File: HLRBRep_pre.cpp

package info (click to toggle)
python-ocp 7.8.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 64,724 kB
  • sloc: cpp: 362,337; pascal: 33; python: 23; makefile: 4
file content (446 lines) | stat: -rw-r--r-- 36,870 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446

// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

namespace py = pybind11;


// Standard Handle
#include <Standard_Handle.hxx>

// user-defined inclusion per module before includes

// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <TopoDS_Edge.hxx>
#include <HLRBRep_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BezierCurve.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_CurveTool.hxx>
#include <HLRBRep_TheProjPCurOfCInter.hxx>
#include <HLRBRep_TheCurveLocatorOfTheProjPCurOfCInter.hxx>
#include <HLRBRep_TheLocateExtPCOfTheProjPCurOfCInter.hxx>
#include <HLRBRep_IntConicCurveOfCInter.hxx>
#include <HLRBRep_ThePolygon2dOfTheIntPCurvePCurveOfCInter.hxx>
#include <HLRBRep_TheDistBetweenPCurvesOfTheIntPCurvePCurveOfCInter.hxx>
#include <HLRBRep_ExactIntersectionPointOfTheIntPCurvePCurveOfCInter.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <LProp_BadContinuity.hxx>
#include <LProp_NotDefined.hxx>
#include <HLRBRep_Curve.hxx>
#include <Geom_BSplineCurve.hxx>
#include <HLRAlgo_Projector.hxx>
#include <BRepTopAdaptor_TopolTool.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_AreaLimit.hxx>
#include <HLRBRep_VertexList.hxx>
#include <HLRAlgo_Intersection.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Dir.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_EdgeInterferenceTool.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_Data.hxx>
#include <gp_Dir.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_CurveTool.hxx>
#include <HLRBRep_TheProjPCurOfCInter.hxx>
#include <HLRBRep_TheIntPCurvePCurveOfCInter.hxx>
#include <HLRBRep_ThePolygon2dOfTheIntPCurvePCurveOfCInter.hxx>
#include <HLRAlgo_WiresBlock.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_FaceData.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_Algo.hxx>
#include <HLRBRep_Data.hxx>
#include <HLRBRep_EdgeData.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <HLRBRep_Data.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_CurveTool.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Lin.hxx>
#include <HLRBRep_LineTool.hxx>
#include <HLRBRep_SurfaceTool.hxx>
#include <HLRBRep_ThePolygonOfInterCSurf.hxx>
#include <HLRBRep_ThePolygonToolOfInterCSurf.hxx>
#include <HLRBRep_ThePolyhedronOfInterCSurf.hxx>
#include <HLRBRep_ThePolyhedronToolOfInterCSurf.hxx>
#include <HLRBRep_TheInterferenceOfInterCSurf.hxx>
#include <HLRBRep_TheCSFunctionOfInterCSurf.hxx>
#include <HLRBRep_TheExactInterCSurf.hxx>
#include <HLRBRep_TheQuadCurvExactInterCSurf.hxx>
#include <HLRBRep_TheQuadCurvFuncOfTheQuadCurvExactInterCSurf.hxx>
#include <Bnd_BoundSortBox.hxx>
#include <gp_Circ.hxx>
#include <gp_Elips.hxx>
#include <gp_Parab.hxx>
#include <gp_Hypr.hxx>
#include <IntAna_IntConicQuad.hxx>
#include <Bnd_Box.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <HLRBRep_Data.hxx>
#include <HLRTopoBRep_OutLiner.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Lin.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Geom_BezierCurve.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_CurveTool.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_CurveTool.hxx>
#include <HLRAlgo_PolyInternalData.hxx>
#include <HLRAlgo_EdgeStatus.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_PolyAlgo.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <LProp_BadContinuity.hxx>
#include <LProp_NotDefined.hxx>
#include <HLRBRep_SLPropsATool.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRTopoBRep_OutLiner.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <HLRBRep_Data.hxx>
#include <HLRTopoBRep_OutLiner.hxx>
#include <HLRAlgo_Projector.hxx>
#include <TopoDS_Face.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_SurfaceTool.hxx>
#include <HLRBRep_LineTool.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_CurveTool.hxx>
#include <Extrema_POnCurv2d.hxx>
#include <gp_Pnt2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_CurveTool.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_SurfaceTool.hxx>
#include <HLRBRep_LineTool.hxx>
#include <math_FunctionSetRoot.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_CurveTool.hxx>
#include <HLRBRep_TheProjPCurOfCInter.hxx>
#include <HLRBRep_MyImpParToolOfTheIntersectorOfTheIntConicCurveOfCInter.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_CurveTool.hxx>
#include <HLRBRep_TheProjPCurOfCInter.hxx>
#include <HLRBRep_ThePolygon2dOfTheIntPCurvePCurveOfCInter.hxx>
#include <HLRBRep_TheDistBetweenPCurvesOfTheIntPCurvePCurveOfCInter.hxx>
#include <HLRBRep_ExactIntersectionPointOfTheIntPCurvePCurveOfCInter.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_ThePolygonOfInterCSurf.hxx>
#include <HLRBRep_ThePolygonToolOfInterCSurf.hxx>
#include <HLRBRep_ThePolyhedronOfInterCSurf.hxx>
#include <HLRBRep_ThePolyhedronToolOfInterCSurf.hxx>
#include <Bnd_BoundSortBox.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IntCurve_IConicTool.hxx>
#include <HLRBRep_CurveTool.hxx>
#include <HLRBRep_TheProjPCurOfCInter.hxx>
#include <HLRBRep_MyImpParToolOfTheIntersectorOfTheIntConicCurveOfCInter.hxx>
#include <IntRes2d_Domain.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <StdFail_NotDone.hxx>
#include <HLRBRep_CurveTool.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_CurveTool.hxx>
#include <IntRes2d_Domain.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Lin.hxx>
#include <HLRBRep_LineTool.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_SurfaceTool.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_CurveTool.hxx>
#include <HLRBRep_TheCurveLocatorOfTheProjPCurOfCInter.hxx>
#include <HLRBRep_TheLocateExtPCOfTheProjPCurOfCInter.hxx>
#include <HLRBRep_PCLocFOfTheLocateExtPCOfTheProjPCurOfCInter.hxx>
#include <gp_Pnt2d.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_SurfaceTool.hxx>
#include <gp_Lin.hxx>
#include <HLRBRep_LineTool.hxx>
#include <HLRBRep_TheQuadCurvFuncOfTheQuadCurvExactInterCSurf.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <HLRBRep_LineTool.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>

