File: Approx_pre.cpp

package info (click to toggle)
python-ocp 7.8.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 64,724 kB
  • sloc: cpp: 362,337; pascal: 33; python: 23; makefile: 4
file content (160 lines) | stat: -rw-r--r-- 8,923 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

namespace py = pybind11;


// Standard Handle
#include <Standard_Handle.hxx>

// user-defined inclusion per module before includes

// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_Curve.hxx>
#include <Geom2d_Curve.hxx>
#include <Geom_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Approx_SweepFunction.hxx>
#include <AdvApprox_Cutting.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>

// module includes
#include <Approx_Array1OfAdHSurface.hxx>
#include <Approx_Array1OfGTrsf2d.hxx>
#include <Approx_Curve2d.hxx>
#include <Approx_Curve3d.hxx>
#include <Approx_CurveOnSurface.hxx>
#include <Approx_CurvilinearParameter.hxx>
#include <Approx_CurvlinFunc.hxx>
#include <Approx_FitAndDivide.hxx>
#include <Approx_FitAndDivide2d.hxx>
#include <Approx_HArray1OfAdHSurface.hxx>
#include <Approx_HArray1OfGTrsf2d.hxx>
#include <Approx_MCurvesToBSpCurve.hxx>
#include <Approx_ParametrizationType.hxx>
#include <Approx_SameParameter.hxx>
#include <Approx_SequenceOfHArray1OfReal.hxx>
#include <Approx_Status.hxx>
#include <Approx_SweepApproximation.hxx>
#include <Approx_SweepFunction.hxx>

// template related includes

#include "NCollection_tmpl.hxx"

#include "NCollection_tmpl.hxx"

#include "NCollection_tmpl.hxx"


// user-defined pre
#include "OCP_specific.inc"

// user-defined inclusion per module

// Module definiiton
void register_Approx_enums(py::module &main_module) {


py::module m = main_module.def_submodule("Approx", R"#()#");

// user-defined inclusion per module in the body

// enums
    py::enum_<Approx_ParametrizationType>(m, "Approx_ParametrizationType",R"#(None)#")
        .value("Approx_ChordLength",Approx_ParametrizationType::Approx_ChordLength)
        .value("Approx_Centripetal",Approx_ParametrizationType::Approx_Centripetal)
        .value("Approx_IsoParametric",Approx_ParametrizationType::Approx_IsoParametric).export_values();
    py::enum_<Approx_Status>(m, "Approx_Status",R"#(It is an auxiliary flag being used in inner computations)#")
        .value("Approx_PointsAdded",Approx_Status::Approx_PointsAdded)
        .value("Approx_NoPointsAdded",Approx_Status::Approx_NoPointsAdded)
        .value("Approx_NoApproximation",Approx_Status::Approx_NoApproximation).export_values();

//Python trampoline classes
    class Py_Approx_SweepFunction : public Approx_SweepFunction{
    public:
        using Approx_SweepFunction::Approx_SweepFunction;


        // public pure virtual
        Standard_Boolean D0(const Standard_Real Param,const Standard_Real First,const Standard_Real Last,NCollection_Array1<gp_Pnt> & Poles,NCollection_Array1<gp_Pnt2d> & Poles2d,NCollection_Array1<Standard_Real> & Weigths) override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Approx_SweepFunction,D0,Param,First,Last,Poles,Poles2d,Weigths) };
        Standard_Integer Nb2dCurves() const  override { PYBIND11_OVERLOAD_PURE(Standard_Integer,Approx_SweepFunction,Nb2dCurves,) };
        void Knots(NCollection_Array1<Standard_Real> & TKnots) const  override { PYBIND11_OVERLOAD_PURE(void,Approx_SweepFunction,Knots,TKnots) };
        void Mults(NCollection_Array1<Standard_Integer> & TMults) const  override { PYBIND11_OVERLOAD_PURE(void,Approx_SweepFunction,Mults,TMults) };
        Standard_Boolean IsRational() const  override { PYBIND11_OVERLOAD_PURE(Standard_Boolean,Approx_SweepFunction,IsRational,) };
        Standard_Integer NbIntervals(const GeomAbs_Shape S) const  override { PYBIND11_OVERLOAD_PURE(Standard_Integer,Approx_SweepFunction,NbIntervals,S) };
        void Intervals(NCollection_Array1<Standard_Real> & T,const GeomAbs_Shape S) const  override { PYBIND11_OVERLOAD_PURE(void,Approx_SweepFunction,Intervals,T,S) };
        void SetInterval(const Standard_Real First,const Standard_Real Last) override { PYBIND11_OVERLOAD_PURE(void,Approx_SweepFunction,SetInterval,First,Last) };
        void GetTolerance(const Standard_Real BoundTol,const Standard_Real SurfTol,const Standard_Real AngleTol,NCollection_Array1<Standard_Real> & Tol3d) const  override { PYBIND11_OVERLOAD_PURE(void,Approx_SweepFunction,GetTolerance,BoundTol,SurfTol,AngleTol,Tol3d) };
        void SetTolerance(const Standard_Real Tol3d,const Standard_Real Tol2d) override { PYBIND11_OVERLOAD_PURE(void,Approx_SweepFunction,SetTolerance,Tol3d,Tol2d) };
        void SectionShape(Standard_Integer & NbPoles,Standard_Integer & NbKnots,Standard_Integer & Degree) const  override { PYBIND11_OVERLOAD_PURE(void,Approx_SweepFunction,SectionShape,NbPoles,NbKnots,Degree) };


