1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
|
import OCP.IntAna
from typing import *
from typing import Iterable as iterable
from typing import Iterator as iterator
from numpy import float64
_Shape = Tuple[int, ...]
import OCP.TColStd
import OCP.gp
import OCP.NCollection
__all__ = [
"IntAna_Curve",
"IntAna_Int3Pln",
"IntAna_IntConicQuad",
"IntAna_IntLinTorus",
"IntAna_IntQuadQuad",
"IntAna_ListOfCurve",
"IntAna_QuadQuadGeo",
"IntAna_Quadric",
"IntAna_ResultType",
"IntAna_Circle",
"IntAna_Ellipse",
"IntAna_Empty",
"IntAna_Hyperbola",
"IntAna_Line",
"IntAna_NoGeometricSolution",
"IntAna_Parabola",
"IntAna_Point",
"IntAna_PointAndCircle",
"IntAna_Same"
]
class IntAna_Curve():
"""
Definition of a parametric Curve which is the result of the intersection between two quadrics.
"""
def D1u(self,Theta : float,P : OCP.gp.gp_Pnt,V : OCP.gp.gp_Vec) -> bool:
"""
Returns the point and the first derivative at parameter Theta on the curve.
"""
def Domain(self) -> tuple[float, float]:
"""
Returns the paramatric domain of the curve.
"""
def FindParameter(self,P : OCP.gp.gp_Pnt,theParams : OCP.TColStd.TColStd_ListOfReal) -> None:
"""
Tries to find the parameter of the point P on the curve. If the method returns False, the "projection" is impossible. If the method returns True at least one parameter has been found. theParams is always sorted in ascending order.
"""
def IsConstant(self) -> bool:
"""
Returns TRUE if the function is constant.
"""
def IsFirstOpen(self) -> bool:
"""
Returns TRUE if the domain is open at the beginning.
"""
def IsLastOpen(self) -> bool:
"""
Returns TRUE if the domain is open at the end.
"""
def IsOpen(self) -> bool:
"""
Returns TRUE if the curve is not infinite at the last parameter or at the first parameter of the domain.
"""
def SetConeQuadValues(self,Cone : OCP.gp.gp_Cone,Qxx : float,Qyy : float,Qzz : float,Qxy : float,Qxz : float,Qyz : float,Qx : float,Qy : float,Qz : float,Q1 : float,Tol : float,DomInf : float,DomSup : float,TwoZForATheta : bool,ZIsPositive : bool) -> None:
"""
Sets the parameters used to compute Points and Derivative on the curve.
"""
def SetCylinderQuadValues(self,Cylinder : OCP.gp.gp_Cylinder,Qxx : float,Qyy : float,Qzz : float,Qxy : float,Qxz : float,Qyz : float,Qx : float,Qy : float,Qz : float,Q1 : float,Tol : float,DomInf : float,DomSup : float,TwoZForATheta : bool,ZIsPositive : bool) -> None:
"""
Sets the parameters used to compute Points and Derivative on the curve.
"""
def SetDomain(self,theFirst : float,theLast : float) -> None:
"""
Trims this curve
"""
def SetIsFirstOpen(self,Flag : bool) -> None:
"""
If flag is True, the Curve is not defined at the first parameter of its domain.
"""
def SetIsLastOpen(self,Flag : bool) -> None:
"""
If flag is True, the Curve is not defined at the first parameter of its domain.
"""
def Value(self,Theta : float) -> OCP.gp.gp_Pnt:
"""
Returns the point at parameter Theta on the curve.
"""
def __init__(self) -> None: ...
pass
class IntAna_Int3Pln():
"""
Intersection between 3 planes. The algorithm searches for an intersection point. If two of the planes are parallel or identical, IsEmpty returns TRUE.
"""
def IsDone(self) -> bool:
"""
Returns True if the computation was successful.
Returns True if the computation was successful.
"""
def IsEmpty(self) -> bool:
"""
Returns TRUE if there is no intersection POINT. If 2 planes are identical or parallel, IsEmpty will return TRUE.
Returns TRUE if there is no intersection POINT. If 2 planes are identical or parallel, IsEmpty will return TRUE.
"""
def Perform(self,P1 : OCP.gp.gp_Pln,P2 : OCP.gp.gp_Pln,P3 : OCP.gp.gp_Pln) -> None:
"""
Determination of the intersection point between 3 planes.
