File: __init__.pyi

package info (click to toggle)
python-ocp 7.8.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 64,720 kB
  • sloc: cpp: 362,337; pascal: 33; python: 23; makefile: 4
file content (702 lines) | stat: -rw-r--r-- 29,742 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
import OCP.IntAna
from typing import *
from typing import Iterable as iterable
from typing import Iterator as iterator
from numpy import float64
_Shape = Tuple[int, ...]
import OCP.TColStd
import OCP.gp
import OCP.NCollection
__all__  = [
"IntAna_Curve",
"IntAna_Int3Pln",
"IntAna_IntConicQuad",
"IntAna_IntLinTorus",
"IntAna_IntQuadQuad",
"IntAna_ListOfCurve",
"IntAna_QuadQuadGeo",
"IntAna_Quadric",
"IntAna_ResultType",
"IntAna_Circle",
"IntAna_Ellipse",
"IntAna_Empty",
"IntAna_Hyperbola",
"IntAna_Line",
"IntAna_NoGeometricSolution",
"IntAna_Parabola",
"IntAna_Point",
"IntAna_PointAndCircle",
"IntAna_Same"
]
class IntAna_Curve():
    """
    Definition of a parametric Curve which is the result of the intersection between two quadrics.
    """
    def D1u(self,Theta : float,P : OCP.gp.gp_Pnt,V : OCP.gp.gp_Vec) -> bool: 
        """
        Returns the point and the first derivative at parameter Theta on the curve.
        """
    def Domain(self) -> tuple[float, float]: 
        """
        Returns the paramatric domain of the curve.
        """
    def FindParameter(self,P : OCP.gp.gp_Pnt,theParams : OCP.TColStd.TColStd_ListOfReal) -> None: 
        """
        Tries to find the parameter of the point P on the curve. If the method returns False, the "projection" is impossible. If the method returns True at least one parameter has been found. theParams is always sorted in ascending order.
        """
    def IsConstant(self) -> bool: 
        """
        Returns TRUE if the function is constant.
        """
    def IsFirstOpen(self) -> bool: 
        """
        Returns TRUE if the domain is open at the beginning.
        """
    def IsLastOpen(self) -> bool: 
        """
        Returns TRUE if the domain is open at the end.
        """
    def IsOpen(self) -> bool: 
        """
        Returns TRUE if the curve is not infinite at the last parameter or at the first parameter of the domain.
        """
    def SetConeQuadValues(self,Cone : OCP.gp.gp_Cone,Qxx : float,Qyy : float,Qzz : float,Qxy : float,Qxz : float,Qyz : float,Qx : float,Qy : float,Qz : float,Q1 : float,Tol : float,DomInf : float,DomSup : float,TwoZForATheta : bool,ZIsPositive : bool) -> None: 
        """
        Sets the parameters used to compute Points and Derivative on the curve.
        """
    def SetCylinderQuadValues(self,Cylinder : OCP.gp.gp_Cylinder,Qxx : float,Qyy : float,Qzz : float,Qxy : float,Qxz : float,Qyz : float,Qx : float,Qy : float,Qz : float,Q1 : float,Tol : float,DomInf : float,DomSup : float,TwoZForATheta : bool,ZIsPositive : bool) -> None: 
        """
        Sets the parameters used to compute Points and Derivative on the curve.
        """
    def SetDomain(self,theFirst : float,theLast : float) -> None: 
        """
        Trims this curve
        """
    def SetIsFirstOpen(self,Flag : bool) -> None: 
        """
        If flag is True, the Curve is not defined at the first parameter of its domain.
        """
    def SetIsLastOpen(self,Flag : bool) -> None: 
        """
        If flag is True, the Curve is not defined at the first parameter of its domain.
        """
    def Value(self,Theta : float) -> OCP.gp.gp_Pnt: 
        """
        Returns the point at parameter Theta on the curve.
        """
    def __init__(self) -> None: ...
    pass
class IntAna_Int3Pln():
    """
    Intersection between 3 planes. The algorithm searches for an intersection point. If two of the planes are parallel or identical, IsEmpty returns TRUE.
    """
    def IsDone(self) -> bool: 
        """
        Returns True if the computation was successful.

