1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
|
// std lib related includes
#include <tuple>
// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybind11;
// Standard Handle
#include <Standard_Handle.hxx>
// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GccEnt_QualifiedCirc.hxx>
#include <gp_Lin2d.hxx>
#include <GccEnt_QualifiedLin.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GccEnt_QualifiedCirc.hxx>
#include <GccEnt_QualifiedLin.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GccEnt_QualifiedCirc.hxx>
#include <GccEnt_QualifiedLin.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GccInt_Bisec.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GccEnt_QualifiedCirc.hxx>
#include <gp_Lin2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GccEnt_QualifiedCirc.hxx>
#include <gp_Lin2d.hxx>
#include <GccEnt_QualifiedLin.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GccInt_Bisec.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GccInt_Bisec.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GccEnt_QualifiedCirc.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GccEnt_QualifiedCirc.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GccEnt_QualifiedCirc.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Circ2d.hxx>
#include <GccEnt_QualifiedCirc.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <GccInt_Bisec.hxx>
#include <gp_Lin2d.hxx>
#include <gp_Pnt2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
// module includes
#include <GccAna_Circ2d2TanOn.hxx>
#include <GccAna_Circ2d2TanRad.hxx>
#include <GccAna_Circ2d3Tan.hxx>
#include <GccAna_Circ2dBisec.hxx>
#include <GccAna_Circ2dTanCen.hxx>
#include <GccAna_Circ2dTanOnRad.hxx>
#include <GccAna_CircLin2dBisec.hxx>
#include <GccAna_CircPnt2dBisec.hxx>
#include <GccAna_Lin2d2Tan.hxx>
#include <GccAna_Lin2dBisec.hxx>
#include <GccAna_Lin2dTanObl.hxx>
#include <GccAna_Lin2dTanPar.hxx>
#include <GccAna_Lin2dTanPer.hxx>
#include <GccAna_LinPnt2dBisec.hxx>
#include <GccAna_NoSolution.hxx>
#include <GccAna_Pnt2dBisec.hxx>
// template related includes
// user-defined pre
#include "OCP_specific.inc"
// user-defined inclusion per module
// Module definiiton
void register_GccAna(py::module &main_module) {
py::module m = static_cast<py::module>(main_module.attr("GccAna"));
py::object klass;
//Python trampoline classes
// classes
// Class GccAna_Circ2d2TanOn from ./opencascade/GccAna_Circ2d2TanOn.hxx
klass = m.attr("GccAna_Circ2d2TanOn");
// nested enums
static_cast<py::class_<GccAna_Circ2d2TanOn , shared_ptr<GccAna_Circ2d2TanOn> >>(klass)
// constructors
.def(py::init< const GccEnt_QualifiedCirc &,const GccEnt_QualifiedCirc &,const gp_Lin2d &,const Standard_Real >() , py::arg("Qualified1"), py::arg("Qualified2"), py::arg("OnLine"), py::arg("Tolerance") )
.def(py::init< const GccEnt_QualifiedCirc &,const GccEnt_QualifiedLin &,const gp_Lin2d &,const Standard_Real >() , py::arg("Qualified1"), py::arg("Qualified2"), py::arg("OnLine"), py::arg("Tolerance") )
.def(py::init< const GccEnt_QualifiedLin &,const GccEnt_QualifiedLin &,const gp_Lin2d &,const Standard_Real >() , py::arg("Qualified1"), py::arg("Qualified2"), py::arg("OnLine"), py::arg("Tolerance") )
.def(py::init< const GccEnt_QualifiedCirc &,const gp_Pnt2d &,const gp_Lin2d &,const Standard_Real >() , py::arg("Qualified1"), py::arg("Point2"), py::arg("OnLine"), py::arg("Tolerance") )
.def(py::init< const GccEnt_QualifiedLin &,const gp_Pnt2d &,const gp_Lin2d &,const Standard_Real >() , py::arg("Qualified1"), py::arg("Point2"), py::arg("OnLine"), py::arg("Tolerance") )
.def(py::init< const gp_Pnt2d &,const gp_Pnt2d &,const gp_Lin2d &,const Standard_Real >() , py::arg("Point1"), py::arg("Point2"), py::arg("OnLine"), py::arg("Tolerance") )
.def(py::init< const GccEnt_QualifiedCirc &,const GccEnt_QualifiedCirc &,const gp_Circ2d &,const Standard_Real >() , py::arg("Qualified1"), py::arg("Qualified2"), py::arg("OnCirc"), py::arg("Tolerance") )
.def(py::init< const GccEnt_QualifiedCirc &,const GccEnt_QualifiedLin &,const gp_Circ2d &,const Standard_Real >() , py::arg("Qualified1"), py::arg("Qualified2"), py::arg("OnCirc"), py::arg("Tolerance") )
.def(py::init< const GccEnt_QualifiedCirc &,const gp_Pnt2d &,const gp_Circ2d &,const Standard_Real >() , py::arg("Qualified1"), py::arg("Point2"), py::arg("OnCirc"), py::arg("Tolerance") )
.def(py::init< const GccEnt_QualifiedLin &,const GccEnt_QualifiedLin &,const gp_Circ2d &,const Standard_Real >() , py::arg("Qualified1"), py::arg("Qualified2"), py::arg("OnCirc"), py::arg("Tolerance") )
.def(py::init< const GccEnt_QualifiedLin &,const gp_Pnt2d &,const gp_Circ2d &,const Standard_Real >() , py::arg("Qualified1"), py::arg("Point2"), py::arg("OnCirc"), py::arg("Tolerance") )
.def(py::init< const gp_Pnt2d &,const gp_Pnt2d &,const gp_Circ2d &,const Standard_Real >() , py::arg("Point1"), py::arg("Point2"), py::arg("OnCirc"), py::arg("Tolerance") )
// custom constructors
// methods
.def("IsDone",
(Standard_Boolean (GccAna_Circ2d2TanOn::*)() const) static_cast<Standard_Boolean (GccAna_Circ2d2TanOn::*)() const>(&GccAna_Circ2d2TanOn::IsDone),
R"#(Returns true if the construction algorithm does not fail (even if it finds no solution). Note: IsDone protects against a failure arising from a more internal intersection algorithm, which has reached its numeric limits.)#"
)
.def("NbSolutions",
(Standard_Integer (GccAna_Circ2d2TanOn::*)() const) static_cast<Standard_Integer (GccAna_Circ2d2TanOn::*)() const>(&GccAna_Circ2d2TanOn::NbSolutions),
R"#(Returns the number of circles, representing solutions computed by this algorithm. Exceptions StdFail_NotDone if the construction fails.)#"
)
.def("ThisSolution",
(gp_Circ2d (GccAna_Circ2d2TanOn::*)( const Standard_Integer ) const) static_cast<gp_Circ2d (GccAna_Circ2d2TanOn::*)( const Standard_Integer ) const>(&GccAna_Circ2d2TanOn::ThisSolution),
R"#(Returns the solution number Index and raises OutOfRange exception if Index is greater than the number of solutions. Be careful: the Index is only a way to get all the solutions, but is not associated to those outside the context of the algorithm-object. Exceptions Standard_OutOfRange if Index is less than zero or greater than the number of solutions computed by this algorithm. StdFail_NotDone if the construction fails.)#" , py::arg("Index")
)
.def("WhichQualifier",
(void (GccAna_Circ2d2TanOn::*)( const Standard_Integer , GccEnt_Position & , GccEnt_Position & ) const) static_cast<void (GccAna_Circ2d2TanOn::*)( const Standard_Integer , GccEnt_Position & , GccEnt_Position & ) const>(&GccAna_Circ2d2TanOn::WhichQualifier),
R"#(Returns the qualifiers Qualif1 and Qualif2 of the tangency arguments for the solution of index Index computed by this algorithm. The returned qualifiers are: - those specified at the start of construction when the solutions are defined as enclosed, enclosing or outside with respect to the arguments, or - those computed during construction (i.e. enclosed, enclosing or outside) when the solutions are defined as unqualified with respect to the arguments, or - GccEnt_noqualifier if the tangency argument is a point. Exceptions Standard_OutOfRange if Index is less than zero or greater than the number of solutions computed by this algorithm. StdFail_NotDone if the construction fails.)#" , py::arg("Index"), py::arg("Qualif1"), py::arg("Qualif2")
