trimmed curve.
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    def IsCN(self,N : int) -> bool: 
        """
        Returns true if the degree of continuity of the basis curve of this trimmed curve is at least N. A trimmed curve is at least "C0" continuous. Warnings : The continuity of the trimmed curve can be greater than the continuity of the basis curve because you consider only a part of the basis curve. Raised if N < 0.
        """
    def IsClosed(self) -> bool: 
        """
        Returns True if the distance between the StartPoint and the EndPoint is lower or equal to Resolution from package gp.
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def IsPeriodic(self) -> bool: 
        """
        Always returns FALSE (independently of the type of basis curve).
        """
    def LastParameter(self) -> float: 
        """
        Returns the value of the last parameter of <me>. The last parameter is the parameter of the "EndPoint" of the trimmed curve.
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def ParametricTransformation(self,T : OCP.gp.gp_Trsf) -> float: 
        """
        Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.
        """
    def Period(self) -> float: 
        """
        Returns the period of the basis curve of this trimmed curve. Exceptions Standard_NoSuchObject if the basis curve is not periodic.
        """
    def Reverse(self) -> None: 
        """
        Changes the orientation of this trimmed curve. As a result: - the basis curve is reversed, - the start point of the initial curve becomes the end point of the reversed curve, - the end point of the initial curve becomes the start point of the reversed curve, - the first and last parameters are recomputed. If the trimmed curve was defined by: - a basis curve whose parameter range is [ 0., 1. ], - the two trim values U1 (first parameter) and U2 (last parameter), the reversed trimmed curve is defined by: - the reversed basis curve, whose parameter range is still [ 0., 1. ], - the two trim values 1. - U2 (first parameter) and 1. - U1 (last parameter).
        """
    def Reversed(self) -> Geom_Curve: 
        """
        Returns a copy of <me> reversed.
        """
    def ReversedParameter(self,U : float) -> float: 
        """
        Computes the parameter on the reversed curve for the point of parameter U on this trimmed curve.
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def SetTrim(self,U1 : float,U2 : float,Sense : bool=True,theAdjustPeriodic : bool=True) -> None: 
        """
        Changes this trimmed curve, by redefining the parameter values U1 and U2 which limit its basis curve. Note: If the basis curve is periodic, the trimmed curve has the same orientation as the basis curve if Sense is true (default value) or the opposite orientation if Sense is false. Warning If the basis curve is periodic and theAdjustPeriodic is True, the bounds of the trimmed curve may be different from U1 and U2 if the parametric origin of the basis curve is within the arc of the trimmed curve. In this case, the modified parameter will be equal to U1 or U2 plus or minus the period. When theAdjustPeriodic is False, parameters U1 and U2 will be the same, without adjustment into the first period. Exceptions Standard_ConstructionError if: - the basis curve is not periodic, and either U1 or U2 are outside the bounds of the basis curve, or - U1 is equal to U2.
        """
    def StartPoint(self) -> OCP.gp.gp_Pnt: 
        """
        Returns the start point of <me>. This point is the evaluation of the curve from the "FirstParameter". value and derivatives Warnings : The returned derivatives have the same orientation as the derivatives of the basis curve even if the trimmed curve has not the same orientation as the basis curve.
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Applies the transformation T to this trimmed curve. Warning The basis curve is also modified.
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf) -> float: 
        """
        Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def Value(self,U : float) -> OCP.gp.gp_Pnt: 
        """
        Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve. it is implemented with D0.
        """
    def __init__(self,C : Geom_Curve,U1 : float,U2 : float,Sense : bool=True,theAdjustPeriodic : bool=True) -> None: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_UndefinedDerivative(Exception, BaseException):
    class type():
        pass
    __cause__: getset_descriptor # value = <attribute '__cause__' of 'BaseException' objects>
    __context__: getset_descriptor # value = <attribute '__context__' of 'BaseException' objects>
    __dict__: mappingproxy # value = mappingproxy({'__module__': 'OCP.Geom', '__weakref__': <attribute '__weakref__' of 'Geom_UndefinedDerivative' objects>, '__doc__': None})
    __suppress_context__: member_descriptor # value = <member '__suppress_context__' of 'BaseException' objects>
    __traceback__: getset_descriptor # value = <attribute '__traceback__' of 'BaseException' objects>
    __weakref__: getset_descriptor # value = <attribute '__weakref__' of 'Geom_UndefinedDerivative' objects>
    args: getset_descriptor # value = <attribute 'args' of 'BaseException' objects>
    pass
class Geom_UndefinedValue(Exception, BaseException):
    class type():
        pass
    __cause__: getset_descriptor # value = <attribute '__cause__' of 'BaseException' objects>
    __context__: getset_descriptor # value = <attribute '__context__' of 'BaseException' objects>
    __dict__: mappingproxy # value = mappingproxy({'__module__': 'OCP.Geom', '__weakref__': <attribute '__weakref__' of 'Geom_UndefinedValue' objects>, '__doc__': None})
    __suppress_context__: member_descriptor # value = <member '__suppress_context__' of 'BaseException' objects>
    __traceback__: getset_descriptor # value = <attribute '__traceback__' of 'BaseException' objects>
    __weakref__: getset_descriptor # value = <attribute '__weakref__' of 'Geom_UndefinedValue' objects>
    args: getset_descriptor # value = <attribute 'args' of 'BaseException' objects>
    pass
class Geom_Direction(Geom_Vector, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    The class Direction specifies a vector that is never null. It is a unit vector.The class Direction specifies a vector that is never null. It is a unit vector.The class Direction specifies a vector that is never null. It is a unit vector.
