File: IGESGeom_pre.cpp

package info (click to toggle)
python-ocp 7.8.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 64,724 kB
  • sloc: cpp: 362,337; pascal: 33; python: 23; makefile: 4
file content (601 lines) | stat: -rw-r--r-- 49,932 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601

// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

namespace py = pybind11;


// Standard Handle
#include <Standard_Handle.hxx>

// user-defined inclusion per module before includes

// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_Protocol.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESBasic_HArray1OfHArray1OfIGESEntity.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Pnt.hxx>
#include <gp_Dir.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Pnt.hxx>
#include <gp_Dir.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Vec.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Pnt.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESData_IGESEntity.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Vec.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Vec.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESBasic_SubfigureDef.hxx>
#include <gp_Pnt.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESData_IGESEntity.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESData_IGESEntity.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_Line.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_BSplineCurve.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_BSplineSurface.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_Boundary.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_BoundedSurface.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_CircularArc.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_CompositeCurve.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_ConicArc.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_CopiousData.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_CurveOnSurface.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_Direction.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_Flash.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_Line.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_OffsetCurve.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_OffsetSurface.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_Plane.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_Point.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_RuledSurface.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_SplineCurve.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_SplineSurface.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_SurfaceOfRevolution.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_TabulatedCylinder.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_TransformationMatrix.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_TrimmedSurface.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_GTrsf.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>

// module includes
#include <IGESGeom.hxx>
#include <IGESGeom_Array1OfBoundary.hxx>
#include <IGESGeom_Array1OfCurveOnSurface.hxx>
#include <IGESGeom_Array1OfTransformationMatrix.hxx>
#include <IGESGeom_Boundary.hxx>
#include <IGESGeom_BoundedSurface.hxx>
#include <IGESGeom_BSplineCurve.hxx>
#include <IGESGeom_BSplineSurface.hxx>
#include <IGESGeom_CircularArc.hxx>
#include <IGESGeom_CompositeCurve.hxx>
#include <IGESGeom_ConicArc.hxx>
#include <IGESGeom_CopiousData.hxx>
#include <IGESGeom_CurveOnSurface.hxx>
#include <IGESGeom_Direction.hxx>
#include <IGESGeom_Flash.hxx>
#include <IGESGeom_GeneralModule.hxx>
#include <IGESGeom_HArray1OfBoundary.hxx>
#include <IGESGeom_HArray1OfCurveOnSurface.hxx>
#include <IGESGeom_HArray1OfTransformationMatrix.hxx>
#include <IGESGeom_Line.hxx>
#include <IGESGeom_OffsetCurve.hxx>
#include <IGESGeom_OffsetSurface.hxx>
#include <IGESGeom_Plane.hxx>
#include <IGESGeom_Point.hxx>
#include <IGESGeom_Protocol.hxx>
#include <IGESGeom_ReadWriteModule.hxx>
#include <IGESGeom_RuledSurface.hxx>
#include <IGESGeom_SpecificModule.hxx>
#include <IGESGeom_SplineCurve.hxx>
#include <IGESGeom_SplineSurface.hxx>
#include <IGESGeom_SurfaceOfRevolution.hxx>
#include <IGESGeom_TabulatedCylinder.hxx>
#include <IGESGeom_ToolBoundary.hxx>
#include <IGESGeom_ToolBoundedSurface.hxx>
#include <IGESGeom_ToolBSplineCurve.hxx>
#include <IGESGeom_ToolBSplineSurface.hxx>
#include <IGESGeom_ToolCircularArc.hxx>
#include <IGESGeom_ToolCompositeCurve.hxx>
#include <IGESGeom_ToolConicArc.hxx>
#include <IGESGeom_ToolCopiousData.hxx>
#include <IGESGeom_ToolCurveOnSurface.hxx>
#include <IGESGeom_ToolDirection.hxx>
#include <IGESGeom_ToolFlash.hxx>
#include <IGESGeom_ToolLine.hxx>
#include <IGESGeom_ToolOffsetCurve.hxx>
#include <IGESGeom_ToolOffsetSurface.hxx>
#include <IGESGeom_ToolPlane.hxx>
#include <IGESGeom_ToolPoint.hxx>
#include <IGESGeom_ToolRuledSurface.hxx>
#include <IGESGeom_ToolSplineCurve.hxx>
#include <IGESGeom_ToolSplineSurface.hxx>
#include <IGESGeom_ToolSurfaceOfRevolution.hxx>
#include <IGESGeom_ToolTabulatedCylinder.hxx>
#include <IGESGeom_ToolTransformationMatrix.hxx>
#include <IGESGeom_ToolTrimmedSurface.hxx>
#include <IGESGeom_TransformationMatrix.hxx>
#include <IGESGeom_TrimmedSurface.hxx>