)
.def("IsTheSame1",
(Standard_Boolean (GccAna_Circ2d2TanOn::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (GccAna_Circ2d2TanOn::*)( const Standard_Integer ) const>(&GccAna_Circ2d2TanOn::IsTheSame1),
R"#(True if the solution and the first argument are the same (2 circles). If R1 is the radius of the first argument and Rsol the radius of the solution and dist the distance between the two centers, we concider the two circles are identical if R1+dist-Rsol is less than Tolerance. False in the other cases. Raises OutOfRange if Index is greater than the number of solutions and NotDone if IsDone returns false.)#" , py::arg("Index")
)
.def("IsTheSame2",
(Standard_Boolean (GccAna_Circ2d2TanOn::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (GccAna_Circ2d2TanOn::*)( const Standard_Integer ) const>(&GccAna_Circ2d2TanOn::IsTheSame2),
R"#(True if the solution and the second argument are the same (2 circles). If R2 is the radius of the second argument and Rsol the radius of the solution and dist the distance between the two centers, we concider the two circles are identical if R2+dist-Rsol is less than Tolerance. False in the other cases. Raises OutOfRange if Index is greater than the number of solutions and NotDone if IsDone returns false.)#" , py::arg("Index")
)
// methods using call by reference i.s.o. return
.def("Tangency1",
[]( GccAna_Circ2d2TanOn &self , const Standard_Integer Index,gp_Pnt2d & PntSol ){
Standard_Real ParSol;
Standard_Real ParArg;
self.Tangency1(Index,ParSol,ParArg,PntSol);
return std::make_tuple(ParSol,ParArg); },
R"#(Returns the information about the tangency point between the result number Index and the first argument. ParSol is the intrinsic parameter of the point PntSol on the solution ParArg is the intrinsic parameter of the point PntSol on the first argument. Raises OutOfRange if Index is greater than the number of solutions and NotDone if IsDone returns false.)#" , py::arg("Index"), py::arg("PntSol")
)
.def("Tangency2",
[]( GccAna_Circ2d2TanOn &self , const Standard_Integer Index,gp_Pnt2d & PntSol ){
Standard_Real ParSol;
Standard_Real ParArg;
self.Tangency2(Index,ParSol,ParArg,PntSol);
return std::make_tuple(ParSol,ParArg); },
R"#(Returns the information about the tangency point between the result number Index and the second argument. ParSol is the intrinsic parameter of the point PntSol on the solution. ParArg is the intrinsic parameter of the point PntSol on the second argument. Raises OutOfRange if Index is greater than the number of solutions and NotDone if IsDone returns false.)#" , py::arg("Index"), py::arg("PntSol")
)
.def("CenterOn3",
[]( GccAna_Circ2d2TanOn &self , const Standard_Integer Index,gp_Pnt2d & PntArg ){
Standard_Real ParArg;
self.CenterOn3(Index,ParArg,PntArg);
return std::make_tuple(ParArg); },
R"#(Returns the information about the center (on the curv) of the result number Index and the third argument. ParArg is the intrinsic parameter of the point PntArg on the third argument. Exceptions Standard_OutOfRange if Index is less than zero or greater than the number of solutions computed by this algorithm. StdFail_NotDone if the construction fails.)#" , py::arg("Index"), py::arg("PntArg")
)
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GccAna_Circ2d2TanRad from ./opencascade/GccAna_Circ2d2TanRad.hxx
klass = m.attr("GccAna_Circ2d2TanRad");
// nested enums
static_cast<py::class_<GccAna_Circ2d2TanRad , shared_ptr<GccAna_Circ2d2TanRad> >>(klass)
// constructors
.def(py::init< const GccEnt_QualifiedCirc &,const GccEnt_QualifiedCirc &,const Standard_Real,const Standard_Real >() , py::arg("Qualified1"), py::arg("Qualified2"), py::arg("Radius"), py::arg("Tolerance") )
.def(py::init< const GccEnt_QualifiedCirc &,const GccEnt_QualifiedLin &,const Standard_Real,const Standard_Real >() , py::arg("Qualified1"), py::arg("Qualified2"), py::arg("Radius"), py::arg("Tolerance") )
.def(py::init< const GccEnt_QualifiedCirc &,const gp_Pnt2d &,const Standard_Real,const Standard_Real >() , py::arg("Qualified1"), py::arg("Point2"), py::arg("Radius"), py::arg("Tolerance") )
.def(py::init< const GccEnt_QualifiedLin &,const gp_Pnt2d &,const Standard_Real,const Standard_Real >() , py::arg("Qualified1"), py::arg("Point2"), py::arg("Radius"), py::arg("Tolerance") )
.def(py::init< const GccEnt_QualifiedLin &,const GccEnt_QualifiedLin &,const Standard_Real,const Standard_Real >() , py::arg("Qualified1"), py::arg("Qualified2"), py::arg("Radius"), py::arg("Tolerance") )
.def(py::init< const gp_Pnt2d &,const gp_Pnt2d &,const Standard_Real,const Standard_Real >() , py::arg("Point1"), py::arg("Point2"), py::arg("Radius"), py::arg("Tolerance") )
// custom constructors
// methods
.def("IsDone",
(Standard_Boolean (GccAna_Circ2d2TanRad::*)() const) static_cast<Standard_Boolean (GccAna_Circ2d2TanRad::*)() const>(&GccAna_Circ2d2TanRad::IsDone),
R"#(This method returns True if the algorithm succeeded. Note: IsDone protects against a failure arising from a more internal intersection algorithm, which has reached its numeric limits.)#"
)
.def("NbSolutions",
(Standard_Integer (GccAna_Circ2d2TanRad::*)() const) static_cast<Standard_Integer (GccAna_Circ2d2TanRad::*)() const>(&GccAna_Circ2d2TanRad::NbSolutions),
R"#(This method returns the number of circles, representing solutions computed by this algorithm. Exceptions StdFail_NotDone if the construction fails. of solutions.)#"
)
.def("ThisSolution",
(gp_Circ2d (GccAna_Circ2d2TanRad::*)( const Standard_Integer ) const) static_cast<gp_Circ2d (GccAna_Circ2d2TanRad::*)( const Standard_Integer ) const>(&GccAna_Circ2d2TanRad::ThisSolution),
R"#(Returns the solution number Index. Be careful: the Index is only a way to get all the solutions, but is not associated to those outside the context of the algorithm-object. Raises OutOfRange exception if Index is greater than the number of solutions. It raises NotDone if the construction algorithm did not succeed.)#" , py::arg("Index")
)
.def("WhichQualifier",
(void (GccAna_Circ2d2TanRad::*)( const Standard_Integer , GccEnt_Position & , GccEnt_Position & ) const) static_cast<void (GccAna_Circ2d2TanRad::*)( const Standard_Integer , GccEnt_Position & , GccEnt_Position & ) const>(&GccAna_Circ2d2TanRad::WhichQualifier),
R"#(Returns the information about the qualifiers of the tangency arguments concerning the solution number Index. It returns the real qualifiers (the qualifiers given to the constructor method in case of enclosed, enclosing and outside and the qualifiers computedin case of unqualified).)#" , py::arg("Index"), py::arg("Qualif1"), py::arg("Qualif2")
)
.def("IsTheSame1",
(Standard_Boolean (GccAna_Circ2d2TanRad::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (GccAna_Circ2d2TanRad::*)( const Standard_Integer ) const>(&GccAna_Circ2d2TanRad::IsTheSame1),
R"#(Returns True if the solution number Index is equal to the first argument. Raises OutOfRange if Index is greater than the number of solutions. It raises NotDone if the construction algorithm did not succeed.)#" , py::arg("Index")
)
.def("IsTheSame2",
(Standard_Boolean (GccAna_Circ2d2TanRad::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (GccAna_Circ2d2TanRad::*)( const Standard_Integer ) const>(&GccAna_Circ2d2TanRad::IsTheSame2),
