1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybind11;
// Standard Handle
#include <Standard_Handle.hxx>
// user-defined inclusion per module before includes
// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <gp_Lin2d.hxx>
#include <gp_Circ2d.hxx>
#include <gp_Elips2d.hxx>
#include <gp_Parab2d.hxx>
#include <gp_Hypr2d.hxx>
#include <ProjLib_ProjectedCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Geom2d_BezierCurve.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Geom2d_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Lin.hxx>
#include <gp_Circ.hxx>
#include <gp_Elips.hxx>
#include <gp_Parab.hxx>
#include <gp_Hypr.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Lin.hxx>
#include <gp_Circ.hxx>
#include <gp_Elips.hxx>
#include <gp_Parab.hxx>
#include <gp_Hypr.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Circ.hxx>
#include <gp_Elips.hxx>
#include <gp_Parab.hxx>
#include <gp_Hypr.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BezierCurve.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom2d_BezierCurve.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Geom2d_BezierCurve.hxx>
#include <gp_Lin.hxx>
#include <gp_Circ.hxx>
#include <gp_Elips.hxx>
#include <gp_Parab.hxx>
#include <gp_Hypr.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Circ.hxx>
#include <gp_Lin.hxx>
#include <gp_Elips.hxx>
#include <gp_Parab.hxx>
#include <gp_Hypr.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Circ.hxx>
#include <gp_Lin.hxx>
#include <gp_Elips.hxx>
#include <gp_Parab.hxx>
#include <gp_Hypr.hxx>
// module includes
#include <ProjLib.hxx>
#include <ProjLib_CompProjectedCurve.hxx>
#include <ProjLib_ComputeApprox.hxx>
#include <ProjLib_ComputeApproxOnPolarSurface.hxx>
#include <ProjLib_Cone.hxx>
#include <ProjLib_Cylinder.hxx>
#include <ProjLib_HSequenceOfHSequenceOfPnt.hxx>
#include <ProjLib_Plane.hxx>
#include <ProjLib_PrjFunc.hxx>
#include <ProjLib_PrjResolve.hxx>
#include <ProjLib_ProjectedCurve.hxx>
#include <ProjLib_ProjectOnPlane.hxx>
#include <ProjLib_ProjectOnSurface.hxx>
#include <ProjLib_Projector.hxx>
#include <ProjLib_SequenceOfHSequenceOfPnt.hxx>
#include <ProjLib_Sphere.hxx>
#include <ProjLib_Torus.hxx>
// template related includes
#include "NCollection_tmpl.hxx"
// user-defined pre
#include "OCP_specific.inc"
// user-defined inclusion per module
// Module definiiton
void register_ProjLib_enums(py::module &main_module) {
py::module m = main_module.def_submodule("ProjLib", R"#()#");
// user-defined inclusion per module in the body
// enums
//Python trampoline classes
// pre-register typdefs+classes (topologically sorted)
py::class_<ProjLib , shared_ptr<ProjLib> >(m,"ProjLib",R"#(The ProjLib package first provides projection of curves on a plane along a given Direction. The result will be a 3D curve.)#");
py::class_<ProjLib_ComputeApprox , shared_ptr<ProjLib_ComputeApprox> >(m,"ProjLib_ComputeApprox",R"#(Approximate the projection of a 3d curve on an analytic surface and stores the result in Approx. The result is a 2d curve. For approximation some parameters are used, including required tolerance of approximation. Tolerance is maximal possible value of 3d deviation of 3d projection of projected curve from "exact" 3d projection. Since algorithm searches 2d curve on surface, required 2d tolerance is computed from 3d tolerance with help of U,V resolutions of surface. 3d and 2d tolerances have sense only for curves on surface, it defines precision of projecting and approximation and have nothing to do with distance between the projected curve and the surface.)#");