"""
def Value(self) -> OCP.gp.gp_Pnt:
"""
Returns the intersection point.
Returns the intersection point.
"""
@overload
def __init__(self,P1 : OCP.gp.gp_Pln,P2 : OCP.gp.gp_Pln,P3 : OCP.gp.gp_Pln) -> None: ...
@overload
def __init__(self) -> None: ...
pass
class IntAna_IntConicQuad():
"""
This class provides the analytic intersection between a conic defined as an element of gp (Lin,Circ,Elips, Parab,Hypr) and a quadric as defined in the class Quadric from IntAna. The intersection between a conic and a plane is treated as a special case.
"""
def IsDone(self) -> bool:
"""
Returns TRUE if the creation completed.
Returns TRUE if the creation completed.
"""
def IsInQuadric(self) -> bool:
"""
Returns TRUE if the conic is in the quadric.
Returns TRUE if the conic is in the quadric.
"""
def IsParallel(self) -> bool:
"""
Returns TRUE if the line is in a quadric which is parallel to the quadric.
Returns TRUE if the line is in a quadric which is parallel to the quadric.
"""
def NbPoints(self) -> int:
"""
Returns the number of intersection point.
Returns the number of intersection point.
"""
@overload
def ParamOnConic(self,i : int) -> float:
"""
Returns the parameter on the line of the intersection point of range N.
Returns the parameter on the line of the intersection point of range N.
"""
@overload
def ParamOnConic(self,N : int) -> float: ...
@overload
def Perform(self,P : OCP.gp.gp_Parab,Q : IntAna_Quadric) -> None:
"""
Intersects a line and a quadric.
Intersects a circle and a quadric.
Intersects an ellipse and a quadric.
Intersects a parabola and a quadric.
Intersects an hyperbola and a quadric.
Intersects a line and a plane. Tolang is used to determine if the angle between two vectors is null. Tol is used to check the distance between line and plane on the distance <Len> from the origin of the line.
Intersects a circle and a plane. Tolang is used to determine if the angle between two vectors is null. Tol is used to determine if a distance is null.
Intersects an ellipse and a plane. Tolang is used to determine if the angle between two vectors is null. Tol is used to determine if a distance is null.
Intersects a parabola and a plane. Tolang is used to determine if the angle between two vectors is null.
Intersects an hyperbola and a plane. Tolang is used to determine if the angle between two vectors is null.
"""
@overload
def Perform(self,Pb : OCP.gp.gp_Parab,P : OCP.gp.gp_Pln,Tolang : float) -> None: ...
@overload
def Perform(self,E : OCP.gp.gp_Elips,P : OCP.gp.gp_Pln,Tolang : float,Tol : float) -> None: ...
@overload
def Perform(self,H : OCP.gp.gp_Hypr,P : OCP.gp.gp_Pln,Tolang : float) -> None: ...
@overload
def Perform(self,L : OCP.gp.gp_Lin,Q : IntAna_Quadric) -> None: ...
@overload
def Perform(self,H : OCP.gp.gp_Hypr,Q : IntAna_Quadric) -> None: ...
@overload
def Perform(self,E : OCP.gp.gp_Elips,Q : IntAna_Quadric) -> None: ...
@overload
def Perform(self,C : OCP.gp.gp_Circ,Q : IntAna_Quadric) -> None: ...
@overload
def Perform(self,C : OCP.gp.gp_Circ,P : OCP.gp.gp_Pln,Tolang : float,Tol : float) -> None: ...
@overload
def Perform(self,L : OCP.gp.gp_Lin,P : OCP.gp.gp_Pln,Tolang : float,Tol : float=0.0,Len : float=0.0) -> None: ...
@overload
def Point(self,i : int) -> OCP.gp.gp_Pnt:
"""
Returns the point of range N.
Returns the point of range N.
"""
@overload
def Point(self,N : int) -> OCP.gp.gp_Pnt: ...
@overload
def __init__(self,L : OCP.gp.gp_Lin,Q : IntAna_Quadric) -> None: ...
@overload
def __init__(self,H : OCP.gp.gp_Hypr,Q : IntAna_Quadric) -> None: ...
@overload
def __init__(self,L : OCP.gp.gp_Lin,P : OCP.gp.gp_Pln,Tolang : float,Tol : float=0.0,Len : float=0.0) -> None: ...