        Returns True if the computation was successful.
        """
    def IsEmpty(self) -> bool: 
        """
        Returns TRUE if there is no intersection POINT. If 2 planes are identical or parallel, IsEmpty will return TRUE.

        Returns TRUE if there is no intersection POINT. If 2 planes are identical or parallel, IsEmpty will return TRUE.
        """
    def Perform(self,P1 : OCP.gp.gp_Pln,P2 : OCP.gp.gp_Pln,P3 : OCP.gp.gp_Pln) -> None: 
        """
        Determination of the intersection point between 3 planes.
        """
    def Value(self) -> OCP.gp.gp_Pnt: 
        """
        Returns the intersection point.

        Returns the intersection point.
        """
    @overload
    def __init__(self,P1 : OCP.gp.gp_Pln,P2 : OCP.gp.gp_Pln,P3 : OCP.gp.gp_Pln) -> None: ...
    @overload
    def __init__(self) -> None: ...
    pass
class IntAna_IntConicQuad():
    """
    This class provides the analytic intersection between a conic defined as an element of gp (Lin,Circ,Elips, Parab,Hypr) and a quadric as defined in the class Quadric from IntAna. The intersection between a conic and a plane is treated as a special case.
    """
    def IsDone(self) -> bool: 
        """
        Returns TRUE if the creation completed.

        Returns TRUE if the creation completed.
        """
    def IsInQuadric(self) -> bool: 
        """
        Returns TRUE if the conic is in the quadric.

        Returns TRUE if the conic is in the quadric.
        """
    def IsParallel(self) -> bool: 
        """
        Returns TRUE if the line is in a quadric which is parallel to the quadric.

        Returns TRUE if the line is in a quadric which is parallel to the quadric.
        """
    def NbPoints(self) -> int: 
        """
        Returns the number of intersection point.

        Returns the number of intersection point.
        """
    @overload
    def ParamOnConic(self,i : int) -> float: 
        """
        Returns the parameter on the line of the intersection point of range N.

        Returns the parameter on the line of the intersection point of range N.
        """
    @overload
    def ParamOnConic(self,N : int) -> float: ...
    @overload
    def Perform(self,P : OCP.gp.gp_Parab,Q : IntAna_Quadric) -> None: 
        """
        Intersects a line and a quadric.

        Intersects a circle and a quadric.

        Intersects an ellipse and a quadric.

        Intersects a parabola and a quadric.

        Intersects an hyperbola and a quadric.

        Intersects a line and a plane. Tolang is used to determine if the angle between two vectors is null. Tol is used to check the distance between line and plane on the distance <Len> from the origin of the line.

        Intersects a circle and a plane. Tolang is used to determine if the angle between two vectors is null. Tol is used to determine if a distance is null.

        Intersects an ellipse and a plane. Tolang is used to determine if the angle between two vectors is null. Tol is used to determine if a distance is null.

        Intersects a parabola and a plane. Tolang is used to determine if the angle between two vectors is null.

        Intersects an hyperbola and a plane. Tolang is used to determine if the angle between two vectors is null.
        """
    @overload
    def Perform(self,Pb : OCP.gp.gp_Parab,P : OCP.gp.gp_Pln,Tolang : float) -> None: ...
    @overload
    def Perform(self,E : OCP.gp.gp_Elips,P : OCP.gp.gp_Pln,Tolang : float,Tol : float) -> None: ...
    @overload
    def Perform(self,H : OCP.gp.gp_Hypr,P : OCP.gp.gp_Pln,Tolang : float) -> None: ...
    @overload
    def Perform(self,L : OCP.gp.gp_Lin,Q : IntAna_Quadric) -> None: ...
    @overload
    def Perform(self,H : OCP.gp.gp_Hypr,Q : IntAna_Quadric) -> None: ...
    @overload
    def Perform(self,E : OCP.gp.gp_Elips,Q : IntAna_Quadric) -> None: ...
    @overload
    def Perform(self,C : OCP.gp.gp_Circ,Q : IntAna_Quadric) -> None: ...
    @overload
    def Perform(self,C : OCP.gp.gp_Circ,P : OCP.gp.gp_Pln,Tolang : float,Tol : float) -> None: ...
    @overload
    def Perform(self,L : OCP.gp.gp_Lin,P : OCP.gp.gp_Pln,Tolang : float,Tol : float=0.0,Len : float=0.0) -> None: ...
    @overload
    def Point(self,i : int) -> OCP.gp.gp_Pnt: 
        """
        Returns the point of range N.

