1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
|
// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybind11;
// Standard Handle
#include <Standard_Handle.hxx>
// user-defined inclusion per module before includes
// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <TopoDS_Edge.hxx>
#include <HLRBRep_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BezierCurve.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_CurveTool.hxx>
#include <HLRBRep_TheProjPCurOfCInter.hxx>
#include <HLRBRep_TheCurveLocatorOfTheProjPCurOfCInter.hxx>
#include <HLRBRep_TheLocateExtPCOfTheProjPCurOfCInter.hxx>
#include <HLRBRep_IntConicCurveOfCInter.hxx>
#include <HLRBRep_ThePolygon2dOfTheIntPCurvePCurveOfCInter.hxx>
#include <HLRBRep_TheDistBetweenPCurvesOfTheIntPCurvePCurveOfCInter.hxx>
#include <HLRBRep_ExactIntersectionPointOfTheIntPCurvePCurveOfCInter.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <LProp_BadContinuity.hxx>
#include <LProp_NotDefined.hxx>
#include <HLRBRep_Curve.hxx>
#include <Geom_BSplineCurve.hxx>
#include <HLRAlgo_Projector.hxx>
#include <BRepTopAdaptor_TopolTool.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_AreaLimit.hxx>
#include <HLRBRep_VertexList.hxx>
#include <HLRAlgo_Intersection.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Dir.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_EdgeInterferenceTool.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_Data.hxx>
#include <gp_Dir.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_CurveTool.hxx>
#include <HLRBRep_TheProjPCurOfCInter.hxx>
#include <HLRBRep_TheIntPCurvePCurveOfCInter.hxx>
#include <HLRBRep_ThePolygon2dOfTheIntPCurvePCurveOfCInter.hxx>
#include <HLRAlgo_WiresBlock.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_FaceData.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_Algo.hxx>
#include <HLRBRep_Data.hxx>
#include <HLRBRep_EdgeData.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <HLRBRep_Data.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_CurveTool.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Lin.hxx>
#include <HLRBRep_LineTool.hxx>
#include <HLRBRep_SurfaceTool.hxx>
#include <HLRBRep_ThePolygonOfInterCSurf.hxx>
#include <HLRBRep_ThePolygonToolOfInterCSurf.hxx>
#include <HLRBRep_ThePolyhedronOfInterCSurf.hxx>
#include <HLRBRep_ThePolyhedronToolOfInterCSurf.hxx>
#include <HLRBRep_TheInterferenceOfInterCSurf.hxx>
#include <HLRBRep_TheCSFunctionOfInterCSurf.hxx>
#include <HLRBRep_TheExactInterCSurf.hxx>
#include <HLRBRep_TheQuadCurvExactInterCSurf.hxx>
#include <HLRBRep_TheQuadCurvFuncOfTheQuadCurvExactInterCSurf.hxx>
#include <Bnd_BoundSortBox.hxx>
#include <gp_Circ.hxx>
#include <gp_Elips.hxx>
#include <gp_Parab.hxx>
#include <gp_Hypr.hxx>
#include <IntAna_IntConicQuad.hxx>
#include <Bnd_Box.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <HLRBRep_Data.hxx>
#include <HLRTopoBRep_OutLiner.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Lin.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BezierCurve.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_CurveTool.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_CurveTool.hxx>
#include <HLRAlgo_PolyInternalData.hxx>
#include <HLRAlgo_EdgeStatus.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_PolyAlgo.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <LProp_BadContinuity.hxx>
#include <LProp_NotDefined.hxx>
#include <HLRBRep_SLPropsATool.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRTopoBRep_OutLiner.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <HLRBRep_Data.hxx>
#include <HLRTopoBRep_OutLiner.hxx>
#include <HLRAlgo_Projector.hxx>
#include <TopoDS_Face.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_SurfaceTool.hxx>
#include <HLRBRep_LineTool.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_CurveTool.hxx>
#include <Extrema_POnCurv2d.hxx>
#include <gp_Pnt2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_CurveTool.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_SurfaceTool.hxx>
#include <HLRBRep_LineTool.hxx>
#include <math_FunctionSetRoot.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_CurveTool.hxx>
