1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
|
// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybind11;
// Standard Handle
#include <Standard_Handle.hxx>
// user-defined inclusion per module before includes
// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_Protocol.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESBasic_HArray1OfHArray1OfIGESEntity.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Pnt.hxx>
#include <gp_Dir.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Pnt.hxx>
#include <gp_Dir.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Vec.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Pnt.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESData_IGESEntity.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Vec.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Vec.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESBasic_SubfigureDef.hxx>
#include <gp_Pnt.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESData_IGESEntity.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESData_IGESEntity.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_Line.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_Pnt.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_BSplineCurve.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_BSplineSurface.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_Boundary.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_BoundedSurface.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_CircularArc.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_CompositeCurve.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_ConicArc.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_CopiousData.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_CurveOnSurface.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_Direction.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_Flash.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_Line.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_OffsetCurve.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_OffsetSurface.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_Plane.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_Point.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_RuledSurface.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_SplineCurve.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_SplineSurface.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_SurfaceOfRevolution.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_TabulatedCylinder.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_TransformationMatrix.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <IGESGeom_TrimmedSurface.hxx>
#include <IGESData_IGESReaderData.hxx>
#include <IGESData_ParamReader.hxx>
#include <IGESData_IGESWriter.hxx>
#include <Interface_EntityIterator.hxx>
#include <IGESData_DirChecker.hxx>
#include <Interface_ShareTool.hxx>
#include <Interface_Check.hxx>
#include <Interface_CopyTool.hxx>
#include <IGESData_IGESDumper.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <gp_GTrsf.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
// module includes
#include <IGESGeom.hxx>
#include <IGESGeom_Array1OfBoundary.hxx>
#include <IGESGeom_Array1OfCurveOnSurface.hxx>
#include <IGESGeom_Array1OfTransformationMatrix.hxx>
#include <IGESGeom_Boundary.hxx>
#include <IGESGeom_BoundedSurface.hxx>
#include <IGESGeom_BSplineCurve.hxx>
#include <IGESGeom_BSplineSurface.hxx>
#include <IGESGeom_CircularArc.hxx>
#include <IGESGeom_CompositeCurve.hxx>
#include <IGESGeom_ConicArc.hxx>
#include <IGESGeom_CopiousData.hxx>
#include <IGESGeom_CurveOnSurface.hxx>
#include <IGESGeom_Direction.hxx>
#include <IGESGeom_Flash.hxx>
#include <IGESGeom_GeneralModule.hxx>
#include <IGESGeom_HArray1OfBoundary.hxx>
#include <IGESGeom_HArray1OfCurveOnSurface.hxx>
#include <IGESGeom_HArray1OfTransformationMatrix.hxx>
#include <IGESGeom_Line.hxx>
#include <IGESGeom_OffsetCurve.hxx>
#include <IGESGeom_OffsetSurface.hxx>
#include <IGESGeom_Plane.hxx>
#include <IGESGeom_Point.hxx>
#include <IGESGeom_Protocol.hxx>
#include <IGESGeom_ReadWriteModule.hxx>
