1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152
|
import OCP.gp
from typing import *
from typing import Iterable as iterable
from typing import Iterator as iterator
from numpy import float64
_Shape = Tuple[int, ...]
import OCP.TColStd
import io
__all__ = [
"NCollection_Lerp_gp_Trsf",
"gp",
"gp_Ax1",
"gp_Ax2",
"gp_Ax22d",
"gp_Ax2d",
"gp_Ax3",
"gp_Circ",
"gp_Circ2d",
"gp_Cone",
"gp_Cylinder",
"gp_Dir",
"gp_Dir2d",
"gp_Elips",
"gp_Elips2d",
"gp_EulerSequence",
"gp_GTrsf",
"gp_GTrsf2d",
"gp_Hypr",
"gp_Hypr2d",
"gp_Lin",
"gp_Lin2d",
"gp_Mat",
"gp_Mat2d",
"gp_Parab",
"gp_Parab2d",
"gp_Pln",
"gp_Pnt",
"gp_Pnt2d",
"gp_Quaternion",
"gp_QuaternionNLerp",
"gp_QuaternionSLerp",
"gp_Sphere",
"gp_Torus",
"gp_Trsf",
"gp_Trsf2d",
"gp_TrsfForm",
"gp_Vec",
"gp_Vec2d",
"gp_Vec2f",
"gp_Vec3f",
"gp_VectorWithNullMagnitude",
"gp_XY",
"gp_XYZ",
"__mul__",
"__rmul__",
"gp_Ax1Mirror",
"gp_Ax2Mirror",
"gp_CompoundTrsf",
"gp_EulerAngles",
"gp_Extrinsic_XYX",
"gp_Extrinsic_XYZ",
"gp_Extrinsic_XZX",
"gp_Extrinsic_XZY",
"gp_Extrinsic_YXY",
"gp_Extrinsic_YXZ",
"gp_Extrinsic_YZX",
"gp_Extrinsic_YZY",
"gp_Extrinsic_ZXY",
"gp_Extrinsic_ZXZ",
"gp_Extrinsic_ZYX",
"gp_Extrinsic_ZYZ",
"gp_Identity",
"gp_Intrinsic_XYX",
"gp_Intrinsic_XYZ",
"gp_Intrinsic_XZX",
"gp_Intrinsic_XZY",
"gp_Intrinsic_YXY",
"gp_Intrinsic_YXZ",
"gp_Intrinsic_YZX",
"gp_Intrinsic_YZY",
"gp_Intrinsic_ZXY",
"gp_Intrinsic_ZXZ",
"gp_Intrinsic_ZYX",
"gp_Intrinsic_ZYZ",
"gp_Other",
"gp_PntMirror",
"gp_Rotation",
"gp_Scale",
"gp_Translation",
"gp_YawPitchRoll"
]
class NCollection_Lerp_gp_Trsf():
"""
Linear interpolation tool for transformation defined by gp_Trsf.
"""
def Init(self,theStart : gp_Trsf,theEnd : gp_Trsf) -> None:
"""
Initialize values.
"""
def Interpolate(self,theT : float,theResult : gp_Trsf) -> None:
"""
Compute interpolated value between two values.
"""
@overload
def __init__(self,theStart : gp_Trsf,theEnd : gp_Trsf) -> None: ...
@overload
def __init__(self) -> None: ...
pass
class gp():
"""
The geometric processor package, called gp, provides an implementation of entities used : . for algebraic calculation such as "XYZ" coordinates, "Mat" matrix . for basis analytic geometry such as Transformations, point, vector, line, plane, axis placement, conics, and elementary surfaces. These entities are defined in 2d and 3d space. All the classes of this package are non-persistent.
"""
@staticmethod
def DX2d_s() -> gp_Dir2d:
"""
Returns a unit vector with the combinations (1,0)
"""
@staticmethod
def DX_s() -> gp_Dir:
"""
Returns a unit vector with the combination (1,0,0)
"""
@staticmethod
def DY2d_s() -> gp_Dir2d:
"""
Returns a unit vector with the combinations (0,1)
"""
@staticmethod
def DY_s() -> gp_Dir:
"""
Returns a unit vector with the combination (0,1,0)
"""
@staticmethod
def DZ_s() -> gp_Dir:
"""
Returns a unit vector with the combination (0,0,1)
"""
@staticmethod
def OX2d_s() -> gp_Ax2d:
"""
Identifies an axis where its origin is Origin2d and its unit vector coordinates are: X = 1.0, Y = 0.0
"""
@staticmethod
def OX_s() -> gp_Ax1:
"""
Identifies an axis where its origin is Origin and its unit vector coordinates X = 1.0, Y = Z = 0.0
"""
@staticmethod
def OY2d_s() -> gp_Ax2d:
"""
Identifies an axis where its origin is Origin2d and its unit vector coordinates are Y = 1.0, X = 0.0
"""
@staticmethod
def OY_s() -> gp_Ax1:
"""
Identifies an axis where its origin is Origin and its unit vector coordinates Y = 1.0, X = Z = 0.0
"""
@staticmethod
def OZ_s() -> gp_Ax1:
"""
Identifies an axis where its origin is Origin and its unit vector coordinates Z = 1.0, Y = X = 0.0
"""
@staticmethod
def Origin2d_s() -> gp_Pnt2d:
"""
Identifies a Cartesian point with coordinates X = Y = 0.0
"""
@staticmethod
def Origin_s() -> gp_Pnt:
"""
Identifies a Cartesian point with coordinates X = Y = Z = 0.0.0
"""
@staticmethod
def Resolution_s() -> float:
"""
Method of package gp
"""
@staticmethod
def XOY_s() -> gp_Ax2:
"""
Identifies a coordinate system where its origin is Origin, and its "main Direction" and "X Direction" coordinates Z = 1.0, X = Y =0.0 and X direction coordinates X = 1.0, Y = Z = 0.0
"""
@staticmethod
def YOZ_s() -> gp_Ax2:
"""
Identifies a coordinate system where its origin is Origin, and its "main Direction" and "X Direction" coordinates X = 1.0, Z = Y =0.0 and X direction coordinates Y = 1.0, X = Z = 0.0 In 2D space
"""
@staticmethod
def ZOX_s() -> gp_Ax2:
"""
Identifies a coordinate system where its origin is Origin, and its "main Direction" and "X Direction" coordinates Y = 1.0, X = Z =0.0 and X direction coordinates Z = 1.0, X = Y = 0.0
"""
def __init__(self) -> None: ...
pass
class gp_Ax1():
"""
Describes an axis in 3D space. An axis is defined by: - its origin (also referred to as its "Location point"), and - its unit vector (referred to as its "Direction" or "main Direction"). An axis is used: - to describe 3D geometric entities (for example, the axis of a revolution entity). It serves the same purpose as the STEP function "axis placement one axis", or - to define geometric transformations (axis of symmetry, axis of rotation, and so on). For example, this entity can be used to locate a geometric entity or to define a symmetry axis.
"""
def Angle(self,theOther : gp_Ax1) -> float:
"""
Computes the angular value, in radians, between this.Direction() and theOther.Direction(). Returns the angle between 0 and 2*PI radians.
"""
def Direction(self) -> gp_Dir:
"""
Returns the direction of <me>.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def InitFromJson(self,theSStream : Any,theStreamPos : int) -> bool:
"""
Inits the content of me from the stream
"""
def IsCoaxial(self,Other : gp_Ax1,AngularTolerance : float,LinearTolerance : float) -> bool:
"""
Returns True if : . the angle between <me> and <Other> is lower or equal to <AngularTolerance> and . the distance between <me>.Location() and <Other> is lower or equal to <LinearTolerance> and . the distance between <Other>.Location() and <me> is lower or equal to LinearTolerance.
"""
def IsNormal(self,theOther : gp_Ax1,theAngularTolerance : float) -> bool:
"""
Returns True if the direction of this and another axis are normal to each other. That is, if the angle between the two axes is equal to Pi/2. Note: the tolerance criterion is given by theAngularTolerance.
"""
def IsOpposite(self,theOther : gp_Ax1,theAngularTolerance : float) -> bool:
"""
Returns True if the direction of this and another axis are parallel with opposite orientation. That is, if the angle between the two axes is equal to Pi. Note: the tolerance criterion is given by theAngularTolerance.
"""
def IsParallel(self,theOther : gp_Ax1,theAngularTolerance : float) -> bool:
"""
Returns True if the direction of this and another axis are parallel with same orientation or opposite orientation. That is, if the angle between the two axes is equal to 0 or Pi. Note: the tolerance criterion is given by theAngularTolerance.
"""
def Location(self) -> gp_Pnt:
"""
Returns the location point of <me>.
"""
@overload
def Mirror(self,A2 : gp_Ax2) -> None:
"""
Performs the symmetrical transformation of an axis placement with respect to the point P which is the center of the symmetry and assigns the result to this axis.
Performs the symmetrical transformation of an axis placement with respect to an axis placement which is the axis of the symmetry and assigns the result to this axis.
Performs the symmetrical transformation of an axis placement with respect to a plane. The axis placement <A2> locates the plane of the symmetry : (Location, XDirection, YDirection) and assigns the result to this axis.
"""
@overload
def Mirror(self,P : gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : gp_Ax1) -> None: ...
@overload
def Mirrored(self,P : gp_Pnt) -> gp_Ax1:
"""
Performs the symmetrical transformation of an axis placement with respect to the point P which is the center of the symmetry and creates a new axis.
Performs the symmetrical transformation of an axis placement with respect to an axis placement which is the axis of the symmetry and creates a new axis.
Performs the symmetrical transformation of an axis placement with respect to a plane. The axis placement <A2> locates the plane of the symmetry : (Location, XDirection, YDirection) and creates a new axis.
"""
@overload
def Mirrored(self,A1 : gp_Ax1) -> gp_Ax1: ...
@overload
def Mirrored(self,A2 : gp_Ax2) -> gp_Ax1: ...
def Reverse(self) -> None:
"""
Reverses the unit vector of this axis and assigns the result to this axis.
"""
def Reversed(self) -> gp_Ax1:
"""
Reverses the unit vector of this axis and creates a new one.
"""
def Rotate(self,theA1 : gp_Ax1,theAngRad : float) -> None:
"""
Rotates this axis at an angle theAngRad (in radians) about the axis theA1 and assigns the result to this axis.
"""
def Rotated(self,theA1 : gp_Ax1,theAngRad : float) -> gp_Ax1:
"""
Rotates this axis at an angle theAngRad (in radians) about the axis theA1 and creates a new one.
"""
def Scale(self,theP : gp_Pnt,theS : float) -> None:
"""
Applies a scaling transformation to this axis with: - scale factor theS, and - center theP and assigns the result to this axis.
"""
def Scaled(self,theP : gp_Pnt,theS : float) -> gp_Ax1:
"""
Applies a scaling transformation to this axis with: - scale factor theS, and - center theP and creates a new axis.
"""
def SetDirection(self,theV : gp_Dir) -> None:
"""
Assigns V as the "Direction" of this axis.
"""
def SetLocation(self,theP : gp_Pnt) -> None:
"""
Assigns P as the origin of this axis.
"""
def Transform(self,theT : gp_Trsf) -> None:
"""
Applies the transformation theT to this axis and assigns the result to this axis.
"""
def Transformed(self,theT : gp_Trsf) -> gp_Ax1:
"""
Applies the transformation theT to this axis and creates a new one.
"""
@overload
def Translate(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> None:
"""
Translates this axis by the vector theV, and assigns the result to this axis.
Translates this axis by: the vector (theP1, theP2) defined from point theP1 to point theP2. and assigns the result to this axis.
"""
@overload
def Translate(self,theV : gp_Vec) -> None: ...
@overload
def Translated(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> gp_Ax1:
"""
Translates this axis by the vector theV, and creates a new one.
Translates this axis by: the vector (theP1, theP2) defined from point theP1 to point theP2. and creates a new one.
"""
@overload
def Translated(self,theV : gp_Vec) -> gp_Ax1: ...
@overload
def __init__(self,theP : gp_Pnt,theV : gp_Dir) -> None: ...
@overload
def __init__(self) -> None: ...
pass
class gp_Ax2():
"""
Describes a right-handed coordinate system in 3D space. A coordinate system is defined by: - its origin (also referred to as its "Location point"), and - three orthogonal unit vectors, termed respectively the "X Direction", the "Y Direction" and the "Direction" (also referred to as the "main Direction"). The "Direction" of the coordinate system is called its "main Direction" because whenever this unit vector is modified, the "X Direction" and the "Y Direction" are recomputed. However, when we modify either the "X Direction" or the "Y Direction", "Direction" is not modified. The "main Direction" is also the "Z Direction". Since an Ax2 coordinate system is right-handed, its "main Direction" is always equal to the cross product of its "X Direction" and "Y Direction". (To define a left-handed coordinate system, use gp_Ax3.) A coordinate system is used: - to describe geometric entities, in particular to position them. The local coordinate system of a geometric entity serves the same purpose as the STEP function "axis placement two axes", or - to define geometric transformations. Note: we refer to the "X Axis", "Y Axis" and "Z Axis", respectively, as to axes having: - the origin of the coordinate system as their origin, and - the unit vectors "X Direction", "Y Direction" and "main Direction", respectively, as their unit vectors. The "Z Axis" is also the "main Axis".
"""
def Angle(self,theOther : gp_Ax2) -> float:
"""
Computes the angular value, in radians, between the main direction of <me> and the main direction of <theOther>. Returns the angle between 0 and PI in radians.
"""
def Axis(self) -> gp_Ax1:
"""
Returns the main axis of <me>. It is the "Location" point and the main "Direction".
"""
def Direction(self) -> gp_Dir:
"""
Returns the main direction of <me>.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def InitFromJson(self,theSStream : Any,theStreamPos : int) -> bool:
"""
Inits the content of me from the stream
"""
@overload
def IsCoplanar(self,theA : gp_Ax1,theLinearTolerance : float,theAngularTolerance : float) -> bool:
"""
None
Returns True if . the distance between <me> and the "Location" point of A1 is lower of equal to LinearTolerance and . the main direction of <me> and the direction of A1 are normal. Note: the tolerance criterion for angular equality is given by AngularTolerance.
None
Returns True if . the distance between <me> and the "Location" point of A1 is lower of equal to LinearTolerance and . the main direction of <me> and the direction of A1 are normal. Note: the tolerance criterion for angular equality is given by AngularTolerance.
"""
@overload
def IsCoplanar(self,theOther : gp_Ax2,theLinearTolerance : float,theAngularTolerance : float) -> bool: ...
@overload
def IsCoplanar(self,A1 : gp_Ax1,LinearTolerance : float,AngularTolerance : float) -> bool: ...
@overload
def IsCoplanar(self,Other : gp_Ax2,LinearTolerance : float,AngularTolerance : float) -> bool: ...
def Location(self) -> gp_Pnt:
"""
Returns the "Location" point (origin) of <me>.
"""
@overload
def Mirror(self,A2 : gp_Ax2) -> None:
"""
Performs a symmetrical transformation of this coordinate system with respect to: - the point P, and assigns the result to this coordinate system. Warning This transformation is always performed on the origin. In case of a reflection with respect to a point: - the main direction of the coordinate system is not changed, and - the "X Direction" and the "Y Direction" are simply reversed In case of a reflection with respect to an axis or a plane: - the transformation is applied to the "X Direction" and the "Y Direction", then - the "main Direction" is recomputed as the cross product "X Direction" ^ "Y Direction". This maintains the right-handed property of the coordinate system.
Performs a symmetrical transformation of this coordinate system with respect to: - the axis A1, and assigns the result to this coordinate systeme. Warning This transformation is always performed on the origin. In case of a reflection with respect to a point: - the main direction of the coordinate system is not changed, and - the "X Direction" and the "Y Direction" are simply reversed In case of a reflection with respect to an axis or a plane: - the transformation is applied to the "X Direction" and the "Y Direction", then - the "main Direction" is recomputed as the cross product "X Direction" ^ "Y Direction". This maintains the right-handed property of the coordinate system.
Performs a symmetrical transformation of this coordinate system with respect to: - the plane defined by the origin, "X Direction" and "Y Direction" of coordinate system A2 and assigns the result to this coordinate systeme. Warning This transformation is always performed on the origin. In case of a reflection with respect to a point: - the main direction of the coordinate system is not changed, and - the "X Direction" and the "Y Direction" are simply reversed In case of a reflection with respect to an axis or a plane: - the transformation is applied to the "X Direction" and the "Y Direction", then - the "main Direction" is recomputed as the cross product "X Direction" ^ "Y Direction". This maintains the right-handed property of the coordinate system.
"""
@overload
def Mirror(self,P : gp_Pnt) -> None: ...
@overload
def Mirror(self,A1 : gp_Ax1) -> None: ...
@overload
def Mirrored(self,A2 : gp_Ax2) -> gp_Ax2:
"""
Performs a symmetrical transformation of this coordinate system with respect to: - the point P, and creates a new one. Warning This transformation is always performed on the origin. In case of a reflection with respect to a point: - the main direction of the coordinate system is not changed, and - the "X Direction" and the "Y Direction" are simply reversed In case of a reflection with respect to an axis or a plane: - the transformation is applied to the "X Direction" and the "Y Direction", then - the "main Direction" is recomputed as the cross product "X Direction" ^ "Y Direction". This maintains the right-handed property of the coordinate system.
Performs a symmetrical transformation of this coordinate system with respect to: - the axis A1, and creates a new one. Warning This transformation is always performed on the origin. In case of a reflection with respect to a point: - the main direction of the coordinate system is not changed, and - the "X Direction" and the "Y Direction" are simply reversed In case of a reflection with respect to an axis or a plane: - the transformation is applied to the "X Direction" and the "Y Direction", then - the "main Direction" is recomputed as the cross product "X Direction" ^ "Y Direction". This maintains the right-handed property of the coordinate system.
Performs a symmetrical transformation of this coordinate system with respect to: - the plane defined by the origin, "X Direction" and "Y Direction" of coordinate system A2 and creates a new one. Warning This transformation is always performed on the origin. In case of a reflection with respect to a point: - the main direction of the coordinate system is not changed, and - the "X Direction" and the "Y Direction" are simply reversed In case of a reflection with respect to an axis or a plane: - the transformation is applied to the "X Direction" and the "Y Direction", then - the "main Direction" is recomputed as the cross product "X Direction" ^ "Y Direction". This maintains the right-handed property of the coordinate system.
"""
@overload
def Mirrored(self,P : gp_Pnt) -> gp_Ax2: ...
@overload
def Mirrored(self,A1 : gp_Ax1) -> gp_Ax2: ...
def Rotate(self,theA1 : gp_Ax1,theAng : float) -> None:
"""
None
"""
def Rotated(self,theA1 : gp_Ax1,theAng : float) -> gp_Ax2:
"""
Rotates an axis placement. <theA1> is the axis of the rotation. theAng is the angular value of the rotation in radians.
"""
def Scale(self,theP : gp_Pnt,theS : float) -> None:
"""
None
"""
def Scaled(self,theP : gp_Pnt,theS : float) -> gp_Ax2:
"""
Applies a scaling transformation on the axis placement. The "Location" point of the axisplacement is modified. Warnings : If the scale <S> is negative : . the main direction of the axis placement is not changed. . The "XDirection" and the "YDirection" are reversed. So the axis placement stay right handed.
"""
@overload
def SetAxis(self,A1 : gp_Ax1) -> None:
"""
Assigns the origin and "main Direction" of the axis A1 to this coordinate system, then recomputes its "X Direction" and "Y Direction". Note: The new "X Direction" is computed as follows: new "X Direction" = V1 ^(previous "X Direction" ^ V) where V is the "Direction" of A1. Exceptions Standard_ConstructionError if A1 is parallel to the "X Direction" of this coordinate system.
Assigns the origin and "main Direction" of the axis A1 to this coordinate system, then recomputes its "X Direction" and "Y Direction". Note: The new "X Direction" is computed as follows: new "X Direction" = V1 ^(previous "X Direction" ^ V) where V is the "Direction" of A1. Exceptions Standard_ConstructionError if A1 is parallel to the "X Direction" of this coordinate system.
"""
@overload
def SetAxis(self,theA1 : gp_Ax1) -> None: ...
@overload
def SetDirection(self,V : gp_Dir) -> None:
"""
Changes the "main Direction" of this coordinate system, then recomputes its "X Direction" and "Y Direction". Note: the new "X Direction" is computed as follows: new "X Direction" = V ^ (previous "X Direction" ^ V) Exceptions Standard_ConstructionError if V is parallel to the "X Direction" of this coordinate system.
Changes the "main Direction" of this coordinate system, then recomputes its "X Direction" and "Y Direction". Note: the new "X Direction" is computed as follows: new "X Direction" = V ^ (previous "X Direction" ^ V) Exceptions Standard_ConstructionError if V is parallel to the "X Direction" of this coordinate system.
"""
@overload
def SetDirection(self,theV : gp_Dir) -> None: ...
def SetLocation(self,theP : gp_Pnt) -> None:
"""
Changes the "Location" point (origin) of <me>.
"""
def SetXDirection(self,theVx : gp_Dir) -> None:
"""
Changes the "Xdirection" of <me>. The main direction "Direction" is not modified, the "Ydirection" is modified. If <Vx> is not normal to the main direction then <XDirection> is computed as follows XDirection = Direction ^ (Vx ^ Direction). Exceptions Standard_ConstructionError if Vx or Vy is parallel to the "main Direction" of this coordinate system.
"""
def SetYDirection(self,theVy : gp_Dir) -> None:
"""
Changes the "Ydirection" of <me>. The main direction is not modified but the "Xdirection" is changed. If <Vy> is not normal to the main direction then "YDirection" is computed as follows YDirection = Direction ^ (<Vy> ^ Direction). Exceptions Standard_ConstructionError if Vx or Vy is parallel to the "main Direction" of this coordinate system.
"""
def Transform(self,theT : gp_Trsf) -> None:
"""
None
"""
def Transformed(self,theT : gp_Trsf) -> gp_Ax2:
"""
Transforms an axis placement with a Trsf. The "Location" point, the "XDirection" and the "YDirection" are transformed with theT. The resulting main "Direction" of <me> is the cross product between the "XDirection" and the "YDirection" after transformation.
"""
@overload
def Translate(self,theV : gp_Vec) -> None:
"""
None
None
"""
@overload
def Translate(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> None: ...
@overload
def Translated(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> gp_Ax2:
"""
Translates an axis plaxement in the direction of the vector <theV>. The magnitude of the translation is the vector's magnitude.
Translates an axis placement from the point <theP1> to the point <theP2>.
"""
@overload
def Translated(self,theV : gp_Vec) -> gp_Ax2: ...
def XDirection(self) -> gp_Dir:
"""
Returns the "XDirection" of <me>.
"""
def YDirection(self) -> gp_Dir:
"""
Returns the "YDirection" of <me>.
"""
@overload
def __init__(self,P : gp_Pnt,V : gp_Dir) -> None: ...
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,P : gp_Pnt,N : gp_Dir,Vx : gp_Dir) -> None: ...
pass
class gp_Ax22d():
"""
Describes a coordinate system in a plane (2D space). A coordinate system is defined by: - its origin (also referred to as its "Location point"), and - two orthogonal unit vectors, respectively, called the "X Direction" and the "Y Direction". A gp_Ax22d may be right-handed ("direct sense") or left-handed ("inverse" or "indirect sense"). You use a gp_Ax22d to: - describe 2D geometric entities, in particular to position them. The local coordinate system of a geometric entity serves for the same purpose as the STEP function "axis placement two axes", or - define geometric transformations. Note: we refer to the "X Axis" and "Y Axis" as the axes having: - the origin of the coordinate system as their origin, and - the unit vectors "X Direction" and "Y Direction", respectively, as their unit vectors.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def Location(self) -> gp_Pnt2d:
"""
Returns the "Location" point (origin) of <me>.
"""
@overload
def Mirror(self,theP : gp_Pnt2d) -> None:
"""
None
None
"""
@overload
def Mirror(self,theA : gp_Ax2d) -> None: ...
@overload
def Mirrored(self,theP : gp_Pnt2d) -> gp_Ax22d:
"""
Performs the symmetrical transformation of an axis placement with respect to the point theP which is the center of the symmetry. Warnings : The main direction of the axis placement is not changed. The "XDirection" and the "YDirection" are reversed. So the axis placement stay right handed.
Performs the symmetrical transformation of an axis placement with respect to an axis placement which is the axis of the symmetry. The transformation is performed on the "Location" point, on the "XDirection" and "YDirection". The resulting main "Direction" is the cross product between the "XDirection" and the "YDirection" after transformation.
"""
@overload
def Mirrored(self,theA : gp_Ax2d) -> gp_Ax22d: ...
def Rotate(self,theP : gp_Pnt2d,theAng : float) -> None:
"""
None
None
"""
def Rotated(self,theP : gp_Pnt2d,theAng : float) -> gp_Ax22d:
"""
Rotates an axis placement. <theA1> is the axis of the rotation . theAng is the angular value of the rotation in radians.
"""
def Scale(self,theP : gp_Pnt2d,theS : float) -> None:
"""
None
None
"""
def Scaled(self,theP : gp_Pnt2d,theS : float) -> gp_Ax22d:
"""
Applies a scaling transformation on the axis placement. The "Location" point of the axisplacement is modified. Warnings : If the scale <theS> is negative : . the main direction of the axis placement is not changed. . The "XDirection" and the "YDirection" are reversed. So the axis placement stay right handed.
"""
def SetAxis(self,theA1 : gp_Ax22d) -> None:
"""
Assigns the origin and the two unit vectors of the coordinate system theA1 to this coordinate system.
"""
def SetLocation(self,theP : gp_Pnt2d) -> None:
"""
Changes the "Location" point (origin) of <me>.
"""
def SetXAxis(self,theA1 : gp_Ax2d) -> None:
"""
Changes the XAxis and YAxis ("Location" point and "Direction") of <me>. The "YDirection" is recomputed in the same sense as before.
Changes the XAxis and YAxis ("Location" point and "Direction") of <me>. The "YDirection" is recomputed in the same sense as before.
"""
def SetXDirection(self,theVx : gp_Dir2d) -> None:
"""
Assigns theVx to the "X Direction" of this coordinate system. The other unit vector of this coordinate system is recomputed, normal to theVx , without modifying the orientation (right-handed or left-handed) of this coordinate system.
Assigns theVx to the "X Direction" of this coordinate system. The other unit vector of this coordinate system is recomputed, normal to theVx , without modifying the orientation (right-handed or left-handed) of this coordinate system.
"""
def SetYAxis(self,theA1 : gp_Ax2d) -> None:
"""
Changes the XAxis and YAxis ("Location" point and "Direction") of <me>. The "XDirection" is recomputed in the same sense as before.
Changes the XAxis and YAxis ("Location" point and "Direction") of <me>. The "XDirection" is recomputed in the same sense as before.
"""
def SetYDirection(self,theVy : gp_Dir2d) -> None:
"""
Assignsr theVy to the "Y Direction" of this coordinate system. The other unit vector of this coordinate system is recomputed, normal to theVy, without modifying the orientation (right-handed or left-handed) of this coordinate system.
Assignsr theVy to the "Y Direction" of this coordinate system. The other unit vector of this coordinate system is recomputed, normal to theVy, without modifying the orientation (right-handed or left-handed) of this coordinate system.
"""
def Transform(self,theT : gp_Trsf2d) -> None:
"""
None
None
"""
def Transformed(self,theT : gp_Trsf2d) -> gp_Ax22d:
"""
Transforms an axis placement with a Trsf. The "Location" point, the "XDirection" and the "YDirection" are transformed with theT. The resulting main "Direction" of <me> is the cross product between the "XDirection" and the "YDirection" after transformation.
"""
@overload
def Translate(self,theV : gp_Vec2d) -> None:
"""
None
None
"""
@overload
def Translate(self,theP1 : gp_Pnt2d,theP2 : gp_Pnt2d) -> None: ...
@overload
def Translated(self,theP1 : gp_Pnt2d,theP2 : gp_Pnt2d) -> gp_Ax22d:
"""
Translates an axis plaxement in the direction of the vector <theV>. The magnitude of the translation is the vector's magnitude.
Translates an axis placement from the point <theP1> to the point <theP2>.
"""
@overload
def Translated(self,theV : gp_Vec2d) -> gp_Ax22d: ...
def XAxis(self) -> gp_Ax2d:
"""
Returns an axis, for which - the origin is that of this coordinate system, and - the unit vector is either the "X Direction" of this coordinate system. Note: the result is the "X Axis" of this coordinate system.
"""
def XDirection(self) -> gp_Dir2d:
"""
Returns the "XDirection" of <me>.
"""
def YAxis(self) -> gp_Ax2d:
"""
Returns an axis, for which - the origin is that of this coordinate system, and - the unit vector is either the "Y Direction" of this coordinate system. Note: the result is the "Y Axis" of this coordinate system.
"""
def YDirection(self) -> gp_Dir2d:
"""
Returns the "YDirection" of <me>.
"""
@overload
def __init__(self,theP : gp_Pnt2d,theV : gp_Dir2d,theIsSense : bool=True) -> None: ...
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,theP : gp_Pnt2d,theVx : gp_Dir2d,theVy : gp_Dir2d) -> None: ...
@overload
def __init__(self,theA : gp_Ax2d,theIsSense : bool=True) -> None: ...
pass
class gp_Ax2d():
"""
Describes an axis in the plane (2D space). An axis is defined by: - its origin (also referred to as its "Location point"), and - its unit vector (referred to as its "Direction"). An axis implicitly defines a direct, right-handed coordinate system in 2D space by: - its origin, - its "Direction" (giving the "X Direction" of the coordinate system), and - the unit vector normal to "Direction" (positive angle measured in the trigonometric sense). An axis is used: - to describe 2D geometric entities (for example, the axis which defines angular coordinates on a circle). It serves for the same purpose as the STEP function "axis placement one axis", or - to define geometric transformations (axis of symmetry, axis of rotation, and so on). Note: to define a left-handed 2D coordinate system, use gp_Ax22d.
"""
def Angle(self,theOther : gp_Ax2d) -> float:
"""
Computes the angle, in radians, between this axis and the axis theOther. The value of the angle is between -Pi and Pi.
"""
def Direction(self) -> gp_Dir2d:
"""
Returns the direction of <me>.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def IsCoaxial(self,Other : gp_Ax2d,AngularTolerance : float,LinearTolerance : float) -> bool:
"""
Returns True if : . the angle between <me> and <Other> is lower or equal to <AngularTolerance> and . the distance between <me>.Location() and <Other> is lower or equal to <LinearTolerance> and . the distance between <Other>.Location() and <me> is lower or equal to LinearTolerance.
"""
def IsNormal(self,theOther : gp_Ax2d,theAngularTolerance : float) -> bool:
"""
Returns true if this axis and the axis theOther are normal to each other. That is, if the angle between the two axes is equal to Pi/2 or -Pi/2. Note: the tolerance criterion is given by theAngularTolerance.
"""
def IsOpposite(self,theOther : gp_Ax2d,theAngularTolerance : float) -> bool:
"""
Returns true if this axis and the axis theOther are parallel, and have opposite orientations. That is, if the angle between the two axes is equal to Pi or -Pi. Note: the tolerance criterion is given by theAngularTolerance.
"""
def IsParallel(self,theOther : gp_Ax2d,theAngularTolerance : float) -> bool:
"""
Returns true if this axis and the axis theOther are parallel, and have either the same or opposite orientations. That is, if the angle between the two axes is equal to 0, Pi or -Pi. Note: the tolerance criterion is given by theAngularTolerance.
"""
def Location(self) -> gp_Pnt2d:
"""
Returns the origin of <me>.
"""
@overload
def Mirror(self,P : gp_Pnt2d) -> None:
"""
None
None
"""
@overload
def Mirror(self,A : gp_Ax2d) -> None: ...
@overload
def Mirrored(self,P : gp_Pnt2d) -> gp_Ax2d:
"""
Performs the symmetrical transformation of an axis placement with respect to the point P which is the center of the symmetry.
Performs the symmetrical transformation of an axis placement with respect to an axis placement which is the axis of the symmetry.
"""
@overload
def Mirrored(self,A : gp_Ax2d) -> gp_Ax2d: ...
def Reverse(self) -> None:
"""
Reverses the direction of <me> and assigns the result to this axis.
"""
def Reversed(self) -> gp_Ax2d:
"""
Computes a new axis placement with a direction opposite to the direction of <me>.
"""
def Rotate(self,theP : gp_Pnt2d,theAng : float) -> None:
"""
None
"""
def Rotated(self,theP : gp_Pnt2d,theAng : float) -> gp_Ax2d:
"""
Rotates an axis placement. <theP> is the center of the rotation. theAng is the angular value of the rotation in radians.
"""
def Scale(self,P : gp_Pnt2d,S : float) -> None:
"""
None
"""
def Scaled(self,theP : gp_Pnt2d,theS : float) -> gp_Ax2d:
"""
Applies a scaling transformation on the axis placement. The "Location" point of the axisplacement is modified. The "Direction" is reversed if the scale is negative.
"""
def SetDirection(self,theV : gp_Dir2d) -> None:
"""
Changes the direction of <me>.
"""
def SetLocation(self,theP : gp_Pnt2d) -> None:
"""
Changes the "Location" point (origin) of <me>.
"""
def Transform(self,theT : gp_Trsf2d) -> None:
"""
None
"""
def Transformed(self,theT : gp_Trsf2d) -> gp_Ax2d:
"""
Transforms an axis placement with a Trsf.
"""
@overload
def Translate(self,theP1 : gp_Pnt2d,theP2 : gp_Pnt2d) -> None:
"""
None
None
"""
@overload
def Translate(self,theV : gp_Vec2d) -> None: ...
@overload
def Translated(self,theV : gp_Vec2d) -> gp_Ax2d:
"""
Translates an axis placement in the direction of the vector theV. The magnitude of the translation is the vector's magnitude.
Translates an axis placement from the point theP1 to the point theP2.
"""
@overload
def Translated(self,theP1 : gp_Pnt2d,theP2 : gp_Pnt2d) -> gp_Ax2d: ...
@overload
def __init__(self,theP : gp_Pnt2d,theV : gp_Dir2d) -> None: ...
@overload
def __init__(self) -> None: ...
pass
class gp_Ax3():
"""
Describes a coordinate system in 3D space. Unlike a gp_Ax2 coordinate system, a gp_Ax3 can be right-handed ("direct sense") or left-handed ("indirect sense"). A coordinate system is defined by: - its origin (also referred to as its "Location point"), and - three orthogonal unit vectors, termed the "X Direction", the "Y Direction" and the "Direction" (also referred to as the "main Direction"). The "Direction" of the coordinate system is called its "main Direction" because whenever this unit vector is modified, the "X Direction" and the "Y Direction" are recomputed. However, when we modify either the "X Direction" or the "Y Direction", "Direction" is not modified. "Direction" is also the "Z Direction". The "main Direction" is always parallel to the cross product of its "X Direction" and "Y Direction". If the coordinate system is right-handed, it satisfies the equation: "main Direction" = "X Direction" ^ "Y Direction" and if it is left-handed, it satisfies the equation: "main Direction" = -"X Direction" ^ "Y Direction" A coordinate system is used: - to describe geometric entities, in particular to position them. The local coordinate system of a geometric entity serves the same purpose as the STEP function "axis placement three axes", or - to define geometric transformations. Note: - We refer to the "X Axis", "Y Axis" and "Z Axis", respectively, as the axes having: - the origin of the coordinate system as their origin, and - the unit vectors "X Direction", "Y Direction" and "main Direction", respectively, as their unit vectors. - The "Z Axis" is also the "main Axis". - gp_Ax2 is used to define a coordinate system that must be always right-handed.
"""
def Angle(self,theOther : gp_Ax3) -> float:
"""
Computes the angular value between the main direction of <me> and the main direction of <theOther>. Returns the angle between 0 and PI in radians.
"""
def Ax2(self) -> gp_Ax2:
"""
Computes a right-handed coordinate system with the same "X Direction" and "Y Direction" as those of this coordinate system, then recomputes the "main Direction". If this coordinate system is right-handed, the result returned is the same coordinate system. If this coordinate system is left-handed, the result is reversed.
