File: GCPnts.cpp

package info (click to toggle)
python-ocp 7.8.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 64,724 kB
  • sloc: cpp: 362,337; pascal: 33; python: 23; makefile: 4
file content (636 lines) | stat: -rw-r--r-- 52,774 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636

// std lib related includes
#include <tuple>

// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

namespace py = pybind11;

// Standard Handle
#include <Standard_Handle.hxx>


// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>

// module includes
#include <GCPnts_AbscissaPoint.hxx>
#include <GCPnts_AbscissaType.hxx>
#include <GCPnts_DeflectionType.hxx>
#include <GCPnts_DistFunction.hxx>
#include <GCPnts_DistFunction2d.hxx>
#include <GCPnts_QuasiUniformAbscissa.hxx>
#include <GCPnts_QuasiUniformDeflection.hxx>
#include <GCPnts_TangentialDeflection.hxx>
#include <GCPnts_TCurveTypes.hxx>
#include <GCPnts_UniformAbscissa.hxx>
#include <GCPnts_UniformDeflection.hxx>

// template related includes


// user-defined pre
#include "OCP_specific.inc"

// user-defined inclusion per module

// Module definiiton
void register_GCPnts(py::module &main_module) {


py::module m = static_cast<py::module>(main_module.attr("GCPnts"));
py::object klass;

//Python trampoline classes

// classes

    // Class GCPnts_AbscissaPoint from ./opencascade/GCPnts_AbscissaPoint.hxx
    klass = m.attr("GCPnts_AbscissaPoint");


    // nested enums

    static_cast<py::class_<GCPnts_AbscissaPoint , shared_ptr<GCPnts_AbscissaPoint>  >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const Adaptor3d_Curve &,const Standard_Real,const Standard_Real >()  , py::arg("theC"),  py::arg("theAbscissa"),  py::arg("theU0") )
        .def(py::init< const Standard_Real,const Adaptor3d_Curve &,const Standard_Real,const Standard_Real >()  , py::arg("theTol"),  py::arg("theC"),  py::arg("theAbscissa"),  py::arg("theU0") )
        .def(py::init< const Standard_Real,const Adaptor2d_Curve2d &,const Standard_Real,const Standard_Real >()  , py::arg("theTol"),  py::arg("theC"),  py::arg("theAbscissa"),  py::arg("theU0") )
        .def(py::init< const Adaptor2d_Curve2d &,const Standard_Real,const Standard_Real >()  , py::arg("theC"),  py::arg("theAbscissa"),  py::arg("theU0") )
        .def(py::init< const Adaptor3d_Curve &,const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("theC"),  py::arg("theAbscissa"),  py::arg("theU0"),  py::arg("theUi") )
        .def(py::init< const Adaptor2d_Curve2d &,const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("theC"),  py::arg("theAbscissa"),  py::arg("theU0"),  py::arg("theUi") )
        .def(py::init< const Adaptor3d_Curve &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("theC"),  py::arg("theAbscissa"),  py::arg("theU0"),  py::arg("theUi"),  py::arg("theTol") )
        .def(py::init< const Adaptor2d_Curve2d &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("theC"),  py::arg("theAbscissa"),  py::arg("theU0"),  py::arg("theUi"),  py::arg("theTol") )
    // custom constructors
    // methods
        .def("IsDone",
             (Standard_Boolean (GCPnts_AbscissaPoint::*)() const) static_cast<Standard_Boolean (GCPnts_AbscissaPoint::*)() const>(&GCPnts_AbscissaPoint::IsDone),
             R"#(True if the computation was successful, False otherwise. IsDone is a protection against: - non-convergence of the algorithm - querying the results before computation.)#" 
          )
        .def("Parameter",
             (Standard_Real (GCPnts_AbscissaPoint::*)() const) static_cast<Standard_Real (GCPnts_AbscissaPoint::*)() const>(&GCPnts_AbscissaPoint::Parameter),
             R"#(Returns the parameter on the curve of the point solution of this algorithm. Exceptions StdFail_NotDone if the computation was not successful, or was not done.)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("Length_s",
                    (Standard_Real (*)( const Adaptor3d_Curve &  ) ) static_cast<Standard_Real (*)( const Adaptor3d_Curve &  ) >(&GCPnts_AbscissaPoint::Length),
                    R"#(Computes the length of the 3D Curve.)#"  , py::arg("theC")
          )
        .def_static("Length_s",
                    (Standard_Real (*)( const Adaptor2d_Curve2d &  ) ) static_cast<Standard_Real (*)( const Adaptor2d_Curve2d &  ) >(&GCPnts_AbscissaPoint::Length),
                    R"#(Computes the length of the 2D Curve.)#"  , py::arg("theC")
          )
        .def_static("Length_s",
                    (Standard_Real (*)( const Adaptor3d_Curve & ,  const Standard_Real  ) ) static_cast<Standard_Real (*)( const Adaptor3d_Curve & ,  const Standard_Real  ) >(&GCPnts_AbscissaPoint::Length),
                    R"#(Computes the length of the 3D Curve with the given tolerance.)#"  , py::arg("theC"),  py::arg("theTol")
          )
        .def_static("Length_s",
                    (Standard_Real (*)( const Adaptor2d_Curve2d & ,  const Standard_Real  ) ) static_cast<Standard_Real (*)( const Adaptor2d_Curve2d & ,  const Standard_Real  ) >(&GCPnts_AbscissaPoint::Length),
                    R"#(Computes the length of the 2D Curve with the given tolerance.)#"  , py::arg("theC"),  py::arg("theTol")
          )
        .def_static("Length_s",
                    (Standard_Real (*)( const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<Standard_Real (*)( const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real  ) >(&GCPnts_AbscissaPoint::Length),
                    R"#(Computes the length of the 3D Curve.)#"  , py::arg("theC"),  py::arg("theU1"),  py::arg("theU2")
          )
        .def_static("Length_s",
                    (Standard_Real (*)( const Adaptor2d_Curve2d & ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<Standard_Real (*)( const Adaptor2d_Curve2d & ,  const Standard_Real ,  const Standard_Real  ) >(&GCPnts_AbscissaPoint::Length),
                    R"#(Computes the length of the 2D Curve.)#"  , py::arg("theC"),  py::arg("theU1"),  py::arg("theU2")
          )
        .def_static("Length_s",
                    (Standard_Real (*)( const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<Standard_Real (*)( const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&GCPnts_AbscissaPoint::Length),
                    R"#(Computes the length of the 3D Curve with the given tolerance.)#"  , py::arg("theC"),  py::arg("theU1"),  py::arg("theU2"),  py::arg("theTol")
          )
        .def_static("Length_s",
                    (Standard_Real (*)( const Adaptor2d_Curve2d & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<Standard_Real (*)( const Adaptor2d_Curve2d & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&GCPnts_AbscissaPoint::Length),
                    R"#(Computes the length of the Curve with the given tolerance.)#"  , py::arg("theC"),  py::arg("theU1"),  py::arg("theU2"),  py::arg("theTol")
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GCPnts_DistFunction from ./opencascade/GCPnts_DistFunction.hxx
    klass = m.attr("GCPnts_DistFunction");