#include <IGESGeom_RuledSurface.hxx>
#include <IGESGeom_SpecificModule.hxx>
#include <IGESGeom_SplineCurve.hxx>
#include <IGESGeom_SplineSurface.hxx>
#include <IGESGeom_SurfaceOfRevolution.hxx>
#include <IGESGeom_TabulatedCylinder.hxx>
#include <IGESGeom_ToolBoundary.hxx>
#include <IGESGeom_ToolBoundedSurface.hxx>
#include <IGESGeom_ToolBSplineCurve.hxx>
#include <IGESGeom_ToolBSplineSurface.hxx>
#include <IGESGeom_ToolCircularArc.hxx>
#include <IGESGeom_ToolCompositeCurve.hxx>
#include <IGESGeom_ToolConicArc.hxx>
#include <IGESGeom_ToolCopiousData.hxx>
#include <IGESGeom_ToolCurveOnSurface.hxx>
#include <IGESGeom_ToolDirection.hxx>
#include <IGESGeom_ToolFlash.hxx>
#include <IGESGeom_ToolLine.hxx>
#include <IGESGeom_ToolOffsetCurve.hxx>
#include <IGESGeom_ToolOffsetSurface.hxx>
#include <IGESGeom_ToolPlane.hxx>
#include <IGESGeom_ToolPoint.hxx>
#include <IGESGeom_ToolRuledSurface.hxx>
#include <IGESGeom_ToolSplineCurve.hxx>
#include <IGESGeom_ToolSplineSurface.hxx>
#include <IGESGeom_ToolSurfaceOfRevolution.hxx>
#include <IGESGeom_ToolTabulatedCylinder.hxx>
#include <IGESGeom_ToolTransformationMatrix.hxx>
#include <IGESGeom_ToolTrimmedSurface.hxx>
#include <IGESGeom_TransformationMatrix.hxx>
#include <IGESGeom_TrimmedSurface.hxx>
// template related includes
#include "NCollection_tmpl.hxx"
#include "NCollection_tmpl.hxx"
#include "NCollection_tmpl.hxx"
// user-defined pre
#include "OCP_specific.inc"
// user-defined inclusion per module
// Module definiiton
void register_IGESGeom_enums(py::module &main_module) {
py::module m = main_module.def_submodule("IGESGeom", R"#()#");
// user-defined inclusion per module in the body
// enums
//Python trampoline classes
// pre-register typdefs+classes (topologically sorted)
py::class_<IGESGeom , shared_ptr<IGESGeom> >(m,"IGESGeom",R"#(This package consists of B-Rep and CSG Solid entities)#");
py::class_<IGESGeom_ToolBSplineCurve , shared_ptr<IGESGeom_ToolBSplineCurve> >(m,"IGESGeom_ToolBSplineCurve",R"#(Tool to work on a BSplineCurve. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
py::class_<IGESGeom_ToolBSplineSurface , shared_ptr<IGESGeom_ToolBSplineSurface> >(m,"IGESGeom_ToolBSplineSurface",R"#(Tool to work on a BSplineSurface. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
py::class_<IGESGeom_ToolBoundary , shared_ptr<IGESGeom_ToolBoundary> >(m,"IGESGeom_ToolBoundary",R"#(Tool to work on a Boundary. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
py::class_<IGESGeom_ToolBoundedSurface , shared_ptr<IGESGeom_ToolBoundedSurface> >(m,"IGESGeom_ToolBoundedSurface",R"#(Tool to work on a BoundedSurface. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
py::class_<IGESGeom_ToolCircularArc , shared_ptr<IGESGeom_ToolCircularArc> >(m,"IGESGeom_ToolCircularArc",R"#(Tool to work on a CircularArc. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
py::class_<IGESGeom_ToolCompositeCurve , shared_ptr<IGESGeom_ToolCompositeCurve> >(m,"IGESGeom_ToolCompositeCurve",R"#(Tool to work on a CompositeCurve. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
py::class_<IGESGeom_ToolConicArc , shared_ptr<IGESGeom_ToolConicArc> >(m,"IGESGeom_ToolConicArc",R"#(Tool to work on a ConicArc. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
py::class_<IGESGeom_ToolCopiousData , shared_ptr<IGESGeom_ToolCopiousData> >(m,"IGESGeom_ToolCopiousData",R"#(Tool to work on a CopiousData. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
py::class_<IGESGeom_ToolCurveOnSurface , shared_ptr<IGESGeom_ToolCurveOnSurface> >(m,"IGESGeom_ToolCurveOnSurface",R"#(Tool to work on a CurveOnSurface. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
py::class_<IGESGeom_ToolDirection , shared_ptr<IGESGeom_ToolDirection> >(m,"IGESGeom_ToolDirection",R"#(Tool to work on a Direction. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
py::class_<IGESGeom_ToolFlash , shared_ptr<IGESGeom_ToolFlash> >(m,"IGESGeom_ToolFlash",R"#(Tool to work on a Flash. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
py::class_<IGESGeom_ToolLine , shared_ptr<IGESGeom_ToolLine> >(m,"IGESGeom_ToolLine",R"#(Tool to work on a Line. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