R"#(Returns True if the solution number Index is equal to the second argument. Raises OutOfRange if Index is greater than the number of solutions. It raises NotDone if the construction algorithm did not succeed.)#" , py::arg("Index")
)
// methods using call by reference i.s.o. return
.def("Tangency1",
[]( GccAna_Circ2d2TanRad &self , const Standard_Integer Index,gp_Pnt2d & PntSol ){
Standard_Real ParSol;
Standard_Real ParArg;
self.Tangency1(Index,ParSol,ParArg,PntSol);
return std::make_tuple(ParSol,ParArg); },
R"#(Returns information about the tangency point between the result number Index and the first argument. ParSol is the intrinsic parameter of the point PntSol on the solution. ParArg is the intrinsic parameter of the point PntSol on the first argument. Raises OutOfRange if Index is greater than the number of solutions. It raises NotDone if the construction algorithm did not succeed)#" , py::arg("Index"), py::arg("PntSol")
)
.def("Tangency2",
[]( GccAna_Circ2d2TanRad &self , const Standard_Integer Index,gp_Pnt2d & PntSol ){
Standard_Real ParSol;
Standard_Real ParArg;
self.Tangency2(Index,ParSol,ParArg,PntSol);
return std::make_tuple(ParSol,ParArg); },
R"#(Returns information about the tangency point between the result number Index and the second argument. ParSol is the intrinsic parameter of the point PntSol on the solution. ParArg is the intrinsic parameter of the point PntArg on the second argument. Raises OutOfRange if Index is greater than the number of solutions. It raises NotDone if the construction algorithm did not succeed.)#" , py::arg("Index"), py::arg("PntSol")
)
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GccAna_Circ2d3Tan from ./opencascade/GccAna_Circ2d3Tan.hxx
klass = m.attr("GccAna_Circ2d3Tan");
// nested enums
static_cast<py::class_<GccAna_Circ2d3Tan , shared_ptr<GccAna_Circ2d3Tan> >>(klass)
// constructors
.def(py::init< const GccEnt_QualifiedCirc &,const GccEnt_QualifiedCirc &,const GccEnt_QualifiedCirc &,const Standard_Real >() , py::arg("Qualified1"), py::arg("Qualified2"), py::arg("Qualified3"), py::arg("Tolerance") )
.def(py::init< const GccEnt_QualifiedCirc &,const GccEnt_QualifiedCirc &,const GccEnt_QualifiedLin &,const Standard_Real >() , py::arg("Qualified1"), py::arg("Qualified2"), py::arg("Qualified3"), py::arg("Tolerance") )
.def(py::init< const GccEnt_QualifiedCirc &,const GccEnt_QualifiedLin &,const GccEnt_QualifiedLin &,const Standard_Real >() , py::arg("Qualified1"), py::arg("Qualified2"), py::arg("Qualified3"), py::arg("Tolerance") )
.def(py::init< const GccEnt_QualifiedLin &,const GccEnt_QualifiedLin &,const GccEnt_QualifiedLin &,const Standard_Real >() , py::arg("Qualified1"), py::arg("Qualified2"), py::arg("Qualified3"), py::arg("Tolerance") )
.def(py::init< const GccEnt_QualifiedCirc &,const GccEnt_QualifiedCirc &,const gp_Pnt2d &,const Standard_Real >() , py::arg("Qualified1"), py::arg("Qualified2"), py::arg("Point3"), py::arg("Tolerance") )
.def(py::init< const GccEnt_QualifiedCirc &,const GccEnt_QualifiedLin &,const gp_Pnt2d &,const Standard_Real >() , py::arg("Qualified1"), py::arg("Qualified2"), py::arg("Point3"), py::arg("Tolerance") )
.def(py::init< const GccEnt_QualifiedLin &,const GccEnt_QualifiedLin &,const gp_Pnt2d &,const Standard_Real >() , py::arg("Qualified1"), py::arg("Qualified2"), py::arg("Point3"), py::arg("Tolerance") )
.def(py::init< const GccEnt_QualifiedCirc &,const gp_Pnt2d &,const gp_Pnt2d &,const Standard_Real >() , py::arg("Qualified1"), py::arg("Point2"), py::arg("Point3"), py::arg("Tolerance") )
.def(py::init< const GccEnt_QualifiedLin &,const gp_Pnt2d &,const gp_Pnt2d &,const Standard_Real >() , py::arg("Qualified1"), py::arg("Point2"), py::arg("Point3"), py::arg("Tolerance") )
.def(py::init< const gp_Pnt2d &,const gp_Pnt2d &,const gp_Pnt2d &,const Standard_Real >() , py::arg("Point1"), py::arg("Point2"), py::arg("Point3"), py::arg("Tolerance") )
// custom constructors
// methods
.def("IsDone",
(Standard_Boolean (GccAna_Circ2d3Tan::*)() const) static_cast<Standard_Boolean (GccAna_Circ2d3Tan::*)() const>(&GccAna_Circ2d3Tan::IsDone),
R"#(This method returns True if the construction algorithm succeeded. Note: IsDone protects against a failure arising from a more internal intersection algorithm, which has reached its numeric limits.)#"
)
.def("NbSolutions",
(Standard_Integer (GccAna_Circ2d3Tan::*)() const) static_cast<Standard_Integer (GccAna_Circ2d3Tan::*)() const>(&GccAna_Circ2d3Tan::NbSolutions),
R"#(This method returns the number of solutions. Raises NotDone if the construction algorithm didn't succeed.)#"
)
.def("ThisSolution",
(gp_Circ2d (GccAna_Circ2d3Tan::*)( const Standard_Integer ) const) static_cast<gp_Circ2d (GccAna_Circ2d3Tan::*)( const Standard_Integer ) const>(&GccAna_Circ2d3Tan::ThisSolution),
R"#(Returns the solution number Index and raises OutOfRange exception if Index is greater than the number of solutions. Be careful: the Index is only a way to get all the solutions, but is not associated to those outside the context of the algorithm-object. Raises OutOfRange if Index is greater than the number of solutions. It raises NotDone if the algorithm failed.)#" , py::arg("Index")
)
.def("WhichQualifier",
(void (GccAna_Circ2d3Tan::*)( const Standard_Integer , GccEnt_Position & , GccEnt_Position & , GccEnt_Position & ) const) static_cast<void (GccAna_Circ2d3Tan::*)( const Standard_Integer , GccEnt_Position & , GccEnt_Position & , GccEnt_Position & ) const>(&GccAna_Circ2d3Tan::WhichQualifier),
R"#(Returns the information about the qualifiers of the tangency arguments concerning the solution number Index. It returns the real qualifiers (the qualifiers given to the constructor method in case of enclosed, enclosing and outside and the qualifiers computedin case of unqualified).)#" , py::arg("Index"), py::arg("Qualif1"), py::arg("Qualif2"), py::arg("Qualif3")
)
.def("IsTheSame1",
(Standard_Boolean (GccAna_Circ2d3Tan::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (GccAna_Circ2d3Tan::*)( const Standard_Integer ) const>(&GccAna_Circ2d3Tan::IsTheSame1),
R"#(Returns True if the solution number Index is equal to the first argument. Raises OutOfRange if Index is greater than the number of solutions. It raises NotDone if the algorithm failed.)#" , py::arg("Index")
)
.def("IsTheSame2",
(Standard_Boolean (GccAna_Circ2d3Tan::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (GccAna_Circ2d3Tan::*)( const Standard_Integer ) const>(&GccAna_Circ2d3Tan::IsTheSame2),
R"#(Returns True if the solution number Index is equal to the second argument. Raises OutOfRange Index is greater than the number of solutions. It raises NotDone if the algorithm failed.)#" , py::arg("Index")
)
.def("IsTheSame3",
(Standard_Boolean (GccAna_Circ2d3Tan::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (GccAna_Circ2d3Tan::*)( const Standard_Integer ) const>(&GccAna_Circ2d3Tan::IsTheSame3),
R"#(Returns True if the solution number Index is equal to the third argument. Raises OutOfRange if Index is greater than the number of solutions. It raises NotDone if the algorithm failed.)#" , py::arg("Index")
)
// methods using call by reference i.s.o. return
.def("Tangency1",
[]( GccAna_Circ2d3Tan &self , const Standard_Integer Index,gp_Pnt2d & PntSol ){
Standard_Real ParSol;
Standard_Real ParArg;
self.Tangency1(Index,ParSol,ParArg,PntSol);
return std::make_tuple(ParSol,ParArg); },
