1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
|
import OCP.GeomLib
from typing import *
from typing import Iterable as iterable
from typing import Iterator as iterator
from numpy import float64
_Shape = Tuple[int, ...]
import OCP.AdvApprox
import OCP.Geom2dAdaptor
import OCP.Geom
import OCP.TColStd
import OCP.gp
import OCP.TColgp
import OCP.Adaptor2d
import OCP.Adaptor3d
import OCP.Geom2d
import OCP.math
__all__ = [
"GeomLib",
"GeomLib_Array1OfMat",
"GeomLib_Check2dBSplineCurve",
"GeomLib_CheckBSplineCurve",
"GeomLib_CheckCurveOnSurface",
"GeomLib_DenominatorMultiplier",
"GeomLib_Interpolate",
"GeomLib_InterpolationErrors",
"GeomLib_IsPlanarSurface",
"GeomLib_LogSample",
"GeomLib_MakeCurvefromApprox",
"GeomLib_PolyFunc",
"GeomLib_Tool",
"GeomLib_DegreeSmallerThan3",
"GeomLib_InversionProblem",
"GeomLib_NoError",
"GeomLib_NotEnoughtPoints"
]
class GeomLib():
"""
Geom Library. This package provides an implementation of functions for basic computation on geometric entity from packages Geom and Geom2d.
"""
@staticmethod
def AdjustExtremity_s(Curve : OCP.Geom.Geom_BoundedCurve,P1 : OCP.gp.gp_Pnt,P2 : OCP.gp.gp_Pnt,T1 : OCP.gp.gp_Vec,T2 : OCP.gp.gp_Vec) -> None:
"""
None
"""
@staticmethod
def AxeOfInertia_s(Points : OCP.TColgp.TColgp_Array1OfPnt,Axe : OCP.gp.gp_Ax2,Tol : float=1e-07) -> tuple[bool]:
"""
Compute axes of inertia, of some points -- -- -- <Axe>.Location() is the BaryCentre -- -- -- -- -- <Axe>.XDirection is the axe of upper inertia -- -- -- -- <Axe>.Direction is the Normal to the average plane -- -- -- IsSingular is True if points are on line -- Tol is used to determine singular cases.
"""
@staticmethod
def BuildCurve3d_s(Tolerance : float,CurvePtr : OCP.Adaptor3d.Adaptor3d_CurveOnSurface,FirstParameter : float,LastParameter : float,NewCurvePtr : OCP.Geom.Geom_Curve,Continuity : OCP.GeomAbs.GeomAbs_Shape=GeomAbs_Shape.GeomAbs_C1,MaxDegree : int=14,MaxSegment : int=30) -> tuple[float, float]:
"""
None
"""
@staticmethod
def CancelDenominatorDerivative_s(BSurf : OCP.Geom.Geom_BSplineSurface,UDirection : bool,VDirection : bool) -> None:
"""
Cancel,on the boundaries,the denominator first derivative in the directions wished by the user and set its value to 1.
"""
@staticmethod
def DensifyArray1OfReal_s(MinNumPoints : int,InParameters : OCP.TColStd.TColStd_Array1OfReal,OutParameters : OCP.TColStd.TColStd_HArray1OfReal) -> None:
"""
this makes sure that there is at least MinNumPoints in OutParameters taking into account the parameters in the InParameters array provided those are in order, that is the sequence of real in the InParameter is strictly non decreasing
"""
@staticmethod
def EvalMaxDistanceAlongParameter_s(Curve : OCP.Adaptor3d.Adaptor3d_Curve,AReferenceCurve : OCP.Adaptor3d.Adaptor3d_Curve,Tolerance : float,Parameters : OCP.TColStd.TColStd_Array1OfReal) -> tuple[float]:
"""
this will compute the maximum distance at the parameters given in the Parameters array by projecting from the Curve to the reference curve and taking the minimum distance Than the maximum will be taken on those minimas.