Computes a right-handed coordinate system with the same "X Direction" and "Y Direction" as those of this coordinate system, then recomputes the "main Direction". If this coordinate system is right-handed, the result returned is the same coordinate system. If this coordinate system is left-handed, the result is reversed.
"""
def Axis(self) -> gp_Ax1:
"""
Returns the main axis of <me>. It is the "Location" point and the main "Direction".
"""
def Direct(self) -> bool:
"""
Returns True if the coordinate system is right-handed. i.e. XDirection().Crossed(YDirection()).Dot(Direction()) > 0
"""
def Direction(self) -> gp_Dir:
"""
Returns the main direction of <me>.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def InitFromJson(self,theSStream : Any,theStreamPos : int) -> bool:
"""
Inits the content of me from the stream
"""
@overload
def IsCoplanar(self,theOther : gp_Ax3,theLinearTolerance : float,theAngularTolerance : float) -> bool:
"""
Returns True if . the distance between the "Location" point of <me> and <theOther> is lower or equal to theLinearTolerance and . the distance between the "Location" point of <theOther> and <me> is lower or equal to theLinearTolerance and . the main direction of <me> and the main direction of <theOther> are parallel (same or opposite orientation).
Returns True if . the distance between <me> and the "Location" point of theA1 is lower of equal to theLinearTolerance and . the distance between theA1 and the "Location" point of <me> is lower or equal to theLinearTolerance and . the main direction of <me> and the direction of theA1 are normal.
Returns True if . the distance between the "Location" point of <me> and <theOther> is lower or equal to theLinearTolerance and . the distance between the "Location" point of <theOther> and <me> is lower or equal to theLinearTolerance and . the main direction of <me> and the main direction of <theOther> are parallel (same or opposite orientation).
Returns True if . the distance between <me> and the "Location" point of theA1 is lower of equal to theLinearTolerance and . the distance between theA1 and the "Location" point of <me> is lower or equal to theLinearTolerance and . the main direction of <me> and the direction of theA1 are normal.
"""
@overload
def IsCoplanar(self,theA1 : gp_Ax1,theLinearTolerance : float,theAngularTolerance : float) -> bool: ...
def Location(self) -> gp_Pnt:
"""
Returns the "Location" point (origin) of <me>.
"""
@overload
def Mirror(self,theA2 : gp_Ax2) -> None:
"""
None
None
None
"""
@overload
def Mirror(self,theA1 : gp_Ax1) -> None: ...
@overload
def Mirror(self,theP : gp_Pnt) -> None: ...
@overload
def Mirrored(self,theA2 : gp_Ax2) -> gp_Ax3:
"""
Performs the symmetrical transformation of an axis placement with respect to the point theP which is the center of the symmetry. Warnings : The main direction of the axis placement is not changed. The "XDirection" and the "YDirection" are reversed. So the axis placement stay right handed.
Performs the symmetrical transformation of an axis placement with respect to an axis placement which is the axis of the symmetry. The transformation is performed on the "Location" point, on the "XDirection" and "YDirection". The resulting main "Direction" is the cross product between the "XDirection" and the "YDirection" after transformation.
Performs the symmetrical transformation of an axis placement with respect to a plane. The axis placement <theA2> locates the plane of the symmetry : (Location, XDirection, YDirection). The transformation is performed on the "Location" point, on the "XDirection" and "YDirection". The resulting main "Direction" is the cross product between the "XDirection" and the "YDirection" after transformation.
"""
@overload
def Mirrored(self,theP : gp_Pnt) -> gp_Ax3: ...
@overload
def Mirrored(self,theA1 : gp_Ax1) -> gp_Ax3: ...
def Rotate(self,theA1 : gp_Ax1,theAng : float) -> None:
"""
None
"""
def Rotated(self,theA1 : gp_Ax1,theAng : float) -> gp_Ax3:
"""
Rotates an axis placement. <theA1> is the axis of the rotation . theAng is the angular value of the rotation in radians.
"""
def Scale(self,theP : gp_Pnt,theS : float) -> None:
"""
None
"""
def Scaled(self,theP : gp_Pnt,theS : float) -> gp_Ax3:
"""
Applies a scaling transformation on the axis placement. The "Location" point of the axisplacement is modified. Warnings : If the scale <theS> is negative : . the main direction of the axis placement is not changed. . The "XDirection" and the "YDirection" are reversed. So the axis placement stay right handed.
"""
def SetAxis(self,theA1 : gp_Ax1) -> None:
"""
Assigns the origin and "main Direction" of the axis theA1 to this coordinate system, then recomputes its "X Direction" and "Y Direction". Note: - The new "X Direction" is computed as follows: new "X Direction" = V1 ^(previous "X Direction" ^ V) where V is the "Direction" of theA1. - The orientation of this coordinate system (right-handed or left-handed) is not modified. Raises ConstructionError if the "Direction" of <theA1> and the "XDirection" of <me> are parallel (same or opposite orientation) because it is impossible to calculate the new "XDirection" and the new "YDirection".
Assigns the origin and "main Direction" of the axis theA1 to this coordinate system, then recomputes its "X Direction" and "Y Direction". Note: - The new "X Direction" is computed as follows: new "X Direction" = V1 ^(previous "X Direction" ^ V) where V is the "Direction" of theA1. - The orientation of this coordinate system (right-handed or left-handed) is not modified. Raises ConstructionError if the "Direction" of <theA1> and the "XDirection" of <me> are parallel (same or opposite orientation) because it is impossible to calculate the new "XDirection" and the new "YDirection".
"""
def SetDirection(self,theV : gp_Dir) -> None:
"""
Changes the main direction of this coordinate system, then recomputes its "X Direction" and "Y Direction". Note: - The new "X Direction" is computed as follows: new "X Direction" = theV ^ (previous "X Direction" ^ theV). - The orientation of this coordinate system (left- or right-handed) is not modified. Raises ConstructionError if <theV> and the previous "XDirection" are parallel because it is impossible to calculate the new "XDirection" and the new "YDirection".
Changes the main direction of this coordinate system, then recomputes its "X Direction" and "Y Direction". Note: - The new "X Direction" is computed as follows: new "X Direction" = theV ^ (previous "X Direction" ^ theV). - The orientation of this coordinate system (left- or right-handed) is not modified. Raises ConstructionError if <theV> and the previous "XDirection" are parallel because it is impossible to calculate the new "XDirection" and the new "YDirection".
"""
def SetLocation(self,theP : gp_Pnt) -> None:
"""
Changes the "Location" point (origin) of <me>.
"""
def SetXDirection(self,theVx : gp_Dir) -> None:
"""
Changes the "Xdirection" of <me>. The main direction "Direction" is not modified, the "Ydirection" is modified. If <theVx> is not normal to the main direction then <XDirection> is computed as follows XDirection = Direction ^ (theVx ^ Direction). Raises ConstructionError if <theVx> is parallel (same or opposite orientation) to the main direction of <me>
Changes the "Xdirection" of <me>. The main direction "Direction" is not modified, the "Ydirection" is modified. If <theVx> is not normal to the main direction then <XDirection> is computed as follows XDirection = Direction ^ (theVx ^ Direction). Raises ConstructionError if <theVx> is parallel (same or opposite orientation) to the main direction of <me>
"""
def SetYDirection(self,theVy : gp_Dir) -> None:
"""
Changes the "Ydirection" of <me>. The main direction is not modified but the "Xdirection" is changed. If <theVy> is not normal to the main direction then "YDirection" is computed as follows YDirection = Direction ^ (<theVy> ^ Direction). Raises ConstructionError if <theVy> is parallel to the main direction of <me>
Changes the "Ydirection" of <me>. The main direction is not modified but the "Xdirection" is changed. If <theVy> is not normal to the main direction then "YDirection" is computed as follows YDirection = Direction ^ (<theVy> ^ Direction). Raises ConstructionError if <theVy> is parallel to the main direction of <me>
"""
def Transform(self,theT : gp_Trsf) -> None:
"""
None
"""
def Transformed(self,theT : gp_Trsf) -> gp_Ax3:
"""
Transforms an axis placement with a Trsf. The "Location" point, the "XDirection" and the "YDirection" are transformed with theT. The resulting main "Direction" of <me> is the cross product between the "XDirection" and the "YDirection" after transformation.
"""
@overload
def Translate(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> None:
"""
None
None
"""
@overload
def Translate(self,theV : gp_Vec) -> None: ...
@overload
def Translated(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> gp_Ax3:
"""
Translates an axis plaxement in the direction of the vector <theV>. The magnitude of the translation is the vector's magnitude.
Translates an axis placement from the point <theP1> to the point <theP2>.
"""
@overload
def Translated(self,theV : gp_Vec) -> gp_Ax3: ...
def XDirection(self) -> gp_Dir:
"""
Returns the "XDirection" of <me>.
"""
def XReverse(self) -> None:
"""
Reverses the X direction of <me>.
"""
def YDirection(self) -> gp_Dir:
"""
Returns the "YDirection" of <me>.
"""
def YReverse(self) -> None:
"""
Reverses the Y direction of <me>.
"""
def ZReverse(self) -> None:
"""
Reverses the Z direction of <me>.
"""
@overload
def __init__(self,theP : gp_Pnt,theN : gp_Dir,theVx : gp_Dir) -> None: ...
@overload
def __init__(self,theP : gp_Pnt,theV : gp_Dir) -> None: ...
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,theA : gp_Ax2) -> None: ...
pass
class gp_Circ():
"""
Describes a circle in 3D space. A circle is defined by its radius and positioned in space with a coordinate system (a gp_Ax2 object) as follows: - the origin of the coordinate system is the center of the circle, and - the origin, "X Direction" and "Y Direction" of the coordinate system define the plane of the circle. This positioning coordinate system is the "local coordinate system" of the circle. Its "main Direction" gives the normal vector to the plane of the circle. The "main Axis" of the coordinate system is referred to as the "Axis" of the circle. Note: when a gp_Circ circle is converted into a Geom_Circle circle, some implicit properties of the circle are used explicitly: - the "main Direction" of the local coordinate system gives an implicit orientation to the circle (and defines its trigonometric sense), - this orientation corresponds to the direction in which parameter values increase, - the starting point for parameterization is that of the "X Axis" of the local coordinate system (i.e. the "X Axis" of the circle). See Also gce_MakeCirc which provides functions for more complex circle constructions Geom_Circle which provides additional functions for constructing circles and works, in particular, with the parametric equations of circles
"""
def Area(self) -> float:
"""
Computes the area of the circle.
"""
def Axis(self) -> gp_Ax1:
"""
Returns the main axis of the circle. It is the axis perpendicular to the plane of the circle, passing through the "Location" point (center) of the circle.
"""
def Contains(self,theP : gp_Pnt,theLinearTolerance : float) -> bool:
"""
Returns True if the point theP is on the circumference. The distance between <me> and <theP> must be lower or equal to theLinearTolerance.
"""
def Distance(self,theP : gp_Pnt) -> float:
"""
Computes the minimum of distance between the point theP and any point on the circumference of the circle.
"""
def Length(self) -> float:
"""
Computes the circumference of the circle.
"""
def Location(self) -> gp_Pnt:
"""
Returns the center of the circle. It is the "Location" point of the local coordinate system of the circle
"""
@overload
def Mirror(self,theA2 : gp_Ax2) -> None:
"""
None
None
None
"""
@overload
def Mirror(self,theA1 : gp_Ax1) -> None: ...
@overload
def Mirror(self,theP : gp_Pnt) -> None: ...
@overload
def Mirrored(self,theA2 : gp_Ax2) -> gp_Circ:
"""
Performs the symmetrical transformation of a circle with respect to the point theP which is the center of the symmetry.
Performs the symmetrical transformation of a circle with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a circle with respect to a plane. The axis placement theA2 locates the plane of the of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirrored(self,theA1 : gp_Ax1) -> gp_Circ: ...
@overload
def Mirrored(self,theP : gp_Pnt) -> gp_Circ: ...
def Position(self) -> gp_Ax2:
"""
Returns the position of the circle. It is the local coordinate system of the circle.
"""
def Radius(self) -> float:
"""
Returns the radius of this circle.
"""
def Rotate(self,theA1 : gp_Ax1,theAng : float) -> None:
"""
None
"""
def Rotated(self,theA1 : gp_Ax1,theAng : float) -> gp_Circ:
"""
Rotates a circle. theA1 is the axis of the rotation. theAng is the angular value of the rotation in radians.
"""
def Scale(self,theP : gp_Pnt,theS : float) -> None:
"""
None
None
"""
def Scaled(self,theP : gp_Pnt,theS : float) -> gp_Circ:
"""
Scales a circle. theS is the scaling value. Warnings : If theS is negative the radius stay positive but the "XAxis" and the "YAxis" are reversed as for an ellipse.
Scales a circle. theS is the scaling value. Warnings : If theS is negative the radius stay positive but the "XAxis" and the "YAxis" are reversed as for an ellipse.
"""
def SetAxis(self,theA1 : gp_Ax1) -> None:
"""
Changes the main axis of the circle. It is the axis perpendicular to the plane of the circle. Raises ConstructionError if the direction of theA1 is parallel to the "XAxis" of the circle.
"""
def SetLocation(self,theP : gp_Pnt) -> None:
"""
Changes the "Location" point (center) of the circle.
"""
def SetPosition(self,theA2 : gp_Ax2) -> None:
"""
Changes the position of the circle.
"""
def SetRadius(self,theRadius : float) -> None:
"""
Modifies the radius of this circle. Warning. This class does not prevent the creation of a circle where theRadius is null. Exceptions Standard_ConstructionError if theRadius is negative.
"""
def SquareDistance(self,theP : gp_Pnt) -> float:
"""
Computes the square distance between <me> and the point theP.
"""
def Transform(self,theT : gp_Trsf) -> None:
"""
None
None
"""
def Transformed(self,theT : gp_Trsf) -> gp_Circ:
"""
Transforms a circle with the transformation theT from class Trsf.
Transforms a circle with the transformation theT from class Trsf.
"""
@overload
def Translate(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> None:
"""
None
None
"""
@overload
def Translate(self,theV : gp_Vec) -> None: ...
@overload
def Translated(self,theV : gp_Vec) -> gp_Circ:
"""
Translates a circle in the direction of the vector theV. The magnitude of the translation is the vector's magnitude.
Translates a circle from the point theP1 to the point theP2.
"""
@overload
def Translated(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> gp_Circ: ...
def XAxis(self) -> gp_Ax1:
"""
Returns the "XAxis" of the circle. This axis is perpendicular to the axis of the conic. This axis and the "Yaxis" define the plane of the conic.
"""
def YAxis(self) -> gp_Ax1:
"""
Returns the "YAxis" of the circle. This axis and the "Xaxis" define the plane of the conic. The "YAxis" is perpendicular to the "Xaxis".
"""
@overload
def __init__(self,theA2 : gp_Ax2,theRadius : float) -> None: ...
@overload
def __init__(self) -> None: ...
pass
class gp_Circ2d():
"""
Describes a circle in the plane (2D space). A circle is defined by its radius and positioned in the plane with a coordinate system (a gp_Ax22d object) as follows: - the origin of the coordinate system is the center of the circle, and - the orientation (direct or indirect) of the coordinate system gives an implicit orientation to the circle (and defines its trigonometric sense). This positioning coordinate system is the "local coordinate system" of the circle. Note: when a gp_Circ2d circle is converted into a Geom2d_Circle circle, some implicit properties of the circle are used explicitly: - the implicit orientation corresponds to the direction in which parameter values increase, - the starting point for parameterization is that of the "X Axis" of the local coordinate system (i.e. the "X Axis" of the circle). See Also GccAna and Geom2dGcc packages which provide functions for constructing circles defined by geometric constraints gce_MakeCirc2d which provides functions for more complex circle constructions Geom2d_Circle which provides additional functions for constructing circles and works, with the parametric equations of circles in particular gp_Ax22d
"""
def Area(self) -> float:
"""
Computes the area of the circle.
"""
def Axis(self) -> gp_Ax22d:
"""
returns the position of the circle.
"""
def Coefficients(self) -> tuple[float, float, float, float, float, float]:
"""
Returns the normalized coefficients from the implicit equation of the circle : theA * (X**2) + theB * (Y**2) + 2*theC*(X*Y) + 2*theD*X + 2*theE*Y + theF = 0.0
Returns the normalized coefficients from the implicit equation of the circle : theA * (X**2) + theB * (Y**2) + 2*theC*(X*Y) + 2*theD*X + 2*theE*Y + theF = 0.0
"""
def Contains(self,theP : gp_Pnt2d,theLinearTolerance : float) -> bool:
"""
Does <me> contain theP ? Returns True if the distance between theP and any point on the circumference of the circle is lower of equal to <theLinearTolerance>.
"""
def Distance(self,theP : gp_Pnt2d) -> float:
"""
Computes the minimum of distance between the point theP and any point on the circumference of the circle.
Computes the minimum of distance between the point theP and any point on the circumference of the circle.
"""
def IsDirect(self) -> bool:
"""
Returns true if the local coordinate system is direct and false in the other case.
"""
def Length(self) -> float:
"""
computes the circumference of the circle.
"""
def Location(self) -> gp_Pnt2d:
"""
Returns the location point (center) of the circle.
"""
@overload
def Mirror(self,theP : gp_Pnt2d) -> None:
"""
None
None
"""
@overload
def Mirror(self,theA : gp_Ax2d) -> None: ...
@overload
def Mirrored(self,theP : gp_Pnt2d) -> gp_Circ2d:
"""
Performs the symmetrical transformation of a circle with respect to the point theP which is the center of the symmetry
Performs the symmetrical transformation of a circle with respect to an axis placement which is the axis of the symmetry.
"""
@overload
def Mirrored(self,theA : gp_Ax2d) -> gp_Circ2d: ...
def Position(self) -> gp_Ax22d:
"""
returns the position of the circle. Idem Axis(me).
"""
def Radius(self) -> float:
"""
Returns the radius value of the circle.
"""
def Reverse(self) -> None:
"""
Reverses the orientation of the local coordinate system of this circle (the "Y Direction" is reversed) and therefore changes the implicit orientation of this circle. Reverse assigns the result to this circle,
"""
def Reversed(self) -> gp_Circ2d:
"""
Reverses the orientation of the local coordinate system of this circle (the "Y Direction" is reversed) and therefore changes the implicit orientation of this circle. Reversed creates a new circle.
Reverses the orientation of the local coordinate system of this circle (the "Y Direction" is reversed) and therefore changes the implicit orientation of this circle. Reversed creates a new circle.
"""
def Rotate(self,theP : gp_Pnt2d,theAng : float) -> None:
"""
None
"""
def Rotated(self,theP : gp_Pnt2d,theAng : float) -> gp_Circ2d:
"""
Rotates a circle. theP is the center of the rotation. Ang is the angular value of the rotation in radians.
"""
def Scale(self,theP : gp_Pnt2d,theS : float) -> None:
"""
None
None
"""
def Scaled(self,theP : gp_Pnt2d,theS : float) -> gp_Circ2d:
"""
Scales a circle. theS is the scaling value. Warnings : If theS is negative the radius stay positive but the "XAxis" and the "YAxis" are reversed as for an ellipse.
Scales a circle. theS is the scaling value. Warnings : If theS is negative the radius stay positive but the "XAxis" and the "YAxis" are reversed as for an ellipse.
"""
def SetAxis(self,theA : gp_Ax22d) -> None:
"""
Changes the X axis of the circle.
"""
def SetLocation(self,theP : gp_Pnt2d) -> None:
"""
Changes the location point (center) of the circle.
"""
def SetRadius(self,theRadius : float) -> None:
"""
Modifies the radius of this circle. This class does not prevent the creation of a circle where theRadius is null. Exceptions Standard_ConstructionError if theRadius is negative.
"""
def SetXAxis(self,theA : gp_Ax2d) -> None:
"""
Changes the X axis of the circle.
"""
def SetYAxis(self,theA : gp_Ax2d) -> None:
"""
Changes the Y axis of the circle.
"""
def SquareDistance(self,theP : gp_Pnt2d) -> float:
"""
Computes the square distance between <me> and the point theP.
Computes the square distance between <me> and the point theP.
"""
def Transform(self,theT : gp_Trsf2d) -> None:
"""
None
None
"""
def Transformed(self,theT : gp_Trsf2d) -> gp_Circ2d:
"""
Transforms a circle with the transformation theT from class Trsf2d.
Transforms a circle with the transformation theT from class Trsf2d.
"""
@overload
def Translate(self,theV : gp_Vec2d) -> None:
"""
None
None
"""
@overload
def Translate(self,theP1 : gp_Pnt2d,theP2 : gp_Pnt2d) -> None: ...
@overload
def Translated(self,theV : gp_Vec2d) -> gp_Circ2d:
"""
Translates a circle in the direction of the vector theV. The magnitude of the translation is the vector's magnitude.
Translates a circle from the point theP1 to the point theP2.
"""
@overload
def Translated(self,theP1 : gp_Pnt2d,theP2 : gp_Pnt2d) -> gp_Circ2d: ...
def XAxis(self) -> gp_Ax2d:
"""
returns the X axis of the circle.
"""
def YAxis(self) -> gp_Ax2d:
"""
Returns the Y axis of the circle. Reverses the direction of the circle.
"""
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,theAxis : gp_Ax22d,theRadius : float) -> None: ...
@overload
def __init__(self,theXAxis : gp_Ax2d,theRadius : float,theIsSense : bool=True) -> None: ...
pass
class gp_Cone():
"""
Defines an infinite conical surface. A cone is defined by its half-angle (can be negative) at the apex and positioned in space with a coordinate system (a gp_Ax3 object) and a "reference radius" where: - the "main Axis" of the coordinate system is the axis of revolution of the cone, - the plane defined by the origin, the "X Direction" and the "Y Direction" of the coordinate system is the reference plane of the cone; the intersection of the cone with this reference plane is a circle of radius equal to the reference radius, if the half-angle is positive, the apex of the cone is on the negative side of the "main Axis" of the coordinate system. If the half-angle is negative, the apex is on the positive side. This coordinate system is the "local coordinate system" of the cone. Note: when a gp_Cone cone is converted into a Geom_ConicalSurface cone, some implicit properties of its local coordinate system are used explicitly: - its origin, "X Direction", "Y Direction" and "main Direction" are used directly to define the parametric directions on the cone and the origin of the parameters, - its implicit orientation (right-handed or left-handed) gives the orientation (direct or indirect) of the Geom_ConicalSurface cone. See Also gce_MakeCone which provides functions for more complex cone constructions Geom_ConicalSurface which provides additional functions for constructing cones and works, in particular, with the parametric equations of cones gp_Ax3
"""
def Apex(self) -> gp_Pnt:
"""
Computes the cone's top. The Apex of the cone is on the negative side of the symmetry axis of the cone.
"""
def Axis(self) -> gp_Ax1:
"""
returns the symmetry axis of the cone.
"""
def Coefficients(self) -> tuple[float, float, float, float, float, float, float, float, float, float]:
"""
Computes the coefficients of the implicit equation of the quadric in the absolute cartesian coordinates system : theA1.X**2 + theA2.Y**2 + theA3.Z**2 + 2.(theB1.X.Y + theB2.X.Z + theB3.Y.Z) + 2.(theC1.X + theC2.Y + theC3.Z) + theD = 0.0
"""
def Direct(self) -> bool:
"""
Returns true if the local coordinate system of this cone is right-handed.
"""
def Location(self) -> gp_Pnt:
"""
returns the "Location" point of the cone.
"""
@overload
def Mirror(self,theP : gp_Pnt) -> None:
"""
None
None
None
"""
@overload
def Mirror(self,theA1 : gp_Ax1) -> None: ...
@overload
def Mirror(self,theA2 : gp_Ax2) -> None: ...
@overload
def Mirrored(self,theP : gp_Pnt) -> gp_Cone:
"""
Performs the symmetrical transformation of a cone with respect to the point theP which is the center of the symmetry.
Performs the symmetrical transformation of a cone with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a cone with respect to a plane. The axis placement theA2 locates the plane of the of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirrored(self,theA2 : gp_Ax2) -> gp_Cone: ...
@overload
def Mirrored(self,theA1 : gp_Ax1) -> gp_Cone: ...
def Position(self) -> gp_Ax3:
"""
Returns the local coordinates system of the cone.
"""
def RefRadius(self) -> float:
"""
Returns the radius of the cone in the reference plane.
"""
def Rotate(self,theA1 : gp_Ax1,theAng : float) -> None:
"""
None
"""
def Rotated(self,theA1 : gp_Ax1,theAng : float) -> gp_Cone:
"""
Rotates a cone. theA1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Scale(self,theP : gp_Pnt,theS : float) -> None:
"""
None
None
"""
def Scaled(self,theP : gp_Pnt,theS : float) -> gp_Cone:
"""
Scales a cone. theS is the scaling value. The absolute value of theS is used to scale the cone
Scales a cone. theS is the scaling value. The absolute value of theS is used to scale the cone
"""
def SemiAngle(self) -> float:
"""
Returns the half-angle at the apex of this cone. Attention! Semi-angle can be negative.
"""
def SetAxis(self,theA1 : gp_Ax1) -> None:
"""
Changes the symmetry axis of the cone. Raises ConstructionError the direction of theA1 is parallel to the "XDirection" of the coordinate system of the cone.
"""
def SetLocation(self,theLoc : gp_Pnt) -> None:
"""
Changes the location of the cone.
"""
def SetPosition(self,theA3 : gp_Ax3) -> None:
"""
Changes the local coordinate system of the cone. This coordinate system defines the reference plane of the cone.
"""
def SetRadius(self,theR : float) -> None:
"""
Changes the radius of the cone in the reference plane of the cone. Raised if theR < 0.0
"""
def SetSemiAngle(self,theAng : float) -> None:
"""
Changes the semi-angle of the cone. Semi-angle can be negative. Its absolute value Abs(theAng) is in range ]0,PI/2[. Raises ConstructionError if Abs(theAng) < Resolution from gp or Abs(theAng) >= PI/2 - Resolution
Changes the semi-angle of the cone. Semi-angle can be negative. Its absolute value Abs(theAng) is in range ]0,PI/2[. Raises ConstructionError if Abs(theAng) < Resolution from gp or Abs(theAng) >= PI/2 - Resolution
"""
def Transform(self,theT : gp_Trsf) -> None:
"""
None
None
"""
def Transformed(self,theT : gp_Trsf) -> gp_Cone:
"""
Transforms a cone with the transformation theT from class Trsf.
Transforms a cone with the transformation theT from class Trsf.
"""
@overload
def Translate(self,theV : gp_Vec) -> None:
"""
None
None
"""
@overload
def Translate(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> None: ...
@overload
def Translated(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> gp_Cone:
"""
Translates a cone in the direction of the vector theV. The magnitude of the translation is the vector's magnitude.
Translates a cone from the point P1 to the point P2.
"""
@overload
def Translated(self,theV : gp_Vec) -> gp_Cone: ...
def UReverse(self) -> None:
"""
Reverses the U parametrization of the cone reversing the YAxis.
"""
def VReverse(self) -> None:
"""
Reverses the V parametrization of the cone reversing the ZAxis.
"""
def XAxis(self) -> gp_Ax1:
"""
Returns the XAxis of the reference plane.
"""
def YAxis(self) -> gp_Ax1:
"""
Returns the YAxis of the reference plane.
"""
@overload
def __init__(self,theA3 : gp_Ax3,theAng : float,theRadius : float) -> None: ...
@overload
def __init__(self) -> None: ...
pass
class gp_Cylinder():
"""
Describes an infinite cylindrical surface. A cylinder is defined by its radius and positioned in space with a coordinate system (a gp_Ax3 object), the "main Axis" of which is the axis of the cylinder. This coordinate system is the "local coordinate system" of the cylinder. Note: when a gp_Cylinder cylinder is converted into a Geom_CylindricalSurface cylinder, some implicit properties of its local coordinate system are used explicitly: - its origin, "X Direction", "Y Direction" and "main Direction" are used directly to define the parametric directions on the cylinder and the origin of the parameters, - its implicit orientation (right-handed or left-handed) gives an orientation (direct or indirect) to the Geom_CylindricalSurface cylinder. See Also gce_MakeCylinder which provides functions for more complex cylinder constructions Geom_CylindricalSurface which provides additional functions for constructing cylinders and works, in particular, with the parametric equations of cylinders gp_Ax3
"""
def Axis(self) -> gp_Ax1:
"""
Returns the symmetry axis of the cylinder.
"""
def Coefficients(self) -> tuple[float, float, float, float, float, float, float, float, float, float]:
"""
Computes the coefficients of the implicit equation of the quadric in the absolute cartesian coordinate system : theA1.X**2 + theA2.Y**2 + theA3.Z**2 + 2.(theB1.X.Y + theB2.X.Z + theB3.Y.Z) + 2.(theC1.X + theC2.Y + theC3.Z) + theD = 0.0
"""
def Direct(self) -> bool:
"""
Returns true if the local coordinate system of this cylinder is right-handed.
"""
def Location(self) -> gp_Pnt:
"""
Returns the "Location" point of the cylinder.
"""
@overload
def Mirror(self,theA2 : gp_Ax2) -> None:
"""
None
None
None
"""
@overload
def Mirror(self,theP : gp_Pnt) -> None: ...
@overload
def Mirror(self,theA1 : gp_Ax1) -> None: ...
@overload
def Mirrored(self,theP : gp_Pnt) -> gp_Cylinder:
"""
Performs the symmetrical transformation of a cylinder with respect to the point theP which is the center of the symmetry.
Performs the symmetrical transformation of a cylinder with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a cylinder with respect to a plane. The axis placement theA2 locates the plane of the of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirrored(self,theA1 : gp_Ax1) -> gp_Cylinder: ...
@overload
def Mirrored(self,theA2 : gp_Ax2) -> gp_Cylinder: ...
def Position(self) -> gp_Ax3:
"""
Returns the local coordinate system of the cylinder.
"""
def Radius(self) -> float:
"""
Returns the radius of the cylinder.
"""
def Rotate(self,theA1 : gp_Ax1,theAng : float) -> None:
"""
None
"""
def Rotated(self,theA1 : gp_Ax1,theAng : float) -> gp_Cylinder:
"""
Rotates a cylinder. theA1 is the axis of the rotation. theAng is the angular value of the rotation in radians.
"""
def Scale(self,theP : gp_Pnt,theS : float) -> None:
"""
None
None
"""
def Scaled(self,theP : gp_Pnt,theS : float) -> gp_Cylinder:
"""
Scales a cylinder. theS is the scaling value. The absolute value of theS is used to scale the cylinder
Scales a cylinder. theS is the scaling value. The absolute value of theS is used to scale the cylinder
"""
def SetAxis(self,theA1 : gp_Ax1) -> None:
"""
Changes the symmetry axis of the cylinder. Raises ConstructionError if the direction of theA1 is parallel to the "XDirection" of the coordinate system of the cylinder.
"""
def SetLocation(self,theLoc : gp_Pnt) -> None:
"""
Changes the location of the surface.
"""
def SetPosition(self,theA3 : gp_Ax3) -> None:
"""
Change the local coordinate system of the surface.
"""
def SetRadius(self,theR : float) -> None:
"""
Modifies the radius of this cylinder. Exceptions Standard_ConstructionError if theR is negative.
"""
def Transform(self,theT : gp_Trsf) -> None:
"""
None
None
"""
def Transformed(self,theT : gp_Trsf) -> gp_Cylinder:
"""
Transforms a cylinder with the transformation theT from class Trsf.
Transforms a cylinder with the transformation theT from class Trsf.
"""
@overload
def Translate(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> None:
"""
None
None
"""
@overload
def Translate(self,theV : gp_Vec) -> None: ...
@overload
def Translated(self,theV : gp_Vec) -> gp_Cylinder:
"""
Translates a cylinder in the direction of the vector theV. The magnitude of the translation is the vector's magnitude.
Translates a cylinder from the point theP1 to the point theP2.
"""
@overload
def Translated(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> gp_Cylinder: ...
def UReverse(self) -> None:
"""
Reverses the U parametrization of the cylinder reversing the YAxis.
"""
def VReverse(self) -> None:
"""
Reverses the V parametrization of the plane reversing the Axis.
"""
def XAxis(self) -> gp_Ax1:
"""
Returns the axis X of the cylinder.
"""
def YAxis(self) -> gp_Ax1:
"""
Returns the axis Y of the cylinder.
"""
@overload
def __init__(self,theA3 : gp_Ax3,theRadius : float) -> None: ...
@overload
def __init__(self) -> None: ...
pass
class gp_Dir():
"""
Describes a unit vector in 3D space. This unit vector is also called "Direction". See Also gce_MakeDir which provides functions for more complex unit vector constructions Geom_Direction which provides additional functions for constructing unit vectors and works, in particular, with the parametric equations of unit vectors.
"""
def Angle(self,theOther : gp_Dir) -> float:
"""
Computes the angular value in radians between <me> and <theOther>. This value is always positive in 3D space. Returns the angle in the range [0, PI]
"""
def AngleWithRef(self,theOther : gp_Dir,theVRef : gp_Dir) -> float:
"""
Computes the angular value between <me> and <theOther>. <theVRef> is the direction of reference normal to <me> and <theOther> and its orientation gives the positive sense of rotation. If the cross product <me> ^ <theOther> has the same orientation as <theVRef> the angular value is positive else negative. Returns the angular value in the range -PI and PI (in radians). Raises DomainError if <me> and <theOther> are not parallel this exception is raised when <theVRef> is in the same plane as <me> and <theOther> The tolerance criterion is Resolution from package gp.
"""
@overload
def Coord(self,theIndex : int) -> float:
"""
Returns the coordinate of range theIndex : theIndex = 1 => X is returned Ithendex = 2 => Y is returned theIndex = 3 => Z is returned Exceptions Standard_OutOfRange if theIndex is not 1, 2, or 3.
Returns for the unit vector its three coordinates theXv, theYv, and theZv.
"""
@overload
def Coord(self) -> tuple[float, float, float]: ...
def Cross(self,theRight : gp_Dir) -> None:
"""
Computes the cross product between two directions Raises the exception ConstructionError if the two directions are parallel because the computed vector cannot be normalized to create a direction.
Computes the cross product between two directions Raises the exception ConstructionError if the two directions are parallel because the computed vector cannot be normalized to create a direction.
"""
def CrossCross(self,theV1 : gp_Dir,theV2 : gp_Dir) -> None:
"""
None
None
"""
def CrossCrossed(self,theV1 : gp_Dir,theV2 : gp_Dir) -> gp_Dir:
"""
Computes the double vector product this ^ (theV1 ^ theV2). - CrossCrossed creates a new unit vector. Exceptions Standard_ConstructionError if: - theV1 and theV2 are parallel, or - this unit vector and (theV1 ^ theV2) are parallel. This is because, in these conditions, the computed vector is null and cannot be normalized.
Computes the double vector product this ^ (theV1 ^ theV2). - CrossCrossed creates a new unit vector. Exceptions Standard_ConstructionError if: - theV1 and theV2 are parallel, or - this unit vector and (theV1 ^ theV2) are parallel. This is because, in these conditions, the computed vector is null and cannot be normalized.
"""
def Crossed(self,theRight : gp_Dir) -> gp_Dir:
"""
Computes the triple vector product. <me> ^ (V1 ^ V2) Raises the exception ConstructionError if V1 and V2 are parallel or <me> and (V1^V2) are parallel because the computed vector can't be normalized to create a direction.
Computes the triple vector product. <me> ^ (V1 ^ V2) Raises the exception ConstructionError if V1 and V2 are parallel or <me> and (V1^V2) are parallel because the computed vector can't be normalized to create a direction.
