File: StdPrs.cpp

package info (click to toggle)
python-ocp 7.8.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 64,720 kB
  • sloc: cpp: 362,337; pascal: 33; python: 23; makefile: 4
file content (1373 lines) | stat: -rw-r--r-- 106,052 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373

// std lib related includes
#include <tuple>

// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

namespace py = pybind11;

// Standard Handle
#include <Standard_Handle.hxx>


// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <TopoDS_Shape.hxx>
#include <Prs3d_Drawer.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_Data.hxx>
#include <TopoDS_Shape.hxx>
#include <HLRAlgo_Projector.hxx>
#include <BRepAdaptor_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Graphic3d_ArrayOfSegments.hxx>
#include <Graphic3d_ArrayOfTriangles.hxx>
#include <TopoDS_Shape.hxx>
#include <BRep_Builder.hxx>
#include <TopoDS_Compound.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Bnd_Box.hxx>
#include <Poly_Triangulation.hxx>
#include <Poly_PolygonOnTriangulation.hxx>
#include <Poly_Polygon3D.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_Point.hxx>
#include <TopoDS_Edge.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <TopoDS_Shape.hxx>
#include <Prs3d_Drawer.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <TopoDS_Vertex.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Graphic3d_ArrayOfPoints.hxx>
#include <Adaptor2d_Curve2d.hxx>

// module includes
#include <StdPrs_BndBox.hxx>
#include <StdPrs_BRepFont.hxx>
#include <StdPrs_BRepTextBuilder.hxx>
#include <StdPrs_Curve.hxx>
#include <StdPrs_DeflectionCurve.hxx>
#include <StdPrs_HLRPolyShape.hxx>
#include <StdPrs_HLRShape.hxx>
#include <StdPrs_HLRShapeI.hxx>
#include <StdPrs_HLRToolShape.hxx>
#include <StdPrs_Isolines.hxx>
#include <StdPrs_Plane.hxx>
#include <StdPrs_Point.hxx>
#include <StdPrs_PoleCurve.hxx>
#include <StdPrs_ShadedShape.hxx>
#include <StdPrs_ShadedSurface.hxx>
#include <StdPrs_ShapeTool.hxx>
#include <StdPrs_ToolPoint.hxx>
#include <StdPrs_ToolRFace.hxx>
#include <StdPrs_ToolTriangulatedShape.hxx>
#include <StdPrs_ToolVertex.hxx>
#include <StdPrs_Vertex.hxx>
#include <StdPrs_Volume.hxx>
#include <StdPrs_WFDeflectionRestrictedFace.hxx>
#include <StdPrs_WFDeflectionSurface.hxx>
#include <StdPrs_WFPoleSurface.hxx>
#include <StdPrs_WFRestrictedFace.hxx>
#include <StdPrs_WFShape.hxx>
#include <StdPrs_WFSurface.hxx>

// template related includes

// ./opencascade/StdPrs_Point.hxx
#include "Prs3d_tmpl.hxx"

// ./opencascade/StdPrs_Vertex.hxx
#include "Prs3d_tmpl.hxx"


// user-defined pre
#include "OCP_specific.inc"

// user-defined inclusion per module

// Module definiiton
void register_StdPrs(py::module &main_module) {


py::module m = static_cast<py::module>(main_module.attr("StdPrs"));
py::object klass;

//Python trampoline classes
    class Py_StdPrs_HLRShapeI : public StdPrs_HLRShapeI{
    public:
        using StdPrs_HLRShapeI::StdPrs_HLRShapeI;


        // public pure virtual
        void ComputeHLR(const opencascade::handle<Prs3d_Presentation> & thePrs,const TopoDS_Shape & theShape,const opencascade::handle<Prs3d_Drawer> & theDrawer,const opencascade::handle<Graphic3d_Camera> & theProjector) const  override { PYBIND11_OVERLOAD_PURE(void,StdPrs_HLRShapeI,ComputeHLR,thePrs,theShape,theDrawer,theProjector) };


        // protected pure virtual


        // private pure virtual

    };

// classes

    // Class StdPrs_BRepFont from ./opencascade/StdPrs_BRepFont.hxx
    klass = m.attr("StdPrs_BRepFont");


    // nested enums

    static_cast<py::class_<StdPrs_BRepFont ,opencascade::handle<StdPrs_BRepFont>  , Standard_Transient >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init<  const NCollection_Utf8String &,const Standard_Real,const Standard_Integer >()  , py::arg("theFontPath"),  py::arg("theSize"),  py::arg("theFaceId")=static_cast<const Standard_Integer>(0) )
        .def(py::init<  const NCollection_Utf8String &,const Font_FontAspect,const Standard_Real,const Font_StrictLevel >()  , py::arg("theFontName"),  py::arg("theFontAspect"),  py::arg("theSize"),  py::arg("theStrictLevel")=static_cast<const Font_StrictLevel>(Font_StrictLevel_Any) )
    // custom constructors
    // methods
        .def("Release",
             (void (StdPrs_BRepFont::*)() ) static_cast<void (StdPrs_BRepFont::*)() >(&StdPrs_BRepFont::Release),
             R"#(Release currently loaded font.)#" 
          )
        .def("Init",
             (bool (StdPrs_BRepFont::*)(  const NCollection_Utf8String & ,  const Standard_Real ,  const Standard_Integer  ) ) static_cast<bool (StdPrs_BRepFont::*)(  const NCollection_Utf8String & ,  const Standard_Real ,  const Standard_Integer  ) >(&StdPrs_BRepFont::Init),
             R"#(Initialize the font.)#"  , py::arg("theFontPath"),  py::arg("theSize"),  py::arg("theFaceId")
          )
        .def("FindAndInit",
             (bool (StdPrs_BRepFont::*)( const TCollection_AsciiString & ,  const Font_FontAspect ,  const Standard_Real ,  const Font_StrictLevel  ) ) static_cast<bool (StdPrs_BRepFont::*)( const TCollection_AsciiString & ,  const Font_FontAspect ,  const Standard_Real ,  const Font_StrictLevel  ) >(&StdPrs_BRepFont::FindAndInit),
             R"#(Find (using Font_FontMgr) and initialize the font from the given name. Please take into account that size is specified NOT in typography points (pt.). If you need to specify size in points, value should be converted. Formula for pt. -> m conversion: aSizeMeters = 0.0254 * theSizePt / 72.0)#"  , py::arg("theFontName"),  py::arg("theFontAspect"),  py::arg("theSize"),  py::arg("theStrictLevel")=static_cast<const Font_StrictLevel>(Font_StrictLevel_Any)
          )
        .def("RenderGlyph",
             (TopoDS_Shape (StdPrs_BRepFont::*)( const Standard_Utf32Char &  ) ) static_cast<TopoDS_Shape (StdPrs_BRepFont::*)( const Standard_Utf32Char &  ) >(&StdPrs_BRepFont::RenderGlyph),
             R"#(Render single glyph as TopoDS_Shape.)#"  , py::arg("theChar")
          )
        .def("SetCompositeCurveMode",
             (void (StdPrs_BRepFont::*)( const Standard_Boolean  ) ) static_cast<void (StdPrs_BRepFont::*)( const Standard_Boolean  ) >(&StdPrs_BRepFont::SetCompositeCurveMode),
             R"#(Setup glyph geometry construction mode. By default algorithm creates independent TopoDS_Edge for each original curve in the glyph (line segment or Bezie curve). Algorithm might optionally create composite BSpline curve for each contour which reduces memory footprint but limits curve class to C0. Notice that altering this flag clears currently accumulated cache!)#"  , py::arg("theToConcatenate")
          )
        .def("SetWidthScaling",
             (void (StdPrs_BRepFont::*)( const float  ) ) static_cast<void (StdPrs_BRepFont::*)( const float  ) >(&StdPrs_BRepFont::SetWidthScaling),
             R"#(Setup glyph scaling along X-axis. By default glyphs are not scaled (scaling factor = 1.0))#"  , py::arg("theScaleFactor")
          )
        .def("Ascender",
             (Standard_Real (StdPrs_BRepFont::*)() const) static_cast<Standard_Real (StdPrs_BRepFont::*)() const>(&StdPrs_BRepFont::Ascender),
             R"#(Returns vertical distance from the horizontal baseline to the highest character coordinate.)#" 
          )
        .def("Descender",
             (Standard_Real (StdPrs_BRepFont::*)() const) static_cast<Standard_Real (StdPrs_BRepFont::*)() const>(&StdPrs_BRepFont::Descender),
             R"#(Returns vertical distance from the horizontal baseline to the lowest character coordinate.)#" 
          )
        .def("LineSpacing",
             (Standard_Real (StdPrs_BRepFont::*)() const) static_cast<Standard_Real (StdPrs_BRepFont::*)() const>(&StdPrs_BRepFont::LineSpacing),
             R"#(Returns default line spacing (the baseline-to-baseline distance).)#" 
          )
        .def("PointSize",
             (Standard_Real (StdPrs_BRepFont::*)() const) static_cast<Standard_Real (StdPrs_BRepFont::*)() const>(&StdPrs_BRepFont::PointSize),
             R"#(Configured point size)#" 
          )
        .def("AdvanceX",
             (Standard_Real (StdPrs_BRepFont::*)( const Standard_Utf32Char  ) ) static_cast<Standard_Real (StdPrs_BRepFont::*)( const Standard_Utf32Char  ) >(&StdPrs_BRepFont::AdvanceX),
             R"#(Compute advance to the next character with kerning applied when applicable. Assuming text rendered horizontally.)#"  , py::arg("theUCharNext")
          )
        .def("AdvanceX",
             (Standard_Real (StdPrs_BRepFont::*)( const Standard_Utf32Char ,  const Standard_Utf32Char  ) ) static_cast<Standard_Real (StdPrs_BRepFont::*)( const Standard_Utf32Char ,  const Standard_Utf32Char  ) >(&StdPrs_BRepFont::AdvanceX),
             R"#(Compute advance to the next character with kerning applied when applicable. Assuming text rendered horizontally.)#"  , py::arg("theUChar"),  py::arg("theUCharNext")
          )
        .def("AdvanceY",
             (Standard_Real (StdPrs_BRepFont::*)( const Standard_Utf32Char  ) ) static_cast<Standard_Real (StdPrs_BRepFont::*)( const Standard_Utf32Char  ) >(&StdPrs_BRepFont::AdvanceY),
             R"#(Compute advance to the next character with kerning applied when applicable. Assuming text rendered vertically.)#"  , py::arg("theUCharNext")
          )
        .def("AdvanceY",
             (Standard_Real (StdPrs_BRepFont::*)( const Standard_Utf32Char ,  const Standard_Utf32Char  ) ) static_cast<Standard_Real (StdPrs_BRepFont::*)( const Standard_Utf32Char ,  const Standard_Utf32Char  ) >(&StdPrs_BRepFont::AdvanceY),
             R"#(Compute advance to the next character with kerning applied when applicable. Assuming text rendered vertically.)#"  , py::arg("theUChar"),  py::arg("theUCharNext")
          )
        .def("Scale",
             (Standard_Real (StdPrs_BRepFont::*)() const) static_cast<Standard_Real (StdPrs_BRepFont::*)() const>(&StdPrs_BRepFont::Scale),
             R"#(Returns scaling factor for current font size.)#" 
          )
        .def("Init",
             (bool (StdPrs_BRepFont::*)(  const NCollection_Utf8String & ,  const Font_FontAspect ,  const Standard_Real  ) ) static_cast<bool (StdPrs_BRepFont::*)(  const NCollection_Utf8String & ,  const Font_FontAspect ,  const Standard_Real  ) >(&StdPrs_BRepFont::Init),
             R"#(Find (using Font_FontMgr) and initialize the font from the given name. Alias for FindAndInit() for backward compatibility.)#"  , py::arg("theFontName"),  py::arg("theFontAspect"),  py::arg("theSize")
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&StdPrs_BRepFont::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&StdPrs_BRepFont::get_type_descriptor),
                    R"#(None)#" 
          )
        .def_static("FindAndCreate_s",
                    (opencascade::handle<StdPrs_BRepFont> (*)( const TCollection_AsciiString & ,  const Font_FontAspect ,  const Standard_Real ,  const Font_StrictLevel  ) ) static_cast<opencascade::handle<StdPrs_BRepFont> (*)( const TCollection_AsciiString & ,  const Font_FontAspect ,  const Standard_Real ,  const Font_StrictLevel  ) >(&StdPrs_BRepFont::FindAndCreate),
                    R"#(Find the font Initialize the font.)#"  , py::arg("theFontName"),  py::arg("theFontAspect"),  py::arg("theSize"),  py::arg("theStrictLevel")=static_cast<const Font_StrictLevel>(Font_StrictLevel_Any)
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (StdPrs_BRepFont::*)() const) static_cast<const opencascade::handle<Standard_Type> & (StdPrs_BRepFont::*)() const>(&StdPrs_BRepFont::DynamicType),
             R"#(None)#"
             