"""
@staticmethod
def EvalMaxParametricDistance_s(Curve : OCP.Adaptor3d.Adaptor3d_Curve,AReferenceCurve : OCP.Adaptor3d.Adaptor3d_Curve,Tolerance : float,Parameters : OCP.TColStd.TColStd_Array1OfReal) -> tuple[float]:
"""
this will compute the maximum distance at the parameters given in the Parameters array by evaluating each parameter the two curves and taking the maximum of the evaluated distance
"""
@staticmethod
def ExtendCurveToPoint_s(Curve : OCP.Geom.Geom_BoundedCurve,Point : OCP.gp.gp_Pnt,Cont : int,After : bool) -> None:
"""
Extends the bounded curve Curve to the point Point. The extension is built: - at the end of the curve if After equals true, or - at the beginning of the curve if After equals false. The extension is performed according to a degree of continuity equal to Cont, which in its turn must be equal to 1, 2 or 3. This function converts the bounded curve Curve into a BSpline curve. Warning - Nothing is done, and Curve is not modified if Cont is not equal to 1, 2 or 3. - It is recommended that the extension should not be too large with respect to the size of the bounded curve Curve: Point must not be located too far from one of the extremities of Curve.
"""
@staticmethod
def ExtendSurfByLength_s(Surf : OCP.Geom.Geom_BoundedSurface,Length : float,Cont : int,InU : bool,After : bool) -> None:
"""
Extends the bounded surface Surf along one of its boundaries. The chord length of the extension is equal to Length. The direction of the extension is given as: - the u parametric direction of Surf, if InU equals true, or - the v parametric direction of Surf, if InU equals false. In this parametric direction, the extension is built on the side of: - the last parameter of Surf, if After equals true, or - the first parameter of Surf, if After equals false. The extension is performed according to a degree of continuity equal to Cont, which in its turn must be equal to 1, 2 or 3. This function converts the bounded surface Surf into a BSpline surface. Warning - Nothing is done, and Surf is not modified if Cont is not equal to 1, 2 or 3. - It is recommended that Length, the size of the extension should not be too large with respect to the size of the bounded surface Surf. - Surf must not be a periodic BSpline surface in the parametric direction corresponding to the direction of extension.
"""
@staticmethod
def FuseIntervals_s(Interval1 : OCP.TColStd.TColStd_Array1OfReal,Interval2 : OCP.TColStd.TColStd_Array1OfReal,Fusion : OCP.TColStd.TColStd_SequenceOfReal,Confusion : float=1e-09,IsAdjustToFirstInterval : bool=False) -> None:
"""
This method fuse intervals Interval1 and Interval2 with specified Confusion
"""
@staticmethod
def GTransform_s(Curve : OCP.Geom2d.Geom2d_Curve,GTrsf : OCP.gp.gp_GTrsf2d) -> OCP.Geom2d.Geom2d_Curve:
"""
Computes the curve 3d from package Geom corresponding to the curve 3d from package Geom, transformed with the transformation <GTrsf> WARNING : this method may return a null Handle if it's impossible to compute the transformation of a curve. It's not implemented when : 1) the curve is an infinite parabola or hyperbola 2) the curve is an offsetcurve
"""
@staticmethod
def Inertia_s(Points : OCP.TColgp.TColgp_Array1OfPnt,Bary : OCP.gp.gp_Pnt,XDir : OCP.gp.gp_Dir,YDir : OCP.gp.gp_Dir) -> tuple[float, float, float]:
"""
Compute principale axes of inertia, and dispersion value of some points.
"""
@staticmethod
def IsBSplUClosed_s(S : OCP.Geom.Geom_BSplineSurface,U1 : float,U2 : float,Tol : float) -> bool:
"""
Returns true if the poles of U1 isoline and the poles of U2 isoline of surface are identical according to tolerance criterion. For rational surfaces Weights(i)*Poles(i) are checked.
"""
@staticmethod
def IsBSplVClosed_s(S : OCP.Geom.Geom_BSplineSurface,V1 : float,V2 : float,Tol : float) -> bool:
"""
Returns true if the poles of V1 isoline and the poles of V2 isoline of surface are identical according to tolerance criterion. For rational surfaces Weights(i)*Poles(i) are checked.
"""
@staticmethod
def IsBzUClosed_s(S : OCP.Geom.Geom_BezierSurface,U1 : float,U2 : float,Tol : float) -> bool:
"""
Returns true if the poles of U1 isoline and the poles of U2 isoline of surface are identical according to tolerance criterion.