    // nested enums

    static_cast<py::class_<GCPnts_DistFunction , shared_ptr<GCPnts_DistFunction>  , math_Function >>(klass)
    // constructors
        .def(py::init< const Adaptor3d_Curve &,const Standard_Real,const Standard_Real >()  , py::arg("theCurve"),  py::arg("U1"),  py::arg("U2") )
    // custom constructors
    // methods
        .def("Value",
             (Standard_Boolean (GCPnts_DistFunction::*)( const Standard_Real ,  Standard_Real &  ) ) static_cast<Standard_Boolean (GCPnts_DistFunction::*)( const Standard_Real ,  Standard_Real &  ) >(&GCPnts_DistFunction::Value),
             R"#(None)#"  , py::arg("X"),  py::arg("F")
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GCPnts_DistFunction2d from ./opencascade/GCPnts_DistFunction2d.hxx
    klass = m.attr("GCPnts_DistFunction2d");


    // nested enums

    static_cast<py::class_<GCPnts_DistFunction2d , shared_ptr<GCPnts_DistFunction2d>  , math_Function >>(klass)
    // constructors
        .def(py::init< const Adaptor2d_Curve2d &,const Standard_Real,const Standard_Real >()  , py::arg("theCurve"),  py::arg("U1"),  py::arg("U2") )
    // custom constructors
    // methods
        .def("Value",
             (Standard_Boolean (GCPnts_DistFunction2d::*)( const Standard_Real ,  Standard_Real &  ) ) static_cast<Standard_Boolean (GCPnts_DistFunction2d::*)( const Standard_Real ,  Standard_Real &  ) >(&GCPnts_DistFunction2d::Value),
             R"#(None)#"  , py::arg("X"),  py::arg("F")
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GCPnts_DistFunction2dMV from ./opencascade/GCPnts_DistFunction2d.hxx
    klass = m.attr("GCPnts_DistFunction2dMV");


    // nested enums

    static_cast<py::class_<GCPnts_DistFunction2dMV , shared_ptr<GCPnts_DistFunction2dMV>  , math_MultipleVarFunction >>(klass)
    // constructors
        .def(py::init< GCPnts_DistFunction2d & >()  , py::arg("theCurvLinDist") )
    // custom constructors
    // methods
        .def("Value",
             (Standard_Boolean (GCPnts_DistFunction2dMV::*)(  const math_VectorBase<double> & ,  Standard_Real &  ) ) static_cast<Standard_Boolean (GCPnts_DistFunction2dMV::*)(  const math_VectorBase<double> & ,  Standard_Real &  ) >(&GCPnts_DistFunction2dMV::Value),
             R"#(None)#"  , py::arg("X"),  py::arg("F")
          )
        .def("NbVariables",
             (Standard_Integer (GCPnts_DistFunction2dMV::*)() const) static_cast<Standard_Integer (GCPnts_DistFunction2dMV::*)() const>(&GCPnts_DistFunction2dMV::NbVariables),
             R"#(None)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GCPnts_DistFunctionMV from ./opencascade/GCPnts_DistFunction.hxx
    klass = m.attr("GCPnts_DistFunctionMV");


    // nested enums

    static_cast<py::class_<GCPnts_DistFunctionMV , shared_ptr<GCPnts_DistFunctionMV>  , math_MultipleVarFunction >>(klass)
    // constructors
        .def(py::init< GCPnts_DistFunction & >()  , py::arg("theCurvLinDist") )
    // custom constructors
    // methods
        .def("Value",
             (Standard_Boolean (GCPnts_DistFunctionMV::*)(  const math_VectorBase<double> & ,  Standard_Real &  ) ) static_cast<Standard_Boolean (GCPnts_DistFunctionMV::*)(  const math_VectorBase<double> & ,  Standard_Real &  ) >(&GCPnts_DistFunctionMV::Value),
             R"#(None)#"  , py::arg("X"),  py::arg("F")
          )
        .def("NbVariables",
             (Standard_Integer (GCPnts_DistFunctionMV::*)() const) static_cast<Standard_Integer (GCPnts_DistFunctionMV::*)() const>(&GCPnts_DistFunctionMV::NbVariables),
             R"#(None)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GCPnts_QuasiUniformAbscissa from ./opencascade/GCPnts_QuasiUniformAbscissa.hxx
    klass = m.attr("GCPnts_QuasiUniformAbscissa");