         )
       .def("FTFont",
             (const opencascade::handle<Font_FTFont> & (StdPrs_BRepFont::*)() const) static_cast<const opencascade::handle<Font_FTFont> & (StdPrs_BRepFont::*)() const>(&StdPrs_BRepFont::FTFont),
             R"#(Return wrapper over FreeType font.)#"
             
         )
       .def("Mutex",
             (Standard_Mutex & (StdPrs_BRepFont::*)() ) static_cast<Standard_Mutex & (StdPrs_BRepFont::*)() >(&StdPrs_BRepFont::Mutex),
             R"#(Returns mutex.)#"
             
             , py::return_value_policy::reference_internal
         )
;

    // Class StdPrs_BRepTextBuilder from ./opencascade/StdPrs_BRepTextBuilder.hxx
    klass = m.attr("StdPrs_BRepTextBuilder");

    // default constructor
    register_default_constructor<StdPrs_BRepTextBuilder , shared_ptr<StdPrs_BRepTextBuilder>>(m,"StdPrs_BRepTextBuilder");

    // nested enums

    static_cast<py::class_<StdPrs_BRepTextBuilder , shared_ptr<StdPrs_BRepTextBuilder>  >>(klass)
    // constructors
    // custom constructors
    // methods
        .def("Perform",
             (TopoDS_Shape (StdPrs_BRepTextBuilder::*)( StdPrs_BRepFont & ,  const opencascade::handle<Font_TextFormatter> & ,  const gp_Ax3 &  ) ) static_cast<TopoDS_Shape (StdPrs_BRepTextBuilder::*)( StdPrs_BRepFont & ,  const opencascade::handle<Font_TextFormatter> & ,  const gp_Ax3 &  ) >(&StdPrs_BRepTextBuilder::Perform),
             R"#(Render text as BRep shape.)#"  , py::arg("theFont"),  py::arg("theFormatter"),  py::arg("thePenLoc")=static_cast<const gp_Ax3 &>(gp_Ax3 ( ))
          )
        .def("Perform",
             (TopoDS_Shape (StdPrs_BRepTextBuilder::*)( StdPrs_BRepFont & ,   const NCollection_Utf8String & ,  const gp_Ax3 & ,  const Graphic3d_HorizontalTextAlignment ,  const Graphic3d_VerticalTextAlignment  ) ) static_cast<TopoDS_Shape (StdPrs_BRepTextBuilder::*)( StdPrs_BRepFont & ,   const NCollection_Utf8String & ,  const gp_Ax3 & ,  const Graphic3d_HorizontalTextAlignment ,  const Graphic3d_VerticalTextAlignment  ) >(&StdPrs_BRepTextBuilder::Perform),
             R"#(Render text as BRep shape.)#"  , py::arg("theFont"),  py::arg("theString"),  py::arg("thePenLoc")=static_cast<const gp_Ax3 &>(gp_Ax3 ( )),  py::arg("theHAlign")=static_cast<const Graphic3d_HorizontalTextAlignment>(Graphic3d_HTA_LEFT),  py::arg("theVAlign")=static_cast<const Graphic3d_VerticalTextAlignment>(Graphic3d_VTA_BOTTOM)
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class StdPrs_Curve from ./opencascade/StdPrs_Curve.hxx
    klass = m.attr("StdPrs_Curve");

    // default constructor
    register_default_constructor<StdPrs_Curve , shared_ptr<StdPrs_Curve>>(m,"StdPrs_Curve");

    // nested enums

    static_cast<py::class_<StdPrs_Curve , shared_ptr<StdPrs_Curve>  , Prs3d_Root >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("Add_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const Adaptor3d_Curve & ,  const opencascade::handle<Prs3d_Drawer> & ,  const Standard_Boolean  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const Adaptor3d_Curve & ,  const opencascade::handle<Prs3d_Drawer> & ,  const Standard_Boolean  ) >(&StdPrs_Curve::Add),
                    R"#(Adds to the presentation aPresentation the drawing of the curve aCurve. The aspect is defined by LineAspect in aDrawer. If drawCurve equals Standard_False the curve will not be displayed, it is used if the curve is a part of some shape and PrimitiveArray visualization approach is activated (it is activated by default).)#"  , py::arg("aPresentation"),  py::arg("aCurve"),  py::arg("aDrawer"),  py::arg("drawCurve")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def_static("Add_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const opencascade::handle<Prs3d_Drawer> & ,  const Standard_Boolean  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const opencascade::handle<Prs3d_Drawer> & ,  const Standard_Boolean  ) >(&StdPrs_Curve::Add),
                    R"#(Adds to the presentation aPresentation the drawing of the curve aCurve. The aspect is defined by LineAspect in aDrawer. The drawing will be limited between the points of parameter U1 and U2. If drawCurve equals Standard_False the curve will not be displayed, it is used if the curve is a part of some shape and PrimitiveArray visualization approach is activated (it is activated by default).)#"  , py::arg("aPresentation"),  py::arg("aCurve"),  py::arg("U1"),  py::arg("U2"),  py::arg("aDrawer"),  py::arg("drawCurve")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def_static("Add_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const Adaptor3d_Curve & ,  const opencascade::handle<Prs3d_Drawer> & ,  NCollection_Sequence<gp_Pnt> & ,  const Standard_Boolean  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const Adaptor3d_Curve & ,  const opencascade::handle<Prs3d_Drawer> & ,  NCollection_Sequence<gp_Pnt> & ,  const Standard_Boolean  ) >(&StdPrs_Curve::Add),
                    R"#(adds to the presentation aPresentation the drawing of the curve aCurve. The aspect is the current aspect. aDeflection is used in the circle case. Points give a sequence of curve points. If drawCurve equals Standard_False the curve will not be displayed, it is used if the curve is a part of some shape and PrimitiveArray visualization approach is activated (it is activated by default).)#"  , py::arg("aPresentation"),  py::arg("aCurve"),  py::arg("aDrawer"),  py::arg("Points"),  py::arg("drawCurve")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def_static("Add_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  NCollection_Sequence<gp_Pnt> & ,  const Standard_Integer ,  const Standard_Boolean  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  NCollection_Sequence<gp_Pnt> & ,  const Standard_Integer ,  const Standard_Boolean  ) >(&StdPrs_Curve::Add),
                    R"#(adds to the presentation aPresentation the drawing of the curve aCurve. The aspect is the current aspect. The drawing will be limited between the points of parameter U1 and U2. aDeflection is used in the circle case. Points give a sequence of curve points. If drawCurve equals Standard_False the curve will not be displayed, it is used if the curve is a part of some shape and PrimitiveArray visualization approach is activated (it is activated by default).)#"  , py::arg("aPresentation"),  py::arg("aCurve"),  py::arg("U1"),  py::arg("U2"),  py::arg("Points"),  py::arg("aNbPoints")=static_cast<const Standard_Integer>(30),  py::arg("drawCurve")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def_static("Match_s",
                    (Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Adaptor3d_Curve & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Adaptor3d_Curve & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_Curve::Match),
                    R"#(returns true if the distance between the point (X,Y,Z) and the drawing of the curve is less than aDistance.)#"  , py::arg("X"),  py::arg("Y"),  py::arg("Z"),  py::arg("aDistance"),  py::arg("aCurve"),  py::arg("aDrawer")
          )
        .def_static("Match_s",
                    (Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Integer  ) ) static_cast<Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Integer  ) >(&StdPrs_Curve::Match),
                    R"#(returns true if the distance between the point (X,Y,Z) and the drawing of the curve is less than aDistance.)#"  , py::arg("X"),  py::arg("Y"),  py::arg("Z"),  py::arg("aDistance"),  py::arg("aCurve"),  py::arg("aDeflection"),  py::arg("aLimit"),  py::arg("aNbPoints")
          )
        .def_static("Match_s",
                    (Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_Curve::Match),
                    R"#(returns true if the distance between the point (X,Y,Z) and the drawing of the curve aCurve is less than aDistance. The drawing is considered between the points of parameter U1 and U2;)#"  , py::arg("X"),  py::arg("Y"),  py::arg("Z"),  py::arg("aDistance"),  py::arg("aCurve"),  py::arg("U1"),  py::arg("U2"),  py::arg("aDrawer")
          )
        .def_static("Match_s",
                    (Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Integer  ) ) static_cast<Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Integer  ) >(&StdPrs_Curve::Match),
                    R"#(returns true if the distance between the point (X,Y,Z) and the drawing of the curve aCurve is less than aDistance. The drawing is considered between the points of parameter U1 and U2;)#"  , py::arg("X"),  py::arg("Y"),  py::arg("Z"),  py::arg("aDistance"),  py::arg("aCurve"),  py::arg("U1"),  py::arg("U2"),  py::arg("aDeflection"),  py::arg("aNbPoints")
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class StdPrs_DeflectionCurve from ./opencascade/StdPrs_DeflectionCurve.hxx
    klass = m.attr("StdPrs_DeflectionCurve");