"""
@staticmethod
def IsBzVClosed_s(S : OCP.Geom.Geom_BezierSurface,V1 : float,V2 : float,Tol : float) -> bool:
"""
Returns true if the poles of V1 isoline and the poles of V2 isoline of surface are identical according to tolerance criterion.
"""
@staticmethod
def IsClosed_s(S : OCP.Geom.Geom_Surface,Tol : float) -> tuple[bool, bool]:
"""
This method defines if opposite boundaries of surface coincide with given tolerance
"""
@staticmethod
def NormEstim_s(theSurf : OCP.Geom.Geom_Surface,theUV : OCP.gp.gp_Pnt2d,theTol : float,theNorm : OCP.gp.gp_Dir) -> int:
"""
Estimate surface normal at the given (U, V) point.
"""
@staticmethod
def RemovePointsFromArray_s(NumPoints : int,InParameters : OCP.TColStd.TColStd_Array1OfReal,OutParameters : OCP.TColStd.TColStd_HArray1OfReal) -> None:
"""
Warning! This assume that the InParameter is an increasing sequence of real number and it will not check for that : Unpredictable result can happen if this is not satisfied. It is the caller responsibility to check for that property.
"""
@staticmethod
def SameRange_s(Tolerance : float,Curve2dPtr : OCP.Geom2d.Geom2d_Curve,First : float,Last : float,RequestedFirst : float,RequestedLast : float,NewCurve2dPtr : OCP.Geom2d.Geom2d_Curve) -> None:
"""
Make the curve Curve2dPtr have the imposed range First to List the most economic way, that is if it can change the range without changing the nature of the curve it will try to do that. Otherwise it will produce a Bspline curve that has the required range
"""
@staticmethod
def To3d_s(Position : OCP.gp.gp_Ax2,Curve2d : OCP.Geom2d.Geom2d_Curve) -> OCP.Geom.Geom_Curve:
"""
Computes the curve 3d from package Geom corresponding to curve 2d from package Geom2d, on the plan defined with the local coordinate system Position.
"""
def __init__(self) -> None: ...
@staticmethod
def buildC3dOnIsoLine_s(theC2D : OCP.Adaptor2d.Adaptor2d_Curve2d,theSurf : OCP.Adaptor3d.Adaptor3d_Surface,theFirst : float,theLast : float,theTolerance : float,theIsU : bool,theParam : float,theIsForward : bool) -> OCP.Geom.Geom_Curve:
"""
Builds 3D curve for a isoline. This method takes corresponding isoline from the input surface.
"""
@staticmethod
def isIsoLine_s(theC2D : OCP.Adaptor2d.Adaptor2d_Curve2d,theIsU : bool,theParam : float,theIsForward : bool) -> bool:
"""
Checks whether the 2d curve is a isoline. It can be represented by b-spline, bezier, or geometric line. This line should have natural parameterization.
"""
pass
class GeomLib_Array1OfMat():
"""
The class NCollection_Array1 represents unidimensional arrays of fixed size known at run time. The range of the index is user defined. An array1 can be constructed with a "C array". This functionality is useful to call methods expecting an Array1. It allows to carry the bounds inside the arrays.
"""
def Assign(self,theOther : GeomLib_Array1OfMat) -> GeomLib_Array1OfMat:
"""
Copies data of theOther array to this. This array should be pre-allocated and have the same length as theOther; otherwise exception Standard_DimensionMismatch is thrown.
"""
def Init(self,theValue : OCP.gp.gp_Mat) -> None:
"""
Initialise the items with theValue
"""
def IsDeletable(self) -> bool:
"""
None
"""
def IsEmpty(self) -> bool:
"""
Return TRUE if array has zero length.
"""
def Length(self) -> int:
"""
Length query (the same)
"""
def Lower(self) -> int:
"""
Lower bound
"""
def Move(self,theOther : GeomLib_Array1OfMat) -> GeomLib_Array1OfMat:
"""
None
"""
def Resize(self,theLower : int,theUpper : int,theToCopyData : bool) -> None:
"""
Resizes the array to specified bounds. No re-allocation will be done if length of array does not change, but existing values will not be discarded if theToCopyData set to FALSE.