        Returns the point of range N.
        """
    @overload
    def Point(self,N : int) -> OCP.gp.gp_Pnt: ...
    @overload
    def __init__(self,L : OCP.gp.gp_Lin,Q : IntAna_Quadric) -> None: ...
    @overload
    def __init__(self,H : OCP.gp.gp_Hypr,Q : IntAna_Quadric) -> None: ...
    @overload
    def __init__(self,L : OCP.gp.gp_Lin,P : OCP.gp.gp_Pln,Tolang : float,Tol : float=0.0,Len : float=0.0) -> None: ...
    @overload
    def __init__(self,P : OCP.gp.gp_Parab,Q : IntAna_Quadric) -> None: ...
    @overload
    def __init__(self,C : OCP.gp.gp_Circ,P : OCP.gp.gp_Pln,Tolang : float,Tol : float) -> None: ...
    @overload
    def __init__(self,C : OCP.gp.gp_Circ,Q : IntAna_Quadric) -> None: ...
    @overload
    def __init__(self) -> None: ...
    @overload
    def __init__(self,E : OCP.gp.gp_Elips,P : OCP.gp.gp_Pln,Tolang : float,Tol : float) -> None: ...
    @overload
    def __init__(self,E : OCP.gp.gp_Elips,Q : IntAna_Quadric) -> None: ...
    @overload
    def __init__(self,H : OCP.gp.gp_Hypr,P : OCP.gp.gp_Pln,Tolang : float) -> None: ...
    @overload
    def __init__(self,Pb : OCP.gp.gp_Parab,P : OCP.gp.gp_Pln,Tolang : float) -> None: ...
    pass
class IntAna_IntLinTorus():
    """
    Intersection between a line and a torus.
    """
    def IsDone(self) -> bool: 
        """
        Returns True if the computation was successful.

        Returns True if the computation was successful.
        """
    def NbPoints(self) -> int: 
        """
        Returns the number of intersection points.

        Returns the number of intersection points.
        """
    def ParamOnLine(self,Index : int) -> float: 
        """
        Returns the parameter on the line of the intersection point of range Index.

        Returns the parameter on the line of the intersection point of range Index.
        """
    def ParamOnTorus(self,Index : int) -> tuple[float, float]: 
        """
        Returns the parameters on the torus of the intersection point of range Index.

        Returns the parameters on the torus of the intersection point of range Index.
        """
    def Perform(self,L : OCP.gp.gp_Lin,T : OCP.gp.gp_Torus) -> None: 
        """
        Intersects a line and a torus.
        """
    def Value(self,Index : int) -> OCP.gp.gp_Pnt: 
        """
        Returns the intersection point of range Index.

        Returns the intersection point of range Index.
        """
    @overload
    def __init__(self,L : OCP.gp.gp_Lin,T : OCP.gp.gp_Torus) -> None: ...
    @overload
    def __init__(self) -> None: ...
    pass
class IntAna_IntQuadQuad():
    """
    This class provides the analytic intersection between a cylinder or a cone from gp and another quadric, as defined in the class Quadric from IntAna. This algorithm is used when the geometric intersection (class QuadQuadGeo from IntAna) returns no geometric solution. The result of the intersection may be - Curves as defined in the class Curve from IntAna - Points (Pnt from gp)
    """
    def Curve(self,N : int) -> IntAna_Curve: 
        """
        Returns the curve of range N.
        """
    def HasNextCurve(self,I : int) -> bool: 
        """
        Returns True if the Curve I shares its last bound with another curve.
        """
    def HasPreviousCurve(self,I : int) -> bool: 
        """
        Returns True if the Curve I shares its first bound with another curve.
        """
    def IdenticalElements(self) -> bool: 
        """
        Returns TRUE if the cylinder, the cone or the sphere is identical to the quadric.