    // default constructor
    register_default_constructor<StdPrs_DeflectionCurve , shared_ptr<StdPrs_DeflectionCurve>>(m,"StdPrs_DeflectionCurve");

    // nested enums

    static_cast<py::class_<StdPrs_DeflectionCurve , shared_ptr<StdPrs_DeflectionCurve>  , Prs3d_Root >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("Add_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  Adaptor3d_Curve & ,  const opencascade::handle<Prs3d_Drawer> & ,  const Standard_Boolean  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  Adaptor3d_Curve & ,  const opencascade::handle<Prs3d_Drawer> & ,  const Standard_Boolean  ) >(&StdPrs_DeflectionCurve::Add),
                    R"#(adds to the presentation aPresentation the drawing of the curve aCurve with respect to the maximal chordial deviation defined by the drawer aDrawer. The aspect is defined by LineAspect in aDrawer. If drawCurve equals Standard_False the curve will not be displayed, it is used if the curve is a part of some shape and PrimitiveArray visualization approach is activated (it is activated by default).)#"  , py::arg("aPresentation"),  py::arg("aCurve"),  py::arg("aDrawer"),  py::arg("drawCurve")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def_static("Add_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const opencascade::handle<Prs3d_Drawer> & ,  const Standard_Boolean  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const opencascade::handle<Prs3d_Drawer> & ,  const Standard_Boolean  ) >(&StdPrs_DeflectionCurve::Add),
                    R"#(adds to the presentation aPresentation the drawing of the curve aCurve with respect to the maximal chordial deviation defined by the drawer aDrawer. The aspect is defined by LineAspect in aDrawer. The drawing will be limited between the points of parameter U1 and U2. If drawCurve equals Standard_False the curve will not be displayed, it is used if the curve is a part of some shape and PrimitiveArray visualization approach is activated (it is activated by default).)#"  , py::arg("aPresentation"),  py::arg("aCurve"),  py::arg("U1"),  py::arg("U2"),  py::arg("aDrawer"),  py::arg("drawCurve")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def_static("Add_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean  ) >(&StdPrs_DeflectionCurve::Add),
                    R"#(adds to the presentation aPresentation the drawing of the curve aCurve with respect to the maximal chordial deviation aDeflection. The aspect is the current aspect If drawCurve equals Standard_False the curve will not be displayed, it is used if the curve is a part of some shape and PrimitiveArray visualization approach is activated (it is activated by default).)#"  , py::arg("aPresentation"),  py::arg("aCurve"),  py::arg("aDeflection"),  py::arg("aLimit"),  py::arg("anAngle")=static_cast<const Standard_Real>(0.2),  py::arg("drawCurve")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def_static("Add_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  Adaptor3d_Curve & ,  const Standard_Real ,  const opencascade::handle<Prs3d_Drawer> & ,  NCollection_Sequence<gp_Pnt> & ,  const Standard_Boolean  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  Adaptor3d_Curve & ,  const Standard_Real ,  const opencascade::handle<Prs3d_Drawer> & ,  NCollection_Sequence<gp_Pnt> & ,  const Standard_Boolean  ) >(&StdPrs_DeflectionCurve::Add),
                    R"#(adds to the presentation aPresentation the drawing of the curve aCurve with respect to the maximal chordial deviation aDeflection. The aspect is the current aspect Points give a sequence of curve points. If drawCurve equals Standard_False the curve will not be displayed, it is used if the curve is a part of some shape and PrimitiveArray visualization approach is activated (it is activated by default).)#"  , py::arg("aPresentation"),  py::arg("aCurve"),  py::arg("aDeflection"),  py::arg("aDrawer"),  py::arg("Points"),  py::arg("drawCurve")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def_static("Add_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  NCollection_Sequence<gp_Pnt> & ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  NCollection_Sequence<gp_Pnt> & ,  const Standard_Real ,  const Standard_Boolean  ) >(&StdPrs_DeflectionCurve::Add),
                    R"#(adds to the presentation aPresentation the drawing of the curve aCurve with respect to the maximal chordial deviation aDeflection. The aspect is the current aspect The drawing will be limited between the points of parameter U1 and U2. Points give a sequence of curve points. If drawCurve equals Standard_False the curve will not be displayed, it is used if the curve is a part of some shape and PrimitiveArray visualization approach is activated (it is activated by default).)#"  , py::arg("aPresentation"),  py::arg("aCurve"),  py::arg("U1"),  py::arg("U2"),  py::arg("aDeflection"),  py::arg("Points"),  py::arg("anAngle")=static_cast<const Standard_Real>(0.2),  py::arg("drawCurve")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def_static("Match_s",
                    (Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Adaptor3d_Curve & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Adaptor3d_Curve & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_DeflectionCurve::Match),
                    R"#(returns true if the distance between the point (X,Y,Z) and the drawing of the curve aCurve with respect of the maximal chordial deviation defined by the drawer aDrawer is less then aDistance.)#"  , py::arg("X"),  py::arg("Y"),  py::arg("Z"),  py::arg("aDistance"),  py::arg("aCurve"),  py::arg("aDrawer")
          )
        .def_static("Match_s",
                    (Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_DeflectionCurve::Match),
                    R"#(returns true if the distance between the point (X,Y,Z) and the drawing of the curve aCurve with respect of the maximal chordial deviation defined by the drawer aDrawer is less then aDistance. The drawing is considered between the points of parameter U1 and U2;)#"  , py::arg("X"),  py::arg("Y"),  py::arg("Z"),  py::arg("aDistance"),  py::arg("aCurve"),  py::arg("U1"),  py::arg("U2"),  py::arg("aDrawer")
          )
        .def_static("Match_s",
                    (Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&StdPrs_DeflectionCurve::Match),
                    R"#(Returns true if the distance between the point (theX, theY, theZ) and the drawing with respect of the maximal chordial deviation theDeflection is less then theDistance.)#"  , py::arg("theX"),  py::arg("theY"),  py::arg("theZ"),  py::arg("theDistance"),  py::arg("theCurve"),  py::arg("theDeflection"),  py::arg("theLimit"),  py::arg("theAngle")
          )
        .def_static("Match_s",
                    (Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&StdPrs_DeflectionCurve::Match),
                    R"#(Returns true if the distance between the point (theX, theY, theZ) and the drawing with respect of the maximal chordial deviation theDeflection is less then theDistance. The drawing is considered between the points of parameter theU1 and theU2.)#"  , py::arg("theX"),  py::arg("theY"),  py::arg("theZ"),  py::arg("theDistance"),  py::arg("theCurve"),  py::arg("theU1"),  py::arg("theU2"),  py::arg("theDeflection"),  py::arg("theAngle")
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class StdPrs_HLRShapeI from ./opencascade/StdPrs_HLRShapeI.hxx
    klass = m.attr("StdPrs_HLRShapeI");


    // nested enums

    static_cast<py::class_<StdPrs_HLRShapeI ,opencascade::handle<StdPrs_HLRShapeI> ,Py_StdPrs_HLRShapeI , Standard_Transient >>(klass)
    // constructors
    // custom constructors
    // methods
        .def("ComputeHLR",
             (void (StdPrs_HLRShapeI::*)( const opencascade::handle<Prs3d_Presentation> & ,  const TopoDS_Shape & ,  const opencascade::handle<Prs3d_Drawer> & ,  const opencascade::handle<Graphic3d_Camera> &  ) const) static_cast<void (StdPrs_HLRShapeI::*)( const opencascade::handle<Prs3d_Presentation> & ,  const TopoDS_Shape & ,  const opencascade::handle<Prs3d_Drawer> & ,  const opencascade::handle<Graphic3d_Camera> &  ) const>(&StdPrs_HLRShapeI::ComputeHLR),
             R"#(Compute presentation for specified shape.)#"  , py::arg("thePrs"),  py::arg("theShape"),  py::arg("theDrawer"),  py::arg("theProjector")
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&StdPrs_HLRShapeI::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&StdPrs_HLRShapeI::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (StdPrs_HLRShapeI::*)() const) static_cast<const opencascade::handle<Standard_Type> & (StdPrs_HLRShapeI::*)() const>(&StdPrs_HLRShapeI::DynamicType),
             R"#(None)#"
             
         )
;

    // Class StdPrs_HLRToolShape from ./opencascade/StdPrs_HLRToolShape.hxx
    klass = m.attr("StdPrs_HLRToolShape");


    // nested enums

    static_cast<py::class_<StdPrs_HLRToolShape , shared_ptr<StdPrs_HLRToolShape>  >>(klass)
    // constructors
        .def(py::init< const TopoDS_Shape &,const HLRAlgo_Projector & >()  , py::arg("TheShape"),  py::arg("TheProjector") )
    // custom constructors
    // methods
        .def("NbEdges",
             (Standard_Integer (StdPrs_HLRToolShape::*)() const) static_cast<Standard_Integer (StdPrs_HLRToolShape::*)() const>(&StdPrs_HLRToolShape::NbEdges),
             R"#(None)#" 
          )
        .def("InitVisible",
             (void (StdPrs_HLRToolShape::*)( const Standard_Integer  ) ) static_cast<void (StdPrs_HLRToolShape::*)( const Standard_Integer  ) >(&StdPrs_HLRToolShape::InitVisible),
             R"#(None)#"  , py::arg("EdgeNumber")
          )
        .def("MoreVisible",
             (Standard_Boolean (StdPrs_HLRToolShape::*)() const) static_cast<Standard_Boolean (StdPrs_HLRToolShape::*)() const>(&StdPrs_HLRToolShape::MoreVisible),
             R"#(None)#" 
          )
        .def("NextVisible",
             (void (StdPrs_HLRToolShape::*)() ) static_cast<void (StdPrs_HLRToolShape::*)() >(&StdPrs_HLRToolShape::NextVisible),
             R"#(None)#" 
          )
        .def("InitHidden",
             (void (StdPrs_HLRToolShape::*)( const Standard_Integer  ) ) static_cast<void (StdPrs_HLRToolShape::*)( const Standard_Integer  ) >(&StdPrs_HLRToolShape::InitHidden),
             R"#(None)#"  , py::arg("EdgeNumber")
          )
        .def("MoreHidden",
             (Standard_Boolean (StdPrs_HLRToolShape::*)() const) static_cast<Standard_Boolean (StdPrs_HLRToolShape::*)() const>(&StdPrs_HLRToolShape::MoreHidden),
             R"#(None)#" 
          )
        .def("NextHidden",
             (void (StdPrs_HLRToolShape::*)() ) static_cast<void (StdPrs_HLRToolShape::*)() >(&StdPrs_HLRToolShape::NextHidden),
             R"#(None)#" 
          )
    // methods using call by reference i.s.o. return
        .def("Visible",
             []( StdPrs_HLRToolShape &self , BRepAdaptor_Curve & TheEdge ){
                 Standard_Real  U1;
                Standard_Real  U2;

                 self.Visible(TheEdge,U1,U2);
                 
                 return std::make_tuple(U1,U2); },
             R"#(None)#"  , py::arg("TheEdge")
          )
        .def("Hidden",
             []( StdPrs_HLRToolShape &self , BRepAdaptor_Curve & TheEdge ){
                 Standard_Real  U1;
                Standard_Real  U2;

                 self.Hidden(TheEdge,U1,U2);
                 
                 return std::make_tuple(U1,U2); },
             R"#(None)#"  , py::arg("TheEdge")
          )
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class StdPrs_Isolines from ./opencascade/StdPrs_Isolines.hxx
    klass = m.attr("StdPrs_Isolines");