    """
    def Angle(self,Other : Geom_Vector) -> float: 
        """
        Computes the angular value, in radians, between this vector and vector Other. The result is a value between 0 and Pi. Exceptions gp_VectorWithNullMagnitude if: - the magnitude of this vector is less than or equal to gp::Resolution(), or - the magnitude of vector Other is less than or equal to gp::Resolution().
        """
    def AngleWithRef(self,Other : Geom_Vector,VRef : Geom_Vector) -> float: 
        """
        Computes the angular value, in radians, between this vector and vector Other. The result is a value between -Pi and Pi. The vector VRef defines the positive sense of rotation: the angular value is positive if the cross product this ^ Other has the same orientation as VRef (in relation to the plane defined by this vector and vector Other). Otherwise, it is negative. Exceptions Standard_DomainError if this vector, vector Other and vector VRef are coplanar, except if this vector and vector Other are parallel. gp_VectorWithNullMagnitude if the magnitude of this vector, vector Other or vector VRef is less than or equal to gp::Resolution().
        """
    def Coord(self) -> tuple[float, float, float]: 
        """
        Returns the coordinates X, Y and Z of this vector.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this unit vector.
        """
    def Cross(self,Other : Geom_Vector) -> None: 
        """
        Computes the cross product between <me> and <Other>.
        """
    def CrossCross(self,V1 : Geom_Vector,V2 : Geom_Vector) -> None: 
        """
        Computes the triple vector product <me> ^(V1 ^ V2).
        """
    def CrossCrossed(self,V1 : Geom_Vector,V2 : Geom_Vector) -> Geom_Vector: 
        """
        Computes the triple vector product <me> ^(V1 ^ V2).
        """
    def Crossed(self,Other : Geom_Vector) -> Geom_Vector: 
        """
        Computes the cross product between <me> and <Other>. A new direction is returned.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def Dir(self) -> OCP.gp.gp_Dir: 
        """
        Returns the non transient direction with the same coordinates as <me>.
        """
    def Dot(self,Other : Geom_Vector) -> float: 
        """
        Computes the scalar product of this vector and vector Other.
        """
    def DotCross(self,V1 : Geom_Vector,V2 : Geom_Vector) -> float: 
        """
        Computes the triple scalar product. Returns me . (V1 ^ V2)
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def Magnitude(self) -> float: 
        """
        returns 1.0 which is the magnitude of any unit vector.
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def Reverse(self) -> None: 
        """
        Reverses the vector <me>.
        """
    def Reversed(self) -> Geom_Vector: 
        """
        Returns a copy of <me> reversed.
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def SetCoord(self,X : float,Y : float,Z : float) -> None: 
        """
        Sets <me> to X,Y,Z coordinates.
        """
    def SetDir(self,V : OCP.gp.gp_Dir) -> None: 
        """
        Converts the gp_Dir unit vector V into this unit vector.
        """
    def SetX(self,X : float) -> None: 
        """
        Changes the X coordinate of <me>.
        """
    def SetY(self,Y : float) -> None: 
        """
        Changes the Y coordinate of <me>.
        """
    def SetZ(self,Z : float) -> None: 
        """
        Changes the Z coordinate of <me>.
        """
    def SquareMagnitude(self) -> float: 
        """
        returns 1.0 which is the square magnitude of any unit vector.
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Applies the transformation T to this unit vector, then normalizes it.
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def Vec(self) -> OCP.gp.gp_Vec: 
        """
        Converts this vector into a gp_Vec vector.
        """
    def X(self) -> float: 
        """
        Returns the X coordinate of <me>.
