1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
|
import OCP.Geom2d
from typing import *
from typing import Iterable as iterable
from typing import Iterator as iterator
from numpy import float64
_Shape = Tuple[int, ...]
import OCP.TColStd
import OCP.gp
import OCP.TColgp
import OCP.Standard
import io
import OCP.GeomAbs
__all__ = [
"Geom2d_Geometry",
"Geom2d_Curve",
"Geom2d_BoundedCurve",
"Geom2d_BSplineCurve",
"Geom2d_Point",
"Geom2d_Conic",
"Geom2d_Circle",
"Geom2d_BezierCurve",
"Geom2d_Vector",
"Geom2d_Ellipse",
"Geom2d_AxisPlacement",
"Geom2d_Hyperbola",
"Geom2d_Line",
"Geom2d_OffsetCurve",
"Geom2d_Parabola",
"Geom2d_CartesianPoint",
"Geom2d_Transformation",
"Geom2d_TrimmedCurve",
"Geom2d_UndefinedDerivative",
"Geom2d_UndefinedValue",
"Geom2d_Direction",
"Geom2d_VectorWithMagnitude"
]
class Geom2d_Geometry(OCP.Standard.Standard_Transient):
"""
The general abstract class Geometry in 2D space describes the common behaviour of all the geometric entities.The general abstract class Geometry in 2D space describes the common behaviour of all the geometric entities.The general abstract class Geometry in 2D space describes the common behaviour of all the geometric entities.
"""
def Copy(self) -> Geom2d_Geometry:
"""
None
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
@overload
def Mirror(self,P : OCP.gp.gp_Pnt2d) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry and assigns the result to this geometric object.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
"""
@overload
def Mirror(self,A : OCP.gp.gp_Ax2d) -> None: ...
@overload
def Mirrored(self,A : OCP.gp.gp_Ax2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry: ...
def Rotate(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> None:
"""
Rotates a Geometry. P is the center of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> Geom2d_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt2d,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt2d,S : float) -> Geom2d_Geometry:
"""
None
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf2d) -> None:
"""
Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom2d). The following transformations have the same properties as the previous ones but they don't modified the object itself. A copy of the object is returned.
"""
def Transformed(self,T : OCP.gp.gp_Trsf2d) -> Geom2d_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec2d) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec2d) -> Geom2d_Geometry: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom2d_Curve(Geom2d_Geometry, OCP.Standard.Standard_Transient):
"""
The abstract class Curve describes the common behavior of curves in 2D space. The Geom2d package provides numerous concrete classes of derived curves, including lines, circles, conics, Bezier or BSpline curves, etc. The main characteristic of these curves is that they are parameterized. The Geom2d_Curve class shows: - how to work with the parametric equation of a curve in order to calculate the point of parameter u, together with the vector tangent and the derivative vectors of order 2, 3,..., N at this point; - how to obtain general information about the curve (for example, level of continuity, closed characteristics, periodicity, bounds of the parameter field); - how the parameter changes when a geometric transformation is applied to the curve or when the orientation of the curve is inverted. All curves must have a geometric continuity: a curve is at least "C0". Generally, this property is checked at the time of construction or when the curve is edited. Where this is not the case, the documentation explicitly states so. Warning The Geom2d package does not prevent the construction of curves with null length or curves which self-intersect.The abstract class Curve describes the common behavior of curves in 2D space. The Geom2d package provides numerous concrete classes of derived curves, including lines, circles, conics, Bezier or BSpline curves, etc. The main characteristic of these curves is that they are parameterized. The Geom2d_Curve class shows: - how to work with the parametric equation of a curve in order to calculate the point of parameter u, together with the vector tangent and the derivative vectors of order 2, 3,..., N at this point; - how to obtain general information about the curve (for example, level of continuity, closed characteristics, periodicity, bounds of the parameter field); - how the parameter changes when a geometric transformation is applied to the curve or when the orientation of the curve is inverted. All curves must have a geometric continuity: a curve is at least "C0". Generally, this property is checked at the time of construction or when the curve is edited. Where this is not the case, the documentation explicitly states so. Warning The Geom2d package does not prevent the construction of curves with null length or curves which self-intersect.The abstract class Curve describes the common behavior of curves in 2D space. The Geom2d package provides numerous concrete classes of derived curves, including lines, circles, conics, Bezier or BSpline curves, etc. The main characteristic of these curves is that they are parameterized. The Geom2d_Curve class shows: - how to work with the parametric equation of a curve in order to calculate the point of parameter u, together with the vector tangent and the derivative vectors of order 2, 3,..., N at this point; - how to obtain general information about the curve (for example, level of continuity, closed characteristics, periodicity, bounds of the parameter field); - how the parameter changes when a geometric transformation is applied to the curve or when the orientation of the curve is inverted. All curves must have a geometric continuity: a curve is at least "C0". Generally, this property is checked at the time of construction or when the curve is edited. Where this is not the case, the documentation explicitly states so. Warning The Geom2d package does not prevent the construction of curves with null length or curves which self-intersect.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
It is the global continuity of the curve : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, G1 : tangency continuity all along the Curve, G2 : curvature continuity all along the Curve, CN : the order of continuity is infinite.
"""
def Copy(self) -> Geom2d_Geometry:
"""
None
"""
def D0(self,U : float,P : OCP.gp.gp_Pnt2d) -> None:
"""
Returns in P the point of parameter U. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve.
"""
def D1(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d) -> None:
"""
Returns the point P of parameter U and the first derivative V1. Raised if the continuity of the curve is not C1.
"""
def D2(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d,V2 : OCP.gp.gp_Vec2d) -> None:
"""
Returns the point P of parameter U, the first and second derivatives V1 and V2. Raised if the continuity of the curve is not C2.
"""
def D3(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d,V2 : OCP.gp.gp_Vec2d,V3 : OCP.gp.gp_Vec2d) -> None:
"""
Returns the point P of parameter U, the first, the second and the third derivative. Raised if the continuity of the curve is not C3.
"""
def DN(self,U : float,N : int) -> OCP.gp.gp_Vec2d:
"""
For the point of parameter U of this curve, computes the vector corresponding to the Nth derivative. Exceptions StdFail_UndefinedDerivative if: - the continuity of the curve is not "CN", or - the derivative vector cannot be computed easily; this is the case with specific types of curve (for example, a rational BSpline curve where N is greater than 3). Standard_RangeError if N is less than 1.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def FirstParameter(self) -> float:
"""
Returns the value of the first parameter. Warnings : It can be RealFirst or RealLast from package Standard if the curve is infinite
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCN(self,N : int) -> bool:
"""
Returns true if the degree of continuity of this curve is at least N. Exceptions Standard_RangeError if N is less than 0.
"""
def IsClosed(self) -> bool:
"""
Returns true if the curve is closed. Examples : Some curves such as circle are always closed, others such as line are never closed (by definition). Some Curves such as OffsetCurve can be closed or not. These curves are considered as closed if the distance between the first point and the last point of the curve is lower or equal to the Resolution from package gp which is a fixed criterion independent of the application.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsPeriodic(self) -> bool:
"""
Returns true if the parameter of the curve is periodic. It is possible only if the curve is closed and if the following relation is satisfied : for each parametric value U the distance between the point P(u) and the point P (u + T) is lower or equal to Resolution from package gp, T is the period and must be a constant. There are three possibilities : . the curve is never periodic by definition (SegmentLine) . the curve is always periodic by definition (Circle) . the curve can be defined as periodic (BSpline). In this case a function SetPeriodic allows you to give the shape of the curve. The general rule for this case is : if a curve can be periodic or not the default periodicity set is non periodic and you have to turn (explicitly) the curve into a periodic curve if you want the curve to be periodic.
"""
def LastParameter(self) -> float:
"""
Value of the last parameter. Warnings : It can be RealFirst or RealLast from package Standard if the curve is infinite
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt2d) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry and assigns the result to this geometric object.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
"""
@overload
def Mirror(self,A : OCP.gp.gp_Ax2d) -> None: ...
@overload
def Mirrored(self,A : OCP.gp.gp_Ax2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry: ...
def ParametricTransformation(self,T : OCP.gp.gp_Trsf2d) -> float:
"""
Returns the coefficient required to compute the parametric transformation of this curve when transformation T is applied. This coefficient is the ratio between the parameter of a point on this curve and the parameter of the transformed point on the new curve transformed by T. Note: this function generally returns 1. but it can be redefined (for example, on a line).
"""
def Period(self) -> float:
"""
Returns the period of this curve. raises if the curve is not periodic
"""
def Reverse(self) -> None:
"""
Changes the direction of parametrization of <me>. The "FirstParameter" and the "LastParameter" are not changed but the orientation of the curve is modified. If the curve is bounded the StartPoint of the initial curve becomes the EndPoint of the reversed curve and the EndPoint of the initial curve becomes the StartPoint of the reversed curve.
"""
def Reversed(self) -> Geom2d_Curve:
"""
Creates a reversed duplicate Changes the orientation of this curve. The first and last parameters are not changed, but the parametric direction of the curve is reversed. If the curve is bounded: - the start point of the initial curve becomes the end point of the reversed curve, and - the end point of the initial curve becomes the start point of the reversed curve. - Reversed creates a new curve.
"""
def ReversedParameter(self,U : float) -> float:
"""
Computes the parameter on the reversed curve for the point of parameter U on this curve. Note: The point of parameter U on this curve is identical to the point of parameter ReversedParameter(U) on the reversed curve.
"""
def Rotate(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> None:
"""
Rotates a Geometry. P is the center of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> Geom2d_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt2d,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt2d,S : float) -> Geom2d_Geometry:
"""
None
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf2d) -> None:
"""
Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom2d). The following transformations have the same properties as the previous ones but they don't modified the object itself. A copy of the object is returned.
"""
def Transformed(self,T : OCP.gp.gp_Trsf2d) -> Geom2d_Geometry:
"""
None
"""
def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf2d) -> float:
"""
Computes the parameter on the curve transformed by T for the point of parameter U on this curve. Note: this function generally returns U but it can be redefined (for example, on a line).
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec2d) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec2d) -> Geom2d_Geometry: ...
def Value(self,U : float) -> OCP.gp.gp_Pnt2d:
"""
Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve.
"""
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom2d_BoundedCurve(Geom2d_Curve, Geom2d_Geometry, OCP.Standard.Standard_Transient):
"""
The abstract class BoundedCurve describes the common behavior of bounded curves in 2D space. A bounded curve is limited by two finite values of the parameter, termed respectively "first parameter" and "last parameter". The "first parameter" gives the "start point" of the bounded curve, and the "last parameter" gives the "end point" of the bounded curve. The length of a bounded curve is finite. The Geom2d package provides three concrete classes of bounded curves: - two frequently used mathematical formulations of complex curves: - Geom2d_BezierCurve, - Geom2d_BSplineCurve, and - Geom2d_TrimmedCurve to trim a curve, i.e. to only take part of the curve limited by two values of the parameter of the basis curve.The abstract class BoundedCurve describes the common behavior of bounded curves in 2D space. A bounded curve is limited by two finite values of the parameter, termed respectively "first parameter" and "last parameter". The "first parameter" gives the "start point" of the bounded curve, and the "last parameter" gives the "end point" of the bounded curve. The length of a bounded curve is finite. The Geom2d package provides three concrete classes of bounded curves: - two frequently used mathematical formulations of complex curves: - Geom2d_BezierCurve, - Geom2d_BSplineCurve, and - Geom2d_TrimmedCurve to trim a curve, i.e. to only take part of the curve limited by two values of the parameter of the basis curve.The abstract class BoundedCurve describes the common behavior of bounded curves in 2D space. A bounded curve is limited by two finite values of the parameter, termed respectively "first parameter" and "last parameter". The "first parameter" gives the "start point" of the bounded curve, and the "last parameter" gives the "end point" of the bounded curve. The length of a bounded curve is finite. The Geom2d package provides three concrete classes of bounded curves: - two frequently used mathematical formulations of complex curves: - Geom2d_BezierCurve, - Geom2d_BSplineCurve, and - Geom2d_TrimmedCurve to trim a curve, i.e. to only take part of the curve limited by two values of the parameter of the basis curve.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
It is the global continuity of the curve : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, G1 : tangency continuity all along the Curve, G2 : curvature continuity all along the Curve, CN : the order of continuity is infinite.
"""
def Copy(self) -> Geom2d_Geometry:
"""
None
"""
def D0(self,U : float,P : OCP.gp.gp_Pnt2d) -> None:
"""
Returns in P the point of parameter U. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve.
"""
def D1(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d) -> None:
"""
Returns the point P of parameter U and the first derivative V1. Raised if the continuity of the curve is not C1.
"""
def D2(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d,V2 : OCP.gp.gp_Vec2d) -> None:
"""
Returns the point P of parameter U, the first and second derivatives V1 and V2. Raised if the continuity of the curve is not C2.
"""
def D3(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d,V2 : OCP.gp.gp_Vec2d,V3 : OCP.gp.gp_Vec2d) -> None:
"""
Returns the point P of parameter U, the first, the second and the third derivative. Raised if the continuity of the curve is not C3.
"""
def DN(self,U : float,N : int) -> OCP.gp.gp_Vec2d:
"""
For the point of parameter U of this curve, computes the vector corresponding to the Nth derivative. Exceptions StdFail_UndefinedDerivative if: - the continuity of the curve is not "CN", or - the derivative vector cannot be computed easily; this is the case with specific types of curve (for example, a rational BSpline curve where N is greater than 3). Standard_RangeError if N is less than 1.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def EndPoint(self) -> OCP.gp.gp_Pnt2d:
"""
Returns the end point of the curve. The end point is the value of the curve for the "LastParameter" of the curve.
"""
def FirstParameter(self) -> float:
"""
Returns the value of the first parameter. Warnings : It can be RealFirst or RealLast from package Standard if the curve is infinite
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCN(self,N : int) -> bool:
"""
Returns true if the degree of continuity of this curve is at least N. Exceptions Standard_RangeError if N is less than 0.
"""
def IsClosed(self) -> bool:
"""
Returns true if the curve is closed. Examples : Some curves such as circle are always closed, others such as line are never closed (by definition). Some Curves such as OffsetCurve can be closed or not. These curves are considered as closed if the distance between the first point and the last point of the curve is lower or equal to the Resolution from package gp which is a fixed criterion independent of the application.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsPeriodic(self) -> bool:
"""
Returns true if the parameter of the curve is periodic. It is possible only if the curve is closed and if the following relation is satisfied : for each parametric value U the distance between the point P(u) and the point P (u + T) is lower or equal to Resolution from package gp, T is the period and must be a constant. There are three possibilities : . the curve is never periodic by definition (SegmentLine) . the curve is always periodic by definition (Circle) . the curve can be defined as periodic (BSpline). In this case a function SetPeriodic allows you to give the shape of the curve. The general rule for this case is : if a curve can be periodic or not the default periodicity set is non periodic and you have to turn (explicitly) the curve into a periodic curve if you want the curve to be periodic.
"""
def LastParameter(self) -> float:
"""
Value of the last parameter. Warnings : It can be RealFirst or RealLast from package Standard if the curve is infinite
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt2d) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry and assigns the result to this geometric object.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
"""
@overload
def Mirror(self,A : OCP.gp.gp_Ax2d) -> None: ...
@overload
def Mirrored(self,A : OCP.gp.gp_Ax2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry: ...
def ParametricTransformation(self,T : OCP.gp.gp_Trsf2d) -> float:
"""
Returns the coefficient required to compute the parametric transformation of this curve when transformation T is applied. This coefficient is the ratio between the parameter of a point on this curve and the parameter of the transformed point on the new curve transformed by T. Note: this function generally returns 1. but it can be redefined (for example, on a line).
"""
def Period(self) -> float:
"""
Returns the period of this curve. raises if the curve is not periodic
"""
def Reverse(self) -> None:
"""
Changes the direction of parametrization of <me>. The "FirstParameter" and the "LastParameter" are not changed but the orientation of the curve is modified. If the curve is bounded the StartPoint of the initial curve becomes the EndPoint of the reversed curve and the EndPoint of the initial curve becomes the StartPoint of the reversed curve.
"""
def Reversed(self) -> Geom2d_Curve:
"""
Creates a reversed duplicate Changes the orientation of this curve. The first and last parameters are not changed, but the parametric direction of the curve is reversed. If the curve is bounded: - the start point of the initial curve becomes the end point of the reversed curve, and - the end point of the initial curve becomes the start point of the reversed curve. - Reversed creates a new curve.
"""
def ReversedParameter(self,U : float) -> float:
"""
Computes the parameter on the reversed curve for the point of parameter U on this curve. Note: The point of parameter U on this curve is identical to the point of parameter ReversedParameter(U) on the reversed curve.
"""
def Rotate(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> None:
"""
Rotates a Geometry. P is the center of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> Geom2d_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt2d,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt2d,S : float) -> Geom2d_Geometry:
"""
None
"""
def StartPoint(self) -> OCP.gp.gp_Pnt2d:
"""
Returns the start point of the curve. The start point is the value of the curve for the "FirstParameter" of the curve.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf2d) -> None:
"""
Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom2d). The following transformations have the same properties as the previous ones but they don't modified the object itself. A copy of the object is returned.
"""
def Transformed(self,T : OCP.gp.gp_Trsf2d) -> Geom2d_Geometry:
"""
None
"""
def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf2d) -> float:
"""
Computes the parameter on the curve transformed by T for the point of parameter U on this curve. Note: this function generally returns U but it can be redefined (for example, on a line).
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec2d) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec2d) -> Geom2d_Geometry: ...
def Value(self,U : float) -> OCP.gp.gp_Pnt2d:
"""
Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve.