py::class_<IGESGeom_ToolOffsetCurve , shared_ptr<IGESGeom_ToolOffsetCurve> >(m,"IGESGeom_ToolOffsetCurve",R"#(Tool to work on a OffsetCurve. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
py::class_<IGESGeom_ToolOffsetSurface , shared_ptr<IGESGeom_ToolOffsetSurface> >(m,"IGESGeom_ToolOffsetSurface",R"#(Tool to work on a OffsetSurface. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
py::class_<IGESGeom_ToolPlane , shared_ptr<IGESGeom_ToolPlane> >(m,"IGESGeom_ToolPlane",R"#(Tool to work on a Plane. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
py::class_<IGESGeom_ToolPoint , shared_ptr<IGESGeom_ToolPoint> >(m,"IGESGeom_ToolPoint",R"#(Tool to work on a Point. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
py::class_<IGESGeom_ToolRuledSurface , shared_ptr<IGESGeom_ToolRuledSurface> >(m,"IGESGeom_ToolRuledSurface",R"#(Tool to work on a RuledSurface. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
py::class_<IGESGeom_ToolSplineCurve , shared_ptr<IGESGeom_ToolSplineCurve> >(m,"IGESGeom_ToolSplineCurve",R"#(Tool to work on a SplineCurve. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
py::class_<IGESGeom_ToolSplineSurface , shared_ptr<IGESGeom_ToolSplineSurface> >(m,"IGESGeom_ToolSplineSurface",R"#(Tool to work on a SplineSurface. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
py::class_<IGESGeom_ToolSurfaceOfRevolution , shared_ptr<IGESGeom_ToolSurfaceOfRevolution> >(m,"IGESGeom_ToolSurfaceOfRevolution",R"#(Tool to work on a SurfaceOfRevolution. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
py::class_<IGESGeom_ToolTabulatedCylinder , shared_ptr<IGESGeom_ToolTabulatedCylinder> >(m,"IGESGeom_ToolTabulatedCylinder",R"#(Tool to work on a TabulatedCylinder. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
py::class_<IGESGeom_ToolTransformationMatrix , shared_ptr<IGESGeom_ToolTransformationMatrix> >(m,"IGESGeom_ToolTransformationMatrix",R"#(Tool to work on a TransformationMatrix. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
py::class_<IGESGeom_ToolTrimmedSurface , shared_ptr<IGESGeom_ToolTrimmedSurface> >(m,"IGESGeom_ToolTrimmedSurface",R"#(Tool to work on a TrimmedSurface. Called by various Modules (ReadWriteModule, GeneralModule, SpecificModule))#");
preregister_template_NCollection_Array1<opencascade::handle<IGESGeom_Boundary>>(m,"IGESGeom_Array1OfBoundary");
preregister_template_NCollection_Array1<opencascade::handle<IGESGeom_CurveOnSurface>>(m,"IGESGeom_Array1OfCurveOnSurface");
preregister_template_NCollection_Array1<opencascade::handle<IGESGeom_TransformationMatrix>>(m,"IGESGeom_Array1OfTransformationMatrix");
py::class_<IGESGeom_BSplineCurve ,opencascade::handle<IGESGeom_BSplineCurve> , IGESData_IGESEntity >(m,"IGESGeom_BSplineCurve",R"#(defines IGESBSplineCurve, Type <126> Form <0-5> in package IGESGeom A parametric equation obtained by dividing two summations involving weights (which are real numbers), the control points, and B-Spline basis functionsdefines IGESBSplineCurve, Type <126> Form <0-5> in package IGESGeom A parametric equation obtained by dividing two summations involving weights (which are real numbers), the control points, and B-Spline basis functionsdefines IGESBSplineCurve, Type <126> Form <0-5> in package IGESGeom A parametric equation obtained by dividing two summations involving weights (which are real numbers), the control points, and B-Spline basis functions)#");
py::class_<IGESGeom_BSplineSurface ,opencascade::handle<IGESGeom_BSplineSurface> , IGESData_IGESEntity >(m,"IGESGeom_BSplineSurface",R"#(defines IGESBSplineSurface, Type <128> Form <0-9> in package IGESGeom A parametric equation obtained by dividing two summations involving weights (which are real numbers), the control points, and B-Spline basis functionsdefines IGESBSplineSurface, Type <128> Form <0-9> in package IGESGeom A parametric equation obtained by dividing two summations involving weights (which are real numbers), the control points, and B-Spline basis functionsdefines IGESBSplineSurface, Type <128> Form <0-9> in package IGESGeom A parametric equation obtained by dividing two summations involving weights (which are real numbers), the control points, and B-Spline basis functions)#");
