1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
|
// std lib related includes
#include <tuple>
// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybind11;
// Standard Handle
#include <Standard_Handle.hxx>
// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Quantity_Period.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
// module includes
#include <Quantity_Array1OfColor.hxx>
#include <Quantity_Color.hxx>
#include <Quantity_ColorRGBA.hxx>
#include <Quantity_Date.hxx>
#include <Quantity_DateDefinitionError.hxx>
#include <Quantity_HArray1OfColor.hxx>
#include <Quantity_NameOfColor.hxx>
#include <Quantity_Period.hxx>
#include <Quantity_PeriodDefinitionError.hxx>
#include <Quantity_TypeOfColor.hxx>
// template related includes
// ./opencascade/Quantity_Array1OfColor.hxx
#include "NCollection_tmpl.hxx"
// user-defined pre
#include "OCP_specific.inc"
// user-defined inclusion per module
// Module definiiton
void register_Quantity(py::module &main_module) {
py::module m = static_cast<py::module>(main_module.attr("Quantity"));
py::object klass;
//Python trampoline classes
// classes
// Class Quantity_Color from ./opencascade/Quantity_Color.hxx
klass = m.attr("Quantity_Color");
// nested enums
static_cast<py::class_<Quantity_Color , shared_ptr<Quantity_Color> >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const Quantity_NameOfColor >() , py::arg("theName") )
.def(py::init< const Standard_Real,const Standard_Real,const Standard_Real,const Quantity_TypeOfColor >() , py::arg("theC1"), py::arg("theC2"), py::arg("theC3"), py::arg("theType") )
.def(py::init< const NCollection_Vec3<float> & >() , py::arg("theRgb") )
// custom constructors
// methods
.def("Name",
(Quantity_NameOfColor (Quantity_Color::*)() const) static_cast<Quantity_NameOfColor (Quantity_Color::*)() const>(&Quantity_Color::Name),
R"#(Returns the name of the nearest color from the Quantity_NameOfColor enumeration.)#"
)
.def("SetValues",
(void (Quantity_Color::*)( const Quantity_NameOfColor ) ) static_cast<void (Quantity_Color::*)( const Quantity_NameOfColor ) >(&Quantity_Color::SetValues),
R"#(Updates the color from specified named color.)#" , py::arg("theName")
)
.def("SetValues",
(void (Quantity_Color::*)( const Standard_Real , const Standard_Real , const Standard_Real , const Quantity_TypeOfColor ) ) static_cast<void (Quantity_Color::*)( const Standard_Real , const Standard_Real , const Standard_Real , const Quantity_TypeOfColor ) >(&Quantity_Color::SetValues),
R"#(Updates a color according to the mode specified by theType. Throws exception if values are out of range.)#" , py::arg("theC1"), py::arg("theC2"), py::arg("theC3"), py::arg("theType")
)
.def("Red",
(Standard_Real (Quantity_Color::*)() const) static_cast<Standard_Real (Quantity_Color::*)() const>(&Quantity_Color::Red),
R"#(Returns the Red component (quantity of red) of the color within range [0.0; 1.0].)#"
)
.def("Green",
(Standard_Real (Quantity_Color::*)() const) static_cast<Standard_Real (Quantity_Color::*)() const>(&Quantity_Color::Green),
R"#(Returns the Green component (quantity of green) of the color within range [0.0; 1.0].)#"
)
.def("Blue",
(Standard_Real (Quantity_Color::*)() const) static_cast<Standard_Real (Quantity_Color::*)() const>(&Quantity_Color::Blue),
R"#(Returns the Blue component (quantity of blue) of the color within range [0.0; 1.0].)#"
)
.def("Hue",
(Standard_Real (Quantity_Color::*)() const) static_cast<Standard_Real (Quantity_Color::*)() const>(&Quantity_Color::Hue),
R"#(Returns the Hue component (hue angle) of the color in degrees within range [0.0; 360.0], 0.0 being Red. -1.0 is a special value reserved for grayscale color (S should be 0.0))#"
)
.def("Light",
(Standard_Real (Quantity_Color::*)() const) static_cast<Standard_Real (Quantity_Color::*)() const>(&Quantity_Color::Light),
R"#(Returns the Light component (value of the lightness) of the color within range [0.0; 1.0].)#"
)
.def("ChangeIntensity",
(void (Quantity_Color::*)( const Standard_Real ) ) static_cast<void (Quantity_Color::*)( const Standard_Real ) >(&Quantity_Color::ChangeIntensity),
R"#(Increases or decreases the intensity (variation of the lightness). The delta is a percentage. Any value greater than zero will increase the intensity. The variation is expressed as a percentage of the current value.)#" , py::arg("theDelta")
)
.def("Saturation",
(Standard_Real (Quantity_Color::*)() const) static_cast<Standard_Real (Quantity_Color::*)() const>(&Quantity_Color::Saturation),
R"#(Returns the Saturation component (value of the saturation) of the color within range [0.0; 1.0].)#"
)
.def("ChangeContrast",
(void (Quantity_Color::*)( const Standard_Real ) ) static_cast<void (Quantity_Color::*)( const Standard_Real ) >(&Quantity_Color::ChangeContrast),