"""
def SetValue(self,theIndex : int,theItem : OCP.gp.gp_Mat) -> None:
"""
Set value
"""
def Size(self) -> int:
"""
Size query
"""
def UpdateLowerBound(self,theLower : int) -> None:
"""
Changes the lowest bound. Do not move data
"""
def UpdateUpperBound(self,theUpper : int) -> None:
"""
Changes the upper bound. Do not move data
"""
def Upper(self) -> int:
"""
Upper bound
"""
def __bool__(self) -> bool: ...
def __call__(self,theIndex : int) -> OCP.gp.gp_Mat: ...
@overload
def __init__(self,theOther : GeomLib_Array1OfMat) -> None: ...
@overload
def __init__(self,theAlloc : Any,theLower : int,theUpper : int) -> None: ...
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,theLower : int,theUpper : int) -> None: ...
def __iter__(self) -> Iterator[OCP.gp.gp_Mat]: ...
def __len__(self) -> int: ...
pass
class GeomLib_Check2dBSplineCurve():
"""
Checks for the end tangents : whether or not those are reversed
"""
def FixTangent(self,FirstFlag : bool,LastFlag : bool) -> None:
"""
None
"""
def FixedTangent(self,FirstFlag : bool,LastFlag : bool) -> OCP.Geom2d.Geom2d_BSplineCurve:
"""
modifies the curve by fixing the first or the last tangencies
"""
def IsDone(self) -> bool:
"""
None
None
"""
def NeedTangentFix(self) -> tuple[bool, bool]:
"""
None
"""
def __init__(self,Curve : OCP.Geom2d.Geom2d_BSplineCurve,Tolerance : float,AngularTolerance : float) -> None: ...
pass
class GeomLib_CheckBSplineCurve():
"""
Checks for the end tangents : whether or not those are reversed regarding the third or n-3rd control
"""
def FixTangent(self,FirstFlag : bool,LastFlag : bool) -> None:
"""
None
"""
def FixedTangent(self,FirstFlag : bool,LastFlag : bool) -> OCP.Geom.Geom_BSplineCurve:
"""
modifies the curve by fixing the first or the last tangencies
"""
def IsDone(self) -> bool:
"""
None
None
"""
def NeedTangentFix(self) -> tuple[bool, bool]:
"""
None
"""
def __init__(self,Curve : OCP.Geom.Geom_BSplineCurve,Tolerance : float,AngularTolerance : float) -> None: ...
pass
class GeomLib_CheckCurveOnSurface():
"""
Computes the max distance between 3D-curve and 2D-curve in some surface.
"""
def ErrorStatus(self) -> int:
"""
Returns error status The possible values are: 0 - OK; 1 - null curve or surface or 2d curve; 2 - invalid parametric range; 3 - error in calculations.
"""
@overload
def Init(self) -> None:
"""
Sets the data for the algorithm
Initializes all members by default values
"""
@overload
def Init(self,theCurve : OCP.Adaptor3d.Adaptor3d_Curve,theTolRange : float=9.999999999999999e-10) -> None: ...
def IsDone(self) -> bool:
"""
Returns true if the max distance has been found
"""
def IsParallel(self) -> bool:
"""
Returns true if parallel flag is set
"""
def MaxDistance(self) -> float:
"""
Returns max distance
"""
def MaxParameter(self) -> float:
"""
Returns parameter in which the distance is maximal
"""
def Perform(self,theCurveOnSurface : OCP.Adaptor3d.Adaptor3d_CurveOnSurface) -> None:
"""
Computes the max distance for the 3d curve <myCurve> and 2d curve <theCurveOnSurface> If isMultiThread == Standard_True then computation will be performed in parallel.
"""
def SetParallel(self,theIsParallel : bool) -> None:
"""
Sets parallel flag
"""
@overload
def __init__(self,theCurve : OCP.Adaptor3d.Adaptor3d_Curve,theTolRange : float=9.999999999999999e-10) -> None: ...
@overload
def __init__(self) -> None: ...
pass
class GeomLib_DenominatorMultiplier():
"""
this defines an evaluator for a function of 2 variables that will be used by CancelDenominatorDerivative in one direction.