#include <HLRBRep_TheProjPCurOfCInter.hxx>
#include <HLRBRep_MyImpParToolOfTheIntersectorOfTheIntConicCurveOfCInter.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_CurveTool.hxx>
#include <HLRBRep_TheProjPCurOfCInter.hxx>
#include <HLRBRep_ThePolygon2dOfTheIntPCurvePCurveOfCInter.hxx>
#include <HLRBRep_TheDistBetweenPCurvesOfTheIntPCurvePCurveOfCInter.hxx>
#include <HLRBRep_ExactIntersectionPointOfTheIntPCurvePCurveOfCInter.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_ThePolygonOfInterCSurf.hxx>
#include <HLRBRep_ThePolygonToolOfInterCSurf.hxx>
#include <HLRBRep_ThePolyhedronOfInterCSurf.hxx>
#include <HLRBRep_ThePolyhedronToolOfInterCSurf.hxx>
#include <Bnd_BoundSortBox.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IntCurve_IConicTool.hxx>
#include <HLRBRep_CurveTool.hxx>
#include <HLRBRep_TheProjPCurOfCInter.hxx>
#include <HLRBRep_MyImpParToolOfTheIntersectorOfTheIntConicCurveOfCInter.hxx>
#include <IntRes2d_Domain.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <StdFail_NotDone.hxx>
#include <HLRBRep_CurveTool.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_CurveTool.hxx>
#include <IntRes2d_Domain.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Lin.hxx>
#include <HLRBRep_LineTool.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_SurfaceTool.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_CurveTool.hxx>
#include <HLRBRep_TheCurveLocatorOfTheProjPCurOfCInter.hxx>
#include <HLRBRep_TheLocateExtPCOfTheProjPCurOfCInter.hxx>
#include <HLRBRep_PCLocFOfTheLocateExtPCOfTheProjPCurOfCInter.hxx>
#include <gp_Pnt2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_SurfaceTool.hxx>
#include <gp_Lin.hxx>
#include <HLRBRep_LineTool.hxx>
#include <HLRBRep_TheQuadCurvFuncOfTheQuadCurvExactInterCSurf.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_LineTool.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
// module includes
#include <HLRBRep.hxx>
#include <HLRBRep_Algo.hxx>
#include <HLRBRep_AreaLimit.hxx>
#include <HLRBRep_Array1OfEData.hxx>
#include <HLRBRep_Array1OfFData.hxx>
#include <HLRBRep_BCurveTool.hxx>
#include <HLRBRep_BiPnt2D.hxx>
#include <HLRBRep_BiPoint.hxx>
#include <HLRBRep_BSurfaceTool.hxx>
#include <HLRBRep_CInter.hxx>
#include <HLRBRep_CLProps.hxx>
#include <HLRBRep_CLPropsATool.hxx>
#include <HLRBRep_Curve.hxx>
#include <HLRBRep_CurveTool.hxx>
#include <HLRBRep_Data.hxx>
#include <HLRBRep_EdgeBuilder.hxx>
#include <HLRBRep_EdgeData.hxx>
#include <HLRBRep_EdgeFaceTool.hxx>
#include <HLRBRep_EdgeIList.hxx>
#include <HLRBRep_EdgeInterferenceTool.hxx>
#include <HLRBRep_ExactIntersectionPointOfTheIntPCurvePCurveOfCInter.hxx>
#include <HLRBRep_FaceData.hxx>
#include <HLRBRep_FaceIterator.hxx>
#include <HLRBRep_Hider.hxx>
#include <HLRBRep_HLRToShape.hxx>
#include <HLRBRep_IntConicCurveOfCInter.hxx>
#include <HLRBRep_InterCSurf.hxx>
#include <HLRBRep_InternalAlgo.hxx>
#include <HLRBRep_Intersector.hxx>
#include <HLRBRep_LineTool.hxx>
#include <HLRBRep_ListIteratorOfListOfBPnt2D.hxx>
#include <HLRBRep_ListIteratorOfListOfBPoint.hxx>
#include <HLRBRep_ListOfBPnt2D.hxx>
#include <HLRBRep_ListOfBPoint.hxx>
#include <HLRBRep_MyImpParToolOfTheIntersectorOfTheIntConicCurveOfCInter.hxx>
#include <HLRBRep_PCLocFOfTheLocateExtPCOfTheProjPCurOfCInter.hxx>
#include <HLRBRep_PolyAlgo.hxx>
#include <HLRBRep_PolyHLRToShape.hxx>
#include <HLRBRep_SeqOfShapeBounds.hxx>
#include <HLRBRep_ShapeBounds.hxx>
#include <HLRBRep_ShapeToHLR.hxx>
#include <HLRBRep_SLProps.hxx>
#include <HLRBRep_SLPropsATool.hxx>
#include <HLRBRep_Surface.hxx>
#include <HLRBRep_SurfaceTool.hxx>
#include <HLRBRep_TheCSFunctionOfInterCSurf.hxx>
#include <HLRBRep_TheCurveLocatorOfTheProjPCurOfCInter.hxx>
#include <HLRBRep_TheDistBetweenPCurvesOfTheIntPCurvePCurveOfCInter.hxx>
#include <HLRBRep_TheExactInterCSurf.hxx>
#include <HLRBRep_TheIntConicCurveOfCInter.hxx>
#include <HLRBRep_TheInterferenceOfInterCSurf.hxx>
#include <HLRBRep_TheIntersectorOfTheIntConicCurveOfCInter.hxx>
#include <HLRBRep_TheIntPCurvePCurveOfCInter.hxx>
#include <HLRBRep_TheLocateExtPCOfTheProjPCurOfCInter.hxx>
#include <HLRBRep_ThePolygon2dOfTheIntPCurvePCurveOfCInter.hxx>