R"#(Returns information about the tangency point between the result number Index and the first argument. ParSol is the intrinsic parameter of the point PntSol on the solution curv. ParArg is the intrinsic parameter of the point PntArg on the argument curv. Raises OutOfRange if Index is greater than the number of solutions. It raises NotDone if the algorithm failed.)#" , py::arg("Index"), py::arg("PntSol")
)
.def("Tangency2",
[]( GccAna_Circ2d3Tan &self , const Standard_Integer Index,gp_Pnt2d & PntSol ){
Standard_Real ParSol;
Standard_Real ParArg;
self.Tangency2(Index,ParSol,ParArg,PntSol);
return std::make_tuple(ParSol,ParArg); },
R"#(Returns information about the tangency point between the result number Index and the first argument. ParSol is the intrinsic parameter of the point PntSol on the solution curv. ParArg is the intrinsic parameter of the point Pntsol on the argument curv. Raises OutOfRange if Index is greater than the number of solutions. It raises NotDone if the algorithm failed.)#" , py::arg("Index"), py::arg("PntSol")
)
.def("Tangency3",
[]( GccAna_Circ2d3Tan &self , const Standard_Integer Index,gp_Pnt2d & PntSol ){
Standard_Real ParSol;
Standard_Real ParArg;
self.Tangency3(Index,ParSol,ParArg,PntSol);
return std::make_tuple(ParSol,ParArg); },
R"#(Returns information about the tangency point between the result number Index and the first argument. ParSol is the intrinsic parameter of the point PntSol on the solution curv. ParArg is the intrinsic parameter of the point Pntsol on the argument curv. Raises OutOfRange if Index is greater than the number of solutions. It raises NotDone if the algorithm failed.)#" , py::arg("Index"), py::arg("PntSol")
)
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GccAna_Circ2dBisec from ./opencascade/GccAna_Circ2dBisec.hxx
klass = m.attr("GccAna_Circ2dBisec");
// nested enums
static_cast<py::class_<GccAna_Circ2dBisec , shared_ptr<GccAna_Circ2dBisec> >>(klass)
// constructors
.def(py::init< const gp_Circ2d &,const gp_Circ2d & >() , py::arg("Circ1"), py::arg("Circ2") )
// custom constructors
// methods
.def("IsDone",
(Standard_Boolean (GccAna_Circ2dBisec::*)() const) static_cast<Standard_Boolean (GccAna_Circ2dBisec::*)() const>(&GccAna_Circ2dBisec::IsDone),
R"#(This method returns True if the construction algorithm succeeded.)#"
)
.def("NbSolutions",
(Standard_Integer (GccAna_Circ2dBisec::*)() const) static_cast<Standard_Integer (GccAna_Circ2dBisec::*)() const>(&GccAna_Circ2dBisec::NbSolutions),
R"#(This method returns the number of solutions. Raises NotDone if the construction algorithm didn't succeed.)#"
)
.def("ThisSolution",
(opencascade::handle<GccInt_Bisec> (GccAna_Circ2dBisec::*)( const Standard_Integer ) const) static_cast<opencascade::handle<GccInt_Bisec> (GccAna_Circ2dBisec::*)( const Standard_Integer ) const>(&GccAna_Circ2dBisec::ThisSolution),
R"#(Returns the solution number Index Raises OutOfRange exception if Index is greater than the number of solutions. It raises NotDone if the construction algorithm didn't succeed.)#" , py::arg("Index")
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GccAna_Circ2dTanCen from ./opencascade/GccAna_Circ2dTanCen.hxx
klass = m.attr("GccAna_Circ2dTanCen");
// nested enums
static_cast<py::class_<GccAna_Circ2dTanCen , shared_ptr<GccAna_Circ2dTanCen> >>(klass)
// constructors
.def(py::init< const GccEnt_QualifiedCirc &,const gp_Pnt2d &,const Standard_Real >() , py::arg("Qualified1"), py::arg("Pcenter"), py::arg("Tolerance") )
.def(py::init< const gp_Lin2d &,const gp_Pnt2d & >() , py::arg("Linetan"), py::arg("Pcenter") )
.def(py::init< const gp_Pnt2d &,const gp_Pnt2d & >() , py::arg("Point1"), py::arg("Pcenter") )
// custom constructors
// methods
.def("IsDone",
(Standard_Boolean (GccAna_Circ2dTanCen::*)() const) static_cast<Standard_Boolean (GccAna_Circ2dTanCen::*)() const>(&GccAna_Circ2dTanCen::IsDone),
R"#(This method returns True if the construction algorithm succeeded. Note: IsDone protects against a failure arising from a more internal intersection algorithm, which has reached its numeric limits.)#"
)
.def("NbSolutions",
(Standard_Integer (GccAna_Circ2dTanCen::*)() const) static_cast<Standard_Integer (GccAna_Circ2dTanCen::*)() const>(&GccAna_Circ2dTanCen::NbSolutions),
R"#(Returns the number of circles, representing solutions computed by this algorithm and raises NotDone exception if the algorithm didn't succeed.)#"
)
.def("ThisSolution",
(gp_Circ2d (GccAna_Circ2dTanCen::*)( const Standard_Integer ) const) static_cast<gp_Circ2d (GccAna_Circ2dTanCen::*)( const Standard_Integer ) const>(&GccAna_Circ2dTanCen::ThisSolution),
R"#(Returns the circle, representing the solution number Index and raises OutOfRange exception if Index is greater than the number of solutions. Be careful: the Index is only a way to get all the solutions, but is not associated to these outside the context of the algorithm-object. Raises NotDone if the construction algorithm didn't succeed. It raises OutOfRange if Index is greater than the number of solutions or less than zer)#" , py::arg("Index")
)
.def("WhichQualifier",
(void (GccAna_Circ2dTanCen::*)( const Standard_Integer , GccEnt_Position & ) const) static_cast<void (GccAna_Circ2dTanCen::*)( const Standard_Integer , GccEnt_Position & ) const>(&GccAna_Circ2dTanCen::WhichQualifier),
R"#(Returns the qualifier Qualif1 of the tangency argument for the solution of index Index computed by this algorithm. The returned qualifier is: - that specified at the start of construction when the solutions are defined as enclosed, enclosing or It returns the real qualifiers (the qualifiers given to the constructor method in case of enclosed, enclosing and outside and the qualifiers computedin case of unqualified).)#" , py::arg("Index"), py::arg("Qualif1")
)
.def("IsTheSame1",
(Standard_Boolean (GccAna_Circ2dTanCen::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (GccAna_Circ2dTanCen::*)( const Standard_Integer ) const>(&GccAna_Circ2dTanCen::IsTheSame1),
R"#(Returns True if the solution number Index is equal to the first argument. It raises NotDone if the construction algorithm didn't succeed. It raises OutOfRange if Index is greater than the number of solutions or less than zero.)#" , py::arg("Index")
)
// methods using call by reference i.s.o. return
.def("Tangency1",
[]( GccAna_Circ2dTanCen &self , const Standard_Integer Index,gp_Pnt2d & PntSol ){
Standard_Real ParSol;
Standard_Real ParArg;
self.Tangency1(Index,ParSol,ParArg,PntSol);
return std::make_tuple(ParSol,ParArg); },
R"#(Returns information about the tangency point between the result number Index and the first argument. ParSol is the intrinsic parameter of the point PntSol on the solution curv. ParArg is the intrinsic parameter of the point PntArg on the argument curv. It raises NotDone if the construction algorithm didn't succeed. It raises OutOfRange if Index is greater than the number of solutions or less than zero.)#" , py::arg("Index"), py::arg("PntSol")
)
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GccAna_Circ2dTanOnRad from ./opencascade/GccAna_Circ2dTanOnRad.hxx
klass = m.attr("GccAna_Circ2dTanOnRad");
// nested enums
static_cast<py::class_<GccAna_Circ2dTanOnRad , shared_ptr<GccAna_Circ2dTanOnRad> >>(klass)
// constructors
.def(py::init< const GccEnt_QualifiedCirc &,const gp_Lin2d &,const Standard_Real,const Standard_Real >() , py::arg("Qualified1"), py::arg("OnLine"), py::arg("Radius"), py::arg("Tolerance") )