R"#(Increases or decreases the contrast (variation of the saturation). The delta is a percentage. Any value greater than zero will increase the contrast. The variation is expressed as a percentage of the current value.)#" , py::arg("theDelta")
)
.def("IsDifferent",
(Standard_Boolean (Quantity_Color::*)( const Quantity_Color & ) const) static_cast<Standard_Boolean (Quantity_Color::*)( const Quantity_Color & ) const>(&Quantity_Color::IsDifferent),
R"#(Returns TRUE if the distance between two colors is greater than Epsilon().)#" , py::arg("theOther")
)
.def("IsEqual",
(Standard_Boolean (Quantity_Color::*)( const Quantity_Color & ) const) static_cast<Standard_Boolean (Quantity_Color::*)( const Quantity_Color & ) const>(&Quantity_Color::IsEqual),
R"#(Returns TRUE if the distance between two colors is no greater than Epsilon().)#" , py::arg("theOther")
)
.def("Distance",
(Standard_Real (Quantity_Color::*)( const Quantity_Color & ) const) static_cast<Standard_Real (Quantity_Color::*)( const Quantity_Color & ) const>(&Quantity_Color::Distance),
R"#(Returns the distance between two colors. It's a value between 0 and the square root of 3 (the black/white distance).)#" , py::arg("theColor")
)
.def("SquareDistance",
(Standard_Real (Quantity_Color::*)( const Quantity_Color & ) const) static_cast<Standard_Real (Quantity_Color::*)( const Quantity_Color & ) const>(&Quantity_Color::SquareDistance),
R"#(Returns the square of distance between two colors.)#" , py::arg("theColor")
)
.def("DeltaE2000",
(Standard_Real (Quantity_Color::*)( const Quantity_Color & ) const) static_cast<Standard_Real (Quantity_Color::*)( const Quantity_Color & ) const>(&Quantity_Color::DeltaE2000),
R"#(Returns the value of the perceptual difference between this color and theOther, computed using the CIEDE2000 formula. The difference is in range [0, 100.], with 1 approximately corresponding to the minimal percievable difference (usually difference 5 or greater is needed for the difference to be recognizable in practice).)#" , py::arg("theOther")
)
.def("DumpJson",
(void (Quantity_Color::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Quantity_Color::*)( std::ostream & , Standard_Integer ) const>(&Quantity_Color::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
.def("InitFromJson",
(Standard_Boolean (Quantity_Color::*)( const std::stringstream & , Standard_Integer & ) ) static_cast<Standard_Boolean (Quantity_Color::*)( const std::stringstream & , Standard_Integer & ) >(&Quantity_Color::InitFromJson),
R"#(Inits the content of me from the stream)#" , py::arg("theSStream"), py::arg("theStreamPos")
)
// methods using call by reference i.s.o. return
.def("Values",
[]( Quantity_Color &self , const Quantity_TypeOfColor theType ){
Standard_Real theC1;
Standard_Real theC2;
Standard_Real theC3;
self.Values(theC1,theC2,theC3,theType);
return std::make_tuple(theC1,theC2,theC3); },
R"#(Returns in theC1, theC2 and theC3 the components of this color according to the color system definition theType.)#" , py::arg("theType")
)
.def("Delta",
[]( Quantity_Color &self , const Quantity_Color & theColor ){
Standard_Real DC;
Standard_Real DI;
self.Delta(theColor,DC,DI);
return std::make_tuple(DC,DI); },
R"#(Returns the percentage change of contrast and intensity between this and another color. <DC> and <DI> are percentages, either positive or negative. The calculation is with respect to this color. If <DC> is positive then <me> is more contrasty. If <DI> is positive then <me> is more intense.)#" , py::arg("theColor")
)
// static methods
.def_static("Name_s",
(Quantity_NameOfColor (*)( const Standard_Real , const Standard_Real , const Standard_Real ) ) static_cast<Quantity_NameOfColor (*)( const Standard_Real , const Standard_Real , const Standard_Real ) >(&Quantity_Color::Name),
R"#(Returns the color from Quantity_NameOfColor enumeration nearest to specified RGB values.)#" , py::arg("theR"), py::arg("theG"), py::arg("theB")
)
.def_static("StringName_s",
(Standard_CString (*)( const Quantity_NameOfColor ) ) static_cast<Standard_CString (*)( const Quantity_NameOfColor ) >(&Quantity_Color::StringName),
R"#(Returns the name of the color identified by the given Quantity_NameOfColor enumeration value.)#" , py::arg("theColor")
)
.def_static("ColorFromName_s",
(Standard_Boolean (*)( const Standard_CString , Quantity_NameOfColor & ) ) static_cast<Standard_Boolean (*)( const Standard_CString , Quantity_NameOfColor & ) >(&Quantity_Color::ColorFromName),
R"#(Finds color from predefined names. For example, the name of the color which corresponds to "BLACK" is Quantity_NOC_BLACK. Returns FALSE if name is unknown.)#" , py::arg("theName"), py::arg("theColor")
)
.def_static("ColorFromName_s",
(Standard_Boolean (*)( const Standard_CString , Quantity_Color & ) ) static_cast<Standard_Boolean (*)( const Standard_CString , Quantity_Color & ) >(&Quantity_Color::ColorFromName),
R"#(Finds color from predefined names.)#" , py::arg("theColorNameString"), py::arg("theColor")
)
.def_static("ColorFromHex_s",