py::class_<IGESGeom_Boundary ,opencascade::handle<IGESGeom_Boundary> , IGESData_IGESEntity >(m,"IGESGeom_Boundary",R"#(defines IGESBoundary, Type <141> Form <0> in package IGESGeom A boundary entity identifies a surface boundary consisting of a set of curves lying on the surfacedefines IGESBoundary, Type <141> Form <0> in package IGESGeom A boundary entity identifies a surface boundary consisting of a set of curves lying on the surfacedefines IGESBoundary, Type <141> Form <0> in package IGESGeom A boundary entity identifies a surface boundary consisting of a set of curves lying on the surface)#");
py::class_<IGESGeom_BoundedSurface ,opencascade::handle<IGESGeom_BoundedSurface> , IGESData_IGESEntity >(m,"IGESGeom_BoundedSurface",R"#(defines BoundedSurface, Type <143> Form <0> in package IGESGeom A bounded surface is used to communicate trimmed surfaces. The surface and trimming curves are assumed to be represented parametrically.defines BoundedSurface, Type <143> Form <0> in package IGESGeom A bounded surface is used to communicate trimmed surfaces. The surface and trimming curves are assumed to be represented parametrically.defines BoundedSurface, Type <143> Form <0> in package IGESGeom A bounded surface is used to communicate trimmed surfaces. The surface and trimming curves are assumed to be represented parametrically.)#");
py::class_<IGESGeom_CircularArc ,opencascade::handle<IGESGeom_CircularArc> , IGESData_IGESEntity >(m,"IGESGeom_CircularArc",R"#(defines IGESCircularArc, Type <100> Form <0> in package IGESGeom A circular arc is a connected portion of a parent circle which consists of more than one point. The definition space coordinate system is always chosen so that the circular arc remains in a plane either coincident with or parallel to the XT, YT plane.defines IGESCircularArc, Type <100> Form <0> in package IGESGeom A circular arc is a connected portion of a parent circle which consists of more than one point. The definition space coordinate system is always chosen so that the circular arc remains in a plane either coincident with or parallel to the XT, YT plane.defines IGESCircularArc, Type <100> Form <0> in package IGESGeom A circular arc is a connected portion of a parent circle which consists of more than one point. The definition space coordinate system is always chosen so that the circular arc remains in a plane either coincident with or parallel to the XT, YT plane.)#");
py::class_<IGESGeom_CompositeCurve ,opencascade::handle<IGESGeom_CompositeCurve> , IGESData_IGESEntity >(m,"IGESGeom_CompositeCurve",R"#(defines IGESCompositeCurve, Type <102> Form <0> in package IGESGeom A composite curve is defined as an ordered list of entities consisting of a point, connect point and parametrised curve entities (excluding the CompositeCurve entity).defines IGESCompositeCurve, Type <102> Form <0> in package IGESGeom A composite curve is defined as an ordered list of entities consisting of a point, connect point and parametrised curve entities (excluding the CompositeCurve entity).defines IGESCompositeCurve, Type <102> Form <0> in package IGESGeom A composite curve is defined as an ordered list of entities consisting of a point, connect point and parametrised curve entities (excluding the CompositeCurve entity).)#");
py::class_<IGESGeom_ConicArc ,opencascade::handle<IGESGeom_ConicArc> , IGESData_IGESEntity >(m,"IGESGeom_ConicArc",R"#(defines IGESConicArc, Type <104> Form <0-3> in package IGESGeom A conic arc is a bounded connected portion of a parent conic curve which consists of more than one point. The parent conic curve is either an ellipse, a parabola, or a hyperbola. The definition space coordinate system is always chosen so that the conic arc lies in a plane either coincident with or parallel to XT, YT plane. Within such a plane a conic is defined by the six coefficients in the following equation. A*XT^2 + B*XT*YT + C*YT^2 + D*XT + E*YT + F = 0defines IGESConicArc, Type <104> Form <0-3> in package IGESGeom A conic arc is a bounded connected portion of a parent conic curve which consists of more