    // nested enums

    static_cast<py::class_<GCPnts_QuasiUniformAbscissa , shared_ptr<GCPnts_QuasiUniformAbscissa>  >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const Adaptor3d_Curve &,const Standard_Integer >()  , py::arg("theC"),  py::arg("theNbPoints") )
        .def(py::init< const Adaptor3d_Curve &,const Standard_Integer,const Standard_Real,const Standard_Real >()  , py::arg("theC"),  py::arg("theNbPoints"),  py::arg("theU1"),  py::arg("theU2") )
        .def(py::init< const Adaptor2d_Curve2d &,const Standard_Integer >()  , py::arg("theC"),  py::arg("theNbPoints") )
        .def(py::init< const Adaptor2d_Curve2d &,const Standard_Integer,const Standard_Real,const Standard_Real >()  , py::arg("theC"),  py::arg("theNbPoints"),  py::arg("theU1"),  py::arg("theU2") )
    // custom constructors
    // methods
        .def("Initialize",
             (void (GCPnts_QuasiUniformAbscissa::*)( const Adaptor3d_Curve & ,  const Standard_Integer  ) ) static_cast<void (GCPnts_QuasiUniformAbscissa::*)( const Adaptor3d_Curve & ,  const Standard_Integer  ) >(&GCPnts_QuasiUniformAbscissa::Initialize),
             R"#(Initialize the algorithms with 3D curve and target number of points.)#"  , py::arg("theC"),  py::arg("theNbPoints")
          )
        .def("Initialize",
             (void (GCPnts_QuasiUniformAbscissa::*)( const Adaptor3d_Curve & ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (GCPnts_QuasiUniformAbscissa::*)( const Adaptor3d_Curve & ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real  ) >(&GCPnts_QuasiUniformAbscissa::Initialize),
             R"#(Initialize the algorithms with 3D curve, target number of points and curve parameter range.)#"  , py::arg("theC"),  py::arg("theNbPoints"),  py::arg("theU1"),  py::arg("theU2")
          )
        .def("Initialize",
             (void (GCPnts_QuasiUniformAbscissa::*)( const Adaptor2d_Curve2d & ,  const Standard_Integer  ) ) static_cast<void (GCPnts_QuasiUniformAbscissa::*)( const Adaptor2d_Curve2d & ,  const Standard_Integer  ) >(&GCPnts_QuasiUniformAbscissa::Initialize),
             R"#(Initialize the algorithms with 2D curve and target number of points.)#"  , py::arg("theC"),  py::arg("theNbPoints")
          )
        .def("Initialize",
             (void (GCPnts_QuasiUniformAbscissa::*)( const Adaptor2d_Curve2d & ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (GCPnts_QuasiUniformAbscissa::*)( const Adaptor2d_Curve2d & ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real  ) >(&GCPnts_QuasiUniformAbscissa::Initialize),
             R"#(Initialize the algorithms with 2D curve, target number of points and curve parameter range.)#"  , py::arg("theC"),  py::arg("theNbPoints"),  py::arg("theU1"),  py::arg("theU2")
          )
        .def("IsDone",
             (Standard_Boolean (GCPnts_QuasiUniformAbscissa::*)() const) static_cast<Standard_Boolean (GCPnts_QuasiUniformAbscissa::*)() const>(&GCPnts_QuasiUniformAbscissa::IsDone),
             R"#(Returns true if the computation was successful. IsDone is a protection against: - non-convergence of the algorithm - querying the results before computation.)#" 
          )
        .def("NbPoints",
             (Standard_Integer (GCPnts_QuasiUniformAbscissa::*)() const) static_cast<Standard_Integer (GCPnts_QuasiUniformAbscissa::*)() const>(&GCPnts_QuasiUniformAbscissa::NbPoints),
             R"#(Returns the number of points of the distribution computed by this algorithm. This value is either: - the one imposed on the algorithm at the time of construction (or initialization), or - the one computed by the algorithm when the curvilinear distance between two consecutive points of the distribution is imposed on the algorithm at the time of construction (or initialization). Exceptions StdFail_NotDone if this algorithm has not been initialized, or if the computation was not successful.)#" 
          )
        .def("Parameter",
             (Standard_Real (GCPnts_QuasiUniformAbscissa::*)( const Standard_Integer  ) const) static_cast<Standard_Real (GCPnts_QuasiUniformAbscissa::*)( const Standard_Integer  ) const>(&GCPnts_QuasiUniformAbscissa::Parameter),
             R"#(Returns the parameter of the point of index Index in the distribution computed by this algorithm. Warning Index must be greater than or equal to 1, and less than or equal to the number of points of the distribution. However, pay particular attention as this condition is not checked by this function. Exceptions StdFail_NotDone if this algorithm has not been initialized, or if the computation was not successful.)#"  , py::arg("Index")
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GCPnts_QuasiUniformDeflection from ./opencascade/GCPnts_QuasiUniformDeflection.hxx
    klass = m.attr("GCPnts_QuasiUniformDeflection");


