1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
|
// std lib related includes
#include <tuple>
// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybind11;
// Standard Handle
#include <Standard_Handle.hxx>
// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <TopoDS_Shape.hxx>
#include <Prs3d_Drawer.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_Data.hxx>
#include <TopoDS_Shape.hxx>
#include <HLRAlgo_Projector.hxx>
#include <BRepAdaptor_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Graphic3d_ArrayOfSegments.hxx>
#include <Graphic3d_ArrayOfTriangles.hxx>
#include <TopoDS_Shape.hxx>
#include <BRep_Builder.hxx>
#include <TopoDS_Compound.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Bnd_Box.hxx>
#include <Poly_Triangulation.hxx>
#include <Poly_PolygonOnTriangulation.hxx>
#include <Poly_Polygon3D.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_Point.hxx>
#include <TopoDS_Edge.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <TopoDS_Shape.hxx>
#include <Prs3d_Drawer.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <TopoDS_Vertex.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Graphic3d_ArrayOfPoints.hxx>
#include <Adaptor2d_Curve2d.hxx>
// module includes
#include <StdPrs_BndBox.hxx>
#include <StdPrs_BRepFont.hxx>
#include <StdPrs_BRepTextBuilder.hxx>
#include <StdPrs_Curve.hxx>
#include <StdPrs_DeflectionCurve.hxx>
#include <StdPrs_HLRPolyShape.hxx>
#include <StdPrs_HLRShape.hxx>
#include <StdPrs_HLRShapeI.hxx>
#include <StdPrs_HLRToolShape.hxx>
#include <StdPrs_Isolines.hxx>
#include <StdPrs_Plane.hxx>
#include <StdPrs_Point.hxx>
#include <StdPrs_PoleCurve.hxx>
#include <StdPrs_ShadedShape.hxx>
#include <StdPrs_ShadedSurface.hxx>
#include <StdPrs_ShapeTool.hxx>
#include <StdPrs_ToolPoint.hxx>
#include <StdPrs_ToolRFace.hxx>
#include <StdPrs_ToolTriangulatedShape.hxx>
#include <StdPrs_ToolVertex.hxx>
#include <StdPrs_Vertex.hxx>
#include <StdPrs_Volume.hxx>
#include <StdPrs_WFDeflectionRestrictedFace.hxx>
#include <StdPrs_WFDeflectionSurface.hxx>
#include <StdPrs_WFPoleSurface.hxx>
#include <StdPrs_WFRestrictedFace.hxx>
#include <StdPrs_WFShape.hxx>
#include <StdPrs_WFSurface.hxx>
// template related includes
// ./opencascade/StdPrs_Point.hxx
#include "Prs3d_tmpl.hxx"
// ./opencascade/StdPrs_Vertex.hxx
#include "Prs3d_tmpl.hxx"
// user-defined pre
#include "OCP_specific.inc"
// user-defined inclusion per module
// Module definiiton
void register_StdPrs(py::module &main_module) {
py::module m = static_cast<py::module>(main_module.attr("StdPrs"));
py::object klass;
//Python trampoline classes
class Py_StdPrs_HLRShapeI : public StdPrs_HLRShapeI{
public:
using StdPrs_HLRShapeI::StdPrs_HLRShapeI;
// public pure virtual
void ComputeHLR(const opencascade::handle<Prs3d_Presentation> & thePrs,const TopoDS_Shape & theShape,const opencascade::handle<Prs3d_Drawer> & theDrawer,const opencascade::handle<Graphic3d_Camera> & theProjector) const override { PYBIND11_OVERLOAD_PURE(void,StdPrs_HLRShapeI,ComputeHLR,thePrs,theShape,theDrawer,theProjector) };
// protected pure virtual
// private pure virtual
};
// classes
// Class StdPrs_BRepFont from ./opencascade/StdPrs_BRepFont.hxx
klass = m.attr("StdPrs_BRepFont");
// nested enums
static_cast<py::class_<StdPrs_BRepFont ,opencascade::handle<StdPrs_BRepFont> , Standard_Transient >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const NCollection_Utf8String &,const Standard_Real,const Standard_Integer >() , py::arg("theFontPath"), py::arg("theSize"), py::arg("theFaceId")=static_cast<const Standard_Integer>(0) )
.def(py::init< const NCollection_Utf8String &,const Font_FontAspect,const Standard_Real,const Font_StrictLevel >() , py::arg("theFontName"), py::arg("theFontAspect"), py::arg("theSize"), py::arg("theStrictLevel")=static_cast<const Font_StrictLevel>(Font_StrictLevel_Any) )
// custom constructors
// methods
.def("Release",
(void (StdPrs_BRepFont::*)() ) static_cast<void (StdPrs_BRepFont::*)() >(&StdPrs_BRepFont::Release),
R"#(Release currently loaded font.)#"
)
.def("Init",
(bool (StdPrs_BRepFont::*)( const NCollection_Utf8String & , const Standard_Real , const Standard_Integer ) ) static_cast<bool (StdPrs_BRepFont::*)( const NCollection_Utf8String & , const Standard_Real , const Standard_Integer ) >(&StdPrs_BRepFont::Init),
R"#(Initialize the font.)#" , py::arg("theFontPath"), py::arg("theSize"), py::arg("theFaceId")
)
.def("FindAndInit",
(bool (StdPrs_BRepFont::*)( const TCollection_AsciiString & , const Font_FontAspect , const Standard_Real , const Font_StrictLevel ) ) static_cast<bool (StdPrs_BRepFont::*)( const TCollection_AsciiString & , const Font_FontAspect , const Standard_Real , const Font_StrictLevel ) >(&StdPrs_BRepFont::FindAndInit),
R"#(Find (using Font_FontMgr) and initialize the font from the given name. Please take into account that size is specified NOT in typography points (pt.). If you need to specify size in points, value should be converted. Formula for pt. -> m conversion: aSizeMeters = 0.0254 * theSizePt / 72.0)#" , py::arg("theFontName"), py::arg("theFontAspect"), py::arg("theSize"), py::arg("theStrictLevel")=static_cast<const Font_StrictLevel>(Font_StrictLevel_Any)
)
.def("RenderGlyph",
(TopoDS_Shape (StdPrs_BRepFont::*)( const Standard_Utf32Char & ) ) static_cast<TopoDS_Shape (StdPrs_BRepFont::*)( const Standard_Utf32Char & ) >(&StdPrs_BRepFont::RenderGlyph),
R"#(Render single glyph as TopoDS_Shape.)#" , py::arg("theChar")
)
.def("SetCompositeCurveMode",
(void (StdPrs_BRepFont::*)( const Standard_Boolean ) ) static_cast<void (StdPrs_BRepFont::*)( const Standard_Boolean ) >(&StdPrs_BRepFont::SetCompositeCurveMode),
R"#(Setup glyph geometry construction mode. By default algorithm creates independent TopoDS_Edge for each original curve in the glyph (line segment or Bezie curve). Algorithm might optionally create composite BSpline curve for each contour which reduces memory footprint but limits curve class to C0. Notice that altering this flag clears currently accumulated cache!)#" , py::arg("theToConcatenate")
)
.def("SetWidthScaling",
(void (StdPrs_BRepFont::*)( const float ) ) static_cast<void (StdPrs_BRepFont::*)( const float ) >(&StdPrs_BRepFont::SetWidthScaling),
R"#(Setup glyph scaling along X-axis. By default glyphs are not scaled (scaling factor = 1.0))#" , py::arg("theScaleFactor")
)
.def("Ascender",
(Standard_Real (StdPrs_BRepFont::*)() const) static_cast<Standard_Real (StdPrs_BRepFont::*)() const>(&StdPrs_BRepFont::Ascender),
R"#(Returns vertical distance from the horizontal baseline to the highest character coordinate.)#"
)
.def("Descender",
(Standard_Real (StdPrs_BRepFont::*)() const) static_cast<Standard_Real (StdPrs_BRepFont::*)() const>(&StdPrs_BRepFont::Descender),
R"#(Returns vertical distance from the horizontal baseline to the lowest character coordinate.)#"
)
.def("LineSpacing",
(Standard_Real (StdPrs_BRepFont::*)() const) static_cast<Standard_Real (StdPrs_BRepFont::*)() const>(&StdPrs_BRepFont::LineSpacing),
R"#(Returns default line spacing (the baseline-to-baseline distance).)#"
)
.def("PointSize",
(Standard_Real (StdPrs_BRepFont::*)() const) static_cast<Standard_Real (StdPrs_BRepFont::*)() const>(&StdPrs_BRepFont::PointSize),
R"#(Configured point size)#"
)
.def("AdvanceX",
(Standard_Real (StdPrs_BRepFont::*)( const Standard_Utf32Char ) ) static_cast<Standard_Real (StdPrs_BRepFont::*)( const Standard_Utf32Char ) >(&StdPrs_BRepFont::AdvanceX),
R"#(Compute advance to the next character with kerning applied when applicable. Assuming text rendered horizontally.)#" , py::arg("theUCharNext")
)
.def("AdvanceX",
(Standard_Real (StdPrs_BRepFont::*)( const Standard_Utf32Char , const Standard_Utf32Char ) ) static_cast<Standard_Real (StdPrs_BRepFont::*)( const Standard_Utf32Char , const Standard_Utf32Char ) >(&StdPrs_BRepFont::AdvanceX),
R"#(Compute advance to the next character with kerning applied when applicable. Assuming text rendered horizontally.)#" , py::arg("theUChar"), py::arg("theUCharNext")
)
.def("AdvanceY",
(Standard_Real (StdPrs_BRepFont::*)( const Standard_Utf32Char ) ) static_cast<Standard_Real (StdPrs_BRepFont::*)( const Standard_Utf32Char ) >(&StdPrs_BRepFont::AdvanceY),
R"#(Compute advance to the next character with kerning applied when applicable. Assuming text rendered vertically.)#" , py::arg("theUCharNext")
)
.def("AdvanceY",
(Standard_Real (StdPrs_BRepFont::*)( const Standard_Utf32Char , const Standard_Utf32Char ) ) static_cast<Standard_Real (StdPrs_BRepFont::*)( const Standard_Utf32Char , const Standard_Utf32Char ) >(&StdPrs_BRepFont::AdvanceY),
R"#(Compute advance to the next character with kerning applied when applicable. Assuming text rendered vertically.)#" , py::arg("theUChar"), py::arg("theUCharNext")
)
.def("Scale",
(Standard_Real (StdPrs_BRepFont::*)() const) static_cast<Standard_Real (StdPrs_BRepFont::*)() const>(&StdPrs_BRepFont::Scale),
R"#(Returns scaling factor for current font size.)#"
)
.def("Init",
(bool (StdPrs_BRepFont::*)( const NCollection_Utf8String & , const Font_FontAspect , const Standard_Real ) ) static_cast<bool (StdPrs_BRepFont::*)( const NCollection_Utf8String & , const Font_FontAspect , const Standard_Real ) >(&StdPrs_BRepFont::Init),
R"#(Find (using Font_FontMgr) and initialize the font from the given name. Alias for FindAndInit() for backward compatibility.)#" , py::arg("theFontName"), py::arg("theFontAspect"), py::arg("theSize")
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&StdPrs_BRepFont::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&StdPrs_BRepFont::get_type_descriptor),
R"#(None)#"
)
.def_static("FindAndCreate_s",
(opencascade::handle<StdPrs_BRepFont> (*)( const TCollection_AsciiString & , const Font_FontAspect , const Standard_Real , const Font_StrictLevel ) ) static_cast<opencascade::handle<StdPrs_BRepFont> (*)( const TCollection_AsciiString & , const Font_FontAspect , const Standard_Real , const Font_StrictLevel ) >(&StdPrs_BRepFont::FindAndCreate),
R"#(Find the font Initialize the font.)#" , py::arg("theFontName"), py::arg("theFontAspect"), py::arg("theSize"), py::arg("theStrictLevel")=static_cast<const Font_StrictLevel>(Font_StrictLevel_Any)
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (StdPrs_BRepFont::*)() const) static_cast<const opencascade::handle<Standard_Type> & (StdPrs_BRepFont::*)() const>(&StdPrs_BRepFont::DynamicType),