py::class_<ProjLib_ComputeApproxOnPolarSurface , shared_ptr<ProjLib_ComputeApproxOnPolarSurface> >(m,"ProjLib_ComputeApproxOnPolarSurface",R"#(Approximate the projection of a 3d curve on an polar surface and stores the result in Approx. The result is a 2d curve. The evaluation of the current point of the 2d curve is done with the evaluation of the extrema P3d - Surface. For approximation some parameters are used, including required tolerance of approximation. Tolerance is maximal possible value of 3d deviation of 3d projection of projected curve from "exact" 3d projection. Since algorithm searches 2d curve on surface, required 2d tolerance is computed from 3d tolerance with help of U,V resolutions of surface. 3d and 2d tolerances have sense only for curves on surface, it defines precision of projecting and approximation and have nothing to do with distance between the projected curve and the surface.)#");
py::class_<ProjLib_PrjResolve , shared_ptr<ProjLib_PrjResolve> >(m,"ProjLib_PrjResolve",R"#(None)#");
py::class_<ProjLib_ProjectOnSurface , shared_ptr<ProjLib_ProjectOnSurface> >(m,"ProjLib_ProjectOnSurface",R"#(Project a curve on a surface. The result ( a 3D Curve) will be an approximation)#");
py::class_<ProjLib_Projector , shared_ptr<ProjLib_Projector> >(m,"ProjLib_Projector",R"#(Root class for projection algorithms, stores the result.)#");
py::class_<ProjLib_CompProjectedCurve ,opencascade::handle<ProjLib_CompProjectedCurve> , Adaptor2d_Curve2d >(m,"ProjLib_CompProjectedCurve",R"#()#");
py::class_<ProjLib_Cone , shared_ptr<ProjLib_Cone> , ProjLib_Projector >(m,"ProjLib_Cone",R"#(Projects elementary curves on a cone.)#");
py::class_<ProjLib_Cylinder , shared_ptr<ProjLib_Cylinder> , ProjLib_Projector >(m,"ProjLib_Cylinder",R"#(Projects elementary curves on a cylinder.)#");
py::class_<ProjLib_Plane , shared_ptr<ProjLib_Plane> , ProjLib_Projector >(m,"ProjLib_Plane",R"#(Projects elementary curves on a plane.)#");
py::class_<ProjLib_PrjFunc , shared_ptr<ProjLib_PrjFunc> , math_FunctionSetWithDerivatives >(m,"ProjLib_PrjFunc",R"#(None)#");
py::class_<ProjLib_ProjectOnPlane ,opencascade::handle<ProjLib_ProjectOnPlane> , Adaptor3d_Curve >(m,"ProjLib_ProjectOnPlane",R"#(Class used to project a 3d curve on a plane. The result will be a 3d curve.)#");
py::class_<ProjLib_ProjectedCurve ,opencascade::handle<ProjLib_ProjectedCurve> , Adaptor2d_Curve2d >(m,"ProjLib_ProjectedCurve",R"#(Compute the 2d-curve. Try to solve the particular case if possible. Otherwise, an approximation is done. For approximation some parameters are used, including required tolerance of approximation. Tolerance is maximal possible value of 3d deviation of 3d projection of projected curve from "exact" 3d projection. Since algorithm searches 2d curve on surface, required 2d tolerance is computed from 3d tolerance with help of U,V resolutions of surface. 3d and 2d tolerances have sense only for curves on surface, it defines precision of projecting and approximation and have nothing to do with distance between the projected curve and the surface.Compute the 2d-curve. Try to solve the particular case if possible. Otherwise, an approximation is done. For approximation some parameters are used, including required tolerance of approximation. Tolerance is maximal possible value of 3d deviation of 3d projection of projected curve from "exact" 3d projection. Since algorithm searches 2d curve on surface, required 2d tolerance is computed from 3d tolerance with help of U,V resolutions of surface. 3d and 2d tolerances have sense only for curves on surface, it defines precision of projecting and approximation and have nothing to do with distance between the projected curve and the surface.)#");
preregister_template_NCollection_Sequence<opencascade::handle<TColgp_HSequenceOfPnt>>(m,"ProjLib_SequenceOfHSequenceOfPnt");
py::class_<ProjLib_Sphere , shared_ptr<ProjLib_Sphere> , ProjLib_Projector >(m,"ProjLib_Sphere",R"#(Projects elementary curves on a sphere.)#");
py::class_<ProjLib_Torus , shared_ptr<ProjLib_Torus> , ProjLib_Projector >(m,"ProjLib_Torus",R"#(Projects elementary curves on a torus.)#");
py::class_<ProjLib_HSequenceOfHSequenceOfPnt ,opencascade::handle<ProjLib_HSequenceOfHSequenceOfPnt> , ProjLib_SequenceOfHSequenceOfPnt , Standard_Transient >(m,"ProjLib_HSequenceOfHSequenceOfPnt",R"#()#");
};
// user-defined post-inclusion per module
// user-defined post
|