// template related includes

#include "NCollection_tmpl.hxx"

#include "NCollection_tmpl.hxx"

#include "NCollection_tmpl.hxx"


// user-defined pre
#include "OCP_specific.inc"

// user-defined inclusion per module

// Module definiiton
void register_IGESGeom_enums(py::module &main_module) {


py::module m = main_module.def_submodule("IGESGeom", R"#()#");

// user-defined inclusion per module in the body

// enums

//Python trampoline classes

// pre-register typdefs+classes (topologically sorted)
    py::class_<IGESGeom , shared_ptr<IGESGeom>  >(m,"IGESGeom",R"#(This package consists of B-Rep and CSG Solid entities)#");
    py::class_<IGESGeom_ToolBSplineCurve , shared_ptr<IGESGeom_ToolBSplineCurve>  >(m,"IGESGeom_ToolBSplineCurve",R"#(Tool to work on a BSplineCurve. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
    py::class_<IGESGeom_ToolBSplineSurface , shared_ptr<IGESGeom_ToolBSplineSurface>  >(m,"IGESGeom_ToolBSplineSurface",R"#(Tool to work on a BSplineSurface. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
    py::class_<IGESGeom_ToolBoundary , shared_ptr<IGESGeom_ToolBoundary>  >(m,"IGESGeom_ToolBoundary",R"#(Tool to work on a Boundary. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
    py::class_<IGESGeom_ToolBoundedSurface , shared_ptr<IGESGeom_ToolBoundedSurface>  >(m,"IGESGeom_ToolBoundedSurface",R"#(Tool to work on a BoundedSurface. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
    py::class_<IGESGeom_ToolCircularArc , shared_ptr<IGESGeom_ToolCircularArc>  >(m,"IGESGeom_ToolCircularArc",R"#(Tool to work on a CircularArc. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
    py::class_<IGESGeom_ToolCompositeCurve , shared_ptr<IGESGeom_ToolCompositeCurve>  >(m,"IGESGeom_ToolCompositeCurve",R"#(Tool to work on a CompositeCurve. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
    py::class_<IGESGeom_ToolConicArc , shared_ptr<IGESGeom_ToolConicArc>  >(m,"IGESGeom_ToolConicArc",R"#(Tool to work on a ConicArc. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
    py::class_<IGESGeom_ToolCopiousData , shared_ptr<IGESGeom_ToolCopiousData>  >(m,"IGESGeom_ToolCopiousData",R"#(Tool to work on a CopiousData. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
    py::class_<IGESGeom_ToolCurveOnSurface , shared_ptr<IGESGeom_ToolCurveOnSurface>  >(m,"IGESGeom_ToolCurveOnSurface",R"#(Tool to work on a CurveOnSurface. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
    py::class_<IGESGeom_ToolDirection , shared_ptr<IGESGeom_ToolDirection>  >(m,"IGESGeom_ToolDirection",R"#(Tool to work on a Direction. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
    py::class_<IGESGeom_ToolFlash , shared_ptr<IGESGeom_ToolFlash>  >(m,"IGESGeom_ToolFlash",R"#(Tool to work on a Flash. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
    py::class_<IGESGeom_ToolLine , shared_ptr<IGESGeom_ToolLine>  >(m,"IGESGeom_ToolLine",R"#(Tool to work on a Line. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
    py::class_<IGESGeom_ToolOffsetCurve , shared_ptr<IGESGeom_ToolOffsetCurve>  >(m,"IGESGeom_ToolOffsetCurve",R"#(Tool to work on a OffsetCurve. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
    py::class_<IGESGeom_ToolOffsetSurface , shared_ptr<IGESGeom_ToolOffsetSurface>  >(m,"IGESGeom_ToolOffsetSurface",R"#(Tool to work on a OffsetSurface. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
    py::class_<IGESGeom_ToolPlane , shared_ptr<IGESGeom_ToolPlane>  >(m,"IGESGeom_ToolPlane",R"#(Tool to work on a Plane. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
    py::class_<IGESGeom_ToolPoint , shared_ptr<IGESGeom_ToolPoint>  >(m,"IGESGeom_ToolPoint",R"#(Tool to work on a Point. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
    py::class_<IGESGeom_ToolRuledSurface , shared_ptr<IGESGeom_ToolRuledSurface>  >(m,"IGESGeom_ToolRuledSurface",R"#(Tool to work on a RuledSurface. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
    py::class_<IGESGeom_ToolSplineCurve , shared_ptr<IGESGeom_ToolSplineCurve>  >(m,"IGESGeom_ToolSplineCurve",R"#(Tool to work on a SplineCurve. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
    py::class_<IGESGeom_ToolSplineSurface , shared_ptr<IGESGeom_ToolSplineSurface>  >(m,"IGESGeom_ToolSplineSurface",R"#(Tool to work on a SplineSurface. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
    py::class_<IGESGeom_ToolSurfaceOfRevolution , shared_ptr<IGESGeom_ToolSurfaceOfRevolution>  >(m,"IGESGeom_ToolSurfaceOfRevolution",R"#(Tool to work on a SurfaceOfRevolution. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