// module includes
#include <HLRBRep.hxx>
#include <HLRBRep_Algo.hxx>
#include <HLRBRep_AreaLimit.hxx>
#include <HLRBRep_Array1OfEData.hxx>
#include <HLRBRep_Array1OfFData.hxx>
#include <HLRBRep_BCurveTool.hxx>
#include <HLRBRep_BiPnt2D.hxx>
#include <HLRBRep_BiPoint.hxx>
#include <HLRBRep_BSurfaceTool.hxx>
#include <HLRBRep_CInter.hxx>
#include <HLRBRep_CLProps.hxx>
#include <HLRBRep_CLPropsATool.hxx>
#include <HLRBRep_Curve.hxx>
#include <HLRBRep_CurveTool.hxx>
#include <HLRBRep_Data.hxx>
#include <HLRBRep_EdgeBuilder.hxx>
#include <HLRBRep_EdgeData.hxx>
#include <HLRBRep_EdgeFaceTool.hxx>
#include <HLRBRep_EdgeIList.hxx>
#include <HLRBRep_EdgeInterferenceTool.hxx>
#include <HLRBRep_ExactIntersectionPointOfTheIntPCurvePCurveOfCInter.hxx>
#include <HLRBRep_FaceData.hxx>
#include <HLRBRep_FaceIterator.hxx>
#include <HLRBRep_Hider.hxx>
#include <HLRBRep_HLRToShape.hxx>
#include <HLRBRep_IntConicCurveOfCInter.hxx>
#include <HLRBRep_InterCSurf.hxx>
#include <HLRBRep_InternalAlgo.hxx>
#include <HLRBRep_Intersector.hxx>
#include <HLRBRep_LineTool.hxx>
#include <HLRBRep_ListIteratorOfListOfBPnt2D.hxx>
#include <HLRBRep_ListIteratorOfListOfBPoint.hxx>
#include <HLRBRep_ListOfBPnt2D.hxx>
#include <HLRBRep_ListOfBPoint.hxx>
#include <HLRBRep_MyImpParToolOfTheIntersectorOfTheIntConicCurveOfCInter.hxx>
#include <HLRBRep_PCLocFOfTheLocateExtPCOfTheProjPCurOfCInter.hxx>
#include <HLRBRep_PolyAlgo.hxx>
#include <HLRBRep_PolyHLRToShape.hxx>
#include <HLRBRep_SeqOfShapeBounds.hxx>
#include <HLRBRep_ShapeBounds.hxx>
#include <HLRBRep_ShapeToHLR.hxx>
#include <HLRBRep_SLProps.hxx>
#include <HLRBRep_SLPropsATool.hxx>
#include <HLRBRep_Surface.hxx>
#include <HLRBRep_SurfaceTool.hxx>
#include <HLRBRep_TheCSFunctionOfInterCSurf.hxx>
#include <HLRBRep_TheCurveLocatorOfTheProjPCurOfCInter.hxx>
#include <HLRBRep_TheDistBetweenPCurvesOfTheIntPCurvePCurveOfCInter.hxx>
#include <HLRBRep_TheExactInterCSurf.hxx>
#include <HLRBRep_TheIntConicCurveOfCInter.hxx>
#include <HLRBRep_TheInterferenceOfInterCSurf.hxx>
#include <HLRBRep_TheIntersectorOfTheIntConicCurveOfCInter.hxx>
#include <HLRBRep_TheIntPCurvePCurveOfCInter.hxx>
#include <HLRBRep_TheLocateExtPCOfTheProjPCurOfCInter.hxx>
#include <HLRBRep_ThePolygon2dOfTheIntPCurvePCurveOfCInter.hxx>
#include <HLRBRep_ThePolygonOfInterCSurf.hxx>
#include <HLRBRep_ThePolygonToolOfInterCSurf.hxx>
#include <HLRBRep_ThePolyhedronOfInterCSurf.hxx>
#include <HLRBRep_ThePolyhedronToolOfInterCSurf.hxx>
#include <HLRBRep_TheProjPCurOfCInter.hxx>
#include <HLRBRep_TheQuadCurvExactInterCSurf.hxx>
#include <HLRBRep_TheQuadCurvFuncOfTheQuadCurvExactInterCSurf.hxx>
#include <HLRBRep_TypeOfResultingEdge.hxx>
#include <HLRBRep_VertexList.hxx>