#include <HLRBRep_ThePolygonOfInterCSurf.hxx>
#include <HLRBRep_ThePolygonToolOfInterCSurf.hxx>
#include <HLRBRep_ThePolyhedronOfInterCSurf.hxx>
#include <HLRBRep_ThePolyhedronToolOfInterCSurf.hxx>
#include <HLRBRep_TheProjPCurOfCInter.hxx>
#include <HLRBRep_TheQuadCurvExactInterCSurf.hxx>
#include <HLRBRep_TheQuadCurvFuncOfTheQuadCurvExactInterCSurf.hxx>
#include <HLRBRep_TypeOfResultingEdge.hxx>
#include <HLRBRep_VertexList.hxx>
// template related includes
#include "NCollection_tmpl.hxx"
#include "NCollection_tmpl.hxx"
#include "NCollection_tmpl.hxx"
#include "NCollection_tmpl.hxx"
#include "NCollection_tmpl.hxx"
// user-defined pre
#include "OCP_specific.inc"
// user-defined inclusion per module
// Module definiiton
void register_HLRBRep_enums(py::module &main_module) {
py::module m = main_module.def_submodule("HLRBRep", R"#()#");
// user-defined inclusion per module in the body
// enums
py::enum_<HLRBRep_TypeOfResultingEdge>(m, "HLRBRep_TypeOfResultingEdge",R"#(Identifies the type of resulting edge of HLRBRep_Algo)#")
.value("HLRBRep_Undefined",HLRBRep_TypeOfResultingEdge::HLRBRep_Undefined)
.value("HLRBRep_IsoLine",HLRBRep_TypeOfResultingEdge::HLRBRep_IsoLine)
.value("HLRBRep_OutLine",HLRBRep_TypeOfResultingEdge::HLRBRep_OutLine)
.value("HLRBRep_Rg1Line",HLRBRep_TypeOfResultingEdge::HLRBRep_Rg1Line)
.value("HLRBRep_RgNLine",HLRBRep_TypeOfResultingEdge::HLRBRep_RgNLine)
.value("HLRBRep_Sharp",HLRBRep_TypeOfResultingEdge::HLRBRep_Sharp).export_values();
//Python trampoline classes
// pre-register typdefs+classes (topologically sorted)
py::class_<HLRBRep , shared_ptr<HLRBRep> >(m,"HLRBRep",R"#(Hidden Lines Removal algorithms on the BRep DataStructure.)#");
py::class_<HLRBRep_BCurveTool , shared_ptr<HLRBRep_BCurveTool> >(m,"HLRBRep_BCurveTool",R"#(None)#");
py::class_<HLRBRep_BSurfaceTool , shared_ptr<HLRBRep_BSurfaceTool> >(m,"HLRBRep_BSurfaceTool",R"#(None)#");
py::class_<HLRBRep_BiPnt2D , shared_ptr<HLRBRep_BiPnt2D> >(m,"HLRBRep_BiPnt2D",R"#(Contains the colors of a shape.)#");
py::class_<HLRBRep_BiPoint , shared_ptr<HLRBRep_BiPoint> >(m,"HLRBRep_BiPoint",R"#(Contains the colors of a shape.)#");
py::class_<HLRBRep_CLProps , shared_ptr<HLRBRep_CLProps> >(m,"HLRBRep_CLProps",R"#(None)#");
py::class_<HLRBRep_Curve , shared_ptr<HLRBRep_Curve> >(m,"HLRBRep_Curve",R"#(Defines a 2d curve by projection of a 3D curve on a plane with an optional perspective transformation.)#");
py::class_<HLRBRep_CurveTool , shared_ptr<HLRBRep_CurveTool> >(m,"HLRBRep_CurveTool",R"#(None)#");
py::class_<HLRBRep_EdgeBuilder , shared_ptr<HLRBRep_EdgeBuilder> >(m,"HLRBRep_EdgeBuilder",R"#(None)#");
py::class_<HLRBRep_EdgeData , shared_ptr<HLRBRep_EdgeData> >(m,"HLRBRep_EdgeData",R"#(None)#");
py::class_<HLRBRep_EdgeFaceTool , shared_ptr<HLRBRep_EdgeFaceTool> >(m,"HLRBRep_EdgeFaceTool",R"#(The EdgeFaceTool computes the UV coordinates at a given parameter on a Curve and a Surface. It also compute the signed curvature value in a direction at a given u,v point on a surface.)#");
py::class_<HLRBRep_EdgeIList , shared_ptr<HLRBRep_EdgeIList> >(m,"HLRBRep_EdgeIList",R"#(None)#");
py::class_<HLRBRep_EdgeInterferenceTool , shared_ptr<HLRBRep_EdgeInterferenceTool> >(m,"HLRBRep_EdgeInterferenceTool",R"#(Implements the methods required to instantiates the EdgeInterferenceList from HLRAlgo.)#");
py::class_<HLRBRep_ExactIntersectionPointOfTheIntPCurvePCurveOfCInter , shared_ptr<HLRBRep_ExactIntersectionPointOfTheIntPCurvePCurveOfCInter> >(m,"HLRBRep_ExactIntersectionPointOfTheIntPCurvePCurveOfCInter",R"#(None)#");
py::class_<HLRBRep_FaceData , shared_ptr<HLRBRep_FaceData> >(m,"HLRBRep_FaceData",R"#(None)#");
py::class_<HLRBRep_FaceIterator , shared_ptr<HLRBRep_FaceIterator> >(m,"HLRBRep_FaceIterator",R"#(None)#");