    py::class_<IGESGeom_ToolTabulatedCylinder , shared_ptr<IGESGeom_ToolTabulatedCylinder>  >(m,"IGESGeom_ToolTabulatedCylinder",R"#(Tool to work on a TabulatedCylinder. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
    py::class_<IGESGeom_ToolTransformationMatrix , shared_ptr<IGESGeom_ToolTransformationMatrix>  >(m,"IGESGeom_ToolTransformationMatrix",R"#(Tool to work on a TransformationMatrix. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
    py::class_<IGESGeom_ToolTrimmedSurface , shared_ptr<IGESGeom_ToolTrimmedSurface>  >(m,"IGESGeom_ToolTrimmedSurface",R"#(Tool to work on a TrimmedSurface. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
    preregister_template_NCollection_Array1<opencascade::handle<IGESGeom_Boundary>>(m,"IGESGeom_Array1OfBoundary");
    preregister_template_NCollection_Array1<opencascade::handle<IGESGeom_CurveOnSurface>>(m,"IGESGeom_Array1OfCurveOnSurface");
    preregister_template_NCollection_Array1<opencascade::handle<IGESGeom_TransformationMatrix>>(m,"IGESGeom_Array1OfTransformationMatrix");
    py::class_<IGESGeom_BSplineCurve ,opencascade::handle<IGESGeom_BSplineCurve>  , IGESData_IGESEntity >(m,"IGESGeom_BSplineCurve",R"#(defines IGESBSplineCurve, Type <126> Form <0-5> in package IGESGeom A parametric equation obtained by dividing two summations involving weights (which are real numbers), the control points, and B-Spline basis functionsdefines IGESBSplineCurve, Type <126> Form <0-5> in package IGESGeom A parametric equation obtained by dividing two summations involving weights (which are real numbers), the control points, and B-Spline basis functionsdefines IGESBSplineCurve, Type <126> Form <0-5> in package IGESGeom A parametric equation obtained by dividing two summations involving weights (which are real numbers), the control points, and B-Spline basis functions)#");
    py::class_<IGESGeom_BSplineSurface ,opencascade::handle<IGESGeom_BSplineSurface>  , IGESData_IGESEntity >(m,"IGESGeom_BSplineSurface",R"#(defines IGESBSplineSurface, Type <128> Form <0-9> in package IGESGeom A parametric equation obtained by dividing two summations involving weights (which are real numbers), the control points, and B-Spline basis functionsdefines IGESBSplineSurface, Type <128> Form <0-9> in package IGESGeom A parametric equation obtained by dividing two summations involving weights (which are real numbers), the control points, and B-Spline basis functionsdefines IGESBSplineSurface, Type <128> Form <0-9> in package IGESGeom A parametric equation obtained by dividing two summations involving weights (which are real numbers), the control points, and B-Spline basis functions)#");
    py::class_<IGESGeom_Boundary ,opencascade::handle<IGESGeom_Boundary>  , IGESData_IGESEntity >(m,"IGESGeom_Boundary",R"#(defines IGESBoundary, Type <141> Form <0> in package IGESGeom A boundary entity identifies a surface boundary consisting of a set of curves lying on the surfacedefines IGESBoundary, Type <141> Form <0> in package IGESGeom A boundary entity identifies a surface boundary consisting of a set of curves lying on the surfacedefines IGESBoundary, Type <141> Form <0> in package IGESGeom A boundary entity identifies a surface boundary consisting of a set of curves lying on the surface)#");
    py::class_<IGESGeom_BoundedSurface ,opencascade::handle<IGESGeom_BoundedSurface>  , IGESData_IGESEntity >(m,"IGESGeom_BoundedSurface",R"#(defines BoundedSurface, Type <143> Form <0> in package IGESGeom A bounded surface is used to communicate trimmed surfaces. The surface and trimming curves are assumed to be represented parametrically.defines BoundedSurface, Type <143> Form <0> in package IGESGeom A bounded surface is used to communicate trimmed surfaces. The surface and trimming curves are assumed to be represented parametrically.defines BoundedSurface, Type <143> Form <0> in package IGESGeom A bounded surface is used to communicate trimmed surfaces. The surface and trimming curves are assumed to be represented parametrically.)#");
    py::class_<IGESGeom_CircularArc ,opencascade::handle<IGESGeom_CircularArc>  , IGESData_IGESEntity >(m,"IGESGeom_CircularArc",R"#(defines IGESCircularArc, Type <100> Form <0> in package IGESGeom A circular arc is a connected portion of a parent circle which consists of more than one point. The definition space coordinate system is always chosen so that the circular arc remains in a plane either coincident with or parallel to the XT, YT plane.defines IGESCircularArc, Type <100> Form <0> in package IGESGeom A circular arc is a connected portion of a parent circle which consists of more than one point. The definition space coordinate system is always chosen so that the circular arc remains in a plane either coincident with or parallel to the XT, YT plane.defines IGESCircularArc, Type <100> Form <0> in package IGESGeom A circular arc is a connected portion of a parent circle which consists of more than one point. The definition space coordinate system is always chosen so that the circular arc remains in a plane either coincident with or parallel to the XT, YT plane.)#");