        Returns TRUE if the cylinder, the cone or the sphere is identical to the quadric.
        """
    def IsDone(self) -> bool: 
        """
        Returns True if the computation was successful.

        Returns True if the computation was successful.
        """
    def NbCurve(self) -> int: 
        """
        Returns the number of curves solution.

        Returns the number of curves solution.
        """
    def NbPnt(self) -> int: 
        """
        Returns the number of contact point.

        Returns the number of contact point.
        """
    def NextCurve(self,I : int,theOpposite : bool) -> int: 
        """
        If HasNextCurve(I) returns True, this function returns the Index J of the curve which has a common bound with the curve I. If theOpposite == True , then the last parameter of the curve I, and the last parameter of the curve J give the same point. Else the last parameter of the curve I and the first parameter of the curve J are the same point.
        """
    def Parameters(self,N : int) -> tuple[float, float]: 
        """
        Returns the parameters on the "explicit quadric" (i.e the cylinder or the cone, the first argument given to the constructor) of the point of range N.
        """
    @overload
    def Perform(self,C : OCP.gp.gp_Cylinder,Q : IntAna_Quadric,Tol : float) -> None: 
        """
        Intersects a cylinder and a quadric . Tol est a definir plus precisemment.

        Intersects a cone and a quadric. Tol est a definir plus precisemment.
        """
    @overload
    def Perform(self,C : OCP.gp.gp_Cone,Q : IntAna_Quadric,Tol : float) -> None: ...
    def Point(self,N : int) -> OCP.gp.gp_Pnt: 
        """
        Returns the point of range N.
        """
    def PreviousCurve(self,I : int,theOpposite : bool) -> int: 
        """
        if HasPreviousCurve(I) returns True, this function returns the Index J of the curve which has a common bound with the curve I. If theOpposite == True , then the first parameter of the curve I, and the first parameter of the curve J give the same point. Else the first parameter of the curve I and the last parameter of the curve J are the same point.
        """
    @overload
    def __init__(self,C : OCP.gp.gp_Cylinder,Q : IntAna_Quadric,Tol : float) -> None: ...
    @overload
    def __init__(self) -> None: ...
    @overload
    def __init__(self,C : OCP.gp.gp_Cone,Q : IntAna_Quadric,Tol : float) -> None: ...
    pass
class IntAna_ListOfCurve(OCP.NCollection.NCollection_BaseList):
    """
    Purpose: Simple list to link items together keeping the first and the last one. Inherits BaseList, adding the data item to each node.
    """
    def Allocator(self) -> OCP.NCollection.NCollection_BaseAllocator: 
        """
        Returns attached allocator
        """
    @overload
    def Append(self,theItem : IntAna_Curve) -> IntAna_Curve: 
        """
        Append one item at the end

        Append one item at the end and output iterator pointing at the appended item

        Append another list at the end. After this operation, theOther list will be cleared.
        """
    @overload
    def Append(self,theItem : IntAna_Curve,theIter : Any) -> None: ...
    @overload
    def Append(self,theOther : IntAna_ListOfCurve) -> None: ...
    def Assign(self,theOther : IntAna_ListOfCurve) -> IntAna_ListOfCurve: 
        """
        Replace this list by the items of another list (theOther parameter). This method does not change the internal allocator.
        """
    def Clear(self,theAllocator : OCP.NCollection.NCollection_BaseAllocator=None) -> None: 
        """
        Clear this list
        """
    def Extent(self) -> int: 
        """
        None
        """
    def First(self) -> IntAna_Curve: 
        """
        First item