py::class_<HLRBRep_HLRToShape , shared_ptr<HLRBRep_HLRToShape> >(m,"HLRBRep_HLRToShape",R"#(A framework for filtering the computation results of an HLRBRep_Algo algorithm by extraction. From the results calculated by the algorithm on a shape, a filter returns the type of edge you want to identify. You can choose any of the following types of output: - visible sharp edges - hidden sharp edges - visible smooth edges - hidden smooth edges - visible sewn edges - hidden sewn edges - visible outline edges - hidden outline edges. - visible isoparameters and - hidden isoparameters. Sharp edges present a C0 continuity (non G1). Smooth edges present a G1 continuity (non G2). Sewn edges present a C2 continuity. The result is composed of 2D edges in the projection plane of the view which the algorithm has worked with. These 2D edges are not included in the data structure of the visualized shape. In order to obtain a complete image, you must combine the shapes given by each of the chosen filters. The construction of the shape does not call a new computation of the algorithm, but only reads its internal results. The methods of this shape are almost identic to those of the HLRBrep_PolyHLRToShape class.)#");
py::class_<HLRBRep_Hider , shared_ptr<HLRBRep_Hider> >(m,"HLRBRep_Hider",R"#(None)#");
py::class_<HLRBRep_Intersector , shared_ptr<HLRBRep_Intersector> >(m,"HLRBRep_Intersector",R"#(The Intersector computes 2D intersections of the projections of 3D curves. It can also computes the intersection of a 3D line and a surface.)#");
py::class_<HLRBRep_LineTool , shared_ptr<HLRBRep_LineTool> >(m,"HLRBRep_LineTool",R"#(The LineTool class provides class methods to access the methodes of the Line.)#");
py::class_<HLRBRep_PolyHLRToShape , shared_ptr<HLRBRep_PolyHLRToShape> >(m,"HLRBRep_PolyHLRToShape",R"#(A framework for filtering the computation results of an HLRBRep_Algo algorithm by extraction. From the results calculated by the algorithm on a shape, a filter returns the type of edge you want to identify. You can choose any of the following types of output: - visible sharp edges - hidden sharp edges - visible smooth edges - hidden smooth edges - visible sewn edges - hidden sewn edges - visible outline edges - hidden outline edges. - visible isoparameters and - hidden isoparameters. Sharp edges present a C0 continuity (non G1). Smooth edges present a G1 continuity (non G2). Sewn edges present a C2 continuity. The result is composed of 2D edges in the projection plane of the view which the algorithm has worked with. These 2D edges are not included in the data structure of the visualized shape. In order to obtain a complete image, you must combine the shapes given by each of the chosen filters. The construction of the shape does not call a new computation of the algorithm, but only reads its internal results.)#");
py::class_<HLRBRep_SLProps , shared_ptr<HLRBRep_SLProps> >(m,"HLRBRep_SLProps",R"#(None)#");
py::class_<HLRBRep_SLPropsATool , shared_ptr<HLRBRep_SLPropsATool> >(m,"HLRBRep_SLPropsATool",R"#(None)#");
py::class_<HLRBRep_ShapeBounds , shared_ptr<HLRBRep_ShapeBounds> >(m,"HLRBRep_ShapeBounds",R"#(Contains a Shape and the bounds of its vertices, edges and faces in the DataStructure.)#");
py::class_<HLRBRep_ShapeToHLR , shared_ptr<HLRBRep_ShapeToHLR> >(m,"HLRBRep_ShapeToHLR",R"#(compute the OutLinedShape of a Shape with an OutLiner, a Projector and create the Data Structure of a Shape.)#");
py::class_<HLRBRep_Surface , shared_ptr<HLRBRep_Surface> >(m,"HLRBRep_Surface",R"#(None)#");
py::class_<HLRBRep_SurfaceTool , shared_ptr<HLRBRep_SurfaceTool> >(m,"HLRBRep_SurfaceTool",R"#(None)#");
py::class_<HLRBRep_TheCurveLocatorOfTheProjPCurOfCInter , shared_ptr<HLRBRep_TheCurveLocatorOfTheProjPCurOfCInter> >(m,"HLRBRep_TheCurveLocatorOfTheProjPCurOfCInter",R"#(None)#");
py::class_<HLRBRep_TheExactInterCSurf , shared_ptr<HLRBRep_TheExactInterCSurf> >(m,"HLRBRep_TheExactInterCSurf",R"#(None)#");
py::class_<HLRBRep_TheLocateExtPCOfTheProjPCurOfCInter , shared_ptr<HLRBRep_TheLocateExtPCOfTheProjPCurOfCInter> >(m,"HLRBRep_TheLocateExtPCOfTheProjPCurOfCInter",R"#(None)#");
py::class_<HLRBRep_ThePolygonOfInterCSurf , shared_ptr<HLRBRep_ThePolygonOfInterCSurf> >(m,"HLRBRep_ThePolygonOfInterCSurf",R"#(None)#");
py::class_<HLRBRep_ThePolygonToolOfInterCSurf , shared_ptr<HLRBRep_ThePolygonToolOfInterCSurf> >(m,"HLRBRep_ThePolygonToolOfInterCSurf",R"#(None)#");
py::class_<HLRBRep_ThePolyhedronOfInterCSurf , shared_ptr<HLRBRep_ThePolyhedronOfInterCSurf> >(m,"HLRBRep_ThePolyhedronOfInterCSurf",R"#(None)#");