    py::class_<IGESGeom_CompositeCurve ,opencascade::handle<IGESGeom_CompositeCurve>  , IGESData_IGESEntity >(m,"IGESGeom_CompositeCurve",R"#(defines IGESCompositeCurve, Type <102> Form <0> in package IGESGeom A composite curve is defined as an ordered list of entities consisting of a point, connect point and parametrised curve entities (excluding the CompositeCurve entity).defines IGESCompositeCurve, Type <102> Form <0> in package IGESGeom A composite curve is defined as an ordered list of entities consisting of a point, connect point and parametrised curve entities (excluding the CompositeCurve entity).defines IGESCompositeCurve, Type <102> Form <0> in package IGESGeom A composite curve is defined as an ordered list of entities consisting of a point, connect point and parametrised curve entities (excluding the CompositeCurve entity).)#");
    py::class_<IGESGeom_ConicArc ,opencascade::handle<IGESGeom_ConicArc>  , IGESData_IGESEntity >(m,"IGESGeom_ConicArc",R"#(defines IGESConicArc, Type <104> Form <0-3> in package IGESGeom A conic arc is a bounded connected portion of a parent conic curve which consists of more than one point. The parent conic curve is either an ellipse, a parabola, or a hyperbola. The definition space coordinate system is always chosen so that the conic arc lies in a plane either coincident with or parallel to XT, YT plane. Within such a plane a conic is defined by the six coefficients in the following equation. A*XT^2 + B*XT*YT + C*YT^2 + D*XT + E*YT + F = 0defines IGESConicArc, Type <104> Form <0-3> in package IGESGeom A conic arc is a bounded connected portion of a parent conic curve which consists of more than one point. The parent conic curve is either an ellipse, a parabola, or a hyperbola. The definition space coordinate system is always chosen so that the conic arc lies in a plane either coincident with or parallel to XT, YT plane. Within such a plane a conic is defined by the six coefficients in the following equation. A*XT^2 + B*XT*YT + C*YT^2 + D*XT + E*YT + F = 0defines IGESConicArc, Type <104> Form <0-3> in package IGESGeom A conic arc is a bounded connected portion of a parent conic curve which consists of more than one point. The parent conic curve is either an ellipse, a parabola, or a hyperbola. The definition space coordinate system is always chosen so that the conic arc lies in a plane either coincident with or parallel to XT, YT plane. Within such a plane a conic is defined by the six coefficients in the following equation. A*XT^2 + B*XT*YT + C*YT^2 + D*XT + E*YT + F = 0)#");
    py::class_<IGESGeom_CopiousData ,opencascade::handle<IGESGeom_CopiousData>  , IGESData_IGESEntity >(m,"IGESGeom_CopiousData",R"#(defines IGESCopiousData, Type <106> Form <1-3,11-13,63> in package IGESGeom This entity stores data points in the form of pairs, triples, or sextuples. An interpretation flag value signifies which of these forms is being used.defines IGESCopiousData, Type <106> Form <1-3,11-13,63> in package IGESGeom This entity stores data points in the form of pairs, triples, or sextuples. An interpretation flag value signifies which of these forms is being used.defines IGESCopiousData, Type <106> Form <1-3,11-13,63> in package IGESGeom This entity stores data points in the form of pairs, triples, or sextuples. An interpretation flag value signifies which of these forms is being used.)#");
    py::class_<IGESGeom_CurveOnSurface ,opencascade::handle<IGESGeom_CurveOnSurface>  , IGESData_IGESEntity >(m,"IGESGeom_CurveOnSurface",R"#(defines IGESCurveOnSurface, Type <142> Form <0> in package IGESGeom A curve on a parametric surface entity associates a given curve with a surface and identifies the curve as lying on the surface.defines IGESCurveOnSurface, Type <142> Form <0> in package IGESGeom A curve on a parametric surface entity associates a given curve with a surface and identifies the curve as lying on the surface.defines IGESCurveOnSurface, Type <142> Form <0> in package IGESGeom A curve on a parametric surface entity associates a given curve with a surface and identifies the curve as lying on the surface.)#");