@overload
def __init__(self,P : OCP.gp.gp_Parab,Q : IntAna_Quadric) -> None: ...
@overload
def __init__(self,C : OCP.gp.gp_Circ,P : OCP.gp.gp_Pln,Tolang : float,Tol : float) -> None: ...
@overload
def __init__(self,C : OCP.gp.gp_Circ,Q : IntAna_Quadric) -> None: ...
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,E : OCP.gp.gp_Elips,P : OCP.gp.gp_Pln,Tolang : float,Tol : float) -> None: ...
@overload
def __init__(self,E : OCP.gp.gp_Elips,Q : IntAna_Quadric) -> None: ...
@overload
def __init__(self,H : OCP.gp.gp_Hypr,P : OCP.gp.gp_Pln,Tolang : float) -> None: ...
@overload
def __init__(self,Pb : OCP.gp.gp_Parab,P : OCP.gp.gp_Pln,Tolang : float) -> None: ...
pass
class IntAna_IntLinTorus():
"""
Intersection between a line and a torus.
"""
def IsDone(self) -> bool:
"""
Returns True if the computation was successful.
Returns True if the computation was successful.
"""
def NbPoints(self) -> int:
"""
Returns the number of intersection points.
Returns the number of intersection points.
"""
def ParamOnLine(self,Index : int) -> float:
"""
Returns the parameter on the line of the intersection point of range Index.
Returns the parameter on the line of the intersection point of range Index.
"""
def ParamOnTorus(self,Index : int) -> tuple[float, float]:
"""
Returns the parameters on the torus of the intersection point of range Index.
Returns the parameters on the torus of the intersection point of range Index.
"""
def Perform(self,L : OCP.gp.gp_Lin,T : OCP.gp.gp_Torus) -> None:
"""
Intersects a line and a torus.
"""
def Value(self,Index : int) -> OCP.gp.gp_Pnt:
"""
Returns the intersection point of range Index.
Returns the intersection point of range Index.
"""
@overload
def __init__(self,L : OCP.gp.gp_Lin,T : OCP.gp.gp_Torus) -> None: ...
@overload
def __init__(self) -> None: ...
pass
class IntAna_IntQuadQuad():
"""
This class provides the analytic intersection between a cylinder or a cone from gp and another quadric, as defined in the class Quadric from IntAna. This algorithm is used when the geometric intersection (class QuadQuadGeo from IntAna) returns no geometric solution. The result of the intersection may be - Curves as defined in the class Curve from IntAna - Points (Pnt from gp)
"""
def Curve(self,N : int) -> IntAna_Curve:
"""
Returns the curve of range N.
"""
def HasNextCurve(self,I : int) -> bool:
"""
Returns True if the Curve I shares its last bound with another curve.
"""
def HasPreviousCurve(self,I : int) -> bool:
"""
Returns True if the Curve I shares its first bound with another curve.
"""
def IdenticalElements(self) -> bool:
"""
Returns TRUE if the cylinder, the cone or the sphere is identical to the quadric.
Returns TRUE if the cylinder, the cone or the sphere is identical to the quadric.
"""
def IsDone(self) -> bool:
"""
Returns True if the computation was successful.
Returns True if the computation was successful.
"""
def NbCurve(self) -> int:
"""
Returns the number of curves solution.
Returns the number of curves solution.
"""
def NbPnt(self) -> int:
"""
Returns the number of contact point.
Returns the number of contact point.
"""
def NextCurve(self,I : int,theOpposite : bool) -> int:
"""
If HasNextCurve(I) returns True, this function returns the Index J of the curve which has a common bound with the curve I. If theOpposite == True , then the last parameter of the curve I, and the last parameter of the curve J give the same point. Else the last parameter of the curve I and the first parameter of the curve J are the same point.
"""
def Parameters(self,N : int) -> tuple[float, float]:
"""
Returns the parameters on the "explicit quadric" (i.e the cylinder or the cone, the first argument given to the constructor) of the point of range N.
"""
@overload
def Perform(self,C : OCP.gp.gp_Cylinder,Q : IntAna_Quadric,Tol : float) -> None:
"""
Intersects a cylinder and a quadric . Tol est a definir plus precisemment.
Intersects a cone and a quadric. Tol est a definir plus precisemment.