        // protected pure virtual


        // private pure virtual

    };

// pre-register typdefs+classes (topologically sorted)
    py::class_<Approx_Curve2d , shared_ptr<Approx_Curve2d>  >(m,"Approx_Curve2d",R"#(Makes an approximation for HCurve2d from Adaptor3d)#");
    py::class_<Approx_Curve3d , shared_ptr<Approx_Curve3d>  >(m,"Approx_Curve3d",R"#(None)#");
    py::class_<Approx_CurveOnSurface , shared_ptr<Approx_CurveOnSurface>  >(m,"Approx_CurveOnSurface",R"#(Approximation of curve on surface)#");
    py::class_<Approx_CurvilinearParameter , shared_ptr<Approx_CurvilinearParameter>  >(m,"Approx_CurvilinearParameter",R"#(Approximation of a Curve to make its parameter be its curvilinear abscissa. If the curve is a curve on a surface S, C2D is the corresponding Pcurve, we consider the curve is given by its representation If the curve is a curve on 2 surfaces S1 and S2 and C2D1 C2D2 are the two corresponding Pcurve, we consider the curve is given by its representation)#");
    py::class_<Approx_FitAndDivide , shared_ptr<Approx_FitAndDivide>  >(m,"Approx_FitAndDivide",R"#(None)#");
    py::class_<Approx_FitAndDivide2d , shared_ptr<Approx_FitAndDivide2d>  >(m,"Approx_FitAndDivide2d",R"#(None)#");
    py::class_<Approx_MCurvesToBSpCurve , shared_ptr<Approx_MCurvesToBSpCurve>  >(m,"Approx_MCurvesToBSpCurve",R"#(None)#");
    py::class_<Approx_SameParameter , shared_ptr<Approx_SameParameter>  >(m,"Approx_SameParameter",R"#(Approximation of a PCurve on a surface to make its parameter be the same that the parameter of a given 3d reference curve.)#");
    py::class_<Approx_SweepApproximation , shared_ptr<Approx_SweepApproximation>  >(m,"Approx_SweepApproximation",R"#(Approximation of an Surface S(u,v) (and eventually associate 2d Curves) defined by section's law.)#");
    preregister_template_NCollection_Array1<opencascade::handle<Adaptor3d_Surface>>(m,"Approx_Array1OfAdHSurface");
    preregister_template_NCollection_Array1<gp_GTrsf2d>(m,"Approx_Array1OfGTrsf2d");
    py::class_<Approx_CurvlinFunc ,opencascade::handle<Approx_CurvlinFunc>  , Standard_Transient >(m,"Approx_CurvlinFunc",R"#(defines an abstract curve with curvilinear parametrizationdefines an abstract curve with curvilinear parametrization)#");
    preregister_template_NCollection_Sequence<opencascade::handle<TColStd_HArray1OfReal>>(m,"Approx_SequenceOfHArray1OfReal");
    py::class_<Approx_SweepFunction ,opencascade::handle<Approx_SweepFunction> ,Py_Approx_SweepFunction , Standard_Transient >(m,"Approx_SweepFunction",R"#(defined the function used by SweepApproximation to perform sweeping application.defined the function used by SweepApproximation to perform sweeping application.defined the function used by SweepApproximation to perform sweeping application.)#");
    py::class_<Approx_HArray1OfAdHSurface ,opencascade::handle<Approx_HArray1OfAdHSurface>  , Approx_Array1OfAdHSurface , Standard_Transient >(m,"Approx_HArray1OfAdHSurface",R"#()#");
    py::class_<Approx_HArray1OfGTrsf2d ,opencascade::handle<Approx_HArray1OfGTrsf2d>  , Approx_Array1OfGTrsf2d , Standard_Transient >(m,"Approx_HArray1OfGTrsf2d",R"#()#");

};

// user-defined post-inclusion per module

// user-defined post