"""
def Dot(self,theOther : gp_Dir) -> float:
"""
Computes the scalar product
"""
def DotCross(self,theV1 : gp_Dir,theV2 : gp_Dir) -> float:
"""
Computes the triple scalar product <me> * (theV1 ^ theV2). Warnings : The computed vector theV1' = theV1 ^ theV2 is not normalized to create a unitary vector. So this method never raises an exception even if theV1 and theV2 are parallel.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def InitFromJson(self,theSStream : Any,theStreamPos : int) -> bool:
"""
Inits the content of me from the stream
"""
def IsEqual(self,theOther : gp_Dir,theAngularTolerance : float) -> bool:
"""
Returns True if the angle between the two directions is lower or equal to theAngularTolerance.
"""
def IsNormal(self,theOther : gp_Dir,theAngularTolerance : float) -> bool:
"""
Returns True if the angle between this unit vector and the unit vector theOther is equal to Pi/2 (normal).
"""
def IsOpposite(self,theOther : gp_Dir,theAngularTolerance : float) -> bool:
"""
Returns True if the angle between this unit vector and the unit vector theOther is equal to Pi (opposite).
"""
def IsParallel(self,theOther : gp_Dir,theAngularTolerance : float) -> bool:
"""
Returns true if the angle between this unit vector and the unit vector theOther is equal to 0 or to Pi. Note: the tolerance criterion is given by theAngularTolerance.
"""
@overload
def Mirror(self,theV : gp_Dir) -> None:
"""
None
None
None
"""
@overload
def Mirror(self,theA1 : gp_Ax1) -> None: ...
@overload
def Mirror(self,theA2 : gp_Ax2) -> None: ...
@overload
def Mirrored(self,theA1 : gp_Ax1) -> gp_Dir:
"""
Performs the symmetrical transformation of a direction with respect to the direction theV which is the center of the symmetry.
Performs the symmetrical transformation of a direction with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a direction with respect to a plane. The axis placement theA2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirrored(self,theA2 : gp_Ax2) -> gp_Dir: ...
@overload
def Mirrored(self,theV : gp_Dir) -> gp_Dir: ...
def Reverse(self) -> None:
"""
None
"""
def Reversed(self) -> gp_Dir:
"""
Reverses the orientation of a direction geometric transformations Performs the symmetrical transformation of a direction with respect to the direction V which is the center of the symmetry.]
"""
def Rotate(self,theA1 : gp_Ax1,theAng : float) -> None:
"""
None
None
"""
def Rotated(self,theA1 : gp_Ax1,theAng : float) -> gp_Dir:
"""
Rotates a direction. theA1 is the axis of the rotation. theAng is the angular value of the rotation in radians.
"""
@overload
def SetCoord(self,theXv : float,theYv : float,theZv : float) -> None:
"""
For this unit vector, assigns the value Xi to: - the X coordinate if theIndex is 1, or - the Y coordinate if theIndex is 2, or - the Z coordinate if theIndex is 3, and then normalizes it. Warning Remember that all the coordinates of a unit vector are implicitly modified when any single one is changed directly. Exceptions Standard_OutOfRange if theIndex is not 1, 2, or 3. Standard_ConstructionError if either of the following is less than or equal to gp::Resolution(): - Sqrt(Xv*Xv + Yv*Yv + Zv*Zv), or - the modulus of the number triple formed by the new value theXi and the two other coordinates of this vector that were not directly modified.
For this unit vector, assigns the values theXv, theYv and theZv to its three coordinates. Remember that all the coordinates of a unit vector are implicitly modified when any single one is changed directly.
For this unit vector, assigns the value Xi to: - the X coordinate if theIndex is 1, or - the Y coordinate if theIndex is 2, or - the Z coordinate if theIndex is 3, and then normalizes it. Warning Remember that all the coordinates of a unit vector are implicitly modified when any single one is changed directly. Exceptions Standard_OutOfRange if theIndex is not 1, 2, or 3. Standard_ConstructionError if either of the following is less than or equal to gp::Resolution(): - Sqrt(Xv*Xv + Yv*Yv + Zv*Zv), or - the modulus of the number triple formed by the new value theXi and the two other coordinates of this vector that were not directly modified.
For this unit vector, assigns the values theXv, theYv and theZv to its three coordinates. Remember that all the coordinates of a unit vector are implicitly modified when any single one is changed directly.
"""
@overload
def SetCoord(self,theIndex : int,theXi : float) -> None: ...
def SetX(self,theX : float) -> None:
"""
Assigns the given value to the X coordinate of this unit vector.
Assigns the given value to the X coordinate of this unit vector.
"""
@overload
def SetXYZ(self,theCoord : gp_XYZ) -> None:
"""
Assigns the three coordinates of theCoord to this unit vector.
Assigns the three coordinates of theCoord to this unit vector.
"""
@overload
def SetXYZ(self,theXYZ : gp_XYZ) -> None: ...
def SetY(self,theY : float) -> None:
"""
Assigns the given value to the Y coordinate of this unit vector.
Assigns the given value to the Y coordinate of this unit vector.
"""
def SetZ(self,theZ : float) -> None:
"""
Assigns the given value to the Z coordinate of this unit vector.
Assigns the given value to the Z coordinate of this unit vector.
"""
def Transform(self,theT : gp_Trsf) -> None:
"""
None
"""
def Transformed(self,theT : gp_Trsf) -> gp_Dir:
"""
Transforms a direction with a "Trsf" from gp. Warnings : If the scale factor of the "Trsf" theT is negative then the direction <me> is reversed.
"""
def X(self) -> float:
"""
Returns the X coordinate for a unit vector.
"""
def XYZ(self) -> gp_XYZ:
"""
for this unit vector, returns its three coordinates as a number triplea.
"""
def Y(self) -> float:
"""
Returns the Y coordinate for a unit vector.
"""
def Z(self) -> float:
"""
Returns the Z coordinate for a unit vector.
"""
@overload
def __init__(self,theV : gp_Vec) -> None: ...
@overload
def __init__(self,theXv : float,theYv : float,theZv : float) -> None: ...
@overload
def __init__(self,theCoord : gp_XYZ) -> None: ...
@overload
def __init__(self) -> None: ...
def __ipow__(self,theRight : gp_Dir) -> None:
"""
None
"""
def __mul__(self,theOther : gp_Dir) -> float:
"""
None
"""
def __pow__(self,theRight : gp_Dir) -> gp_Dir:
"""
None
"""
def __rmul__(self,theOther : gp_Dir) -> float:
"""
None
"""
def __sub__(self) -> gp_Dir:
"""
None
"""
pass
class gp_Dir2d():
"""
Describes a unit vector in the plane (2D space). This unit vector is also called "Direction". See Also gce_MakeDir2d which provides functions for more complex unit vector constructions Geom2d_Direction which provides additional functions for constructing unit vectors and works, in particular, with the parametric equations of unit vectors
"""
def Angle(self,theOther : gp_Dir2d) -> float:
"""
Computes the angular value in radians between <me> and <theOther>. Returns the angle in the range [-PI, PI].
"""
@overload
def Coord(self) -> tuple[float, float]:
"""
For this unit vector returns the coordinate of range theIndex : theIndex = 1 => X is returned theIndex = 2 => Y is returned Raises OutOfRange if theIndex != {1, 2}.
For this unit vector returns its two coordinates theXv and theYv. Raises OutOfRange if theIndex != {1, 2}.
"""
@overload
def Coord(self,theIndex : int) -> float: ...
def Crossed(self,theRight : gp_Dir2d) -> float:
"""
Computes the cross product between two directions.
"""
def Dot(self,theOther : gp_Dir2d) -> float:
"""
Computes the scalar product
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def IsEqual(self,theOther : gp_Dir2d,theAngularTolerance : float) -> bool:
"""
Returns True if the two vectors have the same direction i.e. the angle between this unit vector and the unit vector theOther is less than or equal to theAngularTolerance.
Returns True if the two vectors have the same direction i.e. the angle between this unit vector and the unit vector theOther is less than or equal to theAngularTolerance.
"""
def IsNormal(self,theOther : gp_Dir2d,theAngularTolerance : float) -> bool:
"""
Returns True if the angle between this unit vector and the unit vector theOther is equal to Pi/2 or -Pi/2 (normal) i.e. Abs(Abs(<me>.Angle(theOther)) - PI/2.) <= theAngularTolerance
Returns True if the angle between this unit vector and the unit vector theOther is equal to Pi/2 or -Pi/2 (normal) i.e. Abs(Abs(<me>.Angle(theOther)) - PI/2.) <= theAngularTolerance
"""
def IsOpposite(self,theOther : gp_Dir2d,theAngularTolerance : float) -> bool:
"""
Returns True if the angle between this unit vector and the unit vector theOther is equal to Pi or -Pi (opposite). i.e. PI - Abs(<me>.Angle(theOther)) <= theAngularTolerance
Returns True if the angle between this unit vector and the unit vector theOther is equal to Pi or -Pi (opposite). i.e. PI - Abs(<me>.Angle(theOther)) <= theAngularTolerance
"""
def IsParallel(self,theOther : gp_Dir2d,theAngularTolerance : float) -> bool:
"""
returns true if the angle between this unit vector and unit vector theOther is equal to 0, Pi or -Pi. i.e. Abs(Angle(<me>, theOther)) <= theAngularTolerance or PI - Abs(Angle(<me>, theOther)) <= theAngularTolerance
returns true if the angle between this unit vector and unit vector theOther is equal to 0, Pi or -Pi. i.e. Abs(Angle(<me>, theOther)) <= theAngularTolerance or PI - Abs(Angle(<me>, theOther)) <= theAngularTolerance
"""
@overload
def Mirror(self,theV : gp_Dir2d) -> None:
"""
None
None
"""
@overload
def Mirror(self,theA : gp_Ax2d) -> None: ...
@overload
def Mirrored(self,theV : gp_Dir2d) -> gp_Dir2d:
"""
Performs the symmetrical transformation of a direction with respect to the direction theV which is the center of the symmetry.
Performs the symmetrical transformation of a direction with respect to an axis placement which is the axis of the symmetry.
"""
@overload
def Mirrored(self,theA : gp_Ax2d) -> gp_Dir2d: ...
def Reverse(self) -> None:
"""
None
"""
def Reversed(self) -> gp_Dir2d:
"""
Reverses the orientation of a direction
"""
@overload
def Rotate(self,Ang : float) -> None:
"""
None
None
"""
@overload
def Rotate(self,theAng : float) -> None: ...
def Rotated(self,theAng : float) -> gp_Dir2d:
"""
Rotates a direction. theAng is the angular value of the rotation in radians.
"""
@overload
def SetCoord(self,theIndex : int,theXi : float) -> None:
"""
For this unit vector, assigns: the value theXi to: - the X coordinate if theIndex is 1, or - the Y coordinate if theIndex is 2, and then normalizes it. Warning Remember that all the coordinates of a unit vector are implicitly modified when any single one is changed directly. Exceptions Standard_OutOfRange if theIndex is not 1 or 2. Standard_ConstructionError if either of the following is less than or equal to gp::Resolution(): - Sqrt(theXv*theXv + theYv*theYv), or - the modulus of the number pair formed by the new value theXi and the other coordinate of this vector that was not directly modified. Raises OutOfRange if theIndex != {1, 2}.
For this unit vector, assigns: - the values theXv and theYv to its two coordinates, Warning Remember that all the coordinates of a unit vector are implicitly modified when any single one is changed directly. Exceptions Standard_OutOfRange if theIndex is not 1 or 2. Standard_ConstructionError if either of the following is less than or equal to gp::Resolution(): - Sqrt(theXv*theXv + theYv*theYv), or - the modulus of the number pair formed by the new value Xi and the other coordinate of this vector that was not directly modified. Raises OutOfRange if theIndex != {1, 2}.
For this unit vector, assigns: the value theXi to: - the X coordinate if theIndex is 1, or - the Y coordinate if theIndex is 2, and then normalizes it. Warning Remember that all the coordinates of a unit vector are implicitly modified when any single one is changed directly. Exceptions Standard_OutOfRange if theIndex is not 1 or 2. Standard_ConstructionError if either of the following is less than or equal to gp::Resolution(): - Sqrt(theXv*theXv + theYv*theYv), or - the modulus of the number pair formed by the new value theXi and the other coordinate of this vector that was not directly modified. Raises OutOfRange if theIndex != {1, 2}.
For this unit vector, assigns: - the values theXv and theYv to its two coordinates, Warning Remember that all the coordinates of a unit vector are implicitly modified when any single one is changed directly. Exceptions Standard_OutOfRange if theIndex is not 1 or 2. Standard_ConstructionError if either of the following is less than or equal to gp::Resolution(): - Sqrt(theXv*theXv + theYv*theYv), or - the modulus of the number pair formed by the new value Xi and the other coordinate of this vector that was not directly modified. Raises OutOfRange if theIndex != {1, 2}.
"""
@overload
def SetCoord(self,theXv : float,theYv : float) -> None: ...
def SetX(self,theX : float) -> None:
"""
Assigns the given value to the X coordinate of this unit vector, and then normalizes it. Warning Remember that all the coordinates of a unit vector are implicitly modified when any single one is changed directly. Exceptions Standard_ConstructionError if either of the following is less than or equal to gp::Resolution(): - the modulus of Coord, or - the modulus of the number pair formed from the new X or Y coordinate and the other coordinate of this vector that was not directly modified.
Assigns the given value to the X coordinate of this unit vector, and then normalizes it. Warning Remember that all the coordinates of a unit vector are implicitly modified when any single one is changed directly. Exceptions Standard_ConstructionError if either of the following is less than or equal to gp::Resolution(): - the modulus of Coord, or - the modulus of the number pair formed from the new X or Y coordinate and the other coordinate of this vector that was not directly modified.
"""
@overload
def SetXY(self,theXY : gp_XY) -> None:
"""
Assigns: - the two coordinates of theCoord to this unit vector, and then normalizes it. Warning Remember that all the coordinates of a unit vector are implicitly modified when any single one is changed directly. Exceptions Standard_ConstructionError if either of the following is less than or equal to gp::Resolution(): - the modulus of theCoord, or - the modulus of the number pair formed from the new X or Y coordinate and the other coordinate of this vector that was not directly modified.
Assigns: - the two coordinates of theCoord to this unit vector, and then normalizes it. Warning Remember that all the coordinates of a unit vector are implicitly modified when any single one is changed directly. Exceptions Standard_ConstructionError if either of the following is less than or equal to gp::Resolution(): - the modulus of theCoord, or - the modulus of the number pair formed from the new X or Y coordinate and the other coordinate of this vector that was not directly modified.
"""
@overload
def SetXY(self,theCoord : gp_XY) -> None: ...
def SetY(self,theY : float) -> None:
"""
Assigns the given value to the Y coordinate of this unit vector, and then normalizes it. Warning Remember that all the coordinates of a unit vector are implicitly modified when any single one is changed directly. Exceptions Standard_ConstructionError if either of the following is less than or equal to gp::Resolution(): - the modulus of Coord, or - the modulus of the number pair formed from the new X or Y coordinate and the other coordinate of this vector that was not directly modified.
Assigns the given value to the Y coordinate of this unit vector, and then normalizes it. Warning Remember that all the coordinates of a unit vector are implicitly modified when any single one is changed directly. Exceptions Standard_ConstructionError if either of the following is less than or equal to gp::Resolution(): - the modulus of Coord, or - the modulus of the number pair formed from the new X or Y coordinate and the other coordinate of this vector that was not directly modified.
"""
def Transform(self,theT : gp_Trsf2d) -> None:
"""
None
"""
def Transformed(self,theT : gp_Trsf2d) -> gp_Dir2d:
"""
Transforms a direction with the "Trsf" theT. Warnings : If the scale factor of the "Trsf" theT is negative then the direction <me> is reversed.
"""
def X(self) -> float:
"""
For this unit vector, returns its X coordinate.
"""
def XY(self) -> gp_XY:
"""
For this unit vector, returns its two coordinates as a number pair. Comparison between Directions The precision value is an input data.
"""
def Y(self) -> float:
"""
For this unit vector, returns its Y coordinate.
"""
@overload
def __init__(self,theCoord : gp_XY) -> None: ...
@overload
def __init__(self,theV : gp_Vec2d) -> None: ...
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,theXv : float,theYv : float) -> None: ...
def __mul__(self,theOther : gp_Dir2d) -> float:
"""
None
"""
def __pow__(self,theRight : gp_Dir2d) -> float:
"""
None
"""
def __rmul__(self,theOther : gp_Dir2d) -> float:
"""
None
"""
def __sub__(self) -> gp_Dir2d:
"""
None
"""
pass
class gp_Elips():
"""
Describes an ellipse in 3D space. An ellipse is defined by its major and minor radii and positioned in space with a coordinate system (a gp_Ax2 object) as follows: - the origin of the coordinate system is the center of the ellipse, - its "X Direction" defines the major axis of the ellipse, and - its "Y Direction" defines the minor axis of the ellipse. Together, the origin, "X Direction" and "Y Direction" of this coordinate system define the plane of the ellipse. This coordinate system is the "local coordinate system" of the ellipse. In this coordinate system, the equation of the ellipse is: The "main Direction" of the local coordinate system gives the normal vector to the plane of the ellipse. This vector gives an implicit orientation to the ellipse (definition of the trigonometric sense). We refer to the "main Axis" of the local coordinate system as the "Axis" of the ellipse. See Also gce_MakeElips which provides functions for more complex ellipse constructions Geom_Ellipse which provides additional functions for constructing ellipses and works, in particular, with the parametric equations of ellipses
"""
def Area(self) -> float:
"""
Computes the area of the Ellipse.
"""
def Axis(self) -> gp_Ax1:
"""
Computes the axis normal to the plane of the ellipse.
"""
def Directrix1(self) -> gp_Ax1:
"""
Computes the first or second directrix of this ellipse. These are the lines, in the plane of the ellipse, normal to the major axis, at a distance equal to MajorRadius/e from the center of the ellipse, where e is the eccentricity of the ellipse. The first directrix (Directrix1) is on the positive side of the major axis. The second directrix (Directrix2) is on the negative side. The directrix is returned as an axis (gp_Ax1 object), the origin of which is situated on the "X Axis" of the local coordinate system of this ellipse. Exceptions Standard_ConstructionError if the eccentricity is null (the ellipse has degenerated into a circle).
Computes the first or second directrix of this ellipse. These are the lines, in the plane of the ellipse, normal to the major axis, at a distance equal to MajorRadius/e from the center of the ellipse, where e is the eccentricity of the ellipse. The first directrix (Directrix1) is on the positive side of the major axis. The second directrix (Directrix2) is on the negative side. The directrix is returned as an axis (gp_Ax1 object), the origin of which is situated on the "X Axis" of the local coordinate system of this ellipse. Exceptions Standard_ConstructionError if the eccentricity is null (the ellipse has degenerated into a circle).
"""
def Directrix2(self) -> gp_Ax1:
"""
This line is obtained by the symmetrical transformation of "Directrix1" with respect to the "YAxis" of the ellipse. Exceptions Standard_ConstructionError if the eccentricity is null (the ellipse has degenerated into a circle).
This line is obtained by the symmetrical transformation of "Directrix1" with respect to the "YAxis" of the ellipse. Exceptions Standard_ConstructionError if the eccentricity is null (the ellipse has degenerated into a circle).
"""
def Eccentricity(self) -> float:
"""
Returns the eccentricity of the ellipse between 0.0 and 1.0 If f is the distance between the center of the ellipse and the Focus1 then the eccentricity e = f / MajorRadius. Raises ConstructionError if MajorRadius = 0.0
Returns the eccentricity of the ellipse between 0.0 and 1.0 If f is the distance between the center of the ellipse and the Focus1 then the eccentricity e = f / MajorRadius. Raises ConstructionError if MajorRadius = 0.0
"""
def Focal(self) -> float:
"""
Computes the focal distance. It is the distance between the two focus focus1 and focus2 of the ellipse.
"""
def Focus1(self) -> gp_Pnt:
"""
Returns the first focus of the ellipse. This focus is on the positive side of the "XAxis" of the ellipse.
Returns the first focus of the ellipse. This focus is on the positive side of the "XAxis" of the ellipse.
"""
def Focus2(self) -> gp_Pnt:
"""
Returns the second focus of the ellipse. This focus is on the negative side of the "XAxis" of the ellipse.
Returns the second focus of the ellipse. This focus is on the negative side of the "XAxis" of the ellipse.
"""
def Location(self) -> gp_Pnt:
"""
Returns the center of the ellipse. It is the "Location" point of the coordinate system of the ellipse.
"""
def MajorRadius(self) -> float:
"""
Returns the major radius of the ellipse.
"""
def MinorRadius(self) -> float:
"""
Returns the minor radius of the ellipse.
"""
@overload
def Mirror(self,theP : gp_Pnt) -> None:
"""
None
None
None
"""
@overload
def Mirror(self,theA1 : gp_Ax1) -> None: ...
@overload
def Mirror(self,theA2 : gp_Ax2) -> None: ...
@overload
def Mirrored(self,theP : gp_Pnt) -> gp_Elips:
"""
Performs the symmetrical transformation of an ellipse with respect to the point theP which is the center of the symmetry.
Performs the symmetrical transformation of an ellipse with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of an ellipse with respect to a plane. The axis placement theA2 locates the plane of the symmetry (Location, XDirection, YDirection).
"""
@overload
def Mirrored(self,theA2 : gp_Ax2) -> gp_Elips: ...
@overload
def Mirrored(self,theA1 : gp_Ax1) -> gp_Elips: ...
def Parameter(self) -> float:
"""
Returns p = (1 - e * e) * MajorRadius where e is the eccentricity of the ellipse. Returns 0 if MajorRadius = 0
Returns p = (1 - e * e) * MajorRadius where e is the eccentricity of the ellipse. Returns 0 if MajorRadius = 0
"""
def Position(self) -> gp_Ax2:
"""
Returns the coordinate system of the ellipse.
"""
def Rotate(self,theA1 : gp_Ax1,theAng : float) -> None:
"""
None
"""
def Rotated(self,theA1 : gp_Ax1,theAng : float) -> gp_Elips:
"""
Rotates an ellipse. theA1 is the axis of the rotation. theAng is the angular value of the rotation in radians.
"""
def Scale(self,theP : gp_Pnt,theS : float) -> None:
"""
None
None
"""
def Scaled(self,theP : gp_Pnt,theS : float) -> gp_Elips:
"""
Scales an ellipse. theS is the scaling value.
Scales an ellipse. theS is the scaling value.
"""
def SetAxis(self,theA1 : gp_Ax1) -> None:
"""
Changes the axis normal to the plane of the ellipse. It modifies the definition of this plane. The "XAxis" and the "YAxis" are recomputed. The local coordinate system is redefined so that: - its origin and "main Direction" become those of the axis theA1 (the "X Direction" and "Y Direction" are then recomputed in the same way as for any gp_Ax2), or Raises ConstructionError if the direction of theA1 is parallel to the direction of the "XAxis" of the ellipse.
"""
def SetLocation(self,theP : gp_Pnt) -> None:
"""
Modifies this ellipse, by redefining its local coordinate so that its origin becomes theP.
"""
def SetMajorRadius(self,theMajorRadius : float) -> None:
"""
The major radius of the ellipse is on the "XAxis" (major axis) of the ellipse. Raises ConstructionError if theMajorRadius < MinorRadius.
"""
def SetMinorRadius(self,theMinorRadius : float) -> None:
"""
The minor radius of the ellipse is on the "YAxis" (minor axis) of the ellipse. Raises ConstructionError if theMinorRadius > MajorRadius or MinorRadius < 0.
"""
def SetPosition(self,theA2 : gp_Ax2) -> None:
"""
Modifies this ellipse, by redefining its local coordinate so that it becomes theA2.
"""
def Transform(self,theT : gp_Trsf) -> None:
"""
None
None
"""
def Transformed(self,theT : gp_Trsf) -> gp_Elips:
"""
Transforms an ellipse with the transformation theT from class Trsf.
Transforms an ellipse with the transformation theT from class Trsf.
"""
@overload
def Translate(self,theV : gp_Vec) -> None:
"""
None
None
"""
@overload
def Translate(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> None: ...
@overload
def Translated(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> gp_Elips:
"""
Translates an ellipse in the direction of the vector theV. The magnitude of the translation is the vector's magnitude.
Translates an ellipse from the point theP1 to the point theP2.
"""
@overload
def Translated(self,theV : gp_Vec) -> gp_Elips: ...
def XAxis(self) -> gp_Ax1:
"""
Returns the "XAxis" of the ellipse whose origin is the center of this ellipse. It is the major axis of the ellipse.
"""
def YAxis(self) -> gp_Ax1:
"""
Returns the "YAxis" of the ellipse whose unit vector is the "X Direction" or the "Y Direction" of the local coordinate system of this ellipse. This is the minor axis of the ellipse.
"""
@overload
def __init__(self,theA2 : gp_Ax2,theMajorRadius : float,theMinorRadius : float) -> None: ...
@overload
def __init__(self) -> None: ...
pass
class gp_Elips2d():
"""
Describes an ellipse in the plane (2D space). An ellipse is defined by its major and minor radii and positioned in the plane with a coordinate system (a gp_Ax22d object) as follows: - the origin of the coordinate system is the center of the ellipse, - its "X Direction" defines the major axis of the ellipse, and - its "Y Direction" defines the minor axis of the ellipse. This coordinate system is the "local coordinate system" of the ellipse. Its orientation (direct or indirect) gives an implicit orientation to the ellipse. In this coordinate system, the equation of the ellipse is: See Also gce_MakeElips2d which provides functions for more complex ellipse constructions Geom2d_Ellipse which provides additional functions for constructing ellipses and works, in particular, with the parametric equations of ellipses
"""
def Area(self) -> float:
"""
Computes the area of the ellipse.
"""
def Axis(self) -> gp_Ax22d:
"""
Returns the major axis of the ellipse.
"""
def Coefficients(self) -> tuple[float, float, float, float, float, float]:
"""
Returns the coefficients of the implicit equation of the ellipse. theA * (X**2) + theB * (Y**2) + 2*theC*(X*Y) + 2*theD*X + 2*theE*Y + theF = 0.
"""
def Directrix1(self) -> gp_Ax2d:
"""
This directrix is the line normal to the XAxis of the ellipse in the local plane (Z = 0) at a distance d = MajorRadius / e from the center of the ellipse, where e is the eccentricity of the ellipse. This line is parallel to the "YAxis". The intersection point between directrix1 and the "XAxis" is the location point of the directrix1. This point is on the positive side of the "XAxis".
This directrix is the line normal to the XAxis of the ellipse in the local plane (Z = 0) at a distance d = MajorRadius / e from the center of the ellipse, where e is the eccentricity of the ellipse. This line is parallel to the "YAxis". The intersection point between directrix1 and the "XAxis" is the location point of the directrix1. This point is on the positive side of the "XAxis".
"""
def Directrix2(self) -> gp_Ax2d:
"""
This line is obtained by the symmetrical transformation of "Directrix1" with respect to the minor axis of the ellipse.
This line is obtained by the symmetrical transformation of "Directrix1" with respect to the minor axis of the ellipse.
"""
def Eccentricity(self) -> float:
"""
Returns the eccentricity of the ellipse between 0.0 and 1.0 If f is the distance between the center of the ellipse and the Focus1 then the eccentricity e = f / MajorRadius. Returns 0 if MajorRadius = 0.
Returns the eccentricity of the ellipse between 0.0 and 1.0 If f is the distance between the center of the ellipse and the Focus1 then the eccentricity e = f / MajorRadius. Returns 0 if MajorRadius = 0.
"""
def Focal(self) -> float:
"""
Returns the distance between the center of the ellipse and focus1 or focus2.
"""
def Focus1(self) -> gp_Pnt2d:
"""
Returns the first focus of the ellipse. This focus is on the positive side of the major axis of the ellipse.
Returns the first focus of the ellipse. This focus is on the positive side of the major axis of the ellipse.
"""
def Focus2(self) -> gp_Pnt2d:
"""
Returns the second focus of the ellipse. This focus is on the negative side of the major axis of the ellipse.
Returns the second focus of the ellipse. This focus is on the negative side of the major axis of the ellipse.
"""
def IsDirect(self) -> bool:
"""
Returns true if the local coordinate system is direct and false in the other case.
"""
def Location(self) -> gp_Pnt2d:
"""
Returns the center of the ellipse.
"""
def MajorRadius(self) -> float:
"""
Returns the major radius of the Ellipse.
"""
def MinorRadius(self) -> float:
"""
Returns the minor radius of the Ellipse.
"""
@overload
def Mirror(self,theA : gp_Ax2d) -> None:
"""
None
None
"""
@overload
def Mirror(self,theP : gp_Pnt2d) -> None: ...
@overload
def Mirrored(self,theA : gp_Ax2d) -> gp_Elips2d:
"""
Performs the symmetrical transformation of a ellipse with respect to the point theP which is the center of the symmetry
Performs the symmetrical transformation of a ellipse with respect to an axis placement which is the axis of the symmetry.
"""
@overload
def Mirrored(self,theP : gp_Pnt2d) -> gp_Elips2d: ...
def Parameter(self) -> float:
"""
Returns p = (1 - e * e) * MajorRadius where e is the eccentricity of the ellipse. Returns 0 if MajorRadius = 0
Returns p = (1 - e * e) * MajorRadius where e is the eccentricity of the ellipse. Returns 0 if MajorRadius = 0
"""
def Reverse(self) -> None:
"""
None
"""
def Reversed(self) -> gp_Elips2d:
"""
None
None
"""
def Rotate(self,theP : gp_Pnt2d,theAng : float) -> None:
"""
None
"""
def Rotated(self,theP : gp_Pnt2d,theAng : float) -> gp_Elips2d:
"""
None
"""
def Scale(self,theP : gp_Pnt2d,theS : float) -> None:
"""
None
None
"""
def Scaled(self,theP : gp_Pnt2d,theS : float) -> gp_Elips2d:
"""
Scales a ellipse. theS is the scaling value.
Scales a ellipse. theS is the scaling value.
"""
def SetAxis(self,theA : gp_Ax22d) -> None:
"""
Modifies this ellipse, by redefining its local coordinate system so that it becomes theA.
"""
def SetLocation(self,theP : gp_Pnt2d) -> None:
"""
Modifies this ellipse, by redefining its local coordinate system so that - its origin becomes theP.
"""
def SetMajorRadius(self,theMajorRadius : float) -> None:
"""
Changes the value of the major radius. Raises ConstructionError if theMajorRadius < MinorRadius.
"""
def SetMinorRadius(self,theMinorRadius : float) -> None:
"""
Changes the value of the minor radius. Raises ConstructionError if MajorRadius < theMinorRadius or MinorRadius < 0.0
"""
def SetXAxis(self,theA : gp_Ax2d) -> None:
"""
Modifies this ellipse, by redefining its local coordinate system so that its origin and its "X Direction" become those of the axis theA. The "Y Direction" is then recomputed. The orientation of the local coordinate system is not modified.
"""
def SetYAxis(self,theA : gp_Ax2d) -> None:
"""
Modifies this ellipse, by redefining its local coordinate system so that its origin and its "Y Direction" become those of the axis theA. The "X Direction" is then recomputed. The orientation of the local coordinate system is not modified.
"""
def Transform(self,theT : gp_Trsf2d) -> None:
"""
None
None
"""
def Transformed(self,theT : gp_Trsf2d) -> gp_Elips2d:
"""
Transforms an ellipse with the transformation theT from class Trsf2d.
Transforms an ellipse with the transformation theT from class Trsf2d.
"""
@overload
def Translate(self,theV : gp_Vec2d) -> None:
"""
None
None
"""
@overload
def Translate(self,theP1 : gp_Pnt2d,theP2 : gp_Pnt2d) -> None: ...
@overload
def Translated(self,theV : gp_Vec2d) -> gp_Elips2d:
"""
Translates a ellipse in the direction of the vector theV. The magnitude of the translation is the vector's magnitude.
Translates a ellipse from the point theP1 to the point theP2.
"""
@overload
def Translated(self,theP1 : gp_Pnt2d,theP2 : gp_Pnt2d) -> gp_Elips2d: ...
def XAxis(self) -> gp_Ax2d:
"""
Returns the major axis of the ellipse.
"""
def YAxis(self) -> gp_Ax2d:
"""
Returns the minor axis of the ellipse. Reverses the direction of the circle.
"""
@overload
def __init__(self,theA : gp_Ax22d,theMajorRadius : float,theMinorRadius : float) -> None: ...
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,theMajorAxis : gp_Ax2d,theMajorRadius : float,theMinorRadius : float,theIsSense : bool=True) -> None: ...
pass
class gp_EulerSequence():
"""
Enumerates all 24 possible variants of generalized Euler angles, defining general 3d rotation by three rotations around main axes of coordinate system, in different possible orders.
Members:
gp_EulerAngles
gp_YawPitchRoll
gp_Extrinsic_XYZ
gp_Extrinsic_XZY
gp_Extrinsic_YZX
gp_Extrinsic_YXZ
gp_Extrinsic_ZXY
gp_Extrinsic_ZYX
gp_Intrinsic_XYZ
gp_Intrinsic_XZY
gp_Intrinsic_YZX
gp_Intrinsic_YXZ
gp_Intrinsic_ZXY
gp_Intrinsic_ZYX
gp_Extrinsic_XYX
gp_Extrinsic_XZX
gp_Extrinsic_YZY
gp_Extrinsic_YXY
gp_Extrinsic_ZYZ
gp_Extrinsic_ZXZ
gp_Intrinsic_XYX
gp_Intrinsic_XZX
gp_Intrinsic_YZY
gp_Intrinsic_YXY
gp_Intrinsic_ZXZ
gp_Intrinsic_ZYZ
"""
def __eq__(self,other : object) -> bool: ...
def __getstate__(self) -> int: ...
def __hash__(self) -> int: ...
def __index__(self) -> int: ...
def __init__(self,value : int) -> None: ...
def __int__(self) -> int: ...
def __ne__(self,other : object) -> bool: ...
def __repr__(self) -> str: ...
def __setstate__(self,state : int) -> None: ...
def __str__(self) -> str: ...