    // default constructor
    register_default_constructor<StdPrs_Isolines , shared_ptr<StdPrs_Isolines>>(m,"StdPrs_Isolines");

    // nested enums

    static_cast<py::class_<StdPrs_Isolines , shared_ptr<StdPrs_Isolines>  , Prs3d_Root >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("Add_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const TopoDS_Face & ,  const opencascade::handle<Prs3d_Drawer> & ,  const Standard_Real  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const TopoDS_Face & ,  const opencascade::handle<Prs3d_Drawer> & ,  const Standard_Real  ) >(&StdPrs_Isolines::Add),
                    R"#(Computes isolines presentation for a TopoDS face. This method chooses proper version of isoline builder algorithm : on triangulation or surface depending on the flag passed from Prs3d_Drawer attributes. This method is a default way to display isolines for a given TopoDS face.)#"  , py::arg("thePresentation"),  py::arg("theFace"),  py::arg("theDrawer"),  py::arg("theDeflection")
          )
        .def_static("Add_s",
                    (void (*)( const TopoDS_Face & ,  const opencascade::handle<Prs3d_Drawer> & ,  const Standard_Real ,  NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> & ,  NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> &  ) ) static_cast<void (*)( const TopoDS_Face & ,  const opencascade::handle<Prs3d_Drawer> & ,  const Standard_Real ,  NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> & ,  NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> &  ) >(&StdPrs_Isolines::Add),
                    R"#(Computes isolines presentation for a TopoDS face. This method chooses proper version of isoline builder algorithm : on triangulation or surface depending on the flag passed from Prs3d_Drawer attributes. This method is a default way to display isolines for a given TopoDS face.)#"  , py::arg("theFace"),  py::arg("theDrawer"),  py::arg("theDeflection"),  py::arg("theUPolylines"),  py::arg("theVPolylines")
          )
        .def_static("AddOnTriangulation_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const TopoDS_Face & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const TopoDS_Face & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_Isolines::AddOnTriangulation),
                    R"#(Computes isolines on triangulation and adds them to a presentation.)#"  , py::arg("thePresentation"),  py::arg("theFace"),  py::arg("theDrawer")
          )
        .def_static("AddOnTriangulation_s",
                    (void (*)( const TopoDS_Face & ,  const opencascade::handle<Prs3d_Drawer> & ,  NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> & ,  NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> &  ) ) static_cast<void (*)( const TopoDS_Face & ,  const opencascade::handle<Prs3d_Drawer> & ,  NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> & ,  NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> &  ) >(&StdPrs_Isolines::AddOnTriangulation),
                    R"#(Computes isolines on triangulation.)#"  , py::arg("theFace"),  py::arg("theDrawer"),  py::arg("theUPolylines"),  py::arg("theVPolylines")
          )
        .def_static("AddOnTriangulation_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const opencascade::handle<Poly_Triangulation> & ,  const opencascade::handle<Geom_Surface> & ,  const TopLoc_Location & ,  const opencascade::handle<Prs3d_Drawer> & ,   const NCollection_Sequence<Standard_Real> & ,   const NCollection_Sequence<Standard_Real> &  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const opencascade::handle<Poly_Triangulation> & ,  const opencascade::handle<Geom_Surface> & ,  const TopLoc_Location & ,  const opencascade::handle<Prs3d_Drawer> & ,   const NCollection_Sequence<Standard_Real> & ,   const NCollection_Sequence<Standard_Real> &  ) >(&StdPrs_Isolines::AddOnTriangulation),
                    R"#(Computes isolines on triangulation and adds them to a presentation.)#"  , py::arg("thePresentation"),  py::arg("theTriangulation"),  py::arg("theSurface"),  py::arg("theLocation"),  py::arg("theDrawer"),  py::arg("theUIsoParams"),  py::arg("theVIsoParams")
          )
        .def_static("AddOnSurface_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const TopoDS_Face & ,  const opencascade::handle<Prs3d_Drawer> & ,  const Standard_Real  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const TopoDS_Face & ,  const opencascade::handle<Prs3d_Drawer> & ,  const Standard_Real  ) >(&StdPrs_Isolines::AddOnSurface),
                    R"#(Computes isolines on surface and adds them to presentation.)#"  , py::arg("thePresentation"),  py::arg("theFace"),  py::arg("theDrawer"),  py::arg("theDeflection")
          )
        .def_static("AddOnSurface_s",
                    (void (*)( const TopoDS_Face & ,  const opencascade::handle<Prs3d_Drawer> & ,  const Standard_Real ,  NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> & ,  NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> &  ) ) static_cast<void (*)( const TopoDS_Face & ,  const opencascade::handle<Prs3d_Drawer> & ,  const Standard_Real ,  NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> & ,  NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> &  ) >(&StdPrs_Isolines::AddOnSurface),
                    R"#(Computes isolines on surface and adds them to presentation.)#"  , py::arg("theFace"),  py::arg("theDrawer"),  py::arg("theDeflection"),  py::arg("theUPolylines"),  py::arg("theVPolylines")
          )
        .def_static("AddOnSurface_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const opencascade::handle<Prs3d_Drawer> & ,  const Standard_Real ,   const NCollection_Sequence<Standard_Real> & ,   const NCollection_Sequence<Standard_Real> &  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const opencascade::handle<Prs3d_Drawer> & ,  const Standard_Real ,   const NCollection_Sequence<Standard_Real> & ,   const NCollection_Sequence<Standard_Real> &  ) >(&StdPrs_Isolines::AddOnSurface),
                    R"#(Computes isolines on surface and adds them to presentation.)#"  , py::arg("thePresentation"),  py::arg("theSurface"),  py::arg("theDrawer"),  py::arg("theDeflection"),  py::arg("theUIsoParams"),  py::arg("theVIsoParams")
          )
    // static methods using call by reference i.s.o. return
        .def_static("UVIsoParameters_s",
            [](const TopoDS_Face & theFace,const Standard_Integer theNbIsoU,const Standard_Integer theNbIsoV,const Standard_Real theUVLimit,NCollection_Sequence<Standard_Real> & theUIsoParams,NCollection_Sequence<Standard_Real> & theVIsoParams ){
                Standard_Real  theUmin;
                Standard_Real  theUmax;
                Standard_Real  theVmin;
                Standard_Real  theVmax;

                StdPrs_Isolines::UVIsoParameters(theFace,theNbIsoU,theNbIsoV,theUVLimit,theUIsoParams,theVIsoParams,theUmin,theUmax,theVmin,theVmax);
                
return std::make_tuple(theUmin,theUmax,theVmin,theVmax); },
            R"#(Evaluate sequence of parameters for drawing uv isolines for a given face.)#"  , py::arg("theFace"),  py::arg("theNbIsoU"),  py::arg("theNbIsoV"),  py::arg("theUVLimit"),  py::arg("theUIsoParams"),  py::arg("theVIsoParams")
          )
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class StdPrs_Plane from ./opencascade/StdPrs_Plane.hxx
    klass = m.attr("StdPrs_Plane");

    // default constructor
    register_default_constructor<StdPrs_Plane , shared_ptr<StdPrs_Plane>>(m,"StdPrs_Plane");

    // nested enums

    static_cast<py::class_<StdPrs_Plane , shared_ptr<StdPrs_Plane>  , Prs3d_Root >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("Add_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const Adaptor3d_Surface & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const Adaptor3d_Surface & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_Plane::Add),
                    R"#(Defines display of infinite planes. The infinite plane aPlane is added to the display aPresentation, and the attributes of the display are defined by the attribute manager aDrawer.)#"  , py::arg("aPresentation"),  py::arg("aPlane"),  py::arg("aDrawer")
          )
        .def_static("Match_s",
                    (Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Adaptor3d_Surface & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Adaptor3d_Surface & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_Plane::Match),
                    R"#(returns true if the distance between the point (X,Y,Z) and the plane is less than aDistance.)#"  , py::arg("X"),  py::arg("Y"),  py::arg("Z"),  py::arg("aDistance"),  py::arg("aPlane"),  py::arg("aDrawer")
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class StdPrs_PoleCurve from ./opencascade/StdPrs_PoleCurve.hxx
    klass = m.attr("StdPrs_PoleCurve");

    // default constructor
    register_default_constructor<StdPrs_PoleCurve , shared_ptr<StdPrs_PoleCurve>>(m,"StdPrs_PoleCurve");

    // nested enums

    static_cast<py::class_<StdPrs_PoleCurve , shared_ptr<StdPrs_PoleCurve>  , Prs3d_Root >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("Add_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const Adaptor3d_Curve & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const Adaptor3d_Curve & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_PoleCurve::Add),
                    R"#(Defines display of BSpline and Bezier curves. Adds the 3D curve aCurve to the StdPrs_PoleCurve algorithm. This shape is found in the presentation object aPresentation, and its display attributes are set in the attribute manager aDrawer. The curve object from Adaptor3d provides data from a Geom curve. This makes it possible to use the surface in a geometric algorithm.)#"  , py::arg("aPresentation"),  py::arg("aCurve"),  py::arg("aDrawer")
          )
        .def_static("Match_s",
                    (Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Adaptor3d_Curve & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Adaptor3d_Curve & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_PoleCurve::Match),
                    R"#(returns true if the distance between the point (X,Y,Z) and the broken line made of the poles is less then aDistance.)#"  , py::arg("X"),  py::arg("Y"),  py::arg("Z"),  py::arg("aDistance"),  py::arg("aCurve"),  py::arg("aDrawer")
          )
        .def_static("Pick_s",
                    (Standard_Integer (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Adaptor3d_Curve & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<Standard_Integer (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Adaptor3d_Curve & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_PoleCurve::Pick),
                    R"#(returns the pole the most near of the point (X,Y,Z) and returns its range. The distance between the pole and (X,Y,Z) must be less then aDistance. If no pole corresponds, 0 is returned.)#"  , py::arg("X"),  py::arg("Y"),  py::arg("Z"),  py::arg("aDistance"),  py::arg("aCurve"),  py::arg("aDrawer")
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class StdPrs_ShadedShape from ./opencascade/StdPrs_ShadedShape.hxx
    klass = m.attr("StdPrs_ShadedShape");