R"#(None)#"
)
.def("FTFont",
(const opencascade::handle<Font_FTFont> & (StdPrs_BRepFont::*)() const) static_cast<const opencascade::handle<Font_FTFont> & (StdPrs_BRepFont::*)() const>(&StdPrs_BRepFont::FTFont),
R"#(Return wrapper over FreeType font.)#"
)
.def("Mutex",
(Standard_Mutex & (StdPrs_BRepFont::*)() ) static_cast<Standard_Mutex & (StdPrs_BRepFont::*)() >(&StdPrs_BRepFont::Mutex),
R"#(Returns mutex.)#"
, py::return_value_policy::reference_internal
)
;
// Class StdPrs_BRepTextBuilder from ./opencascade/StdPrs_BRepTextBuilder.hxx
klass = m.attr("StdPrs_BRepTextBuilder");
// default constructor
register_default_constructor<StdPrs_BRepTextBuilder , shared_ptr<StdPrs_BRepTextBuilder>>(m,"StdPrs_BRepTextBuilder");
// nested enums
static_cast<py::class_<StdPrs_BRepTextBuilder , shared_ptr<StdPrs_BRepTextBuilder> >>(klass)
// constructors
// custom constructors
// methods
.def("Perform",
(TopoDS_Shape (StdPrs_BRepTextBuilder::*)( StdPrs_BRepFont & , const opencascade::handle<Font_TextFormatter> & , const gp_Ax3 & ) ) static_cast<TopoDS_Shape (StdPrs_BRepTextBuilder::*)( StdPrs_BRepFont & , const opencascade::handle<Font_TextFormatter> & , const gp_Ax3 & ) >(&StdPrs_BRepTextBuilder::Perform),
R"#(Render text as BRep shape.)#" , py::arg("theFont"), py::arg("theFormatter"), py::arg("thePenLoc")=static_cast<const gp_Ax3 &>(gp_Ax3 ( ))
)
.def("Perform",
(TopoDS_Shape (StdPrs_BRepTextBuilder::*)( StdPrs_BRepFont & , const NCollection_Utf8String & , const gp_Ax3 & , const Graphic3d_HorizontalTextAlignment , const Graphic3d_VerticalTextAlignment ) ) static_cast<TopoDS_Shape (StdPrs_BRepTextBuilder::*)( StdPrs_BRepFont & , const NCollection_Utf8String & , const gp_Ax3 & , const Graphic3d_HorizontalTextAlignment , const Graphic3d_VerticalTextAlignment ) >(&StdPrs_BRepTextBuilder::Perform),
R"#(Render text as BRep shape.)#" , py::arg("theFont"), py::arg("theString"), py::arg("thePenLoc")=static_cast<const gp_Ax3 &>(gp_Ax3 ( )), py::arg("theHAlign")=static_cast<const Graphic3d_HorizontalTextAlignment>(Graphic3d_HTA_LEFT), py::arg("theVAlign")=static_cast<const Graphic3d_VerticalTextAlignment>(Graphic3d_VTA_BOTTOM)
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class StdPrs_Curve from ./opencascade/StdPrs_Curve.hxx
klass = m.attr("StdPrs_Curve");
// default constructor
register_default_constructor<StdPrs_Curve , shared_ptr<StdPrs_Curve>>(m,"StdPrs_Curve");
// nested enums
static_cast<py::class_<StdPrs_Curve , shared_ptr<StdPrs_Curve> , Prs3d_Root >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("Add_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , const Adaptor3d_Curve & , const opencascade::handle<Prs3d_Drawer> & , const Standard_Boolean ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , const Adaptor3d_Curve & , const opencascade::handle<Prs3d_Drawer> & , const Standard_Boolean ) >(&StdPrs_Curve::Add),
R"#(Adds to the presentation aPresentation the drawing of the curve aCurve. The aspect is defined by LineAspect in aDrawer. If drawCurve equals Standard_False the curve will not be displayed, it is used if the curve is a part of some shape and PrimitiveArray visualization approach is activated (it is activated by default).)#" , py::arg("aPresentation"), py::arg("aCurve"), py::arg("aDrawer"), py::arg("drawCurve")=static_cast<const Standard_Boolean>(Standard_True)
)
.def_static("Add_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , const Adaptor3d_Curve & , const Standard_Real , const Standard_Real , const opencascade::handle<Prs3d_Drawer> & , const Standard_Boolean ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , const Adaptor3d_Curve & , const Standard_Real , const Standard_Real , const opencascade::handle<Prs3d_Drawer> & , const Standard_Boolean ) >(&StdPrs_Curve::Add),
R"#(Adds to the presentation aPresentation the drawing of the curve aCurve. The aspect is defined by LineAspect in aDrawer. The drawing will be limited between the points of parameter U1 and U2. If drawCurve equals Standard_False the curve will not be displayed, it is used if the curve is a part of some shape and PrimitiveArray visualization approach is activated (it is activated by default).)#" , py::arg("aPresentation"), py::arg("aCurve"), py::arg("U1"), py::arg("U2"), py::arg("aDrawer"), py::arg("drawCurve")=static_cast<const Standard_Boolean>(Standard_True)
)
.def_static("Add_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , const Adaptor3d_Curve & , const opencascade::handle<Prs3d_Drawer> & , NCollection_Sequence<gp_Pnt> & , const Standard_Boolean ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , const Adaptor3d_Curve & , const opencascade::handle<Prs3d_Drawer> & , NCollection_Sequence<gp_Pnt> & , const Standard_Boolean ) >(&StdPrs_Curve::Add),
R"#(adds to the presentation aPresentation the drawing of the curve aCurve. The aspect is the current aspect. aDeflection is used in the circle case. Points give a sequence of curve points. If drawCurve equals Standard_False the curve will not be displayed, it is used if the curve is a part of some shape and PrimitiveArray visualization approach is activated (it is activated by default).)#" , py::arg("aPresentation"), py::arg("aCurve"), py::arg("aDrawer"), py::arg("Points"), py::arg("drawCurve")=static_cast<const Standard_Boolean>(Standard_True)
)
.def_static("Add_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , const Adaptor3d_Curve & , const Standard_Real , const Standard_Real , NCollection_Sequence<gp_Pnt> & , const Standard_Integer , const Standard_Boolean ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , const Adaptor3d_Curve & , const Standard_Real , const Standard_Real , NCollection_Sequence<gp_Pnt> & , const Standard_Integer , const Standard_Boolean ) >(&StdPrs_Curve::Add),
R"#(adds to the presentation aPresentation the drawing of the curve aCurve. The aspect is the current aspect. The drawing will be limited between the points of parameter U1 and U2. aDeflection is used in the circle case. Points give a sequence of curve points. If drawCurve equals Standard_False the curve will not be displayed, it is used if the curve is a part of some shape and PrimitiveArray visualization approach is activated (it is activated by default).)#" , py::arg("aPresentation"), py::arg("aCurve"), py::arg("U1"), py::arg("U2"), py::arg("Points"), py::arg("aNbPoints")=static_cast<const Standard_Integer>(30), py::arg("drawCurve")=static_cast<const Standard_Boolean>(Standard_True)
)
.def_static("Match_s",
(Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Adaptor3d_Curve & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Adaptor3d_Curve & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_Curve::Match),
R"#(returns true if the distance between the point (X,Y,Z) and the drawing of the curve is less than aDistance.)#" , py::arg("X"), py::arg("Y"), py::arg("Z"), py::arg("aDistance"), py::arg("aCurve"), py::arg("aDrawer")
)
.def_static("Match_s",
(Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Adaptor3d_Curve & , const Standard_Real , const Standard_Real , const Standard_Integer ) ) static_cast<Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Adaptor3d_Curve & , const Standard_Real , const Standard_Real , const Standard_Integer ) >(&StdPrs_Curve::Match),
R"#(returns true if the distance between the point (X,Y,Z) and the drawing of the curve is less than aDistance.)#" , py::arg("X"), py::arg("Y"), py::arg("Z"), py::arg("aDistance"), py::arg("aCurve"), py::arg("aDeflection"), py::arg("aLimit"), py::arg("aNbPoints")
)
.def_static("Match_s",
(Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Adaptor3d_Curve & , const Standard_Real , const Standard_Real , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Adaptor3d_Curve & , const Standard_Real , const Standard_Real , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_Curve::Match),
R"#(returns true if the distance between the point (X,Y,Z) and the drawing of the curve aCurve is less than aDistance. The drawing is considered between the points of parameter U1 and U2;)#" , py::arg("X"), py::arg("Y"), py::arg("Z"), py::arg("aDistance"), py::arg("aCurve"), py::arg("U1"), py::arg("U2"), py::arg("aDrawer")
)
.def_static("Match_s",
(Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Adaptor3d_Curve & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Integer ) ) static_cast<Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Adaptor3d_Curve & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Integer ) >(&StdPrs_Curve::Match),
R"#(returns true if the distance between the point (X,Y,Z) and the drawing of the curve aCurve is less than aDistance. The drawing is considered between the points of parameter U1 and U2;)#" , py::arg("X"), py::arg("Y"), py::arg("Z"), py::arg("aDistance"), py::arg("aCurve"), py::arg("U1"), py::arg("U2"), py::arg("aDeflection"), py::arg("aNbPoints")
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class StdPrs_DeflectionCurve from ./opencascade/StdPrs_DeflectionCurve.hxx
klass = m.attr("StdPrs_DeflectionCurve");
// default constructor
register_default_constructor<StdPrs_DeflectionCurve , shared_ptr<StdPrs_DeflectionCurve>>(m,"StdPrs_DeflectionCurve");
// nested enums
static_cast<py::class_<StdPrs_DeflectionCurve , shared_ptr<StdPrs_DeflectionCurve> , Prs3d_Root >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("Add_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , Adaptor3d_Curve & , const opencascade::handle<Prs3d_Drawer> & , const Standard_Boolean ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , Adaptor3d_Curve & , const opencascade::handle<Prs3d_Drawer> & , const Standard_Boolean ) >(&StdPrs_DeflectionCurve::Add),
R"#(adds to the presentation aPresentation the drawing of the curve aCurve with respect to the maximal chordial deviation defined by the drawer aDrawer. The aspect is defined by LineAspect in aDrawer. If drawCurve equals Standard_False the curve will not be displayed, it is used if the curve is a part of some shape and PrimitiveArray visualization approach is activated (it is activated by default).)#" , py::arg("aPresentation"), py::arg("aCurve"), py::arg("aDrawer"), py::arg("drawCurve")=static_cast<const Standard_Boolean>(Standard_True)