@property
def name(self) -> None:
"""
:type: None
"""
@property
def value(self) -> int:
"""
:type: int
"""
__entries: dict # value = {'gp_EulerAngles': (<gp_EulerSequence.gp_EulerAngles: 0>, None), 'gp_YawPitchRoll': (<gp_EulerSequence.gp_YawPitchRoll: 1>, None), 'gp_Extrinsic_XYZ': (<gp_EulerSequence.gp_Extrinsic_XYZ: 2>, None), 'gp_Extrinsic_XZY': (<gp_EulerSequence.gp_Extrinsic_XZY: 3>, None), 'gp_Extrinsic_YZX': (<gp_EulerSequence.gp_Extrinsic_YZX: 4>, None), 'gp_Extrinsic_YXZ': (<gp_EulerSequence.gp_Extrinsic_YXZ: 5>, None), 'gp_Extrinsic_ZXY': (<gp_EulerSequence.gp_Extrinsic_ZXY: 6>, None), 'gp_Extrinsic_ZYX': (<gp_EulerSequence.gp_Extrinsic_ZYX: 7>, None), 'gp_Intrinsic_XYZ': (<gp_EulerSequence.gp_Intrinsic_XYZ: 8>, None), 'gp_Intrinsic_XZY': (<gp_EulerSequence.gp_Intrinsic_XZY: 9>, None), 'gp_Intrinsic_YZX': (<gp_EulerSequence.gp_Intrinsic_YZX: 10>, None), 'gp_Intrinsic_YXZ': (<gp_EulerSequence.gp_Intrinsic_YXZ: 11>, None), 'gp_Intrinsic_ZXY': (<gp_EulerSequence.gp_Intrinsic_ZXY: 12>, None), 'gp_Intrinsic_ZYX': (<gp_EulerSequence.gp_Intrinsic_ZYX: 13>, None), 'gp_Extrinsic_XYX': (<gp_EulerSequence.gp_Extrinsic_XYX: 14>, None), 'gp_Extrinsic_XZX': (<gp_EulerSequence.gp_Extrinsic_XZX: 15>, None), 'gp_Extrinsic_YZY': (<gp_EulerSequence.gp_Extrinsic_YZY: 16>, None), 'gp_Extrinsic_YXY': (<gp_EulerSequence.gp_Extrinsic_YXY: 17>, None), 'gp_Extrinsic_ZYZ': (<gp_EulerSequence.gp_Extrinsic_ZYZ: 18>, None), 'gp_Extrinsic_ZXZ': (<gp_EulerSequence.gp_Extrinsic_ZXZ: 19>, None), 'gp_Intrinsic_XYX': (<gp_EulerSequence.gp_Intrinsic_XYX: 20>, None), 'gp_Intrinsic_XZX': (<gp_EulerSequence.gp_Intrinsic_XZX: 21>, None), 'gp_Intrinsic_YZY': (<gp_EulerSequence.gp_Intrinsic_YZY: 22>, None), 'gp_Intrinsic_YXY': (<gp_EulerSequence.gp_Intrinsic_YXY: 23>, None), 'gp_Intrinsic_ZXZ': (<gp_EulerSequence.gp_Intrinsic_ZXZ: 24>, None), 'gp_Intrinsic_ZYZ': (<gp_EulerSequence.gp_Intrinsic_ZYZ: 25>, None)}
__members__: dict # value = {'gp_EulerAngles': <gp_EulerSequence.gp_EulerAngles: 0>, 'gp_YawPitchRoll': <gp_EulerSequence.gp_YawPitchRoll: 1>, 'gp_Extrinsic_XYZ': <gp_EulerSequence.gp_Extrinsic_XYZ: 2>, 'gp_Extrinsic_XZY': <gp_EulerSequence.gp_Extrinsic_XZY: 3>, 'gp_Extrinsic_YZX': <gp_EulerSequence.gp_Extrinsic_YZX: 4>, 'gp_Extrinsic_YXZ': <gp_EulerSequence.gp_Extrinsic_YXZ: 5>, 'gp_Extrinsic_ZXY': <gp_EulerSequence.gp_Extrinsic_ZXY: 6>, 'gp_Extrinsic_ZYX': <gp_EulerSequence.gp_Extrinsic_ZYX: 7>, 'gp_Intrinsic_XYZ': <gp_EulerSequence.gp_Intrinsic_XYZ: 8>, 'gp_Intrinsic_XZY': <gp_EulerSequence.gp_Intrinsic_XZY: 9>, 'gp_Intrinsic_YZX': <gp_EulerSequence.gp_Intrinsic_YZX: 10>, 'gp_Intrinsic_YXZ': <gp_EulerSequence.gp_Intrinsic_YXZ: 11>, 'gp_Intrinsic_ZXY': <gp_EulerSequence.gp_Intrinsic_ZXY: 12>, 'gp_Intrinsic_ZYX': <gp_EulerSequence.gp_Intrinsic_ZYX: 13>, 'gp_Extrinsic_XYX': <gp_EulerSequence.gp_Extrinsic_XYX: 14>, 'gp_Extrinsic_XZX': <gp_EulerSequence.gp_Extrinsic_XZX: 15>, 'gp_Extrinsic_YZY': <gp_EulerSequence.gp_Extrinsic_YZY: 16>, 'gp_Extrinsic_YXY': <gp_EulerSequence.gp_Extrinsic_YXY: 17>, 'gp_Extrinsic_ZYZ': <gp_EulerSequence.gp_Extrinsic_ZYZ: 18>, 'gp_Extrinsic_ZXZ': <gp_EulerSequence.gp_Extrinsic_ZXZ: 19>, 'gp_Intrinsic_XYX': <gp_EulerSequence.gp_Intrinsic_XYX: 20>, 'gp_Intrinsic_XZX': <gp_EulerSequence.gp_Intrinsic_XZX: 21>, 'gp_Intrinsic_YZY': <gp_EulerSequence.gp_Intrinsic_YZY: 22>, 'gp_Intrinsic_YXY': <gp_EulerSequence.gp_Intrinsic_YXY: 23>, 'gp_Intrinsic_ZXZ': <gp_EulerSequence.gp_Intrinsic_ZXZ: 24>, 'gp_Intrinsic_ZYZ': <gp_EulerSequence.gp_Intrinsic_ZYZ: 25>}
gp_EulerAngles: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_EulerAngles: 0>
gp_Extrinsic_XYX: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Extrinsic_XYX: 14>
gp_Extrinsic_XYZ: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Extrinsic_XYZ: 2>
gp_Extrinsic_XZX: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Extrinsic_XZX: 15>
gp_Extrinsic_XZY: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Extrinsic_XZY: 3>
gp_Extrinsic_YXY: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Extrinsic_YXY: 17>
gp_Extrinsic_YXZ: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Extrinsic_YXZ: 5>
gp_Extrinsic_YZX: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Extrinsic_YZX: 4>
gp_Extrinsic_YZY: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Extrinsic_YZY: 16>
gp_Extrinsic_ZXY: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Extrinsic_ZXY: 6>
gp_Extrinsic_ZXZ: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Extrinsic_ZXZ: 19>
gp_Extrinsic_ZYX: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Extrinsic_ZYX: 7>
gp_Extrinsic_ZYZ: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Extrinsic_ZYZ: 18>
gp_Intrinsic_XYX: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Intrinsic_XYX: 20>
gp_Intrinsic_XYZ: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Intrinsic_XYZ: 8>
gp_Intrinsic_XZX: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Intrinsic_XZX: 21>
gp_Intrinsic_XZY: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Intrinsic_XZY: 9>
gp_Intrinsic_YXY: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Intrinsic_YXY: 23>
gp_Intrinsic_YXZ: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Intrinsic_YXZ: 11>
gp_Intrinsic_YZX: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Intrinsic_YZX: 10>
gp_Intrinsic_YZY: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Intrinsic_YZY: 22>
gp_Intrinsic_ZXY: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Intrinsic_ZXY: 12>
gp_Intrinsic_ZXZ: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Intrinsic_ZXZ: 24>
gp_Intrinsic_ZYX: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Intrinsic_ZYX: 13>
gp_Intrinsic_ZYZ: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Intrinsic_ZYZ: 25>
gp_YawPitchRoll: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_YawPitchRoll: 1>
pass
class gp_GTrsf():
"""
Defines a non-persistent transformation in 3D space. This transformation is a general transformation. It can be a gp_Trsf, an affinity, or you can define your own transformation giving the matrix of transformation.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def Form(self) -> gp_TrsfForm:
"""
Returns the nature of the transformation. It can be an identity transformation, a rotation, a translation, a mirror transformation (relative to a point, an axis or a plane), a scaling transformation, a compound transformation or some other type of transformation.
"""
def Invert(self) -> None:
"""
None
"""
def Inverted(self) -> gp_GTrsf:
"""
Computes the reverse transformation. Raises an exception if the matrix of the transformation is not inversible.
"""
def IsNegative(self) -> bool:
"""
Returns true if the determinant of the vectorial part of this transformation is negative.
"""
def IsSingular(self) -> bool:
"""
Returns true if this transformation is singular (and therefore, cannot be inverted). Note: The Gauss LU decomposition is used to invert the transformation matrix. Consequently, the transformation is considered as singular if the largest pivot found is less than or equal to gp::Resolution(). Warning If this transformation is singular, it cannot be inverted.
"""
def Multiplied(self,theT : gp_GTrsf) -> gp_GTrsf:
"""
Computes the transformation composed from theT and <me>. In a C++ implementation you can also write Tcomposed = <me> * theT. Example :
"""
def Multiply(self,theT : gp_GTrsf) -> None:
"""
Computes the transformation composed with <me> and theT. <me> = <me> * theT
"""
def Power(self,theN : int) -> None:
"""
None
"""
def Powered(self,theN : int) -> gp_GTrsf:
"""
Computes: - the product of this transformation multiplied by itself theN times, if theN is positive, or - the product of the inverse of this transformation multiplied by itself |theN| times, if theN is negative. If theN equals zero, the result is equal to the Identity transformation. I.e.: <me> * <me> * .......* <me>, theN time. if theN =0 <me> = Identity if theN < 0 <me> = <me>.Inverse() *...........* <me>.Inverse().
"""
def PreMultiply(self,theT : gp_GTrsf) -> None:
"""
Computes the product of the transformation theT and this transformation and assigns the result to this transformation. this = theT * this
"""
@overload
def SetAffinity(self,theA1 : gp_Ax1,theRatio : float) -> None:
"""
Changes this transformation into an affinity of ratio theRatio with respect to the axis theA1. Note: an affinity is a point-by-point transformation that transforms any point P into a point P' such that if H is the orthogonal projection of P on the axis theA1 or the plane A2, the vectors HP and HP' satisfy: HP' = theRatio * HP.
Changes this transformation into an affinity of ratio theRatio with respect to the plane defined by the origin, the "X Direction" and the "Y Direction" of coordinate system theA2. Note: an affinity is a point-by-point transformation that transforms any point P into a point P' such that if H is the orthogonal projection of P on the axis A1 or the plane theA2, the vectors HP and HP' satisfy: HP' = theRatio * HP.
Changes this transformation into an affinity of ratio theRatio with respect to the axis theA1. Note: an affinity is a point-by-point transformation that transforms any point P into a point P' such that if H is the orthogonal projection of P on the axis theA1 or the plane A2, the vectors HP and HP' satisfy: HP' = theRatio * HP.
Changes this transformation into an affinity of ratio theRatio with respect to the plane defined by the origin, the "X Direction" and the "Y Direction" of coordinate system theA2. Note: an affinity is a point-by-point transformation that transforms any point P into a point P' such that if H is the orthogonal projection of P on the axis A1 or the plane theA2, the vectors HP and HP' satisfy: HP' = theRatio * HP.
"""
@overload
def SetAffinity(self,theA2 : gp_Ax2,theRatio : float) -> None: ...
def SetForm(self) -> None:
"""
verify and set the shape of the GTrsf Other or CompoundTrsf Ex :
"""
def SetTranslationPart(self,theCoord : gp_XYZ) -> None:
"""
Replaces the translation part of this transformation by the coordinates of the number triple theCoord.
"""
def SetTrsf(self,theT : gp_Trsf) -> None:
"""
Assigns the vectorial and translation parts of theT to this transformation.
"""
def SetValue(self,theRow : int,theCol : int,theValue : float) -> None:
"""
Replaces the coefficient (theRow, theCol) of the matrix representing this transformation by theValue. Raises OutOfRange if theRow < 1 or theRow > 3 or theCol < 1 or theCol > 4
Replaces the coefficient (theRow, theCol) of the matrix representing this transformation by theValue. Raises OutOfRange if theRow < 1 or theRow > 3 or theCol < 1 or theCol > 4
"""
def SetVectorialPart(self,theMatrix : gp_Mat) -> None:
"""
Replaces the vectorial part of this transformation by theMatrix.
"""
@overload
def Transforms(self) -> tuple[float, float, float]:
"""
None
None
Transforms a triplet XYZ with a GTrsf.
Transforms a triplet XYZ with a GTrsf.
"""
@overload
def Transforms(self,theCoord : gp_XYZ) -> None: ...
def TranslationPart(self) -> gp_XYZ:
"""
Returns the translation part of the GTrsf.
"""
def Trsf(self) -> gp_Trsf:
"""
None
None
"""
def Value(self,theRow : int,theCol : int) -> float:
"""
Returns the coefficients of the global matrix of transformation. Raises OutOfRange if theRow < 1 or theRow > 3 or theCol < 1 or theCol > 4
Returns the coefficients of the global matrix of transformation. Raises OutOfRange if theRow < 1 or theRow > 3 or theCol < 1 or theCol > 4
"""
def VectorialPart(self) -> gp_Mat:
"""
Computes the vectorial part of the GTrsf. The returned Matrix is a 3*3 matrix.
"""
def __call__(self,theRow : int,theCol : int) -> float:
"""
None
"""
def __imul__(self,theT : gp_GTrsf) -> None:
"""
None
"""
@overload
def __init__(self,theM : gp_Mat,theV : gp_XYZ) -> None: ...
@overload
def __init__(self,theT : gp_Trsf) -> None: ...
@overload
def __init__(self) -> None: ...
def __mul__(self,theT : gp_GTrsf) -> gp_GTrsf:
"""
None
"""
def __rmul__(self,theT : gp_GTrsf) -> gp_GTrsf:
"""
None
"""
pass
class gp_GTrsf2d():
"""
Defines a non persistent transformation in 2D space. This transformation is a general transformation. It can be a gp_Trsf2d, an affinity, or you can define your own transformation giving the corresponding matrix of transformation.
"""
def Form(self) -> gp_TrsfForm:
"""
Returns the nature of the transformation. It can be an identity transformation, a rotation, a translation, a mirror transformation (relative to a point or axis), a scaling transformation, a compound transformation or some other type of transformation.
"""
def Invert(self) -> None:
"""
None
"""
def Inverted(self) -> gp_GTrsf2d:
"""
Computes the reverse transformation. Raised an exception if the matrix of the transformation is not inversible.
"""
def IsNegative(self) -> bool:
"""
Returns true if the determinant of the vectorial part of this transformation is negative.
"""
def IsSingular(self) -> bool:
"""
Returns true if this transformation is singular (and therefore, cannot be inverted). Note: The Gauss LU decomposition is used to invert the transformation matrix. Consequently, the transformation is considered as singular if the largest pivot found is less than or equal to gp::Resolution(). Warning If this transformation is singular, it cannot be inverted.
"""
def Multiplied(self,theT : gp_GTrsf2d) -> gp_GTrsf2d:
"""
Computes the transformation composed with theT and <me>. In a C++ implementation you can also write Tcomposed = <me> * theT. Example :
"""
def Multiply(self,theT : gp_GTrsf2d) -> None:
"""
None
"""
def Power(self,theN : int) -> None:
"""
None
"""
def Powered(self,theN : int) -> gp_GTrsf2d:
"""
Computes the following composition of transformations <me> * <me> * .......* <me>, theN time. if theN = 0 <me> = Identity if theN < 0 <me> = <me>.Inverse() *...........* <me>.Inverse().
"""
def PreMultiply(self,theT : gp_GTrsf2d) -> None:
"""
Computes the product of the transformation theT and this transformation, and assigns the result to this transformation: this = theT * this
"""
def SetAffinity(self,theA : gp_Ax2d,theRatio : float) -> None:
"""
Changes this transformation into an affinity of ratio theRatio with respect to the axis theA. Note: An affinity is a point-by-point transformation that transforms any point P into a point P' such that if H is the orthogonal projection of P on the axis theA, the vectors HP and HP' satisfy: HP' = theRatio * HP.
"""
def SetTranslationPart(self,theCoord : gp_XY) -> None:
"""
Replaces the translation part of this transformation by the coordinates of the number pair theCoord.
"""
def SetTrsf2d(self,theT : gp_Trsf2d) -> None:
"""
Assigns the vectorial and translation parts of theT to this transformation.
Assigns the vectorial and translation parts of theT to this transformation.
"""
def SetValue(self,theRow : int,theCol : int,theValue : float) -> None:
"""
Replaces the coefficient (theRow, theCol) of the matrix representing this transformation by theValue, Raises OutOfRange if theRow < 1 or theRow > 2 or theCol < 1 or theCol > 3
Replaces the coefficient (theRow, theCol) of the matrix representing this transformation by theValue, Raises OutOfRange if theRow < 1 or theRow > 2 or theCol < 1 or theCol > 3
"""
def SetVectorialPart(self,theMatrix : gp_Mat2d) -> None:
"""
Replaces the vectorial part of this transformation by theMatrix.
"""
def Transformed(self,theCoord : gp_XY) -> gp_XY:
"""
None
"""
@overload
def Transforms(self,theCoord : gp_XY) -> None:
"""
None
None
Applies this transformation to the coordinates: - of the number pair Coord, or - X and Y.
Applies this transformation to the coordinates: - of the number pair Coord, or - X and Y.
"""
@overload
def Transforms(self) -> tuple[float, float]: ...
def TranslationPart(self) -> gp_XY:
"""
Returns the translation part of the GTrsf2d.
"""
def Trsf2d(self) -> gp_Trsf2d:
"""
Converts this transformation into a gp_Trsf2d transformation. Exceptions Standard_ConstructionError if this transformation cannot be converted, i.e. if its form is gp_Other.
"""
def Value(self,theRow : int,theCol : int) -> float:
"""
Returns the coefficients of the global matrix of transformation. Raised OutOfRange if theRow < 1 or theRow > 2 or theCol < 1 or theCol > 3
Returns the coefficients of the global matrix of transformation. Raised OutOfRange if theRow < 1 or theRow > 2 or theCol < 1 or theCol > 3
"""
def VectorialPart(self) -> gp_Mat2d:
"""
Computes the vectorial part of the GTrsf2d. The returned Matrix is a 2*2 matrix.
"""
def __call__(self,theRow : int,theCol : int) -> float:
"""
None
"""
def __imul__(self,theT : gp_GTrsf2d) -> None:
"""
None
"""
@overload
def __init__(self,theM : gp_Mat2d,theV : gp_XY) -> None: ...
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,theT : gp_Trsf2d) -> None: ...
def __mul__(self,theT : gp_GTrsf2d) -> gp_GTrsf2d:
"""
None
"""
def __rmul__(self,theT : gp_GTrsf2d) -> gp_GTrsf2d:
"""
None
"""
pass
class gp_Hypr():
"""
Describes a branch of a hyperbola in 3D space. A hyperbola is defined by its major and minor radii and positioned in space with a coordinate system (a gp_Ax2 object) of which: - the origin is the center of the hyperbola, - the "X Direction" defines the major axis of the hyperbola, and - the "Y Direction" defines the minor axis of the hyperbola. The origin, "X Direction" and "Y Direction" of this coordinate system together define the plane of the hyperbola. This coordinate system is the "local coordinate system" of the hyperbola. In this coordinate system, the equation of the hyperbola is: X*X/(MajorRadius**2)-Y*Y/(MinorRadius**2) = 1.0 The branch of the hyperbola described is the one located on the positive side of the major axis. The "main Direction" of the local coordinate system is a normal vector to the plane of the hyperbola. This vector gives an implicit orientation to the hyperbola. We refer to the "main Axis" of the local coordinate system as the "Axis" of the hyperbola. The following schema shows the plane of the hyperbola, and in it, the respective positions of the three branches of hyperbolas constructed with the functions OtherBranch, ConjugateBranch1, and ConjugateBranch2: Warning The major radius can be less than the minor radius. See Also gce_MakeHypr which provides functions for more complex hyperbola constructions Geom_Hyperbola which provides additional functions for constructing hyperbolas and works, in particular, with the parametric equations of hyperbolas
"""
def Asymptote1(self) -> gp_Ax1:
"""
In the local coordinate system of the hyperbola the equation of the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the equation of the first asymptote is Y = (B/A)*X where A is the major radius and B is the minor radius. Raises ConstructionError if MajorRadius = 0.0
In the local coordinate system of the hyperbola the equation of the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the equation of the first asymptote is Y = (B/A)*X where A is the major radius and B is the minor radius. Raises ConstructionError if MajorRadius = 0.0
"""
def Asymptote2(self) -> gp_Ax1:
"""
In the local coordinate system of the hyperbola the equation of the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the equation of the first asymptote is Y = -(B/A)*X. where A is the major radius and B is the minor radius. Raises ConstructionError if MajorRadius = 0.0
In the local coordinate system of the hyperbola the equation of the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the equation of the first asymptote is Y = -(B/A)*X. where A is the major radius and B is the minor radius. Raises ConstructionError if MajorRadius = 0.0
"""
def Axis(self) -> gp_Ax1:
"""
Returns the axis passing through the center, and normal to the plane of this hyperbola.
"""
def ConjugateBranch1(self) -> gp_Hypr:
"""
Computes the branch of hyperbola which is on the positive side of the "YAxis" of <me>.
"""
def ConjugateBranch2(self) -> gp_Hypr:
"""
Computes the branch of hyperbola which is on the negative side of the "YAxis" of <me>.
"""
def Directrix1(self) -> gp_Ax1:
"""
This directrix is the line normal to the XAxis of the hyperbola in the local plane (Z = 0) at a distance d = MajorRadius / e from the center of the hyperbola, where e is the eccentricity of the hyperbola. This line is parallel to the "YAxis". The intersection point between the directrix1 and the "XAxis" is the "Location" point of the directrix1. This point is on the positive side of the "XAxis".
This directrix is the line normal to the XAxis of the hyperbola in the local plane (Z = 0) at a distance d = MajorRadius / e from the center of the hyperbola, where e is the eccentricity of the hyperbola. This line is parallel to the "YAxis". The intersection point between the directrix1 and the "XAxis" is the "Location" point of the directrix1. This point is on the positive side of the "XAxis".
"""
def Directrix2(self) -> gp_Ax1:
"""
This line is obtained by the symmetrical transformation of "Directrix1" with respect to the "YAxis" of the hyperbola.
This line is obtained by the symmetrical transformation of "Directrix1" with respect to the "YAxis" of the hyperbola.
"""
def Eccentricity(self) -> float:
"""
Returns the eccentricity of the hyperbola (e > 1). If f is the distance between the location of the hyperbola and the Focus1 then the eccentricity e = f / MajorRadius. Raises DomainError if MajorRadius = 0.0
"""
def Focal(self) -> float:
"""
Computes the focal distance. It is the distance between the the two focus of the hyperbola.
"""
def Focus1(self) -> gp_Pnt:
"""
Returns the first focus of the hyperbola. This focus is on the positive side of the "XAxis" of the hyperbola.
Returns the first focus of the hyperbola. This focus is on the positive side of the "XAxis" of the hyperbola.
"""
def Focus2(self) -> gp_Pnt:
"""
Returns the second focus of the hyperbola. This focus is on the negative side of the "XAxis" of the hyperbola.
Returns the second focus of the hyperbola. This focus is on the negative side of the "XAxis" of the hyperbola.
"""
def Location(self) -> gp_Pnt:
"""
Returns the location point of the hyperbola. It is the intersection point between the "XAxis" and the "YAxis".
"""
def MajorRadius(self) -> float:
"""
Returns the major radius of the hyperbola. It is the radius on the "XAxis" of the hyperbola.
"""
def MinorRadius(self) -> float:
"""
Returns the minor radius of the hyperbola. It is the radius on the "YAxis" of the hyperbola.
"""
@overload
def Mirror(self,theP : gp_Pnt) -> None:
"""
None
None
None
"""
@overload
def Mirror(self,theA2 : gp_Ax2) -> None: ...
@overload
def Mirror(self,theA1 : gp_Ax1) -> None: ...
@overload
def Mirrored(self,theA1 : gp_Ax1) -> gp_Hypr:
"""
Performs the symmetrical transformation of an hyperbola with respect to the point theP which is the center of the symmetry.
Performs the symmetrical transformation of an hyperbola with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of an hyperbola with respect to a plane. The axis placement theA2 locates the plane of the symmetry (Location, XDirection, YDirection).
"""
@overload
def Mirrored(self,theP : gp_Pnt) -> gp_Hypr: ...
@overload
def Mirrored(self,theA2 : gp_Ax2) -> gp_Hypr: ...
def OtherBranch(self) -> gp_Hypr:
"""
Returns the branch of hyperbola obtained by doing the symmetrical transformation of <me> with respect to the "YAxis" of <me>.
"""
def Parameter(self) -> float:
"""
Returns p = (e * e - 1) * MajorRadius where e is the eccentricity of the hyperbola. Raises DomainError if MajorRadius = 0.0
"""
def Position(self) -> gp_Ax2:
"""
Returns the coordinate system of the hyperbola.
"""
def Rotate(self,theA1 : gp_Ax1,theAng : float) -> None:
"""
None
"""
def Rotated(self,theA1 : gp_Ax1,theAng : float) -> gp_Hypr:
"""
Rotates an hyperbola. theA1 is the axis of the rotation. theAng is the angular value of the rotation in radians.
"""
def Scale(self,theP : gp_Pnt,theS : float) -> None:
"""
None
None
"""
def Scaled(self,theP : gp_Pnt,theS : float) -> gp_Hypr:
"""
Scales an hyperbola. theS is the scaling value.
Scales an hyperbola. theS is the scaling value.
"""
def SetAxis(self,theA1 : gp_Ax1) -> None:
"""
Modifies this hyperbola, by redefining its local coordinate system so that: - its origin and "main Direction" become those of the axis theA1 (the "X Direction" and "Y Direction" are then recomputed in the same way as for any gp_Ax2). Raises ConstructionError if the direction of theA1 is parallel to the direction of the "XAxis" of the hyperbola.
"""
def SetLocation(self,theP : gp_Pnt) -> None:
"""
Modifies this hyperbola, by redefining its local coordinate system so that its origin becomes theP.
"""
def SetMajorRadius(self,theMajorRadius : float) -> None:
"""
Modifies the major radius of this hyperbola. Exceptions Standard_ConstructionError if theMajorRadius is negative.
"""
def SetMinorRadius(self,theMinorRadius : float) -> None:
"""
Modifies the minor radius of this hyperbola. Exceptions Standard_ConstructionError if theMinorRadius is negative.
"""
def SetPosition(self,theA2 : gp_Ax2) -> None:
"""
Modifies this hyperbola, by redefining its local coordinate system so that it becomes A2.
"""
def Transform(self,theT : gp_Trsf) -> None:
"""
None
None
"""
def Transformed(self,theT : gp_Trsf) -> gp_Hypr:
"""
Transforms an hyperbola with the transformation theT from class Trsf.
Transforms an hyperbola with the transformation theT from class Trsf.
"""
@overload
def Translate(self,theV : gp_Vec) -> None:
"""
None
None
"""
@overload
def Translate(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> None: ...
@overload
def Translated(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> gp_Hypr:
"""
Translates an hyperbola in the direction of the vector theV. The magnitude of the translation is the vector's magnitude.
Translates an hyperbola from the point theP1 to the point theP2.
"""
@overload
def Translated(self,theV : gp_Vec) -> gp_Hypr: ...
def XAxis(self) -> gp_Ax1:
"""
Computes an axis, whose - the origin is the center of this hyperbola, and - the unit vector is the "X Direction" of the local coordinate system of this hyperbola. These axes are, the major axis (the "X Axis") and of this hyperboReturns the "XAxis" of the hyperbola.
"""
def YAxis(self) -> gp_Ax1:
"""
Computes an axis, whose - the origin is the center of this hyperbola, and - the unit vector is the "Y Direction" of the local coordinate system of this hyperbola. These axes are the minor axis (the "Y Axis") of this hyperbola
"""
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,theA2 : gp_Ax2,theMajorRadius : float,theMinorRadius : float) -> None: ...
pass
class gp_Hypr2d():
"""
Describes a branch of a hyperbola in the plane (2D space). A hyperbola is defined by its major and minor radii, and positioned in the plane with a coordinate system (a gp_Ax22d object) of which: - the origin is the center of the hyperbola, - the "X Direction" defines the major axis of the hyperbola, and - the "Y Direction" defines the minor axis of the hyperbola. This coordinate system is the "local coordinate system" of the hyperbola. The orientation of this coordinate system (direct or indirect) gives an implicit orientation to the hyperbola. In this coordinate system, the equation of the hyperbola is: X*X/(MajorRadius**2)-Y*Y/(MinorRadius**2) = 1.0 The branch of the hyperbola described is the one located on the positive side of the major axis. The following schema shows the plane of the hyperbola, and in it, the respective positions of the three branches of hyperbolas constructed with the functions OtherBranch, ConjugateBranch1, and ConjugateBranch2: Warning The major radius can be less than the minor radius. See Also gce_MakeHypr2d which provides functions for more complex hyperbola constructions Geom2d_Hyperbola which provides additional functions for constructing hyperbolas and works, in particular, with the parametric equations of hyperbolas
"""
def Asymptote1(self) -> gp_Ax2d:
"""
In the local coordinate system of the hyperbola the equation of the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the equation of the first asymptote is Y = (B/A)*X where A is the major radius of the hyperbola and B the minor radius of the hyperbola. Raises ConstructionError if MajorRadius = 0.0
In the local coordinate system of the hyperbola the equation of the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the equation of the first asymptote is Y = (B/A)*X where A is the major radius of the hyperbola and B the minor radius of the hyperbola. Raises ConstructionError if MajorRadius = 0.0
"""
def Asymptote2(self) -> gp_Ax2d:
"""
In the local coordinate system of the hyperbola the equation of the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the equation of the first asymptote is Y = -(B/A)*X where A is the major radius of the hyperbola and B the minor radius of the hyperbola. Raises ConstructionError if MajorRadius = 0.0
In the local coordinate system of the hyperbola the equation of the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the equation of the first asymptote is Y = -(B/A)*X where A is the major radius of the hyperbola and B the minor radius of the hyperbola. Raises ConstructionError if MajorRadius = 0.0
"""
def Axis(self) -> gp_Ax22d:
"""
Returns the axisplacement of the hyperbola.
"""
def Coefficients(self) -> tuple[float, float, float, float, float, float]:
"""
Computes the coefficients of the implicit equation of the hyperbola : theA * (X**2) + theB * (Y**2) + 2*theC*(X*Y) + 2*theD*X + 2*theE*Y + theF = 0.
"""
def ConjugateBranch1(self) -> gp_Hypr2d:
"""
Computes the branch of hyperbola which is on the positive side of the "YAxis" of <me>.
"""
def ConjugateBranch2(self) -> gp_Hypr2d:
"""
Computes the branch of hyperbola which is on the negative side of the "YAxis" of <me>.
"""
def Directrix1(self) -> gp_Ax2d:
"""
Computes the directrix which is the line normal to the XAxis of the hyperbola in the local plane (Z = 0) at a distance d = MajorRadius / e from the center of the hyperbola, where e is the eccentricity of the hyperbola. This line is parallel to the "YAxis". The intersection point between the "Directrix1" and the "XAxis" is the "Location" point of the "Directrix1". This point is on the positive side of the "XAxis".
Computes the directrix which is the line normal to the XAxis of the hyperbola in the local plane (Z = 0) at a distance d = MajorRadius / e from the center of the hyperbola, where e is the eccentricity of the hyperbola. This line is parallel to the "YAxis". The intersection point between the "Directrix1" and the "XAxis" is the "Location" point of the "Directrix1". This point is on the positive side of the "XAxis".
"""
def Directrix2(self) -> gp_Ax2d:
"""
This line is obtained by the symmetrical transformation of "Directrix1" with respect to the "YAxis" of the hyperbola.
This line is obtained by the symmetrical transformation of "Directrix1" with respect to the "YAxis" of the hyperbola.
"""
def Eccentricity(self) -> float:
"""
Returns the eccentricity of the hyperbola (e > 1). If f is the distance between the location of the hyperbola and the Focus1 then the eccentricity e = f / MajorRadius. Raises DomainError if MajorRadius = 0.0.
"""
def Focal(self) -> float:
"""
Computes the focal distance. It is the distance between the "Location" of the hyperbola and "Focus1" or "Focus2".
"""
def Focus1(self) -> gp_Pnt2d:
"""
Returns the first focus of the hyperbola. This focus is on the positive side of the "XAxis" of the hyperbola.
"""
def Focus2(self) -> gp_Pnt2d:
"""
Returns the second focus of the hyperbola. This focus is on the negative side of the "XAxis" of the hyperbola.
"""
def IsDirect(self) -> bool:
"""
Returns true if the local coordinate system is direct and false in the other case.
"""
def Location(self) -> gp_Pnt2d:
"""
Returns the location point of the hyperbola. It is the intersection point between the "XAxis" and the "YAxis".
"""
def MajorRadius(self) -> float:
"""
Returns the major radius of the hyperbola (it is the radius corresponding to the "XAxis" of the hyperbola).
"""
def MinorRadius(self) -> float:
"""
Returns the minor radius of the hyperbola (it is the radius corresponding to the "YAxis" of the hyperbola).
"""
@overload
def Mirror(self,theP : gp_Pnt2d) -> None:
"""
None
None
"""
@overload
def Mirror(self,theA : gp_Ax2d) -> None: ...
@overload
def Mirrored(self,theP : gp_Pnt2d) -> gp_Hypr2d:
"""
Performs the symmetrical transformation of an hyperbola with respect to the point theP which is the center of the symmetry.
Performs the symmetrical transformation of an hyperbola with respect to an axis placement which is the axis of the symmetry.
"""
@overload
def Mirrored(self,theA : gp_Ax2d) -> gp_Hypr2d: ...
def OtherBranch(self) -> gp_Hypr2d:
"""
Returns the branch of hyperbola obtained by doing the symmetrical transformation of <me> with respect to the "YAxis" of <me>.
"""
def Parameter(self) -> float:
"""
Returns p = (e * e - 1) * MajorRadius where e is the eccentricity of the hyperbola. Raises DomainError if MajorRadius = 0.0
"""
def Reverse(self) -> None:
"""
None
"""
def Reversed(self) -> gp_Hypr2d:
"""
Reverses the orientation of the local coordinate system of this hyperbola (the "Y Axis" is reversed). Therefore, the implicit orientation of this hyperbola is reversed. Note: - Reverse assigns the result to this hyperbola, while - Reversed creates a new one.
Reverses the orientation of the local coordinate system of this hyperbola (the "Y Axis" is reversed). Therefore, the implicit orientation of this hyperbola is reversed. Note: - Reverse assigns the result to this hyperbola, while - Reversed creates a new one.
"""
def Rotate(self,theP : gp_Pnt2d,theAng : float) -> None:
"""
None
"""
def Rotated(self,theP : gp_Pnt2d,theAng : float) -> gp_Hypr2d:
"""
Rotates an hyperbola. theP is the center of the rotation. theAng is the angular value of the rotation in radians.
"""
def Scale(self,theP : gp_Pnt2d,theS : float) -> None:
"""
None
None
"""
def Scaled(self,theP : gp_Pnt2d,theS : float) -> gp_Hypr2d:
"""
Scales an hyperbola. <theS> is the scaling value. If <theS> is positive only the location point is modified. But if <theS> is negative the "XAxis" is reversed and the "YAxis" too.
Scales an hyperbola. <theS> is the scaling value. If <theS> is positive only the location point is modified. But if <theS> is negative the "XAxis" is reversed and the "YAxis" too.
"""
def SetAxis(self,theA : gp_Ax22d) -> None:
"""
Modifies this hyperbola, by redefining its local coordinate system so that it becomes theA.
"""
def SetLocation(self,theP : gp_Pnt2d) -> None:
"""
Modifies this hyperbola, by redefining its local coordinate system so that its origin becomes theP.
"""
def SetMajorRadius(self,theMajorRadius : float) -> None:
"""
Modifies the major or minor radius of this hyperbola. Exceptions Standard_ConstructionError if theMajorRadius or MinorRadius is negative.
"""
def SetMinorRadius(self,theMinorRadius : float) -> None:
"""
Modifies the major or minor radius of this hyperbola. Exceptions Standard_ConstructionError if MajorRadius or theMinorRadius is negative.
"""
def SetXAxis(self,theA : gp_Ax2d) -> None:
"""
Changes the major axis of the hyperbola. The minor axis is recomputed and the location of the hyperbola too.
"""
def SetYAxis(self,theA : gp_Ax2d) -> None:
"""
Changes the minor axis of the hyperbola.The minor axis is recomputed and the location of the hyperbola too.
"""
def Transform(self,theT : gp_Trsf2d) -> None:
"""
None
None
"""
def Transformed(self,theT : gp_Trsf2d) -> gp_Hypr2d:
"""
Transforms an hyperbola with the transformation theT from class Trsf2d.
Transforms an hyperbola with the transformation theT from class Trsf2d.
"""
@overload
def Translate(self,theV : gp_Vec2d) -> None:
"""
None
None
"""
@overload
def Translate(self,theP1 : gp_Pnt2d,theP2 : gp_Pnt2d) -> None: ...
@overload
def Translated(self,theP1 : gp_Pnt2d,theP2 : gp_Pnt2d) -> gp_Hypr2d:
"""
Translates an hyperbola in the direction of the vector theV. The magnitude of the translation is the vector's magnitude.
Translates an hyperbola from the point theP1 to the point theP2.
"""
@overload
def Translated(self,theV : gp_Vec2d) -> gp_Hypr2d: ...
def XAxis(self) -> gp_Ax2d:
"""
Computes an axis whose - the origin is the center of this hyperbola, and - the unit vector is the "X Direction" or "Y Direction" respectively of the local coordinate system of this hyperbola Returns the major axis of the hyperbola.