        First item (non-const)
        """
    @overload
    def InsertAfter(self,theItem : IntAna_Curve,theIter : Any) -> IntAna_Curve: 
        """
        InsertAfter

        InsertAfter
        """
    @overload
    def InsertAfter(self,theOther : IntAna_ListOfCurve,theIter : Any) -> None: ...
    @overload
    def InsertBefore(self,theItem : IntAna_Curve,theIter : Any) -> IntAna_Curve: 
        """
        InsertBefore

        InsertBefore
        """
    @overload
    def InsertBefore(self,theOther : IntAna_ListOfCurve,theIter : Any) -> None: ...
    def IsEmpty(self) -> bool: 
        """
        None
        """
    def Last(self) -> IntAna_Curve: 
        """
        Last item

        Last item (non-const)
        """
    @overload
    def Prepend(self,theOther : IntAna_ListOfCurve) -> None: 
        """
        Prepend one item at the beginning

        Prepend another list at the beginning
        """
    @overload
    def Prepend(self,theItem : IntAna_Curve) -> IntAna_Curve: ...
    def Remove(self,theIter : Any) -> None: 
        """
        Remove item pointed by iterator theIter; theIter is then set to the next item
        """
    def RemoveFirst(self) -> None: 
        """
        RemoveFirst item
        """
    def Reverse(self) -> None: 
        """
        Reverse the list
        """
    def Size(self) -> int: 
        """
        Size - Number of items
        """
    @overload
    def __init__(self,theOther : IntAna_ListOfCurve) -> None: ...
    @overload
    def __init__(self) -> None: ...
    @overload
    def __init__(self,theAllocator : OCP.NCollection.NCollection_BaseAllocator) -> None: ...
    def __iter__(self) -> Iterator[IntAna_Curve]: ...
    def __len__(self) -> int: ...
    pass
class IntAna_QuadQuadGeo():
    """
    Geometric intersections between two natural quadrics (Sphere , Cylinder , Cone , Pln from gp). The possible intersections are : - 1 point - 1 or 2 line(s) - 1 Point and 1 Line - 1 circle - 1 ellipse - 1 parabola - 1 or 2 hyperbola(s). - Empty : there is no intersection between the two quadrics. - Same : the quadrics are identical - NoGeometricSolution : there may be an intersection, but it is necessary to use an analytic algorithm to determine it. See class IntQuadQuad from IntAna.
    """
    def Circle(self,Num : int) -> OCP.gp.gp_Circ: 
        """
        Returns the circle solution of range Num.
        """
    def Ellipse(self,Num : int) -> OCP.gp.gp_Elips: 
        """
        Returns the ellipse solution of range Num.
        """
    def HasCommonGen(self) -> bool: 
        """
        None
        """
    def Hyperbola(self,Num : int) -> OCP.gp.gp_Hypr: 
        """
        Returns the hyperbola solution of range Num.
        """
    def IsDone(self) -> bool: 
        """
        Returns Standard_True if the computation was successful.

        Returns Standard_True if the computation was successful.
        """
    def Line(self,Num : int) -> OCP.gp.gp_Lin: 
        """
        Returns the line solution of range Num.
        """
    def NbSolutions(self) -> int: 
        """
        Returns the number of intersections. The possible intersections are : - 1 point - 1 or 2 line(s) - 1 Point and 1 Line - 1 circle - 1 ellipse - 1 parabola - 1 or 2 hyperbola(s).

        Returns the number of intersections. The possible intersections are : - 1 point - 1 or 2 line(s) - 1 Point and 1 Line - 1 circle - 1 ellipse - 1 parabola - 1 or 2 hyperbola(s).
        """
    def PChar(self) -> OCP.gp.gp_Pnt: 
        """
        None
        """
    def Parabola(self,Num : int) -> OCP.gp.gp_Parab: 
        """
        Returns the parabola solution of range Num.
        """
    @overload
    def Perform(self,Tor1 : OCP.gp.gp_Torus,Tor2 : OCP.gp.gp_Torus,Tol : float) -> None: 
        """
        Intersects two planes. TolAng is the angular tolerance used to determine if the planes are parallel. Tol is the tolerance used to determine if the planes are identical (only when they are parallel).