py::class_<HLRBRep_ThePolyhedronToolOfInterCSurf , shared_ptr<HLRBRep_ThePolyhedronToolOfInterCSurf> >(m,"HLRBRep_ThePolyhedronToolOfInterCSurf",R"#(None)#");
py::class_<HLRBRep_TheProjPCurOfCInter , shared_ptr<HLRBRep_TheProjPCurOfCInter> >(m,"HLRBRep_TheProjPCurOfCInter",R"#(None)#");
py::class_<HLRBRep_TheQuadCurvExactInterCSurf , shared_ptr<HLRBRep_TheQuadCurvExactInterCSurf> >(m,"HLRBRep_TheQuadCurvExactInterCSurf",R"#(None)#");
py::class_<HLRBRep_VertexList , shared_ptr<HLRBRep_VertexList> >(m,"HLRBRep_VertexList",R"#(None)#");
py::class_<HLRBRep_AreaLimit ,opencascade::handle<HLRBRep_AreaLimit> , Standard_Transient >(m,"HLRBRep_AreaLimit",R"#(The private nested class AreaLimit represents a -- vertex on the Edge with the state on the left and -- the right.The private nested class AreaLimit represents a -- vertex on the Edge with the state on the left and -- the right.The private nested class AreaLimit represents a -- vertex on the Edge with the state on the left and -- the right.)#");
preregister_template_NCollection_Array1<HLRBRep_EdgeData>(m,"HLRBRep_Array1OfEData");
preregister_template_NCollection_Array1<HLRBRep_FaceData>(m,"HLRBRep_Array1OfFData");
py::class_<HLRBRep_CInter , shared_ptr<HLRBRep_CInter> , IntRes2d_Intersection >(m,"HLRBRep_CInter",R"#(None)#");
py::class_<HLRBRep_Data ,opencascade::handle<HLRBRep_Data> , Standard_Transient >(m,"HLRBRep_Data",R"#()#");
py::class_<HLRBRep_IntConicCurveOfCInter , shared_ptr<HLRBRep_IntConicCurveOfCInter> , IntRes2d_Intersection >(m,"HLRBRep_IntConicCurveOfCInter",R"#(None)#");
py::class_<HLRBRep_InterCSurf , shared_ptr<HLRBRep_InterCSurf> , IntCurveSurface_Intersection >(m,"HLRBRep_InterCSurf",R"#(None)#");
py::class_<HLRBRep_InternalAlgo ,opencascade::handle<HLRBRep_InternalAlgo> , Standard_Transient >(m,"HLRBRep_InternalAlgo",R"#()#");
preregister_template_NCollection_List<HLRBRep_BiPnt2D>(m,"HLRBRep_ListOfBPnt2D");
preregister_template_NCollection_List<HLRBRep_BiPoint>(m,"HLRBRep_ListOfBPoint");
py::class_<HLRBRep_MyImpParToolOfTheIntersectorOfTheIntConicCurveOfCInter , shared_ptr<HLRBRep_MyImpParToolOfTheIntersectorOfTheIntConicCurveOfCInter> , math_FunctionWithDerivative >(m,"HLRBRep_MyImpParToolOfTheIntersectorOfTheIntConicCurveOfCInter",R"#(None)#");
py::class_<HLRBRep_PCLocFOfTheLocateExtPCOfTheProjPCurOfCInter , shared_ptr<HLRBRep_PCLocFOfTheLocateExtPCOfTheProjPCurOfCInter> , math_FunctionWithDerivative >(m,"HLRBRep_PCLocFOfTheLocateExtPCOfTheProjPCurOfCInter",R"#(None)#");
py::class_<HLRBRep_PolyAlgo ,opencascade::handle<HLRBRep_PolyAlgo> , Standard_Transient >(m,"HLRBRep_PolyAlgo",R"#(to remove Hidden lines on Shapes with Triangulations. A framework to compute the shape as seen in a projection plane. This is done by calculating the visible and the hidden parts of the shape. HLRBRep_PolyAlgo works with three types of entity: - shapes to be visualized (these shapes must have already been triangulated.) - edges in these shapes (these edges are defined as polygonal lines on the triangulation of the shape, and are the basic entities which will be visualized or hidden), and - triangles in these shapes which hide the edges. HLRBRep_PolyAlgo is based on the principle of comparing each edge of the shape to be visualized with each of the triangles produced by the triangulation of the shape, and calculating the visible and the hidden parts of each edge. For a given projection, HLRBRep_PolyAlgo calculates a set of lines characteristic of the object being represented. It is also used in conjunction with the HLRBRep_PolyHLRToShape extraction utilities, which reconstruct a new, simplified shape from a selection of calculation results. This new shape is made up of edges, which represent the shape visualized in the projection. HLRBRep_PolyAlgo works with a polyhedral simplification of the shape whereas HLRBRep_Algo takes the shape itself into account. When you use HLRBRep_Algo, you obtain an exact result, whereas, when you use HLRBRep_PolyAlgo, you reduce computation time but obtain polygonal segments. An HLRBRep_PolyAlgo object provides a framework for: - defining