"""
@overload
def Perform(self,C : OCP.gp.gp_Cone,Q : IntAna_Quadric,Tol : float) -> None: ...
def Point(self,N : int) -> OCP.gp.gp_Pnt:
"""
Returns the point of range N.
"""
def PreviousCurve(self,I : int,theOpposite : bool) -> int:
"""
if HasPreviousCurve(I) returns True, this function returns the Index J of the curve which has a common bound with the curve I. If theOpposite == True , then the first parameter of the curve I, and the first parameter of the curve J give the same point. Else the first parameter of the curve I and the last parameter of the curve J are the same point.
"""
@overload
def __init__(self,C : OCP.gp.gp_Cylinder,Q : IntAna_Quadric,Tol : float) -> None: ...
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,C : OCP.gp.gp_Cone,Q : IntAna_Quadric,Tol : float) -> None: ...
pass
class IntAna_ListOfCurve(OCP.NCollection.NCollection_BaseList):
"""
Purpose: Simple list to link items together keeping the first and the last one. Inherits BaseList, adding the data item to each node.
"""
def Allocator(self) -> OCP.NCollection.NCollection_BaseAllocator:
"""
Returns attached allocator
"""
@overload
def Append(self,theItem : IntAna_Curve) -> IntAna_Curve:
"""
Append one item at the end
Append one item at the end and output iterator pointing at the appended item
Append another list at the end. After this operation, theOther list will be cleared.
"""
@overload
def Append(self,theItem : IntAna_Curve,theIter : Any) -> None: ...
@overload
def Append(self,theOther : IntAna_ListOfCurve) -> None: ...
def Assign(self,theOther : IntAna_ListOfCurve) -> IntAna_ListOfCurve:
"""
Replace this list by the items of another list (theOther parameter). This method does not change the internal allocator.
"""
def Clear(self,theAllocator : OCP.NCollection.NCollection_BaseAllocator=None) -> None:
"""
Clear this list
"""
def Extent(self) -> int:
"""
None
"""
def First(self) -> IntAna_Curve:
"""
First item
First item (non-const)
"""
@overload
def InsertAfter(self,theItem : IntAna_Curve,theIter : Any) -> IntAna_Curve:
"""
InsertAfter
InsertAfter
"""
@overload
def InsertAfter(self,theOther : IntAna_ListOfCurve,theIter : Any) -> None: ...
@overload
def InsertBefore(self,theItem : IntAna_Curve,theIter : Any) -> IntAna_Curve:
"""
InsertBefore
InsertBefore
"""
@overload
def InsertBefore(self,theOther : IntAna_ListOfCurve,theIter : Any) -> None: ...
def IsEmpty(self) -> bool:
"""
None
"""
def Last(self) -> IntAna_Curve:
"""
Last item
Last item (non-const)
"""
@overload
def Prepend(self,theOther : IntAna_ListOfCurve) -> None:
"""
Prepend one item at the beginning
Prepend another list at the beginning
"""
@overload
def Prepend(self,theItem : IntAna_Curve) -> IntAna_Curve: ...
def Remove(self,theIter : Any) -> None:
"""
Remove item pointed by iterator theIter; theIter is then set to the next item
"""
def RemoveFirst(self) -> None:
"""
RemoveFirst item
"""
def Reverse(self) -> None:
"""
Reverse the list
"""
def Size(self) -> int:
"""
Size - Number of items
"""
@overload
def __init__(self,theOther : IntAna_ListOfCurve) -> None: ...
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,theAllocator : OCP.NCollection.NCollection_BaseAllocator) -> None: ...
def __iter__(self) -> Iterator[IntAna_Curve]: ...
def __len__(self) -> int: ...
pass
class IntAna_QuadQuadGeo():
"""
Geometric intersections between two natural quadrics (Sphere , Cylinder , Cone , Pln from gp). The possible intersections are : - 1 point - 1 or 2 line(s) - 1 Point and 1 Line - 1 circle - 1 ellipse - 1 parabola - 1 or 2 hyperbola(s). - Empty : there is no intersection between the two quadrics. - Same : the quadrics are identical - NoGeometricSolution : there may be an intersection, but it is necessary to use an analytic algorithm to determine it. See class IntQuadQuad from IntAna.
"""
def Circle(self,Num : int) -> OCP.gp.gp_Circ:
"""
Returns the circle solution of range Num.
"""
def Ellipse(self,Num : int) -> OCP.gp.gp_Elips:
"""
Returns the ellipse solution of range Num.