"""
def Value(self,UParameter : float,VParameter : float) -> float:
"""
Returns the value of a(UParameter,VParameter)=
"""
def __init__(self,Surface : OCP.Geom.Geom_BSplineSurface,KnotVector : OCP.TColStd.TColStd_Array1OfReal) -> None: ...
pass
class GeomLib_Interpolate():
"""
this class is used to construct a BSpline curve by interpolation of points at given parameters The continuity of the curve is degree - 1 and the method used when boundary condition are not given is to use odd degrees and null the derivatives on both sides from degree -1 down to (degree+1) / 2 When even degree is given the returned curve is of degree - 1 so that the degree of the curve is odd
"""
def Curve(self) -> OCP.Geom.Geom_BSplineCurve:
"""
returns the interpolated curve of the requested degree
"""
def Error(self) -> GeomLib_InterpolationErrors:
"""
returns the error type if any
returns the error type if any
"""
def IsDone(self) -> bool:
"""
returns if everything went OK
returns if everything went OK
"""
def __init__(self,Degree : int,NumPoints : int,Points : OCP.TColgp.TColgp_Array1OfPnt,Parameters : OCP.TColStd.TColStd_Array1OfReal) -> None: ...
pass
class GeomLib_InterpolationErrors():
"""
in case the interpolation errors out, this tells what happened
Members:
GeomLib_NoError
GeomLib_NotEnoughtPoints
GeomLib_DegreeSmallerThan3
GeomLib_InversionProblem
"""
def __eq__(self,other : object) -> bool: ...
def __getstate__(self) -> int: ...
def __hash__(self) -> int: ...
def __index__(self) -> int: ...
def __init__(self,value : int) -> None: ...
def __int__(self) -> int: ...
def __ne__(self,other : object) -> bool: ...
def __repr__(self) -> str: ...
def __setstate__(self,state : int) -> None: ...
def __str__(self) -> str: ...
@property
def name(self) -> None:
"""
:type: None
"""
@property
def value(self) -> int:
"""
:type: int
"""
GeomLib_DegreeSmallerThan3: OCP.GeomLib.GeomLib_InterpolationErrors # value = <GeomLib_InterpolationErrors.GeomLib_DegreeSmallerThan3: 2>
GeomLib_InversionProblem: OCP.GeomLib.GeomLib_InterpolationErrors # value = <GeomLib_InterpolationErrors.GeomLib_InversionProblem: 3>
GeomLib_NoError: OCP.GeomLib.GeomLib_InterpolationErrors # value = <GeomLib_InterpolationErrors.GeomLib_NoError: 0>
GeomLib_NotEnoughtPoints: OCP.GeomLib.GeomLib_InterpolationErrors # value = <GeomLib_InterpolationErrors.GeomLib_NotEnoughtPoints: 1>
__entries: dict # value = {'GeomLib_NoError': (<GeomLib_InterpolationErrors.GeomLib_NoError: 0>, None), 'GeomLib_NotEnoughtPoints': (<GeomLib_InterpolationErrors.GeomLib_NotEnoughtPoints: 1>, None), 'GeomLib_DegreeSmallerThan3': (<GeomLib_InterpolationErrors.GeomLib_DegreeSmallerThan3: 2>, None), 'GeomLib_InversionProblem': (<GeomLib_InterpolationErrors.GeomLib_InversionProblem: 3>, None)}
__members__: dict # value = {'GeomLib_NoError': <GeomLib_InterpolationErrors.GeomLib_NoError: 0>, 'GeomLib_NotEnoughtPoints': <GeomLib_InterpolationErrors.GeomLib_NotEnoughtPoints: 1>, 'GeomLib_DegreeSmallerThan3': <GeomLib_InterpolationErrors.GeomLib_DegreeSmallerThan3: 2>, 'GeomLib_InversionProblem': <GeomLib_InterpolationErrors.GeomLib_InversionProblem: 3>}
pass
class GeomLib_IsPlanarSurface():
"""
Find if a surface is a planar surface.
"""
def IsPlanar(self) -> bool:
"""
Return if the Surface is a plan
"""
def Plan(self) -> OCP.gp.gp_Pln:
"""
Return the plan definition
"""
def __init__(self,S : OCP.Geom.Geom_Surface,Tol : float=1e-07) -> None: ...
pass
class GeomLib_LogSample(OCP.math.math_FunctionSample):
"""
None
"""
def Bounds(self) -> tuple[float, float]:
"""
Returns the bounds of parameters.