the point of view - identifying the shape or shapes to be visualized - calculating the outlines - calculating the visible and hidden lines of the shape. Warning - Superimposed lines are not eliminated by this algorithm. - There must be no unfinished objects inside the shape you wish to visualize. - Points are not treated. - Note that this is not the sort of algorithm used in generating shading, which calculates the visible and hidden parts of each face in a shape to be visualized by comparing each face in the shape with every other face in the same shape.to remove Hidden lines on Shapes with Triangulations. A framework to compute the shape as seen in a projection plane. This is done by calculating the visible and the hidden parts of the shape. HLRBRep_PolyAlgo works with three types of entity: - shapes to be visualized (these shapes must have already been triangulated.) - edges in these shapes (these edges are defined as polygonal lines on the triangulation of the shape, and are the basic entities which will be visualized or hidden), and - triangles in these shapes which hide the edges. HLRBRep_PolyAlgo is based on the principle of comparing each edge of the shape to be visualized with each of the triangles produced by the triangulation of the shape, and calculating the visible and the hidden parts of each edge. For a given projection, HLRBRep_PolyAlgo calculates a set of lines characteristic of the object being represented. It is also used in conjunction with the HLRBRep_PolyHLRToShape extraction utilities, which reconstruct a new, simplified shape from a selection of calculation results. This new shape is made up of edges, which represent the shape visualized in the projection. HLRBRep_PolyAlgo works with a polyhedral simplification of the shape whereas HLRBRep_Algo takes the shape itself into account. When you use HLRBRep_Algo, you obtain an exact result, whereas, when you use HLRBRep_PolyAlgo, you reduce computation time but obtain polygonal segments. An HLRBRep_PolyAlgo object provides a framework for: - defining the point of view - identifying the shape or shapes to be visualized - calculating the outlines - calculating the visible and hidden lines of the shape. Warning - Superimposed lines are not eliminated by this algorithm. - There must be no unfinished objects inside the shape you wish to visualize. - Points are not treated. - Note that this is not the sort of algorithm used in generating shading, which calculates the visible and hidden parts of each face in a shape to be visualized by comparing each face in the shape with every other face in the same shape.to remove Hidden lines on Shapes with Triangulations. A framework to compute the shape as seen in a projection plane. This is done by calculating the visible and the hidden parts of the shape. HLRBRep_PolyAlgo works with three types of entity: - shapes to be visualized (these shapes must have already been triangulated.) - edges in these shapes (these edges are defined as polygonal lines on the triangulation of the shape, and are the basic entities which will be visualized or hidden), and - triangles in these shapes which hide the edges. HLRBRep_PolyAlgo is based on the principle of comparing each edge of the shape to be visualized with each of the triangles produced by the triangulation of the shape, and calculating the visible and the hidden parts of each edge. For a given projection, HLRBRep_PolyAlgo calculates a set of lines characteristic of the object being represented. It is also used in conjunction with the HLRBRep_PolyHLRToShape extraction utilities, which reconstruct a new, simplified shape from a selection of calculation results. This new shape is made up of edges, which represent the shape visualized in the projection. HLRBRep_PolyAlgo works with a polyhedral simplification of the shape whereas HLRBRep_Algo takes the shape itself into account. When you use HLRBRep_Algo, you obtain an exact result, whereas, when you use HLRBRep_PolyAlgo, you reduce computation time but obtain polygonal segments. An HLRBRep_PolyAlgo object provides a framework for: - defining the point of view - identifying the shape or shapes to be visualized - calculating the outlines - calculating the visible and hidden lines of the shape. Warning - Superimposed lines are not eliminated by this algorithm. - There must be no unfinished objects inside the shape you wish to visualize. - Points are not treated. - Note that this is not the sort of algorithm used in generating shading, which calculates the visible and hidden parts of each face in a shape to be visualized by comparing each face in the shape with every other face in the same shape.)#");