    // nested enums

    static_cast<py::class_<GCPnts_QuasiUniformDeflection , shared_ptr<GCPnts_QuasiUniformDeflection>  >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const Adaptor3d_Curve &,const Standard_Real,const GeomAbs_Shape >()  , py::arg("theC"),  py::arg("theDeflection"),  py::arg("theContinuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C1) )
        .def(py::init< const Adaptor2d_Curve2d &,const Standard_Real,const GeomAbs_Shape >()  , py::arg("theC"),  py::arg("theDeflection"),  py::arg("theContinuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C1) )
        .def(py::init< const Adaptor3d_Curve &,const Standard_Real,const Standard_Real,const Standard_Real,const GeomAbs_Shape >()  , py::arg("theC"),  py::arg("theDeflection"),  py::arg("theU1"),  py::arg("theU2"),  py::arg("theContinuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C1) )
        .def(py::init< const Adaptor2d_Curve2d &,const Standard_Real,const Standard_Real,const Standard_Real,const GeomAbs_Shape >()  , py::arg("theC"),  py::arg("theDeflection"),  py::arg("theU1"),  py::arg("theU2"),  py::arg("theContinuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C1) )
    // custom constructors
    // methods
        .def("Initialize",
             (void (GCPnts_QuasiUniformDeflection::*)( const Adaptor3d_Curve & ,  const Standard_Real ,  const GeomAbs_Shape  ) ) static_cast<void (GCPnts_QuasiUniformDeflection::*)( const Adaptor3d_Curve & ,  const Standard_Real ,  const GeomAbs_Shape  ) >(&GCPnts_QuasiUniformDeflection::Initialize),
             R"#(Initialize the algorithms with 3D curve and deflection.)#"  , py::arg("theC"),  py::arg("theDeflection"),  py::arg("theContinuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C1)
          )
        .def("Initialize",
             (void (GCPnts_QuasiUniformDeflection::*)( const Adaptor2d_Curve2d & ,  const Standard_Real ,  const GeomAbs_Shape  ) ) static_cast<void (GCPnts_QuasiUniformDeflection::*)( const Adaptor2d_Curve2d & ,  const Standard_Real ,  const GeomAbs_Shape  ) >(&GCPnts_QuasiUniformDeflection::Initialize),
             R"#(Initialize the algorithms with 2D curve and deflection.)#"  , py::arg("theC"),  py::arg("theDeflection"),  py::arg("theContinuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C1)
          )
        .def("Initialize",
             (void (GCPnts_QuasiUniformDeflection::*)( const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const GeomAbs_Shape  ) ) static_cast<void (GCPnts_QuasiUniformDeflection::*)( const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const GeomAbs_Shape  ) >(&GCPnts_QuasiUniformDeflection::Initialize),
             R"#(Initialize the algorithms with 3D curve, deflection and parameter range.)#"  , py::arg("theC"),  py::arg("theDeflection"),  py::arg("theU1"),  py::arg("theU2"),  py::arg("theContinuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C1)
          )
        .def("Initialize",
             (void (GCPnts_QuasiUniformDeflection::*)( const Adaptor2d_Curve2d & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const GeomAbs_Shape  ) ) static_cast<void (GCPnts_QuasiUniformDeflection::*)( const Adaptor2d_Curve2d & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const GeomAbs_Shape  ) >(&GCPnts_QuasiUniformDeflection::Initialize),
             R"#(Initialize the algorithms with theC, theDeflection, theU1, theU2. This and the above algorithms initialize (or reinitialize) this algorithm and compute a distribution of points: - on the curve theC, or - on the part of curve theC limited by the two parameter values theU1 and theU2, where the deflection resulting from the distributed points is not greater than theDeflection.)#"  , py::arg("theC"),  py::arg("theDeflection"),  py::arg("theU1"),  py::arg("theU2"),  py::arg("theContinuity")=static_cast<const GeomAbs_Shape>(GeomAbs_C1)
          )
        .def("IsDone",
             (Standard_Boolean (GCPnts_QuasiUniformDeflection::*)() const) static_cast<Standard_Boolean (GCPnts_QuasiUniformDeflection::*)() const>(&GCPnts_QuasiUniformDeflection::IsDone),
             R"#(Returns true if the computation was successful. IsDone is a protection against: - non-convergence of the algorithm - querying the results before computation.)#" 
          )
        .def("NbPoints",
             (Standard_Integer (GCPnts_QuasiUniformDeflection::*)() const) static_cast<Standard_Integer (GCPnts_QuasiUniformDeflection::*)() const>(&GCPnts_QuasiUniformDeflection::NbPoints),
             R"#(Returns the number of points of the distribution computed by this algorithm. Exceptions StdFail_NotDone if this algorithm has not been initialized, or if the computation was not successful.)#" 
          )
        .def("Parameter",
             (Standard_Real (GCPnts_QuasiUniformDeflection::*)( const Standard_Integer  ) const) static_cast<Standard_Real (GCPnts_QuasiUniformDeflection::*)( const Standard_Integer  ) const>(&GCPnts_QuasiUniformDeflection::Parameter),
             R"#(Returns the parameter of the point of index Index in the distribution computed by this algorithm. Warning Index must be greater than or equal to 1, and less than or equal to the number of points of the distribution. However, pay particular attention as this condition is not checked by this function. Exceptions StdFail_NotDone if this algorithm has not been initialized, or if the computation was not successful.)#"  , py::arg("Index")
          )
        .def("Value",
             (gp_Pnt (GCPnts_QuasiUniformDeflection::*)( const Standard_Integer  ) const) static_cast<gp_Pnt (GCPnts_QuasiUniformDeflection::*)( const Standard_Integer  ) const>(&GCPnts_QuasiUniformDeflection::Value),
             R"#(Returns the point of index Index in the distribution computed by this algorithm. Warning Index must be greater than or equal to 1, and less than or equal to the number of points of the distribution. However, pay particular attention as this condition is not checked by this function. Exceptions StdFail_NotDone if this algorithm has not been initialized, or if the computation was not successful.)#"  , py::arg("Index")
          )
        .def("Deflection",
             (Standard_Real (GCPnts_QuasiUniformDeflection::*)() const) static_cast<Standard_Real (GCPnts_QuasiUniformDeflection::*)() const>(&GCPnts_QuasiUniformDeflection::Deflection),
             R"#(Returns the deflection between the curve and the polygon resulting from the points of the distribution computed by this algorithm. This is the value given to the algorithm at the time of construction (or initialization). Exceptions StdFail_NotDone if this algorithm has not been initialized, or if the computation was not successful.)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GCPnts_TCurveTypes<Adaptor2d_Curve2d> from ./opencascade/GCPnts_TCurveTypes.hxx
    klass = m.attr("GCPnts_TCurveTypes_Adaptor2d_Curve2d");

    // default constructor
    register_default_constructor<GCPnts_TCurveTypes<Adaptor2d_Curve2d> , shared_ptr<GCPnts_TCurveTypes<Adaptor2d_Curve2d>>>(m,"GCPnts_TCurveTypes_Adaptor2d_Curve2d");