(bool (*)( const Standard_CString , Quantity_Color & ) ) static_cast<bool (*)( const Standard_CString , Quantity_Color & ) >(&Quantity_Color::ColorFromHex),
R"#(Parses the string as a hex color (like "#FF0" for short sRGB color, or "#FFFF00" for sRGB color))#" , py::arg("theHexColorString"), py::arg("theColor")
)
.def_static("ColorToHex_s",
(TCollection_AsciiString (*)( const Quantity_Color & , const bool ) ) static_cast<TCollection_AsciiString (*)( const Quantity_Color & , const bool ) >(&Quantity_Color::ColorToHex),
R"#(Returns hex sRGB string in format "#FFAAFF".)#" , py::arg("theColor"), py::arg("theToPrefixHash")=static_cast<const bool>(true)
)
.def_static("Convert_sRGB_To_HLS_s",
(NCollection_Vec3<float> (*)( const NCollection_Vec3<float> & ) ) static_cast<NCollection_Vec3<float> (*)( const NCollection_Vec3<float> & ) >(&Quantity_Color::Convert_sRGB_To_HLS),
R"#(Converts sRGB components into HLS ones.)#" , py::arg("theRgb")
)
.def_static("Convert_HLS_To_sRGB_s",
(NCollection_Vec3<float> (*)( const NCollection_Vec3<float> & ) ) static_cast<NCollection_Vec3<float> (*)( const NCollection_Vec3<float> & ) >(&Quantity_Color::Convert_HLS_To_sRGB),
R"#(Converts HLS components into RGB ones.)#" , py::arg("theHls")
)
.def_static("Convert_LinearRGB_To_HLS_s",
(NCollection_Vec3<float> (*)( const NCollection_Vec3<float> & ) ) static_cast<NCollection_Vec3<float> (*)( const NCollection_Vec3<float> & ) >(&Quantity_Color::Convert_LinearRGB_To_HLS),
R"#(Converts Linear RGB components into HLS ones.)#" , py::arg("theRgb")
)
.def_static("Convert_HLS_To_LinearRGB_s",
(NCollection_Vec3<float> (*)( const NCollection_Vec3<float> & ) ) static_cast<NCollection_Vec3<float> (*)( const NCollection_Vec3<float> & ) >(&Quantity_Color::Convert_HLS_To_LinearRGB),
R"#(Converts HLS components into linear RGB ones.)#" , py::arg("theHls")
)
.def_static("Convert_LinearRGB_To_Lab_s",
(NCollection_Vec3<float> (*)( const NCollection_Vec3<float> & ) ) static_cast<NCollection_Vec3<float> (*)( const NCollection_Vec3<float> & ) >(&Quantity_Color::Convert_LinearRGB_To_Lab),
R"#(Converts linear RGB components into CIE Lab ones.)#" , py::arg("theRgb")
)
.def_static("Convert_Lab_To_Lch_s",
(NCollection_Vec3<float> (*)( const NCollection_Vec3<float> & ) ) static_cast<NCollection_Vec3<float> (*)( const NCollection_Vec3<float> & ) >(&Quantity_Color::Convert_Lab_To_Lch),
R"#(Converts CIE Lab components into CIE Lch ones.)#" , py::arg("theLab")
)
.def_static("Convert_Lab_To_LinearRGB_s",
(NCollection_Vec3<float> (*)( const NCollection_Vec3<float> & ) ) static_cast<NCollection_Vec3<float> (*)( const NCollection_Vec3<float> & ) >(&Quantity_Color::Convert_Lab_To_LinearRGB),
R"#(Converts CIE Lab components into linear RGB ones. Note that the resulting values may be out of the valid range for RGB.)#" , py::arg("theLab")
)
.def_static("Convert_Lch_To_Lab_s",
(NCollection_Vec3<float> (*)( const NCollection_Vec3<float> & ) ) static_cast<NCollection_Vec3<float> (*)( const NCollection_Vec3<float> & ) >(&Quantity_Color::Convert_Lch_To_Lab),
R"#(Converts CIE Lch components into CIE Lab ones.)#" , py::arg("theLch")
)
.def_static("Argb2color_s",
(void (*)( const Standard_Integer , Quantity_Color & ) ) static_cast<void (*)( const Standard_Integer , Quantity_Color & ) >(&Quantity_Color::Argb2color),
R"#(Convert integer ARGB value to Color. Alpha bits are ignored. Note that this packing does NOT involve linear -> non-linear sRGB conversion, as would be usually expected to preserve higher (for human eye) color precision in 4 bytes.)#" , py::arg("theARGB"), py::arg("theColor")
)
.def_static("Convert_LinearRGB_To_sRGB_s",
(Standard_Real (*)( Standard_Real ) ) static_cast<Standard_Real (*)( Standard_Real ) >(&Quantity_Color::Convert_LinearRGB_To_sRGB),
R"#(Convert linear RGB component into sRGB using OpenGL specs formula (double precision), also known as gamma correction.)#" , py::arg("theLinearValue")
)
.def_static("Convert_LinearRGB_To_sRGB_s",
(float (*)( float ) ) static_cast<float (*)( float ) >(&Quantity_Color::Convert_LinearRGB_To_sRGB),
R"#(Convert linear RGB component into sRGB using OpenGL specs formula (single precision), also known as gamma correction.)#" , py::arg("theLinearValue")
)
.def_static("Convert_sRGB_To_LinearRGB_s",
(Standard_Real (*)( Standard_Real ) ) static_cast<Standard_Real (*)( Standard_Real ) >(&Quantity_Color::Convert_sRGB_To_LinearRGB),
R"#(Convert sRGB component into linear RGB using OpenGL specs formula (double precision), also known as gamma correction.)#" , py::arg("thesRGBValue")
)
.def_static("Convert_sRGB_To_LinearRGB_s",
(float (*)( float ) ) static_cast<float (*)( float ) >(&Quantity_Color::Convert_sRGB_To_LinearRGB),
R"#(Convert sRGB component into linear RGB using OpenGL specs formula (single precision), also known as gamma correction.)#" , py::arg("thesRGBValue")
)
.def_static("Convert_LinearRGB_To_sRGB_approx22_s",