)
.def_static("Add_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , Adaptor3d_Curve & , const Standard_Real , const Standard_Real , const opencascade::handle<Prs3d_Drawer> & , const Standard_Boolean ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , Adaptor3d_Curve & , const Standard_Real , const Standard_Real , const opencascade::handle<Prs3d_Drawer> & , const Standard_Boolean ) >(&StdPrs_DeflectionCurve::Add),
R"#(adds to the presentation aPresentation the drawing of the curve aCurve with respect to the maximal chordial deviation defined by the drawer aDrawer. The aspect is defined by LineAspect in aDrawer. The drawing will be limited between the points of parameter U1 and U2. If drawCurve equals Standard_False the curve will not be displayed, it is used if the curve is a part of some shape and PrimitiveArray visualization approach is activated (it is activated by default).)#" , py::arg("aPresentation"), py::arg("aCurve"), py::arg("U1"), py::arg("U2"), py::arg("aDrawer"), py::arg("drawCurve")=static_cast<const Standard_Boolean>(Standard_True)
)
.def_static("Add_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , Adaptor3d_Curve & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Boolean ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , Adaptor3d_Curve & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Boolean ) >(&StdPrs_DeflectionCurve::Add),
R"#(adds to the presentation aPresentation the drawing of the curve aCurve with respect to the maximal chordial deviation aDeflection. The aspect is the current aspect If drawCurve equals Standard_False the curve will not be displayed, it is used if the curve is a part of some shape and PrimitiveArray visualization approach is activated (it is activated by default).)#" , py::arg("aPresentation"), py::arg("aCurve"), py::arg("aDeflection"), py::arg("aLimit"), py::arg("anAngle")=static_cast<const Standard_Real>(0.2), py::arg("drawCurve")=static_cast<const Standard_Boolean>(Standard_True)
)
.def_static("Add_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , Adaptor3d_Curve & , const Standard_Real , const opencascade::handle<Prs3d_Drawer> & , NCollection_Sequence<gp_Pnt> & , const Standard_Boolean ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , Adaptor3d_Curve & , const Standard_Real , const opencascade::handle<Prs3d_Drawer> & , NCollection_Sequence<gp_Pnt> & , const Standard_Boolean ) >(&StdPrs_DeflectionCurve::Add),
R"#(adds to the presentation aPresentation the drawing of the curve aCurve with respect to the maximal chordial deviation aDeflection. The aspect is the current aspect Points give a sequence of curve points. If drawCurve equals Standard_False the curve will not be displayed, it is used if the curve is a part of some shape and PrimitiveArray visualization approach is activated (it is activated by default).)#" , py::arg("aPresentation"), py::arg("aCurve"), py::arg("aDeflection"), py::arg("aDrawer"), py::arg("Points"), py::arg("drawCurve")=static_cast<const Standard_Boolean>(Standard_True)
)
.def_static("Add_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , Adaptor3d_Curve & , const Standard_Real , const Standard_Real , const Standard_Real , NCollection_Sequence<gp_Pnt> & , const Standard_Real , const Standard_Boolean ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , Adaptor3d_Curve & , const Standard_Real , const Standard_Real , const Standard_Real , NCollection_Sequence<gp_Pnt> & , const Standard_Real , const Standard_Boolean ) >(&StdPrs_DeflectionCurve::Add),
R"#(adds to the presentation aPresentation the drawing of the curve aCurve with respect to the maximal chordial deviation aDeflection. The aspect is the current aspect The drawing will be limited between the points of parameter U1 and U2. Points give a sequence of curve points. If drawCurve equals Standard_False the curve will not be displayed, it is used if the curve is a part of some shape and PrimitiveArray visualization approach is activated (it is activated by default).)#" , py::arg("aPresentation"), py::arg("aCurve"), py::arg("U1"), py::arg("U2"), py::arg("aDeflection"), py::arg("Points"), py::arg("anAngle")=static_cast<const Standard_Real>(0.2), py::arg("drawCurve")=static_cast<const Standard_Boolean>(Standard_True)
)
.def_static("Match_s",
(Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Adaptor3d_Curve & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Adaptor3d_Curve & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_DeflectionCurve::Match),
R"#(returns true if the distance between the point (X,Y,Z) and the drawing of the curve aCurve with respect of the maximal chordial deviation defined by the drawer aDrawer is less then aDistance.)#" , py::arg("X"), py::arg("Y"), py::arg("Z"), py::arg("aDistance"), py::arg("aCurve"), py::arg("aDrawer")
)
.def_static("Match_s",
(Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Adaptor3d_Curve & , const Standard_Real , const Standard_Real , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Adaptor3d_Curve & , const Standard_Real , const Standard_Real , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_DeflectionCurve::Match),
R"#(returns true if the distance between the point (X,Y,Z) and the drawing of the curve aCurve with respect of the maximal chordial deviation defined by the drawer aDrawer is less then aDistance. The drawing is considered between the points of parameter U1 and U2;)#" , py::arg("X"), py::arg("Y"), py::arg("Z"), py::arg("aDistance"), py::arg("aCurve"), py::arg("U1"), py::arg("U2"), py::arg("aDrawer")
)
.def_static("Match_s",
(Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Adaptor3d_Curve & , const Standard_Real , const Standard_Real , const Standard_Real ) ) static_cast<Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Adaptor3d_Curve & , const Standard_Real , const Standard_Real , const Standard_Real ) >(&StdPrs_DeflectionCurve::Match),
R"#(Returns true if the distance between the point (theX, theY, theZ) and the drawing with respect of the maximal chordial deviation theDeflection is less then theDistance.)#" , py::arg("theX"), py::arg("theY"), py::arg("theZ"), py::arg("theDistance"), py::arg("theCurve"), py::arg("theDeflection"), py::arg("theLimit"), py::arg("theAngle")
)
.def_static("Match_s",
(Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Adaptor3d_Curve & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real ) ) static_cast<Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Adaptor3d_Curve & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real ) >(&StdPrs_DeflectionCurve::Match),
R"#(Returns true if the distance between the point (theX, theY, theZ) and the drawing with respect of the maximal chordial deviation theDeflection is less then theDistance. The drawing is considered between the points of parameter theU1 and theU2.)#" , py::arg("theX"), py::arg("theY"), py::arg("theZ"), py::arg("theDistance"), py::arg("theCurve"), py::arg("theU1"), py::arg("theU2"), py::arg("theDeflection"), py::arg("theAngle")
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class StdPrs_HLRShapeI from ./opencascade/StdPrs_HLRShapeI.hxx
klass = m.attr("StdPrs_HLRShapeI");
// nested enums
static_cast<py::class_<StdPrs_HLRShapeI ,opencascade::handle<StdPrs_HLRShapeI> ,Py_StdPrs_HLRShapeI , Standard_Transient >>(klass)
// constructors
// custom constructors
// methods
.def("ComputeHLR",
(void (StdPrs_HLRShapeI::*)( const opencascade::handle<Prs3d_Presentation> & , const TopoDS_Shape & , const opencascade::handle<Prs3d_Drawer> & , const opencascade::handle<Graphic3d_Camera> & ) const) static_cast<void (StdPrs_HLRShapeI::*)( const opencascade::handle<Prs3d_Presentation> & , const TopoDS_Shape & , const opencascade::handle<Prs3d_Drawer> & , const opencascade::handle<Graphic3d_Camera> & ) const>(&StdPrs_HLRShapeI::ComputeHLR),
R"#(Compute presentation for specified shape.)#" , py::arg("thePrs"), py::arg("theShape"), py::arg("theDrawer"), py::arg("theProjector")
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&StdPrs_HLRShapeI::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&StdPrs_HLRShapeI::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (StdPrs_HLRShapeI::*)() const) static_cast<const opencascade::handle<Standard_Type> & (StdPrs_HLRShapeI::*)() const>(&StdPrs_HLRShapeI::DynamicType),
R"#(None)#"
)
;
// Class StdPrs_HLRToolShape from ./opencascade/StdPrs_HLRToolShape.hxx
klass = m.attr("StdPrs_HLRToolShape");
// nested enums
static_cast<py::class_<StdPrs_HLRToolShape , shared_ptr<StdPrs_HLRToolShape> >>(klass)
// constructors
.def(py::init< const TopoDS_Shape &,const HLRAlgo_Projector & >() , py::arg("TheShape"), py::arg("TheProjector") )
// custom constructors
// methods
.def("NbEdges",
(Standard_Integer (StdPrs_HLRToolShape::*)() const) static_cast<Standard_Integer (StdPrs_HLRToolShape::*)() const>(&StdPrs_HLRToolShape::NbEdges),
R"#(None)#"
)
.def("InitVisible",
(void (StdPrs_HLRToolShape::*)( const Standard_Integer ) ) static_cast<void (StdPrs_HLRToolShape::*)( const Standard_Integer ) >(&StdPrs_HLRToolShape::InitVisible),
R"#(None)#" , py::arg("EdgeNumber")
)
.def("MoreVisible",
(Standard_Boolean (StdPrs_HLRToolShape::*)() const) static_cast<Standard_Boolean (StdPrs_HLRToolShape::*)() const>(&StdPrs_HLRToolShape::MoreVisible),
R"#(None)#"
)
.def("NextVisible",
(void (StdPrs_HLRToolShape::*)() ) static_cast<void (StdPrs_HLRToolShape::*)() >(&StdPrs_HLRToolShape::NextVisible),
R"#(None)#"
)
.def("InitHidden",
(void (StdPrs_HLRToolShape::*)( const Standard_Integer ) ) static_cast<void (StdPrs_HLRToolShape::*)( const Standard_Integer ) >(&StdPrs_HLRToolShape::InitHidden),
R"#(None)#" , py::arg("EdgeNumber")
)
.def("MoreHidden",
(Standard_Boolean (StdPrs_HLRToolShape::*)() const) static_cast<Standard_Boolean (StdPrs_HLRToolShape::*)() const>(&StdPrs_HLRToolShape::MoreHidden),
R"#(None)#"
)
.def("NextHidden",
(void (StdPrs_HLRToolShape::*)() ) static_cast<void (StdPrs_HLRToolShape::*)() >(&StdPrs_HLRToolShape::NextHidden),
R"#(None)#"
)
// methods using call by reference i.s.o. return
.def("Visible",
[]( StdPrs_HLRToolShape &self , BRepAdaptor_Curve & TheEdge ){
Standard_Real U1;
Standard_Real U2;
self.Visible(TheEdge,U1,U2);
return std::make_tuple(U1,U2); },
R"#(None)#" , py::arg("TheEdge")