.def(py::init< const GccEnt_QualifiedLin &,const gp_Lin2d &,const Standard_Real,const Standard_Real >() , py::arg("Qualified1"), py::arg("OnLine"), py::arg("Radius"), py::arg("Tolerance") )
.def(py::init< const gp_Pnt2d &,const gp_Lin2d &,const Standard_Real,const Standard_Real >() , py::arg("Point1"), py::arg("OnLine"), py::arg("Radius"), py::arg("Tolerance") )
.def(py::init< const GccEnt_QualifiedCirc &,const gp_Circ2d &,const Standard_Real,const Standard_Real >() , py::arg("Qualified1"), py::arg("OnCirc"), py::arg("Radius"), py::arg("Tolerance") )
.def(py::init< const GccEnt_QualifiedLin &,const gp_Circ2d &,const Standard_Real,const Standard_Real >() , py::arg("Qualified1"), py::arg("OnCirc"), py::arg("Radius"), py::arg("Tolerance") )
.def(py::init< const gp_Pnt2d &,const gp_Circ2d &,const Standard_Real,const Standard_Real >() , py::arg("Point1"), py::arg("OnCirc"), py::arg("Radius"), py::arg("Tolerance") )
// custom constructors
// methods
.def("IsDone",
(Standard_Boolean (GccAna_Circ2dTanOnRad::*)() const) static_cast<Standard_Boolean (GccAna_Circ2dTanOnRad::*)() const>(&GccAna_Circ2dTanOnRad::IsDone),
R"#(Returns true if the construction algorithm does not fail (even if it finds no solution). Note: IsDone protects against a failure arising from a more internal intersection algorithm, which has reached its numeric limits.)#"
)
.def("NbSolutions",
(Standard_Integer (GccAna_Circ2dTanOnRad::*)() const) static_cast<Standard_Integer (GccAna_Circ2dTanOnRad::*)() const>(&GccAna_Circ2dTanOnRad::NbSolutions),
R"#(This method returns the number of circles, representing solutions. Raises NotDone if the construction algorithm didn't succeed.)#"
)
.def("ThisSolution",
(gp_Circ2d (GccAna_Circ2dTanOnRad::*)( const Standard_Integer ) const) static_cast<gp_Circ2d (GccAna_Circ2dTanOnRad::*)( const Standard_Integer ) const>(&GccAna_Circ2dTanOnRad::ThisSolution),
R"#(Returns the solution number Index and raises OutOfRange exception if Index is greater than the number of solutions. Be careful: the Index is only a way to get all the solutions, but is not associated to these outside the context of the algorithm-object. Raises NotDone if the construction algorithm didn't succeed. It raises OutOfRange if Index is greater than the number of solutions)#" , py::arg("Index")
)
.def("WhichQualifier",
(void (GccAna_Circ2dTanOnRad::*)( const Standard_Integer , GccEnt_Position & ) const) static_cast<void (GccAna_Circ2dTanOnRad::*)( const Standard_Integer , GccEnt_Position & ) const>(&GccAna_Circ2dTanOnRad::WhichQualifier),
R"#(Returns the qualifier Qualif1 of the tangency argument for the solution of index Index computed by this algorithm. The returned qualifier is: - that specified at the start of construction when the solutions are defined as enclosed, enclosing or outside with respect to the argument, or - that computed during construction (i.e. enclosed, enclosing or outside) when the solutions are defined as unqualified with respect to the argument, or - GccEnt_noqualifier if the tangency argument is a point. Exceptions Standard_OutOfRange if Index is less than zero or greater than the number of solutions computed by this algorithm. StdFail_NotDone if the construction fails.)#" , py::arg("Index"), py::arg("Qualif1")
)
.def("IsTheSame1",
(Standard_Boolean (GccAna_Circ2dTanOnRad::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (GccAna_Circ2dTanOnRad::*)( const Standard_Integer ) const>(&GccAna_Circ2dTanOnRad::IsTheSame1),
R"#(Returns True if the solution number Index is equal to the first argument and False in the other cases. Raises NotDone if the construction algorithm didn't succeed. It raises OutOfRange if Index is greater than the number of solutions.)#" , py::arg("Index")
)
// methods using call by reference i.s.o. return
.def("Tangency1",
[]( GccAna_Circ2dTanOnRad &self , const Standard_Integer Index,gp_Pnt2d & PntSol ){
Standard_Real ParSol;
Standard_Real ParArg;
self.Tangency1(Index,ParSol,ParArg,PntSol);
return std::make_tuple(ParSol,ParArg); },
R"#(Returns information about the tangency point between the result number Index and the first argument. ParSol is the intrinsic parameter of the point on the solution curv. ParArg is the intrinsic parameter of the point on the argument curv. PntSol is the tangency point on the solution curv. PntArg is the tangency point on the argument curv. Raises NotDone if the construction algorithm didn't succeed. It raises OutOfRange if Index is greater than the number of solutions.)#" , py::arg("Index"), py::arg("PntSol")
)
.def("CenterOn3",
[]( GccAna_Circ2dTanOnRad &self , const Standard_Integer Index,gp_Pnt2d & PntSol ){
Standard_Real ParArg;
self.CenterOn3(Index,ParArg,PntSol);
return std::make_tuple(ParArg); },
R"#(Returns information about the center (on the curv) of the result. ParArg is the intrinsic parameter of the point on the argument curv. PntSol is the center point of the solution curv. Raises NotDone if the construction algorithm didn't succeed. It raises OutOfRange if Index is greater than the number of solutions.)#" , py::arg("Index"), py::arg("PntSol")
)
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GccAna_CircLin2dBisec from ./opencascade/GccAna_CircLin2dBisec.hxx
klass = m.attr("GccAna_CircLin2dBisec");
// nested enums
static_cast<py::class_<GccAna_CircLin2dBisec , shared_ptr<GccAna_CircLin2dBisec> >>(klass)
// constructors
.def(py::init< const gp_Circ2d &,const gp_Lin2d & >() , py::arg("Circle"), py::arg("Line") )
// custom constructors
// methods
.def("IsDone",
(Standard_Boolean (GccAna_CircLin2dBisec::*)() const) static_cast<Standard_Boolean (GccAna_CircLin2dBisec::*)() const>(&GccAna_CircLin2dBisec::IsDone),
R"#(Returns true (this construction algorithm never fails).)#"
)
.def("NbSolutions",
(Standard_Integer (GccAna_CircLin2dBisec::*)() const) static_cast<Standard_Integer (GccAna_CircLin2dBisec::*)() const>(&GccAna_CircLin2dBisec::NbSolutions),
R"#(Returns the number of curves, representing solutions computed by this algorithm.)#"
)
.def("ThisSolution",
(opencascade::handle<GccInt_Bisec> (GccAna_CircLin2dBisec::*)( const Standard_Integer ) const) static_cast<opencascade::handle<GccInt_Bisec> (GccAna_CircLin2dBisec::*)( const Standard_Integer ) const>(&GccAna_CircLin2dBisec::ThisSolution),
R"#(Returns the solution number Index and raises OutOfRange exception if Index is greater than the number of solutions Exceptions Standard_OutOfRange if Index is less than zero or greater than the number of solutions computed by this algorithm.)#" , py::arg("Index")
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GccAna_CircPnt2dBisec from ./opencascade/GccAna_CircPnt2dBisec.hxx
klass = m.attr("GccAna_CircPnt2dBisec");
// nested enums
static_cast<py::class_<GccAna_CircPnt2dBisec , shared_ptr<GccAna_CircPnt2dBisec> >>(klass)
// constructors
.def(py::init< const gp_Circ2d &,const gp_Pnt2d & >() , py::arg("Circle1"), py::arg("Point2") )
.def(py::init< const gp_Circ2d &,const gp_Pnt2d &,const Standard_Real >() , py::arg("Circle1"), py::arg("Point2"), py::arg("Tolerance") )
// custom constructors
// methods
.def("IsDone",
(Standard_Boolean (GccAna_CircPnt2dBisec::*)() const) static_cast<Standard_Boolean (GccAna_CircPnt2dBisec::*)() const>(&GccAna_CircPnt2dBisec::IsDone),