(float (*)( float ) ) static_cast<float (*)( float ) >(&Quantity_Color::Convert_LinearRGB_To_sRGB_approx22),
R"#(Convert linear RGB component into sRGB using approximated uniform gamma coefficient 2.2.)#" , py::arg("theLinearValue")
)
.def_static("Convert_sRGB_To_LinearRGB_approx22_s",
(float (*)( float ) ) static_cast<float (*)( float ) >(&Quantity_Color::Convert_sRGB_To_LinearRGB_approx22),
R"#(Convert sRGB component into linear RGB using approximated uniform gamma coefficient 2.2)#" , py::arg("thesRGBValue")
)
.def_static("Convert_LinearRGB_To_sRGB_approx22_s",
(NCollection_Vec3<float> (*)( const NCollection_Vec3<float> & ) ) static_cast<NCollection_Vec3<float> (*)( const NCollection_Vec3<float> & ) >(&Quantity_Color::Convert_LinearRGB_To_sRGB_approx22),
R"#(Convert linear RGB components into sRGB using approximated uniform gamma coefficient 2.2)#" , py::arg("theRGB")
)
.def_static("Convert_sRGB_To_LinearRGB_approx22_s",
(NCollection_Vec3<float> (*)( const NCollection_Vec3<float> & ) ) static_cast<NCollection_Vec3<float> (*)( const NCollection_Vec3<float> & ) >(&Quantity_Color::Convert_sRGB_To_LinearRGB_approx22),
R"#(Convert sRGB components into linear RGB using approximated uniform gamma coefficient 2.2)#" , py::arg("theRGB")
)
.def_static("Epsilon_s",
(Standard_Real (*)() ) static_cast<Standard_Real (*)() >(&Quantity_Color::Epsilon),
R"#(Returns the value used to compare two colors for equality; 0.0001 by default.)#"
)
.def_static("SetEpsilon_s",
(void (*)( const Standard_Real ) ) static_cast<void (*)( const Standard_Real ) >(&Quantity_Color::SetEpsilon),
R"#(Set the value used to compare two colors for equality.)#" , py::arg("theEpsilon")
)
// static methods using call by reference i.s.o. return
.def_static("Color2argb_s",
[](const Quantity_Color & theColor ){
Standard_Integer theARGB;
Quantity_Color::Color2argb(theColor,theARGB);
return std::make_tuple(theARGB); },
R"#(Convert the color value to ARGB integer value, with alpha equals to 0. So the output is formatted as 0x00RRGGBB. Note that this unpacking does NOT involve non-linear sRGB -> linear RGB conversion, as would be usually expected for RGB color packed into 4 bytes.)#" , py::arg("theColor")
)
.def_static("HlsRgb_s",
[](const Standard_Real theH,const Standard_Real theL,const Standard_Real theS ){
Standard_Real theR;
Standard_Real theG;
Standard_Real theB;
Quantity_Color::HlsRgb(theH,theL,theS,theR,theG,theB);
return std::make_tuple(theR,theG,theB); },
R"#(Converts HLS components into sRGB ones.)#" , py::arg("theH"), py::arg("theL"), py::arg("theS")
)
.def_static("RgbHls_s",
[](const Standard_Real theR,const Standard_Real theG,const Standard_Real theB ){
Standard_Real theH;
Standard_Real theL;
Standard_Real theS;
Quantity_Color::RgbHls(theR,theG,theB,theH,theL,theS);
return std::make_tuple(theH,theL,theS); },
R"#(Converts sRGB components into HLS ones.)#" , py::arg("theR"), py::arg("theG"), py::arg("theB")
)
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Rgb",
(const NCollection_Vec3<float> & (Quantity_Color::*)() const) static_cast<const NCollection_Vec3<float> & (Quantity_Color::*)() const>(&Quantity_Color::Rgb),
R"#(Return the color as vector of 3 float elements.)#"
)
;
// Class Quantity_ColorRGBA from ./opencascade/Quantity_ColorRGBA.hxx
klass = m.attr("Quantity_ColorRGBA");
// nested enums
static_cast<py::class_<Quantity_ColorRGBA , shared_ptr<Quantity_ColorRGBA> >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const Quantity_Color & >() , py::arg("theRgb") )
.def(py::init< const Quantity_Color &,float >() , py::arg("theRgb"), py::arg("theAlpha") )
.def(py::init< const NCollection_Vec4<float> & >() , py::arg("theRgba") )
.def(py::init< float,float,float,float >() , py::arg("theRed"), py::arg("theGreen"), py::arg("theBlue"), py::arg("theAlpha") )
// custom constructors
// methods
.def("SetValues",
(void (Quantity_ColorRGBA::*)( float , float , float , float ) ) static_cast<void (Quantity_ColorRGBA::*)( float , float , float , float ) >(&Quantity_ColorRGBA::SetValues),
R"#(Assign new values to the color.)#" , py::arg("theRed"), py::arg("theGreen"), py::arg("theBlue"), py::arg("theAlpha")
)
.def("SetRGB",
(void (Quantity_ColorRGBA::*)( const Quantity_Color & ) ) static_cast<void (Quantity_ColorRGBA::*)( const Quantity_Color & ) >(&Quantity_ColorRGBA::SetRGB),
R"#(Assign RGB color components without affecting alpha value.)#" , py::arg("theRgb")
)
.def("Alpha",
(Standard_ShortReal (Quantity_ColorRGBA::*)() const) static_cast<Standard_ShortReal (Quantity_ColorRGBA::*)() const>(&Quantity_ColorRGBA::Alpha),
R"#(Return alpha value (1.0 means opaque, 0.0 means fully transparent).)#"
)
.def("SetAlpha",
(void (Quantity_ColorRGBA::*)( const Standard_ShortReal ) ) static_cast<void (Quantity_ColorRGBA::*)( const Standard_ShortReal ) >(&Quantity_ColorRGBA::SetAlpha),
R"#(Assign the alpha value.)#" , py::arg("theAlpha")