"""
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom2d_BSplineCurve(Geom2d_BoundedCurve, Geom2d_Curve, Geom2d_Geometry, OCP.Standard.Standard_Transient):
"""
Describes a BSpline curve. A BSpline curve can be: - uniform or non-uniform, - rational or non-rational, - periodic or non-periodic. A BSpline curve is defined by: - its degree; the degree for a Geom2d_BSplineCurve is limited to a value (25) which is defined and controlled by the system. This value is returned by the function MaxDegree; - its periodic or non-periodic nature; - a table of poles (also called control points), with their associated weights if the BSpline curve is rational. The poles of the curve are "control points" used to deform the curve. If the curve is non-periodic, the first pole is the start point of the curve, and the last pole is the end point of the curve. The segment, which joins the first pole to the second pole, is the tangent to the curve at its start point, and the segment, which joins the last pole to the second-from-last pole, is the tangent to the curve at its end point. If the curve is periodic, these geometric properties are not verified. It is more difficult to give a geometric signification to the weights but they are useful for providing exact representations of the arcs of a circle or ellipse. Moreover, if the weights of all the poles are equal, the curve has a polynomial equation; it is therefore a non-rational curve. - a table of knots with their multiplicities. For a Geom2d_BSplineCurve, the table of knots is an increasing sequence of reals without repetition; the multiplicities define the repetition of the knots. A BSpline curve is a piecewise polynomial or rational curve. The knots are the parameters of junction points between two pieces. The multiplicity Mult(i) of the knot Knot(i) of the BSpline curve is related to the degree of continuity of the curve at the knot Knot(i), which is equal to Degree - Mult(i) where Degree is the degree of the BSpline curve. If the knots are regularly spaced (i.e. the difference between two consecutive knots is a constant), three specific and frequently used cases of knot distribution can be identified: - "uniform" if all multiplicities are equal to 1, - "quasi-uniform" if all multiplicities are equal to 1, except the first and the last knot which have a multiplicity of Degree + 1, where Degree is the degree of the BSpline curve, - "Piecewise Bezier" if all multiplicities are equal to Degree except the first and last knot which have a multiplicity of Degree + 1, where Degree is the degree of the BSpline curve. A curve of this type is a concatenation of arcs of Bezier curves. If the BSpline curve is not periodic: - the bounds of the Poles and Weights tables are 1 and NbPoles, where NbPoles is the number of poles of the BSpline curve, - the bounds of the Knots and Multiplicities tables are 1 and NbKnots, where NbKnots is the number of knots of the BSpline curve. If the BSpline curve is periodic, and if there are k periodic knots and p periodic poles, the period is: period = Knot(k + 1) - Knot(1) and the poles and knots tables can be considered as infinite tables, such that: - Knot(i+k) = Knot(i) + period - Pole(i+p) = Pole(i) Note: data structures of a periodic BSpline curve are more complex than those of a non-periodic one. Warnings : In this class we consider that a weight value is zero if Weight <= Resolution from package gp. For two parametric values (or two knot values) U1, U2 we consider that U1 = U2 if Abs (U2 - U1) <= Epsilon (U1). For two weights values W1, W2 we consider that W1 = W2 if Abs (W2 - W1) <= Epsilon (W1). The method Epsilon is defined in the class Real from package Standard.Describes a BSpline curve. A BSpline curve can be: - uniform or non-uniform, - rational or non-rational, - periodic or non-periodic. A BSpline curve is defined by: - its degree; the degree for a Geom2d_BSplineCurve is limited to a value (25) which is defined and controlled by the system. This value is returned by the function MaxDegree; - its periodic or non-periodic nature; - a table of poles (also called control points), with their associated weights if the BSpline curve is rational. The poles of the curve are "control points" used to deform the curve. If the curve is non-periodic, the first pole is the start point of the curve, and the last pole is the end point of the curve. The segment, which joins the first pole to the second pole, is the tangent to the curve at its start point, and the segment, which joins the last pole to the second-from-last pole, is the tangent to the curve at its end point. If the curve is periodic, these geometric properties are not verified. It is more difficult to give a geometric signification to the weights but they are useful for providing exact representations of the arcs of a circle or ellipse. Moreover, if the weights of all the poles are equal, the curve has a polynomial equation; it is therefore a non-rational curve. - a table of knots with their multiplicities. For a Geom2d_BSplineCurve, the table of knots is an increasing sequence of reals without repetition; the multiplicities define the repetition of the knots. A BSpline curve is a piecewise polynomial or rational curve. The knots are the parameters of junction points between two pieces. The multiplicity Mult(i) of the knot Knot(i) of the BSpline curve is related to the degree of continuity of the curve at the knot Knot(i), which is equal to Degree - Mult(i) where Degree is the degree of the BSpline curve. If the knots are regularly spaced (i.e. the difference between two consecutive knots is a constant), three specific and frequently used cases of knot distribution can be identified: - "uniform" if all multiplicities are equal to 1, - "quasi-uniform" if all multiplicities are equal to 1, except the first and the last knot which have a multiplicity of Degree + 1, where Degree is the degree of the BSpline curve, - "Piecewise Bezier" if all multiplicities are equal to Degree except the first and last knot which have a multiplicity of Degree + 1, where Degree is the degree of the BSpline curve. A curve of this type is a concatenation of arcs of Bezier curves. If the BSpline curve is not periodic: - the bounds of the Poles and Weights tables are 1 and NbPoles, where NbPoles is the number of poles of the BSpline curve, - the bounds of the Knots and Multiplicities tables are 1 and NbKnots, where NbKnots is the number of knots of the BSpline curve. If the BSpline curve is periodic, and if there are k periodic knots and p periodic poles, the period is: period = Knot(k + 1) - Knot(1) and the poles and knots tables can be considered as infinite tables, such that: - Knot(i+k) = Knot(i) + period - Pole(i+p) = Pole(i) Note: data structures of a periodic BSpline curve are more complex than those of a non-periodic one. Warnings : In this class we consider that a weight value is zero if Weight <= Resolution from package gp. For two parametric values (or two knot values) U1, U2 we consider that U1 = U2 if Abs (U2 - U1) <= Epsilon (U1). For two weights values W1, W2 we consider that W1 = W2 if Abs (W2 - W1) <= Epsilon (W1). The method Epsilon is defined in the class Real from package Standard.Describes a BSpline curve. A BSpline curve can be: - uniform or non-uniform, - rational or non-rational, - periodic or non-periodic. A BSpline curve is defined by: - its degree; the degree for a Geom2d_BSplineCurve is limited to a value (25) which is defined and controlled by the system. This value is returned by the function MaxDegree; - its periodic or non-periodic nature; - a table of poles (also called control points), with their associated weights if the BSpline curve is rational. The poles of the curve are "control points" used to deform the curve. If the curve is non-periodic, the first pole is the start point of the curve, and the last pole is the end point of the curve. The segment, which joins the first pole to the second pole, is the tangent to the curve at its start point, and the segment, which joins the last pole to the second-from-last pole, is the tangent to the curve at its end point. If the curve is periodic, these geometric properties are not verified. It is more difficult to give a geometric signification to the weights but they are useful for providing exact representations of the arcs of a circle or ellipse. Moreover, if the weights of all the poles are equal, the curve has a polynomial equation; it is therefore a non-rational curve. - a table of knots with their multiplicities. For a Geom2d_BSplineCurve, the table of knots is an increasing sequence of reals without repetition; the multiplicities define the repetition of the knots. A BSpline curve is a piecewise polynomial or rational curve. The knots are the parameters of junction points between two pieces. The multiplicity Mult(i) of the knot Knot(i) of the BSpline curve is related to the degree of continuity of the curve at the knot Knot(i), which is equal to Degree - Mult(i) where Degree is the degree of the BSpline curve. If the knots are regularly spaced (i.e. the difference between two consecutive knots is a constant), three specific and frequently used cases of knot distribution can be identified: - "uniform" if all multiplicities are equal to 1, - "quasi-uniform" if all multiplicities are equal to 1, except the first and the last knot which have a multiplicity of Degree + 1, where Degree is the degree of the BSpline curve, - "Piecewise Bezier" if all multiplicities are equal to Degree except the first and last knot which have a multiplicity of Degree + 1, where Degree is the degree of the BSpline curve. A curve of this type is a concatenation of arcs of Bezier curves. If the BSpline curve is not periodic: - the bounds of the Poles and Weights tables are 1 and NbPoles, where NbPoles is the number of poles of the BSpline curve, - the bounds of the Knots and Multiplicities tables are 1 and NbKnots, where NbKnots is the number of knots of the BSpline curve. If the BSpline curve is periodic, and if there are k periodic knots and p periodic poles, the period is: period = Knot(k + 1) - Knot(1) and the poles and knots tables can be considered as infinite tables, such that: - Knot(i+k) = Knot(i) + period - Pole(i+p) = Pole(i) Note: data structures of a periodic BSpline curve are more complex than those of a non-periodic one. Warnings : In this class we consider that a weight value is zero if Weight <= Resolution from package gp. For two parametric values (or two knot values) U1, U2 we consider that U1 = U2 if Abs (U2 - U1) <= Epsilon (U1). For two weights values W1, W2 we consider that W1 = W2 if Abs (W2 - W1) <= Epsilon (W1). The method Epsilon is defined in the class Real from package Standard.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
Returns the global continuity of the curve : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, CN : the order of continuity is infinite. For a B-spline curve of degree d if a knot Ui has a multiplicity p the B-spline curve is only Cd-p continuous at Ui. So the global continuity of the curve can't be greater than Cd-p where p is the maximum multiplicity of the interior Knots. In the interior of a knot span the curve is infinitely continuously differentiable.
"""
def Copy(self) -> Geom2d_Geometry:
"""
Creates a new object which is a copy of this BSpline curve.
"""
def D0(self,U : float,P : OCP.gp.gp_Pnt2d) -> None:
"""
None
"""
def D1(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d) -> None:
"""
Raised if the continuity of the curve is not C1.
"""
def D2(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d,V2 : OCP.gp.gp_Vec2d) -> None:
"""
Raised if the continuity of the curve is not C2.
"""
def D3(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d,V2 : OCP.gp.gp_Vec2d,V3 : OCP.gp.gp_Vec2d) -> None:
"""
For this BSpline curve, computes - the point P of parameter U, or - the point P and one or more of the following values: - V1, the first derivative vector, - V2, the second derivative vector, - V3, the third derivative vector. Warning On a point where the continuity of the curve is not the one requested, these functions impact the part defined by the parameter with a value greater than U, i.e. the part of the curve to the "right" of the singularity. Raises UndefinedDerivative if the continuity of the curve is not C3.
"""
def DN(self,U : float,N : int) -> OCP.gp.gp_Vec2d:
"""
For the point of parameter U of this BSpline curve, computes the vector corresponding to the Nth derivative. Warning On a point where the continuity of the curve is not the one requested, this function impacts the part defined by the parameter with a value greater than U, i.e. the part of the curve to the "right" of the singularity. Raises UndefinedDerivative if the continuity of the curve is not CN. RangeError if N < 1. The following functions computes the point of parameter U and the derivatives at this point on the B-spline curve arc defined between the knot FromK1 and the knot ToK2. U can be out of bounds [Knot (FromK1), Knot (ToK2)] but for the computation we only use the definition of the curve between these two knots. This method is useful to compute local derivative, if the order of continuity of the whole curve is not greater enough. Inside the parametric domain Knot (FromK1), Knot (ToK2) the evaluations are the same as if we consider the whole definition of the curve. Of course the evaluations are different outside this parametric domain.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Degree(self) -> int:
"""
Returns the degree of this BSpline curve. In this class the degree of the basis normalized B-spline functions cannot be greater than "MaxDegree" Computation of value and derivatives
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def EndPoint(self) -> OCP.gp.gp_Pnt2d:
"""
Returns the last point of the curve. Warnings : The last point of the curve is different from the last pole of the curve if the multiplicity of the last knot is lower than Degree.
"""
def FirstParameter(self) -> float:
"""
Computes the parametric value of the start point of the curve. It is a knot value.
"""
def FirstUKnotIndex(self) -> int:
"""
For a B-spline curve the first parameter (which gives the start point of the curve) is a knot value but if the multiplicity of the first knot index is lower than Degree + 1 it is not the first knot of the curve. This method computes the index of the knot corresponding to the first parameter.
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncreaseDegree(self,Degree : int) -> None:
"""
Increases the degree of this BSpline curve to Degree. As a result, the poles, weights and multiplicities tables are modified; the knots table is not changed. Nothing is done if Degree is less than or equal to the current degree. Exceptions Standard_ConstructionError if Degree is greater than Geom2d_BSplineCurve::MaxDegree().
"""
@overload
def IncreaseMultiplicity(self,Index : int,M : int) -> None:
"""
Increases the multiplicity of the knot <Index> to <M>.
Increases the multiplicities of the knots in [I1,I2] to <M>.
"""
@overload
def IncreaseMultiplicity(self,I1 : int,I2 : int,M : int) -> None: ...
def IncrementMultiplicity(self,I1 : int,I2 : int,M : int) -> None:
"""
Increases by M the multiplicity of the knots of indexes I1 to I2 in the knots table of this BSpline curve. For each knot, the resulting multiplicity is limited to the degree of this curve. If M is negative, nothing is done. As a result, the poles and weights tables of this BSpline curve are modified. Warning It is forbidden to modify the multiplicity of the first or last knot of a non-periodic curve. Be careful as Geom2d does not protect against this. Exceptions Standard_OutOfRange if I1 or I2 is outside the bounds of the knots table.
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def InsertKnot(self,U : float,M : int=1,ParametricTolerance : float=0.0) -> None:
"""
Inserts a knot value in the sequence of knots. If <U> is an existing knot the multiplicity is increased by <M>.
"""
def InsertKnots(self,Knots : OCP.TColStd.TColStd_Array1OfReal,Mults : OCP.TColStd.TColStd_Array1OfInteger,ParametricTolerance : float=0.0,Add : bool=False) -> None:
"""
Inserts the values of the array Knots, with the respective multiplicities given by the array Mults, into the knots table of this BSpline curve. If a value of the array Knots is an existing knot, its multiplicity is: - increased by M, if Add is true, or - increased to M, if Add is false (default value). The tolerance criterion used for knot equality is the larger of the values ParametricTolerance (defaulted to 0.) and Standard_Real::Epsilon(U), where U is the current knot value. Warning - For a value of the array Knots which is less than the first parameter or greater than the last parameter of this BSpline curve, nothing is done. - For a value of the array Mults which is negative or null, nothing is done. - The multiplicity of a knot is limited to the degree of this BSpline curve.
"""
def InsertPoleAfter(self,Index : int,P : OCP.gp.gp_Pnt2d,Weight : float=1.0) -> None:
"""
The new pole is inserted after the pole of range Index. If the curve was non rational it can become rational.
"""
def InsertPoleBefore(self,Index : int,P : OCP.gp.gp_Pnt2d,Weight : float=1.0) -> None:
"""
The new pole is inserted before the pole of range Index. If the curve was non rational it can become rational.
"""
def IsCN(self,N : int) -> bool:
"""
Returns true if the degree of continuity of this BSpline curve is at least N. A BSpline curve is at least GeomAbs_C0. Exceptions Standard_RangeError if N is negative.
"""
def IsClosed(self) -> bool:
"""
Returns true if the distance between the first point and the last point of the curve is lower or equal to Resolution from package gp. Warnings : The first and the last point can be different from the first pole and the last pole of the curve.
"""
def IsG1(self,theTf : float,theTl : float,theAngTol : float) -> bool:
"""
Check if curve has at least G1 continuity in interval [theTf, theTl] Returns true if IsCN(1) or angle between "left" and "right" first derivatives at knots with C0 continuity is less then theAngTol only knots in interval [theTf, theTl] is checked
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsPeriodic(self) -> bool:
"""
Returns True if the curve is periodic.
"""
def IsRational(self) -> bool:
"""
Returns True if the weights are not identical. The tolerance criterion is Epsilon of the class Real.
"""
def Knot(self,Index : int) -> float:
"""
Returns the knot of range Index. When there is a knot with a multiplicity greater than 1 the knot is not repeated. The method Multiplicity can be used to get the multiplicity of the Knot. Raised if Index < 1 or Index > NbKnots
"""
def KnotDistribution(self) -> OCP.GeomAbs.GeomAbs_BSplKnotDistribution:
"""
Returns NonUniform or Uniform or QuasiUniform or PiecewiseBezier. If all the knots differ by a positive constant from the preceding knot the BSpline Curve can be : - Uniform if all the knots are of multiplicity 1, - QuasiUniform if all the knots are of multiplicity 1 except for the first and last knot which are of multiplicity Degree + 1, - PiecewiseBezier if the first and last knots have multiplicity Degree + 1 and if interior knots have multiplicity Degree A piecewise Bezier with only two knots is a BezierCurve. else the curve is non uniform. The tolerance criterion is Epsilon from class Real.
"""
@overload
def KnotSequence(self,K : OCP.TColStd.TColStd_Array1OfReal) -> None:
"""
Returns the knots sequence. In this sequence the knots with a multiplicity greater than 1 are repeated. Example : K = {k1, k1, k1, k2, k3, k3, k4, k4, k4}
Returns the knots sequence. In this sequence the knots with a multiplicity greater than 1 are repeated. Example : K = {k1, k1, k1, k2, k3, k3, k4, k4, k4}
"""
@overload
def KnotSequence(self) -> OCP.TColStd.TColStd_Array1OfReal: ...
@overload
def Knots(self,K : OCP.TColStd.TColStd_Array1OfReal) -> None:
"""
returns the knot values of the B-spline curve;
returns the knot values of the B-spline curve;
"""
@overload
def Knots(self) -> OCP.TColStd.TColStd_Array1OfReal: ...
def LastParameter(self) -> float:
"""
Computes the parametric value of the end point of the curve. It is a knot value.
"""
def LastUKnotIndex(self) -> int:
"""
For a BSpline curve the last parameter (which gives the end point of the curve) is a knot value but if the multiplicity of the last knot index is lower than Degree + 1 it is not the last knot of the curve. This method computes the index of the knot corresponding to the last parameter.
"""
def LocalD0(self,U : float,FromK1 : int,ToK2 : int,P : OCP.gp.gp_Pnt2d) -> None:
"""
Raised if FromK1 = ToK2.
"""
def LocalD1(self,U : float,FromK1 : int,ToK2 : int,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d) -> None:
"""
Raised if the local continuity of the curve is not C1 between the knot K1 and the knot K2. Raised if FromK1 = ToK2.
"""
def LocalD2(self,U : float,FromK1 : int,ToK2 : int,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d,V2 : OCP.gp.gp_Vec2d) -> None:
"""
Raised if the local continuity of the curve is not C2 between the knot K1 and the knot K2. Raised if FromK1 = ToK2.
"""
def LocalD3(self,U : float,FromK1 : int,ToK2 : int,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d,V2 : OCP.gp.gp_Vec2d,V3 : OCP.gp.gp_Vec2d) -> None:
"""
Raised if the local continuity of the curve is not C3 between the knot K1 and the knot K2. Raised if FromK1 = ToK2.
"""
def LocalDN(self,U : float,FromK1 : int,ToK2 : int,N : int) -> OCP.gp.gp_Vec2d:
"""
Raised if the local continuity of the curve is not CN between the knot K1 and the knot K2. Raised if FromK1 = ToK2. Raised if N < 1.
"""
def LocalValue(self,U : float,FromK1 : int,ToK2 : int) -> OCP.gp.gp_Pnt2d:
"""
Raised if FromK1 = ToK2.
"""
def LocateU(self,U : float,ParametricTolerance : float,WithKnotRepetition : bool=False) -> tuple[int, int]:
"""
Locates the parametric value U in the sequence of knots. If "WithKnotRepetition" is True we consider the knot's representation with repetition of multiple knot value, otherwise we consider the knot's representation with no repetition of multiple knot values. Knots (I1) <= U <= Knots (I2) . if I1 = I2 U is a knot value (the tolerance criterion ParametricTolerance is used). . if I1 < 1 => U < Knots (1) - Abs(ParametricTolerance) . if I2 > NbKnots => U > Knots (NbKnots) + Abs(ParametricTolerance)
"""
@staticmethod
def MaxDegree_s() -> int:
"""
Returns the value of the maximum degree of the normalized B-spline basis functions in this package.
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt2d) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry and assigns the result to this geometric object.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
"""
@overload
def Mirror(self,A : OCP.gp.gp_Ax2d) -> None: ...
@overload
def Mirrored(self,A : OCP.gp.gp_Ax2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry: ...
def MovePoint(self,U : float,P : OCP.gp.gp_Pnt2d,Index1 : int,Index2 : int) -> tuple[int, int]:
"""
Moves the point of parameter U of this BSpline curve to P. Index1 and Index2 are the indexes in the table of poles of this BSpline curve of the first and last poles designated to be moved. FirstModifiedPole and LastModifiedPole are the indexes of the first and last poles, which are effectively modified. In the event of incompatibility between Index1, Index2 and the value U: - no change is made to this BSpline curve, and - the FirstModifiedPole and LastModifiedPole are returned null. Exceptions Standard_OutOfRange if: - Index1 is greater than or equal to Index2, or - Index1 or Index2 is less than 1 or greater than the number of poles of this BSpline curve.
"""
def MovePointAndTangent(self,U : float,P : OCP.gp.gp_Pnt2d,Tangent : OCP.gp.gp_Vec2d,Tolerance : float,StartingCondition : int,EndingCondition : int) -> tuple[int]:
"""
Move a point with parameter U to P. and makes it tangent at U be Tangent. StartingCondition = -1 means first can move EndingCondition = -1 means last point can move StartingCondition = 0 means the first point cannot move EndingCondition = 0 means the last point cannot move StartingCondition = 1 means the first point and tangent cannot move EndingCondition = 1 means the last point and tangent cannot move and so forth ErrorStatus != 0 means that there are not enough degree of freedom with the constrain to deform the curve accordingly
"""
@overload
def Multiplicities(self,M : OCP.TColStd.TColStd_Array1OfInteger) -> None:
"""
Returns the multiplicity of the knots of the curve.
returns the multiplicity of the knots of the curve.
"""
@overload
def Multiplicities(self) -> OCP.TColStd.TColStd_Array1OfInteger: ...
def Multiplicity(self,Index : int) -> int:
"""
Returns the multiplicity of the knots of range Index. Raised if Index < 1 or Index > NbKnots
"""
def NbKnots(self) -> int:
"""
Returns the number of knots. This method returns the number of knot without repetition of multiple knots.
"""
def NbPoles(self) -> int:
"""
Returns the number of poles
"""
def ParametricTransformation(self,T : OCP.gp.gp_Trsf2d) -> float:
"""
Returns the coefficient required to compute the parametric transformation of this curve when transformation T is applied. This coefficient is the ratio between the parameter of a point on this curve and the parameter of the transformed point on the new curve transformed by T. Note: this function generally returns 1. but it can be redefined (for example, on a line).
"""
def Period(self) -> float:
"""
Returns the period of this curve. raises if the curve is not periodic
"""
def PeriodicNormalization(self) -> tuple[float]:
"""
Computes the parameter normalized within the "first" period of this BSpline curve, if it is periodic: the returned value is in the range Param1 and Param1 + Period, where: - Param1 is the "first parameter", and - Period the period of this BSpline curve. Note: If this curve is not periodic, U is not modified.
"""
def Pole(self,Index : int) -> OCP.gp.gp_Pnt2d:
"""
Returns the pole of range Index. Raised if Index < 1 or Index > NbPoles.
"""
@overload
def Poles(self) -> OCP.TColgp.TColgp_Array1OfPnt2d:
"""
Returns the poles of the B-spline curve;
Returns the poles of the B-spline curve;
"""
@overload
def Poles(self,P : OCP.TColgp.TColgp_Array1OfPnt2d) -> None: ...
def RemoveKnot(self,Index : int,M : int,Tolerance : float) -> bool:
"""
Reduces the multiplicity of the knot of index Index to M. If M is equal to 0, the knot is removed. With a modification of this type, the array of poles is also modified. Two different algorithms are systematically used to compute the new poles of the curve. If, for each pole, the distance between the pole calculated using the first algorithm and the same pole calculated using the second algorithm, is less than Tolerance, this ensures that the curve is not modified by more than Tolerance. Under these conditions, true is returned; otherwise, false is returned. A low tolerance is used to prevent modification of the curve. A high tolerance is used to "smooth" the curve. Exceptions Standard_OutOfRange if Index is outside the bounds of the knots table.
"""
def RemovePole(self,Index : int) -> None:
"""
Removes the pole of range Index If the curve was rational it can become non rational.
"""
def Resolution(self,ToleranceUV : float) -> tuple[float]:
"""
Computes for this BSpline curve the parametric tolerance UTolerance for a given tolerance Tolerance3D (relative to dimensions in the plane). If f(t) is the equation of this BSpline curve, UTolerance ensures that: | t1 - t0| < Utolerance ===> |f(t1) - f(t0)| < ToleranceUV
"""
def Reverse(self) -> None:
"""
Reverses the orientation of this BSpline curve. As a result - the knots and poles tables are modified; - the start point of the initial curve becomes the end point of the reversed curve; - the end point of the initial curve becomes the start point of the reversed curve.