        """
    def Y(self) -> float: 
        """
        Returns the Y coordinate of <me>.
        """
    def Z(self) -> float: 
        """
        Returns the Z coordinate of <me>.
        """
    @overload
    def __init__(self,X : float,Y : float,Z : float) -> None: ...
    @overload
    def __init__(self,V : OCP.gp.gp_Dir) -> None: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass
class Geom_VectorWithMagnitude(Geom_Vector, Geom_Geometry, OCP.Standard.Standard_Transient):
    """
    Defines a vector with magnitude. A vector with magnitude can have a zero length.Defines a vector with magnitude. A vector with magnitude can have a zero length.Defines a vector with magnitude. A vector with magnitude can have a zero length.
    """
    def Add(self,Other : Geom_Vector) -> None: 
        """
        Adds the Vector Other to <me>.
        """
    def Added(self,Other : Geom_Vector) -> Geom_VectorWithMagnitude: 
        """
        Adds the vector Other to <me>.
        """
    def Angle(self,Other : Geom_Vector) -> float: 
        """
        Computes the angular value, in radians, between this vector and vector Other. The result is a value between 0 and Pi. Exceptions gp_VectorWithNullMagnitude if: - the magnitude of this vector is less than or equal to gp::Resolution(), or - the magnitude of vector Other is less than or equal to gp::Resolution().
        """
    def AngleWithRef(self,Other : Geom_Vector,VRef : Geom_Vector) -> float: 
        """
        Computes the angular value, in radians, between this vector and vector Other. The result is a value between -Pi and Pi. The vector VRef defines the positive sense of rotation: the angular value is positive if the cross product this ^ Other has the same orientation as VRef (in relation to the plane defined by this vector and vector Other). Otherwise, it is negative. Exceptions Standard_DomainError if this vector, vector Other and vector VRef are coplanar, except if this vector and vector Other are parallel. gp_VectorWithNullMagnitude if the magnitude of this vector, vector Other or vector VRef is less than or equal to gp::Resolution().
        """
    def Coord(self) -> tuple[float, float, float]: 
        """
        Returns the coordinates X, Y and Z of this vector.
        """
    def Copy(self) -> Geom_Geometry: 
        """
        Creates a new object which is a copy of this vector.
        """
    def Cross(self,Other : Geom_Vector) -> None: 
        """
        Computes the cross product between <me> and Other <me> ^ Other.
        """
    def CrossCross(self,V1 : Geom_Vector,V2 : Geom_Vector) -> None: 
        """
        Computes the triple vector product <me> ^ (V1 ^ V2).
        """
    def CrossCrossed(self,V1 : Geom_Vector,V2 : Geom_Vector) -> Geom_Vector: 
        """
        Computes the triple vector product <me> ^ (V1 ^ V2). A new vector is returned.
        """
    def Crossed(self,Other : Geom_Vector) -> Geom_Vector: 
        """
        Computes the cross product between <me> and Other <me> ^ Other. A new vector is returned.
        """
    def DecrementRefCounter(self) -> int: 
        """
        Decrements the reference counter of this object; returns the decremented value
        """
    def Delete(self) -> None: 
        """
        Memory deallocator for transient classes
        """
    def Divide(self,Scalar : float) -> None: 
        """
        Divides <me> by a scalar.
        """
    def Divided(self,Scalar : float) -> Geom_VectorWithMagnitude: 
        """
        Divides <me> by a scalar. A new vector is returned.
        """
    def Dot(self,Other : Geom_Vector) -> float: 
        """
        Computes the scalar product of this vector and vector Other.
        """
    def DotCross(self,V1 : Geom_Vector,V2 : Geom_Vector) -> float: 
        """
        Computes the triple scalar product. Returns me . (V1 ^ V2)
        """
    def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None: 
        """
        Dumps the content of me into the stream
        """
    def DynamicType(self) -> OCP.Standard.Standard_Type: 
        """
        None
        """
    def GetRefCount(self) -> int: 
        """
        Get the reference counter of this object
        """
    def IncrementRefCounter(self) -> None: 
        """
        Increments the reference counter of this object
        """
    @overload
    def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool: 
        """
        Returns a true value if this is an instance of Type.

        Returns a true value if this is an instance of TypeName.
        """
    @overload
    def IsInstance(self,theTypeName : str) -> bool: ...
    @overload
    def IsKind(self,theTypeName : str) -> bool: 
        """
        Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.

        Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
        """
    @overload
    def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
    def Magnitude(self) -> float: 
        """
        Returns the magnitude of <me>.