    // nested enums

    static_cast<py::class_<GCPnts_TCurveTypes<Adaptor2d_Curve2d> , shared_ptr<GCPnts_TCurveTypes<Adaptor2d_Curve2d>>  >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GCPnts_TCurveTypes<Adaptor3d_Curve> from ./opencascade/GCPnts_TCurveTypes.hxx
    klass = m.attr("GCPnts_TCurveTypes_Adaptor3d_Curve");

    // default constructor
    register_default_constructor<GCPnts_TCurveTypes<Adaptor3d_Curve> , shared_ptr<GCPnts_TCurveTypes<Adaptor3d_Curve>>>(m,"GCPnts_TCurveTypes_Adaptor3d_Curve");

    // nested enums

    static_cast<py::class_<GCPnts_TCurveTypes<Adaptor3d_Curve> , shared_ptr<GCPnts_TCurveTypes<Adaptor3d_Curve>>  >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GCPnts_TangentialDeflection from ./opencascade/GCPnts_TangentialDeflection.hxx
    klass = m.attr("GCPnts_TangentialDeflection");


    // nested enums

    static_cast<py::class_<GCPnts_TangentialDeflection , shared_ptr<GCPnts_TangentialDeflection>  >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const Adaptor3d_Curve &,const Standard_Real,const Standard_Real,const Standard_Integer,const Standard_Real,const Standard_Real >()  , py::arg("theC"),  py::arg("theAngularDeflection"),  py::arg("theCurvatureDeflection"),  py::arg("theMinimumOfPoints")=static_cast<const Standard_Integer>(2),  py::arg("theUTol")=static_cast<const Standard_Real>(1.0e-9),  py::arg("theMinLen")=static_cast<const Standard_Real>(1.0e-7) )
        .def(py::init< const Adaptor3d_Curve &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Integer,const Standard_Real,const Standard_Real >()  , py::arg("theC"),  py::arg("theFirstParameter"),  py::arg("theLastParameter"),  py::arg("theAngularDeflection"),  py::arg("theCurvatureDeflection"),  py::arg("theMinimumOfPoints")=static_cast<const Standard_Integer>(2),  py::arg("theUTol")=static_cast<const Standard_Real>(1.0e-9),  py::arg("theMinLen")=static_cast<const Standard_Real>(1.0e-7) )
        .def(py::init< const Adaptor2d_Curve2d &,const Standard_Real,const Standard_Real,const Standard_Integer,const Standard_Real,const Standard_Real >()  , py::arg("theC"),  py::arg("theAngularDeflection"),  py::arg("theCurvatureDeflection"),  py::arg("theMinimumOfPoints")=static_cast<const Standard_Integer>(2),  py::arg("theUTol")=static_cast<const Standard_Real>(1.0e-9),  py::arg("theMinLen")=static_cast<const Standard_Real>(1.0e-7) )
        .def(py::init< const Adaptor2d_Curve2d &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Integer,const Standard_Real,const Standard_Real >()  , py::arg("theC"),  py::arg("theFirstParameter"),  py::arg("theLastParameter"),  py::arg("theAngularDeflection"),  py::arg("theCurvatureDeflection"),  py::arg("theMinimumOfPoints")=static_cast<const Standard_Integer>(2),  py::arg("theUTol")=static_cast<const Standard_Real>(1.0e-9),  py::arg("theMinLen")=static_cast<const Standard_Real>(1.0e-7) )
    // custom constructors
    // methods
        .def("Initialize",
             (void (GCPnts_TangentialDeflection::*)( const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (GCPnts_TangentialDeflection::*)( const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real  ) >(&GCPnts_TangentialDeflection::Initialize),
             R"#(Initialize algorithm for 3D curve.)#"  , py::arg("theC"),  py::arg("theAngularDeflection"),  py::arg("theCurvatureDeflection"),  py::arg("theMinimumOfPoints")=static_cast<const Standard_Integer>(2),  py::arg("theUTol")=static_cast<const Standard_Real>(1.0e-9),  py::arg("theMinLen")=static_cast<const Standard_Real>(1.0e-7)
          )
        .def("Initialize",
             (void (GCPnts_TangentialDeflection::*)( const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (GCPnts_TangentialDeflection::*)( const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real  ) >(&GCPnts_TangentialDeflection::Initialize),