"""
def Reversed(self) -> Geom2d_Curve:
"""
Creates a reversed duplicate Changes the orientation of this curve. The first and last parameters are not changed, but the parametric direction of the curve is reversed. If the curve is bounded: - the start point of the initial curve becomes the end point of the reversed curve, and - the end point of the initial curve becomes the start point of the reversed curve. - Reversed creates a new curve.
"""
def ReversedParameter(self,U : float) -> float:
"""
Computes the parameter on the reversed curve for the point of parameter U on this BSpline curve. The returned value is: UFirst + ULast - U, where UFirst and ULast are the values of the first and last parameters of this BSpline curve.
"""
def Rotate(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> None:
"""
Rotates a Geometry. P is the center of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> Geom2d_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt2d,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt2d,S : float) -> Geom2d_Geometry:
"""
None
"""
def Segment(self,U1 : float,U2 : float,theTolerance : float=9.999999999999999e-10) -> None:
"""
Modifies this BSpline curve by segmenting it between U1 and U2. Either of these values can be outside the bounds of the curve, but U2 must be greater than U1. All data structure tables of this BSpline curve are modified, but the knots located between U1 and U2 are retained. The degree of the curve is not modified.
"""
@overload
def SetKnot(self,Index : int,K : float) -> None:
"""
Modifies this BSpline curve by assigning the value K to the knot of index Index in the knots table. This is a relatively local modification because K must be such that: Knots(Index - 1) < K < Knots(Index + 1) Exceptions Standard_ConstructionError if: - K is not such that: Knots(Index - 1) < K < Knots(Index + 1) - M is greater than the degree of this BSpline curve or lower than the previous multiplicity of knot of index Index in the knots table. Standard_OutOfRange if Index is outside the bounds of the knots table.
Modifies this BSpline curve by assigning the value K to the knot of index Index in the knots table. This is a relatively local modification because K must be such that: Knots(Index - 1) < K < Knots(Index + 1) The second syntax allows you also to increase the multiplicity of the knot to M (but it is not possible to decrease the multiplicity of the knot with this function). Exceptions Standard_ConstructionError if: - K is not such that: Knots(Index - 1) < K < Knots(Index + 1) - M is greater than the degree of this BSpline curve or lower than the previous multiplicity of knot of index Index in the knots table. Standard_OutOfRange if Index is outside the bounds of the knots table.
"""
@overload
def SetKnot(self,Index : int,K : float,M : int) -> None: ...
def SetKnots(self,K : OCP.TColStd.TColStd_Array1OfReal) -> None:
"""
Modifies this BSpline curve by assigning the array K to its knots table. The multiplicity of the knots is not modified. Exceptions Standard_ConstructionError if the values in the array K are not in ascending order. Standard_OutOfRange if the bounds of the array K are not respectively 1 and the number of knots of this BSpline curve.
"""
def SetNotPeriodic(self) -> None:
"""
Changes this BSpline curve into a non-periodic curve. If this curve is already non-periodic, it is not modified. Note that the poles and knots tables are modified. Warning If this curve is periodic, as the multiplicity of the first and last knots is not modified, and is not equal to Degree + 1, where Degree is the degree of this BSpline curve, the start and end points of the curve are not its first and last poles.
"""
def SetOrigin(self,Index : int) -> None:
"""
Assigns the knot of index Index in the knots table as the origin of this periodic BSpline curve. As a consequence, the knots and poles tables are modified. Exceptions Standard_NoSuchObject if this curve is not periodic. Standard_DomainError if Index is outside the bounds of the knots table.
"""
def SetPeriodic(self) -> None:
"""
Changes this BSpline curve into a periodic curve. To become periodic, the curve must first be closed. Next, the knot sequence must be periodic. For this, FirstUKnotIndex and LastUKnotIndex are used to compute I1 and I2, the indexes in the knots array of the knots corresponding to the first and last parameters of this BSpline curve. The period is therefore Knot(I2) - Knot(I1). Consequently, the knots and poles tables are modified. Exceptions Standard_ConstructionError if this BSpline curve is not closed.
"""
@overload
def SetPole(self,Index : int,P : OCP.gp.gp_Pnt2d) -> None:
"""
Modifies this BSpline curve by assigning P to the pole of index Index in the poles table. Exceptions Standard_OutOfRange if Index is outside the bounds of the poles table. Standard_ConstructionError if Weight is negative or null.
Modifies this BSpline curve by assigning P to the pole of index Index in the poles table. The second syntax also allows you to modify the weight of the modified pole, which becomes Weight. In this case, if this BSpline curve is non-rational, it can become rational and vice versa. Exceptions Standard_OutOfRange if Index is outside the bounds of the poles table. Standard_ConstructionError if Weight is negative or null.
"""
@overload
def SetPole(self,Index : int,P : OCP.gp.gp_Pnt2d,Weight : float) -> None: ...
def SetWeight(self,Index : int,Weight : float) -> None:
"""
Assigns the weight Weight to the pole of index Index of the poles table. If the curve was non rational it can become rational. If the curve was rational it can become non rational. Exceptions Standard_OutOfRange if Index is outside the bounds of the poles table. Standard_ConstructionError if Weight is negative or null.
"""
def StartPoint(self) -> OCP.gp.gp_Pnt2d:
"""
Returns the start point of the curve. Warnings : This point is different from the first pole of the curve if the multiplicity of the first knot is lower than Degree.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf2d) -> None:
"""
Applies the transformation T to this BSpline curve.
"""
def Transformed(self,T : OCP.gp.gp_Trsf2d) -> Geom2d_Geometry:
"""
None
"""
def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf2d) -> float:
"""
Computes the parameter on the curve transformed by T for the point of parameter U on this curve. Note: this function generally returns U but it can be redefined (for example, on a line).
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec2d) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec2d) -> Geom2d_Geometry: ...
def Value(self,U : float) -> OCP.gp.gp_Pnt2d:
"""
Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve.
"""
def Weight(self,Index : int) -> float:
"""
Returns the weight of the pole of range Index . Raised if Index < 1 or Index > NbPoles.
"""
@overload
def Weights(self) -> OCP.TColStd.TColStd_Array1OfReal:
"""
Returns the weights of the B-spline curve;
Returns the weights of the B-spline curve;
"""
@overload
def Weights(self,W : OCP.TColStd.TColStd_Array1OfReal) -> None: ...
@overload
def __init__(self,Poles : OCP.TColgp.TColgp_Array1OfPnt2d,Knots : OCP.TColStd.TColStd_Array1OfReal,Multiplicities : OCP.TColStd.TColStd_Array1OfInteger,Degree : int,Periodic : bool=False) -> None: ...
@overload
def __init__(self,Poles : OCP.TColgp.TColgp_Array1OfPnt2d,Weights : OCP.TColStd.TColStd_Array1OfReal,Knots : OCP.TColStd.TColStd_Array1OfReal,Multiplicities : OCP.TColStd.TColStd_Array1OfInteger,Degree : int,Periodic : bool=False) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom2d_Point(Geom2d_Geometry, OCP.Standard.Standard_Transient):
"""
The abstract class Point describes the common behavior of geometric points in 2D space. The Geom2d package also provides the concrete class Geom2d_CartesianPoint.The abstract class Point describes the common behavior of geometric points in 2D space. The Geom2d package also provides the concrete class Geom2d_CartesianPoint.The abstract class Point describes the common behavior of geometric points in 2D space. The Geom2d package also provides the concrete class Geom2d_CartesianPoint.
"""
def Coord(self) -> tuple[float, float]:
"""
returns the Coordinates of <me>.
"""
def Copy(self) -> Geom2d_Geometry:
"""
None
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def Distance(self,Other : Geom2d_Point) -> float:
"""
computes the distance between <me> and <Other>.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
@overload
def Mirror(self,P : OCP.gp.gp_Pnt2d) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry and assigns the result to this geometric object.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
"""
@overload
def Mirror(self,A : OCP.gp.gp_Ax2d) -> None: ...
@overload
def Mirrored(self,A : OCP.gp.gp_Ax2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry: ...
def Pnt2d(self) -> OCP.gp.gp_Pnt2d:
"""
returns a non persistent copy of <me>
"""
def Rotate(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> None:
"""
Rotates a Geometry. P is the center of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> Geom2d_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt2d,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt2d,S : float) -> Geom2d_Geometry:
"""
None
"""
def SquareDistance(self,Other : Geom2d_Point) -> float:
"""
computes the square distance between <me> and <Other>.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf2d) -> None:
"""
Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom2d). The following transformations have the same properties as the previous ones but they don't modified the object itself. A copy of the object is returned.
"""
def Transformed(self,T : OCP.gp.gp_Trsf2d) -> Geom2d_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec2d) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec2d) -> Geom2d_Geometry: ...
def X(self) -> float:
"""
returns the X coordinate of <me>.
"""
def Y(self) -> float:
"""
returns the Y coordinate of <me>.
"""
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom2d_Conic(Geom2d_Curve, Geom2d_Geometry, OCP.Standard.Standard_Transient):
"""
The abstract class Conic describes the common behavior of conic curves in 2D space and, in particular, their general characteristics. The Geom2d package provides four specific classes of conics: Geom2d_Circle, Geom2d_Ellipse, Geom2d_Hyperbola and Geom2d_Parabola. A conic is positioned in the plane with a coordinate system (gp_Ax22d object), where the origin is the center of the conic (or the apex in case of a parabola). This coordinate system is the local coordinate system of the conic. It gives the conic an explicit orientation, determining the direction in which the parameter increases along the conic. The "X Axis" of the local coordinate system also defines the origin of the parameter of the conic.The abstract class Conic describes the common behavior of conic curves in 2D space and, in particular, their general characteristics. The Geom2d package provides four specific classes of conics: Geom2d_Circle, Geom2d_Ellipse, Geom2d_Hyperbola and Geom2d_Parabola. A conic is positioned in the plane with a coordinate system (gp_Ax22d object), where the origin is the center of the conic (or the apex in case of a parabola). This coordinate system is the local coordinate system of the conic. It gives the conic an explicit orientation, determining the direction in which the parameter increases along the conic. The "X Axis" of the local coordinate system also defines the origin of the parameter of the conic.The abstract class Conic describes the common behavior of conic curves in 2D space and, in particular, their general characteristics. The Geom2d package provides four specific classes of conics: Geom2d_Circle, Geom2d_Ellipse, Geom2d_Hyperbola and Geom2d_Parabola. A conic is positioned in the plane with a coordinate system (gp_Ax22d object), where the origin is the center of the conic (or the apex in case of a parabola). This coordinate system is the local coordinate system of the conic. It gives the conic an explicit orientation, determining the direction in which the parameter increases along the conic. The "X Axis" of the local coordinate system also defines the origin of the parameter of the conic.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
Returns GeomAbs_CN which is the global continuity of any conic.
"""
def Copy(self) -> Geom2d_Geometry:
"""
None
"""
def D0(self,U : float,P : OCP.gp.gp_Pnt2d) -> None:
"""
Returns in P the point of parameter U. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve.
"""
def D1(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d) -> None:
"""
Returns the point P of parameter U and the first derivative V1. Raised if the continuity of the curve is not C1.
"""
def D2(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d,V2 : OCP.gp.gp_Vec2d) -> None:
"""
Returns the point P of parameter U, the first and second derivatives V1 and V2. Raised if the continuity of the curve is not C2.
"""
def D3(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d,V2 : OCP.gp.gp_Vec2d,V3 : OCP.gp.gp_Vec2d) -> None:
"""
Returns the point P of parameter U, the first, the second and the third derivative. Raised if the continuity of the curve is not C3.
"""
def DN(self,U : float,N : int) -> OCP.gp.gp_Vec2d:
"""
For the point of parameter U of this curve, computes the vector corresponding to the Nth derivative. Exceptions StdFail_UndefinedDerivative if: - the continuity of the curve is not "CN", or - the derivative vector cannot be computed easily; this is the case with specific types of curve (for example, a rational BSpline curve where N is greater than 3). Standard_RangeError if N is less than 1.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def Eccentricity(self) -> float:
"""
returns the eccentricity value of the conic e. e = 0 for a circle 0 < e < 1 for an ellipse (e = 0 if MajorRadius = MinorRadius) e > 1 for a hyperbola e = 1 for a parabola
"""
def FirstParameter(self) -> float:
"""
Returns the value of the first parameter. Warnings : It can be RealFirst or RealLast from package Standard if the curve is infinite
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCN(self,N : int) -> bool:
"""
Returns True, the order of continuity of a conic is infinite.
"""
def IsClosed(self) -> bool:
"""
Returns true if the curve is closed. Examples : Some curves such as circle are always closed, others such as line are never closed (by definition). Some Curves such as OffsetCurve can be closed or not. These curves are considered as closed if the distance between the first point and the last point of the curve is lower or equal to the Resolution from package gp which is a fixed criterion independent of the application.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsPeriodic(self) -> bool:
"""
Returns true if the parameter of the curve is periodic. It is possible only if the curve is closed and if the following relation is satisfied : for each parametric value U the distance between the point P(u) and the point P (u + T) is lower or equal to Resolution from package gp, T is the period and must be a constant. There are three possibilities : . the curve is never periodic by definition (SegmentLine) . the curve is always periodic by definition (Circle) . the curve can be defined as periodic (BSpline). In this case a function SetPeriodic allows you to give the shape of the curve. The general rule for this case is : if a curve can be periodic or not the default periodicity set is non periodic and you have to turn (explicitly) the curve into a periodic curve if you want the curve to be periodic.
"""
def LastParameter(self) -> float:
"""
Value of the last parameter. Warnings : It can be RealFirst or RealLast from package Standard if the curve is infinite
"""
def Location(self) -> OCP.gp.gp_Pnt2d:
"""
Returns the location point of the conic. For the circle, the ellipse and the hyperbola it is the center of the conic. For the parabola it is the vertex of the parabola.
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt2d) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry and assigns the result to this geometric object.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
"""
@overload
def Mirror(self,A : OCP.gp.gp_Ax2d) -> None: ...
@overload
def Mirrored(self,A : OCP.gp.gp_Ax2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry: ...
def ParametricTransformation(self,T : OCP.gp.gp_Trsf2d) -> float:
"""
Returns the coefficient required to compute the parametric transformation of this curve when transformation T is applied. This coefficient is the ratio between the parameter of a point on this curve and the parameter of the transformed point on the new curve transformed by T. Note: this function generally returns 1. but it can be redefined (for example, on a line).
"""
def Period(self) -> float:
"""
Returns the period of this curve. raises if the curve is not periodic
"""
def Position(self) -> OCP.gp.gp_Ax22d:
"""
Returns the local coordinates system of the conic.
"""
def Reverse(self) -> None:
"""
Reverses the direction of parameterization of <me>. The local coordinate system of the conic is modified.
"""
def Reversed(self) -> Geom2d_Curve:
"""
Creates a reversed duplicate Changes the orientation of this curve. The first and last parameters are not changed, but the parametric direction of the curve is reversed. If the curve is bounded: - the start point of the initial curve becomes the end point of the reversed curve, and - the end point of the initial curve becomes the start point of the reversed curve. - Reversed creates a new curve.
"""
def ReversedParameter(self,U : float) -> float:
"""
Returns the parameter on the reversed curve for the point of parameter U on <me>.
"""
def Rotate(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> None:
"""
Rotates a Geometry. P is the center of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> Geom2d_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt2d,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt2d,S : float) -> Geom2d_Geometry:
"""
None
"""
def SetAxis(self,theA : OCP.gp.gp_Ax22d) -> None:
"""
Modifies this conic, redefining its local coordinate system partially, by assigning theA as its axis
"""
def SetLocation(self,theP : OCP.gp.gp_Pnt2d) -> None:
"""
Modifies this conic, redefining its local coordinate system partially, by assigning theP as its origin.
"""
def SetXAxis(self,theAX : OCP.gp.gp_Ax2d) -> None:
"""
Assigns the origin and unit vector of axis theA to the origin of the local coordinate system of this conic and X Direction. The other unit vector of the local coordinate system of this conic is recomputed normal to theA, without changing the orientation of the local coordinate system (right-handed or left-handed).
"""
def SetYAxis(self,theAY : OCP.gp.gp_Ax2d) -> None:
"""
Assigns the origin and unit vector of axis theA to the origin of the local coordinate system of this conic and Y Direction. The other unit vector of the local coordinate system of this conic is recomputed normal to theA, without changing the orientation of the local coordinate system (right-handed or left-handed).
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf2d) -> None:
"""
Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom2d). The following transformations have the same properties as the previous ones but they don't modified the object itself. A copy of the object is returned.
"""
def Transformed(self,T : OCP.gp.gp_Trsf2d) -> Geom2d_Geometry:
"""
None
"""
def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf2d) -> float:
"""
Computes the parameter on the curve transformed by T for the point of parameter U on this curve. Note: this function generally returns U but it can be redefined (for example, on a line).
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec2d) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec2d) -> Geom2d_Geometry: ...
def Value(self,U : float) -> OCP.gp.gp_Pnt2d:
"""
Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve.
"""
def XAxis(self) -> OCP.gp.gp_Ax2d:
"""
Returns the "XAxis" of the conic. This axis defines the origin of parametrization of the conic. This axis and the "Yaxis" define the local coordinate system of the conic. -C++: return const&
"""
def YAxis(self) -> OCP.gp.gp_Ax2d:
"""
Returns the "YAxis" of the conic. The "YAxis" is perpendicular to the "Xaxis".
"""
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom2d_Circle(Geom2d_Conic, Geom2d_Curve, Geom2d_Geometry, OCP.Standard.Standard_Transient):
"""
Describes a circle in the plane (2D space). A circle is defined by its radius and, as with any conic curve, is positioned in the plane with a coordinate system (gp_Ax22d object) where the origin is the center of the circle. The coordinate system is the local coordinate system of the circle. The orientation (direct or indirect) of the local coordinate system gives an explicit orientation to the circle, determining the direction in which the parameter increases along the circle. The Geom2d_Circle circle is parameterized by an angle: P(U) = O + R*Cos(U)*XDir + R*Sin(U)*YDir where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - R is the radius of the circle. The "X Axis" of the local coordinate system therefore defines the origin of the parameter of the circle. The parameter is the angle with this "X Direction". A circle is a closed and periodic curve. The period is 2.*Pi and the parameter range is [ 0,2.*Pi [. See Also GCE2d_MakeCircle which provides functions for more complex circle constructions gp_Ax22d and gp_Circ2d for an equivalent, non-parameterized data structure.Describes a circle in the plane (2D space). A circle is defined by its radius and, as with any conic curve, is positioned in the plane with a coordinate system (gp_Ax22d object) where the origin is the center of the circle. The coordinate system is the local coordinate system of the circle. The orientation (direct or indirect) of the local coordinate system gives an explicit orientation to the circle, determining the direction in which the parameter increases along the circle. The Geom2d_Circle circle is parameterized by an angle: P(U) = O + R*Cos(U)*XDir + R*Sin(U)*YDir where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - R is the radius of the circle. The "X Axis" of the local coordinate system therefore defines the origin of the parameter of the circle. The parameter is the angle with this "X Direction". A circle is a closed and periodic curve. The period is 2.*Pi and the parameter range is [ 0,2.*Pi [. See Also GCE2d_MakeCircle which provides functions for more complex circle constructions gp_Ax22d and gp_Circ2d for an equivalent, non-parameterized data structure.Describes a circle in the plane (2D space). A circle is defined by its radius and, as with any conic curve, is positioned in the plane with a coordinate system (gp_Ax22d object) where the origin is the center of the circle. The coordinate system is the local coordinate system of the circle. The orientation (direct or indirect) of the local coordinate system gives an explicit orientation to the circle, determining the direction in which the parameter increases along the circle. The Geom2d_Circle circle is parameterized by an angle: P(U) = O + R*Cos(U)*XDir + R*Sin(U)*YDir where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - R is the radius of the circle. The "X Axis" of the local coordinate system therefore defines the origin of the parameter of the circle. The parameter is the angle with this "X Direction". A circle is a closed and periodic curve. The period is 2.*Pi and the parameter range is [ 0,2.*Pi [. See Also GCE2d_MakeCircle which provides functions for more complex circle constructions gp_Ax22d and gp_Circ2d for an equivalent, non-parameterized data structure.
"""
def Circ2d(self) -> OCP.gp.gp_Circ2d:
"""
Returns the non persistent circle from gp with the same geometric properties as <me>.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
Returns GeomAbs_CN which is the global continuity of any conic.
"""
def Copy(self) -> Geom2d_Geometry:
"""
Creates a new object which is a copy of this circle.
"""
def D0(self,U : float,P : OCP.gp.gp_Pnt2d) -> None:
"""
Returns in P the point of parameter U. P = C + R * Cos (U) * XDir + R * Sin (U) * YDir where C is the center of the circle , XDir the XDirection and YDir the YDirection of the circle's local coordinate system.
"""
def D1(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d) -> None:
"""
Returns the point P of parameter U and the first derivative V1.
"""
def D2(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d,V2 : OCP.gp.gp_Vec2d) -> None:
"""
Returns the point P of parameter U, the first and second derivatives V1 and V2.