        Intersects a plane and a cylinder. TolAng is the angular tolerance used to determine if the axis of the cylinder is parallel to the plane. Tol is the tolerance used to determine if the result is a circle or an ellipse. If the maximum distance between the ellipse solution and the circle centered at the ellipse center is less than Tol, the result will be the circle. H is the height of the cylinder <Cyl>. It is used to check whether the plane and cylinder are parallel.

        Intersects a plane and a sphere.

        Intersects a plane and a cone. TolAng is the angular tolerance used to determine if the axis of the cone is parallel or perpendicular to the plane, and if the generating line of the cone is parallel to the plane. Tol is the tolerance used to determine if the apex of the cone is in the plane.

        Intersects two cylinders

        Intersects a cylinder and a sphere.

        Intersects a cylinder and a cone.

        Intersects a two spheres.

        Intersects a sphere and a cone.

        Intersects two cones.

        Intersects plane and torus.

        Intersects cylinder and torus.

        Intersects cone and torus.

        Intersects sphere and torus.

        Intersects two toruses.
        """
    @overload
    def Perform(self,Con1 : OCP.gp.gp_Cone,Con2 : OCP.gp.gp_Cone,Tol : float) -> None: ...
    @overload
    def Perform(self,Con : OCP.gp.gp_Cone,Tor : OCP.gp.gp_Torus,Tol : float) -> None: ...
    @overload
    def Perform(self,Cyl : OCP.gp.gp_Cylinder,Tor : OCP.gp.gp_Torus,Tol : float) -> None: ...
    @overload
    def Perform(self,Sph : OCP.gp.gp_Sphere,Con : OCP.gp.gp_Cone,Tol : float) -> None: ...
    @overload
    def Perform(self,Sph : OCP.gp.gp_Sphere,Tor : OCP.gp.gp_Torus,Tol : float) -> None: ...
    @overload
    def Perform(self,P : OCP.gp.gp_Pln,C : OCP.gp.gp_Cylinder,Tolang : float,Tol : float,H : float=0.0) -> None: ...
    @overload
    def Perform(self,P1 : OCP.gp.gp_Pln,P2 : OCP.gp.gp_Pln,TolAng : float,Tol : float) -> None: ...
    @overload
    def Perform(self,P : OCP.gp.gp_Pln,C : OCP.gp.gp_Cone,Tolang : float,Tol : float) -> None: ...
    @overload
    def Perform(self,P : OCP.gp.gp_Pln,S : OCP.gp.gp_Sphere) -> None: ...
    @overload
    def Perform(self,Cyl1 : OCP.gp.gp_Cylinder,Cyl2 : OCP.gp.gp_Cylinder,Tol : float) -> None: ...
    @overload
    def Perform(self,Sph1 : OCP.gp.gp_Sphere,Sph2 : OCP.gp.gp_Sphere,Tol : float) -> None: ...
    @overload
    def Perform(self,Pln : OCP.gp.gp_Pln,Tor : OCP.gp.gp_Torus,Tol : float) -> None: ...
    @overload
    def Perform(self,Cyl : OCP.gp.gp_Cylinder,Con : OCP.gp.gp_Cone,Tol : float) -> None: ...
    @overload
    def Perform(self,Cyl : OCP.gp.gp_Cylinder,Sph : OCP.gp.gp_Sphere,Tol : float) -> None: ...
    def Point(self,Num : int) -> OCP.gp.gp_Pnt: 
        """
        Returns the point solution of range Num.
        """
    def TypeInter(self) -> IntAna_ResultType: 
        """
        Returns the type of intersection.