             R"#(Initialize algorithm for 3D curve with restricted range.)#"  , py::arg("theC"),  py::arg("theFirstParameter"),  py::arg("theLastParameter"),  py::arg("theAngularDeflection"),  py::arg("theCurvatureDeflection"),  py::arg("theMinimumOfPoints")=static_cast<const Standard_Integer>(2),  py::arg("theUTol")=static_cast<const Standard_Real>(1.0e-9),  py::arg("theMinLen")=static_cast<const Standard_Real>(1.0e-7)
          )
        .def("Initialize",
             (void (GCPnts_TangentialDeflection::*)( const Adaptor2d_Curve2d & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (GCPnts_TangentialDeflection::*)( const Adaptor2d_Curve2d & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real  ) >(&GCPnts_TangentialDeflection::Initialize),
             R"#(Initialize algorithm for 2D curve.)#"  , py::arg("theC"),  py::arg("theAngularDeflection"),  py::arg("theCurvatureDeflection"),  py::arg("theMinimumOfPoints")=static_cast<const Standard_Integer>(2),  py::arg("theUTol")=static_cast<const Standard_Real>(1.0e-9),  py::arg("theMinLen")=static_cast<const Standard_Real>(1.0e-7)
          )
        .def("Initialize",
             (void (GCPnts_TangentialDeflection::*)( const Adaptor2d_Curve2d & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (GCPnts_TangentialDeflection::*)( const Adaptor2d_Curve2d & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real  ) >(&GCPnts_TangentialDeflection::Initialize),
             R"#(Initialize algorithm for 2D curve with restricted range.)#"  , py::arg("theC"),  py::arg("theFirstParameter"),  py::arg("theLastParameter"),  py::arg("theAngularDeflection"),  py::arg("theCurvatureDeflection"),  py::arg("theMinimumOfPoints")=static_cast<const Standard_Integer>(2),  py::arg("theUTol")=static_cast<const Standard_Real>(1.0e-9),  py::arg("theMinLen")=static_cast<const Standard_Real>(1.0e-7)
          )
        .def("AddPoint",
             (Standard_Integer (GCPnts_TangentialDeflection::*)( const gp_Pnt & ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<Standard_Integer (GCPnts_TangentialDeflection::*)( const gp_Pnt & ,  const Standard_Real ,  const Standard_Boolean  ) >(&GCPnts_TangentialDeflection::AddPoint),
             R"#(Add point to already calculated points (or replace existing) Returns index of new added point or founded with parametric tolerance (replaced if theIsReplace is true))#"  , py::arg("thePnt"),  py::arg("theParam"),  py::arg("theIsReplace")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def("NbPoints",
             (Standard_Integer (GCPnts_TangentialDeflection::*)() const) static_cast<Standard_Integer (GCPnts_TangentialDeflection::*)() const>(&GCPnts_TangentialDeflection::NbPoints),
             R"#(None)#" 
          )
        .def("Parameter",
             (Standard_Real (GCPnts_TangentialDeflection::*)( const Standard_Integer  ) const) static_cast<Standard_Real (GCPnts_TangentialDeflection::*)( const Standard_Integer  ) const>(&GCPnts_TangentialDeflection::Parameter),
             R"#(None)#"  , py::arg("I")
          )
        .def("Value",
             (gp_Pnt (GCPnts_TangentialDeflection::*)( const Standard_Integer  ) const) static_cast<gp_Pnt (GCPnts_TangentialDeflection::*)( const Standard_Integer  ) const>(&GCPnts_TangentialDeflection::Value),
             R"#(None)#"  , py::arg("I")
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("ArcAngularStep_s",
                    (Standard_Real (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<Standard_Real (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&GCPnts_TangentialDeflection::ArcAngularStep),
                    R"#(Computes angular step for the arc using the given parameters.)#"  , py::arg("theRadius"),  py::arg("theLinearDeflection"),  py::arg("theAngularDeflection"),  py::arg("theMinLength")
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GCPnts_UniformAbscissa from ./opencascade/GCPnts_UniformAbscissa.hxx
    klass = m.attr("GCPnts_UniformAbscissa");