"""
def GetParameter(self,Index : int) -> float:
"""
Returns the value of parameter of the point of range Index : A + ((Index-1)/(NbPoints-1))*B. An exception is raised if Index<=0 or Index>NbPoints.
"""
def NbPoints(self) -> int:
"""
Returns the number of sample points.
"""
def __init__(self,A : float,B : float,N : int) -> None: ...
pass
class GeomLib_MakeCurvefromApprox():
"""
this class is used to construct the BSpline curve from an Approximation ( ApproxAFunction from AdvApprox).
"""
@overload
def Curve(self,Index1D : int,Index3D : int) -> OCP.Geom.Geom_BSplineCurve:
"""
returns a polynomial curve whose poles correspond to the Index3D 3D space if Index3D not in the Range [1,Nb3dSpaces] if the Approx is not Done
returns a rational curve whose poles correspond to the index3D of the 3D space and whose weights correspond to the index1d 1D space. if Index1D not in the Range [1,Nb1dSpaces] if Index3D not in the Range [1,Nb3dSpaces] if the Approx is not Done
"""
@overload
def Curve(self,Index3d : int) -> OCP.Geom.Geom_BSplineCurve: ...
@overload
def Curve2d(self,Index1d : int,Index2d : int) -> OCP.Geom2d.Geom2d_BSplineCurve:
"""
returns a polynomial curve whose poles correspond to the Index2d 2D space if Index2d not in the Range [1,Nb2dSpaces] if the Approx is not Done
returns a rational curve whose poles correspond to the index2d of the 2D space and whose weights correspond to one dimensional space of index 1d if Index1d not in the Range [1,Nb1dSpaces] if Index2d not in the Range [1,Nb2dSpaces] if the Approx is not Done
"""
@overload
def Curve2d(self,Index2d : int) -> OCP.Geom2d.Geom2d_BSplineCurve: ...
def Curve2dFromTwo1d(self,Index1d : int,Index2d : int) -> OCP.Geom2d.Geom2d_BSplineCurve:
"""
returns a 2D curve building it from the 1D curve in x at Index1d and y at Index2d amongst the 1D curves if Index1d not in the Range [1,Nb1dSpaces] if Index2d not in the Range [1,Nb1dSpaces] if the Approx is not Done
"""
def IsDone(self) -> bool:
"""
None
None
"""
def Nb1DSpaces(self) -> int:
"""
returns the number of 1D spaces of the Approx
"""
def Nb2DSpaces(self) -> int:
"""
returns the number of 3D spaces of the Approx
"""
def Nb3DSpaces(self) -> int:
"""
returns the number of 3D spaces of the Approx
"""
def __init__(self,Approx : OCP.AdvApprox.AdvApprox_ApproxAFunction) -> None: ...
pass
class GeomLib_PolyFunc(OCP.math.math_FunctionWithDerivative, OCP.math.math_Function):
"""
Polynomial Function
"""
def Derivative(self,X : float,D : float) -> bool:
"""
computes the derivative <D> of the function for the variable <X>. Returns True if the calculation were successfully done, False otherwise.
"""
def GetStateNumber(self) -> int:
"""
returns the state of the function corresponding to the latest call of any methods associated with the function. This function is called by each of the algorithms described later which defined the function Integer Algorithm::StateNumber(). The algorithm has the responsibility to call this function when it has found a solution (i.e. a root or a minimum) and has to maintain the association between the solution found and this StateNumber. Byu default, this method returns 0 (which means for the algorithm: no state has been saved). It is the responsibility of the programmer to decide if he needs to save the current state of the function and to return an Integer that allows retrieval of the state.
"""
def Value(self,X : float,F : float) -> bool:
"""
computes the value <F>of the function for the variable <X>. Returns True if the calculation were successfully done, False otherwise.
"""
def Values(self,X : float,F : float,D : float) -> bool:
"""
computes the value <F> and the derivative <D> of the function for the variable <X>. Returns True if the calculation were successfully done, False otherwise.