    // default constructor
    register_default_constructor<StdPrs_ShadedShape , shared_ptr<StdPrs_ShadedShape>>(m,"StdPrs_ShadedShape");

    // nested enums

    static_cast<py::class_<StdPrs_ShadedShape , shared_ptr<StdPrs_ShadedShape>  , Prs3d_Root >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("Add_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const TopoDS_Shape & ,  const opencascade::handle<Prs3d_Drawer> & ,  const StdPrs_Volume ,  const opencascade::handle<Graphic3d_Group> &  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const TopoDS_Shape & ,  const opencascade::handle<Prs3d_Drawer> & ,  const StdPrs_Volume ,  const opencascade::handle<Graphic3d_Group> &  ) >(&StdPrs_ShadedShape::Add),
                    R"#(Shades <theShape>.)#"  , py::arg("thePresentation"),  py::arg("theShape"),  py::arg("theDrawer"),  py::arg("theVolume")=static_cast<const StdPrs_Volume>(StdPrs_Volume_Autodetection),  py::arg("theGroup")=static_cast<const opencascade::handle<Graphic3d_Group> &>(NULL)
          )
        .def_static("Add_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const TopoDS_Shape & ,  const opencascade::handle<Prs3d_Drawer> & ,  const Standard_Boolean ,  const gp_Pnt2d & ,  const gp_Pnt2d & ,  const gp_Pnt2d & ,  const StdPrs_Volume ,  const opencascade::handle<Graphic3d_Group> &  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const TopoDS_Shape & ,  const opencascade::handle<Prs3d_Drawer> & ,  const Standard_Boolean ,  const gp_Pnt2d & ,  const gp_Pnt2d & ,  const gp_Pnt2d & ,  const StdPrs_Volume ,  const opencascade::handle<Graphic3d_Group> &  ) >(&StdPrs_ShadedShape::Add),
                    R"#(Shades <theShape> with texture coordinates.)#"  , py::arg("thePresentation"),  py::arg("theShape"),  py::arg("theDrawer"),  py::arg("theHasTexels"),  py::arg("theUVOrigin"),  py::arg("theUVRepeat"),  py::arg("theUVScale"),  py::arg("theVolume")=static_cast<const StdPrs_Volume>(StdPrs_Volume_Autodetection),  py::arg("theGroup")=static_cast<const opencascade::handle<Graphic3d_Group> &>(NULL)
          )
        .def_static("ExploreSolids_s",
                    (void (*)( const TopoDS_Shape & ,  const BRep_Builder & ,  TopoDS_Compound & ,  TopoDS_Compound & ,  const Standard_Boolean  ) ) static_cast<void (*)( const TopoDS_Shape & ,  const BRep_Builder & ,  TopoDS_Compound & ,  TopoDS_Compound & ,  const Standard_Boolean  ) >(&StdPrs_ShadedShape::ExploreSolids),
                    R"#(Searches closed and unclosed subshapes in shape structure and puts them into two compounds for separate processing of closed and unclosed sub-shapes)#"  , py::arg("theShape"),  py::arg("theBuilder"),  py::arg("theClosed"),  py::arg("theOpened"),  py::arg("theIgnore1DSubShape")
          )
        .def_static("AddWireframeForFreeElements_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const TopoDS_Shape & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const TopoDS_Shape & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_ShadedShape::AddWireframeForFreeElements),
                    R"#(Computes wireframe presentation for free wires and vertices)#"  , py::arg("thePrs"),  py::arg("theShape"),  py::arg("theDrawer")
          )
        .def_static("AddWireframeForFacesWithoutTriangles_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const TopoDS_Shape & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const TopoDS_Shape & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_ShadedShape::AddWireframeForFacesWithoutTriangles),
                    R"#(Computes special wireframe presentation for faces without triangulation.)#"  , py::arg("thePrs"),  py::arg("theShape"),  py::arg("theDrawer")
          )
        .def_static("FillTriangles_s",
                    (opencascade::handle<Graphic3d_ArrayOfTriangles> (*)( const TopoDS_Shape &  ) ) static_cast<opencascade::handle<Graphic3d_ArrayOfTriangles> (*)( const TopoDS_Shape &  ) >(&StdPrs_ShadedShape::FillTriangles),
                    R"#(Create primitive array with triangles for specified shape.)#"  , py::arg("theShape")
          )
        .def_static("FillTriangles_s",
                    (opencascade::handle<Graphic3d_ArrayOfTriangles> (*)( const TopoDS_Shape & ,  const Standard_Boolean ,  const gp_Pnt2d & ,  const gp_Pnt2d & ,  const gp_Pnt2d &  ) ) static_cast<opencascade::handle<Graphic3d_ArrayOfTriangles> (*)( const TopoDS_Shape & ,  const Standard_Boolean ,  const gp_Pnt2d & ,  const gp_Pnt2d & ,  const gp_Pnt2d &  ) >(&StdPrs_ShadedShape::FillTriangles),
                    R"#(Create primitive array of triangles for specified shape.)#"  , py::arg("theShape"),  py::arg("theHasTexels"),  py::arg("theUVOrigin"),  py::arg("theUVRepeat"),  py::arg("theUVScale")
          )
        .def_static("FillFaceBoundaries_s",
                    (opencascade::handle<Graphic3d_ArrayOfSegments> (*)( const TopoDS_Shape & ,  GeomAbs_Shape  ) ) static_cast<opencascade::handle<Graphic3d_ArrayOfSegments> (*)( const TopoDS_Shape & ,  GeomAbs_Shape  ) >(&StdPrs_ShadedShape::FillFaceBoundaries),
                    R"#(Define primitive array of boundary segments for specified shape.)#"  , py::arg("theShape"),  py::arg("theUpperContinuity")=static_cast<GeomAbs_Shape>(GeomAbs_CN)
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class StdPrs_ShadedSurface from ./opencascade/StdPrs_ShadedSurface.hxx
    klass = m.attr("StdPrs_ShadedSurface");

    // default constructor
    register_default_constructor<StdPrs_ShadedSurface , shared_ptr<StdPrs_ShadedSurface>>(m,"StdPrs_ShadedSurface");

    // nested enums

    static_cast<py::class_<StdPrs_ShadedSurface , shared_ptr<StdPrs_ShadedSurface>  , Prs3d_Root >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("Add_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const Adaptor3d_Surface & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const Adaptor3d_Surface & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_ShadedSurface::Add),
                    R"#(Adds the surface aSurface to the presentation object aPresentation. The surface's display attributes are set in the attribute manager aDrawer. The surface object from Adaptor3d provides data from a Geom surface in order to use the surface in an algorithm.)#"  , py::arg("aPresentation"),  py::arg("aSurface"),  py::arg("aDrawer")
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class StdPrs_ShapeTool from ./opencascade/StdPrs_ShapeTool.hxx
    klass = m.attr("StdPrs_ShapeTool");


    // nested enums

    static_cast<py::class_<StdPrs_ShapeTool , shared_ptr<StdPrs_ShapeTool>  >>(klass)
    // constructors
        .def(py::init< const TopoDS_Shape &,const Standard_Boolean >()  , py::arg("theShape"),  py::arg("theAllVertices")=static_cast<const Standard_Boolean>(Standard_False) )
    // custom constructors
    // methods
        .def("InitFace",
             (void (StdPrs_ShapeTool::*)() ) static_cast<void (StdPrs_ShapeTool::*)() >(&StdPrs_ShapeTool::InitFace),
             R"#(None)#" 
          )
        .def("MoreFace",
             (Standard_Boolean (StdPrs_ShapeTool::*)() const) static_cast<Standard_Boolean (StdPrs_ShapeTool::*)() const>(&StdPrs_ShapeTool::MoreFace),
             R"#(None)#" 
          )
        .def("NextFace",
             (void (StdPrs_ShapeTool::*)() ) static_cast<void (StdPrs_ShapeTool::*)() >(&StdPrs_ShapeTool::NextFace),
             R"#(None)#" 
          )
        .def("FaceBound",
             (Bnd_Box (StdPrs_ShapeTool::*)() const) static_cast<Bnd_Box (StdPrs_ShapeTool::*)() const>(&StdPrs_ShapeTool::FaceBound),
             R"#(None)#" 
          )
        .def("IsPlanarFace",
             (Standard_Boolean (StdPrs_ShapeTool::*)() const) static_cast<Standard_Boolean (StdPrs_ShapeTool::*)() const>(&StdPrs_ShapeTool::IsPlanarFace),
             R"#(None)#" 
          )
        .def("InitCurve",
             (void (StdPrs_ShapeTool::*)() ) static_cast<void (StdPrs_ShapeTool::*)() >(&StdPrs_ShapeTool::InitCurve),
             R"#(None)#" 
          )
        .def("MoreCurve",
             (Standard_Boolean (StdPrs_ShapeTool::*)() const) static_cast<Standard_Boolean (StdPrs_ShapeTool::*)() const>(&StdPrs_ShapeTool::MoreCurve),
             R"#(None)#" 
          )
        .def("NextCurve",
             (void (StdPrs_ShapeTool::*)() ) static_cast<void (StdPrs_ShapeTool::*)() >(&StdPrs_ShapeTool::NextCurve),
             R"#(None)#" 
          )
        .def("CurveBound",
             (Bnd_Box (StdPrs_ShapeTool::*)() const) static_cast<Bnd_Box (StdPrs_ShapeTool::*)() const>(&StdPrs_ShapeTool::CurveBound),
             R"#(None)#" 
          )
        .def("Neighbours",
             (Standard_Integer (StdPrs_ShapeTool::*)() const) static_cast<Standard_Integer (StdPrs_ShapeTool::*)() const>(&StdPrs_ShapeTool::Neighbours),
             R"#(None)#" 
          )
        .def("FacesOfEdge",
             (opencascade::handle<TopTools_HSequenceOfShape> (StdPrs_ShapeTool::*)() const) static_cast<opencascade::handle<TopTools_HSequenceOfShape> (StdPrs_ShapeTool::*)() const>(&StdPrs_ShapeTool::FacesOfEdge),
             R"#(None)#" 
          )
        .def("InitVertex",
             (void (StdPrs_ShapeTool::*)() ) static_cast<void (StdPrs_ShapeTool::*)() >(&StdPrs_ShapeTool::InitVertex),
             R"#(None)#" 
          )
        .def("MoreVertex",
             (Standard_Boolean (StdPrs_ShapeTool::*)() const) static_cast<Standard_Boolean (StdPrs_ShapeTool::*)() const>(&StdPrs_ShapeTool::MoreVertex),
             R"#(None)#" 
          )
        .def("NextVertex",
             (void (StdPrs_ShapeTool::*)() ) static_cast<void (StdPrs_ShapeTool::*)() >(&StdPrs_ShapeTool::NextVertex),
             R"#(None)#" 
          )
        .def("HasSurface",
             (Standard_Boolean (StdPrs_ShapeTool::*)() const) static_cast<Standard_Boolean (StdPrs_ShapeTool::*)() const>(&StdPrs_ShapeTool::HasSurface),
             R"#(None)#" 
          )
        .def("CurrentTriangulation",
             (opencascade::handle<Poly_Triangulation> (StdPrs_ShapeTool::*)( TopLoc_Location &  ) const) static_cast<opencascade::handle<Poly_Triangulation> (StdPrs_ShapeTool::*)( TopLoc_Location &  ) const>(&StdPrs_ShapeTool::CurrentTriangulation),
             R"#(None)#"  , py::arg("l")
          )
        .def("HasCurve",
             (Standard_Boolean (StdPrs_ShapeTool::*)() const) static_cast<Standard_Boolean (StdPrs_ShapeTool::*)() const>(&StdPrs_ShapeTool::HasCurve),
             R"#(None)#" 
          )
        .def("Polygon3D",
             (opencascade::handle<Poly_Polygon3D> (StdPrs_ShapeTool::*)( TopLoc_Location &  ) const) static_cast<opencascade::handle<Poly_Polygon3D> (StdPrs_ShapeTool::*)( TopLoc_Location &  ) const>(&StdPrs_ShapeTool::Polygon3D),
             R"#(None)#"  , py::arg("l")
          )
    // methods using call by reference i.s.o. return
        .def("PolygonOnTriangulation",
             []( StdPrs_ShapeTool &self , Poly_PolygonOnTriangulation& Indices,Poly_Triangulation& T,TopLoc_Location & l ){
                 opencascade::handle<Poly_PolygonOnTriangulation>  Indices_ptr; Indices_ptr = &Indices;
                opencascade::handle<Poly_Triangulation>  T_ptr; T_ptr = &T;