"""
def D3(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d,V2 : OCP.gp.gp_Vec2d,V3 : OCP.gp.gp_Vec2d) -> None:
"""
Returns the point P of parameter u, the first second and third derivatives V1 V2 and V3.
"""
def DN(self,U : float,N : int) -> OCP.gp.gp_Vec2d:
"""
For the point of parameter U of this circle, computes the vector corresponding to the Nth derivative. Exceptions: Standard_RangeError if N is less than 1.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def Eccentricity(self) -> float:
"""
Returns 0., which is the eccentricity of any circle.
"""
def FirstParameter(self) -> float:
"""
Returns 0.0
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCN(self,N : int) -> bool:
"""
Returns True, the order of continuity of a conic is infinite.
"""
def IsClosed(self) -> bool:
"""
returns True.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsPeriodic(self) -> bool:
"""
returns True. The period of a circle is 2.*Pi.
"""
def LastParameter(self) -> float:
"""
Returns 2*PI.
"""
def Location(self) -> OCP.gp.gp_Pnt2d:
"""
Returns the location point of the conic. For the circle, the ellipse and the hyperbola it is the center of the conic. For the parabola it is the vertex of the parabola.
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt2d) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry and assigns the result to this geometric object.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
"""
@overload
def Mirror(self,A : OCP.gp.gp_Ax2d) -> None: ...
@overload
def Mirrored(self,A : OCP.gp.gp_Ax2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry: ...
def ParametricTransformation(self,T : OCP.gp.gp_Trsf2d) -> float:
"""
Returns the coefficient required to compute the parametric transformation of this curve when transformation T is applied. This coefficient is the ratio between the parameter of a point on this curve and the parameter of the transformed point on the new curve transformed by T. Note: this function generally returns 1. but it can be redefined (for example, on a line).
"""
def Period(self) -> float:
"""
Returns the period of this curve. raises if the curve is not periodic
"""
def Position(self) -> OCP.gp.gp_Ax22d:
"""
Returns the local coordinates system of the conic.
"""
def Radius(self) -> float:
"""
Returns the radius of this circle.
"""
def Reverse(self) -> None:
"""
Reverses the direction of parameterization of <me>. The local coordinate system of the conic is modified.
"""
def Reversed(self) -> Geom2d_Curve:
"""
Creates a reversed duplicate Changes the orientation of this curve. The first and last parameters are not changed, but the parametric direction of the curve is reversed. If the curve is bounded: - the start point of the initial curve becomes the end point of the reversed curve, and - the end point of the initial curve becomes the start point of the reversed curve. - Reversed creates a new curve.
"""
def ReversedParameter(self,U : float) -> float:
"""
Computes the parameter on the reversed circle for the point of parameter U on this circle. For a circle, the returned value is: 2.*Pi - U.
"""
def Rotate(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> None:
"""
Rotates a Geometry. P is the center of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> Geom2d_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt2d,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt2d,S : float) -> Geom2d_Geometry:
"""
None
"""
def SetAxis(self,theA : OCP.gp.gp_Ax22d) -> None:
"""
Modifies this conic, redefining its local coordinate system partially, by assigning theA as its axis
"""
def SetCirc2d(self,C : OCP.gp.gp_Circ2d) -> None:
"""
Converts the gp_Circ2d circle C into this circle.
"""
def SetLocation(self,theP : OCP.gp.gp_Pnt2d) -> None:
"""
Modifies this conic, redefining its local coordinate system partially, by assigning theP as its origin.
"""
def SetRadius(self,R : float) -> None:
"""
None
"""
def SetXAxis(self,theAX : OCP.gp.gp_Ax2d) -> None:
"""
Assigns the origin and unit vector of axis theA to the origin of the local coordinate system of this conic and X Direction. The other unit vector of the local coordinate system of this conic is recomputed normal to theA, without changing the orientation of the local coordinate system (right-handed or left-handed).
"""
def SetYAxis(self,theAY : OCP.gp.gp_Ax2d) -> None:
"""
Assigns the origin and unit vector of axis theA to the origin of the local coordinate system of this conic and Y Direction. The other unit vector of the local coordinate system of this conic is recomputed normal to theA, without changing the orientation of the local coordinate system (right-handed or left-handed).
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf2d) -> None:
"""
Applies the transformation T to this circle.
"""
def Transformed(self,T : OCP.gp.gp_Trsf2d) -> Geom2d_Geometry:
"""
None
"""
def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf2d) -> float:
"""
Computes the parameter on the curve transformed by T for the point of parameter U on this curve. Note: this function generally returns U but it can be redefined (for example, on a line).
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec2d) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec2d) -> Geom2d_Geometry: ...
def Value(self,U : float) -> OCP.gp.gp_Pnt2d:
"""
Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve.
"""
def XAxis(self) -> OCP.gp.gp_Ax2d:
"""
Returns the "XAxis" of the conic. This axis defines the origin of parametrization of the conic. This axis and the "Yaxis" define the local coordinate system of the conic. -C++: return const&
"""
def YAxis(self) -> OCP.gp.gp_Ax2d:
"""
Returns the "YAxis" of the conic. The "YAxis" is perpendicular to the "Xaxis".
"""
@overload
def __init__(self,A : OCP.gp.gp_Ax22d,Radius : float) -> None: ...
@overload
def __init__(self,A : OCP.gp.gp_Ax2d,Radius : float,Sense : bool=True) -> None: ...
@overload
def __init__(self,C : OCP.gp.gp_Circ2d) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom2d_BezierCurve(Geom2d_BoundedCurve, Geom2d_Curve, Geom2d_Geometry, OCP.Standard.Standard_Transient):
"""
Describes a rational or non-rational Bezier curve - a non-rational Bezier curve is defined by a table of poles (also called control points), - a rational Bezier curve is defined by a table of poles with varying weights. These data are manipulated by two parallel arrays: - the poles table, which is an array of gp_Pnt2d points, and - the weights table, which is an array of reals. The bounds of these arrays are 1 and "the number of poles" of the curve. The poles of the curve are "control points" used to deform the curve. The first pole is the start point of the curve, and the last pole is the end point of the curve. The segment which joins the first pole to the second pole is the tangent to the curve at its start point, and the segment which joins the last pole to the second-from-last pole is the tangent to the curve at its end point. It is more difficult to give a geometric signification to the weights but they are useful for providing exact representations of the arcs of a circle or ellipse. Moreover, if the weights of all the poles are equal, the curve is polynomial; it is therefore a non-rational curve. The non-rational curve is a special and frequently used case. The weights are defined and used only in case of a rational curve. The degree of a Bezier curve is equal to the number of poles, minus 1. It must be greater than or equal to 1. However, the degree of a Geom2d_BezierCurve curve is limited to a value (25) which is defined and controlled by the system. This value is returned by the function MaxDegree. The parameter range for a Bezier curve is [ 0, 1 ]. If the first and last control points of the Bezier curve are the same point then the curve is closed. For example, to create a closed Bezier curve with four control points, you have to give a set of control points P1, P2, P3 and P1. The continuity of a Bezier curve is infinite. It is not possible to build a Bezier curve with negative weights. We consider that a weight value is zero if it is less than or equal to gp::Resolution(). We also consider that two weight values W1 and W2 are equal if: |W2 - W1| <= gp::Resolution(). Warning - When considering the continuity of a closed Bezier curve at the junction point, remember that a curve of this type is never periodic. This means that the derivatives for the parameter u = 0 have no reason to be the same as the derivatives for the parameter u = 1 even if the curve is closed. - The length of a Bezier curve can be null.Describes a rational or non-rational Bezier curve - a non-rational Bezier curve is defined by a table of poles (also called control points), - a rational Bezier curve is defined by a table of poles with varying weights. These data are manipulated by two parallel arrays: - the poles table, which is an array of gp_Pnt2d points, and - the weights table, which is an array of reals. The bounds of these arrays are 1 and "the number of poles" of the curve. The poles of the curve are "control points" used to deform the curve. The first pole is the start point of the curve, and the last pole is the end point of the curve. The segment which joins the first pole to the second pole is the tangent to the curve at its start point, and the segment which joins the last pole to the second-from-last pole is the tangent to the curve at its end point. It is more difficult to give a geometric signification to the weights but they are useful for providing exact representations of the arcs of a circle or ellipse. Moreover, if the weights of all the poles are equal, the curve is polynomial; it is therefore a non-rational curve. The non-rational curve is a special and frequently used case. The weights are defined and used only in case of a rational curve. The degree of a Bezier curve is equal to the number of poles, minus 1. It must be greater than or equal to 1. However, the degree of a Geom2d_BezierCurve curve is limited to a value (25) which is defined and controlled by the system. This value is returned by the function MaxDegree. The parameter range for a Bezier curve is [ 0, 1 ]. If the first and last control points of the Bezier curve are the same point then the curve is closed. For example, to create a closed Bezier curve with four control points, you have to give a set of control points P1, P2, P3 and P1. The continuity of a Bezier curve is infinite. It is not possible to build a Bezier curve with negative weights. We consider that a weight value is zero if it is less than or equal to gp::Resolution(). We also consider that two weight values W1 and W2 are equal if: |W2 - W1| <= gp::Resolution(). Warning - When considering the continuity of a closed Bezier curve at the junction point, remember that a curve of this type is never periodic. This means that the derivatives for the parameter u = 0 have no reason to be the same as the derivatives for the parameter u = 1 even if the curve is closed. - The length of a Bezier curve can be null.Describes a rational or non-rational Bezier curve - a non-rational Bezier curve is defined by a table of poles (also called control points), - a rational Bezier curve is defined by a table of poles with varying weights. These data are manipulated by two parallel arrays: - the poles table, which is an array of gp_Pnt2d points, and - the weights table, which is an array of reals. The bounds of these arrays are 1 and "the number of poles" of the curve. The poles of the curve are "control points" used to deform the curve. The first pole is the start point of the curve, and the last pole is the end point of the curve. The segment which joins the first pole to the second pole is the tangent to the curve at its start point, and the segment which joins the last pole to the second-from-last pole is the tangent to the curve at its end point. It is more difficult to give a geometric signification to the weights but they are useful for providing exact representations of the arcs of a circle or ellipse. Moreover, if the weights of all the poles are equal, the curve is polynomial; it is therefore a non-rational curve. The non-rational curve is a special and frequently used case. The weights are defined and used only in case of a rational curve. The degree of a Bezier curve is equal to the number of poles, minus 1. It must be greater than or equal to 1. However, the degree of a Geom2d_BezierCurve curve is limited to a value (25) which is defined and controlled by the system. This value is returned by the function MaxDegree. The parameter range for a Bezier curve is [ 0, 1 ]. If the first and last control points of the Bezier curve are the same point then the curve is closed. For example, to create a closed Bezier curve with four control points, you have to give a set of control points P1, P2, P3 and P1. The continuity of a Bezier curve is infinite. It is not possible to build a Bezier curve with negative weights. We consider that a weight value is zero if it is less than or equal to gp::Resolution(). We also consider that two weight values W1 and W2 are equal if: |W2 - W1| <= gp::Resolution(). Warning - When considering the continuity of a closed Bezier curve at the junction point, remember that a curve of this type is never periodic. This means that the derivatives for the parameter u = 0 have no reason to be the same as the derivatives for the parameter u = 1 even if the curve is closed. - The length of a Bezier curve can be null.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
Returns GeomAbs_CN, which is the continuity of any Bezier curve.
"""
def Copy(self) -> Geom2d_Geometry:
"""
Creates a new object which is a copy of this Bezier curve.
"""
def D0(self,U : float,P : OCP.gp.gp_Pnt2d) -> None:
"""
None
"""
def D1(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d) -> None:
"""
None
"""
def D2(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d,V2 : OCP.gp.gp_Vec2d) -> None:
"""
None
"""
def D3(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d,V2 : OCP.gp.gp_Vec2d,V3 : OCP.gp.gp_Vec2d) -> None:
"""
None
"""
def DN(self,U : float,N : int) -> OCP.gp.gp_Vec2d:
"""
For this Bezier curve, computes - the point P of parameter U, or - the point P and one or more of the following values: - V1, the first derivative vector, - V2, the second derivative vector, - V3, the third derivative vector. Note: the parameter U can be outside the bounds of the curve. Raises RangeError if N < 1.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Degree(self) -> int:
"""
Returns the polynomial degree of the curve. It is the number of poles less one. In this package the Degree of a Bezier curve cannot be greater than "MaxDegree".
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def EndPoint(self) -> OCP.gp.gp_Pnt2d:
"""
Returns the end point or start point of this Bezier curve.
"""
def FirstParameter(self) -> float:
"""
Returns the value of the first parameter of this Bezier curve. This is 0.0, which gives the start point of this Bezier curve.
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def Increase(self,Degree : int) -> None:
"""
Increases the degree of a bezier curve. Degree is the new degree of <me>. raises ConstructionError if Degree is greater than MaxDegree or lower than 2 or lower than the initial degree of <me>.
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def InsertPoleAfter(self,Index : int,P : OCP.gp.gp_Pnt2d,Weight : float=1.0) -> None:
"""
Inserts a pole with its weight in the set of poles after the pole of range Index. If the curve was non rational it can become rational if all the weights are not identical. Raised if Index is not in the range [0, NbPoles]
"""
def InsertPoleBefore(self,Index : int,P : OCP.gp.gp_Pnt2d,Weight : float=1.0) -> None:
"""
Inserts a pole with its weight in the set of poles after the pole of range Index. If the curve was non rational it can become rational if all the weights are not identical. Raised if Index is not in the range [1, NbPoles+1]
"""
def IsCN(self,N : int) -> bool:
"""
Continuity of the curve, returns True.
"""
def IsClosed(self) -> bool:
"""
Returns True if the distance between the first point and the last point of the curve is lower or equal to the Resolution from package gp.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsPeriodic(self) -> bool:
"""
Returns False. A BezierCurve cannot be periodic in this package
"""
def IsRational(self) -> bool:
"""
Returns false if all the weights are identical. The tolerance criterion is Resolution from package gp.
"""
def LastParameter(self) -> float:
"""
Returns the value of the last parameter of this Bezier curve. This is 1.0, which gives the end point of this Bezier curve.
"""
@staticmethod
def MaxDegree_s() -> int:
"""
Returns the value of the maximum polynomial degree of a BezierCurve. This value is 25.
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt2d) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry and assigns the result to this geometric object.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
"""
@overload
def Mirror(self,A : OCP.gp.gp_Ax2d) -> None: ...
@overload
def Mirrored(self,A : OCP.gp.gp_Ax2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry: ...
def NbPoles(self) -> int:
"""
Returns the number of poles for this Bezier curve.
"""
def ParametricTransformation(self,T : OCP.gp.gp_Trsf2d) -> float:
"""
Returns the coefficient required to compute the parametric transformation of this curve when transformation T is applied. This coefficient is the ratio between the parameter of a point on this curve and the parameter of the transformed point on the new curve transformed by T. Note: this function generally returns 1. but it can be redefined (for example, on a line).
"""
def Period(self) -> float:
"""
Returns the period of this curve. raises if the curve is not periodic
"""
def Pole(self,Index : int) -> OCP.gp.gp_Pnt2d:
"""
Returns the pole of range Index. Raised if Index is not in the range [1, NbPoles]
"""
@overload
def Poles(self) -> OCP.TColgp.TColgp_Array1OfPnt2d:
"""
Returns all the poles of the curve.
Returns all the poles of the curve.
"""
@overload
def Poles(self,P : OCP.TColgp.TColgp_Array1OfPnt2d) -> None: ...
def RemovePole(self,Index : int) -> None:
"""
Removes the pole of range Index. If the curve was rational it can become non rational. Raised if Index is not in the range [1, NbPoles]
"""
def Resolution(self,ToleranceUV : float) -> tuple[float]:
"""
Computes for this Bezier curve the parametric tolerance UTolerance for a given tolerance Tolerance3D (relative to dimensions in the plane). If f(t) is the equation of this Bezier curve, UTolerance ensures that | t1 - t0| < Utolerance ===> |f(t1) - f(t0)| < ToleranceUV
"""
def Reverse(self) -> None:
"""
Reverses the direction of parametrization of <me> Value (NewU) = Value (1 - OldU)
"""
def Reversed(self) -> Geom2d_Curve:
"""
Creates a reversed duplicate Changes the orientation of this curve. The first and last parameters are not changed, but the parametric direction of the curve is reversed. If the curve is bounded: - the start point of the initial curve becomes the end point of the reversed curve, and - the end point of the initial curve becomes the start point of the reversed curve. - Reversed creates a new curve.
"""
def ReversedParameter(self,U : float) -> float:
"""
Returns the parameter on the reversed curve for the point of parameter U on <me>.
"""
def Rotate(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> None:
"""
Rotates a Geometry. P is the center of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> Geom2d_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt2d,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt2d,S : float) -> Geom2d_Geometry:
"""
None
"""
def Segment(self,U1 : float,U2 : float) -> None:
"""
Segments the curve between U1 and U2 which can be out of the bounds of the curve. The curve is oriented from U1 to U2. The control points are modified, the first and the last point are not the same but the parametrization range is [0, 1] else it could not be a Bezier curve. Warnings : Even if <me> is not closed it can become closed after the segmentation for example if U1 or U2 are out of the bounds of the curve <me> or if the curve makes loop. After the segmentation the length of a curve can be null.
"""
@overload
def SetPole(self,Index : int,P : OCP.gp.gp_Pnt2d,Weight : float) -> None:
"""
Substitutes the pole of range index with P. If the curve <me> is rational the weight of range Index is not modified. raiseD if Index is not in the range [1, NbPoles]
Substitutes the pole and the weights of range Index. If the curve <me> is not rational it can become rational if all the weights are not identical. If the curve was rational it can become non rational if all the weights are identical. Raised if Index is not in the range [1, NbPoles] Raised if Weight <= Resolution from package gp
"""
@overload
def SetPole(self,Index : int,P : OCP.gp.gp_Pnt2d) -> None: ...
def SetWeight(self,Index : int,Weight : float) -> None:
"""
Changes the weight of the pole of range Index. If the curve <me> is not rational it can become rational if all the weights are not identical. If the curve was rational it can become non rational if all the weights are identical. Raised if Index is not in the range [1, NbPoles] Raised if Weight <= Resolution from package gp
"""
def StartPoint(self) -> OCP.gp.gp_Pnt2d:
"""
Returns Value (U=1), it is the first control point of the curve.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf2d) -> None:
"""
Applies the transformation T to this Bezier curve.
"""
def Transformed(self,T : OCP.gp.gp_Trsf2d) -> Geom2d_Geometry:
"""
None
"""
def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf2d) -> float:
"""
Computes the parameter on the curve transformed by T for the point of parameter U on this curve. Note: this function generally returns U but it can be redefined (for example, on a line).
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec2d) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec2d) -> Geom2d_Geometry: ...
def Value(self,U : float) -> OCP.gp.gp_Pnt2d:
"""
Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve.
"""
def Weight(self,Index : int) -> float:
"""
Returns the weight of range Index. Raised if Index is not in the range [1, NbPoles]
"""
@overload
def Weights(self) -> OCP.TColStd.TColStd_Array1OfReal:
"""
Returns all the weights of the curve.
Returns all the weights of the curve.
"""
@overload
def Weights(self,W : OCP.TColStd.TColStd_Array1OfReal) -> None: ...
@overload
def __init__(self,CurvePoles : OCP.TColgp.TColgp_Array1OfPnt2d) -> None: ...
@overload
def __init__(self,CurvePoles : OCP.TColgp.TColgp_Array1OfPnt2d,PoleWeights : OCP.TColStd.TColStd_Array1OfReal) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom2d_Vector(Geom2d_Geometry, OCP.Standard.Standard_Transient):
"""
The abstract class Vector describes the common behavior of vectors in 2D space. The Geom2d package provides two concrete classes of vectors: Geom2d_Direction (unit vector) and Geom2d_VectorWithMagnitude.The abstract class Vector describes the common behavior of vectors in 2D space. The Geom2d package provides two concrete classes of vectors: Geom2d_Direction (unit vector) and Geom2d_VectorWithMagnitude.The abstract class Vector describes the common behavior of vectors in 2D space. The Geom2d package provides two concrete classes of vectors: Geom2d_Direction (unit vector) and Geom2d_VectorWithMagnitude.
"""
def Angle(self,Other : Geom2d_Vector) -> float:
"""
Computes the angular value, in radians, between this vector and vector Other. The result is a value between -Pi and Pi. The orientation is from this vector to vector Other. Raises VectorWithNullMagnitude if one of the two vectors is a vector with null magnitude because the angular value is indefinite.
"""
def Coord(self) -> tuple[float, float]:
"""
Returns the coordinates of <me>.
"""
def Copy(self) -> Geom2d_Geometry:
"""
None
"""
def Crossed(self,Other : Geom2d_Vector) -> float:
"""
Cross product of <me> with the vector <Other>.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def Dot(self,Other : Geom2d_Vector) -> float:
"""
Returns the scalar product of 2 Vectors.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def Magnitude(self) -> float:
"""
Returns the Magnitude of <me>.
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt2d) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry and assigns the result to this geometric object.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
"""
@overload
def Mirror(self,A : OCP.gp.gp_Ax2d) -> None: ...
@overload
def Mirrored(self,A : OCP.gp.gp_Ax2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry: ...
def Reverse(self) -> None:
"""
Reverses the vector <me>.
"""
def Reversed(self) -> Geom2d_Vector:
"""
Returns a copy of <me> reversed.