    py::class_<IGESGeom_Direction ,opencascade::handle<IGESGeom_Direction>  , IGESData_IGESEntity >(m,"IGESGeom_Direction",R"#(defines IGESDirection, Type <123> Form <0> in package IGESGeom A direction entity is a non-zero vector in Euclidean 3-space that is defined by its three components (direction ratios) with respect to the coordinate axes. If x, y, z are the direction ratios then (x^2 + y^2 + z^2) > 0defines IGESDirection, Type <123> Form <0> in package IGESGeom A direction entity is a non-zero vector in Euclidean 3-space that is defined by its three components (direction ratios) with respect to the coordinate axes. If x, y, z are the direction ratios then (x^2 + y^2 + z^2) > 0defines IGESDirection, Type <123> Form <0> in package IGESGeom A direction entity is a non-zero vector in Euclidean 3-space that is defined by its three components (direction ratios) with respect to the coordinate axes. If x, y, z are the direction ratios then (x^2 + y^2 + z^2) > 0)#");
    py::class_<IGESGeom_Flash ,opencascade::handle<IGESGeom_Flash>  , IGESData_IGESEntity >(m,"IGESGeom_Flash",R"#(defines IGESFlash, Type <125> Form <0 - 4> in package IGESGeom A flash entity is a point in the ZT=0 plane that locates a particular closed area. That closed area can be defined in one of two ways. First, it can be an arbitrary closed area defined by any entity capable of defining a closed area. The points of this entity must all lie in the ZT=0 plane. Second, it can be a member of a predefined set of flash shapes.defines IGESFlash, Type <125> Form <0 - 4> in package IGESGeom A flash entity is a point in the ZT=0 plane that locates a particular closed area. That closed area can be defined in one of two ways. First, it can be an arbitrary closed area defined by any entity capable of defining a closed area. The points of this entity must all lie in the ZT=0 plane. Second, it can be a member of a predefined set of flash shapes.defines IGESFlash, Type <125> Form <0 - 4> in package IGESGeom A flash entity is a point in the ZT=0 plane that locates a particular closed area. That closed area can be defined in one of two ways. First, it can be an arbitrary closed area defined by any entity capable of defining a closed area. The points of this entity must all lie in the ZT=0 plane. Second, it can be a member of a predefined set of flash shapes.)#");
    py::class_<IGESGeom_GeneralModule ,opencascade::handle<IGESGeom_GeneralModule>  , IGESData_GeneralModule >(m,"IGESGeom_GeneralModule",R"#(Definition of General Services for IGESGeom (specific part) This Services comprise : Shared & Implied Lists, Copy, CheckDefinition of General Services for IGESGeom (specific part) This Services comprise : Shared & Implied Lists, Copy, CheckDefinition of General Services for IGESGeom (specific part) This Services comprise : Shared & Implied Lists, Copy, Check)#");
    py::class_<IGESGeom_Line ,opencascade::handle<IGESGeom_Line>  , IGESData_IGESEntity >(m,"IGESGeom_Line",R"#(defines IGESLine, Type <110> Form <0> in package IGESGeom A line is a bounded, connected portion of a parent straight line which consists of more than one point. A line is defined by its end points.defines IGESLine, Type <110> Form <0> in package IGESGeom A line is a bounded, connected portion of a parent straight line which consists of more than one point. A line is defined by its end points.defines IGESLine, Type <110> Form <0> in package IGESGeom A line is a bounded, connected portion of a parent straight line which consists of more than one point. A line is defined by its end points.)#");
    py::class_<IGESGeom_OffsetCurve ,opencascade::handle<IGESGeom_OffsetCurve>  , IGESData_IGESEntity >(m,"IGESGeom_OffsetCurve",R"#(defines IGESOffsetCurve, Type <130> Form <0> in package IGESGeom An OffsetCurve entity contains the data necessary to determine the offset of a given curve C. This entity points to the base curve to be offset and contains offset distance and other pertinent information.defines IGESOffsetCurve, Type <130> Form <0> in package IGESGeom An OffsetCurve entity contains the data necessary to determine the offset of a given curve C. This entity points to the base curve to be offset and contains offset distance and other pertinent information.defines IGESOffsetCurve, Type <130> Form <0> in package IGESGeom An OffsetCurve entity contains the data necessary to determine the offset of a given curve C. This entity points to the base curve to be offset and contains offset distance and other pertinent information.)#");