)
.def("Hidden",
[]( StdPrs_HLRToolShape &self , BRepAdaptor_Curve & TheEdge ){
Standard_Real U1;
Standard_Real U2;
self.Hidden(TheEdge,U1,U2);
return std::make_tuple(U1,U2); },
R"#(None)#" , py::arg("TheEdge")
)
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class StdPrs_Isolines from ./opencascade/StdPrs_Isolines.hxx
klass = m.attr("StdPrs_Isolines");
// default constructor
register_default_constructor<StdPrs_Isolines , shared_ptr<StdPrs_Isolines>>(m,"StdPrs_Isolines");
// nested enums
static_cast<py::class_<StdPrs_Isolines , shared_ptr<StdPrs_Isolines> , Prs3d_Root >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("Add_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , const TopoDS_Face & , const opencascade::handle<Prs3d_Drawer> & , const Standard_Real ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , const TopoDS_Face & , const opencascade::handle<Prs3d_Drawer> & , const Standard_Real ) >(&StdPrs_Isolines::Add),
R"#(Computes isolines presentation for a TopoDS face. This method chooses proper version of isoline builder algorithm : on triangulation or surface depending on the flag passed from Prs3d_Drawer attributes. This method is a default way to display isolines for a given TopoDS face.)#" , py::arg("thePresentation"), py::arg("theFace"), py::arg("theDrawer"), py::arg("theDeflection")
)
.def_static("Add_s",
(void (*)( const TopoDS_Face & , const opencascade::handle<Prs3d_Drawer> & , const Standard_Real , NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> & , NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> & ) ) static_cast<void (*)( const TopoDS_Face & , const opencascade::handle<Prs3d_Drawer> & , const Standard_Real , NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> & , NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> & ) >(&StdPrs_Isolines::Add),
R"#(Computes isolines presentation for a TopoDS face. This method chooses proper version of isoline builder algorithm : on triangulation or surface depending on the flag passed from Prs3d_Drawer attributes. This method is a default way to display isolines for a given TopoDS face.)#" , py::arg("theFace"), py::arg("theDrawer"), py::arg("theDeflection"), py::arg("theUPolylines"), py::arg("theVPolylines")
)
.def_static("AddOnTriangulation_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , const TopoDS_Face & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , const TopoDS_Face & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_Isolines::AddOnTriangulation),
R"#(Computes isolines on triangulation and adds them to a presentation.)#" , py::arg("thePresentation"), py::arg("theFace"), py::arg("theDrawer")
)
.def_static("AddOnTriangulation_s",
(void (*)( const TopoDS_Face & , const opencascade::handle<Prs3d_Drawer> & , NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> & , NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> & ) ) static_cast<void (*)( const TopoDS_Face & , const opencascade::handle<Prs3d_Drawer> & , NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> & , NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> & ) >(&StdPrs_Isolines::AddOnTriangulation),
R"#(Computes isolines on triangulation.)#" , py::arg("theFace"), py::arg("theDrawer"), py::arg("theUPolylines"), py::arg("theVPolylines")
)
.def_static("AddOnTriangulation_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , const opencascade::handle<Poly_Triangulation> & , const opencascade::handle<Geom_Surface> & , const TopLoc_Location & , const opencascade::handle<Prs3d_Drawer> & , const NCollection_Sequence<Standard_Real> & , const NCollection_Sequence<Standard_Real> & ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , const opencascade::handle<Poly_Triangulation> & , const opencascade::handle<Geom_Surface> & , const TopLoc_Location & , const opencascade::handle<Prs3d_Drawer> & , const NCollection_Sequence<Standard_Real> & , const NCollection_Sequence<Standard_Real> & ) >(&StdPrs_Isolines::AddOnTriangulation),
R"#(Computes isolines on triangulation and adds them to a presentation.)#" , py::arg("thePresentation"), py::arg("theTriangulation"), py::arg("theSurface"), py::arg("theLocation"), py::arg("theDrawer"), py::arg("theUIsoParams"), py::arg("theVIsoParams")
)
.def_static("AddOnSurface_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , const TopoDS_Face & , const opencascade::handle<Prs3d_Drawer> & , const Standard_Real ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , const TopoDS_Face & , const opencascade::handle<Prs3d_Drawer> & , const Standard_Real ) >(&StdPrs_Isolines::AddOnSurface),
R"#(Computes isolines on surface and adds them to presentation.)#" , py::arg("thePresentation"), py::arg("theFace"), py::arg("theDrawer"), py::arg("theDeflection")
)
.def_static("AddOnSurface_s",
(void (*)( const TopoDS_Face & , const opencascade::handle<Prs3d_Drawer> & , const Standard_Real , NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> & , NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> & ) ) static_cast<void (*)( const TopoDS_Face & , const opencascade::handle<Prs3d_Drawer> & , const Standard_Real , NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> & , NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> & ) >(&StdPrs_Isolines::AddOnSurface),
R"#(Computes isolines on surface and adds them to presentation.)#" , py::arg("theFace"), py::arg("theDrawer"), py::arg("theDeflection"), py::arg("theUPolylines"), py::arg("theVPolylines")
)
.def_static("AddOnSurface_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , const opencascade::handle<BRepAdaptor_Surface> & , const opencascade::handle<Prs3d_Drawer> & , const Standard_Real , const NCollection_Sequence<Standard_Real> & , const NCollection_Sequence<Standard_Real> & ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , const opencascade::handle<BRepAdaptor_Surface> & , const opencascade::handle<Prs3d_Drawer> & , const Standard_Real , const NCollection_Sequence<Standard_Real> & , const NCollection_Sequence<Standard_Real> & ) >(&StdPrs_Isolines::AddOnSurface),
R"#(Computes isolines on surface and adds them to presentation.)#" , py::arg("thePresentation"), py::arg("theSurface"), py::arg("theDrawer"), py::arg("theDeflection"), py::arg("theUIsoParams"), py::arg("theVIsoParams")
)
// static methods using call by reference i.s.o. return
.def_static("UVIsoParameters_s",
[](const TopoDS_Face & theFace,const Standard_Integer theNbIsoU,const Standard_Integer theNbIsoV,const Standard_Real theUVLimit,NCollection_Sequence<Standard_Real> & theUIsoParams,NCollection_Sequence<Standard_Real> & theVIsoParams ){
Standard_Real theUmin;
Standard_Real theUmax;
Standard_Real theVmin;
Standard_Real theVmax;
StdPrs_Isolines::UVIsoParameters(theFace,theNbIsoU,theNbIsoV,theUVLimit,theUIsoParams,theVIsoParams,theUmin,theUmax,theVmin,theVmax);
return std::make_tuple(theUmin,theUmax,theVmin,theVmax); },
R"#(Evaluate sequence of parameters for drawing uv isolines for a given face.)#" , py::arg("theFace"), py::arg("theNbIsoU"), py::arg("theNbIsoV"), py::arg("theUVLimit"), py::arg("theUIsoParams"), py::arg("theVIsoParams")
)
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class StdPrs_Plane from ./opencascade/StdPrs_Plane.hxx
klass = m.attr("StdPrs_Plane");
// default constructor
register_default_constructor<StdPrs_Plane , shared_ptr<StdPrs_Plane>>(m,"StdPrs_Plane");
// nested enums
static_cast<py::class_<StdPrs_Plane , shared_ptr<StdPrs_Plane> , Prs3d_Root >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("Add_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , const Adaptor3d_Surface & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , const Adaptor3d_Surface & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_Plane::Add),
R"#(Defines display of infinite planes. The infinite plane aPlane is added to the display aPresentation, and the attributes of the display are defined by the attribute manager aDrawer.)#" , py::arg("aPresentation"), py::arg("aPlane"), py::arg("aDrawer")
)
.def_static("Match_s",
(Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Adaptor3d_Surface & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Adaptor3d_Surface & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_Plane::Match),
R"#(returns true if the distance between the point (X,Y,Z) and the plane is less than aDistance.)#" , py::arg("X"), py::arg("Y"), py::arg("Z"), py::arg("aDistance"), py::arg("aPlane"), py::arg("aDrawer")
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class StdPrs_PoleCurve from ./opencascade/StdPrs_PoleCurve.hxx
klass = m.attr("StdPrs_PoleCurve");
// default constructor
register_default_constructor<StdPrs_PoleCurve , shared_ptr<StdPrs_PoleCurve>>(m,"StdPrs_PoleCurve");
// nested enums
static_cast<py::class_<StdPrs_PoleCurve , shared_ptr<StdPrs_PoleCurve> , Prs3d_Root >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("Add_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , const Adaptor3d_Curve & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , const Adaptor3d_Curve & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_PoleCurve::Add),
R"#(Defines display of BSpline and Bezier curves. Adds the 3D curve aCurve to the StdPrs_PoleCurve algorithm. This shape is found in the presentation object aPresentation, and its display attributes are set in the attribute manager aDrawer. The curve object from Adaptor3d provides data from a Geom curve. This makes it possible to use the surface in a geometric algorithm.)#" , py::arg("aPresentation"), py::arg("aCurve"), py::arg("aDrawer")
)
.def_static("Match_s",
(Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Adaptor3d_Curve & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Adaptor3d_Curve & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_PoleCurve::Match),
R"#(returns true if the distance between the point (X,Y,Z) and the broken line made of the poles is less then aDistance.)#" , py::arg("X"), py::arg("Y"), py::arg("Z"), py::arg("aDistance"), py::arg("aCurve"), py::arg("aDrawer")
)
.def_static("Pick_s",
(Standard_Integer (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Adaptor3d_Curve & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<Standard_Integer (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Adaptor3d_Curve & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_PoleCurve::Pick),