"""
def Rotate(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> None:
"""
Rotates a Geometry. P is the center of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> Geom2d_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt2d,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt2d,S : float) -> Geom2d_Geometry:
"""
None
"""
def SquareMagnitude(self) -> float:
"""
Returns the square magnitude of <me>.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf2d) -> None:
"""
Transformation of a geometric object. This tansformation can be a translation, a rotation, a symmetry, a scaling or a complex transformation obtained by combination of the previous elementaries transformations. (see class Transformation of the package Geom2d). The following transformations have the same properties as the previous ones but they don't modified the object itself. A copy of the object is returned.
"""
def Transformed(self,T : OCP.gp.gp_Trsf2d) -> Geom2d_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec2d) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec2d) -> Geom2d_Geometry: ...
def Vec2d(self) -> OCP.gp.gp_Vec2d:
"""
Returns a non persistent copy of <me>.
"""
def X(self) -> float:
"""
Returns the X coordinate of <me>.
"""
def Y(self) -> float:
"""
Returns the Y coordinate of <me>.
"""
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom2d_Ellipse(Geom2d_Conic, Geom2d_Curve, Geom2d_Geometry, OCP.Standard.Standard_Transient):
"""
Describes an ellipse in the plane (2D space). An ellipse is defined by its major and minor radii and, as with any conic curve, is positioned in the plane with a coordinate system (gp_Ax22d object) where: - the origin is the center of the ellipse, - the "X Direction" defines the major axis, and - the "Y Direction" defines the minor axis. This coordinate system is the local coordinate system of the ellipse. The orientation (direct or indirect) of the local coordinate system gives an explicit orientation to the ellipse, determining the direction in which the parameter increases along the ellipse. The Geom2d_Ellipse ellipse is parameterized by an angle: P(U) = O + MajorRad*Cos(U)*XDir + MinorRad*Sin(U)*YDir where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - MajorRad and MinorRad are the major and minor radii of the ellipse. The "X Axis" of the local coordinate system therefore defines the origin of the parameter of the ellipse. An ellipse is a closed and periodic curve. The period is 2.*Pi and the parameter range is [ 0,2.*Pi [. See Also GCE2d_MakeEllipse which provides functions for more complex ellipse constructions gp_Ax22d gp_Elips2d for an equivalent, non-parameterized data structureDescribes an ellipse in the plane (2D space). An ellipse is defined by its major and minor radii and, as with any conic curve, is positioned in the plane with a coordinate system (gp_Ax22d object) where: - the origin is the center of the ellipse, - the "X Direction" defines the major axis, and - the "Y Direction" defines the minor axis. This coordinate system is the local coordinate system of the ellipse. The orientation (direct or indirect) of the local coordinate system gives an explicit orientation to the ellipse, determining the direction in which the parameter increases along the ellipse. The Geom2d_Ellipse ellipse is parameterized by an angle: P(U) = O + MajorRad*Cos(U)*XDir + MinorRad*Sin(U)*YDir where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - MajorRad and MinorRad are the major and minor radii of the ellipse. The "X Axis" of the local coordinate system therefore defines the origin of the parameter of the ellipse. An ellipse is a closed and periodic curve. The period is 2.*Pi and the parameter range is [ 0,2.*Pi [. See Also GCE2d_MakeEllipse which provides functions for more complex ellipse constructions gp_Ax22d gp_Elips2d for an equivalent, non-parameterized data structureDescribes an ellipse in the plane (2D space). An ellipse is defined by its major and minor radii and, as with any conic curve, is positioned in the plane with a coordinate system (gp_Ax22d object) where: - the origin is the center of the ellipse, - the "X Direction" defines the major axis, and - the "Y Direction" defines the minor axis. This coordinate system is the local coordinate system of the ellipse. The orientation (direct or indirect) of the local coordinate system gives an explicit orientation to the ellipse, determining the direction in which the parameter increases along the ellipse. The Geom2d_Ellipse ellipse is parameterized by an angle: P(U) = O + MajorRad*Cos(U)*XDir + MinorRad*Sin(U)*YDir where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - MajorRad and MinorRad are the major and minor radii of the ellipse. The "X Axis" of the local coordinate system therefore defines the origin of the parameter of the ellipse. An ellipse is a closed and periodic curve. The period is 2.*Pi and the parameter range is [ 0,2.*Pi [. See Also GCE2d_MakeEllipse which provides functions for more complex ellipse constructions gp_Ax22d gp_Elips2d for an equivalent, non-parameterized data structure
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
Returns GeomAbs_CN which is the global continuity of any conic.
"""
def Copy(self) -> Geom2d_Geometry:
"""
Creates a new object which is a copy of this ellipse.
"""
def D0(self,U : float,P : OCP.gp.gp_Pnt2d) -> None:
"""
Returns in P the point of parameter U. P = C + MajorRadius * Cos (U) * XDir + MinorRadius * Sin (U) * YDir where C is the center of the ellipse , XDir the direction of the "XAxis" and "YDir" the "YAxis" of the ellipse.
"""
def D1(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d) -> None:
"""
None
"""
def D2(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d,V2 : OCP.gp.gp_Vec2d) -> None:
"""
Returns the point P of parameter U. The vectors V1 and V2 are the first and second derivatives at this point.
"""
def D3(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d,V2 : OCP.gp.gp_Vec2d,V3 : OCP.gp.gp_Vec2d) -> None:
"""
Returns the point P of parameter U, the first second and third derivatives V1 V2 and V3.
"""
def DN(self,U : float,N : int) -> OCP.gp.gp_Vec2d:
"""
For the point of parameter U of this ellipse, computes the vector corresponding to the Nth derivative. Exceptions Standard_RangeError if N is less than 1.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def Directrix1(self) -> OCP.gp.gp_Ax2d:
"""
Computes the directrices of this ellipse. This directrix is the line normal to the XAxis of the ellipse in the local plane (Z = 0) at a distance d = MajorRadius / e from the center of the ellipse, where e is the eccentricity of the ellipse. This line is parallel to the "YAxis". The intersection point between directrix1 and the "XAxis" is the "Location" point of the directrix1. This point is on the positive side of the "XAxis". Raises ConstructionError if Eccentricity = 0.0. (The ellipse degenerates into a circle)
"""
def Directrix2(self) -> OCP.gp.gp_Ax2d:
"""
This line is obtained by the symmetrical transformation of "Directrix1" with respect to the "YAxis" of the ellipse. Raises ConstructionError if Eccentricity = 0.0. (The ellipse degenerates into a circle).
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def Eccentricity(self) -> float:
"""
Returns the eccentricity of the ellipse between 0.0 and 1.0 If f is the distance between the center of the ellipse and the Focus1 then the eccentricity e = f / MajorRadius. Returns 0 if MajorRadius = 0
"""
def Elips2d(self) -> OCP.gp.gp_Elips2d:
"""
Converts this ellipse into a gp_Elips2d ellipse.
"""
def FirstParameter(self) -> float:
"""
Returns the value of the first parameter of this ellipse. This is 0.0, which gives the start point of this ellipse. The start point and end point of an ellipse are coincident.
"""
def Focal(self) -> float:
"""
Computes the focal distance. The focal distance is the distance between the center and a focus of the ellipse.
"""
def Focus1(self) -> OCP.gp.gp_Pnt2d:
"""
Returns the first focus of the ellipse. This focus is on the positive side of the "XAxis" of the ellipse.
"""
def Focus2(self) -> OCP.gp.gp_Pnt2d:
"""
Returns the second focus of the ellipse. This focus is on the negative side of the "XAxis" of the ellipse.
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCN(self,N : int) -> bool:
"""
Returns True, the order of continuity of a conic is infinite.
"""
def IsClosed(self) -> bool:
"""
return True.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsPeriodic(self) -> bool:
"""
return True.
"""
def LastParameter(self) -> float:
"""
Returns the value of the last parameter of this ellipse. This is 2.*Pi, which gives the end point of this ellipse. The start point and end point of an ellipse are coincident.
"""
def Location(self) -> OCP.gp.gp_Pnt2d:
"""
Returns the location point of the conic. For the circle, the ellipse and the hyperbola it is the center of the conic. For the parabola it is the vertex of the parabola.
"""
def MajorRadius(self) -> float:
"""
Returns the major radius of this ellipse.
"""
def MinorRadius(self) -> float:
"""
Returns the minor radius of this ellipse.
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt2d) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry and assigns the result to this geometric object.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
"""
@overload
def Mirror(self,A : OCP.gp.gp_Ax2d) -> None: ...
@overload
def Mirrored(self,A : OCP.gp.gp_Ax2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry: ...
def Parameter(self) -> float:
"""
Computes the parameter of this ellipse. This value is given by the formula p = (1 - e * e) * MajorRadius where e is the eccentricity of the ellipse. Returns 0 if MajorRadius = 0
"""
def ParametricTransformation(self,T : OCP.gp.gp_Trsf2d) -> float:
"""
Returns the coefficient required to compute the parametric transformation of this curve when transformation T is applied. This coefficient is the ratio between the parameter of a point on this curve and the parameter of the transformed point on the new curve transformed by T. Note: this function generally returns 1. but it can be redefined (for example, on a line).
"""
def Period(self) -> float:
"""
Returns the period of this curve. raises if the curve is not periodic
"""
def Position(self) -> OCP.gp.gp_Ax22d:
"""
Returns the local coordinates system of the conic.
"""
def Reverse(self) -> None:
"""
Reverses the direction of parameterization of <me>. The local coordinate system of the conic is modified.
"""
def Reversed(self) -> Geom2d_Curve:
"""
Creates a reversed duplicate Changes the orientation of this curve. The first and last parameters are not changed, but the parametric direction of the curve is reversed. If the curve is bounded: - the start point of the initial curve becomes the end point of the reversed curve, and - the end point of the initial curve becomes the start point of the reversed curve. - Reversed creates a new curve.
"""
def ReversedParameter(self,U : float) -> float:
"""
Computes the parameter on the reversed ellipse for the point of parameter U on this ellipse. For an ellipse, the returned value is: 2.*Pi - U.
"""
def Rotate(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> None:
"""
Rotates a Geometry. P is the center of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> Geom2d_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt2d,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt2d,S : float) -> Geom2d_Geometry:
"""
None
"""
def SetAxis(self,theA : OCP.gp.gp_Ax22d) -> None:
"""
Modifies this conic, redefining its local coordinate system partially, by assigning theA as its axis
"""
def SetElips2d(self,E : OCP.gp.gp_Elips2d) -> None:
"""
Converts the gp_Elips2d ellipse E into this ellipse.
"""
def SetLocation(self,theP : OCP.gp.gp_Pnt2d) -> None:
"""
Modifies this conic, redefining its local coordinate system partially, by assigning theP as its origin.
"""
def SetMajorRadius(self,MajorRadius : float) -> None:
"""
Assigns a value to the major radius of this ellipse. Exceptions Standard_ConstructionError if: - the major radius of this ellipse becomes less than the minor radius, or - MinorRadius is less than 0.
"""
def SetMinorRadius(self,MinorRadius : float) -> None:
"""
Assigns a value to the minor radius of this ellipse. Exceptions Standard_ConstructionError if: - the major radius of this ellipse becomes less than the minor radius, or - MinorRadius is less than 0.
"""
def SetXAxis(self,theAX : OCP.gp.gp_Ax2d) -> None:
"""
Assigns the origin and unit vector of axis theA to the origin of the local coordinate system of this conic and X Direction. The other unit vector of the local coordinate system of this conic is recomputed normal to theA, without changing the orientation of the local coordinate system (right-handed or left-handed).
"""
def SetYAxis(self,theAY : OCP.gp.gp_Ax2d) -> None:
"""
Assigns the origin and unit vector of axis theA to the origin of the local coordinate system of this conic and Y Direction. The other unit vector of the local coordinate system of this conic is recomputed normal to theA, without changing the orientation of the local coordinate system (right-handed or left-handed).
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf2d) -> None:
"""
Applies the transformation T to this ellipse.
"""
def Transformed(self,T : OCP.gp.gp_Trsf2d) -> Geom2d_Geometry:
"""
None
"""
def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf2d) -> float:
"""
Computes the parameter on the curve transformed by T for the point of parameter U on this curve. Note: this function generally returns U but it can be redefined (for example, on a line).
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec2d) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec2d) -> Geom2d_Geometry: ...
def Value(self,U : float) -> OCP.gp.gp_Pnt2d:
"""
Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve.
"""
def XAxis(self) -> OCP.gp.gp_Ax2d:
"""
Returns the "XAxis" of the conic. This axis defines the origin of parametrization of the conic. This axis and the "Yaxis" define the local coordinate system of the conic. -C++: return const&
"""
def YAxis(self) -> OCP.gp.gp_Ax2d:
"""
Returns the "YAxis" of the conic. The "YAxis" is perpendicular to the "Xaxis".
"""
@overload
def __init__(self,MajorAxis : OCP.gp.gp_Ax2d,MajorRadius : float,MinorRadius : float,Sense : bool=True) -> None: ...
@overload
def __init__(self,E : OCP.gp.gp_Elips2d) -> None: ...
@overload
def __init__(self,Axis : OCP.gp.gp_Ax22d,MajorRadius : float,MinorRadius : float) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom2d_AxisPlacement(Geom2d_Geometry, OCP.Standard.Standard_Transient):
"""
Describes an axis in 2D space. An axis is defined by: - its origin, also termed the "Location point" of the axis, - its unit vector, termed the "Direction" of the axis. Note: Geom2d_AxisPlacement axes provide the same kind of "geometric" services as gp_Ax2d axes but have more complex data structures. The geometric objects provided by the Geom2d package use gp_Ax2d objects to include axes in their data structures, or to define an axis of symmetry or axis of rotation. Geom2d_AxisPlacement axes are used in a context where they can be shared by several objects contained inside a common data structure.Describes an axis in 2D space. An axis is defined by: - its origin, also termed the "Location point" of the axis, - its unit vector, termed the "Direction" of the axis. Note: Geom2d_AxisPlacement axes provide the same kind of "geometric" services as gp_Ax2d axes but have more complex data structures. The geometric objects provided by the Geom2d package use gp_Ax2d objects to include axes in their data structures, or to define an axis of symmetry or axis of rotation. Geom2d_AxisPlacement axes are used in a context where they can be shared by several objects contained inside a common data structure.Describes an axis in 2D space. An axis is defined by: - its origin, also termed the "Location point" of the axis, - its unit vector, termed the "Direction" of the axis. Note: Geom2d_AxisPlacement axes provide the same kind of "geometric" services as gp_Ax2d axes but have more complex data structures. The geometric objects provided by the Geom2d package use gp_Ax2d objects to include axes in their data structures, or to define an axis of symmetry or axis of rotation. Geom2d_AxisPlacement axes are used in a context where they can be shared by several objects contained inside a common data structure.
"""
def Angle(self,Other : Geom2d_AxisPlacement) -> float:
"""
Computes the angle between the "Direction" of two axis placement in radians. The result is comprised between -Pi and Pi.
"""
def Ax2d(self) -> OCP.gp.gp_Ax2d:
"""
Converts this axis into a gp_Ax2d axis.
"""
def Copy(self) -> Geom2d_Geometry:
"""
Creates a new object which is a copy of this axis.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def Direction(self) -> OCP.gp.gp_Dir2d:
"""
Returns the "Direction" of <me>. -C++: return const&
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def Location(self) -> OCP.gp.gp_Pnt2d:
"""
Returns the "Location" point (origin) of the axis placement. -C++: return const&
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt2d) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry and assigns the result to this geometric object.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
"""
@overload
def Mirror(self,A : OCP.gp.gp_Ax2d) -> None: ...
@overload
def Mirrored(self,A : OCP.gp.gp_Ax2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry: ...
def Reverse(self) -> None:
"""
None
"""
def Reversed(self) -> Geom2d_AxisPlacement:
"""
Reverses the unit vector of this axis. Note: - Reverse assigns the result to this axis, while - Reversed creates a new one.
"""
def Rotate(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> None:
"""
Rotates a Geometry. P is the center of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> Geom2d_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt2d,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt2d,S : float) -> Geom2d_Geometry:
"""
None
"""
def SetAxis(self,A : OCP.gp.gp_Ax2d) -> None:
"""
Changes the complete definition of the axis placement.
"""
def SetDirection(self,V : OCP.gp.gp_Dir2d) -> None:
"""
Changes the "Direction" of the axis placement.
"""
def SetLocation(self,P : OCP.gp.gp_Pnt2d) -> None:
"""
Changes the "Location" point (origin) of the axis placement.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf2d) -> None:
"""
Applies the transformation T to this axis.
"""
def Transformed(self,T : OCP.gp.gp_Trsf2d) -> Geom2d_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec2d) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec2d) -> Geom2d_Geometry: ...
@overload
def __init__(self,A : OCP.gp.gp_Ax2d) -> None: ...
@overload
def __init__(self,P : OCP.gp.gp_Pnt2d,V : OCP.gp.gp_Dir2d) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom2d_Hyperbola(Geom2d_Conic, Geom2d_Curve, Geom2d_Geometry, OCP.Standard.Standard_Transient):
"""
Describes a branch of a hyperbola in the plane (2D space). A hyperbola is defined by its major and minor radii and, as with any conic curve, is positioned in the plane with a coordinate system (gp_Ax22d object) where: - the origin is the center of the hyperbola, - the "X Direction" defines the major axis, and - the "Y Direction" defines the minor axis. This coordinate system is the local coordinate system of the hyperbola. The branch of the hyperbola described is the one located on the positive side of the major axis. The orientation (direct or indirect) of the local coordinate system gives an explicit orientation to the hyperbola, determining the direction in which the parameter increases along the hyperbola. The Geom2d_Hyperbola hyperbola is parameterized as follows: P(U) = O + MajRad*Cosh(U)*XDir + MinRad*Sinh(U)*YDir where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - MajRad and MinRad are the major and minor radii of the hyperbola. The "X Axis" of the local coordinate system therefore defines the origin of the parameter of the hyperbola. The parameter range is ] -infinite,+infinite [. The following diagram illustrates the respective positions, in the plane of the hyperbola, of the three branches of hyperbolas constructed using the functions OtherBranch, ConjugateBranch1 and ConjugateBranch2: ^YAxis | FirstConjugateBranch | Other | Main --------------------- C --------------------->XAxis Branch | Branch | SecondConjugateBranch | Warning The value of the major radius (on the major axis) can be less than the value of the minor radius (on the minor axis). See Also GCE2d_MakeHyperbola which provides functions for more complex hyperbola constructions gp_Ax22d gp_Hypr2d for an equivalent, non-parameterized data structureDescribes a branch of a hyperbola in the plane (2D space). A hyperbola is defined by its major and minor radii and, as with any conic curve, is positioned in the plane with a coordinate system (gp_Ax22d object) where: - the origin is the center of the hyperbola, - the "X Direction" defines the major axis, and - the "Y Direction" defines the minor axis. This coordinate system is the local coordinate system of the hyperbola. The branch of the hyperbola described is the one located on the positive side of the major axis. The orientation (direct or indirect) of the local coordinate system gives an explicit orientation to the hyperbola, determining the direction in which the parameter increases along the hyperbola. The Geom2d_Hyperbola hyperbola is parameterized as follows: P(U) = O + MajRad*Cosh(U)*XDir + MinRad*Sinh(U)*YDir where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - MajRad and MinRad are the major and minor radii of the hyperbola. The "X Axis" of the local coordinate system therefore defines the origin of the parameter of the hyperbola. The parameter range is ] -infinite,+infinite [. The following diagram illustrates the respective positions, in the plane of the hyperbola, of the three branches of hyperbolas constructed using the functions OtherBranch, ConjugateBranch1 and ConjugateBranch2: ^YAxis | FirstConjugateBranch | Other | Main --------------------- C --------------------->XAxis Branch | Branch | SecondConjugateBranch | Warning The value of the major radius (on the major axis) can be less than the value of the minor radius (on the minor axis). See Also GCE2d_MakeHyperbola which provides functions for more complex hyperbola constructions gp_Ax22d gp_Hypr2d for an equivalent, non-parameterized data structureDescribes a branch of a hyperbola in the plane (2D space). A hyperbola is defined by its major and minor radii and, as with any conic curve, is positioned in the plane with a coordinate system (gp_Ax22d object) where: - the origin is the center of the hyperbola, - the "X Direction" defines the major axis, and - the "Y Direction" defines the minor axis. This coordinate system is the local coordinate system of the hyperbola. The branch of the hyperbola described is the one located on the positive side of the major axis. The orientation (direct or indirect) of the local coordinate system gives an explicit orientation to the hyperbola, determining the direction in which the parameter increases along the hyperbola. The Geom2d_Hyperbola hyperbola is parameterized as follows: P(U) = O + MajRad*Cosh(U)*XDir + MinRad*Sinh(U)*YDir where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - MajRad and MinRad are the major and minor radii of the hyperbola. The "X Axis" of the local coordinate system therefore defines the origin of the parameter of the hyperbola. The parameter range is ] -infinite,+infinite [. The following diagram illustrates the respective positions, in the plane of the hyperbola, of the three branches of hyperbolas constructed using the functions OtherBranch, ConjugateBranch1 and ConjugateBranch2: ^YAxis | FirstConjugateBranch | Other | Main --------------------- C --------------------->XAxis Branch | Branch | SecondConjugateBranch | Warning The value of the major radius (on the major axis) can be less than the value of the minor radius (on the minor axis). See Also GCE2d_MakeHyperbola which provides functions for more complex hyperbola constructions gp_Ax22d gp_Hypr2d for an equivalent, non-parameterized data structure
"""
def Asymptote1(self) -> OCP.gp.gp_Ax2d:
"""
In the local coordinate system of the hyperbola the equation of the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the equation of the first asymptote is Y = (B/A)*X where A is the major radius of the hyperbola and B is the minor radius of the hyperbola. Raised if MajorRadius = 0.0
"""
def Asymptote2(self) -> OCP.gp.gp_Ax2d:
"""
In the local coordinate system of the hyperbola the equation of the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the equation of the first asymptote is Y = -(B/A)*X. where A is the major radius of the hyperbola and B is the minor radius of the hyperbola. raised if MajorRadius = 0.0
"""
def ConjugateBranch1(self) -> OCP.gp.gp_Hypr2d:
"""
Computes the first conjugate branch relative to this hyperbola. Note: The diagram given under the class purpose indicates where these two branches of hyperbola are positioned in relation to this branch of hyperbola.