)
.def("IsDifferent",
(bool (Quantity_ColorRGBA::*)( const Quantity_ColorRGBA & ) const) static_cast<bool (Quantity_ColorRGBA::*)( const Quantity_ColorRGBA & ) const>(&Quantity_ColorRGBA::IsDifferent),
R"#(Returns true if the distance between colors is greater than Epsilon().)#" , py::arg("theOther")
)
.def("IsEqual",
(bool (Quantity_ColorRGBA::*)( const Quantity_ColorRGBA & ) const) static_cast<bool (Quantity_ColorRGBA::*)( const Quantity_ColorRGBA & ) const>(&Quantity_ColorRGBA::IsEqual),
R"#(Two colors are considered to be equal if their distance is no greater than Epsilon().)#" , py::arg("theOther")
)
.def("DumpJson",
(void (Quantity_ColorRGBA::*)( std::ostream & , Standard_Integer ) const) static_cast<void (Quantity_ColorRGBA::*)( std::ostream & , Standard_Integer ) const>(&Quantity_ColorRGBA::DumpJson),
R"#(Dumps the content of me into the stream)#" , py::arg("theOStream"), py::arg("theDepth")=static_cast<Standard_Integer>(- 1)
)
.def("InitFromJson",
(Standard_Boolean (Quantity_ColorRGBA::*)( const std::stringstream & , Standard_Integer & ) ) static_cast<Standard_Boolean (Quantity_ColorRGBA::*)( const std::stringstream & , Standard_Integer & ) >(&Quantity_ColorRGBA::InitFromJson),
R"#(Inits the content of me from the stream)#" , py::arg("theSStream"), py::arg("theStreamPos")
)
// methods using call by reference i.s.o. return
// static methods
.def_static("ColorFromName_s",
(Standard_Boolean (*)( const Standard_CString , Quantity_ColorRGBA & ) ) static_cast<Standard_Boolean (*)( const Standard_CString , Quantity_ColorRGBA & ) >(&Quantity_ColorRGBA::ColorFromName),
R"#(Finds color from predefined names. For example, the name of the color which corresponds to "BLACK" is Quantity_NOC_BLACK. An alpha component is set to 1.0.)#" , py::arg("theColorNameString"), py::arg("theColor")
)
.def_static("ColorFromHex_s",
(bool (*)( const char *const , Quantity_ColorRGBA & , const bool ) ) static_cast<bool (*)( const char *const , Quantity_ColorRGBA & , const bool ) >(&Quantity_ColorRGBA::ColorFromHex),
R"#(Parses the string as a hex color (like "#FF0" for short sRGB color, "#FF0F" for short sRGBA color, "#FFFF00" for RGB color, or "#FFFF00FF" for RGBA color))#" , py::arg("theHexColorString"), py::arg("theColor"), py::arg("theAlphaComponentIsOff")=static_cast<const bool>(false)
)
.def_static("ColorToHex_s",
(TCollection_AsciiString (*)( const Quantity_ColorRGBA & , const bool ) ) static_cast<TCollection_AsciiString (*)( const Quantity_ColorRGBA & , const bool ) >(&Quantity_ColorRGBA::ColorToHex),
R"#(Returns hex sRGBA string in format "#RRGGBBAA".)#" , py::arg("theColor"), py::arg("theToPrefixHash")=static_cast<const bool>(true)
)
.def_static("Convert_LinearRGB_To_sRGB_s",
(NCollection_Vec4<float> (*)( const NCollection_Vec4<float> & ) ) static_cast<NCollection_Vec4<float> (*)( const NCollection_Vec4<float> & ) >(&Quantity_ColorRGBA::Convert_LinearRGB_To_sRGB),
R"#(Convert linear RGB components into sRGB using OpenGL specs formula.)#" , py::arg("theRGB")
)
.def_static("Convert_sRGB_To_LinearRGB_s",
(NCollection_Vec4<float> (*)( const NCollection_Vec4<float> & ) ) static_cast<NCollection_Vec4<float> (*)( const NCollection_Vec4<float> & ) >(&Quantity_ColorRGBA::Convert_sRGB_To_LinearRGB),
R"#(Convert sRGB components into linear RGB using OpenGL specs formula.)#" , py::arg("theRGB")
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("GetRGB",
(const Quantity_Color & (Quantity_ColorRGBA::*)() const) static_cast<const Quantity_Color & (Quantity_ColorRGBA::*)() const>(&Quantity_ColorRGBA::GetRGB),
R"#(Return RGB color value.)#"
)
.def("ChangeRGB",
(Quantity_Color & (Quantity_ColorRGBA::*)() ) static_cast<Quantity_Color & (Quantity_ColorRGBA::*)() >(&Quantity_ColorRGBA::ChangeRGB),
R"#(Modify RGB color components without affecting alpha value.)#"
, py::return_value_policy::reference_internal
)
;
// Class Quantity_Date from ./opencascade/Quantity_Date.hxx
klass = m.attr("Quantity_Date");
// nested enums
static_cast<py::class_<Quantity_Date , shared_ptr<Quantity_Date> >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const Standard_Integer,const Standard_Integer,const Standard_Integer,const Standard_Integer,const Standard_Integer,const Standard_Integer,const Standard_Integer,const Standard_Integer >() , py::arg("mm"), py::arg("dd"), py::arg("yyyy"), py::arg("hh"), py::arg("mn"), py::arg("ss"), py::arg("mis")=static_cast<const Standard_Integer>(0), py::arg("mics")=static_cast<const Standard_Integer>(0) )
// custom constructors
// methods
.def("SetValues",
(void (Quantity_Date::*)( const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer ) ) static_cast<void (Quantity_Date::*)( const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer ) >(&Quantity_Date::SetValues),