R"#(Returns true (this construction algorithm never fails).)#"
)
.def("NbSolutions",
(Standard_Integer (GccAna_CircPnt2dBisec::*)() const) static_cast<Standard_Integer (GccAna_CircPnt2dBisec::*)() const>(&GccAna_CircPnt2dBisec::NbSolutions),
R"#(Returns the number of curves, representing solutions computed by this algorithm.)#"
)
.def("ThisSolution",
(opencascade::handle<GccInt_Bisec> (GccAna_CircPnt2dBisec::*)( const Standard_Integer ) const) static_cast<opencascade::handle<GccInt_Bisec> (GccAna_CircPnt2dBisec::*)( const Standard_Integer ) const>(&GccAna_CircPnt2dBisec::ThisSolution),
R"#(Returns the solution number Index and raises OutOfRange exception if Index is greater than the number of solutions. Exceptions Standard_OutOfRange if Index is less than zero or greater than the number of solutions computed by this algorithm.)#" , py::arg("Index")
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GccAna_Lin2d2Tan from ./opencascade/GccAna_Lin2d2Tan.hxx
klass = m.attr("GccAna_Lin2d2Tan");
// nested enums
static_cast<py::class_<GccAna_Lin2d2Tan , shared_ptr<GccAna_Lin2d2Tan> >>(klass)
// constructors
.def(py::init< const gp_Pnt2d &,const gp_Pnt2d &,const Standard_Real >() , py::arg("ThePoint1"), py::arg("ThePoint2"), py::arg("Tolerance") )
.def(py::init< const GccEnt_QualifiedCirc &,const gp_Pnt2d &,const Standard_Real >() , py::arg("Qualified1"), py::arg("ThePoint"), py::arg("Tolerance") )
.def(py::init< const GccEnt_QualifiedCirc &,const GccEnt_QualifiedCirc &,const Standard_Real >() , py::arg("Qualified1"), py::arg("Qualified2"), py::arg("Tolerance") )
// custom constructors
// methods
.def("IsDone",
(Standard_Boolean (GccAna_Lin2d2Tan::*)() const) static_cast<Standard_Boolean (GccAna_Lin2d2Tan::*)() const>(&GccAna_Lin2d2Tan::IsDone),
R"#(This method returns true when there is a solution and false in the other cases.)#"
)
.def("NbSolutions",
(Standard_Integer (GccAna_Lin2d2Tan::*)() const) static_cast<Standard_Integer (GccAna_Lin2d2Tan::*)() const>(&GccAna_Lin2d2Tan::NbSolutions),
R"#(This method returns the number of solutions. Raises NotDone if the construction algorithm didn't succeed.)#"
)
.def("ThisSolution",
(gp_Lin2d (GccAna_Lin2d2Tan::*)( const Standard_Integer ) const) static_cast<gp_Lin2d (GccAna_Lin2d2Tan::*)( const Standard_Integer ) const>(&GccAna_Lin2d2Tan::ThisSolution),
R"#(Returns the solution number Index and raises OutOfRange exception if Index is greater than the number of solutions. Be careful: the Index is only a way to get all the solutions, but is not associated to these outside the context of the algorithm-object. Raises OutOfRange is raised if Index is greater than the number of solutions. It raises NotDone if the algorithm failed.)#" , py::arg("Index")
)
.def("WhichQualifier",
(void (GccAna_Lin2d2Tan::*)( const Standard_Integer , GccEnt_Position & , GccEnt_Position & ) const) static_cast<void (GccAna_Lin2d2Tan::*)( const Standard_Integer , GccEnt_Position & , GccEnt_Position & ) const>(&GccAna_Lin2d2Tan::WhichQualifier),
R"#(Returns the qualifiers Qualif1 and Qualif2 of the tangency arguments for the solution of index Index computed by this algorithm. The returned qualifiers are: - those specified at the start of construction when the solutions are defined as enclosing or outside with respect to the arguments, or - those computed during construction (i.e. enclosing or outside) when the solutions are defined as unqualified with respect to the arguments, or - GccEnt_noqualifier if the tangency argument is a point. Exceptions Standard_OutOfRange if Index is less than zero or greater than the number of solutions computed by this algorithm. StdFail_NotDone if the construction fails.)#" , py::arg("Index"), py::arg("Qualif1"), py::arg("Qualif2")
)
// methods using call by reference i.s.o. return
.def("Tangency1",
[]( GccAna_Lin2d2Tan &self , const Standard_Integer Index,gp_Pnt2d & PntSol ){
Standard_Real ParSol;
Standard_Real ParArg;
self.Tangency1(Index,ParSol,ParArg,PntSol);
return std::make_tuple(ParSol,ParArg); },
R"#(Returns information about the tangency point between the result number Index and the first argument. ParSol is the intrinsic parameter of the point PntSol on the solution curv. ParArg is the intrinsic parameter of the point PntSol on the argument curv. Raises OutOfRange is raised if Index is greater than the number of solutions. It raises NotDone if the algorithm failed.)#" , py::arg("Index"), py::arg("PntSol")
)
.def("Tangency2",
[]( GccAna_Lin2d2Tan &self , const Standard_Integer Index,gp_Pnt2d & PntSol ){
Standard_Real ParSol;
Standard_Real ParArg;
self.Tangency2(Index,ParSol,ParArg,PntSol);
return std::make_tuple(ParSol,ParArg); },
R"#(Returns information about the tangency point between the result number Index and the second argument. ParSol is the intrinsic parameter of the point ParSol on the solution curv. ParArg is the intrinsic parameter of the point PntSol on the argument curv. Raises OutOfRange is raised if Index is greater than the number of solutions. It raises NotDone if the algorithm failed.)#" , py::arg("Index"), py::arg("PntSol")
)
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GccAna_Lin2dBisec from ./opencascade/GccAna_Lin2dBisec.hxx
klass = m.attr("GccAna_Lin2dBisec");
// nested enums
static_cast<py::class_<GccAna_Lin2dBisec , shared_ptr<GccAna_Lin2dBisec> >>(klass)
// constructors
.def(py::init< const gp_Lin2d &,const gp_Lin2d & >() , py::arg("Lin1"), py::arg("Lin2") )
// custom constructors
// methods
.def("IsDone",
(Standard_Boolean (GccAna_Lin2dBisec::*)() const) static_cast<Standard_Boolean (GccAna_Lin2dBisec::*)() const>(&GccAna_Lin2dBisec::IsDone),
R"#(Returns True when the algorithm succeeded.)#"
)
.def("NbSolutions",
(Standard_Integer (GccAna_Lin2dBisec::*)() const) static_cast<Standard_Integer (GccAna_Lin2dBisec::*)() const>(&GccAna_Lin2dBisec::NbSolutions),
R"#(Returns the number of solutions and raise NotDone if the constructor wasn't called before.)#"
)
.def("ThisSolution",
(gp_Lin2d (GccAna_Lin2dBisec::*)( const Standard_Integer ) const) static_cast<gp_Lin2d (GccAna_Lin2dBisec::*)( const Standard_Integer ) const>(&GccAna_Lin2dBisec::ThisSolution),
R"#(Returns the solution number Index . The first solution is the inside one and the second is the outside one. For the first solution the direction is D1+D2 (D1 is the direction of the first argument and D2 the direction of the second argument). For the second solution the direction is D1-D2. Raises NotDone if the construction algorithm didn't succeed. It raises OutOfRange if Index is greater than the number of solutions.)#" , py::arg("Index")
)
// methods using call by reference i.s.o. return
.def("Intersection1",
[]( GccAna_Lin2dBisec &self , const Standard_Integer Index,gp_Pnt2d & PntSol ){
Standard_Real ParSol;
Standard_Real ParArg;
self.Intersection1(Index,ParSol,ParArg,PntSol);
return std::make_tuple(ParSol,ParArg); },
R"#(Returns information about the intersection point between the result number Index and the first argument. Raises NotDone if the construction algorithm didn't succeed. It raises OutOfRange if Index is greater than the number of solutions.)#" , py::arg("Index"), py::arg("PntSol")
)
.def("Intersection2",
[]( GccAna_Lin2dBisec &self , const Standard_Integer Index,gp_Pnt2d & PntSol ){
Standard_Real ParSol;
Standard_Real ParArg;
