File: ProjLib_pre.cpp

package info (click to toggle)
python-ocp 7.8.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 64,720 kB
  • sloc: cpp: 362,337; pascal: 33; python: 23; makefile: 4
file content (164 lines) | stat: -rw-r--r-- 9,205 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

namespace py = pybind11;


// Standard Handle
#include <Standard_Handle.hxx>

// user-defined inclusion per module before includes

// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <gp_Lin2d.hxx>
#include <gp_Circ2d.hxx>
#include <gp_Elips2d.hxx>
#include <gp_Parab2d.hxx>
#include <gp_Hypr2d.hxx>
#include <ProjLib_ProjectedCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Geom2d_BezierCurve.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Geom2d_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Lin.hxx>
#include <gp_Circ.hxx>
#include <gp_Elips.hxx>
#include <gp_Parab.hxx>
#include <gp_Hypr.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Lin.hxx>
#include <gp_Circ.hxx>
#include <gp_Elips.hxx>
#include <gp_Parab.hxx>
#include <gp_Hypr.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Circ.hxx>
#include <gp_Elips.hxx>
#include <gp_Parab.hxx>
#include <gp_Hypr.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BezierCurve.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom2d_BezierCurve.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Geom2d_BezierCurve.hxx>
#include <gp_Lin.hxx>
#include <gp_Circ.hxx>
#include <gp_Elips.hxx>
#include <gp_Parab.hxx>
#include <gp_Hypr.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Circ.hxx>
#include <gp_Lin.hxx>
#include <gp_Elips.hxx>
#include <gp_Parab.hxx>
#include <gp_Hypr.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Circ.hxx>
#include <gp_Lin.hxx>
#include <gp_Elips.hxx>
#include <gp_Parab.hxx>
#include <gp_Hypr.hxx>

// module includes
#include <ProjLib.hxx>
#include <ProjLib_CompProjectedCurve.hxx>
#include <ProjLib_ComputeApprox.hxx>
#include <ProjLib_ComputeApproxOnPolarSurface.hxx>
#include <ProjLib_Cone.hxx>
#include <ProjLib_Cylinder.hxx>
#include <ProjLib_HSequenceOfHSequenceOfPnt.hxx>
#include <ProjLib_Plane.hxx>
#include <ProjLib_PrjFunc.hxx>
#include <ProjLib_PrjResolve.hxx>
#include <ProjLib_ProjectedCurve.hxx>
#include <ProjLib_ProjectOnPlane.hxx>
#include <ProjLib_ProjectOnSurface.hxx>
#include <ProjLib_Projector.hxx>
#include <ProjLib_SequenceOfHSequenceOfPnt.hxx>
#include <ProjLib_Sphere.hxx>
#include <ProjLib_Torus.hxx>

// template related includes

#include "NCollection_tmpl.hxx"


// user-defined pre
#include "OCP_specific.inc"

// user-defined inclusion per module

// Module definiiton
void register_ProjLib_enums(py::module &main_module) {


py::module m = main_module.def_submodule("ProjLib", R"#()#");