R"#(Assigns to this date the year yyyy, the month mm, the day dd, the hour hh, the minute mn, the second ss, the millisecond mis (defaulted to 0) and the microsecond mics (defaulted to 0). Exceptions Quantity_DateDefinitionError if mm, dd, hh, mn, ss, mis and mics are not components of a valid date.)#" , py::arg("mm"), py::arg("dd"), py::arg("yy"), py::arg("hh"), py::arg("mn"), py::arg("ss"), py::arg("mis")=static_cast<const Standard_Integer>(0), py::arg("mics")=static_cast<const Standard_Integer>(0)
)
.def("Difference",
(Quantity_Period (Quantity_Date::*)( const Quantity_Date & ) ) static_cast<Quantity_Period (Quantity_Date::*)( const Quantity_Date & ) >(&Quantity_Date::Difference),
R"#(Subtracts one Date from another one to find the period between and returns the value. The result is the absolute value between the difference of two dates.)#" , py::arg("anOther")
)
.def("Subtract",
(Quantity_Date (Quantity_Date::*)( const Quantity_Period & ) ) static_cast<Quantity_Date (Quantity_Date::*)( const Quantity_Period & ) >(&Quantity_Date::Subtract),
R"#(Subtracts a period from a Date and returns the new Date. Raises an exception if the result date is anterior to Jan 1, 1979.)#" , py::arg("aPeriod")
)
.def("Add",
(Quantity_Date (Quantity_Date::*)( const Quantity_Period & ) ) static_cast<Quantity_Date (Quantity_Date::*)( const Quantity_Period & ) >(&Quantity_Date::Add),
R"#(Adds a Period to a Date and returns the new Date.)#" , py::arg("aPeriod")
)
.def("Year",
(Standard_Integer (Quantity_Date::*)() ) static_cast<Standard_Integer (Quantity_Date::*)() >(&Quantity_Date::Year),
R"#(Returns year of a Date.)#"
)
.def("Month",
(Standard_Integer (Quantity_Date::*)() ) static_cast<Standard_Integer (Quantity_Date::*)() >(&Quantity_Date::Month),
R"#(Returns month of a Date.)#"
)
.def("Day",
(Standard_Integer (Quantity_Date::*)() ) static_cast<Standard_Integer (Quantity_Date::*)() >(&Quantity_Date::Day),
R"#(Returns Day of a Date.)#"
)
.def("Hour",
(Standard_Integer (Quantity_Date::*)() ) static_cast<Standard_Integer (Quantity_Date::*)() >(&Quantity_Date::Hour),
R"#(Returns Hour of a Date.)#"
)
.def("Minute",
(Standard_Integer (Quantity_Date::*)() ) static_cast<Standard_Integer (Quantity_Date::*)() >(&Quantity_Date::Minute),
R"#(Returns minute of a Date.)#"
)
.def("Second",
(Standard_Integer (Quantity_Date::*)() ) static_cast<Standard_Integer (Quantity_Date::*)() >(&Quantity_Date::Second),
R"#(Returns seconde of a Date.)#"
)
.def("MilliSecond",
(Standard_Integer (Quantity_Date::*)() ) static_cast<Standard_Integer (Quantity_Date::*)() >(&Quantity_Date::MilliSecond),
R"#(Returns millisecond of a Date.)#"
)
.def("MicroSecond",
(Standard_Integer (Quantity_Date::*)() ) static_cast<Standard_Integer (Quantity_Date::*)() >(&Quantity_Date::MicroSecond),
R"#(Returns microsecond of a Date.)#"
)
.def("IsEqual",
(Standard_Boolean (Quantity_Date::*)( const Quantity_Date & ) const) static_cast<Standard_Boolean (Quantity_Date::*)( const Quantity_Date & ) const>(&Quantity_Date::IsEqual),
R"#(Returns TRUE if both <me> and <other> are equal. This method is an alias of operator ==.)#" , py::arg("anOther")
)
.def("IsEarlier",
(Standard_Boolean (Quantity_Date::*)( const Quantity_Date & ) const) static_cast<Standard_Boolean (Quantity_Date::*)( const Quantity_Date & ) const>(&Quantity_Date::IsEarlier),
R"#(Returns TRUE if <me> is earlier than <other>.)#" , py::arg("anOther")
)
.def("IsLater",
(Standard_Boolean (Quantity_Date::*)( const Quantity_Date & ) const) static_cast<Standard_Boolean (Quantity_Date::*)( const Quantity_Date & ) const>(&Quantity_Date::IsLater),
R"#(Returns TRUE if <me> is later then <other>.)#" , py::arg("anOther")
)
// methods using call by reference i.s.o. return
.def("Values",
[]( Quantity_Date &self ){
Standard_Integer mm;
Standard_Integer dd;
Standard_Integer yy;
Standard_Integer hh;
Standard_Integer mn;
Standard_Integer ss;
Standard_Integer mis;
Standard_Integer mics;
self.Values(mm,dd,yy,hh,mn,ss,mis,mics);
return std::make_tuple(mm,dd,yy,hh,mn,ss,mis,mics); },
R"#(Gets a complete Date. - in mm - the month, - in dd - the day, - in yyyy - the year, - in hh - the hour, - in mn - the minute, - in ss - the second, - in mis - the millisecond, and - in mics - the microsecond)#"
)
// static methods
.def_static("IsValid_s",
(Standard_Boolean (*)( const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer ) ) static_cast<Standard_Boolean (*)( const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer ) >(&Quantity_Date::IsValid),
R"#(Checks the validity of a date - returns true if a date defined from the year yyyy, the month mm, the day dd, the hour hh, the minute mn, the second ss, the millisecond mis (defaulted to 0) and the microsecond mics (defaulted to 0) is valid. A date must satisfy the conditions above: - yyyy is greater than or equal to 1979, - mm lies within the range [1, 12] (with 1 corresponding to January and 12 to December), - dd lies within a valid range for the month mm (from 1 to 28, 29, 30 or 31 depending on mm and whether yyyy is a leap year or not), - hh lies within the range [0, 23], - mn lies within the range [0, 59], - ss lies within the range [0, 59], - mis lies within the range [0, 999], - mics lies within the range [0, 999].C)#" , py::arg("mm"), py::arg("dd"), py::arg("yy"), py::arg("hh"), py::arg("mn"), py::arg("ss"), py::arg("mis")=static_cast<const Standard_Integer>(0), py::arg("mics")=static_cast<const Standard_Integer>(0)