self.Intersection2(Index,ParSol,ParArg,PntSol);
return std::make_tuple(ParSol,ParArg); },
R"#(Returns information about the intersection point between the result number Index and the second argument. Raises NotDone if the construction algorithm didn't succeed. It raises OutOfRange if Index is greater than the number of solutions.)#" , py::arg("Index"), py::arg("PntSol")
)
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GccAna_Lin2dTanObl from ./opencascade/GccAna_Lin2dTanObl.hxx
klass = m.attr("GccAna_Lin2dTanObl");
// nested enums
static_cast<py::class_<GccAna_Lin2dTanObl , shared_ptr<GccAna_Lin2dTanObl> >>(klass)
// constructors
.def(py::init< const gp_Pnt2d &,const gp_Lin2d &,const Standard_Real >() , py::arg("ThePoint"), py::arg("TheLine"), py::arg("TheAngle") )
.def(py::init< const GccEnt_QualifiedCirc &,const gp_Lin2d &,const Standard_Real >() , py::arg("Qualified1"), py::arg("TheLine"), py::arg("TheAngle") )
// custom constructors
// methods
.def("IsDone",
(Standard_Boolean (GccAna_Lin2dTanObl::*)() const) static_cast<Standard_Boolean (GccAna_Lin2dTanObl::*)() const>(&GccAna_Lin2dTanObl::IsDone),
R"#(Returns True if the algorithm succeeded. Note: IsDone protects against a failure arising from a more internal intersection algorithm, which has reached its numeric limits.)#"
)
.def("NbSolutions",
(Standard_Integer (GccAna_Lin2dTanObl::*)() const) static_cast<Standard_Integer (GccAna_Lin2dTanObl::*)() const>(&GccAna_Lin2dTanObl::NbSolutions),
R"#(Returns the number of of lines, representing solutions computed by this algorithm. Raises NotDone if the construction algorithm didn't succeed.)#"
)
.def("ThisSolution",
(gp_Lin2d (GccAna_Lin2dTanObl::*)( const Standard_Integer ) const) static_cast<gp_Lin2d (GccAna_Lin2dTanObl::*)( const Standard_Integer ) const>(&GccAna_Lin2dTanObl::ThisSolution),
R"#(Returns the solution number Index. Be careful: the Index is only a way to get all the solutions, but is not associated to these outside the context of the algorithm-object. raises NotDone if the construction algorithm didn't succeed. It raises OutOfRange if Index is greater than the number of solutions.)#" , py::arg("Index")
)
.def("WhichQualifier",
(void (GccAna_Lin2dTanObl::*)( const Standard_Integer , GccEnt_Position & ) const) static_cast<void (GccAna_Lin2dTanObl::*)( const Standard_Integer , GccEnt_Position & ) const>(&GccAna_Lin2dTanObl::WhichQualifier),
R"#(Returns the qualifier Qualif1 of the tangency argument for the solution of index Index computed by this algorithm. The returned qualifier is: - that specified at the start of construction when the solutions are defined as enclosing or outside with respect to the argument, or - that computed during construction (i.e. enclosing or outside) when the solutions are defined as unqualified with respect to the argument, or - GccEnt_noqualifier if the tangency argument is a point. Exceptions Standard_OutOfRange if Index is less than zero or greater than the number of solutions computed by this algorithm. StdFail_NotDone if the construction fails.)#" , py::arg("Index"), py::arg("Qualif1")
)
// methods using call by reference i.s.o. return
.def("Tangency1",
[]( GccAna_Lin2dTanObl &self , const Standard_Integer Index,gp_Pnt2d & PntSol ){
Standard_Real ParSol;
Standard_Real ParArg;
self.Tangency1(Index,ParSol,ParArg,PntSol);
return std::make_tuple(ParSol,ParArg); },
R"#(Returns information about the tangency point between the result number Index and the first argument. ParSol is the intrinsic parameter of the point ParSol on the solution curv. ParArg is the intrinsic parameter of the point ParArg on the argument curv. Raises NotDone if the construction algorithm didn't succeed. It raises OutOfRange if Index is greater than the number of solutions.)#" , py::arg("Index"), py::arg("PntSol")
)
.def("Intersection2",
[]( GccAna_Lin2dTanObl &self , const Standard_Integer Index,gp_Pnt2d & PntSol ){
Standard_Real ParSol;
Standard_Real ParArg;
self.Intersection2(Index,ParSol,ParArg,PntSol);
return std::make_tuple(ParSol,ParArg); },
R"#(Returns information about the intersection between the result number Index and the third argument. Raises NotDone if the construction algorithm didn't succeed. It raises OutOfRange if Index is greater than the number of solutions.)#" , py::arg("Index"), py::arg("PntSol")
)
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GccAna_Lin2dTanPar from ./opencascade/GccAna_Lin2dTanPar.hxx
klass = m.attr("GccAna_Lin2dTanPar");
// nested enums
static_cast<py::class_<GccAna_Lin2dTanPar , shared_ptr<GccAna_Lin2dTanPar> >>(klass)
// constructors
.def(py::init< const gp_Pnt2d &,const gp_Lin2d & >() , py::arg("ThePoint"), py::arg("Lin1") )
.def(py::init< const GccEnt_QualifiedCirc &,const gp_Lin2d & >() , py::arg("Qualified1"), py::arg("Lin1") )
// custom constructors
// methods
.def("IsDone",
(Standard_Boolean (GccAna_Lin2dTanPar::*)() const) static_cast<Standard_Boolean (GccAna_Lin2dTanPar::*)() const>(&GccAna_Lin2dTanPar::IsDone),
R"#(Returns True if the algorithm succeeded.)#"
)
.def("NbSolutions",
(Standard_Integer (GccAna_Lin2dTanPar::*)() const) static_cast<Standard_Integer (GccAna_Lin2dTanPar::*)() const>(&GccAna_Lin2dTanPar::NbSolutions),
R"#(Returns the number of solutions. Raises NotDone if the construction algorithm didn't succeed.)#"
)
.def("ThisSolution",
(gp_Lin2d (GccAna_Lin2dTanPar::*)( const Standard_Integer ) const) static_cast<gp_Lin2d (GccAna_Lin2dTanPar::*)( const Standard_Integer ) const>(&GccAna_Lin2dTanPar::ThisSolution),
R"#(Returns the solution number Index and raises OutOfRange exception if Index is greater than the number of solutions. Be careful: the Index is only a way to get all the solutions, but is not associated to those outside the context of the algorithm-object. raises NotDone if the construction algorithm didn't succeed. It raises OutOfRange if Index is greater than the number of solutions.)#" , py::arg("Index")
)
.def("WhichQualifier",
(void (GccAna_Lin2dTanPar::*)( const Standard_Integer , GccEnt_Position & ) const) static_cast<void (GccAna_Lin2dTanPar::*)( const Standard_Integer , GccEnt_Position & ) const>(&GccAna_Lin2dTanPar::WhichQualifier),
R"#(Returns the information about the qualifiers of the tangency arguments concerning the solution number Index. It returns the real qualifiers (the qualifiers given to the constructor method in case of enclosed, enclosing and outside and the qualifiers computed in case of unqualified). Raises NotDone if the construction algorithm didn't succeed. It raises OutOfRange if Index is greater than the number of solutions.)#" , py::arg("Index"), py::arg("Qualif1")
)
// methods using call by reference i.s.o. return
.def("Tangency1",
[]( GccAna_Lin2dTanPar &self , const Standard_Integer Index,gp_Pnt2d & Pnt ){
Standard_Real ParSol;
Standard_Real ParArg;
self.Tangency1(Index,ParSol,ParArg,Pnt);
return std::make_tuple(ParSol,ParArg); },
R"#(Returns information about the tangency point between the result number Index and the first argument. ParSol is the intrinsic parameter of the point on the solution curv. ParArg is the intrinsic parameter of the point on the argument curv. ParArg is equal 0 when the solution is passing through a point. Raises NotDone if the construction algorithm didn't succeed. It raises OutOfRange if Index is greater than the number of solutions.)#" , py::arg("Index"), py::arg("Pnt")