        Returns the type of intersection.
        """
    @overload
    def __init__(self,P : OCP.gp.gp_Pln,C : OCP.gp.gp_Cone,Tolang : float,Tol : float) -> None: ...
    @overload
    def __init__(self,P : OCP.gp.gp_Pln,S : OCP.gp.gp_Sphere) -> None: ...
    @overload
    def __init__(self,Sph : OCP.gp.gp_Sphere,Con : OCP.gp.gp_Cone,Tol : float) -> None: ...
    @overload
    def __init__(self) -> None: ...
    @overload
    def __init__(self,Cyl : OCP.gp.gp_Cylinder,Sph : OCP.gp.gp_Sphere,Tol : float) -> None: ...
    @overload
    def __init__(self,Sph1 : OCP.gp.gp_Sphere,Sph2 : OCP.gp.gp_Sphere,Tol : float) -> None: ...
    @overload
    def __init__(self,Sph : OCP.gp.gp_Sphere,Tor : OCP.gp.gp_Torus,Tol : float) -> None: ...
    @overload
    def __init__(self,Tor1 : OCP.gp.gp_Torus,Tor2 : OCP.gp.gp_Torus,Tol : float) -> None: ...
    @overload
    def __init__(self,Cyl1 : OCP.gp.gp_Cylinder,Cyl2 : OCP.gp.gp_Cylinder,Tol : float) -> None: ...
    @overload
    def __init__(self,Pln : OCP.gp.gp_Pln,Tor : OCP.gp.gp_Torus,Tol : float) -> None: ...
    @overload
    def __init__(self,Con : OCP.gp.gp_Cone,Tor : OCP.gp.gp_Torus,Tol : float) -> None: ...
    @overload
    def __init__(self,P1 : OCP.gp.gp_Pln,P2 : OCP.gp.gp_Pln,TolAng : float,Tol : float) -> None: ...
    @overload
    def __init__(self,Cyl : OCP.gp.gp_Cylinder,Tor : OCP.gp.gp_Torus,Tol : float) -> None: ...
    @overload
    def __init__(self,Con1 : OCP.gp.gp_Cone,Con2 : OCP.gp.gp_Cone,Tol : float) -> None: ...
    @overload
    def __init__(self,Cyl : OCP.gp.gp_Cylinder,Con : OCP.gp.gp_Cone,Tol : float) -> None: ...
    @overload
    def __init__(self,P : OCP.gp.gp_Pln,C : OCP.gp.gp_Cylinder,Tolang : float,Tol : float,H : float=0.0) -> None: ...
    pass
class IntAna_Quadric():
    """
    This class provides a description of Quadrics by their Coefficients in natural coordinate system.
    """
    def Coefficients(self) -> tuple[float, float, float, float, float, float, float, float, float, float]: 
        """
        Returns the coefficients of the polynomial equation which define the quadric: xCXX x**2 + xCYY y**2 + xCZZ z**2 + 2 ( xCXY x y + xCXZ x z + xCYZ y z ) + 2 ( xCX x + xCY y + xCZ z ) + xCCte
        """
    def NewCoefficients(self,Axis : OCP.gp.gp_Ax3) -> tuple[float, float, float, float, float, float, float, float, float, float]: 
        """
        Returns the coefficients of the polynomial equation ( written in the natural coordinates system ) in the local coordinates system defined by Axis
        """
    @overload
    def SetQuadric(self,Cyl : OCP.gp.gp_Cylinder) -> None: 
        """
        Initializes the quadric with a Pln

        Initialize the quadric with a Sphere

        Initializes the quadric with a Cone

        Initializes the quadric with a Cylinder
        """
    @overload
    def SetQuadric(self,Con : OCP.gp.gp_Cone) -> None: ...
    @overload
    def SetQuadric(self,Sph : OCP.gp.gp_Sphere) -> None: ...
    @overload
    def SetQuadric(self,P : OCP.gp.gp_Pln) -> None: ...
    @overload
    def __init__(self,P : OCP.gp.gp_Pln) -> None: ...
    @overload
    def __init__(self,Sph : OCP.gp.gp_Sphere) -> None: ...
    @overload
    def __init__(self,Cone : OCP.gp.gp_Cone) -> None: ...
    @overload
    def __init__(self) -> None: ...
    @overload
    def __init__(self,Cyl : OCP.gp.gp_Cylinder) -> None: ...
    pass
class IntAna_ResultType():
    """
    None