    // nested enums

    static_cast<py::class_<GCPnts_UniformAbscissa , shared_ptr<GCPnts_UniformAbscissa>  >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const Adaptor3d_Curve &,const Standard_Real,const Standard_Real >()  , py::arg("theC"),  py::arg("theAbscissa"),  py::arg("theToler")=static_cast<const Standard_Real>(- 1) )
        .def(py::init< const Adaptor3d_Curve &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("theC"),  py::arg("theAbscissa"),  py::arg("theU1"),  py::arg("theU2"),  py::arg("theToler")=static_cast<const Standard_Real>(- 1) )
        .def(py::init< const Adaptor3d_Curve &,const Standard_Integer,const Standard_Real >()  , py::arg("theC"),  py::arg("theNbPoints"),  py::arg("theToler")=static_cast<const Standard_Real>(- 1) )
        .def(py::init< const Adaptor3d_Curve &,const Standard_Integer,const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("theC"),  py::arg("theNbPoints"),  py::arg("theU1"),  py::arg("theU2"),  py::arg("theToler")=static_cast<const Standard_Real>(- 1) )
        .def(py::init< const Adaptor2d_Curve2d &,const Standard_Real,const Standard_Real >()  , py::arg("theC"),  py::arg("theAbscissa"),  py::arg("theToler")=static_cast<const Standard_Real>(- 1) )
        .def(py::init< const Adaptor2d_Curve2d &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("theC"),  py::arg("theAbscissa"),  py::arg("theU1"),  py::arg("theU2"),  py::arg("theToler")=static_cast<const Standard_Real>(- 1) )
        .def(py::init< const Adaptor2d_Curve2d &,const Standard_Integer,const Standard_Real >()  , py::arg("theC"),  py::arg("theNbPoints"),  py::arg("theToler")=static_cast<const Standard_Real>(- 1) )
        .def(py::init< const Adaptor2d_Curve2d &,const Standard_Integer,const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("theC"),  py::arg("theNbPoints"),  py::arg("theU1"),  py::arg("theU2"),  py::arg("theToler")=static_cast<const Standard_Real>(- 1) )
    // custom constructors
    // methods
        .def("Initialize",
             (void (GCPnts_UniformAbscissa::*)( const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (GCPnts_UniformAbscissa::*)( const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real  ) >(&GCPnts_UniformAbscissa::Initialize),
             R"#(Initialize the algorithms with 3D curve, Abscissa, and Tolerance.)#"  , py::arg("theC"),  py::arg("theAbscissa"),  py::arg("theToler")=static_cast<const Standard_Real>(- 1)
          )
        .def("Initialize",
             (void (GCPnts_UniformAbscissa::*)( const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (GCPnts_UniformAbscissa::*)( const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&GCPnts_UniformAbscissa::Initialize),
             R"#(Initialize the algorithms with 3D curve, Abscissa, Tolerance, and parameter range.)#"  , py::arg("theC"),  py::arg("theAbscissa"),  py::arg("theU1"),  py::arg("theU2"),  py::arg("theToler")=static_cast<const Standard_Real>(- 1)
          )
        .def("Initialize",
             (void (GCPnts_UniformAbscissa::*)( const Adaptor3d_Curve & ,  const Standard_Integer ,  const Standard_Real  ) ) static_cast<void (GCPnts_UniformAbscissa::*)( const Adaptor3d_Curve & ,  const Standard_Integer ,  const Standard_Real  ) >(&GCPnts_UniformAbscissa::Initialize),
             R"#(Initialize the algorithms with 3D curve, number of points, and Tolerance.)#"  , py::arg("theC"),  py::arg("theNbPoints"),  py::arg("theToler")=static_cast<const Standard_Real>(- 1)
          )
        .def("Initialize",
             (void (GCPnts_UniformAbscissa::*)( const Adaptor3d_Curve & ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (GCPnts_UniformAbscissa::*)( const Adaptor3d_Curve & ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&GCPnts_UniformAbscissa::Initialize),
             R"#(Initialize the algorithms with 3D curve, number of points, Tolerance, and parameter range.)#"  , py::arg("theC"),  py::arg("theNbPoints"),  py::arg("theU1"),  py::arg("theU2"),  py::arg("theToler")=static_cast<const Standard_Real>(- 1)
          )
        .def("Initialize",
             (void (GCPnts_UniformAbscissa::*)( const Adaptor2d_Curve2d & ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (GCPnts_UniformAbscissa::*)( const Adaptor2d_Curve2d & ,  const Standard_Real ,  const Standard_Real  ) >(&GCPnts_UniformAbscissa::Initialize),
             R"#(Initialize the algorithms with 2D curve, Abscissa, and Tolerance.)#"  , py::arg("theC"),  py::arg("theAbscissa"),  py::arg("theToler")=static_cast<const Standard_Real>(- 1)
          )
        .def("Initialize",
             (void (GCPnts_UniformAbscissa::*)( const Adaptor2d_Curve2d & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (GCPnts_UniformAbscissa::*)( const Adaptor2d_Curve2d & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&GCPnts_UniformAbscissa::Initialize),
             R"#(Initialize the algorithms with 2D curve, Abscissa, Tolerance, and parameter range.)#"  , py::arg("theC"),  py::arg("theAbscissa"),  py::arg("theU1"),  py::arg("theU2"),  py::arg("theToler")=static_cast<const Standard_Real>(- 1)
          )
        .def("Initialize",
             (void (GCPnts_UniformAbscissa::*)( const Adaptor2d_Curve2d & ,  const Standard_Integer ,  const Standard_Real  ) ) static_cast<void (GCPnts_UniformAbscissa::*)( const Adaptor2d_Curve2d & ,  const Standard_Integer ,  const Standard_Real  ) >(&GCPnts_UniformAbscissa::Initialize),
             R"#(Initialize the algorithms with 2D curve, number of points, and Tolerance.)#"  , py::arg("theC"),  py::arg("theNbPoints"),  py::arg("theToler")=static_cast<const Standard_Real>(- 1)
          )
        .def("Initialize",
             (void (GCPnts_UniformAbscissa::*)( const Adaptor2d_Curve2d & ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (GCPnts_UniformAbscissa::*)( const Adaptor2d_Curve2d & ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&GCPnts_UniformAbscissa::Initialize),
             R"#(Initialize the algorithms with 2D curve, number of points, Tolerance, and parameter range.)#"  , py::arg("theC"),  py::arg("theNbPoints"),  py::arg("theU1"),  py::arg("theU2"),  py::arg("theToler")=static_cast<const Standard_Real>(- 1)
          )
        .def("IsDone",
             (Standard_Boolean (GCPnts_UniformAbscissa::*)() const) static_cast<Standard_Boolean (GCPnts_UniformAbscissa::*)() const>(&GCPnts_UniformAbscissa::IsDone),
             R"#(None)#" 
          )
        .def("NbPoints",
             (Standard_Integer (GCPnts_UniformAbscissa::*)() const) static_cast<Standard_Integer (GCPnts_UniformAbscissa::*)() const>(&GCPnts_UniformAbscissa::NbPoints),
             R"#(None)#" 
          )
        .def("Parameter",
             (Standard_Real (GCPnts_UniformAbscissa::*)( const Standard_Integer  ) const) static_cast<Standard_Real (GCPnts_UniformAbscissa::*)( const Standard_Integer  ) const>(&GCPnts_UniformAbscissa::Parameter),
             R"#(returns the computed Parameter of index <Index>.)#"  , py::arg("Index")
          )
        .def("Abscissa",
             (Standard_Real (GCPnts_UniformAbscissa::*)() const) static_cast<Standard_Real (GCPnts_UniformAbscissa::*)() const>(&GCPnts_UniformAbscissa::Abscissa),
             R"#(Returns the current abscissa, i.e. the distance between two consecutive points.)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class GCPnts_UniformDeflection from ./opencascade/GCPnts_UniformDeflection.hxx
    klass = m.attr("GCPnts_UniformDeflection");