// template related includes

#include "NCollection_tmpl.hxx"

#include "NCollection_tmpl.hxx"

#include "NCollection_tmpl.hxx"

#include "NCollection_tmpl.hxx"

#include "NCollection_tmpl.hxx"


// user-defined pre
#include "OCP_specific.inc"

// user-defined inclusion per module

// Module definiiton
void register_HLRBRep_enums(py::module &main_module) {


py::module m = main_module.def_submodule("HLRBRep", R"#()#");

// user-defined inclusion per module in the body

// enums
    py::enum_<HLRBRep_TypeOfResultingEdge>(m, "HLRBRep_TypeOfResultingEdge",R"#(Identifies the type of resulting edge of HLRBRep_Algo)#")
        .value("HLRBRep_Undefined",HLRBRep_TypeOfResultingEdge::HLRBRep_Undefined)
        .value("HLRBRep_IsoLine",HLRBRep_TypeOfResultingEdge::HLRBRep_IsoLine)
        .value("HLRBRep_OutLine",HLRBRep_TypeOfResultingEdge::HLRBRep_OutLine)
        .value("HLRBRep_Rg1Line",HLRBRep_TypeOfResultingEdge::HLRBRep_Rg1Line)
        .value("HLRBRep_RgNLine",HLRBRep_TypeOfResultingEdge::HLRBRep_RgNLine)
        .value("HLRBRep_Sharp",HLRBRep_TypeOfResultingEdge::HLRBRep_Sharp).export_values();