"""
def ConjugateBranch2(self) -> OCP.gp.gp_Hypr2d:
"""
Computes the second conjugate branch relative to this hyperbola. Note: The diagram given under the class purpose indicates where these two branches of hyperbola are positioned in relation to this branch of hyperbola.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
Returns GeomAbs_CN which is the global continuity of any conic.
"""
def Copy(self) -> Geom2d_Geometry:
"""
Creates a new object which is a copy of this hyperbola.
"""
def D0(self,U : float,P : OCP.gp.gp_Pnt2d) -> None:
"""
Returns in P the point of parameter U. P = C + MajorRadius * Cosh (U) * XDir + MinorRadius * Sinh (U) * YDir where C is the center of the hyperbola , XDir the XDirection and YDir the YDirection of the hyperbola's local coordinate system.
"""
def D1(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d) -> None:
"""
Returns the point P of parameter U and the first derivative V1.
"""
def D2(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d,V2 : OCP.gp.gp_Vec2d) -> None:
"""
Returns the point P of parameter U, the first and second derivatives V1 and V2.
"""
def D3(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d,V2 : OCP.gp.gp_Vec2d,V3 : OCP.gp.gp_Vec2d) -> None:
"""
Returns the point P of parameter U, the first second and third derivatives V1 V2 and V3.
"""
def DN(self,U : float,N : int) -> OCP.gp.gp_Vec2d:
"""
For the point of parameter U of this hyperbola, computes the vector corresponding to the Nth derivative. Exceptions Standard_RangeError if N is less than 1.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def Directrix1(self) -> OCP.gp.gp_Ax2d:
"""
This directrix is the line normal to the XAxis of the hyperbola in the local plane (Z = 0) at a distance d = MajorRadius / e from the center of the hyperbola, where e is the eccentricity of the hyperbola. This line is parallel to the "YAxis". The intersection point between directrix1 and the "XAxis" is the location point of the directrix1. This point is on the positive side of the "XAxis".
"""
def Directrix2(self) -> OCP.gp.gp_Ax2d:
"""
This line is obtained by the symmetrical transformation of "Directrix1" with respect to the "YAxis" of the hyperbola.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def Eccentricity(self) -> float:
"""
Returns the eccentricity of the hyperbola (e > 1). If f is the distance between the location of the hyperbola and the Focus1 then the eccentricity e = f / MajorRadius. raised if MajorRadius = 0.0
"""
def FirstParameter(self) -> float:
"""
Returns RealFirst from Standard.
"""
def Focal(self) -> float:
"""
Computes the focal distance. It is the distance between the two focus of the hyperbola.
"""
def Focus1(self) -> OCP.gp.gp_Pnt2d:
"""
Returns the first focus of the hyperbola. This focus is on the positive side of the "XAxis" of the hyperbola.
"""
def Focus2(self) -> OCP.gp.gp_Pnt2d:
"""
Returns the second focus of the hyperbola. This focus is on the negative side of the "XAxis" of the hyperbola.
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def Hypr2d(self) -> OCP.gp.gp_Hypr2d:
"""
Converts this hyperbola into a gp_Hypr2d one.
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCN(self,N : int) -> bool:
"""
Returns True, the order of continuity of a conic is infinite.
"""
def IsClosed(self) -> bool:
"""
Returns False.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsPeriodic(self) -> bool:
"""
return False for an hyperbola.
"""
def LastParameter(self) -> float:
"""
returns RealLast from Standard.
"""
def Location(self) -> OCP.gp.gp_Pnt2d:
"""
Returns the location point of the conic. For the circle, the ellipse and the hyperbola it is the center of the conic. For the parabola it is the vertex of the parabola.
"""
def MajorRadius(self) -> float:
"""
Returns the major or minor radius of this hyperbola. The major radius is also the distance between the center of the hyperbola and the apex of the main branch (located on the "X Axis" of the hyperbola).
"""
def MinorRadius(self) -> float:
"""
Returns the major or minor radius of this hyperbola. The minor radius is also the distance between the center of the hyperbola and the apex of a conjugate branch (located on the "Y Axis" of the hyperbola).
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt2d) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry and assigns the result to this geometric object.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
"""
@overload
def Mirror(self,A : OCP.gp.gp_Ax2d) -> None: ...
@overload
def Mirrored(self,A : OCP.gp.gp_Ax2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry: ...
def OtherBranch(self) -> OCP.gp.gp_Hypr2d:
"""
Computes the "other" branch of this hyperbola. This is a symmetrical branch with respect to the center of this hyperbola. Note: The diagram given under the class purpose indicates where the "other" branch is positioned in relation to this branch of the hyperbola. ^ YAxis | FirstConjugateBranch | Other | Main ---------------------------- C ------------------------------------------>XAxis Branch | Branch | | SecondConjugateBranch | Warning The major radius can be less than the minor radius.
"""
def Parameter(self) -> float:
"""
Computes the parameter of this hyperbola. The parameter is: p = (e*e - 1) * MajorRadius where e is the eccentricity of this hyperbola and MajorRadius its major radius. Exceptions Standard_DomainError if the major radius of this hyperbola is null.
"""
def ParametricTransformation(self,T : OCP.gp.gp_Trsf2d) -> float:
"""
Returns the coefficient required to compute the parametric transformation of this curve when transformation T is applied. This coefficient is the ratio between the parameter of a point on this curve and the parameter of the transformed point on the new curve transformed by T. Note: this function generally returns 1. but it can be redefined (for example, on a line).
"""
def Period(self) -> float:
"""
Returns the period of this curve. raises if the curve is not periodic
"""
def Position(self) -> OCP.gp.gp_Ax22d:
"""
Returns the local coordinates system of the conic.
"""
def Reverse(self) -> None:
"""
Reverses the direction of parameterization of <me>. The local coordinate system of the conic is modified.
"""
def Reversed(self) -> Geom2d_Curve:
"""
Creates a reversed duplicate Changes the orientation of this curve. The first and last parameters are not changed, but the parametric direction of the curve is reversed. If the curve is bounded: - the start point of the initial curve becomes the end point of the reversed curve, and - the end point of the initial curve becomes the start point of the reversed curve. - Reversed creates a new curve.
"""
def ReversedParameter(self,U : float) -> float:
"""
Computes the parameter on the reversed hyperbola, for the point of parameter U on this hyperbola. For a hyperbola, the returned value is -U.
"""
def Rotate(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> None:
"""
Rotates a Geometry. P is the center of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> Geom2d_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt2d,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt2d,S : float) -> Geom2d_Geometry:
"""
None
"""
def SetAxis(self,theA : OCP.gp.gp_Ax22d) -> None:
"""
Modifies this conic, redefining its local coordinate system partially, by assigning theA as its axis
"""
def SetHypr2d(self,H : OCP.gp.gp_Hypr2d) -> None:
"""
Converts the gp_Hypr2d hyperbola H into this hyperbola.
"""
def SetLocation(self,theP : OCP.gp.gp_Pnt2d) -> None:
"""
Modifies this conic, redefining its local coordinate system partially, by assigning theP as its origin.
"""
def SetMajorRadius(self,MajorRadius : float) -> None:
"""
Assigns a value to the major or minor radius of this hyperbola. Exceptions Standard_ConstructionError if: - MajorRadius is less than 0.0, - MinorRadius is less than 0.0.
"""
def SetMinorRadius(self,MinorRadius : float) -> None:
"""
Assigns a value to the major or minor radius of this hyperbola. Exceptions Standard_ConstructionError if: - MajorRadius is less than 0.0, - MinorRadius is less than 0.0.
"""
def SetXAxis(self,theAX : OCP.gp.gp_Ax2d) -> None:
"""
Assigns the origin and unit vector of axis theA to the origin of the local coordinate system of this conic and X Direction. The other unit vector of the local coordinate system of this conic is recomputed normal to theA, without changing the orientation of the local coordinate system (right-handed or left-handed).
"""
def SetYAxis(self,theAY : OCP.gp.gp_Ax2d) -> None:
"""
Assigns the origin and unit vector of axis theA to the origin of the local coordinate system of this conic and Y Direction. The other unit vector of the local coordinate system of this conic is recomputed normal to theA, without changing the orientation of the local coordinate system (right-handed or left-handed).
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf2d) -> None:
"""
Applies the transformation T to this hyperbola.
"""
def Transformed(self,T : OCP.gp.gp_Trsf2d) -> Geom2d_Geometry:
"""
None
"""
def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf2d) -> float:
"""
Computes the parameter on the curve transformed by T for the point of parameter U on this curve. Note: this function generally returns U but it can be redefined (for example, on a line).
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec2d) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec2d) -> Geom2d_Geometry: ...
def Value(self,U : float) -> OCP.gp.gp_Pnt2d:
"""
Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve.
"""
def XAxis(self) -> OCP.gp.gp_Ax2d:
"""
Returns the "XAxis" of the conic. This axis defines the origin of parametrization of the conic. This axis and the "Yaxis" define the local coordinate system of the conic. -C++: return const&
"""
def YAxis(self) -> OCP.gp.gp_Ax2d:
"""
Returns the "YAxis" of the conic. The "YAxis" is perpendicular to the "Xaxis".
"""
@overload
def __init__(self,H : OCP.gp.gp_Hypr2d) -> None: ...
@overload
def __init__(self,MajorAxis : OCP.gp.gp_Ax2d,MajorRadius : float,MinorRadius : float,Sense : bool=True) -> None: ...
@overload
def __init__(self,Axis : OCP.gp.gp_Ax22d,MajorRadius : float,MinorRadius : float) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom2d_Line(Geom2d_Curve, Geom2d_Geometry, OCP.Standard.Standard_Transient):
"""
Describes an infinite line in the plane (2D space). A line is defined and positioned in the plane with an axis (gp_Ax2d object) which gives it an origin and a unit vector. The Geom2d_Line line is parameterized as follows: P (U) = O + U*Dir where: - P is the point of parameter U, - O is the origin and Dir the unit vector of its positioning axis. The parameter range is ] -infinite, +infinite [. The orientation of the line is given by the unit vector of its positioning axis. See Also GCE2d_MakeLine which provides functions for more complex line constructions gp_Ax2d gp_Lin2d for an equivalent, non-parameterized data structure.Describes an infinite line in the plane (2D space). A line is defined and positioned in the plane with an axis (gp_Ax2d object) which gives it an origin and a unit vector. The Geom2d_Line line is parameterized as follows: P (U) = O + U*Dir where: - P is the point of parameter U, - O is the origin and Dir the unit vector of its positioning axis. The parameter range is ] -infinite, +infinite [. The orientation of the line is given by the unit vector of its positioning axis. See Also GCE2d_MakeLine which provides functions for more complex line constructions gp_Ax2d gp_Lin2d for an equivalent, non-parameterized data structure.Describes an infinite line in the plane (2D space). A line is defined and positioned in the plane with an axis (gp_Ax2d object) which gives it an origin and a unit vector. The Geom2d_Line line is parameterized as follows: P (U) = O + U*Dir where: - P is the point of parameter U, - O is the origin and Dir the unit vector of its positioning axis. The parameter range is ] -infinite, +infinite [. The orientation of the line is given by the unit vector of its positioning axis. See Also GCE2d_MakeLine which provides functions for more complex line constructions gp_Ax2d gp_Lin2d for an equivalent, non-parameterized data structure.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
Returns GeomAbs_CN, which is the global continuity of any line.
"""
def Copy(self) -> Geom2d_Geometry:
"""
Creates a new object, which is a copy of this line.
"""
def D0(self,U : float,P : OCP.gp.gp_Pnt2d) -> None:
"""
Returns in P the point of parameter U. P (U) = O + U * Dir where O is the "Location" point of the line and Dir the direction of the line.
"""
def D1(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d) -> None:
"""
Returns the point P of parameter u and the first derivative V1.
"""
def D2(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d,V2 : OCP.gp.gp_Vec2d) -> None:
"""
Returns the point P of parameter U, the first and second derivatives V1 and V2. V2 is a vector with null magnitude for a line.
"""
def D3(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d,V2 : OCP.gp.gp_Vec2d,V3 : OCP.gp.gp_Vec2d) -> None:
"""
V2 and V3 are vectors with null magnitude for a line.
"""
def DN(self,U : float,N : int) -> OCP.gp.gp_Vec2d:
"""
For the point of parameter U of this line, computes the vector corresponding to the Nth derivative. Note: if N is greater than or equal to 2, the result is a vector with null magnitude. Exceptions Standard_RangeError if N is less than 1.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def Direction(self) -> OCP.gp.gp_Dir2d:
"""
changes the direction of the line.
"""
def Distance(self,P : OCP.gp.gp_Pnt2d) -> float:
"""
Computes the distance between <me> and the point P.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def FirstParameter(self) -> float:
"""
Returns RealFirst from Standard.
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCN(self,N : int) -> bool:
"""
Returns True.
"""
def IsClosed(self) -> bool:
"""
Returns False
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsPeriodic(self) -> bool:
"""
Returns False
"""
def LastParameter(self) -> float:
"""
Returns RealLast from Standard
"""
def Lin2d(self) -> OCP.gp.gp_Lin2d:
"""
Returns non persistent line from gp with the same geometric properties as <me>
"""
def Location(self) -> OCP.gp.gp_Pnt2d:
"""
Changes the "Location" point (origin) of the line.
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt2d) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry and assigns the result to this geometric object.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
"""
@overload
def Mirror(self,A : OCP.gp.gp_Ax2d) -> None: ...
@overload
def Mirrored(self,A : OCP.gp.gp_Ax2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry: ...
def ParametricTransformation(self,T : OCP.gp.gp_Trsf2d) -> float:
"""
Returns the coefficient required to compute the parametric transformation of this line when transformation T is applied. This coefficient is the ratio between the parameter of a point on this line and the parameter of the transformed point on the new line transformed by T. For a line, the returned value is the scale factor of the transformation T.
"""
def Period(self) -> float:
"""
Returns the period of this curve. raises if the curve is not periodic
"""
def Position(self) -> OCP.gp.gp_Ax2d:
"""
None
"""
def Reverse(self) -> None:
"""
Changes the orientation of this line. As a result, the unit vector of the positioning axis of this line is reversed.
"""
def Reversed(self) -> Geom2d_Curve:
"""
Creates a reversed duplicate Changes the orientation of this curve. The first and last parameters are not changed, but the parametric direction of the curve is reversed. If the curve is bounded: - the start point of the initial curve becomes the end point of the reversed curve, and - the end point of the initial curve becomes the start point of the reversed curve. - Reversed creates a new curve.
"""
def ReversedParameter(self,U : float) -> float:
"""
Computes the parameter on the reversed line for the point of parameter U on this line. For a line, the returned value is -U.
"""
def Rotate(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> None:
"""
Rotates a Geometry. P is the center of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> Geom2d_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt2d,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt2d,S : float) -> Geom2d_Geometry:
"""
None
"""
def SetDirection(self,V : OCP.gp.gp_Dir2d) -> None:
"""
changes the direction of the line.
"""
def SetLin2d(self,L : OCP.gp.gp_Lin2d) -> None:
"""
Set <me> so that <me> has the same geometric properties as L.
"""
def SetLocation(self,P : OCP.gp.gp_Pnt2d) -> None:
"""
Changes the "Location" point (origin) of the line.
"""
def SetPosition(self,A : OCP.gp.gp_Ax2d) -> None:
"""
Changes the "Location" and a the "Direction" of <me>.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf2d) -> None:
"""
Applies the transformation T to this line.
"""
def Transformed(self,T : OCP.gp.gp_Trsf2d) -> Geom2d_Geometry:
"""
None
"""
def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf2d) -> float:
"""
Computes the parameter on the line transformed by T for the point of parameter U on this line. For a line, the returned value is equal to U multiplied by the scale factor of transformation T.
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec2d) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec2d) -> Geom2d_Geometry: ...
def Value(self,U : float) -> OCP.gp.gp_Pnt2d:
"""
Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve.
"""
@overload
def __init__(self,A : OCP.gp.gp_Ax2d) -> None: ...
@overload
def __init__(self,L : OCP.gp.gp_Lin2d) -> None: ...
@overload
def __init__(self,P : OCP.gp.gp_Pnt2d,V : OCP.gp.gp_Dir2d) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom2d_OffsetCurve(Geom2d_Curve, Geom2d_Geometry, OCP.Standard.Standard_Transient):
"""
This class implements the basis services for the creation, edition, modification and evaluation of planar offset curve. The offset curve is obtained by offsetting by distance along the normal to a basis curve defined in 2D space. The offset curve in this package can be a self intersecting curve even if the basis curve does not self-intersect. The self intersecting portions are not deleted at the construction time. An offset curve is a curve at constant distance (Offset) from a basis curve and the offset curve takes its parametrization from the basis curve. The Offset curve is in the direction of the normal to the basis curve N. The distance offset may be positive or negative to indicate the preferred side of the curve : . distance offset >0 => the curve is in the direction of N . distance offset >0 => the curve is in the direction of - N On the Offset curve : Value(u) = BasisCurve.Value(U) + (Offset * (T ^ Z)) / ||T ^ Z|| where T is the tangent vector to the basis curve and Z the direction of the normal vector to the plane of the curve, N = T ^ Z defines the offset direction and should not have null length.This class implements the basis services for the creation, edition, modification and evaluation of planar offset curve. The offset curve is obtained by offsetting by distance along the normal to a basis curve defined in 2D space. The offset curve in this package can be a self intersecting curve even if the basis curve does not self-intersect. The self intersecting portions are not deleted at the construction time. An offset curve is a curve at constant distance (Offset) from a basis curve and the offset curve takes its parametrization from the basis curve. The Offset curve is in the direction of the normal to the basis curve N. The distance offset may be positive or negative to indicate the preferred side of the curve : . distance offset >0 => the curve is in the direction of N . distance offset >0 => the curve is in the direction of - N On the Offset curve : Value(u) = BasisCurve.Value(U) + (Offset * (T ^ Z)) / ||T ^ Z|| where T is the tangent vector to the basis curve and Z the direction of the normal vector to the plane of the curve, N = T ^ Z defines the offset direction and should not have null length.This class implements the basis services for the creation, edition, modification and evaluation of planar offset curve. The offset curve is obtained by offsetting by distance along the normal to a basis curve defined in 2D space. The offset curve in this package can be a self intersecting curve even if the basis curve does not self-intersect. The self intersecting portions are not deleted at the construction time. An offset curve is a curve at constant distance (Offset) from a basis curve and the offset curve takes its parametrization from the basis curve. The Offset curve is in the direction of the normal to the basis curve N. The distance offset may be positive or negative to indicate the preferred side of the curve : . distance offset >0 => the curve is in the direction of N . distance offset >0 => the curve is in the direction of - N On the Offset curve : Value(u) = BasisCurve.Value(U) + (Offset * (T ^ Z)) / ||T ^ Z|| where T is the tangent vector to the basis curve and Z the direction of the normal vector to the plane of the curve, N = T ^ Z defines the offset direction and should not have null length.
"""
def BasisCurve(self) -> Geom2d_Curve:
"""
Returns the basis curve of this offset curve. The basis curve can be an offset curve.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
Continuity of the Offset curve : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, G1 : tangency continuity all along the Curve, G2 : curvature continuity all along the Curve, CN : the order of continuity is infinite. Warnings : Returns the continuity of the basis curve - 1. The offset curve must have a unique normal direction defined at any point. Value and derivatives
"""
def Copy(self) -> Geom2d_Geometry:
"""
Creates a new object, which is a copy of this offset curve.