                 self.PolygonOnTriangulation(Indices_ptr,T_ptr,l);
                 if ( Indices_ptr.get() != &Indices ) copy_if_copy_constructible(Indices, *Indices_ptr);
                if ( T_ptr.get() != &T ) copy_if_copy_constructible(T, *T_ptr);

                 return std::make_tuple(); },
             R"#(None)#"  , py::arg("Indices"),  py::arg("T"),  py::arg("l")
          )
    // static methods
        .def_static("IsPlanarFace_s",
                    (Standard_Boolean (*)( const TopoDS_Face &  ) ) static_cast<Standard_Boolean (*)( const TopoDS_Face &  ) >(&StdPrs_ShapeTool::IsPlanarFace),
                    R"#(None)#"  , py::arg("theFace")
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("GetFace",
             (const TopoDS_Face & (StdPrs_ShapeTool::*)() const) static_cast<const TopoDS_Face & (StdPrs_ShapeTool::*)() const>(&StdPrs_ShapeTool::GetFace),
             R"#(None)#"
             
         )
       .def("GetCurve",
             (const TopoDS_Edge & (StdPrs_ShapeTool::*)() const) static_cast<const TopoDS_Edge & (StdPrs_ShapeTool::*)() const>(&StdPrs_ShapeTool::GetCurve),
             R"#(None)#"
             
         )
       .def("GetVertex",
             (const TopoDS_Vertex & (StdPrs_ShapeTool::*)() const) static_cast<const TopoDS_Vertex & (StdPrs_ShapeTool::*)() const>(&StdPrs_ShapeTool::GetVertex),
             R"#(None)#"
             
         )
;

    // Class StdPrs_ToolPoint from ./opencascade/StdPrs_ToolPoint.hxx
    klass = m.attr("StdPrs_ToolPoint");

    // default constructor
    register_default_constructor<StdPrs_ToolPoint , shared_ptr<StdPrs_ToolPoint>>(m,"StdPrs_ToolPoint");

    // nested enums

    static_cast<py::class_<StdPrs_ToolPoint , shared_ptr<StdPrs_ToolPoint>  >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
        .def_static("Coord_s",
            [](const opencascade::handle<Geom_Point> & aPoint ){
                Standard_Real  X;
                Standard_Real  Y;
                Standard_Real  Z;

                StdPrs_ToolPoint::Coord(aPoint,X,Y,Z);
                
return std::make_tuple(X,Y,Z); },
            R"#(None)#"  , py::arg("aPoint")
          )
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class StdPrs_ToolRFace from ./opencascade/StdPrs_ToolRFace.hxx
    klass = m.attr("StdPrs_ToolRFace");


    // nested enums

    static_cast<py::class_<StdPrs_ToolRFace , shared_ptr<StdPrs_ToolRFace>  >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const opencascade::handle<BRepAdaptor_Surface> & >()  , py::arg("aSurface") )
    // custom constructors
    // methods
        .def("IsOriented",
             (Standard_Boolean (StdPrs_ToolRFace::*)() const) static_cast<Standard_Boolean (StdPrs_ToolRFace::*)() const>(&StdPrs_ToolRFace::IsOriented),
             R"#(Return TRUE indicating that iterator looks only for oriented edges.)#" 
          )
        .def("Init",
             (void (StdPrs_ToolRFace::*)() ) static_cast<void (StdPrs_ToolRFace::*)() >(&StdPrs_ToolRFace::Init),
             R"#(Move iterator to the first element.)#" 
          )
        .def("More",
             (Standard_Boolean (StdPrs_ToolRFace::*)() const) static_cast<Standard_Boolean (StdPrs_ToolRFace::*)() const>(&StdPrs_ToolRFace::More),
             R"#(Return TRUE if iterator points to the curve.)#" 
          )
        .def("Next",
             (void (StdPrs_ToolRFace::*)() ) static_cast<void (StdPrs_ToolRFace::*)() >(&StdPrs_ToolRFace::Next),
             R"#(Go to the next curve in the face.)#" 
          )
        .def("Orientation",
             (TopAbs_Orientation (StdPrs_ToolRFace::*)() const) static_cast<TopAbs_Orientation (StdPrs_ToolRFace::*)() const>(&StdPrs_ToolRFace::Orientation),
             R"#(Return current edge orientation.)#" 
          )
        .def("IsInvalidGeometry",
             (Standard_Boolean (StdPrs_ToolRFace::*)() const) static_cast<Standard_Boolean (StdPrs_ToolRFace::*)() const>(&StdPrs_ToolRFace::IsInvalidGeometry),
             R"#(Return TRUE if NULL curves have been skipped.)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Value",
             (const Adaptor2d_Curve2d & (StdPrs_ToolRFace::*)() const) static_cast<const Adaptor2d_Curve2d & (StdPrs_ToolRFace::*)() const>(&StdPrs_ToolRFace::Value),
             R"#(Return current curve.)#"
             
         )
       .def("Edge",
             (const TopoDS_Edge & (StdPrs_ToolRFace::*)() const) static_cast<const TopoDS_Edge & (StdPrs_ToolRFace::*)() const>(&StdPrs_ToolRFace::Edge),
             R"#(Return current edge.)#"
             
         )
;

    // Class StdPrs_ToolTriangulatedShape from ./opencascade/StdPrs_ToolTriangulatedShape.hxx
    klass = m.attr("StdPrs_ToolTriangulatedShape");

    // default constructor
    register_default_constructor<StdPrs_ToolTriangulatedShape , shared_ptr<StdPrs_ToolTriangulatedShape>>(m,"StdPrs_ToolTriangulatedShape");

    // nested enums

    static_cast<py::class_<StdPrs_ToolTriangulatedShape , shared_ptr<StdPrs_ToolTriangulatedShape>  , BRepLib_ToolTriangulatedShape >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("IsTriangulated_s",
                    (Standard_Boolean (*)( const TopoDS_Shape &  ) ) static_cast<Standard_Boolean (*)( const TopoDS_Shape &  ) >(&StdPrs_ToolTriangulatedShape::IsTriangulated),
                    R"#(Similar to BRepTools::Triangulation() but without extra checks.)#"  , py::arg("theShape")
          )
        .def_static("IsClosed_s",
                    (Standard_Boolean (*)( const TopoDS_Shape &  ) ) static_cast<Standard_Boolean (*)( const TopoDS_Shape &  ) >(&StdPrs_ToolTriangulatedShape::IsClosed),
                    R"#(Checks back faces visibility for specified shape (to activate back-face culling).)#"  , py::arg("theShape")
          )
        .def_static("GetDeflection_s",
                    (Standard_Real (*)( const TopoDS_Shape & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<Standard_Real (*)( const TopoDS_Shape & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_ToolTriangulatedShape::GetDeflection),
                    R"#(Computes the absolute deflection value depending on the type of deflection in theDrawer: Aspect_TOD_RELATIVE: the absolute deflection is computed using the relative deviation coefficient from theDrawer and the shape's bounding box; Aspect_TOD_ABSOLUTE: the maximal chordial deviation from theDrawer is returned. In case of the type of deflection in theDrawer computed relative deflection for shape is stored as absolute deflection. It is necessary to use it later on for sub-shapes. This function should always be used to compute the deflection value for building discrete representations of the shape (triangulation, wireframe) to avoid inconsistencies between different representations of the shape and undesirable visual artifacts.)#"  , py::arg("theShape"),  py::arg("theDrawer")
          )
        .def_static("IsTessellated_s",
                    (Standard_Boolean (*)( const TopoDS_Shape & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<Standard_Boolean (*)( const TopoDS_Shape & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_ToolTriangulatedShape::IsTessellated),
                    R"#(Checks whether the shape is properly triangulated for a given display settings.)#"  , py::arg("theShape"),  py::arg("theDrawer")
          )
        .def_static("Tessellate_s",
                    (Standard_Boolean (*)( const TopoDS_Shape & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<Standard_Boolean (*)( const TopoDS_Shape & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_ToolTriangulatedShape::Tessellate),
                    R"#(Validates triangulation within the shape and performs tessellation if necessary.)#"  , py::arg("theShape"),  py::arg("theDrawer")
          )
        .def_static("ClearOnOwnDeflectionChange_s",
                    (void (*)( const TopoDS_Shape & ,  const opencascade::handle<Prs3d_Drawer> & ,  const Standard_Boolean  ) ) static_cast<void (*)( const TopoDS_Shape & ,  const opencascade::handle<Prs3d_Drawer> & ,  const Standard_Boolean  ) >(&StdPrs_ToolTriangulatedShape::ClearOnOwnDeflectionChange),
                    R"#(If presentation has own deviation coefficient and IsAutoTriangulation() is true, function will compare actual coefficients with previous values and will clear triangulation on their change (regardless actual tessellation quality). Function is placed here for compatibility reasons - new code should avoid using IsAutoTriangulation().)#"  , py::arg("theShape"),  py::arg("theDrawer"),  py::arg("theToResetCoeff")
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class StdPrs_ToolVertex from ./opencascade/StdPrs_ToolVertex.hxx
    klass = m.attr("StdPrs_ToolVertex");