R"#(returns the pole the most near of the point (X,Y,Z) and returns its range. The distance between the pole and (X,Y,Z) must be less then aDistance. If no pole corresponds, 0 is returned.)#" , py::arg("X"), py::arg("Y"), py::arg("Z"), py::arg("aDistance"), py::arg("aCurve"), py::arg("aDrawer")
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class StdPrs_ShadedShape from ./opencascade/StdPrs_ShadedShape.hxx
klass = m.attr("StdPrs_ShadedShape");
// default constructor
register_default_constructor<StdPrs_ShadedShape , shared_ptr<StdPrs_ShadedShape>>(m,"StdPrs_ShadedShape");
// nested enums
static_cast<py::class_<StdPrs_ShadedShape , shared_ptr<StdPrs_ShadedShape> , Prs3d_Root >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("Add_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , const TopoDS_Shape & , const opencascade::handle<Prs3d_Drawer> & , const StdPrs_Volume , const opencascade::handle<Graphic3d_Group> & ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , const TopoDS_Shape & , const opencascade::handle<Prs3d_Drawer> & , const StdPrs_Volume , const opencascade::handle<Graphic3d_Group> & ) >(&StdPrs_ShadedShape::Add),
R"#(Shades <theShape>.)#" , py::arg("thePresentation"), py::arg("theShape"), py::arg("theDrawer"), py::arg("theVolume")=static_cast<const StdPrs_Volume>(StdPrs_Volume_Autodetection), py::arg("theGroup")=static_cast<const opencascade::handle<Graphic3d_Group> &>(NULL)
)
.def_static("Add_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , const TopoDS_Shape & , const opencascade::handle<Prs3d_Drawer> & , const Standard_Boolean , const gp_Pnt2d & , const gp_Pnt2d & , const gp_Pnt2d & , const StdPrs_Volume , const opencascade::handle<Graphic3d_Group> & ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , const TopoDS_Shape & , const opencascade::handle<Prs3d_Drawer> & , const Standard_Boolean , const gp_Pnt2d & , const gp_Pnt2d & , const gp_Pnt2d & , const StdPrs_Volume , const opencascade::handle<Graphic3d_Group> & ) >(&StdPrs_ShadedShape::Add),
R"#(Shades <theShape> with texture coordinates.)#" , py::arg("thePresentation"), py::arg("theShape"), py::arg("theDrawer"), py::arg("theHasTexels"), py::arg("theUVOrigin"), py::arg("theUVRepeat"), py::arg("theUVScale"), py::arg("theVolume")=static_cast<const StdPrs_Volume>(StdPrs_Volume_Autodetection), py::arg("theGroup")=static_cast<const opencascade::handle<Graphic3d_Group> &>(NULL)
)
.def_static("ExploreSolids_s",
(void (*)( const TopoDS_Shape & , const BRep_Builder & , TopoDS_Compound & , TopoDS_Compound & , const Standard_Boolean ) ) static_cast<void (*)( const TopoDS_Shape & , const BRep_Builder & , TopoDS_Compound & , TopoDS_Compound & , const Standard_Boolean ) >(&StdPrs_ShadedShape::ExploreSolids),
R"#(Searches closed and unclosed subshapes in shape structure and puts them into two compounds for separate processing of closed and unclosed sub-shapes)#" , py::arg("theShape"), py::arg("theBuilder"), py::arg("theClosed"), py::arg("theOpened"), py::arg("theIgnore1DSubShape")
)
.def_static("AddWireframeForFreeElements_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , const TopoDS_Shape & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , const TopoDS_Shape & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_ShadedShape::AddWireframeForFreeElements),
R"#(Computes wireframe presentation for free wires and vertices)#" , py::arg("thePrs"), py::arg("theShape"), py::arg("theDrawer")
)
.def_static("AddWireframeForFacesWithoutTriangles_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , const TopoDS_Shape & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , const TopoDS_Shape & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_ShadedShape::AddWireframeForFacesWithoutTriangles),
R"#(Computes special wireframe presentation for faces without triangulation.)#" , py::arg("thePrs"), py::arg("theShape"), py::arg("theDrawer")
)
.def_static("FillTriangles_s",
(opencascade::handle<Graphic3d_ArrayOfTriangles> (*)( const TopoDS_Shape & ) ) static_cast<opencascade::handle<Graphic3d_ArrayOfTriangles> (*)( const TopoDS_Shape & ) >(&StdPrs_ShadedShape::FillTriangles),
R"#(Create primitive array with triangles for specified shape.)#" , py::arg("theShape")
)
.def_static("FillTriangles_s",
(opencascade::handle<Graphic3d_ArrayOfTriangles> (*)( const TopoDS_Shape & , const Standard_Boolean , const gp_Pnt2d & , const gp_Pnt2d & , const gp_Pnt2d & ) ) static_cast<opencascade::handle<Graphic3d_ArrayOfTriangles> (*)( const TopoDS_Shape & , const Standard_Boolean , const gp_Pnt2d & , const gp_Pnt2d & , const gp_Pnt2d & ) >(&StdPrs_ShadedShape::FillTriangles),
R"#(Create primitive array of triangles for specified shape.)#" , py::arg("theShape"), py::arg("theHasTexels"), py::arg("theUVOrigin"), py::arg("theUVRepeat"), py::arg("theUVScale")
)
.def_static("FillFaceBoundaries_s",
(opencascade::handle<Graphic3d_ArrayOfSegments> (*)( const TopoDS_Shape & , GeomAbs_Shape ) ) static_cast<opencascade::handle<Graphic3d_ArrayOfSegments> (*)( const TopoDS_Shape & , GeomAbs_Shape ) >(&StdPrs_ShadedShape::FillFaceBoundaries),
R"#(Define primitive array of boundary segments for specified shape.)#" , py::arg("theShape"), py::arg("theUpperContinuity")=static_cast<GeomAbs_Shape>(GeomAbs_CN)
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class StdPrs_ShadedSurface from ./opencascade/StdPrs_ShadedSurface.hxx
klass = m.attr("StdPrs_ShadedSurface");
// default constructor
register_default_constructor<StdPrs_ShadedSurface , shared_ptr<StdPrs_ShadedSurface>>(m,"StdPrs_ShadedSurface");
// nested enums
static_cast<py::class_<StdPrs_ShadedSurface , shared_ptr<StdPrs_ShadedSurface> , Prs3d_Root >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("Add_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , const Adaptor3d_Surface & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , const Adaptor3d_Surface & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_ShadedSurface::Add),
R"#(Adds the surface aSurface to the presentation object aPresentation. The surface's display attributes are set in the attribute manager aDrawer. The surface object from Adaptor3d provides data from a Geom surface in order to use the surface in an algorithm.)#" , py::arg("aPresentation"), py::arg("aSurface"), py::arg("aDrawer")
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class StdPrs_ShapeTool from ./opencascade/StdPrs_ShapeTool.hxx
klass = m.attr("StdPrs_ShapeTool");
// nested enums
static_cast<py::class_<StdPrs_ShapeTool , shared_ptr<StdPrs_ShapeTool> >>(klass)
// constructors
.def(py::init< const TopoDS_Shape &,const Standard_Boolean >() , py::arg("theShape"), py::arg("theAllVertices")=static_cast<const Standard_Boolean>(Standard_False) )
// custom constructors
// methods
.def("InitFace",
(void (StdPrs_ShapeTool::*)() ) static_cast<void (StdPrs_ShapeTool::*)() >(&StdPrs_ShapeTool::InitFace),
R"#(None)#"
)
.def("MoreFace",
(Standard_Boolean (StdPrs_ShapeTool::*)() const) static_cast<Standard_Boolean (StdPrs_ShapeTool::*)() const>(&StdPrs_ShapeTool::MoreFace),
R"#(None)#"
)
.def("NextFace",
(void (StdPrs_ShapeTool::*)() ) static_cast<void (StdPrs_ShapeTool::*)() >(&StdPrs_ShapeTool::NextFace),
R"#(None)#"
)
.def("FaceBound",
(Bnd_Box (StdPrs_ShapeTool::*)() const) static_cast<Bnd_Box (StdPrs_ShapeTool::*)() const>(&StdPrs_ShapeTool::FaceBound),
R"#(None)#"
)
.def("IsPlanarFace",
(Standard_Boolean (StdPrs_ShapeTool::*)() const) static_cast<Standard_Boolean (StdPrs_ShapeTool::*)() const>(&StdPrs_ShapeTool::IsPlanarFace),
R"#(None)#"
)
.def("InitCurve",
(void (StdPrs_ShapeTool::*)() ) static_cast<void (StdPrs_ShapeTool::*)() >(&StdPrs_ShapeTool::InitCurve),
R"#(None)#"
)
.def("MoreCurve",
(Standard_Boolean (StdPrs_ShapeTool::*)() const) static_cast<Standard_Boolean (StdPrs_ShapeTool::*)() const>(&StdPrs_ShapeTool::MoreCurve),
R"#(None)#"
)
.def("NextCurve",
(void (StdPrs_ShapeTool::*)() ) static_cast<void (StdPrs_ShapeTool::*)() >(&StdPrs_ShapeTool::NextCurve),
R"#(None)#"
)
.def("CurveBound",
(Bnd_Box (StdPrs_ShapeTool::*)() const) static_cast<Bnd_Box (StdPrs_ShapeTool::*)() const>(&StdPrs_ShapeTool::CurveBound),
R"#(None)#"
)
.def("Neighbours",
(Standard_Integer (StdPrs_ShapeTool::*)() const) static_cast<Standard_Integer (StdPrs_ShapeTool::*)() const>(&StdPrs_ShapeTool::Neighbours),
R"#(None)#"
)
.def("FacesOfEdge",
(opencascade::handle<TopTools_HSequenceOfShape> (StdPrs_ShapeTool::*)() const) static_cast<opencascade::handle<TopTools_HSequenceOfShape> (StdPrs_ShapeTool::*)() const>(&StdPrs_ShapeTool::FacesOfEdge),
R"#(None)#"
)
.def("InitVertex",
(void (StdPrs_ShapeTool::*)() ) static_cast<void (StdPrs_ShapeTool::*)() >(&StdPrs_ShapeTool::InitVertex),
R"#(None)#"
)
.def("MoreVertex",
(Standard_Boolean (StdPrs_ShapeTool::*)() const) static_cast<Standard_Boolean (StdPrs_ShapeTool::*)() const>(&StdPrs_ShapeTool::MoreVertex),
R"#(None)#"
)
.def("NextVertex",
(void (StdPrs_ShapeTool::*)() ) static_cast<void (StdPrs_ShapeTool::*)() >(&StdPrs_ShapeTool::NextVertex),
R"#(None)#"
)
.def("HasSurface",
(Standard_Boolean (StdPrs_ShapeTool::*)() const) static_cast<Standard_Boolean (StdPrs_ShapeTool::*)() const>(&StdPrs_ShapeTool::HasSurface),
R"#(None)#"
)
.def("CurrentTriangulation",
(opencascade::handle<Poly_Triangulation> (StdPrs_ShapeTool::*)( TopLoc_Location & ) const) static_cast<opencascade::handle<Poly_Triangulation> (StdPrs_ShapeTool::*)( TopLoc_Location & ) const>(&StdPrs_ShapeTool::CurrentTriangulation),
R"#(None)#" , py::arg("l")
)
.def("HasCurve",
(Standard_Boolean (StdPrs_ShapeTool::*)() const) static_cast<Standard_Boolean (StdPrs_ShapeTool::*)() const>(&StdPrs_ShapeTool::HasCurve),
R"#(None)#"
)
.def("Polygon3D",
(opencascade::handle<Poly_Polygon3D> (StdPrs_ShapeTool::*)( TopLoc_Location & ) const) static_cast<opencascade::handle<Poly_Polygon3D> (StdPrs_ShapeTool::*)( TopLoc_Location & ) const>(&StdPrs_ShapeTool::Polygon3D),
R"#(None)#" , py::arg("l")
)
// methods using call by reference i.s.o. return
.def("PolygonOnTriangulation",
[]( StdPrs_ShapeTool &self , Poly_PolygonOnTriangulation& Indices,Poly_Triangulation& T,TopLoc_Location & l ){
opencascade::handle<Poly_PolygonOnTriangulation> Indices_ptr; Indices_ptr = &Indices;