    py::class_<IGESGeom_OffsetSurface ,opencascade::handle<IGESGeom_OffsetSurface>  , IGESData_IGESEntity >(m,"IGESGeom_OffsetSurface",R"#(defines IGESOffsetSurface, Type <140> Form <0> in package IGESGeom An offset surface is a surface defined in terms of an already existing surface.If S(u, v) is a parametrised regular surface and N(u, v) is a differential field of unit normal vectors defined on the whole surface, and "d" a fixed non zero real number, then offset surface to S is a parametrised surface S(u, v) given by O(u, v) = S(u, v) + d * N(u, v); u1 <= u <= u2; v1 <= v <= v2;defines IGESOffsetSurface, Type <140> Form <0> in package IGESGeom An offset surface is a surface defined in terms of an already existing surface.If S(u, v) is a parametrised regular surface and N(u, v) is a differential field of unit normal vectors defined on the whole surface, and "d" a fixed non zero real number, then offset surface to S is a parametrised surface S(u, v) given by O(u, v) = S(u, v) + d * N(u, v); u1 <= u <= u2; v1 <= v <= v2;defines IGESOffsetSurface, Type <140> Form <0> in package IGESGeom An offset surface is a surface defined in terms of an already existing surface.If S(u, v) is a parametrised regular surface and N(u, v) is a differential field of unit normal vectors defined on the whole surface, and "d" a fixed non zero real number, then offset surface to S is a parametrised surface S(u, v) given by O(u, v) = S(u, v) + d * N(u, v); u1 <= u <= u2; v1 <= v <= v2;)#");
    py::class_<IGESGeom_Plane ,opencascade::handle<IGESGeom_Plane>  , IGESData_IGESEntity >(m,"IGESGeom_Plane",R"#(defines IGESPlane, Type <108> Form <-1,0,1> in package IGESGeom A plane entity can be used to represent unbounded plane, as well as bounded portion of a plane. In either of the above cases the plane is defined within definition space by means of coefficients A, B, C, D where at least one of A, B, C is non-zero and A * XT + B * YT + C * ZT = Ddefines IGESPlane, Type <108> Form <-1,0,1> in package IGESGeom A plane entity can be used to represent unbounded plane, as well as bounded portion of a plane. In either of the above cases the plane is defined within definition space by means of coefficients A, B, C, D where at least one of A, B, C is non-zero and A * XT + B * YT + C * ZT = Ddefines IGESPlane, Type <108> Form <-1,0,1> in package IGESGeom A plane entity can be used to represent unbounded plane, as well as bounded portion of a plane. In either of the above cases the plane is defined within definition space by means of coefficients A, B, C, D where at least one of A, B, C is non-zero and A * XT + B * YT + C * ZT = D)#");
    py::class_<IGESGeom_Point ,opencascade::handle<IGESGeom_Point>  , IGESData_IGESEntity >(m,"IGESGeom_Point",R"#(defines IGESPoint, Type <116> Form <0> in package IGESGeomdefines IGESPoint, Type <116> Form <0> in package IGESGeomdefines IGESPoint, Type <116> Form <0> in package IGESGeom)#");
    py::class_<IGESGeom_Protocol ,opencascade::handle<IGESGeom_Protocol>  , IGESData_Protocol >(m,"IGESGeom_Protocol",R"#(Description of Protocol for IGESGeomDescription of Protocol for IGESGeomDescription of Protocol for IGESGeom)#");
    py::class_<IGESGeom_ReadWriteModule ,opencascade::handle<IGESGeom_ReadWriteModule>  , IGESData_ReadWriteModule >(m,"IGESGeom_ReadWriteModule",R"#(Defines Geom File Access Module for IGESGeom (specific parts) Specific actions concern : Read and Write Own Parameters of an IGESEntity.Defines Geom File Access Module for IGESGeom (specific parts) Specific actions concern : Read and Write Own Parameters of an IGESEntity.Defines Geom File Access Module for IGESGeom (specific parts) Specific actions concern : Read and Write Own Parameters of an IGESEntity.)#");
    py::class_<IGESGeom_RuledSurface ,opencascade::handle<IGESGeom_RuledSurface>  , IGESData_IGESEntity >(m,"IGESGeom_RuledSurface",R"#(defines IGESRuledSurface, Type <118> Form <0-1> in package IGESGeom A ruled surface is formed by moving a line connecting points of equal relative arc length or equal relative parametric value on two parametric curves from a start point to a terminate point on the curves. The parametric curves may be points, lines, circles, conics, rational B-splines, parametric splines or any parametric curve defined in the IGES specification.defines IGESRuledSurface, Type <118> Form <0-1> in package IGESGeom A ruled surface is formed by moving a line connecting points of equal relative arc length or equal relative parametric value on two parametric curves from a start point to a terminate point on the curves. The parametric curves may be points, lines, circles, conics, rational B-splines, parametric splines or any parametric curve defined in the IGES specification.defines IGESRuledSurface, Type <118> Form <0-1> in package IGESGeom A ruled surface is formed by moving a line connecting points of equal relative arc length or equal relative parametric value on two parametric curves from a start point to a terminate point on the curves. The parametric curves may be points, lines, circles, conics, rational B-splines, parametric splines or any parametric curve defined in the IGES specification.)#");