"""
def YAxis(self) -> gp_Ax2d:
"""
Computes an axis whose - the origin is the center of this hyperbola, and - the unit vector is the "X Direction" or "Y Direction" respectively of the local coordinate system of this hyperbola Returns the minor axis of the hyperbola.
"""
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,theA : gp_Ax22d,theMajorRadius : float,theMinorRadius : float) -> None: ...
@overload
def __init__(self,theMajorAxis : gp_Ax2d,theMajorRadius : float,theMinorRadius : float,theIsSense : bool=True) -> None: ...
pass
class gp_Lin():
"""
Describes a line in 3D space. A line is positioned in space with an axis (a gp_Ax1 object) which gives it an origin and a unit vector. A line and an axis are similar objects, thus, we can convert one into the other. A line provides direct access to the majority of the edit and query functions available on its positioning axis. In addition, however, a line has specific functions for computing distances and positions. See Also gce_MakeLin which provides functions for more complex line constructions Geom_Line which provides additional functions for constructing lines and works, in particular, with the parametric equations of lines
"""
def Angle(self,theOther : gp_Lin) -> float:
"""
Computes the angle between two lines in radians.
"""
def Contains(self,theP : gp_Pnt,theLinearTolerance : float) -> bool:
"""
Returns true if this line contains the point theP, that is, if the distance between point theP and this line is less than or equal to theLinearTolerance..
"""
def Direction(self) -> gp_Dir:
"""
Returns the direction of the line.
"""
@overload
def Distance(self,theP : gp_Pnt) -> float:
"""
Computes the distance between <me> and the point theP.
Computes the distance between two lines.
Computes the distance between <me> and the point theP.
"""
@overload
def Distance(self,theOther : gp_Lin) -> float: ...
def Location(self) -> gp_Pnt:
"""
Returns the location point (origin) of the line.
"""
@overload
def Mirror(self,theA1 : gp_Ax1) -> None:
"""
None
None
None
"""
@overload
def Mirror(self,theP : gp_Pnt) -> None: ...
@overload
def Mirror(self,theA2 : gp_Ax2) -> None: ...
@overload
def Mirrored(self,theA2 : gp_Ax2) -> gp_Lin:
"""
Performs the symmetrical transformation of a line with respect to the point theP which is the center of the symmetry.
Performs the symmetrical transformation of a line with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a line with respect to a plane. The axis placement <theA2> locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirrored(self,theA1 : gp_Ax1) -> gp_Lin: ...
@overload
def Mirrored(self,theP : gp_Pnt) -> gp_Lin: ...
def Normal(self,theP : gp_Pnt) -> gp_Lin:
"""
Computes the line normal to the direction of <me>, passing through the point theP. Raises ConstructionError if the distance between <me> and the point theP is lower or equal to Resolution from gp because there is an infinity of solutions in 3D space.
Computes the line normal to the direction of <me>, passing through the point theP. Raises ConstructionError if the distance between <me> and the point theP is lower or equal to Resolution from gp because there is an infinity of solutions in 3D space.
"""
def Position(self) -> gp_Ax1:
"""
Returns the axis placement one axis with the same location and direction as <me>.
"""
def Reverse(self) -> None:
"""
None
"""
def Reversed(self) -> gp_Lin:
"""
Reverses the direction of the line. Note: - Reverse assigns the result to this line, while - Reversed creates a new one.
"""
def Rotate(self,theA1 : gp_Ax1,theAng : float) -> None:
"""
None
"""
def Rotated(self,theA1 : gp_Ax1,theAng : float) -> gp_Lin:
"""
Rotates a line. A1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Scale(self,theP : gp_Pnt,theS : float) -> None:
"""
None
"""
def Scaled(self,theP : gp_Pnt,theS : float) -> gp_Lin:
"""
Scales a line. theS is the scaling value. The "Location" point (origin) of the line is modified. The "Direction" is reversed if the scale is negative.
"""
def SetDirection(self,theV : gp_Dir) -> None:
"""
Changes the direction of the line.
"""
def SetLocation(self,theP : gp_Pnt) -> None:
"""
Changes the location point (origin) of the line.
"""
def SetPosition(self,theA1 : gp_Ax1) -> None:
"""
Complete redefinition of the line. The "Location" point of <theA1> is the origin of the line. The "Direction" of <theA1> is the direction of the line.
"""
@overload
def SquareDistance(self,theP : gp_Pnt) -> float:
"""
Computes the square distance between <me> and the point theP.
Computes the square distance between two lines.
Computes the square distance between <me> and the point theP.
"""
@overload
def SquareDistance(self,theOther : gp_Lin) -> float: ...
def Transform(self,theT : gp_Trsf) -> None:
"""
None
"""
def Transformed(self,theT : gp_Trsf) -> gp_Lin:
"""
Transforms a line with the transformation theT from class Trsf.
"""
@overload
def Translate(self,theV : gp_Vec) -> None:
"""
None
None
"""
@overload
def Translate(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> None: ...
@overload
def Translated(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> gp_Lin:
"""
Translates a line in the direction of the vector theV. The magnitude of the translation is the vector's magnitude.
Translates a line from the point theP1 to the point theP2.
"""
@overload
def Translated(self,theV : gp_Vec) -> gp_Lin: ...
@overload
def __init__(self,theP : gp_Pnt,theV : gp_Dir) -> None: ...
@overload
def __init__(self,theA1 : gp_Ax1) -> None: ...
@overload
def __init__(self) -> None: ...
pass
class gp_Lin2d():
"""
Describes a line in 2D space. A line is positioned in the plane with an axis (a gp_Ax2d object) which gives the line its origin and unit vector. A line and an axis are similar objects, thus, we can convert one into the other. A line provides direct access to the majority of the edit and query functions available on its positioning axis. In addition, however, a line has specific functions for computing distances and positions. See Also GccAna and Geom2dGcc packages which provide functions for constructing lines defined by geometric constraints gce_MakeLin2d which provides functions for more complex line constructions Geom2d_Line which provides additional functions for constructing lines and works, in particular, with the parametric equations of lines
"""
def Angle(self,theOther : gp_Lin2d) -> float:
"""
Computes the angle between two lines in radians.
"""
def Coefficients(self) -> tuple[float, float, float]:
"""
Returns the normalized coefficients of the line : theA * X + theB * Y + theC = 0.
"""
def Contains(self,theP : gp_Pnt2d,theLinearTolerance : float) -> bool:
"""
Returns true if this line contains the point theP, that is, if the distance between point theP and this line is less than or equal to theLinearTolerance.
"""
def Direction(self) -> gp_Dir2d:
"""
Returns the direction of the line.
"""
@overload
def Distance(self,theP : gp_Pnt2d) -> float:
"""
Computes the distance between <me> and the point <theP>.
Computes the distance between two lines.
Computes the distance between <me> and the point <theP>.
Computes the distance between two lines.
"""
@overload
def Distance(self,theOther : gp_Lin2d) -> float: ...
def Location(self) -> gp_Pnt2d:
"""
Returns the location point (origin) of the line.
"""
@overload
def Mirror(self,theA : gp_Ax2d) -> None:
"""
None
None
"""
@overload
def Mirror(self,theP : gp_Pnt2d) -> None: ...
@overload
def Mirrored(self,theP : gp_Pnt2d) -> gp_Lin2d:
"""
Performs the symmetrical transformation of a line with respect to the point <theP> which is the center of the symmetry
Performs the symmetrical transformation of a line with respect to an axis placement which is the axis of the symmetry.
"""
@overload
def Mirrored(self,theA : gp_Ax2d) -> gp_Lin2d: ...
def Normal(self,theP : gp_Pnt2d) -> gp_Lin2d:
"""
Computes the line normal to the direction of <me>, passing through the point <theP>.
"""
def Position(self) -> gp_Ax2d:
"""
Returns the axis placement one axis with the same location and direction as <me>.
"""
def Reverse(self) -> None:
"""
None
"""
def Reversed(self) -> gp_Lin2d:
"""
Reverses the positioning axis of this line. Note: - Reverse assigns the result to this line, while - Reversed creates a new one.
"""
def Rotate(self,theP : gp_Pnt2d,theAng : float) -> None:
"""
None
"""
def Rotated(self,theP : gp_Pnt2d,theAng : float) -> gp_Lin2d:
"""
Rotates a line. theP is the center of the rotation. theAng is the angular value of the rotation in radians.
"""
def Scale(self,theP : gp_Pnt2d,theS : float) -> None:
"""
None
"""
def Scaled(self,theP : gp_Pnt2d,theS : float) -> gp_Lin2d:
"""
Scales a line. theS is the scaling value. Only the origin of the line is modified.
"""
def SetDirection(self,theV : gp_Dir2d) -> None:
"""
Changes the direction of the line.
"""
def SetLocation(self,theP : gp_Pnt2d) -> None:
"""
Changes the origin of the line.
"""
def SetPosition(self,theA : gp_Ax2d) -> None:
"""
Complete redefinition of the line. The "Location" point of <theA> is the origin of the line. The "Direction" of <theA> is the direction of the line.
"""
@overload
def SquareDistance(self,theP : gp_Pnt2d) -> float:
"""
Computes the square distance between <me> and the point <theP>.
Computes the square distance between two lines.
Computes the square distance between <me> and the point <theP>.
Computes the square distance between two lines.
"""
@overload
def SquareDistance(self,theOther : gp_Lin2d) -> float: ...
def Transform(self,theT : gp_Trsf2d) -> None:
"""
None
"""
def Transformed(self,theT : gp_Trsf2d) -> gp_Lin2d:
"""
Transforms a line with the transformation theT from class Trsf2d.
"""
@overload
def Translate(self,theP1 : gp_Pnt2d,theP2 : gp_Pnt2d) -> None:
"""
None
None
"""
@overload
def Translate(self,theV : gp_Vec2d) -> None: ...
@overload
def Translated(self,theV : gp_Vec2d) -> gp_Lin2d:
"""
Translates a line in the direction of the vector theV. The magnitude of the translation is the vector's magnitude.
Translates a line from the point theP1 to the point theP2.
"""
@overload
def Translated(self,theP1 : gp_Pnt2d,theP2 : gp_Pnt2d) -> gp_Lin2d: ...
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,theA : gp_Ax2d) -> None: ...
@overload
def __init__(self,theP : gp_Pnt2d,theV : gp_Dir2d) -> None: ...
@overload
def __init__(self,theA : float,theB : float,theC : float) -> None: ...
pass
class gp_Mat():
"""
Describes a three column, three row matrix. This sort of object is used in various vectorial or matrix computations.
"""
def Add(self,theOther : gp_Mat) -> None:
"""
None
None
"""
def Added(self,theOther : gp_Mat) -> gp_Mat:
"""
Computes the sum of this matrix and the matrix theOther for each coefficient of the matrix : <me>.Coef(i,j) + <theOther>.Coef(i,j)
Computes the sum of this matrix and the matrix theOther for each coefficient of the matrix : <me>.Coef(i,j) + <theOther>.Coef(i,j)
"""
def ChangeValue(self,theRow : int,theCol : int) -> float:
"""
Returns the coefficient of range (theRow, theCol) Raises OutOfRange if theRow < 1 or theRow > 3 or theCol < 1 or theCol > 3
"""
def Column(self,theCol : int) -> gp_XYZ:
"""
Returns the column of theCol index. Raises OutOfRange if theCol < 1 or theCol > 3
"""
def Determinant(self) -> float:
"""
Computes the determinant of the matrix.
"""
def Diagonal(self) -> gp_XYZ:
"""
Returns the main diagonal of the matrix.
"""
def Divide(self,theScalar : float) -> None:
"""
None
None
"""
def Divided(self,theScalar : float) -> gp_Mat:
"""
Divides all the coefficients of the matrix by Scalar
Divides all the coefficients of the matrix by Scalar
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def Invert(self) -> None:
"""
None
"""
def Inverted(self) -> gp_Mat:
"""
Inverses the matrix and raises if the matrix is singular. - Invert assigns the result to this matrix, while - Inverted creates a new one. Warning The Gauss LU decomposition is used to invert the matrix. Consequently, the matrix is considered as singular if the largest pivot found is less than or equal to gp::Resolution(). Exceptions Standard_ConstructionError if this matrix is singular, and therefore cannot be inverted.
"""
def IsSingular(self) -> bool:
"""
The Gauss LU decomposition is used to invert the matrix (see Math package) so the matrix is considered as singular if the largest pivot found is lower or equal to Resolution from gp.
"""
@overload
def Multiplied(self,theScalar : float) -> gp_Mat:
"""
Computes the product of two matrices <me> * <Other>
None
None
"""
@overload
def Multiplied(self,theOther : gp_Mat) -> gp_Mat: ...
@overload
def Multiply(self,theScalar : float) -> None:
"""
Computes the product of two matrices <me> = <Other> * <me>.
Multiplies all the coefficients of the matrix by Scalar
Computes the product of two matrices <me> = <Other> * <me>.
Multiplies all the coefficients of the matrix by Scalar
"""
@overload
def Multiply(self,theOther : gp_Mat) -> None: ...
def Power(self,N : int) -> None:
"""
None
"""
def Powered(self,theN : int) -> gp_Mat:
"""
Computes <me> = <me> * <me> * .......* <me>, theN time. if theN = 0 <me> = Identity if theN < 0 <me> = <me>.Invert() *...........* <me>.Invert(). If theN < 0 an exception will be raised if the matrix is not inversible
"""
def PreMultiply(self,theOther : gp_Mat) -> None:
"""
None
None
"""
def Row(self,theRow : int) -> gp_XYZ:
"""
returns the row of theRow index. Raises OutOfRange if theRow < 1 or theRow > 3
"""
def SetCol(self,theCol : int,theValue : gp_XYZ) -> None:
"""
Assigns the three coordinates of theValue to the column of index theCol of this matrix. Raises OutOfRange if theCol < 1 or theCol > 3.
"""
def SetCols(self,theCol1 : gp_XYZ,theCol2 : gp_XYZ,theCol3 : gp_XYZ) -> None:
"""
Assigns the number triples theCol1, theCol2, theCol3 to the three columns of this matrix.
"""
def SetCross(self,theRef : gp_XYZ) -> None:
"""
Modifies the matrix M so that applying it to any number triple (X, Y, Z) produces the same result as the cross product of theRef and the number triple (X, Y, Z): i.e.: M * {X,Y,Z}t = theRef.Cross({X, Y ,Z}) this matrix is anti symmetric. To apply this matrix to the triplet {XYZ} is the same as to do the cross product between the triplet theRef and the triplet {XYZ}. Note: this matrix is anti-symmetric.
"""
def SetDiagonal(self,theX1 : float,theX2 : float,theX3 : float) -> None:
"""
Modifies the main diagonal of the matrix. The other coefficients of the matrix are not modified.
"""
def SetDot(self,theRef : gp_XYZ) -> None:
"""
Modifies this matrix so that applying it to any number triple (X, Y, Z) produces the same result as the scalar product of theRef and the number triple (X, Y, Z): this * (X,Y,Z) = theRef.(X,Y,Z) Note: this matrix is symmetric.
"""
def SetIdentity(self) -> None:
"""
Modifies this matrix so that it represents the Identity matrix.
"""
def SetRotation(self,theAxis : gp_XYZ,theAng : float) -> None:
"""
Modifies this matrix so that it represents a rotation. theAng is the angular value in radians and the XYZ axis gives the direction of the rotation. Raises ConstructionError if XYZ.Modulus() <= Resolution()
"""
def SetRow(self,theRow : int,theValue : gp_XYZ) -> None:
"""
Assigns the three coordinates of Value to the row of index theRow of this matrix. Raises OutOfRange if theRow < 1 or theRow > 3.
"""
def SetRows(self,theRow1 : gp_XYZ,theRow2 : gp_XYZ,theRow3 : gp_XYZ) -> None:
"""
Assigns the number triples theRow1, theRow2, theRow3 to the three rows of this matrix.
"""
def SetScale(self,theS : float) -> None:
"""
Modifies the matrix so that it represents a scaling transformation, where theS is the scale factor. :
"""
def SetValue(self,theRow : int,theCol : int,theValue : float) -> None:
"""
Assigns <theValue> to the coefficient of row theRow, column theCol of this matrix. Raises OutOfRange if theRow < 1 or theRow > 3 or theCol < 1 or theCol > 3
"""
def Subtract(self,theOther : gp_Mat) -> None:
"""
None
None
"""
def Subtracted(self,theOther : gp_Mat) -> gp_Mat:
"""
cOmputes for each coefficient of the matrix : <me>.Coef(i,j) - <theOther>.Coef(i,j)
cOmputes for each coefficient of the matrix : <me>.Coef(i,j) - <theOther>.Coef(i,j)
"""
def Transpose(self) -> None:
"""
None
None
"""
def Transposed(self) -> gp_Mat:
"""
Transposes the matrix. A(j, i) -> A (i, j)
"""
def Value(self,theRow : int,theCol : int) -> float:
"""
Returns the coefficient of range (theRow, theCol) Raises OutOfRange if theRow < 1 or theRow > 3 or theCol < 1 or theCol > 3
"""
def __add__(self,theOther : gp_Mat) -> gp_Mat:
"""
None
"""
def __call__(self,theRow : int,theCol : int) -> float:
"""
None
None
"""
def __iadd__(self,theOther : gp_Mat) -> None:
"""
None
"""
@overload
def __imul__(self,theScalar : float) -> None:
"""
None
None
"""
@overload
def __imul__(self,theOther : gp_Mat) -> None: ...
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,theA11 : float,theA12 : float,theA13 : float,theA21 : float,theA22 : float,theA23 : float,theA31 : float,theA32 : float,theA33 : float) -> None: ...
@overload
def __init__(self,theCol1 : gp_XYZ,theCol2 : gp_XYZ,theCol3 : gp_XYZ) -> None: ...
def __isub__(self,theOther : gp_Mat) -> None:
"""
None
"""
def __itruediv__(self,theScalar : float) -> None:
"""
None
"""
@overload
def __mul__(self,theOther : gp_Mat) -> gp_Mat:
"""
None
None
"""
@overload
def __mul__(self,theScalar : float) -> gp_Mat: ...
@overload
def __rmul__(self,theOther : gp_Mat) -> gp_Mat:
"""
None
None
"""
@overload
def __rmul__(self,theScalar : float) -> gp_Mat: ...
def __sub__(self,theOther : gp_Mat) -> gp_Mat:
"""
None
"""
def __truediv__(self,theScalar : float) -> gp_Mat:
"""
None
"""
pass
class gp_Mat2d():
"""
Describes a two column, two row matrix. This sort of object is used in various vectorial or matrix computations.
"""
@overload
def Add(self,Other : gp_Mat2d) -> None:
"""
None
None
"""
@overload
def Add(self,theOther : gp_Mat2d) -> None: ...
def Added(self,theOther : gp_Mat2d) -> gp_Mat2d:
"""
Computes the sum of this matrix and the matrix theOther.for each coefficient of the matrix : Note: - operator += assigns the result to this matrix, while - operator + creates a new one.
Computes the sum of this matrix and the matrix theOther.for each coefficient of the matrix : Note: - operator += assigns the result to this matrix, while - operator + creates a new one.
"""
def ChangeValue(self,theRow : int,theCol : int) -> float:
"""
Returns the coefficient of range (theRow, theCol) Raises OutOfRange if theRow < 1 or theRow > 2 or theCol < 1 or theCol > 2
"""
def Column(self,theCol : int) -> gp_XY:
"""
Returns the column of theCol index. Raises OutOfRange if theCol < 1 or theCol > 2
"""
def Determinant(self) -> float:
"""
Computes the determinant of the matrix.
"""
def Diagonal(self) -> gp_XY:
"""
Returns the main diagonal of the matrix.
"""
def Divide(self,theScalar : float) -> None:
"""
None
None
"""
def Divided(self,theScalar : float) -> gp_Mat2d:
"""
Divides all the coefficients of the matrix by a scalar.
Divides all the coefficients of the matrix by a scalar.
"""
def Invert(self) -> None:
"""
None
"""
def Inverted(self) -> gp_Mat2d:
"""
Inverses the matrix and raises exception if the matrix is singular.
"""
def IsSingular(self) -> bool:
"""
Returns true if this matrix is singular (and therefore, cannot be inverted). The Gauss LU decomposition is used to invert the matrix so the matrix is considered as singular if the largest pivot found is lower or equal to Resolution from gp.
"""
@overload
def Multiplied(self,theScalar : float) -> gp_Mat2d:
"""
None
None
None
"""
@overload
def Multiplied(self,theOther : gp_Mat2d) -> gp_Mat2d: ...
@overload
def Multiply(self,theScalar : float) -> None:
"""
Computes the product of two matrices <me> * <theOther>
Multiplies all the coefficients of the matrix by a scalar.
Computes the product of two matrices <me> * <theOther>
Multiplies all the coefficients of the matrix by a scalar.
"""
@overload
def Multiply(self,theOther : gp_Mat2d) -> None: ...
def Power(self,theN : int) -> None:
"""
None
"""
def Powered(self,theN : int) -> gp_Mat2d:
"""
computes <me> = <me> * <me> * .......* <me>, theN time. if theN = 0 <me> = Identity if theN < 0 <me> = <me>.Invert() *...........* <me>.Invert(). If theN < 0 an exception can be raised if the matrix is not inversible
"""
def PreMultiply(self,theOther : gp_Mat2d) -> None:
"""
Modifies this matrix by premultiplying it by the matrix Other <me> = theOther * <me>.
Modifies this matrix by premultiplying it by the matrix Other <me> = theOther * <me>.
"""
def Row(self,theRow : int) -> gp_XY:
"""
Returns the row of index theRow. Raised if theRow < 1 or theRow > 2
"""
def SetCol(self,theCol : int,theValue : gp_XY) -> None:
"""
Assigns the two coordinates of theValue to the column of range theCol of this matrix Raises OutOfRange if theCol < 1 or theCol > 2.
"""
def SetCols(self,theCol1 : gp_XY,theCol2 : gp_XY) -> None:
"""
Assigns the number pairs theCol1, theCol2 to the two columns of this matrix
"""
def SetDiagonal(self,theX1 : float,theX2 : float) -> None:
"""
Modifies the main diagonal of the matrix. The other coefficients of the matrix are not modified.
"""
def SetIdentity(self) -> None:
"""
Modifies this matrix, so that it represents the Identity matrix.
"""
def SetRotation(self,theAng : float) -> None:
"""
Modifies this matrix, so that it represents a rotation. theAng is the angular value in radian of the rotation.
Modifies this matrix, so that it represents a rotation. theAng is the angular value in radian of the rotation.
"""
def SetRow(self,theRow : int,theValue : gp_XY) -> None:
"""
Assigns the two coordinates of theValue to the row of index theRow of this matrix. Raises OutOfRange if theRow < 1 or theRow > 2.
"""
def SetRows(self,theRow1 : gp_XY,theRow2 : gp_XY) -> None:
"""
Assigns the number pairs theRow1, theRow2 to the two rows of this matrix.
"""
def SetScale(self,theS : float) -> None:
"""
Modifies the matrix such that it represents a scaling transformation, where theS is the scale factor :
"""
def SetValue(self,theRow : int,theCol : int,theValue : float) -> None:
"""
Assigns <theValue> to the coefficient of row theRow, column theCol of this matrix. Raises OutOfRange if theRow < 1 or theRow > 2 or theCol < 1 or theCol > 2
"""
def Subtract(self,theOther : gp_Mat2d) -> None:
"""
None
None
"""
def Subtracted(self,theOther : gp_Mat2d) -> gp_Mat2d:
"""
Computes for each coefficient of the matrix :
Computes for each coefficient of the matrix :
"""
def Transpose(self) -> None:
"""
None
None
"""
def Transposed(self) -> gp_Mat2d:
"""
Transposes the matrix. A(j, i) -> A (i, j)
Transposes the matrix. A(j, i) -> A (i, j)
"""
def Value(self,theRow : int,theCol : int) -> float:
"""
Returns the coefficient of range (ttheheRow, theCol) Raises OutOfRange if theRow < 1 or theRow > 2 or theCol < 1 or theCol > 2
"""
def __add__(self,theOther : gp_Mat2d) -> gp_Mat2d:
"""
None
"""
def __call__(self,theRow : int,theCol : int) -> float:
"""
None
None
"""
def __iadd__(self,theOther : gp_Mat2d) -> None:
"""
None
"""
def __imul__(self,theScalar : float) -> None:
"""
None
"""
@overload
def __init__(self,theCol1 : gp_XY,theCol2 : gp_XY) -> None: ...
@overload
def __init__(self) -> None: ...
def __isub__(self,theOther : gp_Mat2d) -> None:
"""
None
"""
def __itruediv__(self,theScalar : float) -> None:
"""
None
"""
@overload
def __mul__(self,theOther : gp_Mat2d) -> gp_Mat2d:
"""
None
None
"""
@overload
def __mul__(self,theScalar : float) -> gp_Mat2d: ...
@overload
def __rmul__(self,theOther : gp_Mat2d) -> gp_Mat2d:
"""
None
None
"""
@overload
def __rmul__(self,theScalar : float) -> gp_Mat2d: ...
def __sub__(self,theOther : gp_Mat2d) -> gp_Mat2d:
"""
None
"""
def __truediv__(self,theScalar : float) -> gp_Mat2d:
"""
None
"""
pass
class gp_Parab():
"""
Describes a parabola in 3D space. A parabola is defined by its focal length (that is, the distance between its focus and apex) and positioned in space with a coordinate system (a gp_Ax2 object) where: - the origin of the coordinate system is on the apex of the parabola, - the "X Axis" of the coordinate system is the axis of symmetry; the parabola is on the positive side of this axis, and - the origin, "X Direction" and "Y Direction" of the coordinate system define the plane of the parabola. The equation of the parabola in this coordinate system, which is the "local coordinate system" of the parabola, is: where P, referred to as the parameter of the parabola, is the distance between the focus and the directrix (P is twice the focal length). The "main Direction" of the local coordinate system gives the normal vector to the plane of the parabola. See Also gce_MakeParab which provides functions for more complex parabola constructions Geom_Parabola which provides additional functions for constructing parabolas and works, in particular, with the parametric equations of parabolas
"""
def Axis(self) -> gp_Ax1:
"""
Returns the main axis of the parabola. It is the axis normal to the plane of the parabola passing through the vertex of the parabola.
"""
def Directrix(self) -> gp_Ax1:
"""
Computes the directrix of this parabola. The directrix is: - a line parallel to the "Y Direction" of the local coordinate system of this parabola, and - located on the negative side of the axis of symmetry, at a distance from the apex which is equal to the focal length of this parabola. The directrix is returned as an axis (a gp_Ax1 object), the origin of which is situated on the "X Axis" of this parabola.
Computes the directrix of this parabola. The directrix is: - a line parallel to the "Y Direction" of the local coordinate system of this parabola, and - located on the negative side of the axis of symmetry, at a distance from the apex which is equal to the focal length of this parabola. The directrix is returned as an axis (a gp_Ax1 object), the origin of which is situated on the "X Axis" of this parabola.
"""
def Focal(self) -> float:
"""
Returns the distance between the vertex and the focus of the parabola.
"""
def Focus(self) -> gp_Pnt:
"""
- Computes the focus of the parabola.
- Computes the focus of the parabola.
"""
def Location(self) -> gp_Pnt:
"""
Returns the vertex of the parabola. It is the "Location" point of the coordinate system of the parabola.
"""
@overload
def Mirror(self,theA1 : gp_Ax1) -> None:
"""
None
None
None
"""
@overload
def Mirror(self,theA2 : gp_Ax2) -> None: ...
@overload
def Mirror(self,theP : gp_Pnt) -> None: ...
@overload
def Mirrored(self,theA1 : gp_Ax1) -> gp_Parab:
"""
Performs the symmetrical transformation of a parabola with respect to the point theP which is the center of the symmetry.
Performs the symmetrical transformation of a parabola with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a parabola with respect to a plane. The axis placement theA2 locates the plane of the symmetry (Location, XDirection, YDirection).
"""
@overload
def Mirrored(self,theA2 : gp_Ax2) -> gp_Parab: ...
@overload
def Mirrored(self,theP : gp_Pnt) -> gp_Parab: ...
def Parameter(self) -> float:
"""
Computes the parameter of the parabola. It is the distance between the focus and the directrix of the parabola. This distance is twice the focal length.
"""
def Position(self) -> gp_Ax2:
"""
Returns the local coordinate system of the parabola.
"""
def Rotate(self,theA1 : gp_Ax1,theAng : float) -> None:
"""
None
"""
def Rotated(self,theA1 : gp_Ax1,theAng : float) -> gp_Parab:
"""
Rotates a parabola. theA1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Scale(self,theP : gp_Pnt,theS : float) -> None:
"""
None
None
"""
def Scaled(self,theP : gp_Pnt,theS : float) -> gp_Parab:
"""
Scales a parabola. theS is the scaling value. If theS is negative the direction of the symmetry axis XAxis is reversed and the direction of the YAxis too.
Scales a parabola. theS is the scaling value. If theS is negative the direction of the symmetry axis XAxis is reversed and the direction of the YAxis too.
"""
def SetAxis(self,theA1 : gp_Ax1) -> None:
"""
Modifies this parabola by redefining its local coordinate system so that - its origin and "main Direction" become those of the axis theA1 (the "X Direction" and "Y Direction" are then recomputed in the same way as for any gp_Ax2) Raises ConstructionError if the direction of theA1 is parallel to the previous XAxis of the parabola.
"""
def SetFocal(self,theFocal : float) -> None:
"""
Changes the focal distance of the parabola. Raises ConstructionError if theFocal < 0.0
"""
def SetLocation(self,theP : gp_Pnt) -> None:
"""
Changes the location of the parabola. It is the vertex of the parabola.
"""
def SetPosition(self,theA2 : gp_Ax2) -> None:
"""
Changes the local coordinate system of the parabola.
"""
def Transform(self,theT : gp_Trsf) -> None:
"""
None
None
"""
def Transformed(self,theT : gp_Trsf) -> gp_Parab:
"""
Transforms a parabola with the transformation theT from class Trsf.
Transforms a parabola with the transformation theT from class Trsf.
"""
@overload
def Translate(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> None:
"""
None
None
"""
@overload
def Translate(self,theV : gp_Vec) -> None: ...
@overload
def Translated(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> gp_Parab:
"""
Translates a parabola in the direction of the vector theV. The magnitude of the translation is the vector's magnitude.
Translates a parabola from the point theP1 to the point theP2.
"""
@overload
def Translated(self,theV : gp_Vec) -> gp_Parab: ...
def XAxis(self) -> gp_Ax1:
"""
Returns the symmetry axis of the parabola. The location point of the axis is the vertex of the parabola.
"""
def YAxis(self) -> gp_Ax1:
"""
It is an axis parallel to the directrix of the parabola. The location point of this axis is the vertex of the parabola.
"""
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,theD : gp_Ax1,theF : gp_Pnt) -> None: ...
@overload
def __init__(self,theA2 : gp_Ax2,theFocal : float) -> None: ...
pass
class gp_Parab2d():
"""
Describes a parabola in the plane (2D space). A parabola is defined by its focal length (that is, the distance between its focus and apex) and positioned in the plane with a coordinate system (a gp_Ax22d object) where: - the origin of the coordinate system is on the apex of the parabola, and - the "X Axis" of the coordinate system is the axis of symmetry; the parabola is on the positive side of this axis. This coordinate system is the "local coordinate system" of the parabola. Its orientation (direct or indirect sense) gives an implicit orientation to the parabola. In this coordinate system, the equation for the parabola is: where P, referred to as the parameter of the parabola, is the distance between the focus and the directrix (P is twice the focal length). See Also GCE2d_MakeParab2d which provides functions for more complex parabola constructions Geom2d_Parabola which provides additional functions for constructing parabolas and works, in particular, with the parametric equations of parabolas
"""
def Axis(self) -> gp_Ax22d:
"""
Returns the local coordinate system of the parabola. The "Location" point of this axis is the vertex of the parabola.
"""
def Coefficients(self) -> tuple[float, float, float, float, float, float]:
"""
Computes the coefficients of the implicit equation of the parabola (in WCS - World Coordinate System).
"""
def Directrix(self) -> gp_Ax2d:
"""
Computes the directrix of the parabola. The directrix is: - a line parallel to the "Y Direction" of the local coordinate system of this parabola, and - located on the negative side of the axis of symmetry, at a distance from the apex which is equal to the focal length of this parabola. The directrix is returned as an axis (a gp_Ax2d object), the origin of which is situated on the "X Axis" of this parabola.
Computes the directrix of the parabola. The directrix is: - a line parallel to the "Y Direction" of the local coordinate system of this parabola, and - located on the negative side of the axis of symmetry, at a distance from the apex which is equal to the focal length of this parabola. The directrix is returned as an axis (a gp_Ax2d object), the origin of which is situated on the "X Axis" of this parabola.
"""
def Focal(self) -> float:
"""
Returns the distance between the vertex and the focus of the parabola.
"""
def Focus(self) -> gp_Pnt2d:
"""
Returns the focus of the parabola.
"""
def IsDirect(self) -> bool:
"""
Returns true if the local coordinate system is direct and false in the other case.
"""
def Location(self) -> gp_Pnt2d:
"""
Returns the vertex of the parabola.
"""
@overload
def Mirror(self,theA : gp_Ax2d) -> None:
"""
None
None
"""
@overload
def Mirror(self,theP : gp_Pnt2d) -> None: ...
def MirrorAxis(self) -> gp_Ax2d:
"""
Returns the symmetry axis of the parabola. The "Location" point of this axis is the vertex of the parabola.
"""
@overload
def Mirrored(self,theP : gp_Pnt2d) -> gp_Parab2d:
"""
Performs the symmetrical transformation of a parabola with respect to the point theP which is the center of the symmetry
Performs the symmetrical transformation of a parabola with respect to an axis placement which is the axis of the symmetry.
"""
@overload
def Mirrored(self,theA : gp_Ax2d) -> gp_Parab2d: ...
def Parameter(self) -> float:
"""
Returns the distance between the focus and the directrix of the parabola.
"""
def Reverse(self) -> None:
"""
None
"""
def Reversed(self) -> gp_Parab2d:
"""
Reverses the orientation of the local coordinate system of this parabola (the "Y Direction" is reversed). Therefore, the implicit orientation of this parabola is reversed. Note: - Reverse assigns the result to this parabola, while - Reversed creates a new one.
Reverses the orientation of the local coordinate system of this parabola (the "Y Direction" is reversed). Therefore, the implicit orientation of this parabola is reversed. Note: - Reverse assigns the result to this parabola, while - Reversed creates a new one.
"""
def Rotate(self,theP : gp_Pnt2d,theAng : float) -> None:
"""
None
"""
def Rotated(self,theP : gp_Pnt2d,theAng : float) -> gp_Parab2d:
"""
Rotates a parabola. theP is the center of the rotation. theAng is the angular value of the rotation in radians.
"""
def Scale(self,theP : gp_Pnt2d,theS : float) -> None:
"""
None
None
"""
def Scaled(self,theP : gp_Pnt2d,theS : float) -> gp_Parab2d:
"""
Scales a parabola. theS is the scaling value. If theS is negative the direction of the symmetry axis "XAxis" is reversed and the direction of the "YAxis" too.
Scales a parabola. theS is the scaling value. If theS is negative the direction of the symmetry axis "XAxis" is reversed and the direction of the "YAxis" too.
"""
def SetAxis(self,theA : gp_Ax22d) -> None:
"""
Changes the local coordinate system of the parabola. The "Location" point of A becomes the vertex of the parabola.
"""
def SetFocal(self,theFocal : float) -> None:
"""
Changes the focal distance of the parabola Warnings : It is possible to have theFocal = 0. Raises ConstructionError if theFocal < 0.0
"""
def SetLocation(self,theP : gp_Pnt2d) -> None:
"""
Changes the "Location" point of the parabola. It is the vertex of the parabola.
