1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
|
// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybind11;
// Standard Handle
#include <Standard_Handle.hxx>
// user-defined inclusion per module before includes
// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
// module includes
#include <CPnts_AbscissaPoint.hxx>
#include <CPnts_MyGaussFunction.hxx>
#include <CPnts_MyRootFunction.hxx>
#include <CPnts_RealFunction.hxx>
#include <CPnts_UniformDeflection.hxx>
// template related includes
// user-defined pre
#include "OCP_specific.inc"
// user-defined inclusion per module
// Module definiiton
void register_CPnts_enums(py::module &main_module) {
py::module m = main_module.def_submodule("CPnts", R"#()#");
// user-defined inclusion per module in the body
// enums
//Python trampoline classes
// pre-register typdefs+classes (topologically sorted)
py::class_<CPnts_AbscissaPoint , shared_ptr<CPnts_AbscissaPoint> >(m,"CPnts_AbscissaPoint",R"#(the algorithm computes a point on a curve at a given distance from another point on the curve)#");
py::class_<CPnts_UniformDeflection , shared_ptr<CPnts_UniformDeflection> >(m,"CPnts_UniformDeflection",R"#(This class defines an algorithm to create a set of points (with a given chordal deviation) at the positions of constant deflection of a given parametrized curve or a trimmed circle. The continuity of the curve must be at least C2.)#");
py::class_<CPnts_MyGaussFunction , shared_ptr<CPnts_MyGaussFunction> , math_Function >(m,"CPnts_MyGaussFunction",R"#(for implementation, compute values for Gauss)#");
py::class_<CPnts_MyRootFunction , shared_ptr<CPnts_MyRootFunction> , math_FunctionWithDerivative >(m,"CPnts_MyRootFunction",R"#(Implements a function for the Newton algorithm to find the solution of Integral(F) = L (compute Length and Derivative of the curve for Newton))#");
};
// user-defined post-inclusion per module
// user-defined post
|