    py::class_<IGESGeom_SpecificModule ,opencascade::handle<IGESGeom_SpecificModule>  , IGESData_SpecificModule >(m,"IGESGeom_SpecificModule",R"#(Defines Services attached to IGES Entities : Dump & OwnCorrect, for IGESGeomDefines Services attached to IGES Entities : Dump & OwnCorrect, for IGESGeomDefines Services attached to IGES Entities : Dump & OwnCorrect, for IGESGeom)#");
    py::class_<IGESGeom_SplineCurve ,opencascade::handle<IGESGeom_SplineCurve>  , IGESData_IGESEntity >(m,"IGESGeom_SplineCurve",R"#(Defines IGESSplineCurve, Type <112> Form <0> in package IGESGeom The parametric spline is a sequence of parametric polynomial segments. The curve could be of the type Linear, Quadratic, Cubic, Wilson-Fowler, Modified Wilson-Fowler, B-Spline. The N polynomial segments are delimited by the break points T(1), T(2), T(3), ..., T(N+1).Defines IGESSplineCurve, Type <112> Form <0> in package IGESGeom The parametric spline is a sequence of parametric polynomial segments. The curve could be of the type Linear, Quadratic, Cubic, Wilson-Fowler, Modified Wilson-Fowler, B-Spline. The N polynomial segments are delimited by the break points T(1), T(2), T(3), ..., T(N+1).Defines IGESSplineCurve, Type <112> Form <0> in package IGESGeom The parametric spline is a sequence of parametric polynomial segments. The curve could be of the type Linear, Quadratic, Cubic, Wilson-Fowler, Modified Wilson-Fowler, B-Spline. The N polynomial segments are delimited by the break points T(1), T(2), T(3), ..., T(N+1).)#");
    py::class_<IGESGeom_SplineSurface ,opencascade::handle<IGESGeom_SplineSurface>  , IGESData_IGESEntity >(m,"IGESGeom_SplineSurface",R"#(defines IGESSplineSurface, Type <114> Form <0> in package IGESGeom A parametric spline surface is a grid of polynomial patches. Patch could be of the type Linear, Quadratic, Cubic, Wilson-Fowler, Modified Wilson-Fowler, B-Spline The M * N grid of patches is defined by the 'u' break points TU(1), TU(2), ..., TU(M+1) and the 'v' break points TV(1), TV(2), TV(3) ..., TV(N+1).defines IGESSplineSurface, Type <114> Form <0> in package IGESGeom A parametric spline surface is a grid of polynomial patches. Patch could be of the type Linear, Quadratic, Cubic, Wilson-Fowler, Modified Wilson-Fowler, B-Spline The M * N grid of patches is defined by the 'u' break points TU(1), TU(2), ..., TU(M+1) and the 'v' break points TV(1), TV(2), TV(3) ..., TV(N+1).defines IGESSplineSurface, Type <114> Form <0> in package IGESGeom A parametric spline surface is a grid of polynomial patches. Patch could be of the type Linear, Quadratic, Cubic, Wilson-Fowler, Modified Wilson-Fowler, B-Spline The M * N grid of patches is defined by the 'u' break points TU(1), TU(2), ..., TU(M+1) and the 'v' break points TV(1), TV(2), TV(3) ..., TV(N+1).)#");
    py::class_<IGESGeom_SurfaceOfRevolution ,opencascade::handle<IGESGeom_SurfaceOfRevolution>  , IGESData_IGESEntity >(m,"IGESGeom_SurfaceOfRevolution",R"#(defines IGESSurfaceOfRevolution, Type <120> Form <0> in package IGESGeom A surface of revolution is defined by an axis of rotation a generatrix, and start and terminate rotation angles. The surface is created by rotating the generatrix about the axis of rotation through the start and terminate rotation angles.defines IGESSurfaceOfRevolution, Type <120> Form <0> in package IGESGeom A surface of revolution is defined by an axis of rotation a generatrix, and start and terminate rotation angles. The surface is created by rotating the generatrix about the axis of rotation through the start and terminate rotation angles.defines IGESSurfaceOfRevolution, Type <120> Form <0> in package IGESGeom A surface of revolution is defined by an axis of rotation a generatrix, and start and terminate rotation angles. The surface is created by rotating the generatrix about the axis of rotation through the start and terminate rotation angles.)#");