    // default constructor
    register_default_constructor<StdPrs_ToolVertex , shared_ptr<StdPrs_ToolVertex>>(m,"StdPrs_ToolVertex");

    // nested enums

    static_cast<py::class_<StdPrs_ToolVertex , shared_ptr<StdPrs_ToolVertex>  >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
        .def_static("Coord_s",
            [](const TopoDS_Vertex & aPoint ){
                Standard_Real  X;
                Standard_Real  Y;
                Standard_Real  Z;

                StdPrs_ToolVertex::Coord(aPoint,X,Y,Z);
                
return std::make_tuple(X,Y,Z); },
            R"#(None)#"  , py::arg("aPoint")
          )
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class StdPrs_WFDeflectionRestrictedFace from ./opencascade/StdPrs_WFDeflectionRestrictedFace.hxx
    klass = m.attr("StdPrs_WFDeflectionRestrictedFace");

    // default constructor
    register_default_constructor<StdPrs_WFDeflectionRestrictedFace , shared_ptr<StdPrs_WFDeflectionRestrictedFace>>(m,"StdPrs_WFDeflectionRestrictedFace");

    // nested enums

    static_cast<py::class_<StdPrs_WFDeflectionRestrictedFace , shared_ptr<StdPrs_WFDeflectionRestrictedFace>  , Prs3d_Root >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("Add_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_WFDeflectionRestrictedFace::Add),
                    R"#(Defines a display featuring U and V isoparameters. Adds the surface aFace to the StdPrs_WFRestrictedFace algorithm. This face is found in a shape in the presentation object aPresentation, and its display attributes - in particular, the number of U and V isoparameters - are set in the attribute manager aDrawer. aFace is BRepAdaptor_Surface surface created from a face in a topological shape. which is passed as an argument through the BRepAdaptor_Surface surface created from it. This is what allows the topological face to be treated as a geometric surface.)#"  , py::arg("aPresentation"),  py::arg("aFace"),  py::arg("aDrawer")
          )
        .def_static("AddUIso_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_WFDeflectionRestrictedFace::AddUIso),
                    R"#(Defines a display featuring U isoparameters respectively. Add the surface aFace to the StdPrs_WFRestrictedFace algorithm. This face is found in a shape in the presentation object aPresentation, and its display attributes - in particular, the number of U isoparameters - are set in the attribute manager aDrawer. aFace is BRepAdaptor_Surface surface created from a face in a topological shape. which is passed to the function as an argument through the BRepAdaptor_Surface surface created from it. This is what allows the topological face to be treated as a geometric surface.)#"  , py::arg("aPresentation"),  py::arg("aFace"),  py::arg("aDrawer")
          )
        .def_static("AddVIso_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_WFDeflectionRestrictedFace::AddVIso),
                    R"#(Defines a display featuring V isoparameters respectively. Add the surface aFace to the StdPrs_WFRestrictedFace algorithm. This face is found in a shape in the presentation object aPresentation, and its display attributes - in particular, the number of V isoparameters - are set in the attribute manager aDrawer. aFace is BRepAdaptor_Surface surface created from a face in a topological shape. which is passed to the function as an argument through the BRepAdaptor_Surface surface created from it. This is what allows the topological face to be treated as a geometric surface.)#"  , py::arg("aPresentation"),  py::arg("aFace"),  py::arg("aDrawer")
          )
        .def_static("Add_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const Standard_Boolean ,  const Standard_Boolean ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const opencascade::handle<Prs3d_Drawer> & ,  NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> &  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const Standard_Boolean ,  const Standard_Boolean ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const opencascade::handle<Prs3d_Drawer> & ,  NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> &  ) >(&StdPrs_WFDeflectionRestrictedFace::Add),
                    R"#(Defines a display of a delection-specified face. The display will feature U and V isoparameters. Adds the topology aShape to the StdPrs_WFRestrictedFace algorithm. This shape is found in the presentation object aPresentation, and its display attributes - except the number of U and V isoparameters - are set in the attribute manager aDrawer. The function sets the number of U and V isoparameters, NBUiso and NBViso, in the shape. To do this, the arguments DrawUIso and DrawVIso must be true. aFace is BRepAdaptor_Surface surface created from a face in a topological shape. which is passed as an argument through the BRepAdaptor_Surface surface created from it. This is what allows the topological face to be treated as a geometric surface. Curves give a sequence of face curves, it is used if the PrimitiveArray visualization approach is activated (it is activated by default).)#"  , py::arg("aPresentation"),  py::arg("aFace"),  py::arg("DrawUIso"),  py::arg("DrawVIso"),  py::arg("Deflection"),  py::arg("NBUiso"),  py::arg("NBViso"),  py::arg("aDrawer"),  py::arg("Curves")
          )
        .def_static("Match_s",
                    (Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_WFDeflectionRestrictedFace::Match),
                    R"#(None)#"  , py::arg("X"),  py::arg("Y"),  py::arg("Z"),  py::arg("aDistance"),  py::arg("aFace"),  py::arg("aDrawer")
          )
        .def_static("MatchUIso_s",
                    (Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_WFDeflectionRestrictedFace::MatchUIso),
                    R"#(None)#"  , py::arg("X"),  py::arg("Y"),  py::arg("Z"),  py::arg("aDistance"),  py::arg("aFace"),  py::arg("aDrawer")
          )
        .def_static("MatchVIso_s",
                    (Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_WFDeflectionRestrictedFace::MatchVIso),
                    R"#(None)#"  , py::arg("X"),  py::arg("Y"),  py::arg("Z"),  py::arg("aDistance"),  py::arg("aFace"),  py::arg("aDrawer")
          )
        .def_static("Match_s",
                    (Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const opencascade::handle<Prs3d_Drawer> & ,  const Standard_Boolean ,  const Standard_Boolean ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) ) static_cast<Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const opencascade::handle<Prs3d_Drawer> & ,  const Standard_Boolean ,  const Standard_Boolean ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) >(&StdPrs_WFDeflectionRestrictedFace::Match),
                    R"#(None)#"  , py::arg("X"),  py::arg("Y"),  py::arg("Z"),  py::arg("aDistance"),  py::arg("aFace"),  py::arg("aDrawer"),  py::arg("DrawUIso"),  py::arg("DrawVIso"),  py::arg("aDeflection"),  py::arg("NBUiso"),  py::arg("NBViso")
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class StdPrs_WFDeflectionSurface from ./opencascade/StdPrs_WFDeflectionSurface.hxx
    klass = m.attr("StdPrs_WFDeflectionSurface");

    // default constructor
    register_default_constructor<StdPrs_WFDeflectionSurface , shared_ptr<StdPrs_WFDeflectionSurface>>(m,"StdPrs_WFDeflectionSurface");

    // nested enums

    static_cast<py::class_<StdPrs_WFDeflectionSurface , shared_ptr<StdPrs_WFDeflectionSurface>  , Prs3d_Root >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("Add_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const opencascade::handle<Adaptor3d_Surface> & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const opencascade::handle<Adaptor3d_Surface> & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_WFDeflectionSurface::Add),
                    R"#(Adds the surface aSurface to the presentation object aPresentation, and defines its boundaries and isoparameters. The shape's display attributes are set in the attribute manager aDrawer. These include whether deflection is absolute or relative to the size of the shape. The surface aSurface is a surface object from Adaptor, and provides data from a Geom surface. This makes it possible to use the surface in a geometric algorithm. Note that this surface object is manipulated by handles.)#"  , py::arg("aPresentation"),  py::arg("aSurface"),  py::arg("aDrawer")
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class StdPrs_WFPoleSurface from ./opencascade/StdPrs_WFPoleSurface.hxx
    klass = m.attr("StdPrs_WFPoleSurface");

    // default constructor
    register_default_constructor<StdPrs_WFPoleSurface , shared_ptr<StdPrs_WFPoleSurface>>(m,"StdPrs_WFPoleSurface");

    // nested enums

    static_cast<py::class_<StdPrs_WFPoleSurface , shared_ptr<StdPrs_WFPoleSurface>  , Prs3d_Root >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("Add_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const Adaptor3d_Surface & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const Adaptor3d_Surface & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_WFPoleSurface::Add),
                    R"#(Adds the surface aSurface to the presentation object aPresentation. The shape's display attributes are set in the attribute manager aDrawer. The surface aSurface is a surface object from Adaptor3d, and provides data from a Geom surface. This makes it possible to use the surface in a geometric algorithm.)#"  , py::arg("aPresentation"),  py::arg("aSurface"),  py::arg("aDrawer")
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class StdPrs_WFRestrictedFace from ./opencascade/StdPrs_WFRestrictedFace.hxx
    klass = m.attr("StdPrs_WFRestrictedFace");

    // default constructor
    register_default_constructor<StdPrs_WFRestrictedFace , shared_ptr<StdPrs_WFRestrictedFace>>(m,"StdPrs_WFRestrictedFace");

    // nested enums

    static_cast<py::class_<StdPrs_WFRestrictedFace , shared_ptr<StdPrs_WFRestrictedFace>  , Prs3d_Root >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("Add_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const Standard_Boolean ,  const Standard_Boolean ,  const Standard_Integer ,  const Standard_Integer ,  const opencascade::handle<Prs3d_Drawer> & ,  NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> &  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const Standard_Boolean ,  const Standard_Boolean ,  const Standard_Integer ,  const Standard_Integer ,  const opencascade::handle<Prs3d_Drawer> & ,  NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> &  ) >(&StdPrs_WFRestrictedFace::Add),
                    R"#(None)#"  , py::arg("thePresentation"),  py::arg("theFace"),  py::arg("theDrawUIso"),  py::arg("theDrawVIso"),  py::arg("theNbUIso"),  py::arg("theNbVIso"),  py::arg("theDrawer"),  py::arg("theCurves")
          )
        .def_static("Add_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_WFRestrictedFace::Add),
                    R"#(None)#"  , py::arg("thePresentation"),  py::arg("theFace"),  py::arg("theDrawer")
          )
        .def_static("Match_s",
                    (Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const Standard_Boolean ,  const Standard_Boolean ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const Standard_Boolean ,  const Standard_Boolean ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_WFRestrictedFace::Match),
                    R"#(None)#"  , py::arg("theX"),  py::arg("theY"),  py::arg("theZ"),  py::arg("theDistance"),  py::arg("theFace"),  py::arg("theDrawUIso"),  py::arg("theDrawVIso"),  py::arg("theDeflection"),  py::arg("theNbUIso"),  py::arg("theNbVIso"),  py::arg("theDrawer")
          )
        .def_static("Match_s",
                    (Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_WFRestrictedFace::Match),
                    R"#(None)#"  , py::arg("theX"),  py::arg("theY"),  py::arg("theZ"),  py::arg("theDistance"),  py::arg("theFace"),  py::arg("theDrawer")
          )
        .def_static("MatchUIso_s",
                    (Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_WFRestrictedFace::MatchUIso),
                    R"#(None)#"  , py::arg("theX"),  py::arg("theY"),  py::arg("theZ"),  py::arg("theDistance"),  py::arg("theFace"),  py::arg("theDrawer")
          )
        .def_static("MatchVIso_s",
                    (Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<Standard_Boolean (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_WFRestrictedFace::MatchVIso),
                    R"#(None)#"  , py::arg("theX"),  py::arg("theY"),  py::arg("theZ"),  py::arg("theDistance"),  py::arg("theFace"),  py::arg("theDrawer")
          )
        .def_static("AddUIso_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_WFRestrictedFace::AddUIso),
                    R"#(None)#"  , py::arg("thePresentation"),  py::arg("theFace"),  py::arg("theDrawer")
          )
        .def_static("AddVIso_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const opencascade::handle<BRepAdaptor_Surface> & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_WFRestrictedFace::AddVIso),
                    R"#(None)#"  , py::arg("thePresentation"),  py::arg("theFace"),  py::arg("theDrawer")
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class StdPrs_WFShape from ./opencascade/StdPrs_WFShape.hxx
    klass = m.attr("StdPrs_WFShape");