"""
def __init__(self,Coeffs : Any) -> None: ...
pass
class GeomLib_Tool():
"""
Provides various methods with Geom2d and Geom curves and surfaces. The methods of this class compute the parameter(s) of a given point on a curve or a surface. To get the valid result the point must be located rather close to the curve (surface) or at least to allow getting unambiguous result (do not put point at center of circle...), but choice of "trust" distance between curve/surface and point is responsibility of user (parameter MaxDist). Return FALSE if the point is beyond the MaxDist limit or if computation fails.
"""
@staticmethod
@overload
def ComputeDeviation_s(theCurve : OCP.Geom2dAdaptor.Geom2dAdaptor_Curve,theFPar : float,theLPar : float,theStartParameter : float,theNbIters : int=100,thePrmOnCurve : float=None,thePtOnCurve : OCP.gp.gp_Pnt2d=None,theVecCurvLine : OCP.gp.gp_Vec2d=None,theLine : OCP.gp.gp_Lin2d=None) -> float:
"""
Computes parameter in theCurve (*thePrmOnCurve) where maximal deviation between theCurve and the linear segment joining its points with the parameters theFPar and theLPar is obtained. Returns the (positive) value of deviation. Returns negative value if the deviation cannot be computed. The returned parameter (in case of successful) will always be in the range [theFPar, theLPar]. Iterative method is used for computation. So, theStartParameter is needed to be set. Recommend value of theStartParameter can be found with the overloaded method. Additionally, following values can be returned (optionally):
Computes parameter in theCurve (*thePrmOnCurve) where maximal deviation between theCurve and the linear segment joining its points with the parameters theFPar and theLPar is obtained. Returns the (positive) value of deviation. Returns negative value if the deviation cannot be computed. The returned parameter (in case of successful) will always be in the range [theFPar, theLPar]. theNbSubIntervals defines discretization of the given interval [theFPar, theLPar] to provide better search condition. This value should be chosen taking into account complexity of the curve in considered interval. E.g. if there are many oscillations of the curve in the interval then theNbSubIntervals mus be great number. However, the greater value of theNbSubIntervals the slower the algorithm will compute. theNbIters sets number of iterations. ATTENTION!!! This algorithm cannot compute deviation precisely (so, there is no point in setting big value of theNbIters). But it can give some start point for the overloaded method.
"""
@staticmethod
@overload
def ComputeDeviation_s(theCurve : OCP.Geom2dAdaptor.Geom2dAdaptor_Curve,theFPar : float,theLPar : float,theNbSubIntervals : int,theNbIters : int=10,thePrmOnCurve : float=None) -> float: ...
@staticmethod
@overload
def Parameter_s(Curve : OCP.Geom.Geom_Curve,Point : OCP.gp.gp_Pnt,MaxDist : float,U : float) -> bool:
"""
Extracts the parameter of a 3D point lying on a 3D curve or at a distance less than the MaxDist value.
Extracts the parameter of a 2D point lying on a 2D curve or at a distance less than the MaxDist value.
"""
@staticmethod
@overload
def Parameter_s(Curve : OCP.Geom2d.Geom2d_Curve,Point : OCP.gp.gp_Pnt2d,MaxDist : float,U : float) -> bool: ...
@staticmethod
def Parameters_s(Surface : OCP.Geom.Geom_Surface,Point : OCP.gp.gp_Pnt,MaxDist : float,U : float,V : float) -> bool:
"""
Extracts the parameter of a 3D point lying on a surface or at a distance less than the MaxDist value.
"""
def __init__(self) -> None: ...
pass
GeomLib_DegreeSmallerThan3: OCP.GeomLib.GeomLib_InterpolationErrors # value = <GeomLib_InterpolationErrors.GeomLib_DegreeSmallerThan3: 2>
GeomLib_InversionProblem: OCP.GeomLib.GeomLib_InterpolationErrors # value = <GeomLib_InterpolationErrors.GeomLib_InversionProblem: 3>
GeomLib_NoError: OCP.GeomLib.GeomLib_InterpolationErrors # value = <GeomLib_InterpolationErrors.GeomLib_NoError: 0>
GeomLib_NotEnoughtPoints: OCP.GeomLib.GeomLib_InterpolationErrors # value = <GeomLib_InterpolationErrors.GeomLib_NotEnoughtPoints: 1>
|