"""
def HasCommonGen(self) -> bool:
"""
None
"""
def Hyperbola(self,Num : int) -> OCP.gp.gp_Hypr:
"""
Returns the hyperbola solution of range Num.
"""
def IsDone(self) -> bool:
"""
Returns Standard_True if the computation was successful.
Returns Standard_True if the computation was successful.
"""
def Line(self,Num : int) -> OCP.gp.gp_Lin:
"""
Returns the line solution of range Num.
"""
def NbSolutions(self) -> int:
"""
Returns the number of intersections. The possible intersections are : - 1 point - 1 or 2 line(s) - 1 Point and 1 Line - 1 circle - 1 ellipse - 1 parabola - 1 or 2 hyperbola(s).
Returns the number of intersections. The possible intersections are : - 1 point - 1 or 2 line(s) - 1 Point and 1 Line - 1 circle - 1 ellipse - 1 parabola - 1 or 2 hyperbola(s).
"""
def PChar(self) -> OCP.gp.gp_Pnt:
"""
None
"""
def Parabola(self,Num : int) -> OCP.gp.gp_Parab:
"""
Returns the parabola solution of range Num.
"""
@overload
def Perform(self,Tor1 : OCP.gp.gp_Torus,Tor2 : OCP.gp.gp_Torus,Tol : float) -> None:
"""
Intersects two planes. TolAng is the angular tolerance used to determine if the planes are parallel. Tol is the tolerance used to determine if the planes are identical (only when they are parallel).
Intersects a plane and a cylinder. TolAng is the angular tolerance used to determine if the axis of the cylinder is parallel to the plane. Tol is the tolerance used to determine if the result is a circle or an ellipse. If the maximum distance between the ellipse solution and the circle centered at the ellipse center is less than Tol, the result will be the circle. H is the height of the cylinder <Cyl>. It is used to check whether the plane and cylinder are parallel.
Intersects a plane and a sphere.
Intersects a plane and a cone. TolAng is the angular tolerance used to determine if the axis of the cone is parallel or perpendicular to the plane, and if the generating line of the cone is parallel to the plane. Tol is the tolerance used to determine if the apex of the cone is in the plane.
Intersects two cylinders
Intersects a cylinder and a sphere.
Intersects a cylinder and a cone.
Intersects a two spheres.
Intersects a sphere and a cone.
Intersects two cones.
Intersects plane and torus.
Intersects cylinder and torus.
Intersects cone and torus.
Intersects sphere and torus.
Intersects two toruses.
"""
@overload
def Perform(self,Con1 : OCP.gp.gp_Cone,Con2 : OCP.gp.gp_Cone,Tol : float) -> None: ...
@overload
def Perform(self,Con : OCP.gp.gp_Cone,Tor : OCP.gp.gp_Torus,Tol : float) -> None: ...
@overload
def Perform(self,Cyl : OCP.gp.gp_Cylinder,Tor : OCP.gp.gp_Torus,Tol : float) -> None: ...
@overload
def Perform(self,Sph : OCP.gp.gp_Sphere,Con : OCP.gp.gp_Cone,Tol : float) -> None: ...
@overload
def Perform(self,Sph : OCP.gp.gp_Sphere,Tor : OCP.gp.gp_Torus,Tol : float) -> None: ...
@overload
def Perform(self,P : OCP.gp.gp_Pln,C : OCP.gp.gp_Cylinder,Tolang : float,Tol : float,H : float=0.0) -> None: ...
@overload
def Perform(self,P1 : OCP.gp.gp_Pln,P2 : OCP.gp.gp_Pln,TolAng : float,Tol : float) -> None: ...
@overload
def Perform(self,P : OCP.gp.gp_Pln,C : OCP.gp.gp_Cone,Tolang : float,Tol : float) -> None: ...
@overload
def Perform(self,P : OCP.gp.gp_Pln,S : OCP.gp.gp_Sphere) -> None: ...
@overload
def Perform(self,Cyl1 : OCP.gp.gp_Cylinder,Cyl2 : OCP.gp.gp_Cylinder,Tol : float) -> None: ...
@overload
def Perform(self,Sph1 : OCP.gp.gp_Sphere,Sph2 : OCP.gp.gp_Sphere,Tol : float) -> None: ...
@overload
def Perform(self,Pln : OCP.gp.gp_Pln,Tor : OCP.gp.gp_Torus,Tol : float) -> None: ...