preregister_template_NCollection_Sequence<HLRBRep_ShapeBounds>(m,"HLRBRep_SeqOfShapeBounds");
py::class_<HLRBRep_TheCSFunctionOfInterCSurf , shared_ptr<HLRBRep_TheCSFunctionOfInterCSurf> , math_FunctionSetWithDerivatives >(m,"HLRBRep_TheCSFunctionOfInterCSurf",R"#(None)#");
py::class_<HLRBRep_TheDistBetweenPCurvesOfTheIntPCurvePCurveOfCInter , shared_ptr<HLRBRep_TheDistBetweenPCurvesOfTheIntPCurvePCurveOfCInter> , math_FunctionSetWithDerivatives >(m,"HLRBRep_TheDistBetweenPCurvesOfTheIntPCurvePCurveOfCInter",R"#(None)#");
py::class_<HLRBRep_TheIntConicCurveOfCInter , shared_ptr<HLRBRep_TheIntConicCurveOfCInter> , IntRes2d_Intersection >(m,"HLRBRep_TheIntConicCurveOfCInter",R"#(None)#");
py::class_<HLRBRep_TheIntPCurvePCurveOfCInter , shared_ptr<HLRBRep_TheIntPCurvePCurveOfCInter> , IntRes2d_Intersection >(m,"HLRBRep_TheIntPCurvePCurveOfCInter",R"#(None)#");
py::class_<HLRBRep_TheInterferenceOfInterCSurf , shared_ptr<HLRBRep_TheInterferenceOfInterCSurf> , Intf_Interference >(m,"HLRBRep_TheInterferenceOfInterCSurf",R"#(None)#");
py::class_<HLRBRep_TheIntersectorOfTheIntConicCurveOfCInter , shared_ptr<HLRBRep_TheIntersectorOfTheIntConicCurveOfCInter> , IntRes2d_Intersection >(m,"HLRBRep_TheIntersectorOfTheIntConicCurveOfCInter",R"#(None)#");
py::class_<HLRBRep_ThePolygon2dOfTheIntPCurvePCurveOfCInter , shared_ptr<HLRBRep_ThePolygon2dOfTheIntPCurvePCurveOfCInter> , Intf_Polygon2d >(m,"HLRBRep_ThePolygon2dOfTheIntPCurvePCurveOfCInter",R"#(None)#");
py::class_<HLRBRep_TheQuadCurvFuncOfTheQuadCurvExactInterCSurf , shared_ptr<HLRBRep_TheQuadCurvFuncOfTheQuadCurvExactInterCSurf> , math_FunctionWithDerivative >(m,"HLRBRep_TheQuadCurvFuncOfTheQuadCurvExactInterCSurf",R"#(None)#");
py::class_<HLRBRep_Algo ,opencascade::handle<HLRBRep_Algo> , HLRBRep_InternalAlgo >(m,"HLRBRep_Algo",R"#(Inherited from InternalAlgo to provide methods with Shape from TopoDS. A framework to compute a shape as seen in a projection plane. This is done by calculating the visible and the hidden parts of the shape. HLRBRep_Algo works with three types of entity: - shapes to be visualized - edges in these shapes (these edges are the basic entities which will be visualized or hidden), and - faces in these shapes which hide the edges. HLRBRep_Algo is based on the principle of comparing each edge of the shape to be visualized with each of its faces, and calculating the visible and the hidden parts of each edge. For a given projection, HLRBRep_Algo calculates a set of lines characteristic of the object being represented. It is also used in conjunction with the HLRBRep_HLRToShape extraction utilities, which reconstruct a new, simplified shape from a selection of calculation results. This new shape is made up of edges, which represent the shape visualized in the projection. HLRBRep_Algo takes the shape itself into account whereas HLRBRep_PolyAlgo works with a polyhedral simplification of the shape. When you use HLRBRep_Algo, you obtain an exact result, whereas, when you use HLRBRep_PolyAlgo, you reduce computation time but obtain polygonal segments. In the case of complicated shapes, HLRBRep_Algo may be time-consuming. An HLRBRep_Algo object provides a framework for: - defining the point of view - identifying the shape or shapes to be visualized - calculating the outlines - calculating the visible and hidden lines of the shape. Warning - Superimposed lines are not eliminated by this algorithm. - There must be no unfinished objects inside the shape you wish to visualize. - Points are not treated. - Note that this is not the sort of algorithm used in generating shading, which