//Python trampoline classes

// pre-register typdefs+classes (topologically sorted)
    py::class_<HLRBRep , shared_ptr<HLRBRep>  >(m,"HLRBRep",R"#(Hidden Lines Removal algorithms on the BRep DataStructure.)#");
    py::class_<HLRBRep_BCurveTool , shared_ptr<HLRBRep_BCurveTool>  >(m,"HLRBRep_BCurveTool",R"#(None)#");
    py::class_<HLRBRep_BSurfaceTool , shared_ptr<HLRBRep_BSurfaceTool>  >(m,"HLRBRep_BSurfaceTool",R"#(None)#");
    py::class_<HLRBRep_BiPnt2D , shared_ptr<HLRBRep_BiPnt2D>  >(m,"HLRBRep_BiPnt2D",R"#(Contains the colors of a shape.)#");
    py::class_<HLRBRep_BiPoint , shared_ptr<HLRBRep_BiPoint>  >(m,"HLRBRep_BiPoint",R"#(Contains the colors of a shape.)#");
    py::class_<HLRBRep_CLProps , shared_ptr<HLRBRep_CLProps>  >(m,"HLRBRep_CLProps",R"#(None)#");
    py::class_<HLRBRep_Curve , shared_ptr<HLRBRep_Curve>  >(m,"HLRBRep_Curve",R"#(Defines a 2d curve by projection of a 3D curve on a plane with an optional perspective transformation.)#");
    py::class_<HLRBRep_CurveTool , shared_ptr<HLRBRep_CurveTool>  >(m,"HLRBRep_CurveTool",R"#(None)#");
    py::class_<HLRBRep_EdgeBuilder , shared_ptr<HLRBRep_EdgeBuilder>  >(m,"HLRBRep_EdgeBuilder",R"#(None)#");
    py::class_<HLRBRep_EdgeData , shared_ptr<HLRBRep_EdgeData>  >(m,"HLRBRep_EdgeData",R"#(None)#");
    py::class_<HLRBRep_EdgeFaceTool , shared_ptr<HLRBRep_EdgeFaceTool>  >(m,"HLRBRep_EdgeFaceTool",R"#(The EdgeFaceTool computes the UV coordinates at a given parameter on a Curve and a Surface. It also compute the signed curvature value in a direction at a given u,v point on a surface.)#");
    py::class_<HLRBRep_EdgeIList , shared_ptr<HLRBRep_EdgeIList>  >(m,"HLRBRep_EdgeIList",R"#(None)#");
    py::class_<HLRBRep_EdgeInterferenceTool , shared_ptr<HLRBRep_EdgeInterferenceTool>  >(m,"HLRBRep_EdgeInterferenceTool",R"#(Implements the methods required to instantiates the EdgeInterferenceList from HLRAlgo.)#");
    py::class_<HLRBRep_ExactIntersectionPointOfTheIntPCurvePCurveOfCInter , shared_ptr<HLRBRep_ExactIntersectionPointOfTheIntPCurvePCurveOfCInter>  >(m,"HLRBRep_ExactIntersectionPointOfTheIntPCurvePCurveOfCInter",R"#(None)#");
    py::class_<HLRBRep_FaceData , shared_ptr<HLRBRep_FaceData>  >(m,"HLRBRep_FaceData",R"#(None)#");
    py::class_<HLRBRep_FaceIterator , shared_ptr<HLRBRep_FaceIterator>  >(m,"HLRBRep_FaceIterator",R"#(None)#");
    py::class_<HLRBRep_HLRToShape , shared_ptr<HLRBRep_HLRToShape>  >(m,"HLRBRep_HLRToShape",R"#(A framework for filtering the computation results of an HLRBRep_Algo algorithm by extraction. From the results calculated by the algorithm on a shape, a filter returns the type of edge you want to identify. You can choose any of the following types of output: - visible sharp edges - hidden sharp edges - visible smooth edges - hidden smooth edges - visible sewn edges - hidden sewn edges - visible outline edges - hidden outline edges. - visible isoparameters and - hidden isoparameters. Sharp edges present a C0 continuity (non G1). Smooth edges present a G1 continuity (non G2). Sewn edges present a C2 continuity. The result is composed of 2D edges in the projection plane of the view which the algorithm has worked with. These 2D edges are not included in the data structure of the visualized shape. In order to obtain a complete image, you must combine the shapes given by each of the chosen filters. The construction of the shape does not call a new computation of the algorithm, but only reads its internal results. The methods of this shape are almost identic to those of the HLRBrep_PolyHLRToShape class.)#");
    py::class_<HLRBRep_Hider , shared_ptr<HLRBRep_Hider>  >(m,"HLRBRep_Hider",R"#(None)#");
    py::class_<HLRBRep_Intersector , shared_ptr<HLRBRep_Intersector>  >(m,"HLRBRep_Intersector",R"#(The Intersector computes 2D intersections of the projections of 3D curves. It can also computes the intersection of a 3D line and a surface.)#");
    py::class_<HLRBRep_LineTool , shared_ptr<HLRBRep_LineTool>  >(m,"HLRBRep_LineTool",R"#(The LineTool class provides class methods to access the methodes of the Line.)#");
    py::class_<HLRBRep_PolyHLRToShape , shared_ptr<HLRBRep_PolyHLRToShape>  >(m,"HLRBRep_PolyHLRToShape",R"#(A framework for filtering the computation results of an HLRBRep_Algo algorithm by extraction. From the results calculated by the algorithm on a shape, a filter returns the type of edge you want to identify. You can choose any of the following types of output: - visible sharp edges - hidden sharp edges - visible smooth edges - hidden smooth edges - visible sewn edges - hidden sewn edges - visible outline edges - hidden outline edges. - visible isoparameters and - hidden isoparameters. Sharp edges present a C0 continuity (non G1). Smooth edges present a G1 continuity (non G2). Sewn edges present a C2 continuity. The result is composed of 2D edges in the projection plane of the view which the algorithm has worked with. These 2D edges are not included in the data structure of the visualized shape. In order to obtain a complete image, you must combine the shapes given by each of the chosen filters. The construction of the shape does not call a new computation of the algorithm, but only reads its internal results.)#");