@overload
def Perform(self,Cyl : OCP.gp.gp_Cylinder,Con : OCP.gp.gp_Cone,Tol : float) -> None: ...
@overload
def Perform(self,Cyl : OCP.gp.gp_Cylinder,Sph : OCP.gp.gp_Sphere,Tol : float) -> None: ...
def Point(self,Num : int) -> OCP.gp.gp_Pnt:
"""
Returns the point solution of range Num.
"""
def TypeInter(self) -> IntAna_ResultType:
"""
Returns the type of intersection.
Returns the type of intersection.
"""
@overload
def __init__(self,P : OCP.gp.gp_Pln,C : OCP.gp.gp_Cone,Tolang : float,Tol : float) -> None: ...
@overload
def __init__(self,P : OCP.gp.gp_Pln,S : OCP.gp.gp_Sphere) -> None: ...
@overload
def __init__(self,Sph : OCP.gp.gp_Sphere,Con : OCP.gp.gp_Cone,Tol : float) -> None: ...
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,Cyl : OCP.gp.gp_Cylinder,Sph : OCP.gp.gp_Sphere,Tol : float) -> None: ...
@overload
def __init__(self,Sph1 : OCP.gp.gp_Sphere,Sph2 : OCP.gp.gp_Sphere,Tol : float) -> None: ...
@overload
def __init__(self,Sph : OCP.gp.gp_Sphere,Tor : OCP.gp.gp_Torus,Tol : float) -> None: ...
@overload
def __init__(self,Tor1 : OCP.gp.gp_Torus,Tor2 : OCP.gp.gp_Torus,Tol : float) -> None: ...
@overload
def __init__(self,Cyl1 : OCP.gp.gp_Cylinder,Cyl2 : OCP.gp.gp_Cylinder,Tol : float) -> None: ...
@overload
def __init__(self,Pln : OCP.gp.gp_Pln,Tor : OCP.gp.gp_Torus,Tol : float) -> None: ...
@overload
def __init__(self,Con : OCP.gp.gp_Cone,Tor : OCP.gp.gp_Torus,Tol : float) -> None: ...
@overload
def __init__(self,P1 : OCP.gp.gp_Pln,P2 : OCP.gp.gp_Pln,TolAng : float,Tol : float) -> None: ...
@overload
def __init__(self,Cyl : OCP.gp.gp_Cylinder,Tor : OCP.gp.gp_Torus,Tol : float) -> None: ...
@overload
def __init__(self,Con1 : OCP.gp.gp_Cone,Con2 : OCP.gp.gp_Cone,Tol : float) -> None: ...
@overload
def __init__(self,Cyl : OCP.gp.gp_Cylinder,Con : OCP.gp.gp_Cone,Tol : float) -> None: ...
@overload
def __init__(self,P : OCP.gp.gp_Pln,C : OCP.gp.gp_Cylinder,Tolang : float,Tol : float,H : float=0.0) -> None: ...
pass
class IntAna_Quadric():
"""
This class provides a description of Quadrics by their Coefficients in natural coordinate system.
"""
def Coefficients(self) -> tuple[float, float, float, float, float, float, float, float, float, float]:
"""
Returns the coefficients of the polynomial equation which define the quadric: xCXX x**2 + xCYY y**2 + xCZZ z**2 + 2 ( xCXY x y + xCXZ x z + xCYZ y z ) + 2 ( xCX x + xCY y + xCZ z ) + xCCte
"""
def NewCoefficients(self,Axis : OCP.gp.gp_Ax3) -> tuple[float, float, float, float, float, float, float, float, float, float]:
"""
Returns the coefficients of the polynomial equation ( written in the natural coordinates system ) in the local coordinates system defined by Axis
"""
@overload
def SetQuadric(self,Cyl : OCP.gp.gp_Cylinder) -> None:
"""
Initializes the quadric with a Pln
Initialize the quadric with a Sphere
Initializes the quadric with a Cone
Initializes the quadric with a Cylinder
"""
@overload
def SetQuadric(self,Con : OCP.gp.gp_Cone) -> None: ...
@overload
def SetQuadric(self,Sph : OCP.gp.gp_Sphere) -> None: ...
@overload
def SetQuadric(self,P : OCP.gp.gp_Pln) -> None: ...