"""
def SetMirrorAxis(self,theA : gp_Ax2d) -> None:
"""
Modifies this parabola, by redefining its local coordinate system so that its origin and "X Direction" become those of the axis MA. The "Y Direction" of the local coordinate system is then recomputed. The orientation of the local coordinate system is not modified.
"""
def Transform(self,theT : gp_Trsf2d) -> None:
"""
None
None
"""
def Transformed(self,theT : gp_Trsf2d) -> gp_Parab2d:
"""
Transforms an parabola with the transformation theT from class Trsf2d.
Transforms an parabola with the transformation theT from class Trsf2d.
"""
@overload
def Translate(self,theP1 : gp_Pnt2d,theP2 : gp_Pnt2d) -> None:
"""
None
None
"""
@overload
def Translate(self,theV : gp_Vec2d) -> None: ...
@overload
def Translated(self,theV : gp_Vec2d) -> gp_Parab2d:
"""
Translates a parabola in the direction of the vectorthe theV. The magnitude of the translation is the vector's magnitude.
Translates a parabola from the point theP1 to the point theP2.
"""
@overload
def Translated(self,theP1 : gp_Pnt2d,theP2 : gp_Pnt2d) -> gp_Parab2d: ...
@overload
def __init__(self,theAxes : gp_Ax22d,theFocalLength : float) -> None: ...
@overload
def __init__(self,theMirrorAxis : gp_Ax2d,theFocalLength : float,theSense : bool=True) -> None: ...
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,theDirectrix : gp_Ax2d,theFocus : gp_Pnt2d,theSense : bool=True) -> None: ...
pass
class gp_Pln():
"""
Describes a plane. A plane is positioned in space with a coordinate system (a gp_Ax3 object), such that the plane is defined by the origin, "X Direction" and "Y Direction" of this coordinate system, which is the "local coordinate system" of the plane. The "main Direction" of the coordinate system is a vector normal to the plane. It gives the plane an implicit orientation such that the plane is said to be "direct", if the coordinate system is right-handed, or "indirect" in the other case. Note: when a gp_Pln plane is converted into a Geom_Plane plane, some implicit properties of its local coordinate system are used explicitly: - its origin defines the origin of the two parameters of the planar surface, - its implicit orientation is also that of the Geom_Plane. See Also gce_MakePln which provides functions for more complex plane constructions Geom_Plane which provides additional functions for constructing planes and works, in particular, with the parametric equations of planes
"""
def Axis(self) -> gp_Ax1:
"""
Returns the plane's normal Axis.
"""
def Coefficients(self) -> tuple[float, float, float, float]:
"""
Returns the coefficients of the plane's cartesian equation :
Returns the coefficients of the plane's cartesian equation :
"""
@overload
def Contains(self,theP : gp_Pnt,theLinearTolerance : float) -> bool:
"""
Returns true if this plane contains the point theP. This means that - the distance between point theP and this plane is less than or equal to theLinearTolerance, or - line L is normal to the "main Axis" of the local coordinate system of this plane, within the tolerance AngularTolerance, and the distance between the origin of line L and this plane is less than or equal to theLinearTolerance.
Returns true if this plane contains the line theL. This means that - the distance between point P and this plane is less than or equal to LinearTolerance, or - line theL is normal to the "main Axis" of the local coordinate system of this plane, within the tolerance theAngularTolerance, and the distance between the origin of line theL and this plane is less than or equal to theLinearTolerance.
"""
@overload
def Contains(self,theL : gp_Lin,theLinearTolerance : float,theAngularTolerance : float) -> bool: ...
def Direct(self) -> bool:
"""
returns true if the Ax3 is right handed.
"""
@overload
def Distance(self,theOther : gp_Pln) -> float:
"""
Computes the distance between <me> and the point <theP>.
Computes the distance between <me> and the line <theL>.
Computes the distance between two planes.
Computes the distance between <me> and the point <theP>.
Computes the distance between <me> and the line <theL>.
Computes the distance between two planes.
"""
@overload
def Distance(self,theL : gp_Lin) -> float: ...
@overload
def Distance(self,theP : gp_Pnt) -> float: ...
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def Location(self) -> gp_Pnt:
"""
Returns the plane's location (origin).
"""
@overload
def Mirror(self,theA2 : gp_Ax2) -> None:
"""
None
None
None
"""
@overload
def Mirror(self,theA1 : gp_Ax1) -> None: ...
@overload
def Mirror(self,theP : gp_Pnt) -> None: ...
@overload
def Mirrored(self,theA2 : gp_Ax2) -> gp_Pln:
"""
Performs the symmetrical transformation of a plane with respect to the point <theP> which is the center of the symmetry Warnings : The normal direction to the plane is not changed. The "XAxis" and the "YAxis" are reversed.
Performs the symmetrical transformation of a plane with respect to an axis placement which is the axis of the symmetry. The transformation is performed on the "Location" point, on the "XAxis" and the "YAxis". The resulting normal direction is the cross product between the "XDirection" and the "YDirection" after transformation if the initial plane was right handed, else it is the opposite.
Performs the symmetrical transformation of a plane with respect to an axis placement. The axis placement <A2> locates the plane of the symmetry. The transformation is performed on the "Location" point, on the "XAxis" and the "YAxis". The resulting normal direction is the cross product between the "XDirection" and the "YDirection" after transformation if the initial plane was right handed, else it is the opposite.
"""
@overload
def Mirrored(self,theA1 : gp_Ax1) -> gp_Pln: ...
@overload
def Mirrored(self,theP : gp_Pnt) -> gp_Pln: ...
def Position(self) -> gp_Ax3:
"""
Returns the local coordinate system of the plane .
"""
def Rotate(self,theA1 : gp_Ax1,theAng : float) -> None:
"""
None
"""
def Rotated(self,theA1 : gp_Ax1,theAng : float) -> gp_Pln:
"""
rotates a plane. theA1 is the axis of the rotation. theAng is the angular value of the rotation in radians.
"""
def Scale(self,theP : gp_Pnt,theS : float) -> None:
"""
None
"""
def Scaled(self,theP : gp_Pnt,theS : float) -> gp_Pln:
"""
Scales a plane. theS is the scaling value.
"""
def SetAxis(self,theA1 : gp_Ax1) -> None:
"""
Modifies this plane, by redefining its local coordinate system so that - its origin and "main Direction" become those of the axis theA1 (the "X Direction" and "Y Direction" are then recomputed). Raises ConstructionError if the theA1 is parallel to the "XAxis" of the plane.
"""
def SetLocation(self,theLoc : gp_Pnt) -> None:
"""
Changes the origin of the plane.
"""
def SetPosition(self,theA3 : gp_Ax3) -> None:
"""
Changes the local coordinate system of the plane.
"""
@overload
def SquareDistance(self,theOther : gp_Pln) -> float:
"""
Computes the square distance between <me> and the point <theP>.
Computes the square distance between <me> and the line <theL>.
Computes the square distance between two planes.
"""
@overload
def SquareDistance(self,theP : gp_Pnt) -> float: ...
@overload
def SquareDistance(self,theL : gp_Lin) -> float: ...
def Transform(self,theT : gp_Trsf) -> None:
"""
None
"""
def Transformed(self,theT : gp_Trsf) -> gp_Pln:
"""
Transforms a plane with the transformation theT from class Trsf. The transformation is performed on the "Location" point, on the "XAxis" and the "YAxis". The resulting normal direction is the cross product between the "XDirection" and the "YDirection" after transformation.
"""
@overload
def Translate(self,theV : gp_Vec) -> None:
"""
None
None
"""
@overload
def Translate(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> None: ...
@overload
def Translated(self,theV : gp_Vec) -> gp_Pln:
"""
Translates a plane in the direction of the vector theV. The magnitude of the translation is the vector's magnitude.
Translates a plane from the point theP1 to the point theP2.
"""
@overload
def Translated(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> gp_Pln: ...
def UReverse(self) -> None:
"""
Reverses the U parametrization of the plane reversing the XAxis.
"""
def VReverse(self) -> None:
"""
Reverses the V parametrization of the plane reversing the YAxis.
"""
def XAxis(self) -> gp_Ax1:
"""
Returns the X axis of the plane.
"""
def YAxis(self) -> gp_Ax1:
"""
Returns the Y axis of the plane.
"""
@overload
def __init__(self,theA3 : gp_Ax3) -> None: ...
@overload
def __init__(self,theP : gp_Pnt,theV : gp_Dir) -> None: ...
@overload
def __init__(self,theA : float,theB : float,theC : float,theD : float) -> None: ...
@overload
def __init__(self) -> None: ...
pass
class gp_Pnt():
"""
Defines a 3D cartesian point.
"""
def BaryCenter(self,theAlpha : float,theP : gp_Pnt,theBeta : float) -> None:
"""
Assigns the result of the following expression to this point (theAlpha*this + theBeta*theP) / (theAlpha + theBeta)
"""
def ChangeCoord(self) -> gp_XYZ:
"""
Returns the coordinates of this point. Note: This syntax allows direct modification of the returned value.
"""
@overload
def Coord(self) -> gp_XYZ:
"""
Returns the coordinate of corresponding to the value of theIndex : theIndex = 1 => X is returned theIndex = 2 => Y is returned theIndex = 3 => Z is returned Raises OutOfRange if theIndex != {1, 2, 3}. Raised if theIndex != {1, 2, 3}.
For this point gives its three coordinates theXp, theYp and theZp.
For this point, returns its three coordinates as a XYZ object.
"""
@overload
def Coord(self,theIndex : int) -> float: ...
@overload
def Coord(self) -> tuple[float, float, float]: ...
def Distance(self,theOther : gp_Pnt) -> float:
"""
Computes the distance between two points.
Computes the distance between two points.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def InitFromJson(self,theSStream : Any,theStreamPos : int) -> bool:
"""
Inits the content of me from the stream
"""
def IsEqual(self,theOther : gp_Pnt,theLinearTolerance : float) -> bool:
"""
Comparison Returns True if the distance between the two points is lower or equal to theLinearTolerance.
"""
@overload
def Mirror(self,theA2 : gp_Ax2) -> None:
"""
Performs the symmetrical transformation of a point with respect to the point theP which is the center of the symmetry.
None
None
"""
@overload
def Mirror(self,theP : gp_Pnt) -> None: ...
@overload
def Mirror(self,theA1 : gp_Ax1) -> None: ...
@overload
def Mirrored(self,theA2 : gp_Ax2) -> gp_Pnt:
"""
Performs the symmetrical transformation of a point with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a point with respect to a plane. The axis placement theA2 locates the plane of the symmetry : (Location, XDirection, YDirection).
Rotates a point. theA1 is the axis of the rotation. theAng is the angular value of the rotation in radians.
"""
@overload
def Mirrored(self,theA1 : gp_Ax1) -> gp_Pnt: ...
@overload
def Mirrored(self,theP : gp_Pnt) -> gp_Pnt: ...
def Rotate(self,theA1 : gp_Ax1,theAng : float) -> None:
"""
None
None
"""
def Rotated(self,theA1 : gp_Ax1,theAng : float) -> gp_Pnt:
"""
None
"""
def Scale(self,theP : gp_Pnt,theS : float) -> None:
"""
Scales a point. theS is the scaling value.
Scales a point. theS is the scaling value.
"""
def Scaled(self,theP : gp_Pnt,theS : float) -> gp_Pnt:
"""
None
"""
@overload
def SetCoord(self,theXp : float,theYp : float,theZp : float) -> None:
"""
Changes the coordinate of range theIndex : theIndex = 1 => X is modified theIndex = 2 => Y is modified theIndex = 3 => Z is modified Raised if theIndex != {1, 2, 3}.
For this point, assigns the values theXp, theYp and theZp to its three coordinates.
"""
@overload
def SetCoord(self,theIndex : int,theXi : float) -> None: ...
def SetX(self,theX : float) -> None:
"""
Assigns the given value to the X coordinate of this point.
"""
def SetXYZ(self,theCoord : gp_XYZ) -> None:
"""
Assigns the three coordinates of theCoord to this point.
"""
def SetY(self,theY : float) -> None:
"""
Assigns the given value to the Y coordinate of this point.
"""
def SetZ(self,theZ : float) -> None:
"""
Assigns the given value to the Z coordinate of this point.
"""
def SquareDistance(self,theOther : gp_Pnt) -> float:
"""
Computes the square distance between two points.
Computes the square distance between two points.
"""
def Transform(self,theT : gp_Trsf) -> None:
"""
Transforms a point with the transformation T.
"""
def Transformed(self,theT : gp_Trsf) -> gp_Pnt:
"""
None
"""
@overload
def Translate(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> None:
"""
Translates a point in the direction of the vector theV. The magnitude of the translation is the vector's magnitude.
Translates a point from the point theP1 to the point theP2.
Translates a point in the direction of the vector theV. The magnitude of the translation is the vector's magnitude.
"""
@overload
def Translate(self,theV : gp_Vec) -> None: ...
@overload
def Translated(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> gp_Pnt:
"""
None
None
None
"""
@overload
def Translated(self,theV : gp_Vec) -> gp_Pnt: ...
def X(self) -> float:
"""
For this point, returns its X coordinate.
"""
def XYZ(self) -> gp_XYZ:
"""
For this point, returns its three coordinates as a XYZ object.
"""
def Y(self) -> float:
"""
For this point, returns its Y coordinate.
"""
def Z(self) -> float:
"""
For this point, returns its Z coordinate.
"""
@overload
def __init__(self,theCoord : gp_XYZ) -> None: ...
@overload
def __init__(self,theXp : float,theYp : float,theZp : float) -> None: ...
@overload
def __init__(self) -> None: ...
pass
class gp_Pnt2d():
"""
Defines a non-persistent 2D cartesian point.
"""
def ChangeCoord(self) -> gp_XY:
"""
Returns the coordinates of this point. Note: This syntax allows direct modification of the returned value.
"""
@overload
def Coord(self) -> gp_XY:
"""
Returns the coordinate of range theIndex : theIndex = 1 => X is returned theIndex = 2 => Y is returned Raises OutOfRange if theIndex != {1, 2}.
For this point returns its two coordinates as a number pair.
For this point, returns its two coordinates as a number pair.
"""
@overload
def Coord(self) -> tuple[float, float]: ...
@overload
def Coord(self,theIndex : int) -> float: ...
def Distance(self,theOther : gp_Pnt2d) -> float:
"""
Computes the distance between two points.
Computes the distance between two points.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def IsEqual(self,theOther : gp_Pnt2d,theLinearTolerance : float) -> bool:
"""
Comparison Returns True if the distance between the two points is lower or equal to theLinearTolerance.
"""
@overload
def Mirror(self,theA : gp_Ax2d) -> None:
"""
Performs the symmetrical transformation of a point with respect to the point theP which is the center of the symmetry.
None
"""
@overload
def Mirror(self,theP : gp_Pnt2d) -> None: ...
@overload
def Mirrored(self,theP : gp_Pnt2d) -> gp_Pnt2d:
"""
Performs the symmetrical transformation of a point with respect to an axis placement which is the axis
None
"""
@overload
def Mirrored(self,theA : gp_Ax2d) -> gp_Pnt2d: ...
def Rotate(self,theP : gp_Pnt2d,theAng : float) -> None:
"""
Rotates a point. theA1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
Rotates a point. theA1 is the axis of the rotation. Ang is the angular value of the rotation in radians.
"""
def Rotated(self,theP : gp_Pnt2d,theAng : float) -> gp_Pnt2d:
"""
None
"""
def Scale(self,theP : gp_Pnt2d,theS : float) -> None:
"""
Scales a point. theS is the scaling value.
Scales a point. theS is the scaling value.
"""
def Scaled(self,theP : gp_Pnt2d,theS : float) -> gp_Pnt2d:
"""
None
"""
@overload
def SetCoord(self,theXp : float,theYp : float) -> None:
"""
Assigns the value Xi to the coordinate that corresponds to theIndex: theIndex = 1 => X is modified theIndex = 2 => Y is modified Raises OutOfRange if theIndex != {1, 2}.
For this point, assigns the values theXp and theYp to its two coordinates
"""
@overload
def SetCoord(self,theIndex : int,theXi : float) -> None: ...
def SetX(self,theX : float) -> None:
"""
Assigns the given value to the X coordinate of this point.
"""
def SetXY(self,theCoord : gp_XY) -> None:
"""
Assigns the two coordinates of Coord to this point.
"""
def SetY(self,theY : float) -> None:
"""
Assigns the given value to the Y coordinate of this point.
"""
def SquareDistance(self,theOther : gp_Pnt2d) -> float:
"""
Computes the square distance between two points.
Computes the square distance between two points.
"""
def Transform(self,theT : gp_Trsf2d) -> None:
"""
Transforms a point with the transformation theT.
"""
def Transformed(self,theT : gp_Trsf2d) -> gp_Pnt2d:
"""
None
"""
@overload
def Translate(self,theP1 : gp_Pnt2d,theP2 : gp_Pnt2d) -> None:
"""
Translates a point in the direction of the vector theV. The magnitude of the translation is the vector's magnitude.
Translates a point from the point theP1 to the point theP2.
Translates a point in the direction of the vector theV. The magnitude of the translation is the vector's magnitude.
"""
@overload
def Translate(self,theV : gp_Vec2d) -> None: ...
@overload
def Translated(self,theP1 : gp_Pnt2d,theP2 : gp_Pnt2d) -> gp_Pnt2d:
"""
None
None
None
"""
@overload
def Translated(self,theV : gp_Vec2d) -> gp_Pnt2d: ...
def X(self) -> float:
"""
For this point, returns its X coordinate.
"""
def XY(self) -> gp_XY:
"""
For this point, returns its two coordinates as a number pair.
"""
def Y(self) -> float:
"""
For this point, returns its Y coordinate.
"""
@overload
def __init__(self,theCoord : gp_XY) -> None: ...
@overload
def __init__(self,theXp : float,theYp : float) -> None: ...
@overload
def __init__(self) -> None: ...
pass
class gp_Quaternion():
"""
Represents operation of rotation in 3d space as quaternion and implements operations with rotations basing on quaternion mathematics.
"""
@overload
def Add(self,theOther : gp_Quaternion) -> None:
"""
Adds components of other quaternion; result is "rotations mix"
Adds components of other quaternion; result is "rotations mix"
"""
@overload
def Add(self,theQ : gp_Quaternion) -> None: ...
def Added(self,theOther : gp_Quaternion) -> gp_Quaternion:
"""
Makes sum of quaternion components; result is "rotations mix"
"""
def Dot(self,theOther : gp_Quaternion) -> float:
"""
Computes inner product / scalar product / Dot
"""
def GetEulerAngles(self,theOrder : gp_EulerSequence) -> tuple[float, float, float]:
"""
Returns Euler angles describing current rotation
"""
def GetMatrix(self) -> gp_Mat:
"""
Returns rotation operation as 3*3 matrix
"""
def GetRotationAngle(self) -> float:
"""
Return rotation angle from -PI to PI
"""
def GetVectorAndAngle(self,theAxis : gp_Vec) -> tuple[float]:
"""
Convert a quaternion to Axis+Angle representation, preserve the axis direction and angle from -PI to +PI
"""
def Invert(self) -> None:
"""
Inverts quaternion (both rotation direction and norm)
"""
def Inverted(self) -> gp_Quaternion:
"""
Return inversed quaternion q^-1
"""
def IsEqual(self,theOther : gp_Quaternion) -> bool:
"""
Simple equal test without precision
"""
@overload
def Multiplied(self,theOther : gp_Quaternion) -> gp_Quaternion:
"""
Multiply function - work the same as Matrices multiplying. Result is rotation combination: q' than q (here q=this, q'=theQ). Notices that:
Multiply function - work the same as Matrices multiplying. Result is rotation combination: q' than q (here q=this, q'=theQ). Notices that:
"""
@overload
def Multiplied(self,theQ : gp_Quaternion) -> gp_Quaternion: ...
@overload
def Multiply(self,theOther : gp_Quaternion) -> None:
"""
Adds rotation by multiplication
Rotates vector by quaternion as rotation operator
"""
@overload
def Multiply(self,theVec : gp_Vec) -> gp_Vec: ...
def Negated(self) -> gp_Quaternion:
"""
Returns quaternion with all components negated. Note that this operation does not affect neither rotation operator defined by quaternion nor its norm.
"""
def Norm(self) -> float:
"""
Returns norm of quaternion
"""
def Normalize(self) -> None:
"""
Scale quaternion that its norm goes to 1. The appearing of 0 magnitude or near is a error, so we can be sure that can divide by magnitude
"""
def Normalized(self) -> gp_Quaternion:
"""
Returns quaternion scaled so that its norm goes to 1.
"""
def Reverse(self) -> None:
"""
Reverse direction of rotation (conjugate quaternion)
"""
def Reversed(self) -> gp_Quaternion:
"""
Return rotation with reversed direction (conjugated quaternion)
"""
def Scale(self,theScale : float) -> None:
"""
Scale all components by quaternion by theScale; note that rotation is not changed by this operation (except 0-scaling)
Scale all components by quaternion by theScale; note that rotation is not changed by this operation (except 0-scaling)
"""
def Scaled(self,theScale : float) -> gp_Quaternion:
"""
Returns scaled quaternion
"""
@overload
def Set(self,theQuaternion : gp_Quaternion) -> None:
"""
None
None
None
None
"""
@overload
def Set(self,theX : float,theY : float,theZ : float,theW : float) -> None: ...
def SetEulerAngles(self,theOrder : gp_EulerSequence,theAlpha : float,theBeta : float,theGamma : float) -> None:
"""
Create a unit quaternion representing rotation defined by generalized Euler angles
"""
def SetIdent(self) -> None:
"""
Make identity quaternion (zero-rotation)
"""
def SetMatrix(self,theMat : gp_Mat) -> None:
"""
Create a unit quaternion by rotation matrix matrix must contain only rotation (not scale or shear)
"""
@overload
def SetRotation(self,theVecFrom : gp_Vec,theVecTo : gp_Vec) -> None:
"""
Sets quaternion to shortest-arc rotation producing vector theVecTo from vector theVecFrom. If vectors theVecFrom and theVecTo are opposite then rotation axis is computed as theVecFrom ^ (1,0,0) or theVecFrom ^ (0,0,1).
Sets quaternion to shortest-arc rotation producing vector theVecTo from vector theVecFrom. If vectors theVecFrom and theVecTo are opposite then rotation axis is computed as theVecFrom ^ theHelpCrossVec.
"""
@overload
def SetRotation(self,theVecFrom : gp_Vec,theVecTo : gp_Vec,theHelpCrossVec : gp_Vec) -> None: ...
def SetVectorAndAngle(self,theAxis : gp_Vec,theAngle : float) -> None:
"""
Create a unit quaternion from Axis+Angle representation
"""
def SquareNorm(self) -> float:
"""
Returns square norm of quaternion
"""
def StabilizeLength(self) -> None:
"""
Stabilize quaternion length within 1 - 1/4. This operation is a lot faster than normalization and preserve length goes to 0 or infinity
"""
@overload
def Subtract(self,theOther : gp_Quaternion) -> None:
"""
Subtracts components of other quaternion; result is "rotations mix"
Subtracts components of other quaternion; result is "rotations mix"
"""
@overload
def Subtract(self,theQ : gp_Quaternion) -> None: ...
def Subtracted(self,theOther : gp_Quaternion) -> gp_Quaternion:
"""
Makes difference of quaternion components; result is "rotations mix"
"""
def W(self) -> float:
"""
None
"""
def X(self) -> float:
"""
None
"""
def Y(self) -> float:
"""
None
"""
def Z(self) -> float:
"""
None
"""
def __add__(self,theOther : gp_Quaternion) -> gp_Quaternion:
"""
None
"""
def __iadd__(self,theOther : gp_Quaternion) -> None:
"""
None
"""
@overload
def __imul__(self,theOther : gp_Quaternion) -> None:
"""
None
None
"""
@overload
def __imul__(self,theScale : float) -> None: ...
@overload
def __init__(self,theMat : gp_Mat) -> None: ...
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,theAxis : gp_Vec,theAngle : float) -> None: ...
@overload
def __init__(self,theX : float,theY : float,theZ : float,theW : float) -> None: ...
@overload
def __init__(self,theVecFrom : gp_Vec,theVecTo : gp_Vec,theHelpCrossVec : gp_Vec) -> None: ...
@overload
def __init__(self,theVecFrom : gp_Vec,theVecTo : gp_Vec) -> None: ...
def __isub__(self,theOther : gp_Quaternion) -> None:
"""
None
"""
@overload
def __mul__(self,theVec : gp_Vec) -> gp_Vec:
"""
None
None
None
"""
@overload
def __mul__(self,theScale : float) -> gp_Quaternion: ...
@overload
def __mul__(self,theOther : gp_Quaternion) -> gp_Quaternion: ...
@overload
def __rmul__(self,theVec : gp_Vec) -> gp_Vec:
"""
None
None
None
"""
@overload
def __rmul__(self,theScale : float) -> gp_Quaternion: ...
@overload
def __rmul__(self,theOther : gp_Quaternion) -> gp_Quaternion: ...
@overload
def __sub__(self) -> gp_Quaternion:
"""
None
None
"""
@overload
def __sub__(self,theOther : gp_Quaternion) -> gp_Quaternion: ...
pass
class gp_QuaternionNLerp():
"""
Class perform linear interpolation (approximate rotation interpolation), result quaternion nonunit, its length lay between. sqrt(2)/2 and 1.0
"""
def Init(self,theQStart : gp_Quaternion,theQEnd : gp_Quaternion) -> None:
"""
Initialize the tool with Start and End values.
"""
def InitFromUnit(self,theQStart : gp_Quaternion,theQEnd : gp_Quaternion) -> None:
"""
Initialize the tool with Start and End unit quaternions.
"""
def Interpolate(self,theT : float,theResultQ : gp_Quaternion) -> None:
"""
Set interpolated quaternion for theT position (from 0.0 to 1.0)
"""
@staticmethod
def Interpolate_s(theQStart : gp_Quaternion,theQEnd : gp_Quaternion,theT : float) -> gp_Quaternion:
"""
Compute interpolated quaternion between two quaternions.
"""
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,theQStart : gp_Quaternion,theQEnd : gp_Quaternion) -> None: ...
pass
class gp_QuaternionSLerp():
"""
Perform Spherical Linear Interpolation of the quaternions, return unit length quaternion.
"""
def Init(self,theQStart : gp_Quaternion,theQEnd : gp_Quaternion) -> None:
"""
Initialize the tool with Start and End values.
"""
def InitFromUnit(self,theQStart : gp_Quaternion,theQEnd : gp_Quaternion) -> None:
"""
Initialize the tool with Start and End unit quaternions.
"""
def Interpolate(self,theT : float,theResultQ : gp_Quaternion) -> None:
"""
Set interpolated quaternion for theT position (from 0.0 to 1.0)
"""
@staticmethod
def Interpolate_s(theQStart : gp_Quaternion,theQEnd : gp_Quaternion,theT : float) -> gp_Quaternion:
"""
Compute interpolated quaternion between two quaternions.
"""
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,theQStart : gp_Quaternion,theQEnd : gp_Quaternion) -> None: ...
pass
class gp_Sphere():
"""
Describes a sphere. A sphere is defined by its radius and positioned in space with a coordinate system (a gp_Ax3 object). The origin of the coordinate system is the center of the sphere. This coordinate system is the "local coordinate system" of the sphere. Note: when a gp_Sphere sphere is converted into a Geom_SphericalSurface sphere, some implicit properties of its local coordinate system are used explicitly: - its origin, "X Direction", "Y Direction" and "main Direction" are used directly to define the parametric directions on the sphere and the origin of the parameters, - its implicit orientation (right-handed or left-handed) gives the orientation (direct, indirect) to the Geom_SphericalSurface sphere. See Also gce_MakeSphere which provides functions for more complex sphere constructions Geom_SphericalSurface which provides additional functions for constructing spheres and works, in particular, with the parametric equations of spheres.
"""
def Area(self) -> float:
"""
Computes the area of the sphere.
"""
def Coefficients(self) -> tuple[float, float, float, float, float, float, float, float, float, float]:
"""
Computes the coefficients of the implicit equation of the quadric in the absolute cartesian coordinates system :
"""
def Direct(self) -> bool:
"""
Returns true if the local coordinate system of this sphere is right-handed.
"""
def Location(self) -> gp_Pnt:
"""
--- Purpose ; Returns the center of the sphere.
"""
@overload
def Mirror(self,theP : gp_Pnt) -> None:
"""
None
None
None
"""
@overload
def Mirror(self,theA2 : gp_Ax2) -> None: ...
@overload
def Mirror(self,theA1 : gp_Ax1) -> None: ...
@overload
def Mirrored(self,theP : gp_Pnt) -> gp_Sphere:
"""
Performs the symmetrical transformation of a sphere with respect to the point theP which is the center of the symmetry.
Performs the symmetrical transformation of a sphere with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a sphere with respect to a plane. The axis placement theA2 locates the plane of the of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirrored(self,theA2 : gp_Ax2) -> gp_Sphere: ...
@overload
def Mirrored(self,theA1 : gp_Ax1) -> gp_Sphere: ...
def Position(self) -> gp_Ax3:
"""
Returns the local coordinates system of the sphere.
"""
def Radius(self) -> float:
"""
Returns the radius of the sphere.
"""
def Rotate(self,theA1 : gp_Ax1,theAng : float) -> None:
"""
None
"""
def Rotated(self,theA1 : gp_Ax1,theAng : float) -> gp_Sphere:
"""
Rotates a sphere. theA1 is the axis of the rotation. theAng is the angular value of the rotation in radians.
"""
def Scale(self,theP : gp_Pnt,theS : float) -> None:
"""
None
None
"""
def Scaled(self,theP : gp_Pnt,theS : float) -> gp_Sphere:
"""
Scales a sphere. theS is the scaling value. The absolute value of S is used to scale the sphere
Scales a sphere. theS is the scaling value. The absolute value of S is used to scale the sphere
"""
def SetLocation(self,theLoc : gp_Pnt) -> None:
"""
Changes the center of the sphere.
"""
def SetPosition(self,theA3 : gp_Ax3) -> None:
"""
Changes the local coordinate system of the sphere.
"""
def SetRadius(self,theR : float) -> None:
"""
Assigns theR the radius of the Sphere. Warnings : It is not forbidden to create a sphere with null radius. Raises ConstructionError if theR < 0.0
"""
def Transform(self,theT : gp_Trsf) -> None:
"""
None
None
"""
def Transformed(self,theT : gp_Trsf) -> gp_Sphere:
"""
Transforms a sphere with the transformation theT from class Trsf.
Transforms a sphere with the transformation theT from class Trsf.
"""
@overload
def Translate(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> None:
"""
None
None
"""
@overload
def Translate(self,theV : gp_Vec) -> None: ...
@overload
def Translated(self,theV : gp_Vec) -> gp_Sphere:
"""
Translates a sphere in the direction of the vector theV. The magnitude of the translation is the vector's magnitude.
Translates a sphere from the point theP1 to the point theP2.
"""
@overload
def Translated(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> gp_Sphere: ...
def UReverse(self) -> None:
"""
Reverses the U parametrization of the sphere reversing the YAxis.
"""
def VReverse(self) -> None:
"""
Reverses the V parametrization of the sphere reversing the ZAxis.
"""
def Volume(self) -> float:
"""
Computes the volume of the sphere
"""
def XAxis(self) -> gp_Ax1:
"""
Returns the axis X of the sphere.
"""
def YAxis(self) -> gp_Ax1:
"""
Returns the axis Y of the sphere.
"""
@overload
def __init__(self,theA3 : gp_Ax3,theRadius : float) -> None: ...
@overload
def __init__(self) -> None: ...
pass
class gp_Torus():
"""
Describes a torus. A torus is defined by its major and minor radii and positioned in space with a coordinate system (a gp_Ax3 object) as follows: - The origin of the coordinate system is the center of the torus; - The surface is obtained by rotating a circle of radius equal to the minor radius of the torus about the "main Direction" of the coordinate system. This circle is located in the plane defined by the origin, the "X Direction" and the "main Direction" of the coordinate system. It is centered on the "X Axis" of this coordinate system, and located at a distance, from the origin of this coordinate system, equal to the major radius of the torus; - The "X Direction" and "Y Direction" define the reference plane of the torus. The coordinate system described above is the "local coordinate system" of the torus. Note: when a gp_Torus torus is converted into a Geom_ToroidalSurface torus, some implicit properties of its local coordinate system are used explicitly: - its origin, "X Direction", "Y Direction" and "main Direction" are used directly to define the parametric directions on the torus and the origin of the parameters, - its implicit orientation (right-handed or left-handed) gives the orientation (direct, indirect) to the Geom_ToroidalSurface torus. See Also gce_MakeTorus which provides functions for more complex torus constructions Geom_ToroidalSurface which provides additional functions for constructing tori and works, in particular, with the parametric equations of tori.
"""
def Area(self) -> float:
"""
Computes the area of the torus.
"""
def Axis(self) -> gp_Ax1:
"""
returns the symmetry axis of the torus.
"""
def Coefficients(self,theCoef : OCP.TColStd.TColStd_Array1OfReal) -> None:
"""
Computes the coefficients of the implicit equation of the surface in the absolute Cartesian coordinate system: Raises DimensionError if the length of theCoef is lower than 35.
"""
def Direct(self) -> bool:
"""
returns true if the Ax3, the local coordinate system of this torus, is right handed.
"""
def Location(self) -> gp_Pnt:
"""
Returns the Torus's location.
"""
def MajorRadius(self) -> float:
"""
returns the major radius of the torus.
"""
def MinorRadius(self) -> float:
"""
returns the minor radius of the torus.
"""
@overload
def Mirror(self,theP : gp_Pnt) -> None:
"""
None
None
None
"""
@overload
def Mirror(self,theA1 : gp_Ax1) -> None: ...
@overload
def Mirror(self,theA2 : gp_Ax2) -> None: ...
@overload
def Mirrored(self,theA1 : gp_Ax1) -> gp_Torus:
"""
Performs the symmetrical transformation of a torus with respect to the point theP which is the center of the symmetry.
Performs the symmetrical transformation of a torus with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a torus with respect to a plane. The axis placement theA2 locates the plane of the of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirrored(self,theP : gp_Pnt) -> gp_Torus: ...
@overload
def Mirrored(self,theA2 : gp_Ax2) -> gp_Torus: ...
def Position(self) -> gp_Ax3:
"""
Returns the local coordinates system of the torus.
"""
def Rotate(self,theA1 : gp_Ax1,theAng : float) -> None:
"""
None
"""
def Rotated(self,theA1 : gp_Ax1,theAng : float) -> gp_Torus:
"""
Rotates a torus. theA1 is the axis of the rotation. theAng is the angular value of the rotation in radians.
"""
def Scale(self,theP : gp_Pnt,theS : float) -> None:
"""
None
None
"""
def Scaled(self,theP : gp_Pnt,theS : float) -> gp_Torus:
"""
Scales a torus. S is the scaling value. The absolute value of S is used to scale the torus
Scales a torus. S is the scaling value. The absolute value of S is used to scale the torus
"""
def SetAxis(self,theA1 : gp_Ax1) -> None:
"""
Modifies this torus, by redefining its local coordinate system so that: - its origin and "main Direction" become those of the axis theA1 (the "X Direction" and "Y Direction" are then recomputed). Raises ConstructionError if the direction of theA1 is parallel to the "XDirection" of the coordinate system of the toroidal surface.
"""
def SetLocation(self,theLoc : gp_Pnt) -> None:
"""
Changes the location of the torus.
"""
def SetMajorRadius(self,theMajorRadius : float) -> None:
"""
Assigns value to the major radius of this torus. Raises ConstructionError if theMajorRadius - MinorRadius <= Resolution()
"""
def SetMinorRadius(self,theMinorRadius : float) -> None:
"""
Assigns value to the minor radius of this torus. Raises ConstructionError if theMinorRadius < 0.0 or if MajorRadius - theMinorRadius <= Resolution from gp.
"""
def SetPosition(self,theA3 : gp_Ax3) -> None:
"""
Changes the local coordinate system of the surface.