    Members:

      IntAna_Point

      IntAna_Line

      IntAna_Circle

      IntAna_PointAndCircle

      IntAna_Ellipse

      IntAna_Parabola

      IntAna_Hyperbola

      IntAna_Empty

      IntAna_Same

      IntAna_NoGeometricSolution
    """
    def __eq__(self,other : object) -> bool: ...
    def __getstate__(self) -> int: ...
    def __hash__(self) -> int: ...
    def __index__(self) -> int: ...
    def __init__(self,value : int) -> None: ...
    def __int__(self) -> int: ...
    def __ne__(self,other : object) -> bool: ...
    def __repr__(self) -> str: ...
    def __setstate__(self,state : int) -> None: ...
    def __str__(self) -> str: ...
    @property
    def name(self) -> None:
        """
        :type: None
        """
    @property
    def value(self) -> int:
        """
        :type: int
        """
    IntAna_Circle: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Circle: 2>
    IntAna_Ellipse: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Ellipse: 4>
    IntAna_Empty: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Empty: 7>
    IntAna_Hyperbola: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Hyperbola: 6>
    IntAna_Line: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Line: 1>
    IntAna_NoGeometricSolution: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_NoGeometricSolution: 9>
    IntAna_Parabola: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Parabola: 5>
    IntAna_Point: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Point: 0>
    IntAna_PointAndCircle: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_PointAndCircle: 3>
    IntAna_Same: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Same: 8>
    __entries: dict # value = {'IntAna_Point': (<IntAna_ResultType.IntAna_Point: 0>, None), 'IntAna_Line': (<IntAna_ResultType.IntAna_Line: 1>, None), 'IntAna_Circle': (<IntAna_ResultType.IntAna_Circle: 2>, None), 'IntAna_PointAndCircle': (<IntAna_ResultType.IntAna_PointAndCircle: 3>, None), 'IntAna_Ellipse': (<IntAna_ResultType.IntAna_Ellipse: 4>, None), 'IntAna_Parabola': (<IntAna_ResultType.IntAna_Parabola: 5>, None), 'IntAna_Hyperbola': (<IntAna_ResultType.IntAna_Hyperbola: 6>, None), 'IntAna_Empty': (<IntAna_ResultType.IntAna_Empty: 7>, None), 'IntAna_Same': (<IntAna_ResultType.IntAna_Same: 8>, None), 'IntAna_NoGeometricSolution': (<IntAna_ResultType.IntAna_NoGeometricSolution: 9>, None)}
    __members__: dict # value = {'IntAna_Point': <IntAna_ResultType.IntAna_Point: 0>, 'IntAna_Line': <IntAna_ResultType.IntAna_Line: 1>, 'IntAna_Circle': <IntAna_ResultType.IntAna_Circle: 2>, 'IntAna_PointAndCircle': <IntAna_ResultType.IntAna_PointAndCircle: 3>, 'IntAna_Ellipse': <IntAna_ResultType.IntAna_Ellipse: 4>, 'IntAna_Parabola': <IntAna_ResultType.IntAna_Parabola: 5>, 'IntAna_Hyperbola': <IntAna_ResultType.IntAna_Hyperbola: 6>, 'IntAna_Empty': <IntAna_ResultType.IntAna_Empty: 7>, 'IntAna_Same': <IntAna_ResultType.IntAna_Same: 8>, 'IntAna_NoGeometricSolution': <IntAna_ResultType.IntAna_NoGeometricSolution: 9>}
    pass
IntAna_Circle: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Circle: 2>
IntAna_Ellipse: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Ellipse: 4>
IntAna_Empty: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Empty: 7>
IntAna_Hyperbola: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Hyperbola: 6>
IntAna_Line: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Line: 1>
IntAna_NoGeometricSolution: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_NoGeometricSolution: 9>
IntAna_Parabola: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Parabola: 5>
IntAna_Point: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Point: 0>
IntAna_PointAndCircle: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_PointAndCircle: 3>
IntAna_Same: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Same: 8>