// user-defined inclusion per module in the body

// enums

//Python trampoline classes

// pre-register typdefs+classes (topologically sorted)
    py::class_<ProjLib , shared_ptr<ProjLib>  >(m,"ProjLib",R"#(The ProjLib package first provides projection of curves on a plane along a given Direction. The result will be a 3D curve.)#");
    py::class_<ProjLib_ComputeApprox , shared_ptr<ProjLib_ComputeApprox>  >(m,"ProjLib_ComputeApprox",R"#(Approximate the projection of a 3d curve on an analytic surface and stores the result in Approx. The result is a 2d curve. For approximation some parameters are used, including required tolerance of approximation. Tolerance is maximal possible value of 3d deviation of 3d projection of projected curve from "exact" 3d projection. Since algorithm searches 2d curve on surface, required 2d tolerance is computed from 3d tolerance with help of U,V resolutions of surface. 3d and 2d tolerances have sense only for curves on surface, it defines precision of projecting and approximation and have nothing to do with distance between the projected curve and the surface.)#");
    py::class_<ProjLib_ComputeApproxOnPolarSurface , shared_ptr<ProjLib_ComputeApproxOnPolarSurface>  >(m,"ProjLib_ComputeApproxOnPolarSurface",R"#(Approximate the projection of a 3d curve on an polar surface and stores the result in Approx. The result is a 2d curve. The evaluation of the current point of the 2d curve is done with the evaluation of the extrema P3d - Surface. For approximation some parameters are used, including required tolerance of approximation. Tolerance is maximal possible value of 3d deviation of 3d projection of projected curve from "exact" 3d projection. Since algorithm searches 2d curve on surface, required 2d tolerance is computed from 3d tolerance with help of U,V resolutions of surface. 3d and 2d tolerances have sense only for curves on surface, it defines precision of projecting and approximation and have nothing to do with distance between the projected curve and the surface.)#");
    py::class_<ProjLib_PrjResolve , shared_ptr<ProjLib_PrjResolve>  >(m,"ProjLib_PrjResolve",R"#(None)#");
    py::class_<ProjLib_ProjectOnSurface , shared_ptr<ProjLib_ProjectOnSurface>  >(m,"ProjLib_ProjectOnSurface",R"#(Project a curve on a surface. The result ( a 3D Curve) will be an approximation)#");
    py::class_<ProjLib_Projector , shared_ptr<ProjLib_Projector>  >(m,"ProjLib_Projector",R"#(Root class for projection algorithms, stores the result.)#");
    py::class_<ProjLib_CompProjectedCurve ,opencascade::handle<ProjLib_CompProjectedCurve>  , Adaptor2d_Curve2d >(m,"ProjLib_CompProjectedCurve",R"#()#");
    py::class_<ProjLib_Cone , shared_ptr<ProjLib_Cone>  , ProjLib_Projector >(m,"ProjLib_Cone",R"#(Projects elementary curves on a cone.)#");
    py::class_<ProjLib_Cylinder , shared_ptr<ProjLib_Cylinder>  , ProjLib_Projector >(m,"ProjLib_Cylinder",R"#(Projects elementary curves on a cylinder.)#");
    py::class_<ProjLib_Plane , shared_ptr<ProjLib_Plane>  , ProjLib_Projector >(m,"ProjLib_Plane",R"#(Projects elementary curves on a plane.)#");
    py::class_<ProjLib_PrjFunc , shared_ptr<ProjLib_PrjFunc>  , math_FunctionSetWithDerivatives >(m,"ProjLib_PrjFunc",R"#(None)#");
    py::class_<ProjLib_ProjectOnPlane ,opencascade::handle<ProjLib_ProjectOnPlane>  , Adaptor3d_Curve >(m,"ProjLib_ProjectOnPlane",R"#(Class used to project a 3d curve on a plane. The result will be a 3d curve.)#");
    py::class_<ProjLib_ProjectedCurve ,opencascade::handle<ProjLib_ProjectedCurve>  , Adaptor2d_Curve2d >(m,"ProjLib_ProjectedCurve",R"#(Compute the 2d-curve. Try to solve the particular case if possible. Otherwise, an approximation is done. For approximation some parameters are used, including required tolerance of approximation. Tolerance is maximal possible value of 3d deviation of 3d projection of projected curve from "exact" 3d projection. Since algorithm searches 2d curve on surface, required 2d tolerance is computed from 3d tolerance with help of U,V resolutions of surface. 3d and 2d tolerances have sense only for curves on surface, it defines precision of projecting and approximation and have nothing to do with distance between the projected curve and the surface.Compute the 2d-curve. Try to solve the particular case if possible. Otherwise, an approximation is done. For approximation some parameters are used, including required tolerance of approximation. Tolerance is maximal possible value of 3d deviation of 3d projection of projected curve from "exact" 3d projection. Since algorithm searches 2d curve on surface, required 2d tolerance is computed from 3d tolerance with help of U,V resolutions of surface. 3d and 2d tolerances have sense only for curves on surface, it defines precision of projecting and approximation and have nothing to do with distance between the projected curve and the surface.)#");
    preregister_template_NCollection_Sequence<opencascade::handle<TColgp_HSequenceOfPnt>>(m,"ProjLib_SequenceOfHSequenceOfPnt");
    py::class_<ProjLib_Sphere , shared_ptr<ProjLib_Sphere>  , ProjLib_Projector >(m,"ProjLib_Sphere",R"#(Projects elementary curves on a sphere.)#");
    py::class_<ProjLib_Torus , shared_ptr<ProjLib_Torus>  , ProjLib_Projector >(m,"ProjLib_Torus",R"#(Projects elementary curves on a torus.)#");
    py::class_<ProjLib_HSequenceOfHSequenceOfPnt ,opencascade::handle<ProjLib_HSequenceOfHSequenceOfPnt>  , ProjLib_SequenceOfHSequenceOfPnt , Standard_Transient >(m,"ProjLib_HSequenceOfHSequenceOfPnt",R"#()#");

};

// user-defined post-inclusion per module

// user-defined post