)
.def_static("IsLeap_s",
(Standard_Boolean (*)( const Standard_Integer ) ) static_cast<Standard_Boolean (*)( const Standard_Integer ) >(&Quantity_Date::IsLeap),
R"#(Returns true if a year is a leap year. The leap years are divisible by 4 and not by 100 except the years divisible by 400.)#" , py::arg("yy")
)
// static methods using call by reference i.s.o. return
// operators
.def("__sub__",
(Quantity_Date (Quantity_Date::*)( const Quantity_Period & ) ) static_cast<Quantity_Date (Quantity_Date::*)( const Quantity_Period & ) >(&Quantity_Date::operator-),
py::is_operator(),
R"#(None)#" , py::arg("aPeriod")
)
.def("__add__",
(Quantity_Date (Quantity_Date::*)( const Quantity_Period & ) ) static_cast<Quantity_Date (Quantity_Date::*)( const Quantity_Period & ) >(&Quantity_Date::operator+),
py::is_operator(),
R"#(None)#" , py::arg("aPeriod")
)
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class Quantity_HArray1OfColor from ./opencascade/Quantity_HArray1OfColor.hxx
klass = m.attr("Quantity_HArray1OfColor");
// nested enums
static_cast<py::class_<Quantity_HArray1OfColor ,opencascade::handle<Quantity_HArray1OfColor> , Quantity_Array1OfColor , Standard_Transient >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const Standard_Integer,const Standard_Integer >() , py::arg("theLower"), py::arg("theUpper") )
.def(py::init< const Standard_Integer,const Standard_Integer, const Quantity_Color & >() , py::arg("theLower"), py::arg("theUpper"), py::arg("theValue") )
.def(py::init< const Quantity_Color &,const Standard_Integer,const Standard_Integer,const bool >() , py::arg("theBegin"), py::arg("theLower"), py::arg("theUpper"), py::arg("arg") )
.def(py::init< const NCollection_Array1<Quantity_Color> & >() , py::arg("theOther") )
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Quantity_HArray1OfColor::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Quantity_HArray1OfColor::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Array1",
(const Quantity_Array1OfColor & (Quantity_HArray1OfColor::*)() const) static_cast<const Quantity_Array1OfColor & (Quantity_HArray1OfColor::*)() const>(&Quantity_HArray1OfColor::Array1),
R"#(None)#"
)
.def("ChangeArray1",
(Quantity_Array1OfColor & (Quantity_HArray1OfColor::*)() ) static_cast<Quantity_Array1OfColor & (Quantity_HArray1OfColor::*)() >(&Quantity_HArray1OfColor::ChangeArray1),
R"#(None)#"
, py::return_value_policy::reference_internal
)
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Quantity_HArray1OfColor::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Quantity_HArray1OfColor::*)() const>(&Quantity_HArray1OfColor::DynamicType),
R"#(None)#"
)
;
// Class Quantity_Period from ./opencascade/Quantity_Period.hxx
klass = m.attr("Quantity_Period");
// nested enums
static_cast<py::class_<Quantity_Period , shared_ptr<Quantity_Period> >>(klass)
// constructors
.def(py::init< const Standard_Integer,const Standard_Integer,const Standard_Integer,const Standard_Integer,const Standard_Integer,const Standard_Integer >() , py::arg("dd"), py::arg("hh"), py::arg("mn"), py::arg("ss"), py::arg("mis")=static_cast<const Standard_Integer>(0), py::arg("mics")=static_cast<const Standard_Integer>(0) )
.def(py::init< const Standard_Integer,const Standard_Integer >() , py::arg("ss"), py::arg("mics")=static_cast<const Standard_Integer>(0) )
// custom constructors
// methods
.def("SetValues",
(void (Quantity_Period::*)( const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer ) ) static_cast<void (Quantity_Period::*)( const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer ) >(&Quantity_Period::SetValues),
R"#(Assigns to this period the time interval defined - with dd days, hh hours, mn minutes, ss seconds, mis (defaulted to 0) milliseconds and mics (defaulted to 0) microseconds; or)#" , py::arg("dd"), py::arg("hh"), py::arg("mn"), py::arg("ss"), py::arg("mis")=static_cast<const Standard_Integer>(0), py::arg("mics")=static_cast<const Standard_Integer>(0)
)
.def("SetValues",
(void (Quantity_Period::*)( const Standard_Integer , const Standard_Integer ) ) static_cast<void (Quantity_Period::*)( const Standard_Integer , const Standard_Integer ) >(&Quantity_Period::SetValues),
R"#(Assigns to this period the time interval defined - with Ss seconds and Mics (defaulted to 0) microseconds. Exceptions Quantity_PeriodDefinitionError: - if the number of seconds expressed either by: - dd days, hh hours, mn minutes and ss seconds, or - Ss is less than 0. - if the number of microseconds expressed either by: - mis milliseconds and mics microseconds, or - Mics is less than 0.)#" , py::arg("ss"), py::arg("mics")=static_cast<const Standard_Integer>(0)