)
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GccAna_Lin2dTanPer from ./opencascade/GccAna_Lin2dTanPer.hxx
klass = m.attr("GccAna_Lin2dTanPer");
// nested enums
static_cast<py::class_<GccAna_Lin2dTanPer , shared_ptr<GccAna_Lin2dTanPer> >>(klass)
// constructors
.def(py::init< const gp_Pnt2d &,const gp_Lin2d & >() , py::arg("ThePnt"), py::arg("TheLin") )
.def(py::init< const gp_Pnt2d &,const gp_Circ2d & >() , py::arg("ThePnt"), py::arg("TheCircle") )
.def(py::init< const GccEnt_QualifiedCirc &,const gp_Lin2d & >() , py::arg("Qualified1"), py::arg("TheLin") )
.def(py::init< const GccEnt_QualifiedCirc &,const gp_Circ2d & >() , py::arg("Qualified1"), py::arg("TheCircle") )
// custom constructors
// methods
.def("IsDone",
(Standard_Boolean (GccAna_Lin2dTanPer::*)() const) static_cast<Standard_Boolean (GccAna_Lin2dTanPer::*)() const>(&GccAna_Lin2dTanPer::IsDone),
R"#(Returns True if the algorithm succeeded.)#"
)
.def("NbSolutions",
(Standard_Integer (GccAna_Lin2dTanPer::*)() const) static_cast<Standard_Integer (GccAna_Lin2dTanPer::*)() const>(&GccAna_Lin2dTanPer::NbSolutions),
R"#(Returns the number of solutions. Raises NotDone if the construction algorithm didn't succeed.)#"
)
.def("WhichQualifier",
(void (GccAna_Lin2dTanPer::*)( const Standard_Integer , GccEnt_Position & ) const) static_cast<void (GccAna_Lin2dTanPer::*)( const Standard_Integer , GccEnt_Position & ) const>(&GccAna_Lin2dTanPer::WhichQualifier),
R"#(Returns the qualifier Qualif1 of the tangency argument for the solution of index Index computed by this algorithm. The returned qualifier is: - that specified at the start of construction when the solutions are defined as enclosing or outside with respect to the argument, or - that computed during construction (i.e. enclosing or outside) when the solutions are defined as unqualified with respect to the argument, or - GccEnt_noqualifier if the tangency argument is a point. Exceptions Standard_OutOfRange if Index is less than zero or greater than the number of solutions computed by this algorithm. StdFail_NotDone if the construction fails.)#" , py::arg("Index"), py::arg("Qualif1")
)
.def("ThisSolution",
(gp_Lin2d (GccAna_Lin2dTanPer::*)( const Standard_Integer ) const) static_cast<gp_Lin2d (GccAna_Lin2dTanPer::*)( const Standard_Integer ) const>(&GccAna_Lin2dTanPer::ThisSolution),
R"#(Returns the solution number Index and raises OutOfRange exception if Index is greater than the number of solutions. Be careful: the Index is only a way to get all the solutions, but is not associated to those outside the context of the algorithm-object. Raises NotDone if the construction algorithm didn't succeed. It raises OutOfRange if Index is greater than the number of solutions.)#" , py::arg("Index")
)
// methods using call by reference i.s.o. return
.def("Tangency1",
[]( GccAna_Lin2dTanPer &self , const Standard_Integer Index,gp_Pnt2d & Pnt ){
Standard_Real ParSol;
Standard_Real ParArg;
self.Tangency1(Index,ParSol,ParArg,Pnt);
return std::make_tuple(ParSol,ParArg); },
R"#(Returns information about the tangency point between the result number Index and the first argument. ParSol is the intrinsic parameter of the point on the solution curv. ParArg is the intrinsic parameter of the point on the argument curv. If the first argument is a point ParArg is equal zero. raises NotDone if the construction algorithm didn't succeed. It raises OutOfRange if Index is greater than the number of solutions.)#" , py::arg("Index"), py::arg("Pnt")
)
.def("Intersection2",
[]( GccAna_Lin2dTanPer &self , const Standard_Integer Index,gp_Pnt2d & PntSol ){
Standard_Real ParSol;
Standard_Real ParArg;
self.Intersection2(Index,ParSol,ParArg,PntSol);
return std::make_tuple(ParSol,ParArg); },
R"#(Returns information about the intersection between the solution number Index and the second argument. It returns the first intersection in a case of Lin2dTanPer which is perpendicular to a circle . ParSol is the intrinsic parameter of the point on the solution curv. ParArg is the intrinsic parameter of the point on the argument curv. Raises NotDone if the construction algorithm didn't succeed. It raises OutOfRange if Index is greater than the number of solutions.)#" , py::arg("Index"), py::arg("PntSol")
)
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GccAna_LinPnt2dBisec from ./opencascade/GccAna_LinPnt2dBisec.hxx
klass = m.attr("GccAna_LinPnt2dBisec");
// nested enums
static_cast<py::class_<GccAna_LinPnt2dBisec , shared_ptr<GccAna_LinPnt2dBisec> >>(klass)
// constructors
.def(py::init< const gp_Lin2d &,const gp_Pnt2d & >() , py::arg("Line1"), py::arg("Point2") )
// custom constructors
// methods
.def("IsDone",
(Standard_Boolean (GccAna_LinPnt2dBisec::*)() const) static_cast<Standard_Boolean (GccAna_LinPnt2dBisec::*)() const>(&GccAna_LinPnt2dBisec::IsDone),
R"#(Returns True if the algorithm succeeded.)#"
)
.def("ThisSolution",
(opencascade::handle<GccInt_Bisec> (GccAna_LinPnt2dBisec::*)() const) static_cast<opencascade::handle<GccInt_Bisec> (GccAna_LinPnt2dBisec::*)() const>(&GccAna_LinPnt2dBisec::ThisSolution),
R"#(Returns the number of solutions. It raises NotDone if the construction algorithm didn't succeed.)#"
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class GccAna_Pnt2dBisec from ./opencascade/GccAna_Pnt2dBisec.hxx
klass = m.attr("GccAna_Pnt2dBisec");
// nested enums
static_cast<py::class_<GccAna_Pnt2dBisec , shared_ptr<GccAna_Pnt2dBisec> >>(klass)
// constructors
.def(py::init< const gp_Pnt2d &,const gp_Pnt2d & >() , py::arg("Point1"), py::arg("Point2") )
// custom constructors
// methods
.def("IsDone",
(Standard_Boolean (GccAna_Pnt2dBisec::*)() const) static_cast<Standard_Boolean (GccAna_Pnt2dBisec::*)() const>(&GccAna_Pnt2dBisec::IsDone),
R"#(Returns true (this construction algorithm never fails).)#"
)
.def("HasSolution",
(Standard_Boolean (GccAna_Pnt2dBisec::*)() const) static_cast<Standard_Boolean (GccAna_Pnt2dBisec::*)() const>(&GccAna_Pnt2dBisec::HasSolution),
R"#(Returns true if this algorithm has a solution, i.e. if the two points are not coincident.)#"
)
.def("ThisSolution",
(gp_Lin2d (GccAna_Pnt2dBisec::*)() const) static_cast<gp_Lin2d (GccAna_Pnt2dBisec::*)() const>(&GccAna_Pnt2dBisec::ThisSolution),
R"#(Returns a line, representing the solution computed by this algorithm.)#"
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// functions
// ./opencascade/GccAna_Circ2d2TanOn.hxx
// ./opencascade/GccAna_Circ2d2TanRad.hxx
// ./opencascade/GccAna_Circ2d3Tan.hxx
// ./opencascade/GccAna_Circ2dBisec.hxx
// ./opencascade/GccAna_Circ2dTanCen.hxx
// ./opencascade/GccAna_Circ2dTanOnRad.hxx
// ./opencascade/GccAna_CircLin2dBisec.hxx
// ./opencascade/GccAna_CircPnt2dBisec.hxx
// ./opencascade/GccAna_Lin2d2Tan.hxx
// ./opencascade/GccAna_Lin2dBisec.hxx
// ./opencascade/GccAna_Lin2dTanObl.hxx
// ./opencascade/GccAna_Lin2dTanPar.hxx
// ./opencascade/GccAna_Lin2dTanPer.hxx
// ./opencascade/GccAna_LinPnt2dBisec.hxx
// ./opencascade/GccAna_NoSolution.hxx
// ./opencascade/GccAna_Pnt2dBisec.hxx
// Additional functions
// operators
// register typdefs
// exceptions
register_occ_exception<GccAna_NoSolution>(m, "GccAna_NoSolution");
// user-defined post-inclusion per module in the body
};
// user-defined post-inclusion per module
// user-defined post
|