    py::class_<HLRBRep_SLProps , shared_ptr<HLRBRep_SLProps>  >(m,"HLRBRep_SLProps",R"#(None)#");
    py::class_<HLRBRep_SLPropsATool , shared_ptr<HLRBRep_SLPropsATool>  >(m,"HLRBRep_SLPropsATool",R"#(None)#");
    py::class_<HLRBRep_ShapeBounds , shared_ptr<HLRBRep_ShapeBounds>  >(m,"HLRBRep_ShapeBounds",R"#(Contains a Shape and the bounds of its vertices, edges and faces in the DataStructure.)#");
    py::class_<HLRBRep_ShapeToHLR , shared_ptr<HLRBRep_ShapeToHLR>  >(m,"HLRBRep_ShapeToHLR",R"#(compute the OutLinedShape of a Shape with an OutLiner, a Projector and create the Data Structure of a Shape.)#");
    py::class_<HLRBRep_Surface , shared_ptr<HLRBRep_Surface>  >(m,"HLRBRep_Surface",R"#(None)#");
    py::class_<HLRBRep_SurfaceTool , shared_ptr<HLRBRep_SurfaceTool>  >(m,"HLRBRep_SurfaceTool",R"#(None)#");
    py::class_<HLRBRep_TheCurveLocatorOfTheProjPCurOfCInter , shared_ptr<HLRBRep_TheCurveLocatorOfTheProjPCurOfCInter>  >(m,"HLRBRep_TheCurveLocatorOfTheProjPCurOfCInter",R"#(None)#");
    py::class_<HLRBRep_TheExactInterCSurf , shared_ptr<HLRBRep_TheExactInterCSurf>  >(m,"HLRBRep_TheExactInterCSurf",R"#(None)#");
    py::class_<HLRBRep_TheLocateExtPCOfTheProjPCurOfCInter , shared_ptr<HLRBRep_TheLocateExtPCOfTheProjPCurOfCInter>  >(m,"HLRBRep_TheLocateExtPCOfTheProjPCurOfCInter",R"#(None)#");
    py::class_<HLRBRep_ThePolygonOfInterCSurf , shared_ptr<HLRBRep_ThePolygonOfInterCSurf>  >(m,"HLRBRep_ThePolygonOfInterCSurf",R"#(None)#");
    py::class_<HLRBRep_ThePolygonToolOfInterCSurf , shared_ptr<HLRBRep_ThePolygonToolOfInterCSurf>  >(m,"HLRBRep_ThePolygonToolOfInterCSurf",R"#(None)#");
    py::class_<HLRBRep_ThePolyhedronOfInterCSurf , shared_ptr<HLRBRep_ThePolyhedronOfInterCSurf>  >(m,"HLRBRep_ThePolyhedronOfInterCSurf",R"#(None)#");
    py::class_<HLRBRep_ThePolyhedronToolOfInterCSurf , shared_ptr<HLRBRep_ThePolyhedronToolOfInterCSurf>  >(m,"HLRBRep_ThePolyhedronToolOfInterCSurf",R"#(None)#");
    py::class_<HLRBRep_TheProjPCurOfCInter , shared_ptr<HLRBRep_TheProjPCurOfCInter>  >(m,"HLRBRep_TheProjPCurOfCInter",R"#(None)#");
    py::class_<HLRBRep_TheQuadCurvExactInterCSurf , shared_ptr<HLRBRep_TheQuadCurvExactInterCSurf>  >(m,"HLRBRep_TheQuadCurvExactInterCSurf",R"#(None)#");
    py::class_<HLRBRep_VertexList , shared_ptr<HLRBRep_VertexList>  >(m,"HLRBRep_VertexList",R"#(None)#");
    py::class_<HLRBRep_AreaLimit ,opencascade::handle<HLRBRep_AreaLimit>  , Standard_Transient >(m,"HLRBRep_AreaLimit",R"#(The private nested class AreaLimit represents a -- vertex on the Edge with the state on the left and -- the right.The private nested class AreaLimit represents a -- vertex on the Edge with the state on the left and -- the right.The private nested class AreaLimit represents a -- vertex on the Edge with the state on the left and -- the right.)#");
    preregister_template_NCollection_Array1<HLRBRep_EdgeData>(m,"HLRBRep_Array1OfEData");
    preregister_template_NCollection_Array1<HLRBRep_FaceData>(m,"HLRBRep_Array1OfFData");
    py::class_<HLRBRep_CInter , shared_ptr<HLRBRep_CInter>  , IntRes2d_Intersection >(m,"HLRBRep_CInter",R"#(None)#");
    py::class_<HLRBRep_Data ,opencascade::handle<HLRBRep_Data>  , Standard_Transient >(m,"HLRBRep_Data",R"#()#");
    py::class_<HLRBRep_IntConicCurveOfCInter , shared_ptr<HLRBRep_IntConicCurveOfCInter>  , IntRes2d_Intersection >(m,"HLRBRep_IntConicCurveOfCInter",R"#(None)#");
    py::class_<HLRBRep_InterCSurf , shared_ptr<HLRBRep_InterCSurf>  , IntCurveSurface_Intersection >(m,"HLRBRep_InterCSurf",R"#(None)#");
    py::class_<HLRBRep_InternalAlgo ,opencascade::handle<HLRBRep_InternalAlgo>  , Standard_Transient >(m,"HLRBRep_InternalAlgo",R"#()#");
    preregister_template_NCollection_List<HLRBRep_BiPnt2D>(m,"HLRBRep_ListOfBPnt2D");
    preregister_template_NCollection_List<HLRBRep_BiPoint>(m,"HLRBRep_ListOfBPoint");
    py::class_<HLRBRep_MyImpParToolOfTheIntersectorOfTheIntConicCurveOfCInter , shared_ptr<HLRBRep_MyImpParToolOfTheIntersectorOfTheIntConicCurveOfCInter>  , math_FunctionWithDerivative >(m,"HLRBRep_MyImpParToolOfTheIntersectorOfTheIntConicCurveOfCInter",R"#(None)#");
    py::class_<HLRBRep_PCLocFOfTheLocateExtPCOfTheProjPCurOfCInter , shared_ptr<HLRBRep_PCLocFOfTheLocateExtPCOfTheProjPCurOfCInter>  , math_FunctionWithDerivative >(m,"HLRBRep_PCLocFOfTheLocateExtPCOfTheProjPCurOfCInter",R"#(None)#");