"""
def D0(self,U : float,P : OCP.gp.gp_Pnt2d) -> None:
"""
Warning! this should not be called if the basis curve is not at least C1. Nevertheless if used on portion where the curve is C1, it is OK
"""
def D1(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d) -> None:
"""
Warning! this should not be called if the continuity of the basis curve is not C2. Nevertheless, it's OK to use it on portion where the curve is C2
"""
def D2(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d,V2 : OCP.gp.gp_Vec2d) -> None:
"""
Warning! This should not be called if the continuity of the basis curve is not C3. Nevertheless, it's OK to use it on portion where the curve is C3
"""
def D3(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d,V2 : OCP.gp.gp_Vec2d,V3 : OCP.gp.gp_Vec2d) -> None:
"""
Warning! This should not be called if the continuity of the basis curve is not C4. Nevertheless, it's OK to use it on portion where the curve is C4
"""
def DN(self,U : float,N : int) -> OCP.gp.gp_Vec2d:
"""
The returned vector gives the value of the derivative for the order of derivation N. Warning! this should not be called raises UndefunedDerivative if the continuity of the basis curve is not CN+1. Nevertheless, it's OK to use it on portion where the curve is CN+1 raises RangeError if N < 1. raises NotImplemented if N > 3. The following functions compute the value and derivatives on the offset curve and returns the derivatives on the basis curve too. The computation of the value and derivatives on the basis curve are used to evaluate the offset curve Warnings : The exception UndefinedValue or UndefinedDerivative is raised if it is not possible to compute a unique offset direction.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def FirstParameter(self) -> float:
"""
Returns the value of the first parameter of this offset curve. The first parameter corresponds to the start point of the curve. Note: the first and last parameters of this offset curve are also the ones of its basis curve.
"""
def GetBasisCurveContinuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
Returns continuity of the basis curve.
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCN(self,N : int) -> bool:
"""
Is the order of continuity of the curve N ? Warnings : This method answer True if the continuity of the basis curve is N + 1. We suppose in this class that a normal direction to the basis curve (used to compute the offset curve) is defined at any point on the basis curve. Raised if N < 0.
"""
def IsClosed(self) -> bool:
"""
Returns True if the distance between the start point and the end point of the curve is lower or equal to Resolution from package gp.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsPeriodic(self) -> bool:
"""
Is the parametrization of a curve is periodic ? If the basis curve is a circle or an ellipse the corresponding OffsetCurve is periodic. If the basis curve can't be periodic (for example BezierCurve) the OffsetCurve can't be periodic.
"""
def LastParameter(self) -> float:
"""
Returns the value of the last parameter of this offset curve. The last parameter corresponds to the end point. Note: the first and last parameters of this offset curve are also the ones of its basis curve.
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt2d) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry and assigns the result to this geometric object.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
"""
@overload
def Mirror(self,A : OCP.gp.gp_Ax2d) -> None: ...
@overload
def Mirrored(self,A : OCP.gp.gp_Ax2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry: ...
def Offset(self) -> float:
"""
Returns the offset value of this offset curve.
"""
def ParametricTransformation(self,T : OCP.gp.gp_Trsf2d) -> float:
"""
Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.
"""
def Period(self) -> float:
"""
Returns the period of this offset curve, i.e. the period of the basis curve of this offset curve. Exceptions Standard_NoSuchObject if the basis curve is not periodic.
"""
def Reverse(self) -> None:
"""
Changes the direction of parametrization of <me>. As a result: - the basis curve is reversed, - the start point of the initial curve becomes the end point of the reversed curve, - the end point of the initial curve becomes the start point of the reversed curve, and - the first and last parameters are recomputed.
"""
def Reversed(self) -> Geom2d_Curve:
"""
Creates a reversed duplicate Changes the orientation of this curve. The first and last parameters are not changed, but the parametric direction of the curve is reversed. If the curve is bounded: - the start point of the initial curve becomes the end point of the reversed curve, and - the end point of the initial curve becomes the start point of the reversed curve. - Reversed creates a new curve.
"""
def ReversedParameter(self,U : float) -> float:
"""
Computes the parameter on the reversed curve for the point of parameter U on this offset curve.
"""
def Rotate(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> None:
"""
Rotates a Geometry. P is the center of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> Geom2d_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt2d,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt2d,S : float) -> Geom2d_Geometry:
"""
None
"""
def SetBasisCurve(self,C : Geom2d_Curve,isNotCheckC0 : bool=False) -> None:
"""
Changes this offset curve by assigning C as the basis curve from which it is built. If isNotCheckC0 = TRUE checking if basis curve has C0-continuity is not made. Exceptions if isNotCheckC0 = false, Standard_ConstructionError if the curve C is not at least "C1" continuous.
"""
def SetOffsetValue(self,D : float) -> None:
"""
Changes this offset curve by assigning D as the offset value.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf2d) -> None:
"""
Applies the transformation T to this offset curve. Note: the basis curve is also modified.
"""
def Transformed(self,T : OCP.gp.gp_Trsf2d) -> Geom2d_Geometry:
"""
None
"""
def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf2d) -> float:
"""
Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec2d) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec2d) -> Geom2d_Geometry: ...
def Value(self,U : float) -> OCP.gp.gp_Pnt2d:
"""
Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve.
"""
def __init__(self,C : Geom2d_Curve,Offset : float,isNotCheckC0 : bool=False) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom2d_Parabola(Geom2d_Conic, Geom2d_Curve, Geom2d_Geometry, OCP.Standard.Standard_Transient):
"""
Describes a parabola in the plane (2D space). A parabola is defined by its focal length (i.e. the distance between its focus and its apex) and is positioned in the plane with a coordinate system (gp_Ax22d object) where: - the origin is the apex of the parabola, and - the "X Axis" defines the axis of symmetry; the parabola is on the positive side of this axis. This coordinate system is the local coordinate system of the parabola. The orientation (direct or indirect) of the local coordinate system gives an explicit orientation to the parabola, determining the direction in which the parameter increases along the parabola. The Geom_Parabola parabola is parameterized as follows: P(U) = O + U*U/(4.*F)*XDir + U*YDir, where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - F is the focal length of the parabola. The parameter of the parabola is therefore its Y coordinate in the local coordinate system, with the "X Axis" of the local coordinate system defining the origin of the parameter. The parameter range is ] -infinite,+infinite [.Describes a parabola in the plane (2D space). A parabola is defined by its focal length (i.e. the distance between its focus and its apex) and is positioned in the plane with a coordinate system (gp_Ax22d object) where: - the origin is the apex of the parabola, and - the "X Axis" defines the axis of symmetry; the parabola is on the positive side of this axis. This coordinate system is the local coordinate system of the parabola. The orientation (direct or indirect) of the local coordinate system gives an explicit orientation to the parabola, determining the direction in which the parameter increases along the parabola. The Geom_Parabola parabola is parameterized as follows: P(U) = O + U*U/(4.*F)*XDir + U*YDir, where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - F is the focal length of the parabola. The parameter of the parabola is therefore its Y coordinate in the local coordinate system, with the "X Axis" of the local coordinate system defining the origin of the parameter. The parameter range is ] -infinite,+infinite [.Describes a parabola in the plane (2D space). A parabola is defined by its focal length (i.e. the distance between its focus and its apex) and is positioned in the plane with a coordinate system (gp_Ax22d object) where: - the origin is the apex of the parabola, and - the "X Axis" defines the axis of symmetry; the parabola is on the positive side of this axis. This coordinate system is the local coordinate system of the parabola. The orientation (direct or indirect) of the local coordinate system gives an explicit orientation to the parabola, determining the direction in which the parameter increases along the parabola. The Geom_Parabola parabola is parameterized as follows: P(U) = O + U*U/(4.*F)*XDir + U*YDir, where: - P is the point of parameter U, - O, XDir and YDir are respectively the origin, "X Direction" and "Y Direction" of its local coordinate system, - F is the focal length of the parabola. The parameter of the parabola is therefore its Y coordinate in the local coordinate system, with the "X Axis" of the local coordinate system defining the origin of the parameter. The parameter range is ] -infinite,+infinite [.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
Returns GeomAbs_CN which is the global continuity of any conic.
"""
def Copy(self) -> Geom2d_Geometry:
"""
Creates a new object, which is a copy of this parabola.
"""
def D0(self,U : float,P : OCP.gp.gp_Pnt2d) -> None:
"""
Returns in P the point of parameter U. If U = 0 the returned point is the origin of the XAxis and the YAxis of the parabola and it is the vertex of the parabola. P = S + F * (U * U * XDir + * U * YDir) where S is the vertex of the parabola, XDir the XDirection and YDir the YDirection of the parabola's local coordinate system.
"""
def D1(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d) -> None:
"""
Returns the point P of parameter U and the first derivative V1.
"""
def D2(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d,V2 : OCP.gp.gp_Vec2d) -> None:
"""
Returns the point P of parameter U, the first and second derivatives V1 and V2.
"""
def D3(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d,V2 : OCP.gp.gp_Vec2d,V3 : OCP.gp.gp_Vec2d) -> None:
"""
Returns the point P of parameter U, the first second and third derivatives V1 V2 and V3.
"""
def DN(self,U : float,N : int) -> OCP.gp.gp_Vec2d:
"""
For the point of parameter U of this parabola, computes the vector corresponding to the Nth derivative. Exceptions Standard_RangeError if N is less than 1.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def Directrix(self) -> OCP.gp.gp_Ax2d:
"""
The directrix is parallel to the "YAxis" of the parabola. The "Location" point of the directrix is the intersection point between the directrix and the symmetry axis ("XAxis") of the parabola.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def Eccentricity(self) -> float:
"""
Returns the eccentricity e = 1.0
"""
def FirstParameter(self) -> float:
"""
Returns RealFirst from Standard.
"""
def Focal(self) -> float:
"""
Computes the focal length of this parabola. The focal length is the distance between the apex and the focus of the parabola.
"""
def Focus(self) -> OCP.gp.gp_Pnt2d:
"""
Computes the focus of this parabola The focus is on the positive side of the "X Axis" of the local coordinate system of the parabola.
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCN(self,N : int) -> bool:
"""
Returns True, the order of continuity of a conic is infinite.
"""
def IsClosed(self) -> bool:
"""
Returns False
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsPeriodic(self) -> bool:
"""
Returns False
"""
def LastParameter(self) -> float:
"""
Returns RealLast from Standard.
"""
def Location(self) -> OCP.gp.gp_Pnt2d:
"""
Returns the location point of the conic. For the circle, the ellipse and the hyperbola it is the center of the conic. For the parabola it is the vertex of the parabola.
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt2d) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry and assigns the result to this geometric object.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
"""
@overload
def Mirror(self,A : OCP.gp.gp_Ax2d) -> None: ...
@overload
def Mirrored(self,A : OCP.gp.gp_Ax2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry: ...
def Parab2d(self) -> OCP.gp.gp_Parab2d:
"""
Returns the non persistent parabola from gp with the same geometric properties as <me>.
"""
def Parameter(self) -> float:
"""
Computes the parameter of this parabola, which is the distance between its focus and its directrix. This distance is twice the focal length. If P is the parameter of the parabola, the equation of the parabola in its local coordinate system is: Y**2 = 2.*P*X.
"""
def ParametricTransformation(self,T : OCP.gp.gp_Trsf2d) -> float:
"""
Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.
"""
def Period(self) -> float:
"""
Returns the period of this curve. raises if the curve is not periodic
"""
def Position(self) -> OCP.gp.gp_Ax22d:
"""
Returns the local coordinates system of the conic.
"""
def Reverse(self) -> None:
"""
Reverses the direction of parameterization of <me>. The local coordinate system of the conic is modified.
"""
def Reversed(self) -> Geom2d_Curve:
"""
Creates a reversed duplicate Changes the orientation of this curve. The first and last parameters are not changed, but the parametric direction of the curve is reversed. If the curve is bounded: - the start point of the initial curve becomes the end point of the reversed curve, and - the end point of the initial curve becomes the start point of the reversed curve. - Reversed creates a new curve.
"""
def ReversedParameter(self,U : float) -> float:
"""
Computes the parameter on the reversed parabola for the point of parameter U on this parabola. For a parabola, the returned value is -U.
"""
def Rotate(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> None:
"""
Rotates a Geometry. P is the center of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> Geom2d_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt2d,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt2d,S : float) -> Geom2d_Geometry:
"""
None
"""
def SetAxis(self,theA : OCP.gp.gp_Ax22d) -> None:
"""
Modifies this conic, redefining its local coordinate system partially, by assigning theA as its axis
"""
def SetFocal(self,Focal : float) -> None:
"""
Assigns the value Focal to the focal length of this parabola. Exceptions Standard_ConstructionError if Focal is negative.
"""
def SetLocation(self,theP : OCP.gp.gp_Pnt2d) -> None:
"""
Modifies this conic, redefining its local coordinate system partially, by assigning theP as its origin.
"""
def SetParab2d(self,Prb : OCP.gp.gp_Parab2d) -> None:
"""
Converts the gp_Parab2d parabola Prb into this parabola.
"""
def SetXAxis(self,theAX : OCP.gp.gp_Ax2d) -> None:
"""
Assigns the origin and unit vector of axis theA to the origin of the local coordinate system of this conic and X Direction. The other unit vector of the local coordinate system of this conic is recomputed normal to theA, without changing the orientation of the local coordinate system (right-handed or left-handed).
"""
def SetYAxis(self,theAY : OCP.gp.gp_Ax2d) -> None:
"""
Assigns the origin and unit vector of axis theA to the origin of the local coordinate system of this conic and Y Direction. The other unit vector of the local coordinate system of this conic is recomputed normal to theA, without changing the orientation of the local coordinate system (right-handed or left-handed).
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf2d) -> None:
"""
Applies the transformation T to this parabola.
"""
def Transformed(self,T : OCP.gp.gp_Trsf2d) -> Geom2d_Geometry:
"""
None
"""
def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf2d) -> float:
"""
Computes the parameter on the transformed parabola, for the point of parameter U on this parabola. For a parabola, the returned value is equal to U multiplied by the scale factor of transformation T.
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec2d) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec2d) -> Geom2d_Geometry: ...
def Value(self,U : float) -> OCP.gp.gp_Pnt2d:
"""
Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve.
"""
def XAxis(self) -> OCP.gp.gp_Ax2d:
"""
Returns the "XAxis" of the conic. This axis defines the origin of parametrization of the conic. This axis and the "Yaxis" define the local coordinate system of the conic. -C++: return const&
"""
def YAxis(self) -> OCP.gp.gp_Ax2d:
"""
Returns the "YAxis" of the conic. The "YAxis" is perpendicular to the "Xaxis".
"""
@overload
def __init__(self,MirrorAxis : OCP.gp.gp_Ax2d,Focal : float,Sense : bool=True) -> None: ...
@overload
def __init__(self,Axis : OCP.gp.gp_Ax22d,Focal : float) -> None: ...
@overload
def __init__(self,D : OCP.gp.gp_Ax2d,F : OCP.gp.gp_Pnt2d) -> None: ...
@overload
def __init__(self,Prb : OCP.gp.gp_Parab2d) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom2d_CartesianPoint(Geom2d_Point, Geom2d_Geometry, OCP.Standard.Standard_Transient):
"""
Describes a point in 2D space. A Geom2d_CartesianPoint is defined by a gp_Pnt2d point, with its two Cartesian coordinates X and Y.Describes a point in 2D space. A Geom2d_CartesianPoint is defined by a gp_Pnt2d point, with its two Cartesian coordinates X and Y.Describes a point in 2D space. A Geom2d_CartesianPoint is defined by a gp_Pnt2d point, with its two Cartesian coordinates X and Y.
"""
def Coord(self) -> tuple[float, float]:
"""
Returns the coordinates of <me>.
"""
def Copy(self) -> Geom2d_Geometry:
"""
None
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def Distance(self,Other : Geom2d_Point) -> float:
"""
computes the distance between <me> and <Other>.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
@overload
def Mirror(self,P : OCP.gp.gp_Pnt2d) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry and assigns the result to this geometric object.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
"""
@overload
def Mirror(self,A : OCP.gp.gp_Ax2d) -> None: ...
@overload
def Mirrored(self,A : OCP.gp.gp_Ax2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry: ...
def Pnt2d(self) -> OCP.gp.gp_Pnt2d:
"""
Returns a non persistent cartesian point with the same coordinates as <me>. -C++: return const&
"""
def Rotate(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> None:
"""
Rotates a Geometry. P is the center of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> Geom2d_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt2d,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt2d,S : float) -> Geom2d_Geometry:
"""
None
"""
def SetCoord(self,X : float,Y : float) -> None:
"""
Set <me> to X, Y coordinates.
"""
def SetPnt2d(self,P : OCP.gp.gp_Pnt2d) -> None:
"""
Set <me> to P.X(), P.Y() coordinates.
"""
def SetX(self,X : float) -> None:
"""
Changes the X coordinate of me.
"""
def SetY(self,Y : float) -> None:
"""
Changes the Y coordinate of me.
"""
def SquareDistance(self,Other : Geom2d_Point) -> float:
"""
computes the square distance between <me> and <Other>.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf2d) -> None:
"""
None
"""
def Transformed(self,T : OCP.gp.gp_Trsf2d) -> Geom2d_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec2d) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec2d) -> Geom2d_Geometry: ...
def X(self) -> float:
"""
Returns the X coordinate of <me>.
"""
def Y(self) -> float:
"""
Returns the Y coordinate of <me>.
"""
@overload
def __init__(self,X : float,Y : float) -> None: ...
@overload
def __init__(self,P : OCP.gp.gp_Pnt2d) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom2d_Transformation(OCP.Standard.Standard_Transient):
"""
The class Transformation allows to create Translation, Rotation, Symmetry, Scaling and complex transformations obtained by combination of the previous elementary transformations. The Transformation class can also be used to construct complex transformations by combining these elementary transformations. However, these transformations can never change the type of an object. For example, the projection transformation can change a circle into an ellipse, and therefore change the real type of the object. Such a transformation is forbidden in this environment and cannot be a Geom2d_Transformation. The transformation can be represented as follow :The class Transformation allows to create Translation, Rotation, Symmetry, Scaling and complex transformations obtained by combination of the previous elementary transformations. The Transformation class can also be used to construct complex transformations by combining these elementary transformations. However, these transformations can never change the type of an object. For example, the projection transformation can change a circle into an ellipse, and therefore change the real type of the object. Such a transformation is forbidden in this environment and cannot be a Geom2d_Transformation. The transformation can be represented as follow :The class Transformation allows to create Translation, Rotation, Symmetry, Scaling and complex transformations obtained by combination of the previous elementary transformations. The Transformation class can also be used to construct complex transformations by combining these elementary transformations. However, these transformations can never change the type of an object. For example, the projection transformation can change a circle into an ellipse, and therefore change the real type of the object. Such a transformation is forbidden in this environment and cannot be a Geom2d_Transformation. The transformation can be represented as follow :
"""
def Copy(self) -> Geom2d_Transformation:
"""
Creates a new object, which is a copy of this transformation.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def Form(self) -> OCP.gp.gp_TrsfForm:
"""
Returns the nature of this transformation as a value of the gp_TrsfForm enumeration. Returns the nature of the transformation. It can be Identity, Rotation, Translation, PntMirror, Ax1Mirror, Scale, CompoundTrsf
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def Invert(self) -> None:
"""
Computes the inverse of this transformation. and assigns the result to this transformatio
"""
def Inverted(self) -> Geom2d_Transformation:
"""
Computes the inverse of this transformation and creates a new one. Raises ConstructionError if the transformation is singular. This means that the ScaleFactor is lower or equal to Resolution from package gp.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsNegative(self) -> bool:
"""
Checks whether this transformation is an indirect transformation: returns true if the determinant of the matrix of the vectorial part of the transformation is less than 0.
"""
def Multiplied(self,Other : Geom2d_Transformation) -> Geom2d_Transformation:
"""
Computes the transformation composed with Other and <me>. <me> * Other. Returns a new transformation
"""
def Multiply(self,Other : Geom2d_Transformation) -> None:
"""
Computes the transformation composed with Other and <me> . <me> = <me> * Other.
"""
def Power(self,N : int) -> None:
"""
Raised if N < 0 and if the transformation is not inversible
"""
def Powered(self,N : int) -> Geom2d_Transformation:
"""
Raised if N < 0 and if the transformation is not inversible
"""
def PreMultiply(self,Other : Geom2d_Transformation) -> None:
"""
Computes the matrix of the transformation composed with <me> and Other. <me> = Other * <me>
"""
def ScaleFactor(self) -> float:
"""
Returns the scale value of the transformation.
"""
@overload
def SetMirror(self,A : OCP.gp.gp_Ax2d) -> None:
"""
Makes the transformation into a symmetrical transformation with respect to a point P. P is the center of the symmetry.
Makes the transformation into a symmetrical transformation with respect to an axis A. A is the center of the axial symmetry.
"""
@overload
def SetMirror(self,P : OCP.gp.gp_Pnt2d) -> None: ...
def SetRotation(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> None:
"""
Assigns to this transformation the geometric properties of a rotation at angle Ang (in radians) about point P.
"""
def SetScale(self,P : OCP.gp.gp_Pnt2d,S : float) -> None:
"""
Makes the transformation into a scale. P is the center of the scale and S is the scaling value.
"""
@overload
def SetTransformation(self,FromSystem1 : OCP.gp.gp_Ax2d,ToSystem2 : OCP.gp.gp_Ax2d) -> None:
"""
Makes a transformation allowing passage from the coordinate system "FromSystem1" to the coordinate system "ToSystem2".
Makes the transformation allowing passage from the basic coordinate system {P(0.,0.,0.), VX (1.,0.,0.), VY (0.,1.,0.)} to the local coordinate system defined with the Ax2d ToSystem.
"""
@overload
def SetTransformation(self,ToSystem : OCP.gp.gp_Ax2d) -> None: ...
@overload
def SetTranslation(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> None:
"""
Makes the transformation into a translation. V is the vector of the translation.
Makes the transformation into a translation from the point P1 to the point P2.