    // default constructor
    register_default_constructor<StdPrs_WFShape , shared_ptr<StdPrs_WFShape>>(m,"StdPrs_WFShape");

    // nested enums

    static_cast<py::class_<StdPrs_WFShape , shared_ptr<StdPrs_WFShape>  , Prs3d_Root >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("Add_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const TopoDS_Shape & ,  const opencascade::handle<Prs3d_Drawer> & ,  Standard_Boolean  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const TopoDS_Shape & ,  const opencascade::handle<Prs3d_Drawer> & ,  Standard_Boolean  ) >(&StdPrs_WFShape::Add),
                    R"#(Computes wireframe presentation of a shape.)#"  , py::arg("thePresentation"),  py::arg("theShape"),  py::arg("theDrawer"),  py::arg("theIsParallel")=static_cast<Standard_Boolean>(Standard_False)
          )
        .def_static("AddEdgesOnTriangulation_s",
                    (opencascade::handle<Graphic3d_ArrayOfPrimitives> (*)( const TopoDS_Shape & ,  const Standard_Boolean  ) ) static_cast<opencascade::handle<Graphic3d_ArrayOfPrimitives> (*)( const TopoDS_Shape & ,  const Standard_Boolean  ) >(&StdPrs_WFShape::AddEdgesOnTriangulation),
                    R"#(Compute free and boundary edges on a triangulation of each face in the given shape.)#"  , py::arg("theShape"),  py::arg("theToExcludeGeometric")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def_static("AddEdgesOnTriangulation_s",
                    (void (*)( NCollection_Sequence<gp_Pnt> & ,  const TopoDS_Shape & ,  const Standard_Boolean  ) ) static_cast<void (*)( NCollection_Sequence<gp_Pnt> & ,  const TopoDS_Shape & ,  const Standard_Boolean  ) >(&StdPrs_WFShape::AddEdgesOnTriangulation),
                    R"#(Compute free and boundary edges on a triangulation of each face in the given shape.)#"  , py::arg("theSegments"),  py::arg("theShape"),  py::arg("theToExcludeGeometric")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def_static("AddAllEdges_s",
                    (opencascade::handle<Graphic3d_ArrayOfPrimitives> (*)( const TopoDS_Shape & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<opencascade::handle<Graphic3d_ArrayOfPrimitives> (*)( const TopoDS_Shape & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_WFShape::AddAllEdges),
                    R"#(Compute all edges (wire, free, unfree) and put them into single primitive array.)#"  , py::arg("theShape"),  py::arg("theDrawer")
          )
        .def_static("AddVertexes_s",
                    (opencascade::handle<Graphic3d_ArrayOfPoints> (*)( const TopoDS_Shape & ,  Prs3d_VertexDrawMode  ) ) static_cast<opencascade::handle<Graphic3d_ArrayOfPoints> (*)( const TopoDS_Shape & ,  Prs3d_VertexDrawMode  ) >(&StdPrs_WFShape::AddVertexes),
                    R"#(Compute vertex presentation for a shape.)#"  , py::arg("theShape"),  py::arg("theVertexMode")
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class StdPrs_WFSurface from ./opencascade/StdPrs_WFSurface.hxx
    klass = m.attr("StdPrs_WFSurface");

    // default constructor
    register_default_constructor<StdPrs_WFSurface , shared_ptr<StdPrs_WFSurface>>(m,"StdPrs_WFSurface");

    // nested enums

    static_cast<py::class_<StdPrs_WFSurface , shared_ptr<StdPrs_WFSurface>  , Prs3d_Root >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("Add_s",
                    (void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const opencascade::handle<Adaptor3d_Surface> & ,  const opencascade::handle<Prs3d_Drawer> &  ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & ,  const opencascade::handle<Adaptor3d_Surface> & ,  const opencascade::handle<Prs3d_Drawer> &  ) >(&StdPrs_WFSurface::Add),
                    R"#(Draws a surface by drawing the isoparametric curves with respect to a fixed number of points given by the Drawer. The number of isoparametric curves to be drawn and their color are controlled by the furnished Drawer.)#"  , py::arg("aPresentation"),  py::arg("aSurface"),  py::arg("aDrawer")
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class StdPrs_HLRPolyShape from ./opencascade/StdPrs_HLRPolyShape.hxx
    klass = m.attr("StdPrs_HLRPolyShape");

    // default constructor
    register_default_constructor<StdPrs_HLRPolyShape ,opencascade::handle<StdPrs_HLRPolyShape>>(m,"StdPrs_HLRPolyShape");

    // nested enums

    static_cast<py::class_<StdPrs_HLRPolyShape ,opencascade::handle<StdPrs_HLRPolyShape>  , StdPrs_HLRShapeI >>(klass)
    // constructors
    // custom constructors
    // methods
        .def("ComputeHLR",
             (void (StdPrs_HLRPolyShape::*)( const opencascade::handle<Prs3d_Presentation> & ,  const TopoDS_Shape & ,  const opencascade::handle<Prs3d_Drawer> & ,  const opencascade::handle<Graphic3d_Camera> &  ) const) static_cast<void (StdPrs_HLRPolyShape::*)( const opencascade::handle<Prs3d_Presentation> & ,  const TopoDS_Shape & ,  const opencascade::handle<Prs3d_Drawer> & ,  const opencascade::handle<Graphic3d_Camera> &  ) const>(&StdPrs_HLRPolyShape::ComputeHLR),
             R"#(Compute presentation for specified shape.)#"  , py::arg("thePrs"),  py::arg("theShape"),  py::arg("theDrawer"),  py::arg("theProjector")
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&StdPrs_HLRPolyShape::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&StdPrs_HLRPolyShape::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (StdPrs_HLRPolyShape::*)() const) static_cast<const opencascade::handle<Standard_Type> & (StdPrs_HLRPolyShape::*)() const>(&StdPrs_HLRPolyShape::DynamicType),
             R"#(None)#"
             
         )
;

    // Class StdPrs_HLRShape from ./opencascade/StdPrs_HLRShape.hxx
    klass = m.attr("StdPrs_HLRShape");

    // default constructor
    register_default_constructor<StdPrs_HLRShape ,opencascade::handle<StdPrs_HLRShape>>(m,"StdPrs_HLRShape");

    // nested enums

    static_cast<py::class_<StdPrs_HLRShape ,opencascade::handle<StdPrs_HLRShape>  , StdPrs_HLRShapeI >>(klass)
    // constructors
    // custom constructors
    // methods
        .def("ComputeHLR",
             (void (StdPrs_HLRShape::*)( const opencascade::handle<Prs3d_Presentation> & ,  const TopoDS_Shape & ,  const opencascade::handle<Prs3d_Drawer> & ,  const opencascade::handle<Graphic3d_Camera> &  ) const) static_cast<void (StdPrs_HLRShape::*)( const opencascade::handle<Prs3d_Presentation> & ,  const TopoDS_Shape & ,  const opencascade::handle<Prs3d_Drawer> & ,  const opencascade::handle<Graphic3d_Camera> &  ) const>(&StdPrs_HLRShape::ComputeHLR),
             R"#(Compute presentation for specified shape.)#"  , py::arg("thePrs"),  py::arg("theShape"),  py::arg("theDrawer"),  py::arg("theProjector")
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&StdPrs_HLRShape::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&StdPrs_HLRShape::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (StdPrs_HLRShape::*)() const) static_cast<const opencascade::handle<Standard_Type> & (StdPrs_HLRShape::*)() const>(&StdPrs_HLRShape::DynamicType),
             R"#(None)#"
             
         )
;

// functions
// ./opencascade/StdPrs_BRepFont.hxx
// ./opencascade/StdPrs_BRepTextBuilder.hxx
// ./opencascade/StdPrs_BndBox.hxx
// ./opencascade/StdPrs_Curve.hxx
// ./opencascade/StdPrs_DeflectionCurve.hxx
// ./opencascade/StdPrs_HLRPolyShape.hxx
// ./opencascade/StdPrs_HLRShape.hxx
// ./opencascade/StdPrs_HLRShapeI.hxx
// ./opencascade/StdPrs_HLRToolShape.hxx
// ./opencascade/StdPrs_Isolines.hxx
// ./opencascade/StdPrs_Plane.hxx
// ./opencascade/StdPrs_Point.hxx
// ./opencascade/StdPrs_PoleCurve.hxx
// ./opencascade/StdPrs_ShadedShape.hxx
// ./opencascade/StdPrs_ShadedSurface.hxx
// ./opencascade/StdPrs_ShapeTool.hxx
// ./opencascade/StdPrs_ToolPoint.hxx
// ./opencascade/StdPrs_ToolRFace.hxx
// ./opencascade/StdPrs_ToolTriangulatedShape.hxx
// ./opencascade/StdPrs_ToolVertex.hxx
// ./opencascade/StdPrs_Vertex.hxx
// ./opencascade/StdPrs_Volume.hxx
// ./opencascade/StdPrs_WFDeflectionRestrictedFace.hxx
// ./opencascade/StdPrs_WFDeflectionSurface.hxx
// ./opencascade/StdPrs_WFPoleSurface.hxx
// ./opencascade/StdPrs_WFRestrictedFace.hxx
// ./opencascade/StdPrs_WFShape.hxx
// ./opencascade/StdPrs_WFSurface.hxx

// Additional functions

// operators

// register typdefs
    register_template_Prs3d_Point<opencascade::handle<Geom_Point>, StdPrs_ToolPoint>(m,"StdPrs_Point");
    register_template_Prs3d_Point<TopoDS_Vertex, StdPrs_ToolVertex>(m,"StdPrs_Vertex");


// exceptions

// user-defined post-inclusion per module in the body

};

// user-defined post-inclusion per module

// user-defined post