    py::class_<HLRBRep_PolyAlgo ,opencascade::handle<HLRBRep_PolyAlgo>  , Standard_Transient >(m,"HLRBRep_PolyAlgo",R"#(to remove Hidden lines on Shapes with Triangulations. A framework to compute the shape as seen in a projection plane. This is done by calculating the visible and the hidden parts of the shape. HLRBRep_PolyAlgo works with three types of entity: - shapes to be visualized (these shapes must have already been triangulated.) - edges in these shapes (these edges are defined as polygonal lines on the triangulation of the shape, and are the basic entities which will be visualized or hidden), and - triangles in these shapes which hide the edges. HLRBRep_PolyAlgo is based on the principle of comparing each edge of the shape to be visualized with each of the triangles produced by the triangulation of the shape, and calculating the visible and the hidden parts of each edge. For a given projection, HLRBRep_PolyAlgo calculates a set of lines characteristic of the object being represented. It is also used in conjunction with the HLRBRep_PolyHLRToShape extraction utilities, which reconstruct a new, simplified shape from a selection of calculation results. This new shape is made up of edges, which represent the shape visualized in the projection. HLRBRep_PolyAlgo works with a polyhedral simplification of the shape whereas HLRBRep_Algo takes the shape itself into account. When you use HLRBRep_Algo, you obtain an exact result, whereas, when you use HLRBRep_PolyAlgo, you reduce computation time but obtain polygonal segments. An HLRBRep_PolyAlgo object provides a framework for: - defining the point of view - identifying the shape or shapes to be visualized - calculating the outlines - calculating the visible and hidden lines of the shape. Warning - Superimposed lines are not eliminated by this algorithm. - There must be no unfinished objects inside the shape you wish to visualize. - Points are not treated. - Note that this is not the sort of algorithm used in generating shading, which calculates the visible and hidden parts of each face in a shape to be visualized by comparing each face in the shape with every other face in the same shape.to remove Hidden lines on Shapes with Triangulations. A framework to compute the shape as seen in a projection plane. This is done by calculating the visible and the hidden parts of the shape. HLRBRep_PolyAlgo works with three types of entity: - shapes to be visualized (these shapes must have already been triangulated.) - edges in these shapes (these edges are defined as polygonal lines on the triangulation of the shape, and are the basic entities which will be visualized or hidden), and - triangles in these shapes which hide the edges. HLRBRep_PolyAlgo is based on the principle of comparing each edge of the shape to be visualized with each of the triangles produced by the triangulation of the shape, and calculating the visible and the hidden parts of each edge. For a given projection, HLRBRep_PolyAlgo calculates a set of lines characteristic of the object being represented. It is also used in conjunction with the HLRBRep_PolyHLRToShape extraction utilities, which reconstruct a new, simplified shape from a selection of calculation results. This new shape is made up of edges, which represent the shape visualized in the projection. HLRBRep_PolyAlgo works with a polyhedral simplification of the shape whereas HLRBRep_Algo takes the shape itself into account. When you use HLRBRep_Algo, you obtain an exact result, whereas, when you use HLRBRep_PolyAlgo, you reduce computation time but obtain polygonal segments. An HLRBRep_PolyAlgo object provides a framework for: - defining the point of view - identifying the shape or shapes to be visualized - calculating the outlines - calculating the visible and hidden lines of the shape. Warning - Superimposed lines are not eliminated by this algorithm. - There must be no unfinished objects inside the shape you wish to visualize. - Points are not treated. - Note that this is not the sort of algorithm used in generating shading, which calculates the visible and hidden parts of each face in a shape to be visualized by comparing each face in the shape with every other face in the same shape.to remove Hidden lines on Shapes with Triangulations. A framework to compute the shape as seen in a projection plane. This is done by calculating the visible and the hidden parts of the shape. HLRBRep_PolyAlgo works with three types of entity: - shapes to be visualized (these shapes must have already been triangulated.) - edges in these shapes (these edges are defined as polygonal lines