)
.def("Subtract",
(Quantity_Period (Quantity_Period::*)( const Quantity_Period & ) const) static_cast<Quantity_Period (Quantity_Period::*)( const Quantity_Period & ) const>(&Quantity_Period::Subtract),
R"#(Subtracts one Period from another and returns the difference.)#" , py::arg("anOther")
)
.def("Add",
(Quantity_Period (Quantity_Period::*)( const Quantity_Period & ) const) static_cast<Quantity_Period (Quantity_Period::*)( const Quantity_Period & ) const>(&Quantity_Period::Add),
R"#(Adds one Period to another one.)#" , py::arg("anOther")
)
.def("IsEqual",
(Standard_Boolean (Quantity_Period::*)( const Quantity_Period & ) const) static_cast<Standard_Boolean (Quantity_Period::*)( const Quantity_Period & ) const>(&Quantity_Period::IsEqual),
R"#(Returns TRUE if both <me> and <other> are equal.)#" , py::arg("anOther")
)
.def("IsShorter",
(Standard_Boolean (Quantity_Period::*)( const Quantity_Period & ) const) static_cast<Standard_Boolean (Quantity_Period::*)( const Quantity_Period & ) const>(&Quantity_Period::IsShorter),
R"#(Returns TRUE if <me> is shorter than <other>.)#" , py::arg("anOther")
)
.def("IsLonger",
(Standard_Boolean (Quantity_Period::*)( const Quantity_Period & ) const) static_cast<Standard_Boolean (Quantity_Period::*)( const Quantity_Period & ) const>(&Quantity_Period::IsLonger),
R"#(Returns TRUE if <me> is longer then <other>.)#" , py::arg("anOther")
)
// methods using call by reference i.s.o. return
.def("Values",
[]( Quantity_Period &self ){
Standard_Integer dd;
Standard_Integer hh;
Standard_Integer mn;
Standard_Integer ss;
Standard_Integer mis;
Standard_Integer mics;
self.Values(dd,hh,mn,ss,mis,mics);
return std::make_tuple(dd,hh,mn,ss,mis,mics); },
R"#(Decomposes this period into a number of days,hours, minutes,seconds,milliseconds and microseconds Example of return values: 2 days, 15 hours, 0 minute , 0 second 0 millisecond and 0 microsecond)#"
)
.def("Values",
[]( Quantity_Period &self ){
Standard_Integer ss;
Standard_Integer mics;
self.Values(ss,mics);
return std::make_tuple(ss,mics); },
R"#(Returns the number of seconds in Ss and the number of remainding microseconds in Mics of this period. Example of return values: 3600 seconds and 0 microseconds)#"
)
// static methods
.def_static("IsValid_s",
(Standard_Boolean (*)( const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer ) ) static_cast<Standard_Boolean (*)( const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer , const Standard_Integer ) >(&Quantity_Period::IsValid),
R"#(Checks the validity of a Period in form (dd,hh,mn,ss,mil,mic) With: 0 <= dd 0 <= hh 0 <= mn 0 <= ss 0 <= mis 0 <= mics)#" , py::arg("dd"), py::arg("hh"), py::arg("mn"), py::arg("ss"), py::arg("mis")=static_cast<const Standard_Integer>(0), py::arg("mics")=static_cast<const Standard_Integer>(0)
)
.def_static("IsValid_s",
(Standard_Boolean (*)( const Standard_Integer , const Standard_Integer ) ) static_cast<Standard_Boolean (*)( const Standard_Integer , const Standard_Integer ) >(&Quantity_Period::IsValid),
R"#(Checks the validity of a Period in form (ss,mic) With: 0 <= ss 0 <= mics)#" , py::arg("ss"), py::arg("mics")=static_cast<const Standard_Integer>(0)
)
// static methods using call by reference i.s.o. return
// operators
.def("__sub__",
(Quantity_Period (Quantity_Period::*)( const Quantity_Period & ) const) static_cast<Quantity_Period (Quantity_Period::*)( const Quantity_Period & ) const>(&Quantity_Period::operator-),
py::is_operator(),
R"#(None)#" , py::arg("anOther")
)
.def("__add__",
(Quantity_Period (Quantity_Period::*)( const Quantity_Period & ) const) static_cast<Quantity_Period (Quantity_Period::*)( const Quantity_Period & ) const>(&Quantity_Period::operator+),
py::is_operator(),
R"#(None)#" , py::arg("anOther")
)
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// functions
// ./opencascade/Quantity_Array1OfColor.hxx
// ./opencascade/Quantity_Color.hxx
// ./opencascade/Quantity_ColorRGBA.hxx
// ./opencascade/Quantity_Date.hxx
// ./opencascade/Quantity_DateDefinitionError.hxx
// ./opencascade/Quantity_HArray1OfColor.hxx
// ./opencascade/Quantity_NameOfColor.hxx
// ./opencascade/Quantity_Period.hxx
// ./opencascade/Quantity_PeriodDefinitionError.hxx
// ./opencascade/Quantity_TypeOfColor.hxx
// Additional functions
// operators
// register typdefs
register_template_NCollection_Array1<Quantity_Color>(m,"Quantity_Array1OfColor");
// exceptions
register_occ_exception<Quantity_DateDefinitionError>(m, "Quantity_DateDefinitionError");
register_occ_exception<Quantity_PeriodDefinitionError>(m, "Quantity_PeriodDefinitionError");
// user-defined post-inclusion per module in the body
};
// user-defined post-inclusion per module
// user-defined post
|