    py::class_<IGESGeom_TabulatedCylinder ,opencascade::handle<IGESGeom_TabulatedCylinder>  , IGESData_IGESEntity >(m,"IGESGeom_TabulatedCylinder",R"#(defines IGESTabulatedCylinder, Type <122> Form <0> in package IGESGeom A tabulated cylinder is a surface formed by moving a line segment called generatrix parallel to itself along a curve called directrix. The curve may be a line, circular arc, conic arc, parametric spline curve, rational B-spline curve or composite curve.defines IGESTabulatedCylinder, Type <122> Form <0> in package IGESGeom A tabulated cylinder is a surface formed by moving a line segment called generatrix parallel to itself along a curve called directrix. The curve may be a line, circular arc, conic arc, parametric spline curve, rational B-spline curve or composite curve.defines IGESTabulatedCylinder, Type <122> Form <0> in package IGESGeom A tabulated cylinder is a surface formed by moving a line segment called generatrix parallel to itself along a curve called directrix. The curve may be a line, circular arc, conic arc, parametric spline curve, rational B-spline curve or composite curve.)#");
    py::class_<IGESGeom_TransformationMatrix ,opencascade::handle<IGESGeom_TransformationMatrix>  , IGESData_TransfEntity >(m,"IGESGeom_TransformationMatrix",R"#(defines IGESTransformationMatrix, Type <124> Form <0> in package IGESGeom The transformation matrix entity transforms three-row column vectors by means of matrix multiplication and then a vector addition. This entity can be considered as an "operator" entity in that it starts with the input vector, operates on it as described above, and produces the output vector.defines IGESTransformationMatrix, Type <124> Form <0> in package IGESGeom The transformation matrix entity transforms three-row column vectors by means of matrix multiplication and then a vector addition. This entity can be considered as an "operator" entity in that it starts with the input vector, operates on it as described above, and produces the output vector.defines IGESTransformationMatrix, Type <124> Form <0> in package IGESGeom The transformation matrix entity transforms three-row column vectors by means of matrix multiplication and then a vector addition. This entity can be considered as an "operator" entity in that it starts with the input vector, operates on it as described above, and produces the output vector.)#");
    py::class_<IGESGeom_TrimmedSurface ,opencascade::handle<IGESGeom_TrimmedSurface>  , IGESData_IGESEntity >(m,"IGESGeom_TrimmedSurface",R"#(defines IGESTrimmedSurface, Type <144> Form <0> in package IGESGeom A simple closed curve in Euclidean plane divides the plane in to two disjoint, open connected components; one bounded, one unbounded. The bounded one is called the interior region to the curve. Unbounded component is called exterior region to the curve. The domain of the trimmed surface is defined as the interior of the outer boundaries and exterior of the inner boundaries and includes the boundary curves.defines IGESTrimmedSurface, Type <144> Form <0> in package IGESGeom A simple closed curve in Euclidean plane divides the plane in to two disjoint, open connected components; one bounded, one unbounded. The bounded one is called the interior region to the curve. Unbounded component is called exterior region to the curve. The domain of the trimmed surface is defined as the interior of the outer boundaries and exterior of the inner boundaries and includes the boundary curves.defines IGESTrimmedSurface, Type <144> Form <0> in package IGESGeom A simple closed curve in Euclidean plane divides the plane in to two disjoint, open connected components; one bounded, one unbounded. The bounded one is called the interior region to the curve. Unbounded component is called exterior region to the curve. The domain of the trimmed surface is defined as the interior of the outer boundaries and exterior of the inner boundaries and includes the boundary curves.)#");
    py::class_<IGESGeom_HArray1OfBoundary ,opencascade::handle<IGESGeom_HArray1OfBoundary>  , IGESGeom_Array1OfBoundary , Standard_Transient >(m,"IGESGeom_HArray1OfBoundary",R"#()#");
    py::class_<IGESGeom_HArray1OfCurveOnSurface ,opencascade::handle<IGESGeom_HArray1OfCurveOnSurface>  , IGESGeom_Array1OfCurveOnSurface , Standard_Transient >(m,"IGESGeom_HArray1OfCurveOnSurface",R"#()#");
    py::class_<IGESGeom_HArray1OfTransformationMatrix ,opencascade::handle<IGESGeom_HArray1OfTransformationMatrix>  , IGESGeom_Array1OfTransformationMatrix , Standard_Transient >(m,"IGESGeom_HArray1OfTransformationMatrix",R"#()#");

};

// user-defined post-inclusion per module

// user-defined post