on the triangulation of the shape, and are the basic entities which will be visualized or hidden), and - triangles in these shapes which hide the edges. HLRBRep_PolyAlgo is based on the principle of comparing each edge of the shape to be visualized with each of the triangles produced by the triangulation of the shape, and calculating the visible and the hidden parts of each edge. For a given projection, HLRBRep_PolyAlgo calculates a set of lines characteristic of the object being represented. It is also used in conjunction with the HLRBRep_PolyHLRToShape extraction utilities, which reconstruct a new, simplified shape from a selection of calculation results. This new shape is made up of edges, which represent the shape visualized in the projection. HLRBRep_PolyAlgo works with a polyhedral simplification of the shape whereas HLRBRep_Algo takes the shape itself into account. When you use HLRBRep_Algo, you obtain an exact result, whereas, when you use HLRBRep_PolyAlgo, you reduce computation time but obtain polygonal segments. An HLRBRep_PolyAlgo object provides a framework for: - defining the point of view - identifying the shape or shapes to be visualized - calculating the outlines - calculating the visible and hidden lines of the shape. Warning - Superimposed lines are not eliminated by this algorithm. - There must be no unfinished objects inside the shape you wish to visualize. - Points are not treated. - Note that this is not the sort of algorithm used in generating shading, which calculates the visible and hidden parts of each face in a shape to be visualized by comparing each face in the shape with every other face in the same shape.)#");
    preregister_template_NCollection_Sequence<HLRBRep_ShapeBounds>(m,"HLRBRep_SeqOfShapeBounds");
    py::class_<HLRBRep_TheCSFunctionOfInterCSurf , shared_ptr<HLRBRep_TheCSFunctionOfInterCSurf>  , math_FunctionSetWithDerivatives >(m,"HLRBRep_TheCSFunctionOfInterCSurf",R"#(None)#");
    py::class_<HLRBRep_TheDistBetweenPCurvesOfTheIntPCurvePCurveOfCInter , shared_ptr<HLRBRep_TheDistBetweenPCurvesOfTheIntPCurvePCurveOfCInter>  , math_FunctionSetWithDerivatives >(m,"HLRBRep_TheDistBetweenPCurvesOfTheIntPCurvePCurveOfCInter",R"#(None)#");
    py::class_<HLRBRep_TheIntConicCurveOfCInter , shared_ptr<HLRBRep_TheIntConicCurveOfCInter>  , IntRes2d_Intersection >(m,"HLRBRep_TheIntConicCurveOfCInter",R"#(None)#");
    py::class_<HLRBRep_TheIntPCurvePCurveOfCInter , shared_ptr<HLRBRep_TheIntPCurvePCurveOfCInter>  , IntRes2d_Intersection >(m,"HLRBRep_TheIntPCurvePCurveOfCInter",R"#(None)#");
    py::class_<HLRBRep_TheInterferenceOfInterCSurf , shared_ptr<HLRBRep_TheInterferenceOfInterCSurf>  , Intf_Interference >(m,"HLRBRep_TheInterferenceOfInterCSurf",R"#(None)#");
    py::class_<HLRBRep_TheIntersectorOfTheIntConicCurveOfCInter , shared_ptr<HLRBRep_TheIntersectorOfTheIntConicCurveOfCInter>  , IntRes2d_Intersection >(m,"HLRBRep_TheIntersectorOfTheIntConicCurveOfCInter",R"#(None)#");
    py::class_<HLRBRep_ThePolygon2dOfTheIntPCurvePCurveOfCInter , shared_ptr<HLRBRep_ThePolygon2dOfTheIntPCurvePCurveOfCInter>  , Intf_Polygon2d >(m,"HLRBRep_ThePolygon2dOfTheIntPCurvePCurveOfCInter",R"#(None)#");
    py::class_<HLRBRep_TheQuadCurvFuncOfTheQuadCurvExactInterCSurf , shared_ptr<HLRBRep_TheQuadCurvFuncOfTheQuadCurvExactInterCSurf>  , math_FunctionWithDerivative >(m,"HLRBRep_TheQuadCurvFuncOfTheQuadCurvExactInterCSurf",R"#(None)#");
    py::class_<HLRBRep_Algo ,opencascade::handle<HLRBRep_Algo>  , HLRBRep_InternalAlgo >(m,"HLRBRep_Algo",R"#(Inherited from InternalAlgo to provide methods with Shape from TopoDS. A framework to compute a shape as seen in a projection plane. This is done by calculating the visible and the hidden parts of the shape. HLRBRep_Algo works with three types of entity: - shapes to be visualized - edges in these shapes (these edges are the basic entities which will be visualized or hidden), and - faces in these shapes which hide the edges. HLRBRep_Algo is based on the principle of comparing each edge of the shape to be visualized with each of its faces, and calculating the visible and the hidden parts of each edge. For a given projection, HLRBRep_Algo calculates a set of lines characteristic of the object being represented. It is also used in conjunction with the HLRBRep_HLRToShape extraction utilities, which reconstruct a new, simplified shape from a selection of calculation results. This new shape is made up of edges, which represent the shape visualized in the projection. HLRBRep_Algo takes the shape itself into account whereas HLRBRep_PolyAlgo works with a polyhedral simplification of the shape. When you use HLRBRep_Algo, you obtain an exact result, whereas, when you use HLRBRep_PolyAlgo, you