"""
@overload
def SetTranslation(self,V : OCP.gp.gp_Vec2d) -> None: ...
def SetTrsf2d(self,T : OCP.gp.gp_Trsf2d) -> None:
"""
Makes the transformation into a transformation T from package gp.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transforms(self) -> tuple[float, float]:
"""
Applies the transformation <me> to the triplet {X, Y}.
"""
def Trsf2d(self) -> OCP.gp.gp_Trsf2d:
"""
Converts this transformation into a gp_Trsf2d transformation. Returns a non persistent copy of <me>. -C++: return const&
"""
def Value(self,Row : int,Col : int) -> float:
"""
Returns the coefficients of the global matrix of transformation. It is a 2 rows X 3 columns matrix.
"""
def __imul__(self,Other : Geom2d_Transformation) -> None:
"""
None
"""
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,T : OCP.gp.gp_Trsf2d) -> None: ...
def __mul__(self,Other : Geom2d_Transformation) -> Geom2d_Transformation:
"""
None
"""
def __rmul__(self,Other : Geom2d_Transformation) -> Geom2d_Transformation:
"""
None
"""
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom2d_TrimmedCurve(Geom2d_BoundedCurve, Geom2d_Curve, Geom2d_Geometry, OCP.Standard.Standard_Transient):
"""
Defines a portion of a curve limited by two values of parameters inside the parametric domain of the curve. The trimmed curve is defined by: - the basis curve, and - the two parameter values which limit it. The trimmed curve can either have the same orientation as the basis curve or the opposite orientation.Defines a portion of a curve limited by two values of parameters inside the parametric domain of the curve. The trimmed curve is defined by: - the basis curve, and - the two parameter values which limit it. The trimmed curve can either have the same orientation as the basis curve or the opposite orientation.Defines a portion of a curve limited by two values of parameters inside the parametric domain of the curve. The trimmed curve is defined by: - the basis curve, and - the two parameter values which limit it. The trimmed curve can either have the same orientation as the basis curve or the opposite orientation.
"""
def BasisCurve(self) -> Geom2d_Curve:
"""
Returns the basis curve. Warning This function does not return a constant reference. Consequently, any modification of the returned value directly modifies the trimmed curve.
"""
def Continuity(self) -> OCP.GeomAbs.GeomAbs_Shape:
"""
Returns the global continuity of the basis curve of this trimmed curve. C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, CN : the order of continuity is infinite.
"""
def Copy(self) -> Geom2d_Geometry:
"""
Creates a new object, which is a copy of this trimmed curve.
"""
def D0(self,U : float,P : OCP.gp.gp_Pnt2d) -> None:
"""
If the basis curve is an OffsetCurve sometimes it is not possible to do the evaluation of the curve at the parameter U (see class OffsetCurve).
"""
def D1(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d) -> None:
"""
Raised if the continuity of the curve is not C1.
"""
def D2(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d,V2 : OCP.gp.gp_Vec2d) -> None:
"""
Raised if the continuity of the curve is not C2.
"""
def D3(self,U : float,P : OCP.gp.gp_Pnt2d,V1 : OCP.gp.gp_Vec2d,V2 : OCP.gp.gp_Vec2d,V3 : OCP.gp.gp_Vec2d) -> None:
"""
Raised if the continuity of the curve is not C3.
"""
def DN(self,U : float,N : int) -> OCP.gp.gp_Vec2d:
"""
For the point of parameter U of this trimmed curve, computes the vector corresponding to the Nth derivative. Warning The returned derivative vector has the same orientation as the derivative vector of the basis curve, even if the trimmed curve does not have the same orientation as the basis curve. Exceptions Standard_RangeError if N is less than 1. geometric transformations
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def EndPoint(self) -> OCP.gp.gp_Pnt2d:
"""
Returns the end point of <me>. This point is the evaluation of the curve for the "LastParameter".
"""
def FirstParameter(self) -> float:
"""
Returns the value of the first parameter of <me>. The first parameter is the parameter of the "StartPoint" of the trimmed curve.
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
def IsCN(self,N : int) -> bool:
"""
--- Purpose Returns True if the order of continuity of the trimmed curve is N. A trimmed curve is at least "C0" continuous. Warnings : The continuity of the trimmed curve can be greater than the continuity of the basis curve because you consider only a part of the basis curve. Raised if N < 0.
"""
def IsClosed(self) -> bool:
"""
Returns True if the distance between the StartPoint and the EndPoint is lower or equal to Resolution from package gp.
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def IsPeriodic(self) -> bool:
"""
Always returns FALSE (independently of the type of basis curve).
"""
def LastParameter(self) -> float:
"""
Returns the value of the last parameter of <me>. The last parameter is the parameter of the "EndPoint" of the trimmed curve.
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt2d) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry and assigns the result to this geometric object.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
"""
@overload
def Mirror(self,A : OCP.gp.gp_Ax2d) -> None: ...
@overload
def Mirrored(self,A : OCP.gp.gp_Ax2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry: ...
def ParametricTransformation(self,T : OCP.gp.gp_Trsf2d) -> float:
"""
Returns a coefficient to compute the parameter on the transformed curve for the transform of the point on <me>.
"""
def Period(self) -> float:
"""
Returns the period of the basis curve of this trimmed curve. Exceptions Standard_NoSuchObject if the basis curve is not periodic.
"""
def Reverse(self) -> None:
"""
Changes the direction of parametrization of <me>. The first and the last parametric values are modified. The "StartPoint" of the initial curve becomes the "EndPoint" of the reversed curve and the "EndPoint" of the initial curve becomes the "StartPoint" of the reversed curve. Example - If the trimmed curve is defined by: - a basis curve whose parameter range is [ 0.,1. ], and - the two trim values U1 (first parameter) and U2 (last parameter), the reversed trimmed curve is defined by: - the reversed basis curve, whose parameter range is still [ 0.,1. ], and - the two trim values 1. - U2 (first parameter) and 1. - U1 (last parameter).
"""
def Reversed(self) -> Geom2d_Curve:
"""
Creates a reversed duplicate Changes the orientation of this curve. The first and last parameters are not changed, but the parametric direction of the curve is reversed. If the curve is bounded: - the start point of the initial curve becomes the end point of the reversed curve, and - the end point of the initial curve becomes the start point of the reversed curve. - Reversed creates a new curve.
"""
def ReversedParameter(self,U : float) -> float:
"""
Returns the parameter on the reversed curve for the point of parameter U on <me>.
"""
def Rotate(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> None:
"""
Rotates a Geometry. P is the center of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> Geom2d_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt2d,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt2d,S : float) -> Geom2d_Geometry:
"""
None
"""
def SetTrim(self,U1 : float,U2 : float,Sense : bool=True,theAdjustPeriodic : bool=True) -> None:
"""
Changes this trimmed curve, by redefining the parameter values U1 and U2, which limit its basis curve. Note: If the basis curve is periodic, the trimmed curve has the same orientation as the basis curve if Sense is true (default value) or the opposite orientation if Sense is false. Warning If the basis curve is periodic and theAdjustPeriodic is True, the bounds of the trimmed curve may be different from U1 and U2 if the parametric origin of the basis curve is within the arc of the trimmed curve. In this case, the modified parameter will be equal to U1 or U2 plus or minus the period. If theAdjustPeriodic is False, parameters U1 and U2 will stay unchanged. Exceptions Standard_ConstructionError if: - the basis curve is not periodic, and either U1 or U2 are outside the bounds of the basis curve, or - U1 is equal to U2.
"""
def StartPoint(self) -> OCP.gp.gp_Pnt2d:
"""
Returns the start point of <me>. This point is the evaluation of the curve from the "FirstParameter". value and derivatives Warnings : The returned derivatives have the same orientation as the derivatives of the basis curve.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf2d) -> None:
"""
Applies the transformation T to this trimmed curve. Warning The basis curve is also modified.
"""
def Transformed(self,T : OCP.gp.gp_Trsf2d) -> Geom2d_Geometry:
"""
None
"""
def TransformedParameter(self,U : float,T : OCP.gp.gp_Trsf2d) -> float:
"""
Returns the parameter on the transformed curve for the transform of the point of parameter U on <me>.
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec2d) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec2d) -> Geom2d_Geometry: ...
def Value(self,U : float) -> OCP.gp.gp_Pnt2d:
"""
Computes the point of parameter U on <me>. If the curve is periodic then the returned point is P(U) with U = Ustart + (U - Uend) where Ustart and Uend are the parametric bounds of the curve.
"""
def __init__(self,C : Geom2d_Curve,U1 : float,U2 : float,Sense : bool=True,theAdjustPeriodic : bool=True) -> None: ...
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom2d_UndefinedDerivative(Exception, BaseException):
class type():
pass
__cause__: getset_descriptor # value = <attribute '__cause__' of 'BaseException' objects>
__context__: getset_descriptor # value = <attribute '__context__' of 'BaseException' objects>
__dict__: mappingproxy # value = mappingproxy({'__module__': 'OCP.Geom2d', '__weakref__': <attribute '__weakref__' of 'Geom2d_UndefinedDerivative' objects>, '__doc__': None})
__suppress_context__: member_descriptor # value = <member '__suppress_context__' of 'BaseException' objects>
__traceback__: getset_descriptor # value = <attribute '__traceback__' of 'BaseException' objects>
__weakref__: getset_descriptor # value = <attribute '__weakref__' of 'Geom2d_UndefinedDerivative' objects>
args: getset_descriptor # value = <attribute 'args' of 'BaseException' objects>
pass
class Geom2d_UndefinedValue(Exception, BaseException):
class type():
pass
__cause__: getset_descriptor # value = <attribute '__cause__' of 'BaseException' objects>
__context__: getset_descriptor # value = <attribute '__context__' of 'BaseException' objects>
__dict__: mappingproxy # value = mappingproxy({'__module__': 'OCP.Geom2d', '__weakref__': <attribute '__weakref__' of 'Geom2d_UndefinedValue' objects>, '__doc__': None})
__suppress_context__: member_descriptor # value = <member '__suppress_context__' of 'BaseException' objects>
__traceback__: getset_descriptor # value = <attribute '__traceback__' of 'BaseException' objects>
__weakref__: getset_descriptor # value = <attribute '__weakref__' of 'Geom2d_UndefinedValue' objects>
args: getset_descriptor # value = <attribute 'args' of 'BaseException' objects>
pass
class Geom2d_Direction(Geom2d_Vector, Geom2d_Geometry, OCP.Standard.Standard_Transient):
"""
The class Direction specifies a vector that is never null. It is a unit vector.The class Direction specifies a vector that is never null. It is a unit vector.The class Direction specifies a vector that is never null. It is a unit vector.
"""
def Angle(self,Other : Geom2d_Vector) -> float:
"""
Computes the angular value, in radians, between this vector and vector Other. The result is a value between -Pi and Pi. The orientation is from this vector to vector Other. Raises VectorWithNullMagnitude if one of the two vectors is a vector with null magnitude because the angular value is indefinite.
"""
def Coord(self) -> tuple[float, float]:
"""
Returns the coordinates of <me>.
"""
def Copy(self) -> Geom2d_Geometry:
"""
Creates a new object which is a copy of this unit vector.
"""
def Crossed(self,Other : Geom2d_Vector) -> float:
"""
Computes the cross product between <me> and <Other>.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def Dir2d(self) -> OCP.gp.gp_Dir2d:
"""
Converts this unit vector into a gp_Dir2d unit vector.
"""
def Dot(self,Other : Geom2d_Vector) -> float:
"""
Returns the scalar product of 2 Vectors.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def Magnitude(self) -> float:
"""
returns 1.0
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt2d) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry and assigns the result to this geometric object.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
"""
@overload
def Mirror(self,A : OCP.gp.gp_Ax2d) -> None: ...
@overload
def Mirrored(self,A : OCP.gp.gp_Ax2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry: ...
def Reverse(self) -> None:
"""
Reverses the vector <me>.
"""
def Reversed(self) -> Geom2d_Vector:
"""
Returns a copy of <me> reversed.
"""
def Rotate(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> None:
"""
Rotates a Geometry. P is the center of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> Geom2d_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt2d,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt2d,S : float) -> Geom2d_Geometry:
"""
None
"""
def SetCoord(self,X : float,Y : float) -> None:
"""
Assigns the coordinates X and Y to this unit vector, then normalizes it. Exceptions Standard_ConstructionError if Sqrt(X*X + Y*Y) is less than or equal to gp::Resolution().
"""
def SetDir2d(self,V : OCP.gp.gp_Dir2d) -> None:
"""
Converts the gp_Dir2d unit vector V into this unit vector.
"""
def SetX(self,X : float) -> None:
"""
Assigns a value to the X coordinate of this unit vector, then normalizes it. Exceptions Standard_ConstructionError if the value assigned causes the magnitude of the vector to become less than or equal to gp::Resolution().
"""
def SetY(self,Y : float) -> None:
"""
Assigns a value to the Y coordinate of this unit vector, then normalizes it. Exceptions Standard_ConstructionError if the value assigned causes the magnitude of the vector to become less than or equal to gp::Resolution().
"""
def SquareMagnitude(self) -> float:
"""
returns 1.0
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf2d) -> None:
"""
Applies the transformation T to this unit vector, then normalizes it.
"""
def Transformed(self,T : OCP.gp.gp_Trsf2d) -> Geom2d_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec2d) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec2d) -> Geom2d_Geometry: ...
def Vec2d(self) -> OCP.gp.gp_Vec2d:
"""
Returns a non persistent copy of <me>.
"""
def X(self) -> float:
"""
Returns the X coordinate of <me>.
"""
def Y(self) -> float:
"""
Returns the Y coordinate of <me>.
"""
@overload
def __init__(self,X : float,Y : float) -> None: ...
@overload
def __init__(self,V : OCP.gp.gp_Dir2d) -> None: ...
def __pow__(self,Other : Geom2d_Vector) -> float:
"""
None
"""
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
class Geom2d_VectorWithMagnitude(Geom2d_Vector, Geom2d_Geometry, OCP.Standard.Standard_Transient):
"""
Defines a vector with magnitude. A vector with magnitude can have a zero length.Defines a vector with magnitude. A vector with magnitude can have a zero length.Defines a vector with magnitude. A vector with magnitude can have a zero length.
"""
def Add(self,Other : Geom2d_Vector) -> None:
"""
Adds the Vector Other to <me>.
"""
def Added(self,Other : Geom2d_Vector) -> Geom2d_VectorWithMagnitude:
"""
Adds the vector Other to <me>.
"""
def Angle(self,Other : Geom2d_Vector) -> float:
"""
Computes the angular value, in radians, between this vector and vector Other. The result is a value between -Pi and Pi. The orientation is from this vector to vector Other. Raises VectorWithNullMagnitude if one of the two vectors is a vector with null magnitude because the angular value is indefinite.
"""
def Coord(self) -> tuple[float, float]:
"""
Returns the coordinates of <me>.
"""
def Copy(self) -> Geom2d_Geometry:
"""
Creates a new object which is a copy of this vector.
"""
def Crossed(self,Other : Geom2d_Vector) -> float:
"""
Computes the cross product between <me> and Other <me> ^ Other. A new vector is returned.
"""
def DecrementRefCounter(self) -> int:
"""
Decrements the reference counter of this object; returns the decremented value
"""
def Delete(self) -> None:
"""
Memory deallocator for transient classes
"""
def Divide(self,Scalar : float) -> None:
"""
Divides <me> by a scalar.
"""
def Divided(self,Scalar : float) -> Geom2d_VectorWithMagnitude:
"""
Divides <me> by a scalar. A new vector is returned.
"""
def Dot(self,Other : Geom2d_Vector) -> float:
"""
Returns the scalar product of 2 Vectors.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def DynamicType(self) -> OCP.Standard.Standard_Type:
"""
None
"""
def GetRefCount(self) -> int:
"""
Get the reference counter of this object
"""
def IncrementRefCounter(self) -> None:
"""
Increments the reference counter of this object
"""
@overload
def IsInstance(self,theType : OCP.Standard.Standard_Type) -> bool:
"""
Returns a true value if this is an instance of Type.
Returns a true value if this is an instance of TypeName.
"""
@overload
def IsInstance(self,theTypeName : str) -> bool: ...
@overload
def IsKind(self,theTypeName : str) -> bool:
"""
Returns true if this is an instance of Type or an instance of any class that inherits from Type. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
Returns true if this is an instance of TypeName or an instance of any class that inherits from TypeName. Note that multiple inheritance is not supported by OCCT RTTI mechanism.
"""
@overload
def IsKind(self,theType : OCP.Standard.Standard_Type) -> bool: ...
def Magnitude(self) -> float:
"""
Returns the magnitude of <me>.
"""
@overload
def Mirror(self,P : OCP.gp.gp_Pnt2d) -> None:
"""
Performs the symmetrical transformation of a Geometry with respect to the point P which is the center of the symmetry and assigns the result to this geometric object.
Performs the symmetrical transformation of a Geometry with respect to an axis placement which is the axis of the symmetry.
"""
@overload
def Mirror(self,A : OCP.gp.gp_Ax2d) -> None: ...
@overload
def Mirrored(self,A : OCP.gp.gp_Ax2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Mirrored(self,P : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry: ...
def Multiplied(self,Scalar : float) -> Geom2d_VectorWithMagnitude:
"""
Computes the product of the vector <me> by a scalar. A new vector is returned.
"""
def Multiply(self,Scalar : float) -> None:
"""
Computes the product of the vector <me> by a scalar.
"""
def Normalize(self) -> None:
"""
Normalizes <me>.
"""
def Normalized(self) -> Geom2d_VectorWithMagnitude:
"""
Returns a copy of <me> Normalized.
"""
def Reverse(self) -> None:
"""
Reverses the vector <me>.
"""
def Reversed(self) -> Geom2d_Vector:
"""
Returns a copy of <me> reversed.
"""
def Rotate(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> None:
"""
Rotates a Geometry. P is the center of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,P : OCP.gp.gp_Pnt2d,Ang : float) -> Geom2d_Geometry:
"""
None
"""
def Scale(self,P : OCP.gp.gp_Pnt2d,S : float) -> None:
"""
Scales a Geometry. S is the scaling value.
"""
def Scaled(self,P : OCP.gp.gp_Pnt2d,S : float) -> Geom2d_Geometry:
"""
None
"""
def SetCoord(self,X : float,Y : float) -> None:
"""
Set <me> to X, Y coordinates.
"""
def SetVec2d(self,V : OCP.gp.gp_Vec2d) -> None:
"""
None
"""
def SetX(self,X : float) -> None:
"""
Changes the X coordinate of <me>.
"""
def SetY(self,Y : float) -> None:
"""
Changes the Y coordinate of <me>
"""
def SquareMagnitude(self) -> float:
"""
Returns the square magnitude of <me>.
"""
def Subtract(self,Other : Geom2d_Vector) -> None:
"""
Subtracts the Vector Other to <me>.
"""
def Subtracted(self,Other : Geom2d_Vector) -> Geom2d_VectorWithMagnitude:
"""
Subtracts the vector Other to <me>. A new vector is returned.
"""
def This(self) -> OCP.Standard.Standard_Transient:
"""
Returns non-const pointer to this object (like const_cast). For protection against creating handle to objects allocated in stack or call from constructor, it will raise exception Standard_ProgramError if reference counter is zero.
"""
def Transform(self,T : OCP.gp.gp_Trsf2d) -> None:
"""
Applies the transformation T to this vector.
"""
def Transformed(self,T : OCP.gp.gp_Trsf2d) -> Geom2d_Geometry:
"""
None
"""
@overload
def Translate(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> None:
"""
Translates a Geometry. V is the vector of the translation.
Translates a Geometry from the point P1 to the point P2.
"""
@overload
def Translate(self,V : OCP.gp.gp_Vec2d) -> None: ...
@overload
def Translated(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> Geom2d_Geometry:
"""
None
None
"""
@overload
def Translated(self,V : OCP.gp.gp_Vec2d) -> Geom2d_Geometry: ...
def Vec2d(self) -> OCP.gp.gp_Vec2d:
"""
Returns a non persistent copy of <me>.
"""
def X(self) -> float:
"""
Returns the X coordinate of <me>.
"""
def Y(self) -> float:
"""
Returns the Y coordinate of <me>.
"""
def __add__(self,Other : Geom2d_Vector) -> Geom2d_VectorWithMagnitude:
"""
None
"""
def __iadd__(self,Other : Geom2d_Vector) -> None:
"""
None
"""
def __imul__(self,Scalar : float) -> None:
"""
None
"""
@overload
def __init__(self,V : OCP.gp.gp_Vec2d) -> None: ...
@overload
def __init__(self,P1 : OCP.gp.gp_Pnt2d,P2 : OCP.gp.gp_Pnt2d) -> None: ...
@overload
def __init__(self,X : float,Y : float) -> None: ...
def __isub__(self,Other : Geom2d_Vector) -> None:
"""
None
"""
def __itruediv__(self,Scalar : float) -> None:
"""
None
"""
def __pow__(self,Other : Geom2d_Vector) -> float:
"""
None
"""
def __sub__(self,Other : Geom2d_Vector) -> Geom2d_VectorWithMagnitude:
"""
None
"""
def __truediv__(self,Scalar : float) -> Geom2d_VectorWithMagnitude:
"""
None
"""
@staticmethod
def get_type_descriptor_s() -> OCP.Standard.Standard_Type:
"""
None
"""
@staticmethod
def get_type_name_s() -> str:
"""
None
"""
pass
|