opencascade::handle<Poly_Triangulation> T_ptr; T_ptr = &T;
self.PolygonOnTriangulation(Indices_ptr,T_ptr,l);
if ( Indices_ptr.get() != &Indices ) copy_if_copy_constructible(Indices, *Indices_ptr);
if ( T_ptr.get() != &T ) copy_if_copy_constructible(T, *T_ptr);
return std::make_tuple(); },
R"#(None)#" , py::arg("Indices"), py::arg("T"), py::arg("l")
)
// static methods
.def_static("IsPlanarFace_s",
(Standard_Boolean (*)( const TopoDS_Face & ) ) static_cast<Standard_Boolean (*)( const TopoDS_Face & ) >(&StdPrs_ShapeTool::IsPlanarFace),
R"#(None)#" , py::arg("theFace")
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("GetFace",
(const TopoDS_Face & (StdPrs_ShapeTool::*)() const) static_cast<const TopoDS_Face & (StdPrs_ShapeTool::*)() const>(&StdPrs_ShapeTool::GetFace),
R"#(None)#"
)
.def("GetCurve",
(const TopoDS_Edge & (StdPrs_ShapeTool::*)() const) static_cast<const TopoDS_Edge & (StdPrs_ShapeTool::*)() const>(&StdPrs_ShapeTool::GetCurve),
R"#(None)#"
)
.def("GetVertex",
(const TopoDS_Vertex & (StdPrs_ShapeTool::*)() const) static_cast<const TopoDS_Vertex & (StdPrs_ShapeTool::*)() const>(&StdPrs_ShapeTool::GetVertex),
R"#(None)#"
)
;
// Class StdPrs_ToolPoint from ./opencascade/StdPrs_ToolPoint.hxx
klass = m.attr("StdPrs_ToolPoint");
// default constructor
register_default_constructor<StdPrs_ToolPoint , shared_ptr<StdPrs_ToolPoint>>(m,"StdPrs_ToolPoint");
// nested enums
static_cast<py::class_<StdPrs_ToolPoint , shared_ptr<StdPrs_ToolPoint> >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
.def_static("Coord_s",
[](const opencascade::handle<Geom_Point> & aPoint ){
Standard_Real X;
Standard_Real Y;
Standard_Real Z;
StdPrs_ToolPoint::Coord(aPoint,X,Y,Z);
return std::make_tuple(X,Y,Z); },
R"#(None)#" , py::arg("aPoint")
)
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class StdPrs_ToolRFace from ./opencascade/StdPrs_ToolRFace.hxx
klass = m.attr("StdPrs_ToolRFace");
// nested enums
static_cast<py::class_<StdPrs_ToolRFace , shared_ptr<StdPrs_ToolRFace> >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const opencascade::handle<BRepAdaptor_Surface> & >() , py::arg("aSurface") )
// custom constructors
// methods
.def("IsOriented",
(Standard_Boolean (StdPrs_ToolRFace::*)() const) static_cast<Standard_Boolean (StdPrs_ToolRFace::*)() const>(&StdPrs_ToolRFace::IsOriented),
R"#(Return TRUE indicating that iterator looks only for oriented edges.)#"
)
.def("Init",
(void (StdPrs_ToolRFace::*)() ) static_cast<void (StdPrs_ToolRFace::*)() >(&StdPrs_ToolRFace::Init),
R"#(Move iterator to the first element.)#"
)
.def("More",
(Standard_Boolean (StdPrs_ToolRFace::*)() const) static_cast<Standard_Boolean (StdPrs_ToolRFace::*)() const>(&StdPrs_ToolRFace::More),
R"#(Return TRUE if iterator points to the curve.)#"
)
.def("Next",
(void (StdPrs_ToolRFace::*)() ) static_cast<void (StdPrs_ToolRFace::*)() >(&StdPrs_ToolRFace::Next),
R"#(Go to the next curve in the face.)#"
)
.def("Orientation",
(TopAbs_Orientation (StdPrs_ToolRFace::*)() const) static_cast<TopAbs_Orientation (StdPrs_ToolRFace::*)() const>(&StdPrs_ToolRFace::Orientation),
R"#(Return current edge orientation.)#"
)
.def("IsInvalidGeometry",
(Standard_Boolean (StdPrs_ToolRFace::*)() const) static_cast<Standard_Boolean (StdPrs_ToolRFace::*)() const>(&StdPrs_ToolRFace::IsInvalidGeometry),
R"#(Return TRUE if NULL curves have been skipped.)#"
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Value",
(const Adaptor2d_Curve2d & (StdPrs_ToolRFace::*)() const) static_cast<const Adaptor2d_Curve2d & (StdPrs_ToolRFace::*)() const>(&StdPrs_ToolRFace::Value),
R"#(Return current curve.)#"
)
.def("Edge",
(const TopoDS_Edge & (StdPrs_ToolRFace::*)() const) static_cast<const TopoDS_Edge & (StdPrs_ToolRFace::*)() const>(&StdPrs_ToolRFace::Edge),
R"#(Return current edge.)#"
)
;
// Class StdPrs_ToolTriangulatedShape from ./opencascade/StdPrs_ToolTriangulatedShape.hxx
klass = m.attr("StdPrs_ToolTriangulatedShape");
// default constructor
register_default_constructor<StdPrs_ToolTriangulatedShape , shared_ptr<StdPrs_ToolTriangulatedShape>>(m,"StdPrs_ToolTriangulatedShape");
// nested enums
static_cast<py::class_<StdPrs_ToolTriangulatedShape , shared_ptr<StdPrs_ToolTriangulatedShape> , BRepLib_ToolTriangulatedShape >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("IsTriangulated_s",
(Standard_Boolean (*)( const TopoDS_Shape & ) ) static_cast<Standard_Boolean (*)( const TopoDS_Shape & ) >(&StdPrs_ToolTriangulatedShape::IsTriangulated),
R"#(Similar to BRepTools::Triangulation() but without extra checks.)#" , py::arg("theShape")
)
.def_static("IsClosed_s",
(Standard_Boolean (*)( const TopoDS_Shape & ) ) static_cast<Standard_Boolean (*)( const TopoDS_Shape & ) >(&StdPrs_ToolTriangulatedShape::IsClosed),
R"#(Checks back faces visibility for specified shape (to activate back-face culling).)#" , py::arg("theShape")
)
.def_static("GetDeflection_s",
(Standard_Real (*)( const TopoDS_Shape & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<Standard_Real (*)( const TopoDS_Shape & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_ToolTriangulatedShape::GetDeflection),
R"#(Computes the absolute deflection value depending on the type of deflection in theDrawer: Aspect_TOD_RELATIVE: the absolute deflection is computed using the relative deviation coefficient from theDrawer and the shape's bounding box; Aspect_TOD_ABSOLUTE: the maximal chordial deviation from theDrawer is returned. In case of the type of deflection in theDrawer computed relative deflection for shape is stored as absolute deflection. It is necessary to use it later on for sub-shapes. This function should always be used to compute the deflection value for building discrete representations of the shape (triangulation, wireframe) to avoid inconsistencies between different representations of the shape and undesirable visual artifacts.)#" , py::arg("theShape"), py::arg("theDrawer")
)
.def_static("IsTessellated_s",
(Standard_Boolean (*)( const TopoDS_Shape & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<Standard_Boolean (*)( const TopoDS_Shape & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_ToolTriangulatedShape::IsTessellated),
R"#(Checks whether the shape is properly triangulated for a given display settings.)#" , py::arg("theShape"), py::arg("theDrawer")
)
.def_static("Tessellate_s",
(Standard_Boolean (*)( const TopoDS_Shape & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<Standard_Boolean (*)( const TopoDS_Shape & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_ToolTriangulatedShape::Tessellate),
R"#(Validates triangulation within the shape and performs tessellation if necessary.)#" , py::arg("theShape"), py::arg("theDrawer")
)
.def_static("ClearOnOwnDeflectionChange_s",
(void (*)( const TopoDS_Shape & , const opencascade::handle<Prs3d_Drawer> & , const Standard_Boolean ) ) static_cast<void (*)( const TopoDS_Shape & , const opencascade::handle<Prs3d_Drawer> & , const Standard_Boolean ) >(&StdPrs_ToolTriangulatedShape::ClearOnOwnDeflectionChange),
R"#(If presentation has own deviation coefficient and IsAutoTriangulation() is true, function will compare actual coefficients with previous values and will clear triangulation on their change (regardless actual tessellation quality). Function is placed here for compatibility reasons - new code should avoid using IsAutoTriangulation().)#" , py::arg("theShape"), py::arg("theDrawer"), py::arg("theToResetCoeff")
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class StdPrs_ToolVertex from ./opencascade/StdPrs_ToolVertex.hxx
klass = m.attr("StdPrs_ToolVertex");
// default constructor
register_default_constructor<StdPrs_ToolVertex , shared_ptr<StdPrs_ToolVertex>>(m,"StdPrs_ToolVertex");
// nested enums
static_cast<py::class_<StdPrs_ToolVertex , shared_ptr<StdPrs_ToolVertex> >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
.def_static("Coord_s",
[](const TopoDS_Vertex & aPoint ){
Standard_Real X;
Standard_Real Y;
Standard_Real Z;
StdPrs_ToolVertex::Coord(aPoint,X,Y,Z);
return std::make_tuple(X,Y,Z); },
R"#(None)#" , py::arg("aPoint")
)
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class StdPrs_WFDeflectionRestrictedFace from ./opencascade/StdPrs_WFDeflectionRestrictedFace.hxx
klass = m.attr("StdPrs_WFDeflectionRestrictedFace");
// default constructor
register_default_constructor<StdPrs_WFDeflectionRestrictedFace , shared_ptr<StdPrs_WFDeflectionRestrictedFace>>(m,"StdPrs_WFDeflectionRestrictedFace");
// nested enums
static_cast<py::class_<StdPrs_WFDeflectionRestrictedFace , shared_ptr<StdPrs_WFDeflectionRestrictedFace> , Prs3d_Root >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("Add_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , const opencascade::handle<BRepAdaptor_Surface> & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , const opencascade::handle<BRepAdaptor_Surface> & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_WFDeflectionRestrictedFace::Add),
R"#(Defines a display featuring U and V isoparameters. Adds the surface aFace to the StdPrs_WFRestrictedFace algorithm. This face is found in a shape in the presentation object aPresentation, and its display attributes - in particular, the number of U and V isoparameters - are set in the attribute manager aDrawer. aFace is BRepAdaptor_Surface surface created from a face in a topological shape. which is passed as an argument through the BRepAdaptor_Surface surface created from it. This is what allows the topological face to be treated as a geometric surface.)#" , py::arg("aPresentation"), py::arg("aFace"), py::arg("aDrawer")
)
.def_static("AddUIso_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , const opencascade::handle<BRepAdaptor_Surface> & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , const opencascade::handle<BRepAdaptor_Surface> & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_WFDeflectionRestrictedFace::AddUIso),
R"#(Defines a display featuring U isoparameters respectively. Add the surface aFace to the StdPrs_WFRestrictedFace algorithm. This face is found in a shape in the presentation object aPresentation, and its display attributes - in particular, the number of U isoparameters - are set in the attribute manager aDrawer. aFace is BRepAdaptor_Surface surface created from a face in a topological shape. which is passed to the function as an argument through the BRepAdaptor_Surface surface created from it. This is what allows the topological face to be treated as a geometric surface.)#" , py::arg("aPresentation"), py::arg("aFace"), py::arg("aDrawer")