"""
def Transform(self,theT : gp_Trsf) -> None:
"""
None
None
"""
def Transformed(self,theT : gp_Trsf) -> gp_Torus:
"""
Transforms a torus with the transformation theT from class Trsf.
Transforms a torus with the transformation theT from class Trsf.
"""
@overload
def Translate(self,theV : gp_Vec) -> None:
"""
None
None
"""
@overload
def Translate(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> None: ...
@overload
def Translated(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> gp_Torus:
"""
Translates a torus in the direction of the vector theV. The magnitude of the translation is the vector's magnitude.
Translates a torus from the point theP1 to the point theP2.
"""
@overload
def Translated(self,theV : gp_Vec) -> gp_Torus: ...
def UReverse(self) -> None:
"""
Reverses the U parametrization of the torus reversing the YAxis.
"""
def VReverse(self) -> None:
"""
Reverses the V parametrization of the torus reversing the ZAxis.
"""
def Volume(self) -> float:
"""
Computes the volume of the torus.
"""
def XAxis(self) -> gp_Ax1:
"""
returns the axis X of the torus.
"""
def YAxis(self) -> gp_Ax1:
"""
returns the axis Y of the torus.
"""
@overload
def __init__(self,theA3 : gp_Ax3,theMajorRadius : float,theMinorRadius : float) -> None: ...
@overload
def __init__(self) -> None: ...
pass
class gp_Trsf():
"""
Defines a non-persistent transformation in 3D space. The following transformations are implemented : . Translation, Rotation, Scale . Symmetry with respect to a point, a line, a plane. Complex transformations can be obtained by combining the previous elementary transformations using the method Multiply. The transformations can be represented as follow : where {V1, V2, V3} defines the vectorial part of the transformation and T defines the translation part of the transformation. This transformation never change the nature of the objects.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def Form(self) -> gp_TrsfForm:
"""
Returns the nature of the transformation. It can be: an identity transformation, a rotation, a translation, a mirror transformation (relative to a point, an axis or a plane), a scaling transformation, or a compound transformation.
"""
@overload
def GetRotation(self) -> gp_Quaternion:
"""
Returns the boolean True if there is non-zero rotation. In the presence of rotation, the output parameters store the axis and the angle of rotation. The method always returns positive value "theAngle", i.e., 0. < theAngle <= PI. Note that this rotation is defined only by the vectorial part of the transformation; generally you would need to check also the translational part to obtain the axis (gp_Ax1) of rotation.
Returns quaternion representing rotational part of the transformation.
"""
@overload
def GetRotation(self,theAxis : gp_XYZ,theAngle : float) -> bool: ...
def HVectorialPart(self) -> gp_Mat:
"""
Computes the homogeneous vectorial part of the transformation. It is a 3*3 matrix which doesn't include the scale factor. In other words, the vectorial part of this transformation is equal to its homogeneous vectorial part, multiplied by the scale factor. The coefficients of this matrix must be multiplied by the scale factor to obtain the coefficients of the transformation.
"""
def InitFromJson(self,theSStream : Any,theStreamPos : int) -> bool:
"""
Inits the content of me from the stream
"""
def Invert(self) -> None:
"""
None
"""
def Inverted(self) -> gp_Trsf:
"""
Computes the reverse transformation Raises an exception if the matrix of the transformation is not inversible, it means that the scale factor is lower or equal to Resolution from package gp. Computes the transformation composed with T and <me>. In a C++ implementation you can also write Tcomposed = <me> * T. Example :
"""
def IsNegative(self) -> bool:
"""
Returns true if the determinant of the vectorial part of this transformation is negative.
"""
def Multiplied(self,theT : gp_Trsf) -> gp_Trsf:
"""
None
"""
def Multiply(self,theT : gp_Trsf) -> None:
"""
Computes the transformation composed with <me> and theT. <me> = <me> * theT
"""
def Power(self,theN : int) -> None:
"""
None
"""
def Powered(self,theN : int) -> gp_Trsf:
"""
Computes the following composition of transformations <me> * <me> * .......* <me>, theN time. if theN = 0 <me> = Identity if theN < 0 <me> = <me>.Inverse() *...........* <me>.Inverse().
"""
def PreMultiply(self,theT : gp_Trsf) -> None:
"""
Computes the transformation composed with <me> and T. <me> = theT * <me>
"""
def ScaleFactor(self) -> float:
"""
Returns the scale factor.
"""
def SetDisplacement(self,theFromSystem1 : gp_Ax3,theToSystem2 : gp_Ax3) -> None:
"""
Modifies this transformation so that it transforms the coordinate system defined by theFromSystem1 into the one defined by theToSystem2. After this modification, this transformation transforms: - the origin of theFromSystem1 into the origin of theToSystem2, - the "X Direction" of theFromSystem1 into the "X Direction" of theToSystem2, - the "Y Direction" of theFromSystem1 into the "Y Direction" of theToSystem2, and - the "main Direction" of theFromSystem1 into the "main Direction" of theToSystem2. Warning When you know the coordinates of a point in one coordinate system and you want to express these coordinates in another one, do not use the transformation resulting from this function. Use the transformation that results from SetTransformation instead. SetDisplacement and SetTransformation create related transformations: the vectorial part of one is the inverse of the vectorial part of the other.
"""
def SetForm(self,theP : gp_TrsfForm) -> None:
"""
None
"""
@overload
def SetMirror(self,theP : gp_Pnt) -> None:
"""
Makes the transformation into a symmetrical transformation. theP is the center of the symmetry.
Makes the transformation into a symmetrical transformation. theA1 is the center of the axial symmetry.
Makes the transformation into a symmetrical transformation. theA2 is the center of the planar symmetry and defines the plane of symmetry by its origin, "X Direction" and "Y Direction".
Makes the transformation into a symmetrical transformation. theP is the center of the symmetry.
"""
@overload
def SetMirror(self,theA1 : gp_Ax1) -> None: ...
@overload
def SetMirror(self,theA2 : gp_Ax2) -> None: ...
@overload
def SetRotation(self,theR : gp_Quaternion) -> None:
"""
Changes the transformation into a rotation. theA1 is the rotation axis and theAng is the angular value of the rotation in radians.
Changes the transformation into a rotation defined by quaternion. Note that rotation is performed around origin, i.e. no translation is involved.
"""
@overload
def SetRotation(self,theA1 : gp_Ax1,theAng : float) -> None: ...
def SetRotationPart(self,theR : gp_Quaternion) -> None:
"""
Replaces the rotation part with specified quaternion.
"""
def SetScale(self,theP : gp_Pnt,theS : float) -> None:
"""
Changes the transformation into a scale. theP is the center of the scale and theS is the scaling value. Raises ConstructionError If <theS> is null.
"""
def SetScaleFactor(self,theS : float) -> None:
"""
Modifies the scale factor. Raises ConstructionError If theS is null.
"""
@overload
def SetTransformation(self,theToSystem : gp_Ax3) -> None:
"""
Modifies this transformation so that it transforms the coordinates of any point, (x, y, z), relative to a source coordinate system into the coordinates (x', y', z') which are relative to a target coordinate system, but which represent the same point The transformation is from the coordinate system "theFromSystem1" to the coordinate system "theToSystem2". Example :
Modifies this transformation so that it transforms the coordinates of any point, (x, y, z), relative to a source coordinate system into the coordinates (x', y', z') which are relative to a target coordinate system, but which represent the same point The transformation is from the default coordinate system to the local coordinate system defined with the Ax3 theToSystem. Use in the same way as the previous method. FromSystem1 is defaulted to the absolute coordinate system.
Sets transformation by directly specified rotation and translation.
"""
@overload
def SetTransformation(self,R : gp_Quaternion,theT : gp_Vec) -> None: ...
@overload
def SetTransformation(self,theFromSystem1 : gp_Ax3,theToSystem2 : gp_Ax3) -> None: ...
@overload
def SetTranslation(self,theV : gp_Vec) -> None:
"""
Changes the transformation into a translation. theV is the vector of the translation.
Makes the transformation into a translation where the translation vector is the vector (theP1, theP2) defined from point theP1 to point theP2.
Changes the transformation into a translation. theV is the vector of the translation.
Makes the transformation into a translation where the translation vector is the vector (theP1, theP2) defined from point theP1 to point theP2.
"""
@overload
def SetTranslation(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> None: ...
def SetTranslationPart(self,theV : gp_Vec) -> None:
"""
Replaces the translation vector with the vector theV.
"""
def SetValues(self,a11 : float,a12 : float,a13 : float,a14 : float,a21 : float,a22 : float,a23 : float,a24 : float,a31 : float,a32 : float,a33 : float,a34 : float) -> None:
"""
Sets the coefficients of the transformation. The transformation of the point x,y,z is the point x',y',z' with : The method Value(i,j) will return aij. Raises ConstructionError if the determinant of the aij is null. The matrix is orthogonalized before future using.
"""
@overload
def Transforms(self,theCoord : gp_XYZ) -> None:
"""
Transformation of a triplet XYZ with a Trsf
Transformation of a triplet XYZ with a Trsf
None
None
"""
@overload
def Transforms(self) -> tuple[float, float, float]: ...
def TranslationPart(self) -> gp_XYZ:
"""
Returns the translation part of the transformation's matrix
"""
def Value(self,theRow : int,theCol : int) -> float:
"""
Returns the coefficients of the transformation's matrix. It is a 3 rows * 4 columns matrix. This coefficient includes the scale factor. Raises OutOfRanged if theRow < 1 or theRow > 3 or theCol < 1 or theCol > 4
Returns the coefficients of the transformation's matrix. It is a 3 rows * 4 columns matrix. This coefficient includes the scale factor. Raises OutOfRanged if theRow < 1 or theRow > 3 or theCol < 1 or theCol > 4
"""
def VectorialPart(self) -> gp_Mat:
"""
Returns the vectorial part of the transformation. It is a 3*3 matrix which includes the scale factor.
"""
def __imul__(self,theT : gp_Trsf) -> None:
"""
None
"""
@overload
def __init__(self,theT : gp_Trsf2d) -> None: ...
@overload
def __init__(self) -> None: ...
def __mul__(self,theT : gp_Trsf) -> gp_Trsf:
"""
None
"""
def __rmul__(self,theT : gp_Trsf) -> gp_Trsf:
"""
None
"""
pass
class gp_Trsf2d():
"""
Defines a non-persistent transformation in 2D space. The following transformations are implemented : - Translation, Rotation, Scale - Symmetry with respect to a point and a line. Complex transformations can be obtained by combining the previous elementary transformations using the method Multiply. The transformations can be represented as follow : where {V1, V2} defines the vectorial part of the transformation and T defines the translation part of the transformation. This transformation never change the nature of the objects.
"""
def Form(self) -> gp_TrsfForm:
"""
Returns the nature of the transformation. It can be an identity transformation, a rotation, a translation, a mirror (relative to a point or an axis), a scaling transformation, or a compound transformation.
"""
def HVectorialPart(self) -> gp_Mat2d:
"""
Returns the homogeneous vectorial part of the transformation. It is a 2*2 matrix which doesn't include the scale factor. The coefficients of this matrix must be multiplied by the scale factor to obtain the coefficients of the transformation.
"""
def Invert(self) -> None:
"""
None
"""
def Inverted(self) -> gp_Trsf2d:
"""
Computes the reverse transformation. Raises an exception if the matrix of the transformation is not inversible, it means that the scale factor is lower or equal to Resolution from package gp.
"""
def IsNegative(self) -> bool:
"""
Returns true if the determinant of the vectorial part of this transformation is negative..
"""
def Multiplied(self,theT : gp_Trsf2d) -> gp_Trsf2d:
"""
None
"""
def Multiply(self,theT : gp_Trsf2d) -> None:
"""
Computes the transformation composed from <me> and theT. <me> = <me> * theT
"""
def Power(self,theN : int) -> None:
"""
None
"""
def Powered(self,theN : int) -> gp_Trsf2d:
"""
Computes the following composition of transformations <me> * <me> * .......* <me>, theN time. if theN = 0 <me> = Identity if theN < 0 <me> = <me>.Inverse() *...........* <me>.Inverse().
"""
def PreMultiply(self,theT : gp_Trsf2d) -> None:
"""
Computes the transformation composed from <me> and theT. <me> = theT * <me>
"""
def RotationPart(self) -> float:
"""
Returns the angle corresponding to the rotational component of the transformation matrix (operation opposite to SetRotation()).
"""
def ScaleFactor(self) -> float:
"""
Returns the scale factor.
"""
@overload
def SetMirror(self,theP : gp_Pnt2d) -> None:
"""
Changes the transformation into a symmetrical transformation. theP is the center of the symmetry.
Changes the transformation into a symmetrical transformation. theA is the center of the axial symmetry.
Changes the transformation into a symmetrical transformation. theP is the center of the symmetry.
"""
@overload
def SetMirror(self,theA : gp_Ax2d) -> None: ...
def SetRotation(self,theP : gp_Pnt2d,theAng : float) -> None:
"""
Changes the transformation into a rotation. theP is the rotation's center and theAng is the angular value of the rotation in radian.
Changes the transformation into a rotation. theP is the rotation's center and theAng is the angular value of the rotation in radian.
"""
def SetScale(self,theP : gp_Pnt2d,theS : float) -> None:
"""
Changes the transformation into a scale. theP is the center of the scale and theS is the scaling value.
Changes the transformation into a scale. theP is the center of the scale and theS is the scaling value.
"""
def SetScaleFactor(self,theS : float) -> None:
"""
Modifies the scale factor.
"""
@overload
def SetTransformation(self,theFromSystem1 : gp_Ax2d,theToSystem2 : gp_Ax2d) -> None:
"""
Changes a transformation allowing passage from the coordinate system "theFromSystem1" to the coordinate system "theToSystem2".
Changes the transformation allowing passage from the basic coordinate system {P(0.,0.,0.), VX (1.,0.,0.), VY (0.,1.,0.)} to the local coordinate system defined with the Ax2d theToSystem.
"""
@overload
def SetTransformation(self,theToSystem : gp_Ax2d) -> None: ...
@overload
def SetTranslation(self,theP1 : gp_Pnt2d,theP2 : gp_Pnt2d) -> None:
"""
Changes the transformation into a translation. theV is the vector of the translation.
Makes the transformation into a translation from the point theP1 to the point theP2.
Changes the transformation into a translation. theV is the vector of the translation.
Makes the transformation into a translation from the point theP1 to the point theP2.
"""
@overload
def SetTranslation(self,theV : gp_Vec2d) -> None: ...
def SetTranslationPart(self,theV : gp_Vec2d) -> None:
"""
Replaces the translation vector with theV.
"""
def SetValues(self,a11 : float,a12 : float,a13 : float,a21 : float,a22 : float,a23 : float) -> None:
"""
Sets the coefficients of the transformation. The transformation of the point x,y is the point x',y' with : The method Value(i,j) will return aij. Raises ConstructionError if the determinant of the aij is null. If the matrix as not a uniform scale it will be orthogonalized before future using.
"""
@overload
def Transforms(self) -> tuple[float, float]:
"""
Transforms a doublet XY with a Trsf2d
Transforms a doublet XY with a Trsf2d
None
None
"""
@overload
def Transforms(self,theCoord : gp_XY) -> None: ...
def TranslationPart(self) -> gp_XY:
"""
Returns the translation part of the transformation's matrix
"""
def Value(self,theRow : int,theCol : int) -> float:
"""
Returns the coefficients of the transformation's matrix. It is a 2 rows * 3 columns matrix. Raises OutOfRange if theRow < 1 or theRow > 2 or theCol < 1 or theCol > 3
Returns the coefficients of the transformation's matrix. It is a 2 rows * 3 columns matrix. Raises OutOfRange if theRow < 1 or theRow > 2 or theCol < 1 or theCol > 3
"""
def VectorialPart(self) -> gp_Mat2d:
"""
Returns the vectorial part of the transformation. It is a 2*2 matrix which includes the scale factor.
"""
def __imul__(self,theT : gp_Trsf2d) -> None:
"""
None
"""
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,theT : gp_Trsf) -> None: ...
def __mul__(self,theT : gp_Trsf2d) -> gp_Trsf2d:
"""
None
"""
def __rmul__(self,theT : gp_Trsf2d) -> gp_Trsf2d:
"""
None
"""
pass
class gp_TrsfForm():
"""
Identifies the type of a geometric transformation.
Members:
gp_Identity
gp_Rotation
gp_Translation
gp_PntMirror
gp_Ax1Mirror
gp_Ax2Mirror
gp_Scale
gp_CompoundTrsf
gp_Other
"""
def __eq__(self,other : object) -> bool: ...
def __getstate__(self) -> int: ...
def __hash__(self) -> int: ...
def __index__(self) -> int: ...
def __init__(self,value : int) -> None: ...
def __int__(self) -> int: ...
def __ne__(self,other : object) -> bool: ...
def __repr__(self) -> str: ...
def __setstate__(self,state : int) -> None: ...
def __str__(self) -> str: ...
@property
def name(self) -> None:
"""
:type: None
"""
@property
def value(self) -> int:
"""
:type: int
"""
__entries: dict # value = {'gp_Identity': (<gp_TrsfForm.gp_Identity: 0>, None), 'gp_Rotation': (<gp_TrsfForm.gp_Rotation: 1>, None), 'gp_Translation': (<gp_TrsfForm.gp_Translation: 2>, None), 'gp_PntMirror': (<gp_TrsfForm.gp_PntMirror: 3>, None), 'gp_Ax1Mirror': (<gp_TrsfForm.gp_Ax1Mirror: 4>, None), 'gp_Ax2Mirror': (<gp_TrsfForm.gp_Ax2Mirror: 5>, None), 'gp_Scale': (<gp_TrsfForm.gp_Scale: 6>, None), 'gp_CompoundTrsf': (<gp_TrsfForm.gp_CompoundTrsf: 7>, None), 'gp_Other': (<gp_TrsfForm.gp_Other: 8>, None)}
__members__: dict # value = {'gp_Identity': <gp_TrsfForm.gp_Identity: 0>, 'gp_Rotation': <gp_TrsfForm.gp_Rotation: 1>, 'gp_Translation': <gp_TrsfForm.gp_Translation: 2>, 'gp_PntMirror': <gp_TrsfForm.gp_PntMirror: 3>, 'gp_Ax1Mirror': <gp_TrsfForm.gp_Ax1Mirror: 4>, 'gp_Ax2Mirror': <gp_TrsfForm.gp_Ax2Mirror: 5>, 'gp_Scale': <gp_TrsfForm.gp_Scale: 6>, 'gp_CompoundTrsf': <gp_TrsfForm.gp_CompoundTrsf: 7>, 'gp_Other': <gp_TrsfForm.gp_Other: 8>}
gp_Ax1Mirror: OCP.gp.gp_TrsfForm # value = <gp_TrsfForm.gp_Ax1Mirror: 4>
gp_Ax2Mirror: OCP.gp.gp_TrsfForm # value = <gp_TrsfForm.gp_Ax2Mirror: 5>
gp_CompoundTrsf: OCP.gp.gp_TrsfForm # value = <gp_TrsfForm.gp_CompoundTrsf: 7>
gp_Identity: OCP.gp.gp_TrsfForm # value = <gp_TrsfForm.gp_Identity: 0>
gp_Other: OCP.gp.gp_TrsfForm # value = <gp_TrsfForm.gp_Other: 8>
gp_PntMirror: OCP.gp.gp_TrsfForm # value = <gp_TrsfForm.gp_PntMirror: 3>
gp_Rotation: OCP.gp.gp_TrsfForm # value = <gp_TrsfForm.gp_Rotation: 1>
gp_Scale: OCP.gp.gp_TrsfForm # value = <gp_TrsfForm.gp_Scale: 6>
gp_Translation: OCP.gp.gp_TrsfForm # value = <gp_TrsfForm.gp_Translation: 2>
pass
class gp_Vec():
"""
Defines a non-persistent vector in 3D space.
"""
def Add(self,theOther : gp_Vec) -> None:
"""
Adds two vectors
"""
def Added(self,theOther : gp_Vec) -> gp_Vec:
"""
Adds two vectors
"""
def Angle(self,theOther : gp_Vec) -> float:
"""
Computes the angular value between <me> and <theOther> Returns the angle value between 0 and PI in radian. Raises VectorWithNullMagnitude if <me>.Magnitude() <= Resolution from gp or theOther.Magnitude() <= Resolution because the angular value is indefinite if one of the vectors has a null magnitude.
Computes the angular value between <me> and <theOther> Returns the angle value between 0 and PI in radian. Raises VectorWithNullMagnitude if <me>.Magnitude() <= Resolution from gp or theOther.Magnitude() <= Resolution because the angular value is indefinite if one of the vectors has a null magnitude.
"""
def AngleWithRef(self,theOther : gp_Vec,theVRef : gp_Vec) -> float:
"""
Computes the angle, in radians, between this vector and vector theOther. The result is a value between -Pi and Pi. For this, theVRef defines the positive sense of rotation: the angular value is positive, if the cross product this ^ theOther has the same orientation as theVRef relative to the plane defined by the vectors this and theOther. Otherwise, the angular value is negative. Exceptions gp_VectorWithNullMagnitude if the magnitude of this vector, the vector theOther, or the vector theVRef is less than or equal to gp::Resolution(). Standard_DomainError if this vector, the vector theOther, and the vector theVRef are coplanar, unless this vector and the vector theOther are parallel.
Computes the angle, in radians, between this vector and vector theOther. The result is a value between -Pi and Pi. For this, theVRef defines the positive sense of rotation: the angular value is positive, if the cross product this ^ theOther has the same orientation as theVRef relative to the plane defined by the vectors this and theOther. Otherwise, the angular value is negative. Exceptions gp_VectorWithNullMagnitude if the magnitude of this vector, the vector theOther, or the vector theVRef is less than or equal to gp::Resolution(). Standard_DomainError if this vector, the vector theOther, and the vector theVRef are coplanar, unless this vector and the vector theOther are parallel.
"""
@overload
def Coord(self) -> tuple[float, float, float]:
"""
Returns the coordinate of range theIndex : theIndex = 1 => X is returned theIndex = 2 => Y is returned theIndex = 3 => Z is returned Raised if theIndex != {1, 2, 3}.
For this vector returns its three coordinates theXv, theYv, and theZv inline
"""
@overload
def Coord(self,theIndex : int) -> float: ...
def Cross(self,theRight : gp_Vec) -> None:
"""
computes the cross product between two vectors
"""
def CrossCross(self,theV1 : gp_Vec,theV2 : gp_Vec) -> None:
"""
Computes the triple vector product. <me> ^= (theV1 ^ theV2)
"""
def CrossCrossed(self,theV1 : gp_Vec,theV2 : gp_Vec) -> gp_Vec:
"""
Computes the triple vector product. <me> ^ (theV1 ^ theV2)
"""
def CrossMagnitude(self,theRight : gp_Vec) -> float:
"""
Computes the magnitude of the cross product between <me> and theRight. Returns || <me> ^ theRight ||
"""
def CrossSquareMagnitude(self,theRight : gp_Vec) -> float:
"""
Computes the square magnitude of the cross product between <me> and theRight. Returns || <me> ^ theRight ||**2
"""
def Crossed(self,theRight : gp_Vec) -> gp_Vec:
"""
computes the cross product between two vectors
"""
def Divide(self,theScalar : float) -> None:
"""
Divides a vector by a scalar
"""
def Divided(self,theScalar : float) -> gp_Vec:
"""
Divides a vector by a scalar
"""
def Dot(self,theOther : gp_Vec) -> float:
"""
computes the scalar product
"""
def DotCross(self,theV1 : gp_Vec,theV2 : gp_Vec) -> float:
"""
Computes the triple scalar product <me> * (theV1 ^ theV2).
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def IsEqual(self,theOther : gp_Vec,theLinearTolerance : float,theAngularTolerance : float) -> bool:
"""
Returns True if the two vectors have the same magnitude value and the same direction. The precision values are theLinearTolerance for the magnitude and theAngularTolerance for the direction.
"""
def IsNormal(self,theOther : gp_Vec,theAngularTolerance : float) -> bool:
"""
Returns True if abs(<me>.Angle(theOther) - PI/2.) <= theAngularTolerance Raises VectorWithNullMagnitude if <me>.Magnitude() <= Resolution or theOther.Magnitude() <= Resolution from gp
Returns True if abs(<me>.Angle(theOther) - PI/2.) <= theAngularTolerance Raises VectorWithNullMagnitude if <me>.Magnitude() <= Resolution or theOther.Magnitude() <= Resolution from gp
"""
def IsOpposite(self,theOther : gp_Vec,theAngularTolerance : float) -> bool:
"""
Returns True if PI - <me>.Angle(theOther) <= theAngularTolerance Raises VectorWithNullMagnitude if <me>.Magnitude() <= Resolution or Other.Magnitude() <= Resolution from gp
"""
def IsParallel(self,theOther : gp_Vec,theAngularTolerance : float) -> bool:
"""
Returns True if Angle(<me>, theOther) <= theAngularTolerance or PI - Angle(<me>, theOther) <= theAngularTolerance This definition means that two parallel vectors cannot define a plane but two vectors with opposite directions are considered as parallel. Raises VectorWithNullMagnitude if <me>.Magnitude() <= Resolution or Other.Magnitude() <= Resolution from gp
"""
def Magnitude(self) -> float:
"""
Computes the magnitude of this vector.
"""
@overload
def Mirror(self,theA1 : gp_Ax1) -> None:
"""
None
None
None
"""
@overload
def Mirror(self,theV : gp_Vec) -> None: ...
@overload
def Mirror(self,theA2 : gp_Ax2) -> None: ...
@overload
def Mirrored(self,theV : gp_Vec) -> gp_Vec:
"""
Performs the symmetrical transformation of a vector with respect to the vector theV which is the center of the symmetry.
Performs the symmetrical transformation of a vector with respect to an axis placement which is the axis of the symmetry.
Performs the symmetrical transformation of a vector with respect to a plane. The axis placement theA2 locates the plane of the symmetry : (Location, XDirection, YDirection).
"""
@overload
def Mirrored(self,theA2 : gp_Ax2) -> gp_Vec: ...
@overload
def Mirrored(self,theA1 : gp_Ax1) -> gp_Vec: ...
def Multiplied(self,theScalar : float) -> gp_Vec:
"""
Multiplies a vector by a scalar
"""
def Multiply(self,theScalar : float) -> None:
"""
Multiplies a vector by a scalar
"""
def Normalize(self) -> None:
"""
normalizes a vector Raises an exception if the magnitude of the vector is lower or equal to Resolution from gp.
"""
def Normalized(self) -> gp_Vec:
"""
normalizes a vector Raises an exception if the magnitude of the vector is lower or equal to Resolution from gp.
normalizes a vector Raises an exception if the magnitude of the vector is lower or equal to Resolution from gp.
"""
def Reverse(self) -> None:
"""
Reverses the direction of a vector
"""
def Reversed(self) -> gp_Vec:
"""
Reverses the direction of a vector
"""
def Rotate(self,theA1 : gp_Ax1,theAng : float) -> None:
"""
None
None
"""
def Rotated(self,theA1 : gp_Ax1,theAng : float) -> gp_Vec:
"""
Rotates a vector. theA1 is the axis of the rotation. theAng is the angular value of the rotation in radians.
"""
def Scale(self,theS : float) -> None:
"""
None
"""
def Scaled(self,theS : float) -> gp_Vec:
"""
Scales a vector. theS is the scaling value.
"""
@overload
def SetCoord(self,theIndex : int,theXi : float) -> None:
"""
Changes the coordinate of range theIndex theIndex = 1 => X is modified theIndex = 2 => Y is modified theIndex = 3 => Z is modified Raised if theIndex != {1, 2, 3}.
For this vector, assigns - the values theXv, theYv and theZv to its three coordinates.
"""
@overload
def SetCoord(self,theXv : float,theYv : float,theZv : float) -> None: ...
@overload
def SetLinearForm(self,theV1 : gp_Vec,theV2 : gp_Vec) -> None:
"""
<me> is set to the following linear form : theA1 * theV1 + theA2 * theV2 + theA3 * theV3 + theV4
<me> is set to the following linear form : theA1 * theV1 + theA2 * theV2 + theA3 * theV3
<me> is set to the following linear form : theA1 * theV1 + theA2 * theV2 + theV3
<me> is set to the following linear form : theA1 * theV1 + theA2 * theV2
<me> is set to the following linear form : theA1 * theV1 + theV2
<me> is set to the following linear form : theV1 + theV2
"""
@overload
def SetLinearForm(self,theA1 : float,theV1 : gp_Vec,theA2 : float,theV2 : gp_Vec,theA3 : float,theV3 : gp_Vec,theV4 : gp_Vec) -> None: ...
@overload
def SetLinearForm(self,theA1 : float,theV1 : gp_Vec,theV2 : gp_Vec) -> None: ...
@overload
def SetLinearForm(self,theA1 : float,theV1 : gp_Vec,theA2 : float,theV2 : gp_Vec,theA3 : float,theV3 : gp_Vec) -> None: ...
@overload
def SetLinearForm(self,theA1 : float,theV1 : gp_Vec,theA2 : float,theV2 : gp_Vec) -> None: ...
@overload
def SetLinearForm(self,theA1 : float,theV1 : gp_Vec,theA2 : float,theV2 : gp_Vec,theV3 : gp_Vec) -> None: ...
def SetX(self,theX : float) -> None:
"""
Assigns the given value to the X coordinate of this vector.
"""
def SetXYZ(self,theCoord : gp_XYZ) -> None:
"""
Assigns the three coordinates of theCoord to this vector.
"""
def SetY(self,theY : float) -> None:
"""
Assigns the given value to the X coordinate of this vector.
"""
def SetZ(self,theZ : float) -> None:
"""
Assigns the given value to the X coordinate of this vector.
"""
def SquareMagnitude(self) -> float:
"""
Computes the square magnitude of this vector.
"""
def Subtract(self,theRight : gp_Vec) -> None:
"""
Subtracts two vectors
"""
def Subtracted(self,theRight : gp_Vec) -> gp_Vec:
"""
Subtracts two vectors
"""
def Transform(self,theT : gp_Trsf) -> None:
"""
Transforms a vector with the transformation theT.
"""
def Transformed(self,theT : gp_Trsf) -> gp_Vec:
"""
Transforms a vector with the transformation theT.
"""
def X(self) -> float:
"""
For this vector, returns its X coordinate.
"""
def XYZ(self) -> gp_XYZ:
"""
For this vector, returns - its three coordinates as a number triple
"""
def Y(self) -> float:
"""
For this vector, returns its Y coordinate.
"""
def Z(self) -> float:
"""
For this vector, returns its Z coordinate.
"""
def __add__(self,theOther : gp_Vec) -> gp_Vec:
"""
None
"""
def __iadd__(self,theOther : gp_Vec) -> None:
"""
None
"""
def __imul__(self,theScalar : float) -> None:
"""
None
"""
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,theP1 : gp_Pnt,theP2 : gp_Pnt) -> None: ...
@overload
def __init__(self,theCoord : gp_XYZ) -> None: ...
@overload
def __init__(self,theXv : float,theYv : float,theZv : float) -> None: ...
@overload
def __init__(self,theV : gp_Dir) -> None: ...
def __ipow__(self,theRight : gp_Vec) -> None:
"""
None
"""
def __isub__(self,theRight : gp_Vec) -> None:
"""
None
"""
def __itruediv__(self,theScalar : float) -> None:
"""
None
"""
@overload
def __mul__(self,theOther : gp_Vec) -> float:
"""
None
None
"""
@overload
def __mul__(self,theScalar : float) -> gp_Vec: ...
def __pow__(self,theRight : gp_Vec) -> gp_Vec:
"""
None
"""
@overload
def __rmul__(self,theOther : gp_Vec) -> float:
"""
None
None
"""
@overload
def __rmul__(self,theScalar : float) -> gp_Vec: ...
@overload
def __sub__(self,theRight : gp_Vec) -> gp_Vec:
"""
None
None
"""
@overload
def __sub__(self) -> gp_Vec: ...
def __truediv__(self,theScalar : float) -> gp_Vec:
"""
None
"""
pass
class gp_Vec2d():
"""
Defines a non-persistent vector in 2D space.
"""
def Add(self,theOther : gp_Vec2d) -> None:
"""
None
"""
def Added(self,theOther : gp_Vec2d) -> gp_Vec2d:
"""
Adds two vectors
"""
def Angle(self,theOther : gp_Vec2d) -> float:
"""
Computes the angular value between <me> and <theOther> returns the angle value between -PI and PI in radian. The orientation is from <me> to theOther. The positive sense is the trigonometric sense. Raises VectorWithNullMagnitude if <me>.Magnitude() <= Resolution from gp or theOther.Magnitude() <= Resolution because the angular value is indefinite if one of the vectors has a null magnitude.
"""
@overload
def Coord(self) -> tuple[float, float]:
"""
Returns the coordinate of range theIndex : theIndex = 1 => X is returned theIndex = 2 => Y is returned Raised if theIndex != {1, 2}.
For this vector, returns its two coordinates theXv and theYv
"""
@overload
def Coord(self,theIndex : int) -> float: ...
def CrossMagnitude(self,theRight : gp_Vec2d) -> float:
"""
Computes the magnitude of the cross product between <me> and theRight. Returns || <me> ^ theRight ||
"""
def CrossSquareMagnitude(self,theRight : gp_Vec2d) -> float:
"""
Computes the square magnitude of the cross product between <me> and theRight. Returns || <me> ^ theRight ||**2
"""
def Crossed(self,theRight : gp_Vec2d) -> float:
"""
Computes the crossing product between two vectors
"""
def Divide(self,theScalar : float) -> None:
"""
None
"""
def Divided(self,theScalar : float) -> gp_Vec2d:
"""
divides a vector by a scalar
"""
def Dot(self,theOther : gp_Vec2d) -> float:
"""
Computes the scalar product
"""
def GetNormal(self) -> gp_Vec2d:
"""
None
"""
def IsEqual(self,theOther : gp_Vec2d,theLinearTolerance : float,theAngularTolerance : float) -> bool:
"""
Returns True if the two vectors have the same magnitude value and the same direction. The precision values are theLinearTolerance for the magnitude and theAngularTolerance for the direction.
"""
def IsNormal(self,theOther : gp_Vec2d,theAngularTolerance : float) -> bool:
"""
Returns True if abs(Abs(<me>.Angle(theOther)) - PI/2.) <= theAngularTolerance Raises VectorWithNullMagnitude if <me>.Magnitude() <= Resolution or theOther.Magnitude() <= Resolution from gp.
"""
def IsOpposite(self,theOther : gp_Vec2d,theAngularTolerance : float) -> bool:
"""
Returns True if PI - Abs(<me>.Angle(theOther)) <= theAngularTolerance Raises VectorWithNullMagnitude if <me>.Magnitude() <= Resolution or theOther.Magnitude() <= Resolution from gp.
Returns True if PI - Abs(<me>.Angle(theOther)) <= theAngularTolerance Raises VectorWithNullMagnitude if <me>.Magnitude() <= Resolution or theOther.Magnitude() <= Resolution from gp.
"""
def IsParallel(self,theOther : gp_Vec2d,theAngularTolerance : float) -> bool:
"""
Returns true if Abs(Angle(<me>, theOther)) <= theAngularTolerance or PI - Abs(Angle(<me>, theOther)) <= theAngularTolerance Two vectors with opposite directions are considered as parallel. Raises VectorWithNullMagnitude if <me>.Magnitude() <= Resolution or theOther.Magnitude() <= Resolution from gp
Returns true if Abs(Angle(<me>, theOther)) <= theAngularTolerance or PI - Abs(Angle(<me>, theOther)) <= theAngularTolerance Two vectors with opposite directions are considered as parallel. Raises VectorWithNullMagnitude if <me>.Magnitude() <= Resolution or theOther.Magnitude() <= Resolution from gp
"""
def Magnitude(self) -> float:
"""
Computes the magnitude of this vector.
"""
@overload
def Mirror(self,theA1 : gp_Ax2d) -> None:
"""
Performs the symmetrical transformation of a vector with respect to the vector theV which is the center of the symmetry.
Performs the symmetrical transformation of a vector with respect to an axis placement which is the axis of the symmetry.