calculates the visible and hidden parts of each face in a shape to be visualized by comparing each face in the shape with every other face in the same shape.Inherited from InternalAlgo to provide methods with Shape from TopoDS. A framework to compute a shape as seen in a projection plane. This is done by calculating the visible and the hidden parts of the shape. HLRBRep_Algo works with three types of entity: - shapes to be visualized - edges in these shapes (these edges are the basic entities which will be visualized or hidden), and - faces in these shapes which hide the edges. HLRBRep_Algo is based on the principle of comparing each edge of the shape to be visualized with each of its faces, and calculating the visible and the hidden parts of each edge. For a given projection, HLRBRep_Algo calculates a set of lines characteristic of the object being represented. It is also used in conjunction with the HLRBRep_HLRToShape extraction utilities, which reconstruct a new, simplified shape from a selection of calculation results. This new shape is made up of edges, which represent the shape visualized in the projection. HLRBRep_Algo takes the shape itself into account whereas HLRBRep_PolyAlgo works with a polyhedral simplification of the shape. When you use HLRBRep_Algo, you obtain an exact result, whereas, when you use HLRBRep_PolyAlgo, you reduce computation time but obtain polygonal segments. In the case of complicated shapes, HLRBRep_Algo may be time-consuming. An HLRBRep_Algo object provides a framework for: - defining the point of view - identifying the shape or shapes to be visualized - calculating the outlines - calculating the visible and hidden lines of the shape. Warning - Superimposed lines are not eliminated by this algorithm. - There must be no unfinished objects inside the shape you wish to visualize. - Points are not treated. - Note that this is not the sort of algorithm used in generating shading, which calculates the visible and hidden parts of each face in a shape to be visualized by comparing each face in the shape with every other face in the same shape.Inherited from InternalAlgo to provide methods with Shape from TopoDS. A framework to compute a shape as seen in a projection plane. This is done by calculating the visible and the hidden parts of the shape. HLRBRep_Algo works with three types of entity: - shapes to be visualized - edges in these shapes (these edges are the basic entities which will be visualized or hidden), and - faces in these shapes which hide the edges. HLRBRep_Algo is based on the principle of comparing each edge of the shape to be visualized with each of its faces, and calculating the visible and the hidden parts of each edge. For a given projection, HLRBRep_Algo calculates a set of lines characteristic of the object being represented. It is also used in conjunction with the HLRBRep_HLRToShape extraction utilities, which reconstruct a new, simplified shape from a selection of calculation results. This new shape is made up of edges, which represent the shape visualized in the projection. HLRBRep_Algo takes the shape itself into account whereas HLRBRep_PolyAlgo works with a polyhedral simplification of the shape. When you use HLRBRep_Algo, you obtain an exact result, whereas, when you use HLRBRep_PolyAlgo, you reduce computation time but obtain polygonal segments. In the case of complicated shapes, HLRBRep_Algo may be time-consuming. An HLRBRep_Algo object provides a framework for: - defining the point of view - identifying the shape or shapes to be visualized - calculating the outlines - calculating the visible and hidden lines of the shape. Warning - Superimposed lines are not eliminated by this algorithm. - There must be no unfinished objects inside the shape you wish to visualize. - Points are not treated. - Note that this is not the sort of algorithm used in generating shading, which calculates the visible and hidden parts of each face in a shape to be visualized by comparing each face in the shape with every other face in the same shape.)#");
};
// user-defined post-inclusion per module
// user-defined post
|