    // nested enums

    static_cast<py::class_<GCPnts_UniformDeflection , shared_ptr<GCPnts_UniformDeflection>  >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const Adaptor3d_Curve &,const Standard_Real,const Standard_Boolean >()  , py::arg("theC"),  py::arg("theDeflection"),  py::arg("theWithControl")=static_cast<const Standard_Boolean>(Standard_True) )
        .def(py::init< const Adaptor2d_Curve2d &,const Standard_Real,const Standard_Boolean >()  , py::arg("theC"),  py::arg("theDeflection"),  py::arg("theWithControl")=static_cast<const Standard_Boolean>(Standard_True) )
        .def(py::init< const Adaptor3d_Curve &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Boolean >()  , py::arg("theC"),  py::arg("theDeflection"),  py::arg("theU1"),  py::arg("theU2"),  py::arg("theWithControl")=static_cast<const Standard_Boolean>(Standard_True) )
        .def(py::init< const Adaptor2d_Curve2d &,const Standard_Real,const Standard_Real,const Standard_Real,const Standard_Boolean >()  , py::arg("theC"),  py::arg("theDeflection"),  py::arg("theU1"),  py::arg("theU2"),  py::arg("theWithControl")=static_cast<const Standard_Boolean>(Standard_True) )
    // custom constructors
    // methods
        .def("Initialize",
             (void (GCPnts_UniformDeflection::*)( const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<void (GCPnts_UniformDeflection::*)( const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Boolean  ) >(&GCPnts_UniformDeflection::Initialize),
             R"#(Initialize the algorithms with 3D curve and deflection.)#"  , py::arg("theC"),  py::arg("theDeflection"),  py::arg("theWithControl")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def("Initialize",
             (void (GCPnts_UniformDeflection::*)( const Adaptor2d_Curve2d & ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<void (GCPnts_UniformDeflection::*)( const Adaptor2d_Curve2d & ,  const Standard_Real ,  const Standard_Boolean  ) >(&GCPnts_UniformDeflection::Initialize),
             R"#(Initialize the algorithms with 2D curve and deflection.)#"  , py::arg("theC"),  py::arg("theDeflection"),  py::arg("theWithControl")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def("Initialize",
             (void (GCPnts_UniformDeflection::*)( const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<void (GCPnts_UniformDeflection::*)( const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean  ) >(&GCPnts_UniformDeflection::Initialize),
             R"#(Initialize the algorithms with 3D curve, deflection, parameter range.)#"  , py::arg("theC"),  py::arg("theDeflection"),  py::arg("theU1"),  py::arg("theU2"),  py::arg("theWithControl")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def("Initialize",
             (void (GCPnts_UniformDeflection::*)( const Adaptor2d_Curve2d & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<void (GCPnts_UniformDeflection::*)( const Adaptor2d_Curve2d & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean  ) >(&GCPnts_UniformDeflection::Initialize),
             R"#(Initialize the algorithms with curve, deflection, parameter range. This and the above methods initialize (or reinitialize) this algorithm and compute a distribution of points: - on the curve theC, or - on the part of curve theC limited by the two parameter values theU1 and theU2, where the maximum distance between theC and the polygon that results from the points of the distribution is not greater than theDeflection. The first point of the distribution is either the origin of curve theC or the point of parameter theU1. The last point of the distribution is either the end point of curve theC or the point of parameter theU2. Intermediate points of the distribution are built using interpolations of segments of the curve limited at the 2nd degree. The construction ensures, in a first step, that the chordal deviation for this interpolation of the curve is less than or equal to theDeflection. However, it does not ensure that the chordal deviation for the curve itself is less than or equal to theDeflection. To do this a check is necessary, which may generate (second step) additional intermediate points. This check is time consuming, and can be avoided by setting theWithControl to false. Note that by default theWithControl is true and check is performed. Use the function IsDone to verify that the computation was successful, the function NbPoints() to obtain the number of points of the computed distribution, and the function Parameter to read the parameter of each point.)#"  , py::arg("theC"),  py::arg("theDeflection"),  py::arg("theU1"),  py::arg("theU2"),  py::arg("theWithControl")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def("IsDone",
             (Standard_Boolean (GCPnts_UniformDeflection::*)() const) static_cast<Standard_Boolean (GCPnts_UniformDeflection::*)() const>(&GCPnts_UniformDeflection::IsDone),
             R"#(Returns true if the computation was successful. IsDone is a protection against: - non-convergence of the algorithm - querying the results before computation.)#" 
          )
        .def("NbPoints",
             (Standard_Integer (GCPnts_UniformDeflection::*)() const) static_cast<Standard_Integer (GCPnts_UniformDeflection::*)() const>(&GCPnts_UniformDeflection::NbPoints),
             R"#(Returns the number of points of the distribution computed by this algorithm. Exceptions StdFail_NotDone if this algorithm has not been initialized, or if the computation was not successful.)#" 
          )
        .def("Parameter",
             (Standard_Real (GCPnts_UniformDeflection::*)( const Standard_Integer  ) const) static_cast<Standard_Real (GCPnts_UniformDeflection::*)( const Standard_Integer  ) const>(&GCPnts_UniformDeflection::Parameter),
             R"#(Returns the parameter of the point of index Index in the distribution computed by this algorithm. Warning Index must be greater than or equal to 1, and less than or equal to the number of points of the distribution. However, pay particular attention as this condition is not checked by this function. Exceptions StdFail_NotDone if this algorithm has not been initialized, or if the computation was not successful.)#"  , py::arg("Index")
          )
        .def("Value",
             (gp_Pnt (GCPnts_UniformDeflection::*)( const Standard_Integer  ) const) static_cast<gp_Pnt (GCPnts_UniformDeflection::*)( const Standard_Integer  ) const>(&GCPnts_UniformDeflection::Value),
             R"#(Returns the point of index Index in the distribution computed by this algorithm. Warning Index must be greater than or equal to 1, and less than or equal to the number of points of the distribution. However, pay particular attention as this condition is not checked by this function. Exceptions StdFAil_NotDone if this algorithm has not been initialized, or if the computation was not successful.)#"  , py::arg("Index")
          )
        .def("Deflection",
             (Standard_Real (GCPnts_UniformDeflection::*)() const) static_cast<Standard_Real (GCPnts_UniformDeflection::*)() const>(&GCPnts_UniformDeflection::Deflection),
             R"#(Returns the deflection between the curve and the polygon resulting from the points of the distribution computed by this algorithm. This value is the one given to the algorithm at the time of construction (or initialization). Exceptions StdFail_NotDone if this algorithm has not been initialized, or if the computation was not successful.)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

// functions
// ./opencascade/GCPnts_AbscissaPoint.hxx
// ./opencascade/GCPnts_AbscissaType.hxx
// ./opencascade/GCPnts_DeflectionType.hxx
// ./opencascade/GCPnts_DistFunction.hxx
// ./opencascade/GCPnts_DistFunction2d.hxx
// ./opencascade/GCPnts_QuasiUniformAbscissa.hxx
// ./opencascade/GCPnts_QuasiUniformDeflection.hxx
// ./opencascade/GCPnts_TCurveTypes.hxx
// ./opencascade/GCPnts_TangentialDeflection.hxx
// ./opencascade/GCPnts_UniformAbscissa.hxx
// ./opencascade/GCPnts_UniformDeflection.hxx

// Additional functions

// operators

// register typdefs


// exceptions

// user-defined post-inclusion per module in the body

};

// user-defined post-inclusion per module

// user-defined post