)
.def_static("AddVIso_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , const opencascade::handle<BRepAdaptor_Surface> & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , const opencascade::handle<BRepAdaptor_Surface> & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_WFDeflectionRestrictedFace::AddVIso),
R"#(Defines a display featuring V isoparameters respectively. Add the surface aFace to the StdPrs_WFRestrictedFace algorithm. This face is found in a shape in the presentation object aPresentation, and its display attributes - in particular, the number of V isoparameters - are set in the attribute manager aDrawer. aFace is BRepAdaptor_Surface surface created from a face in a topological shape. which is passed to the function as an argument through the BRepAdaptor_Surface surface created from it. This is what allows the topological face to be treated as a geometric surface.)#" , py::arg("aPresentation"), py::arg("aFace"), py::arg("aDrawer")
)
.def_static("Add_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , const opencascade::handle<BRepAdaptor_Surface> & , const Standard_Boolean , const Standard_Boolean , const Standard_Real , const Standard_Integer , const Standard_Integer , const opencascade::handle<Prs3d_Drawer> & , NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> & ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , const opencascade::handle<BRepAdaptor_Surface> & , const Standard_Boolean , const Standard_Boolean , const Standard_Real , const Standard_Integer , const Standard_Integer , const opencascade::handle<Prs3d_Drawer> & , NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> & ) >(&StdPrs_WFDeflectionRestrictedFace::Add),
R"#(Defines a display of a delection-specified face. The display will feature U and V isoparameters. Adds the topology aShape to the StdPrs_WFRestrictedFace algorithm. This shape is found in the presentation object aPresentation, and its display attributes - except the number of U and V isoparameters - are set in the attribute manager aDrawer. The function sets the number of U and V isoparameters, NBUiso and NBViso, in the shape. To do this, the arguments DrawUIso and DrawVIso must be true. aFace is BRepAdaptor_Surface surface created from a face in a topological shape. which is passed as an argument through the BRepAdaptor_Surface surface created from it. This is what allows the topological face to be treated as a geometric surface. Curves give a sequence of face curves, it is used if the PrimitiveArray visualization approach is activated (it is activated by default).)#" , py::arg("aPresentation"), py::arg("aFace"), py::arg("DrawUIso"), py::arg("DrawVIso"), py::arg("Deflection"), py::arg("NBUiso"), py::arg("NBViso"), py::arg("aDrawer"), py::arg("Curves")
)
.def_static("Match_s",
(Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const opencascade::handle<BRepAdaptor_Surface> & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const opencascade::handle<BRepAdaptor_Surface> & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_WFDeflectionRestrictedFace::Match),
R"#(None)#" , py::arg("X"), py::arg("Y"), py::arg("Z"), py::arg("aDistance"), py::arg("aFace"), py::arg("aDrawer")
)
.def_static("MatchUIso_s",
(Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const opencascade::handle<BRepAdaptor_Surface> & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const opencascade::handle<BRepAdaptor_Surface> & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_WFDeflectionRestrictedFace::MatchUIso),
R"#(None)#" , py::arg("X"), py::arg("Y"), py::arg("Z"), py::arg("aDistance"), py::arg("aFace"), py::arg("aDrawer")
)
.def_static("MatchVIso_s",
(Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const opencascade::handle<BRepAdaptor_Surface> & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const opencascade::handle<BRepAdaptor_Surface> & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_WFDeflectionRestrictedFace::MatchVIso),
R"#(None)#" , py::arg("X"), py::arg("Y"), py::arg("Z"), py::arg("aDistance"), py::arg("aFace"), py::arg("aDrawer")
)
.def_static("Match_s",
(Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const opencascade::handle<BRepAdaptor_Surface> & , const opencascade::handle<Prs3d_Drawer> & , const Standard_Boolean , const Standard_Boolean , const Standard_Real , const Standard_Integer , const Standard_Integer ) ) static_cast<Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const opencascade::handle<BRepAdaptor_Surface> & , const opencascade::handle<Prs3d_Drawer> & , const Standard_Boolean , const Standard_Boolean , const Standard_Real , const Standard_Integer , const Standard_Integer ) >(&StdPrs_WFDeflectionRestrictedFace::Match),
R"#(None)#" , py::arg("X"), py::arg("Y"), py::arg("Z"), py::arg("aDistance"), py::arg("aFace"), py::arg("aDrawer"), py::arg("DrawUIso"), py::arg("DrawVIso"), py::arg("aDeflection"), py::arg("NBUiso"), py::arg("NBViso")
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class StdPrs_WFDeflectionSurface from ./opencascade/StdPrs_WFDeflectionSurface.hxx
klass = m.attr("StdPrs_WFDeflectionSurface");
// default constructor
register_default_constructor<StdPrs_WFDeflectionSurface , shared_ptr<StdPrs_WFDeflectionSurface>>(m,"StdPrs_WFDeflectionSurface");
// nested enums
static_cast<py::class_<StdPrs_WFDeflectionSurface , shared_ptr<StdPrs_WFDeflectionSurface> , Prs3d_Root >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("Add_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , const opencascade::handle<Adaptor3d_Surface> & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , const opencascade::handle<Adaptor3d_Surface> & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_WFDeflectionSurface::Add),
R"#(Adds the surface aSurface to the presentation object aPresentation, and defines its boundaries and isoparameters. The shape's display attributes are set in the attribute manager aDrawer. These include whether deflection is absolute or relative to the size of the shape. The surface aSurface is a surface object from Adaptor, and provides data from a Geom surface. This makes it possible to use the surface in a geometric algorithm. Note that this surface object is manipulated by handles.)#" , py::arg("aPresentation"), py::arg("aSurface"), py::arg("aDrawer")
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class StdPrs_WFPoleSurface from ./opencascade/StdPrs_WFPoleSurface.hxx
klass = m.attr("StdPrs_WFPoleSurface");
// default constructor
register_default_constructor<StdPrs_WFPoleSurface , shared_ptr<StdPrs_WFPoleSurface>>(m,"StdPrs_WFPoleSurface");
// nested enums
static_cast<py::class_<StdPrs_WFPoleSurface , shared_ptr<StdPrs_WFPoleSurface> , Prs3d_Root >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("Add_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , const Adaptor3d_Surface & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , const Adaptor3d_Surface & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_WFPoleSurface::Add),
R"#(Adds the surface aSurface to the presentation object aPresentation. The shape's display attributes are set in the attribute manager aDrawer. The surface aSurface is a surface object from Adaptor3d, and provides data from a Geom surface. This makes it possible to use the surface in a geometric algorithm.)#" , py::arg("aPresentation"), py::arg("aSurface"), py::arg("aDrawer")
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class StdPrs_WFRestrictedFace from ./opencascade/StdPrs_WFRestrictedFace.hxx
klass = m.attr("StdPrs_WFRestrictedFace");
// default constructor
register_default_constructor<StdPrs_WFRestrictedFace , shared_ptr<StdPrs_WFRestrictedFace>>(m,"StdPrs_WFRestrictedFace");
// nested enums
static_cast<py::class_<StdPrs_WFRestrictedFace , shared_ptr<StdPrs_WFRestrictedFace> , Prs3d_Root >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("Add_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , const opencascade::handle<BRepAdaptor_Surface> & , const Standard_Boolean , const Standard_Boolean , const Standard_Integer , const Standard_Integer , const opencascade::handle<Prs3d_Drawer> & , NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> & ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , const opencascade::handle<BRepAdaptor_Surface> & , const Standard_Boolean , const Standard_Boolean , const Standard_Integer , const Standard_Integer , const opencascade::handle<Prs3d_Drawer> & , NCollection_List<opencascade::handle<TColgp_HSequenceOfPnt>> & ) >(&StdPrs_WFRestrictedFace::Add),
R"#(None)#" , py::arg("thePresentation"), py::arg("theFace"), py::arg("theDrawUIso"), py::arg("theDrawVIso"), py::arg("theNbUIso"), py::arg("theNbVIso"), py::arg("theDrawer"), py::arg("theCurves")
)
.def_static("Add_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , const opencascade::handle<BRepAdaptor_Surface> & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , const opencascade::handle<BRepAdaptor_Surface> & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_WFRestrictedFace::Add),
R"#(None)#" , py::arg("thePresentation"), py::arg("theFace"), py::arg("theDrawer")
)
.def_static("Match_s",
(Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const opencascade::handle<BRepAdaptor_Surface> & , const Standard_Boolean , const Standard_Boolean , const Standard_Real , const Standard_Integer , const Standard_Integer , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const opencascade::handle<BRepAdaptor_Surface> & , const Standard_Boolean , const Standard_Boolean , const Standard_Real , const Standard_Integer , const Standard_Integer , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_WFRestrictedFace::Match),
R"#(None)#" , py::arg("theX"), py::arg("theY"), py::arg("theZ"), py::arg("theDistance"), py::arg("theFace"), py::arg("theDrawUIso"), py::arg("theDrawVIso"), py::arg("theDeflection"), py::arg("theNbUIso"), py::arg("theNbVIso"), py::arg("theDrawer")
)
.def_static("Match_s",
(Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const opencascade::handle<BRepAdaptor_Surface> & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const opencascade::handle<BRepAdaptor_Surface> & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_WFRestrictedFace::Match),
R"#(None)#" , py::arg("theX"), py::arg("theY"), py::arg("theZ"), py::arg("theDistance"), py::arg("theFace"), py::arg("theDrawer")
)
.def_static("MatchUIso_s",
(Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const opencascade::handle<BRepAdaptor_Surface> & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const opencascade::handle<BRepAdaptor_Surface> & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_WFRestrictedFace::MatchUIso),
R"#(None)#" , py::arg("theX"), py::arg("theY"), py::arg("theZ"), py::arg("theDistance"), py::arg("theFace"), py::arg("theDrawer")
)
.def_static("MatchVIso_s",
(Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const opencascade::handle<BRepAdaptor_Surface> & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<Standard_Boolean (*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const opencascade::handle<BRepAdaptor_Surface> & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_WFRestrictedFace::MatchVIso),
R"#(None)#" , py::arg("theX"), py::arg("theY"), py::arg("theZ"), py::arg("theDistance"), py::arg("theFace"), py::arg("theDrawer")
)
.def_static("AddUIso_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , const opencascade::handle<BRepAdaptor_Surface> & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , const opencascade::handle<BRepAdaptor_Surface> & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_WFRestrictedFace::AddUIso),
R"#(None)#" , py::arg("thePresentation"), py::arg("theFace"), py::arg("theDrawer")
)
.def_static("AddVIso_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , const opencascade::handle<BRepAdaptor_Surface> & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , const opencascade::handle<BRepAdaptor_Surface> & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_WFRestrictedFace::AddVIso),
R"#(None)#" , py::arg("thePresentation"), py::arg("theFace"), py::arg("theDrawer")
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class StdPrs_WFShape from ./opencascade/StdPrs_WFShape.hxx
klass = m.attr("StdPrs_WFShape");
// default constructor
register_default_constructor<StdPrs_WFShape , shared_ptr<StdPrs_WFShape>>(m,"StdPrs_WFShape");
// nested enums
static_cast<py::class_<StdPrs_WFShape , shared_ptr<StdPrs_WFShape> , Prs3d_Root >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("Add_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , const TopoDS_Shape & , const opencascade::handle<Prs3d_Drawer> & , Standard_Boolean ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , const TopoDS_Shape & , const opencascade::handle<Prs3d_Drawer> & , Standard_Boolean ) >(&StdPrs_WFShape::Add),
R"#(Computes wireframe presentation of a shape.)#" , py::arg("thePresentation"), py::arg("theShape"), py::arg("theDrawer"), py::arg("theIsParallel")=static_cast<Standard_Boolean>(Standard_False)
)
.def_static("AddEdgesOnTriangulation_s",
(opencascade::handle<Graphic3d_ArrayOfPrimitives> (*)( const TopoDS_Shape & , const Standard_Boolean ) ) static_cast<opencascade::handle<Graphic3d_ArrayOfPrimitives> (*)( const TopoDS_Shape & , const Standard_Boolean ) >(&StdPrs_WFShape::AddEdgesOnTriangulation),
R"#(Compute free and boundary edges on a triangulation of each face in the given shape.)#" , py::arg("theShape"), py::arg("theToExcludeGeometric")=static_cast<const Standard_Boolean>(Standard_True)
)
.def_static("AddEdgesOnTriangulation_s",
(void (*)( NCollection_Sequence<gp_Pnt> & , const TopoDS_Shape & , const Standard_Boolean ) ) static_cast<void (*)( NCollection_Sequence<gp_Pnt> & , const TopoDS_Shape & , const Standard_Boolean ) >(&StdPrs_WFShape::AddEdgesOnTriangulation),
R"#(Compute free and boundary edges on a triangulation of each face in the given shape.)#" , py::arg("theSegments"), py::arg("theShape"), py::arg("theToExcludeGeometric")=static_cast<const Standard_Boolean>(Standard_True)
)
.def_static("AddAllEdges_s",
(opencascade::handle<Graphic3d_ArrayOfPrimitives> (*)( const TopoDS_Shape & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<opencascade::handle<Graphic3d_ArrayOfPrimitives> (*)( const TopoDS_Shape & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_WFShape::AddAllEdges),
R"#(Compute all edges (wire, free, unfree) and put them into single primitive array.)#" , py::arg("theShape"), py::arg("theDrawer")
)
.def_static("AddVertexes_s",
(opencascade::handle<Graphic3d_ArrayOfPoints> (*)( const TopoDS_Shape & , Prs3d_VertexDrawMode ) ) static_cast<opencascade::handle<Graphic3d_ArrayOfPoints> (*)( const TopoDS_Shape & , Prs3d_VertexDrawMode ) >(&StdPrs_WFShape::AddVertexes),
R"#(Compute vertex presentation for a shape.)#" , py::arg("theShape"), py::arg("theVertexMode")
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class StdPrs_WFSurface from ./opencascade/StdPrs_WFSurface.hxx
klass = m.attr("StdPrs_WFSurface");
// default constructor
register_default_constructor<StdPrs_WFSurface , shared_ptr<StdPrs_WFSurface>>(m,"StdPrs_WFSurface");
// nested enums
static_cast<py::class_<StdPrs_WFSurface , shared_ptr<StdPrs_WFSurface> , Prs3d_Root >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("Add_s",
(void (*)( const opencascade::handle<Prs3d_Presentation> & , const opencascade::handle<Adaptor3d_Surface> & , const opencascade::handle<Prs3d_Drawer> & ) ) static_cast<void (*)( const opencascade::handle<Prs3d_Presentation> & , const opencascade::handle<Adaptor3d_Surface> & , const opencascade::handle<Prs3d_Drawer> & ) >(&StdPrs_WFSurface::Add),
R"#(Draws a surface by drawing the isoparametric curves with respect to a fixed number of points given by the Drawer. The number of isoparametric curves to be drawn and their color are controlled by the furnished Drawer.)#" , py::arg("aPresentation"), py::arg("aSurface"), py::arg("aDrawer")
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class StdPrs_HLRPolyShape from ./opencascade/StdPrs_HLRPolyShape.hxx
klass = m.attr("StdPrs_HLRPolyShape");
// default constructor
register_default_constructor<StdPrs_HLRPolyShape ,opencascade::handle<StdPrs_HLRPolyShape>>(m,"StdPrs_HLRPolyShape");
// nested enums
static_cast<py::class_<StdPrs_HLRPolyShape ,opencascade::handle<StdPrs_HLRPolyShape> , StdPrs_HLRShapeI >>(klass)
// constructors
// custom constructors
// methods
.def("ComputeHLR",
(void (StdPrs_HLRPolyShape::*)( const opencascade::handle<Prs3d_Presentation> & , const TopoDS_Shape & , const opencascade::handle<Prs3d_Drawer> & , const opencascade::handle<Graphic3d_Camera> & ) const) static_cast<void (StdPrs_HLRPolyShape::*)( const opencascade::handle<Prs3d_Presentation> & , const TopoDS_Shape & , const opencascade::handle<Prs3d_Drawer> & , const opencascade::handle<Graphic3d_Camera> & ) const>(&StdPrs_HLRPolyShape::ComputeHLR),
R"#(Compute presentation for specified shape.)#" , py::arg("thePrs"), py::arg("theShape"), py::arg("theDrawer"), py::arg("theProjector")
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&StdPrs_HLRPolyShape::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&StdPrs_HLRPolyShape::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (StdPrs_HLRPolyShape::*)() const) static_cast<const opencascade::handle<Standard_Type> & (StdPrs_HLRPolyShape::*)() const>(&StdPrs_HLRPolyShape::DynamicType),
R"#(None)#"
)
;
// Class StdPrs_HLRShape from ./opencascade/StdPrs_HLRShape.hxx
klass = m.attr("StdPrs_HLRShape");
// default constructor
register_default_constructor<StdPrs_HLRShape ,opencascade::handle<StdPrs_HLRShape>>(m,"StdPrs_HLRShape");
// nested enums
static_cast<py::class_<StdPrs_HLRShape ,opencascade::handle<StdPrs_HLRShape> , StdPrs_HLRShapeI >>(klass)
// constructors
// custom constructors
// methods
.def("ComputeHLR",
(void (StdPrs_HLRShape::*)( const opencascade::handle<Prs3d_Presentation> & , const TopoDS_Shape & , const opencascade::handle<Prs3d_Drawer> & , const opencascade::handle<Graphic3d_Camera> & ) const) static_cast<void (StdPrs_HLRShape::*)( const opencascade::handle<Prs3d_Presentation> & , const TopoDS_Shape & , const opencascade::handle<Prs3d_Drawer> & , const opencascade::handle<Graphic3d_Camera> & ) const>(&StdPrs_HLRShape::ComputeHLR),
R"#(Compute presentation for specified shape.)#" , py::arg("thePrs"), py::arg("theShape"), py::arg("theDrawer"), py::arg("theProjector")
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&StdPrs_HLRShape::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&StdPrs_HLRShape::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (StdPrs_HLRShape::*)() const) static_cast<const opencascade::handle<Standard_Type> & (StdPrs_HLRShape::*)() const>(&StdPrs_HLRShape::DynamicType),
R"#(None)#"
)
;
// functions
// ./opencascade/StdPrs_BRepFont.hxx
// ./opencascade/StdPrs_BRepTextBuilder.hxx
// ./opencascade/StdPrs_BndBox.hxx
// ./opencascade/StdPrs_Curve.hxx
// ./opencascade/StdPrs_DeflectionCurve.hxx
// ./opencascade/StdPrs_HLRPolyShape.hxx
// ./opencascade/StdPrs_HLRShape.hxx
// ./opencascade/StdPrs_HLRShapeI.hxx
// ./opencascade/StdPrs_HLRToolShape.hxx
// ./opencascade/StdPrs_Isolines.hxx
// ./opencascade/StdPrs_Plane.hxx
// ./opencascade/StdPrs_Point.hxx
// ./opencascade/StdPrs_PoleCurve.hxx
// ./opencascade/StdPrs_ShadedShape.hxx
// ./opencascade/StdPrs_ShadedSurface.hxx
// ./opencascade/StdPrs_ShapeTool.hxx
// ./opencascade/StdPrs_ToolPoint.hxx
// ./opencascade/StdPrs_ToolRFace.hxx
// ./opencascade/StdPrs_ToolTriangulatedShape.hxx
// ./opencascade/StdPrs_ToolVertex.hxx
// ./opencascade/StdPrs_Vertex.hxx
// ./opencascade/StdPrs_Volume.hxx
// ./opencascade/StdPrs_WFDeflectionRestrictedFace.hxx
// ./opencascade/StdPrs_WFDeflectionSurface.hxx
// ./opencascade/StdPrs_WFPoleSurface.hxx
// ./opencascade/StdPrs_WFRestrictedFace.hxx
// ./opencascade/StdPrs_WFShape.hxx
// ./opencascade/StdPrs_WFSurface.hxx
// Additional functions
// operators
// register typdefs
register_template_Prs3d_Point<opencascade::handle<Geom_Point>, StdPrs_ToolPoint>(m,"StdPrs_Point");
register_template_Prs3d_Point<TopoDS_Vertex, StdPrs_ToolVertex>(m,"StdPrs_Vertex");
// exceptions
// user-defined post-inclusion per module in the body
};
// user-defined post-inclusion per module
// user-defined post
|