"""
@overload
def Mirror(self,theV : gp_Vec2d) -> None: ...
@overload
def Mirrored(self,theV : gp_Vec2d) -> gp_Vec2d:
"""
Performs the symmetrical transformation of a vector with respect to the vector theV which is the center of the symmetry.
Performs the symmetrical transformation of a vector with respect to an axis placement which is the axis of the symmetry.
"""
@overload
def Mirrored(self,theA1 : gp_Ax2d) -> gp_Vec2d: ...
def Multiplied(self,theScalar : float) -> gp_Vec2d:
"""
Normalizes a vector Raises an exception if the magnitude of the vector is lower or equal to Resolution from package gp.
"""
def Multiply(self,theScalar : float) -> None:
"""
None
"""
def Normalize(self) -> None:
"""
None
"""
def Normalized(self) -> gp_Vec2d:
"""
Normalizes a vector Raises an exception if the magnitude of the vector is lower or equal to Resolution from package gp. Reverses the direction of a vector
Normalizes a vector Raises an exception if the magnitude of the vector is lower or equal to Resolution from package gp. Reverses the direction of a vector
"""
def Reverse(self) -> None:
"""
None
"""
def Reversed(self) -> gp_Vec2d:
"""
Reverses the direction of a vector
"""
def Rotate(self,theAng : float) -> None:
"""
None
None
"""
def Rotated(self,theAng : float) -> gp_Vec2d:
"""
Rotates a vector. theAng is the angular value of the rotation in radians.
"""
def Scale(self,theS : float) -> None:
"""
None
"""
def Scaled(self,theS : float) -> gp_Vec2d:
"""
Scales a vector. theS is the scaling value.
"""
@overload
def SetCoord(self,theIndex : int,theXi : float) -> None:
"""
Changes the coordinate of range theIndex theIndex = 1 => X is modified theIndex = 2 => Y is modified Raises OutOfRange if theIndex != {1, 2}.
For this vector, assigns the values theXv and theYv to its two coordinates
"""
@overload
def SetCoord(self,theXv : float,theYv : float) -> None: ...
@overload
def SetLinearForm(self,theA1 : float,theV1 : gp_Vec2d,theV2 : gp_Vec2d) -> None:
"""
<me> is set to the following linear form : theA1 * theV1 + theA2 * theV2 + theV3
<me> is set to the following linear form : theA1 * theV1 + theA2 * theV2
<me> is set to the following linear form : theA1 * theV1 + theV2
<me> is set to the following linear form : theV1 + theV2
"""
@overload
def SetLinearForm(self,theA1 : float,theV1 : gp_Vec2d,theA2 : float,theV2 : gp_Vec2d) -> None: ...
@overload
def SetLinearForm(self,theV1 : gp_Vec2d,theV2 : gp_Vec2d) -> None: ...
@overload
def SetLinearForm(self,theA1 : float,theV1 : gp_Vec2d,theA2 : float,theV2 : gp_Vec2d,theV3 : gp_Vec2d) -> None: ...
def SetX(self,theX : float) -> None:
"""
Assigns the given value to the X coordinate of this vector.
"""
def SetXY(self,theCoord : gp_XY) -> None:
"""
Assigns the two coordinates of theCoord to this vector.
"""
def SetY(self,theY : float) -> None:
"""
Assigns the given value to the Y coordinate of this vector.
"""
def SquareMagnitude(self) -> float:
"""
Computes the square magnitude of this vector.
"""
def Subtract(self,theRight : gp_Vec2d) -> None:
"""
Subtracts two vectors
"""
def Subtracted(self,theRight : gp_Vec2d) -> gp_Vec2d:
"""
Subtracts two vectors
"""
def Transform(self,theT : gp_Trsf2d) -> None:
"""
None
"""
def Transformed(self,theT : gp_Trsf2d) -> gp_Vec2d:
"""
Transforms a vector with a Trsf from gp.
"""
def X(self) -> float:
"""
For this vector, returns its X coordinate.
"""
def XY(self) -> gp_XY:
"""
For this vector, returns its two coordinates as a number pair
"""
def Y(self) -> float:
"""
For this vector, returns its Y coordinate.
"""
def __add__(self,theOther : gp_Vec2d) -> gp_Vec2d:
"""
None
"""
def __iadd__(self,theOther : gp_Vec2d) -> None:
"""
None
"""
def __imul__(self,theScalar : float) -> None:
"""
None
"""
@overload
def __init__(self,theP1 : gp_Pnt2d,theP2 : gp_Pnt2d) -> None: ...
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,theCoord : gp_XY) -> None: ...
@overload
def __init__(self,theXv : float,theYv : float) -> None: ...
@overload
def __init__(self,theV : gp_Dir2d) -> None: ...
def __isub__(self,theRight : gp_Vec2d) -> None:
"""
None
"""
def __itruediv__(self,theScalar : float) -> None:
"""
None
"""
@overload
def __mul__(self,theOther : gp_Vec2d) -> float:
"""
None
None
"""
@overload
def __mul__(self,theScalar : float) -> gp_Vec2d: ...
def __pow__(self,theRight : gp_Vec2d) -> float:
"""
None
"""
@overload
def __rmul__(self,theScalar : float) -> gp_Vec2d:
"""
None
None
"""
@overload
def __rmul__(self,theOther : gp_Vec2d) -> float: ...
@overload
def __sub__(self) -> gp_Vec2d:
"""
None
None
"""
@overload
def __sub__(self,theRight : gp_Vec2d) -> gp_Vec2d: ...
def __truediv__(self,theScalar : float) -> gp_Vec2d:
"""
None
"""
pass
class gp_Vec2f():
"""
Defines the 2D-vector template. The main target for this class - to handle raw low-level arrays (from/to graphic driver etc.).
"""
def ChangeData(self) -> float:
"""
None
"""
@staticmethod
def DX_s() -> gp_Vec2f:
"""
Construct DX unit vector.
"""
@staticmethod
def DY_s() -> gp_Vec2f:
"""
Construct DY unit vector.
"""
def Dot(self,theOther : gp_Vec2f) -> float:
"""
Computes the dot product.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def GetData(self) -> float:
"""
Raw access to the data (for OpenGL exchange).
"""
def IsEqual(self,theOther : gp_Vec2f) -> bool:
"""
Check this vector with another vector for equality (without tolerance!).
"""
@staticmethod
def Length_s() -> int:
"""
Returns the number of components.
"""
def Modulus(self) -> float:
"""
Computes the vector modulus (magnitude, length).
"""
def Multiplied(self,theFactor : float) -> gp_Vec2f:
"""
Compute per-component multiplication by scale factor.
"""
def Multiply(self,theFactor : float) -> None:
"""
Compute per-component multiplication by scale factor.
"""
def SetValues(self,theX : float,theY : float) -> None:
"""
Assign new values to the vector.
"""
def SquareModulus(self) -> float:
"""
Computes the square of vector modulus (magnitude, length). This method may be used for performance tricks.
"""
def __iadd__(self,theAdd : gp_Vec2f) -> gp_Vec2f:
"""
Compute per-component summary.
"""
@overload
def __imul__(self,theFactor : float) -> gp_Vec2f:
"""
Compute per-component multiplication.
Compute per-component multiplication by scale factor.
"""
@overload
def __imul__(self,theRight : gp_Vec2f) -> gp_Vec2f: ...
@overload
def __init__(self,theXY : float) -> None: ...
@overload
def __init__(self,theX : float,theY : float) -> None: ...
@overload
def __init__(self) -> None: ...
def __isub__(self,theDec : gp_Vec2f) -> gp_Vec2f:
"""
Compute per-component subtraction.
"""
@overload
def __itruediv__(self,theInvFactor : float) -> gp_Vec2f:
"""
Compute per-component division by scale factor.
Compute per-component division.
"""
@overload
def __itruediv__(self,theRight : gp_Vec2f) -> gp_Vec2f: ...
def __mul__(self,theFactor : float) -> gp_Vec2f:
"""
Compute per-component multiplication by scale factor.
"""
def __rmul__(self,theFactor : float) -> gp_Vec2f:
"""
Compute per-component multiplication by scale factor.
"""
def __sub__(self) -> gp_Vec2f:
"""
Unary -.
"""
def __truediv__(self,theInvFactor : float) -> gp_Vec2f:
"""
Compute per-component division by scale factor.
"""
def cwiseAbs(self) -> gp_Vec2f:
"""
Compute component-wise modulus of the vector.
"""
def cwiseMax(self,theVec : gp_Vec2f) -> gp_Vec2f:
"""
Compute component-wise maximum of two vectors.
"""
def cwiseMin(self,theVec : gp_Vec2f) -> gp_Vec2f:
"""
Compute component-wise minimum of two vectors.
"""
def maxComp(self) -> float:
"""
Compute maximum component of the vector.
"""
def minComp(self) -> float:
"""
Compute minimum component of the vector.
"""
def x(self) -> float:
"""
Alias to 1st component as X coordinate in XY.
Alias to 1st component as X coordinate in XY.
"""
def xy(self) -> gp_Vec2f:
"""
None
"""
def y(self) -> float:
"""
Alias to 2nd component as Y coordinate in XY.
Alias to 2nd component as Y coordinate in XY.
"""
def yx(self) -> gp_Vec2f:
"""
None
"""
pass
class gp_Vec3f():
"""
Generic 3-components vector. To be used as RGB color pixel or XYZ 3D-point. The main target for this class - to handle raw low-level arrays (from/to graphic driver etc.).
"""
def ChangeData(self) -> float:
"""
None
"""
@staticmethod
def Cross_s(theVec1 : gp_Vec3f,theVec2 : gp_Vec3f) -> gp_Vec3f:
"""
Computes the cross product.
"""
@staticmethod
def DX_s() -> gp_Vec3f:
"""
Construct DX unit vector.
"""
@staticmethod
def DY_s() -> gp_Vec3f:
"""
Construct DY unit vector.
"""
@staticmethod
def DZ_s() -> gp_Vec3f:
"""
Construct DZ unit vector.
"""
def Dot(self,theOther : gp_Vec3f) -> float:
"""
Computes the dot product.
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def GetData(self) -> float:
"""
Raw access to the data (for OpenGL exchange).
"""
@staticmethod
def GetLERP_s(theFrom : gp_Vec3f,theTo : gp_Vec3f,theT : float) -> gp_Vec3f:
"""
Compute linear interpolation between to vectors.
"""
def IsEqual(self,theOther : gp_Vec3f) -> bool:
"""
Check this vector with another vector for equality (without tolerance!).
"""
@staticmethod
def Length_s() -> int:
"""
Returns the number of components.
"""
def Modulus(self) -> float:
"""
Computes the vector modulus (magnitude, length).
"""
def Multiplied(self,theFactor : float) -> gp_Vec3f:
"""
Compute per-component multiplication by scale factor.
"""
def Multiply(self,theFactor : float) -> None:
"""
Compute per-component multiplication by scale factor.
"""
def Normalize(self) -> None:
"""
Normalize the vector.
"""
def Normalized(self) -> gp_Vec3f:
"""
Normalize the vector.
"""
@overload
def SetValues(self,theVec2 : gp_Vec2f,theZ : float) -> None:
"""
Assign new values to the vector.
Assign new values to the vector.
"""
@overload
def SetValues(self,theX : float,theY : float,theZ : float) -> None: ...
def SquareModulus(self) -> float:
"""
Computes the square of vector modulus (magnitude, length). This method may be used for performance tricks.
"""
def __iadd__(self,theAdd : gp_Vec3f) -> gp_Vec3f:
"""
Compute per-component summary.
"""
@overload
def __imul__(self,theFactor : float) -> gp_Vec3f:
"""
Compute per-component multiplication.
Compute per-component multiplication by scale factor.
"""
@overload
def __imul__(self,theRight : gp_Vec3f) -> gp_Vec3f: ...
@overload
def __init__(self,theX : float,theY : float,theZ : float) -> None: ...
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,theValue : float) -> None: ...
@overload
def __init__(self,theVec2 : gp_Vec2f,theZ : float=0.0) -> None: ...
def __isub__(self,theDec : gp_Vec3f) -> gp_Vec3f:
"""
Compute per-component subtraction.
"""
@overload
def __itruediv__(self,theRight : gp_Vec3f) -> gp_Vec3f:
"""
Compute per-component division by scale factor.
Compute per-component division.
"""
@overload
def __itruediv__(self,theInvFactor : float) -> gp_Vec3f: ...
def __mul__(self,theFactor : float) -> gp_Vec3f:
"""
Compute per-component multiplication by scale factor.
"""
def __rmul__(self,theFactor : float) -> gp_Vec3f:
"""
Compute per-component multiplication by scale factor.
"""
def __sub__(self) -> gp_Vec3f:
"""
Unary -.
"""
def __truediv__(self,theInvFactor : float) -> gp_Vec3f:
"""
Compute per-component division by scale factor.
"""
def b(self) -> float:
"""
Alias to 3rd component as BLUE channel in RGB.
Alias to 3rd component as BLUE channel in RGB.
"""
def cwiseAbs(self) -> gp_Vec3f:
"""
Compute component-wise modulus of the vector.
"""
def cwiseMax(self,theVec : gp_Vec3f) -> gp_Vec3f:
"""
Compute component-wise maximum of two vectors.
"""
def cwiseMin(self,theVec : gp_Vec3f) -> gp_Vec3f:
"""
Compute component-wise minimum of two vectors.
"""
def g(self) -> float:
"""
Alias to 2nd component as GREEN channel in RGB.
Alias to 2nd component as GREEN channel in RGB.
"""
def maxComp(self) -> float:
"""
Compute maximum component of the vector.
"""
def minComp(self) -> float:
"""
Compute minimum component of the vector.
"""
def r(self) -> float:
"""
Alias to 1st component as RED channel in RGB.
Alias to 1st component as RED channel in RGB.
"""
def x(self) -> float:
"""
Alias to 1st component as X coordinate in XYZ.
Alias to 1st component as X coordinate in XYZ.
"""
def xy(self) -> gp_Vec2f:
"""
None
"""
def xyz(self) -> gp_Vec3f:
"""
None
"""
def xz(self) -> gp_Vec2f:
"""
None
"""
def xzy(self) -> gp_Vec3f:
"""
None
"""
def y(self) -> float:
"""
Alias to 2nd component as Y coordinate in XYZ.
Alias to 2nd component as Y coordinate in XYZ.
"""
def yx(self) -> gp_Vec2f:
"""
None
"""
def yxz(self) -> gp_Vec3f:
"""
None
"""
def yz(self) -> gp_Vec2f:
"""
None
"""
def yzx(self) -> gp_Vec3f:
"""
None
"""
def z(self) -> float:
"""
Alias to 3rd component as Z coordinate in XYZ.
Alias to 3rd component as Z coordinate in XYZ.
"""
def zx(self) -> gp_Vec2f:
"""
None
"""
def zxy(self) -> gp_Vec3f:
"""
None
"""
def zy(self) -> gp_Vec2f:
"""
None
"""
def zyx(self) -> gp_Vec3f:
"""
None
"""
pass
class gp_VectorWithNullMagnitude(Exception, BaseException):
class type():
pass
__cause__: getset_descriptor # value = <attribute '__cause__' of 'BaseException' objects>
__context__: getset_descriptor # value = <attribute '__context__' of 'BaseException' objects>
__dict__: mappingproxy # value = mappingproxy({'__module__': 'OCP.gp', '__weakref__': <attribute '__weakref__' of 'gp_VectorWithNullMagnitude' objects>, '__doc__': None})
__suppress_context__: member_descriptor # value = <member '__suppress_context__' of 'BaseException' objects>
__traceback__: getset_descriptor # value = <attribute '__traceback__' of 'BaseException' objects>
__weakref__: getset_descriptor # value = <attribute '__weakref__' of 'gp_VectorWithNullMagnitude' objects>
args: getset_descriptor # value = <attribute 'args' of 'BaseException' objects>
pass
class gp_XY():
"""
This class describes a cartesian coordinate entity in 2D space {X,Y}. This class is non persistent. This entity used for algebraic calculation. An XY can be transformed with a Trsf2d or a GTrsf2d from package gp. It is used in vectorial computations or for holding this type of information in data structures.
"""
def Add(self,theOther : gp_XY) -> None:
"""
Computes the sum of this number pair and number pair theOther
"""
def Added(self,theOther : gp_XY) -> gp_XY:
"""
Computes the sum of this number pair and number pair theOther
"""
def ChangeCoord(self,theIndex : int) -> float:
"""
None
"""
@overload
def Coord(self,theIndex : int) -> float:
"""
returns the coordinate of range theIndex : theIndex = 1 => X is returned theIndex = 2 => Y is returned Raises OutOfRange if theIndex != {1, 2}.
For this number pair, returns its coordinates X and Y.
"""
@overload
def Coord(self) -> tuple[float, float]: ...
def CrossMagnitude(self,theRight : gp_XY) -> float:
"""
computes the magnitude of the cross product between <me> and theRight. Returns || <me> ^ theRight ||
"""
def CrossSquareMagnitude(self,theRight : gp_XY) -> float:
"""
computes the square magnitude of the cross product between <me> and theRight. Returns || <me> ^ theRight ||**2
"""
def Crossed(self,theOther : gp_XY) -> float: ...
def Divide(self,theScalar : float) -> None:
"""
divides <me> by a real.
"""
def Divided(self,theScalar : float) -> gp_XY:
"""
Divides <me> by a real.
"""
def Dot(self,theOther : gp_XY) -> float:
"""
Computes the scalar product between <me> and theOther
"""
def IsEqual(self,theOther : gp_XY,theTolerance : float) -> bool:
"""
Returns true if the coordinates of this number pair are equal to the respective coordinates of the number pair theOther, within the specified tolerance theTolerance. I.e.: abs(<me>.X() - theOther.X()) <= theTolerance and abs(<me>.Y() - theOther.Y()) <= theTolerance and computations
"""
def Modulus(self) -> float:
"""
Computes Sqrt (X*X + Y*Y) where X and Y are the two coordinates of this number pair.
"""
@overload
def Multiplied(self,theScalar : float) -> gp_XY:
"""
New = theMatrix * <me>
"""
@overload
def Multiplied(self,theMatrix : gp_Mat2d) -> gp_XY: ...
@overload
def Multiplied(self,theOther : gp_XY) -> gp_XY: ...
@overload
def Multiply(self,theOther : gp_XY) -> None:
"""
<me> = theMatrix * <me>
<me> = theMatrix * <me>
"""
@overload
def Multiply(self,theScalar : float) -> None: ...
@overload
def Multiply(self,theMatrix : gp_Mat2d) -> None: ...
def Normalize(self) -> None:
"""
Raises ConstructionError if <me>.Modulus() <= Resolution from gp
Raises ConstructionError if <me>.Modulus() <= Resolution from gp
"""
def Normalized(self) -> gp_XY:
"""
Raises ConstructionError if <me>.Modulus() <= Resolution from gp
"""
def Reverse(self) -> None: ...
def Reversed(self) -> gp_XY: ...
@overload
def SetCoord(self,theIndex : int,theXi : float) -> None:
"""
modifies the coordinate of range theIndex theIndex = 1 => X is modified theIndex = 2 => Y is modified Raises OutOfRange if theIndex != {1, 2}.
For this number pair, assigns the values theX and theY to its coordinates
"""
@overload
def SetCoord(self,theX : float,theY : float) -> None: ...
@overload
def SetLinearForm(self,theA1 : float,theXY1 : gp_XY,theA2 : float,theXY2 : gp_XY,theXY3 : gp_XY) -> None:
"""
Computes the following linear combination and assigns the result to this number pair:
-- Computes the following linear combination and assigns the result to this number pair:
Computes the following linear combination and assigns the result to this number pair:
Computes the following linear combination and assigns the result to this number pair:
"""
@overload
def SetLinearForm(self,theA1 : float,theXY1 : gp_XY,theA2 : float,theXY2 : gp_XY) -> None: ...
@overload
def SetLinearForm(self,theA1 : float,theXY1 : gp_XY,theXY2 : gp_XY) -> None: ...
@overload
def SetLinearForm(self,theXY1 : gp_XY,theXY2 : gp_XY) -> None: ...
def SetX(self,theX : float) -> None:
"""
Assigns the given value to the X coordinate of this number pair.
"""
def SetY(self,theY : float) -> None:
"""
Assigns the given value to the Y coordinate of this number pair.
"""
def SquareModulus(self) -> float:
"""
Computes X*X + Y*Y where X and Y are the two coordinates of this number pair.
"""
def Subtract(self,theOther : gp_XY) -> None: ...
def Subtracted(self,theOther : gp_XY) -> gp_XY: ...
def X(self) -> float:
"""
Returns the X coordinate of this number pair.
"""
def Y(self) -> float:
"""
Returns the Y coordinate of this number pair.
"""
def __add__(self,theOther : gp_XY) -> gp_XY:
"""
None
"""
def __iadd__(self,theOther : gp_XY) -> None:
"""
None
"""
@overload
def __imul__(self,theScalar : float) -> None:
"""
None
None
None
"""
@overload
def __imul__(self,theMatrix : gp_Mat2d) -> None: ...
@overload
def __imul__(self,theOther : gp_XY) -> None: ...
@overload
def __init__(self,theX : float,theY : float) -> None: ...
@overload
def __init__(self) -> None: ...
def __isub__(self,theOther : gp_XY) -> None:
"""
None
"""
def __itruediv__(self,theScalar : float) -> None:
"""
None
"""
@overload
def __mul__(self,theScalar : float) -> gp_XY:
"""
None
None
None
"""
@overload
def __mul__(self,theMatrix : gp_Mat2d) -> gp_XY: ...
@overload
def __mul__(self,theOther : gp_XY) -> float: ...
def __pow__(self,theOther : gp_XY) -> float:
"""
None
"""
@overload
def __rmul__(self,theMatrix : gp_Mat2d) -> gp_XY:
"""
None
None
None
"""
@overload
def __rmul__(self,theOther : gp_XY) -> float: ...
@overload
def __rmul__(self,theScalar : float) -> gp_XY: ...
@overload
def __sub__(self,theOther : gp_XY) -> gp_XY:
"""
None
None
"""
@overload
def __sub__(self) -> gp_XY: ...
def __truediv__(self,theScalar : float) -> gp_XY:
"""
None
"""
pass
class gp_XYZ():
"""
This class describes a cartesian coordinate entity in 3D space {X,Y,Z}. This entity is used for algebraic calculation. This entity can be transformed with a "Trsf" or a "GTrsf" from package "gp". It is used in vectorial computations or for holding this type of information in data structures.
"""
def Add(self,theOther : gp_XYZ) -> None: ...
def Added(self,theOther : gp_XYZ) -> gp_XYZ: ...
def ChangeCoord(self,theIndex : int) -> float:
"""
None
"""
def ChangeData(self) -> float:
"""
Returns a ptr to coordinates location. Is useful for algorithms, but DOES NOT PERFORM ANY CHECKS!
"""
@overload
def Coord(self,theIndex : int) -> float:
"""
returns the coordinate of range theIndex : theIndex = 1 => X is returned theIndex = 2 => Y is returned theIndex = 3 => Z is returned
None
"""
@overload
def Coord(self) -> tuple[float, float, float]: ...
@overload
def Cross(self,theRight : gp_XYZ) -> None: ...
@overload
def Cross(self,theOther : gp_XYZ) -> None: ...
def CrossCross(self,theCoord1 : gp_XYZ,theCoord2 : gp_XYZ) -> None:
"""
Triple vector product Computes <me> = <me>.Cross(theCoord1.Cross(theCoord2))
Triple vector product Computes <me> = <me>.Cross(theCoord1.Cross(theCoord2))
"""
def CrossCrossed(self,theCoord1 : gp_XYZ,theCoord2 : gp_XYZ) -> gp_XYZ:
"""
Triple vector product computes New = <me>.Cross(theCoord1.Cross(theCoord2))
"""
def CrossMagnitude(self,theRight : gp_XYZ) -> float:
"""
Computes the magnitude of the cross product between <me> and theRight. Returns || <me> ^ theRight ||
Computes the magnitude of the cross product between <me> and theRight. Returns || <me> ^ theRight ||
"""
def CrossSquareMagnitude(self,theRight : gp_XYZ) -> float:
"""
Computes the square magnitude of the cross product between <me> and theRight. Returns || <me> ^ theRight ||**2
Computes the square magnitude of the cross product between <me> and theRight. Returns || <me> ^ theRight ||**2
"""
def Crossed(self,theOther : gp_XYZ) -> gp_XYZ: ...
def Divide(self,theScalar : float) -> None:
"""
divides <me> by a real.
"""
def Divided(self,theScalar : float) -> gp_XYZ:
"""
divides <me> by a real.
"""
def Dot(self,theOther : gp_XYZ) -> float:
"""
computes the scalar product between <me> and theOther
"""
def DotCross(self,theCoord1 : gp_XYZ,theCoord2 : gp_XYZ) -> float:
"""
computes the triple scalar product
computes the triple scalar product
"""
def DumpJson(self,theOStream : io.BytesIO,theDepth : int=-1) -> None:
"""
Dumps the content of me into the stream
"""
def GetData(self) -> float:
"""
Returns a const ptr to coordinates location. Is useful for algorithms, but DOES NOT PERFORM ANY CHECKS!
"""
def InitFromJson(self,theSStream : Any,theStreamPos : int) -> bool:
"""
Inits the content of me from the stream
"""
def IsEqual(self,theOther : gp_XYZ,theTolerance : float) -> bool:
"""
Returns True if he coordinates of this XYZ object are equal to the respective coordinates Other, within the specified tolerance theTolerance. I.e.: abs(<me>.X() - theOther.X()) <= theTolerance and abs(<me>.Y() - theOther.Y()) <= theTolerance and abs(<me>.Z() - theOther.Z()) <= theTolerance.
"""
def Modulus(self) -> float:
"""
computes Sqrt (X*X + Y*Y + Z*Z) where X, Y and Z are the three coordinates of this XYZ object.
"""
@overload
def Multiplied(self,theMatrix : gp_Mat) -> gp_XYZ:
"""
New = theMatrix * <me>
"""
@overload
def Multiplied(self,theOther : gp_XYZ) -> gp_XYZ: ...
@overload
def Multiplied(self,theScalar : float) -> gp_XYZ: ...
@overload
def Multiply(self,theMatrix : gp_Mat) -> None:
"""
<me> = theMatrix * <me>
<me> = theMatrix * <me>
"""
@overload
def Multiply(self,theOther : gp_XYZ) -> None: ...
@overload
def Multiply(self,theScalar : float) -> None: ...
def Normalize(self) -> None:
"""
Raised if <me>.Modulus() <= Resolution from gp
Raised if <me>.Modulus() <= Resolution from gp
"""
def Normalized(self) -> gp_XYZ:
"""
Raised if <me>.Modulus() <= Resolution from gp
"""
def Reverse(self) -> None: ...
def Reversed(self) -> gp_XYZ: ...
@overload
def SetCoord(self,theIndex : int,theXi : float) -> None:
"""
For this XYZ object, assigns the values theX, theY and theZ to its three coordinates
modifies the coordinate of range theIndex theIndex = 1 => X is modified theIndex = 2 => Y is modified theIndex = 3 => Z is modified Raises OutOfRange if theIndex != {1, 2, 3}.
"""
@overload
def SetCoord(self,theX : float,theY : float,theZ : float) -> None: ...
@overload
def SetLinearForm(self,theA1 : float,theXYZ1 : gp_XYZ,theA2 : float,theXYZ2 : gp_XYZ) -> None:
"""
<me> is set to the following linear form :
<me> is set to the following linear form :
<me> is set to the following linear form :
<me> is set to the following linear form :
<me> is set to the following linear form :
<me> is set to the following linear form :
"""
@overload
def SetLinearForm(self,theA1 : float,theXYZ1 : gp_XYZ,theA2 : float,theXYZ2 : gp_XYZ,theA3 : float,theXYZ3 : gp_XYZ) -> None: ...
@overload
def SetLinearForm(self,theXYZ1 : gp_XYZ,theXYZ2 : gp_XYZ) -> None: ...
@overload
def SetLinearForm(self,theA1 : float,theXYZ1 : gp_XYZ,theA2 : float,theXYZ2 : gp_XYZ,theXYZ3 : gp_XYZ) -> None: ...
@overload
def SetLinearForm(self,theA1 : float,theXYZ1 : gp_XYZ,theXYZ2 : gp_XYZ) -> None: ...
@overload
def SetLinearForm(self,theA1 : float,theXYZ1 : gp_XYZ,theA2 : float,theXYZ2 : gp_XYZ,theA3 : float,theXYZ3 : gp_XYZ,theXYZ4 : gp_XYZ) -> None: ...
def SetX(self,theX : float) -> None:
"""
Assigns the given value to the X coordinate
"""
def SetY(self,theY : float) -> None:
"""
Assigns the given value to the Y coordinate
"""
def SetZ(self,theZ : float) -> None:
"""
Assigns the given value to the Z coordinate
"""
def SquareModulus(self) -> float:
"""
Computes X*X + Y*Y + Z*Z where X, Y and Z are the three coordinates of this XYZ object.
"""
def Subtract(self,theOther : gp_XYZ) -> None: ...
def Subtracted(self,theOther : gp_XYZ) -> gp_XYZ: ...
def X(self) -> float:
"""
Returns the X coordinate
"""
def Y(self) -> float:
"""
Returns the Y coordinate
"""
def Z(self) -> float:
"""
Returns the Z coordinate
"""
def __add__(self,theOther : gp_XYZ) -> gp_XYZ:
"""
None
"""
def __iadd__(self,theOther : gp_XYZ) -> None:
"""
None
"""
@overload
def __imul__(self,theMatrix : gp_Mat) -> None:
"""
None
None
None
"""
@overload
def __imul__(self,theScalar : float) -> None: ...
@overload
def __imul__(self,theOther : gp_XYZ) -> None: ...
@overload
def __init__(self) -> None: ...
@overload
def __init__(self,theX : float,theY : float,theZ : float) -> None: ...
def __ipow__(self,theOther : gp_XYZ) -> None:
"""
None
"""
def __isub__(self,theOther : gp_XYZ) -> None:
"""
None
"""
def __itruediv__(self,theScalar : float) -> None:
"""
None
"""
@overload
def __mul__(self,theScalar : float) -> gp_XYZ:
"""
None
None
None
"""
@overload
def __mul__(self,theOther : gp_XYZ) -> float: ...
@overload
def __mul__(self,theMatrix : gp_Mat) -> gp_XYZ: ...
def __pow__(self,theOther : gp_XYZ) -> gp_XYZ:
"""
None
"""
@overload
def __rmul__(self,theScalar : float) -> gp_XYZ:
"""
None
None
None
"""
@overload
def __rmul__(self,theOther : gp_XYZ) -> float: ...
@overload
def __rmul__(self,theMatrix : gp_Mat) -> gp_XYZ: ...
def __sub__(self,theOther : gp_XYZ) -> gp_XYZ:
"""
None
"""
def __truediv__(self,theScalar : float) -> gp_XYZ:
"""
None
"""
pass
@overload
def __mul__(theScalar : float,theV : gp_Vec2d) -> gp_Vec2d:
"""
None
None
None
None
None
None
None
None
"""
@overload
def __mul__(theMatrix : gp_Mat,theCoord1 : gp_XYZ) -> gp_XYZ:
pass
@overload
def __mul__(theScalar : float,theV : gp_Vec) -> gp_Vec:
pass
@overload
def __mul__(theScalar : float,theCoord1 : gp_XY) -> gp_XY:
pass
@overload
def __mul__(theScalar : float,theMat3D : gp_Mat) -> gp_Mat:
pass
@overload
def __mul__(theMatrix : gp_Mat2d,theCoord1 : gp_XY) -> gp_XY:
pass
@overload
def __mul__(theScalar : float,theCoord1 : gp_XYZ) -> gp_XYZ:
pass
@overload
def __mul__(theScalar : float,theMat2D : gp_Mat2d) -> gp_Mat2d:
pass
@overload
def __rmul__(theMatrix : gp_Mat2d,theCoord1 : gp_XY) -> gp_XY:
"""
None
None
None
None
None
None
None
None
"""
@overload
def __rmul__(theScalar : float,theMat2D : gp_Mat2d) -> gp_Mat2d:
pass
@overload
def __rmul__(theScalar : float,theV : gp_Vec2d) -> gp_Vec2d:
pass
@overload
def __rmul__(theScalar : float,theCoord1 : gp_XY) -> gp_XY:
pass
@overload
def __rmul__(theScalar : float,theCoord1 : gp_XYZ) -> gp_XYZ:
pass
@overload
def __rmul__(theMatrix : gp_Mat,theCoord1 : gp_XYZ) -> gp_XYZ:
pass
@overload
def __rmul__(theScalar : float,theV : gp_Vec) -> gp_Vec:
pass
@overload
def __rmul__(theScalar : float,theMat3D : gp_Mat) -> gp_Mat:
pass
gp_Ax1Mirror: OCP.gp.gp_TrsfForm # value = <gp_TrsfForm.gp_Ax1Mirror: 4>
gp_Ax2Mirror: OCP.gp.gp_TrsfForm # value = <gp_TrsfForm.gp_Ax2Mirror: 5>
gp_CompoundTrsf: OCP.gp.gp_TrsfForm # value = <gp_TrsfForm.gp_CompoundTrsf: 7>
gp_EulerAngles: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_EulerAngles: 0>
gp_Extrinsic_XYX: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Extrinsic_XYX: 14>
gp_Extrinsic_XYZ: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Extrinsic_XYZ: 2>
gp_Extrinsic_XZX: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Extrinsic_XZX: 15>
gp_Extrinsic_XZY: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Extrinsic_XZY: 3>
gp_Extrinsic_YXY: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Extrinsic_YXY: 17>
gp_Extrinsic_YXZ: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Extrinsic_YXZ: 5>
gp_Extrinsic_YZX: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Extrinsic_YZX: 4>
gp_Extrinsic_YZY: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Extrinsic_YZY: 16>
gp_Extrinsic_ZXY: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Extrinsic_ZXY: 6>
gp_Extrinsic_ZXZ: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Extrinsic_ZXZ: 19>
gp_Extrinsic_ZYX: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Extrinsic_ZYX: 7>
gp_Extrinsic_ZYZ: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Extrinsic_ZYZ: 18>
gp_Identity: OCP.gp.gp_TrsfForm # value = <gp_TrsfForm.gp_Identity: 0>
gp_Intrinsic_XYX: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Intrinsic_XYX: 20>
gp_Intrinsic_XYZ: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Intrinsic_XYZ: 8>
gp_Intrinsic_XZX: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Intrinsic_XZX: 21>
gp_Intrinsic_XZY: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Intrinsic_XZY: 9>
gp_Intrinsic_YXY: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Intrinsic_YXY: 23>
gp_Intrinsic_YXZ: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Intrinsic_YXZ: 11>
gp_Intrinsic_YZX: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Intrinsic_YZX: 10>
gp_Intrinsic_YZY: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Intrinsic_YZY: 22>
gp_Intrinsic_ZXY: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Intrinsic_ZXY: 12>
gp_Intrinsic_ZXZ: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Intrinsic_ZXZ: 24>
gp_Intrinsic_ZYX: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Intrinsic_ZYX: 13>
gp_Intrinsic_ZYZ: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_Intrinsic_ZYZ: 25>
gp_Other: OCP.gp.gp_TrsfForm # value = <gp_TrsfForm.gp_Other: 8>
gp_PntMirror: OCP.gp.gp_TrsfForm # value = <gp_TrsfForm.gp_PntMirror: 3>
gp_Rotation: OCP.gp.gp_TrsfForm # value = <gp_TrsfForm.gp_Rotation: 1>
gp_Scale: OCP.gp.gp_TrsfForm # value = <gp_TrsfForm.gp_Scale: 6>
gp_Translation: OCP.gp.gp_TrsfForm # value = <gp_TrsfForm.gp_Translation: 2>
gp_YawPitchRoll: OCP.gp.gp_EulerSequence # value = <gp_EulerSequence.gp_YawPitchRoll: 1>
|