reduce computation time but obtain polygonal segments. In the case of complicated shapes, HLRBRep_Algo may be time-consuming. An HLRBRep_Algo object provides a framework for: - defining the point of view - identifying the shape or shapes to be visualized - calculating the outlines - calculating the visible and hidden lines of the shape. Warning - Superimposed lines are not eliminated by this algorithm. - There must be no unfinished objects inside the shape you wish to visualize. - Points are not treated. - Note that this is not the sort of algorithm used in generating shading, which calculates the visible and hidden parts of each face in a shape to be visualized by comparing each face in the shape with every other face in the same shape.Inherited from InternalAlgo to provide methods with Shape from TopoDS. A framework to compute a shape as seen in a projection plane. This is done by calculating the visible and the hidden parts of the shape. HLRBRep_Algo works with three types of entity: - shapes to be visualized - edges in these shapes (these edges are the basic entities which will be visualized or hidden), and - faces in these shapes which hide the edges. HLRBRep_Algo is based on the principle of comparing each edge of the shape to be visualized with each of its faces, and calculating the visible and the hidden parts of each edge. For a given projection, HLRBRep_Algo calculates a set of lines characteristic of the object being represented. It is also used in conjunction with the HLRBRep_HLRToShape extraction utilities, which reconstruct a new, simplified shape from a selection of calculation results. This new shape is made up of edges, which represent the shape visualized in the projection. HLRBRep_Algo takes the shape itself into account whereas HLRBRep_PolyAlgo works with a polyhedral simplification of the shape. When you use HLRBRep_Algo, you obtain an exact result, whereas, when you use HLRBRep_PolyAlgo, you reduce computation time but obtain polygonal segments. In the case of complicated shapes, HLRBRep_Algo may be time-consuming. An HLRBRep_Algo object provides a framework for: - defining the point of view - identifying the shape or shapes to be visualized - calculating the outlines - calculating the visible and hidden lines of the shape. Warning - Superimposed lines are not eliminated by this algorithm. - There must be no unfinished objects inside the shape you wish to visualize. - Points are not treated. - Note that this is not the sort of algorithm used in generating shading, which calculates the visible and hidden parts of each face in a shape to be visualized by comparing each face in the shape with every other face in the same shape.Inherited from InternalAlgo to provide methods with Shape from TopoDS. A framework to compute a shape as seen in a projection plane. This is done by calculating the visible and the hidden parts of the shape. HLRBRep_Algo works with three types of entity: - shapes to be visualized - edges in these shapes (these edges are the basic entities which will be visualized or hidden), and - faces in these shapes which hide the edges. HLRBRep_Algo is based on the principle of comparing each edge of the shape to be visualized with each of its faces, and calculating the visible and the hidden parts of each edge. For a given projection, HLRBRep_Algo calculates a set of lines characteristic of the object being represented. It is also used in conjunction with the HLRBRep_HLRToShape extraction utilities, which reconstruct a new, simplified shape from a selection of calculation results. This new shape is made up of edges, which represent the shape visualized in the projection. HLRBRep_Algo takes the shape itself into account whereas HLRBRep_PolyAlgo works with a polyhedral simplification of the shape. When you use HLRBRep_Algo, you obtain an exact result, whereas, when you use HLRBRep_PolyAlgo, you reduce computation time but obtain polygonal segments. In the case of complicated shapes, HLRBRep_Algo may be time-consuming. An HLRBRep_Algo object provides a framework for: - defining the point of view - identifying the shape or shapes to be visualized - calculating the outlines - calculating the visible and hidden lines of the shape. Warning - Superimposed lines are not eliminated by this algorithm. - There must be no unfinished objects inside the shape you wish to visualize. - Points are not treated. - Note that this is not the sort of algorithm used in generating shading, which calculates the visible and hidden parts of each face in a shape to be visualized by comparing each face in the shape with every other face in the same shape.)#");

};

// user-defined post-inclusion per module

// user-defined post