        """
    @overload
    def Mirror(self,A2 : OCP.gp.gp_Ax2) -> None: 
        """
        Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.

        Performs the symmetrical transformation of a Geometry with respect to a plane. The axis placement A2 locates the plane of the symmetry : (Location, XDirection, YDirection).
        """
    @overload
    def Mirror(self,P : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def Mirror(self,A1 : OCP.gp.gp_Ax1) -> None: ...
    @overload
    def Mirrored(self,P : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None

        None
        """
    @overload
    def Mirrored(self,A1 : OCP.gp.gp_Ax1) -> Geom_Geometry: ...
    @overload
    def Mirrored(self,A2 : OCP.gp.gp_Ax2) -> Geom_Geometry: ...
    def Multiplied(self,Scalar : float) -> Geom_VectorWithMagnitude: 
        """
        Computes the product of the vector <me> by a scalar. A new vector is returned.
        """
    def Multiply(self,Scalar : float) -> None: 
        """
        Computes the product of the vector <me> by a scalar.
        """
    def Normalize(self) -> None: 
        """
        Normalizes <me>.
        """
    def Normalized(self) -> Geom_VectorWithMagnitude: 
        """
        Returns a copy of <me> Normalized.
        """
    def Reverse(self) -> None: 
        """
        Reverses the vector <me>.
        """
    def Reversed(self) -> Geom_Vector: 
        """
        Returns a copy of <me> reversed.
        """
    def Rotate(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> None: 
        """
        Rotates a Geometry. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
        """
    def Rotated(self,A1 : OCP.gp.gp_Ax1,Ang : float) -> Geom_Geometry: 
        """
        None
        """
    def Scale(self,P : OCP.gp.gp_Pnt,S : float) -> None: 
        """
        Scales a Geometry. S is the scaling value.
        """
    def Scaled(self,P : OCP.gp.gp_Pnt,S : float) -> Geom_Geometry: 
        """
        None
        """
    def SetCoord(self,X : float,Y : float,Z : float) -> None: 
        """
        Assigns the values X, Y and Z to the coordinates of this vector.
        """
    def SetVec(self,V : OCP.gp.gp_Vec) -> None: 
        """
        Converts the gp_Vec vector V into this vector.
        """
    def SetX(self,X : float) -> None: 
        """
        Changes the X coordinate of <me>.
        """
    def SetY(self,Y : float) -> None: 
        """
        Changes the Y coordinate of <me>
        """
    def SetZ(self,Z : float) -> None: 
        """
        Changes the Z coordinate of <me>.
        """
    def SquareMagnitude(self) -> float: 
        """
        Returns the square magnitude of <me>.
        """
    def Subtract(self,Other : Geom_Vector) -> None: 
        """
        Subtracts the Vector Other to <me>.
        """
    def Subtracted(self,Other : Geom_Vector) -> Geom_VectorWithMagnitude: 
        """
        Subtracts the vector Other to <me>. A new vector is returned.
        """
    def This(self) -> OCP.Standard.Standard_Transient: 
        """
        Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
        """
    def Transform(self,T : OCP.gp.gp_Trsf) -> None: 
        """
        Applies the transformation T to this vector.
        """
    def Transformed(self,T : OCP.gp.gp_Trsf) -> Geom_Geometry: 
        """
        None
        """
    @overload
    def Translate(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: 
        """
        Translates a Geometry. V is the vector of the translation.

        Translates a Geometry from the point P1 to the point P2.
        """
    @overload
    def Translate(self,V : OCP.gp.gp_Vec) -> None: ...
    @overload
    def Translated(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> Geom_Geometry: 
        """
        None

        None
        """
    @overload
    def Translated(self,V : OCP.gp.gp_Vec) -> Geom_Geometry: ...
    def Vec(self) -> OCP.gp.gp_Vec: 
        """
        Converts this vector into a gp_Vec vector.
        """
    def X(self) -> float: 
        """
        Returns the X coordinate of <me>.
        """
    def Y(self) -> float: 
        """
        Returns the Y coordinate of <me>.
        """
    def Z(self) -> float: 
        """
        Returns the Z coordinate of <me>.
        """
    @overload
    def __init__(self,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt) -> None: ...
    @overload
    def __init__(self,X : float,Y : float,Z : float) -> None: ...
    @overload
    def __init__(self,V : OCP.gp.gp_Vec) -> None: ...
    @staticmethod
    def get_type_descriptor_s() -> OCP.Standard.Standard_Type: 
        """
        None
        """
    @staticmethod
    def get_type_name_s() -> str: 
        """
        None
        """
    pass