@overload
def __init__(self,P : OCP.gp.gp_Pln) -> None: ...
@overload
def __init__(self,Sph : OCP.gp.gp_Sphere) -> None: ...
@overload
def __init__(self,Cone : OCP.gp.gp_Cone) -> None: ...
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,Cyl : OCP.gp.gp_Cylinder) -> None: ...
pass
class IntAna_ResultType():
"""
None
Members:
IntAna_Point
IntAna_Line
IntAna_Circle
IntAna_PointAndCircle
IntAna_Ellipse
IntAna_Parabola
IntAna_Hyperbola
IntAna_Empty
IntAna_Same
IntAna_NoGeometricSolution
"""
def __eq__(self,other : object) -> bool: ...
def __getstate__(self) -> int: ...
def __hash__(self) -> int: ...
def __index__(self) -> int: ...
def __init__(self,value : int) -> None: ...
def __int__(self) -> int: ...
def __ne__(self,other : object) -> bool: ...
def __repr__(self) -> str: ...
def __setstate__(self,state : int) -> None: ...
def __str__(self) -> str: ...
@property
def name(self) -> None:
"""
:type: None
"""
@property
def value(self) -> int:
"""
:type: int
"""
IntAna_Circle: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Circle: 2>
IntAna_Ellipse: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Ellipse: 4>
IntAna_Empty: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Empty: 7>
IntAna_Hyperbola: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Hyperbola: 6>
IntAna_Line: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Line: 1>
IntAna_NoGeometricSolution: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_NoGeometricSolution: 9>
IntAna_Parabola: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Parabola: 5>
IntAna_Point: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Point: 0>
IntAna_PointAndCircle: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_PointAndCircle: 3>
IntAna_Same: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Same: 8>
__entries: dict # value = {'IntAna_Point': (<IntAna_ResultType.IntAna_Point: 0>, None), 'IntAna_Line': (<IntAna_ResultType.IntAna_Line: 1>, None), 'IntAna_Circle': (<IntAna_ResultType.IntAna_Circle: 2>, None), 'IntAna_PointAndCircle': (<IntAna_ResultType.IntAna_PointAndCircle: 3>, None), 'IntAna_Ellipse': (<IntAna_ResultType.IntAna_Ellipse: 4>, None), 'IntAna_Parabola': (<IntAna_ResultType.IntAna_Parabola: 5>, None), 'IntAna_Hyperbola': (<IntAna_ResultType.IntAna_Hyperbola: 6>, None), 'IntAna_Empty': (<IntAna_ResultType.IntAna_Empty: 7>, None), 'IntAna_Same': (<IntAna_ResultType.IntAna_Same: 8>, None), 'IntAna_NoGeometricSolution': (<IntAna_ResultType.IntAna_NoGeometricSolution: 9>, None)}
__members__: dict # value = {'IntAna_Point': <IntAna_ResultType.IntAna_Point: 0>, 'IntAna_Line': <IntAna_ResultType.IntAna_Line: 1>, 'IntAna_Circle': <IntAna_ResultType.IntAna_Circle: 2>, 'IntAna_PointAndCircle': <IntAna_ResultType.IntAna_PointAndCircle: 3>, 'IntAna_Ellipse': <IntAna_ResultType.IntAna_Ellipse: 4>, 'IntAna_Parabola': <IntAna_ResultType.IntAna_Parabola: 5>, 'IntAna_Hyperbola': <IntAna_ResultType.IntAna_Hyperbola: 6>, 'IntAna_Empty': <IntAna_ResultType.IntAna_Empty: 7>, 'IntAna_Same': <IntAna_ResultType.IntAna_Same: 8>, 'IntAna_NoGeometricSolution': <IntAna_ResultType.IntAna_NoGeometricSolution: 9>}
pass
IntAna_Circle: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Circle: 2>
IntAna_Ellipse: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Ellipse: 4>
IntAna_Empty: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Empty: 7>
IntAna_Hyperbola: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Hyperbola: 6>
IntAna_Line: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Line: 1>
IntAna_NoGeometricSolution: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_NoGeometricSolution: 9>
IntAna_Parabola: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Parabola: 5>
IntAna_Point: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Point: 0>
IntAna_PointAndCircle: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_PointAndCircle: 3>
IntAna_Same: OCP.IntAna.IntAna_ResultType # value = <IntAna_ResultType.IntAna_Same: 8>
|