than one point. The parent conic curve is either an ellipse, a parabola, or a hyperbola. The definition space coordinate system is always chosen so that the conic arc lies in a plane either coincident with or parallel to XT, YT plane. Within such a plane a conic is defined by the six coefficients in the following equation. A*XT^2 + B*XT*YT + C*YT^2 + D*XT + E*YT + F = 0defines IGESConicArc, Type <104> Form <0-3> in package IGESGeom A conic arc is a bounded connected portion of a parent conic curve which consists of more than one point. The parent conic curve is either an ellipse, a parabola, or a hyperbola. The definition space coordinate system is always chosen so that the conic arc lies in a plane either coincident with or parallel to XT, YT plane. Within such a plane a conic is defined by the six coefficients in the following equation. A*XT^2 + B*XT*YT + C*YT^2 + D*XT + E*YT + F = 0)#");
py::class_<IGESGeom_CopiousData ,opencascade::handle<IGESGeom_CopiousData> , IGESData_IGESEntity >(m,"IGESGeom_CopiousData",R"#(defines IGESCopiousData, Type <106> Form <1-3,11-13,63> in package IGESGeom This entity stores data points in the form of pairs, triples, or sextuples. An interpretation flag value signifies which of these forms is being used.defines IGESCopiousData, Type <106> Form <1-3,11-13,63> in package IGESGeom This entity stores data points in the form of pairs, triples, or sextuples. An interpretation flag value signifies which of these forms is being used.defines IGESCopiousData, Type <106> Form <1-3,11-13,63> in package IGESGeom This entity stores data points in the form of pairs, triples, or sextuples. An interpretation flag value signifies which of these forms is being used.)#");
py::class_<IGESGeom_CurveOnSurface ,opencascade::handle<IGESGeom_CurveOnSurface> , IGESData_IGESEntity >(m,"IGESGeom_CurveOnSurface",R"#(defines IGESCurveOnSurface, Type <142> Form <0> in package IGESGeom A curve on a parametric surface entity associates a given curve with a surface and identifies the curve as lying on the surface.defines IGESCurveOnSurface, Type <142> Form <0> in package IGESGeom A curve on a parametric surface entity associates a given curve with a surface and identifies the curve as lying on the surface.defines IGESCurveOnSurface, Type <142> Form <0> in package IGESGeom A curve on a parametric surface entity associates a given curve with a surface and identifies the curve as lying on the surface.)#");
py::class_<IGESGeom_Direction ,opencascade::handle<IGESGeom_Direction> , IGESData_IGESEntity >(m,"IGESGeom_Direction",R"#(defines IGESDirection, Type <123> Form <0> in package IGESGeom A direction entity is a non-zero vector in Euclidean 3-space that is defined by its three components (direction ratios) with respect to the coordinate axes. If x, y, z are the direction ratios then (x^2 + y^2 + z^2) > 0defines IGESDirection, Type <123> Form <0> in package IGESGeom A direction entity is a non-zero vector in Euclidean 3-space that is defined by its three components (direction ratios) with respect to the coordinate axes. If x, y, z are the direction ratios then (x^2 + y^2 + z^2) > 0defines IGESDirection, Type <123> Form <0> in package IGESGeom A direction entity is a non-zero vector in Euclidean 3-space that is defined by its three components (direction ratios) with respect to the coordinate axes. If x, y, z are the direction ratios then (x^2 + y^2 + z^2) > 0)#");
py::class_<IGESGeom_Flash ,opencascade::handle<IGESGeom_Flash> , IGESData_IGESEntity >(m,"IGESGeom_Flash",R"#(defines IGESFlash, Type <125> Form <0 - 4> in package IGESGeom A flash entity is a point in the ZT=0 plane that locates a particular closed area. That closed area can be defined in one of two ways. First, it can be an arbitrary closed area defined by any entity capable of defining a closed area. The points of this entity must all lie in the ZT=0 plane. Second, it can be a member of a predefined set of flash shapes.defines IGESFlash, Type <125> Form <0 - 4> in package IGESGeom A flash entity is a point in the ZT=0 plane that locates a particular closed area. That closed area can be defined in one of two ways. First, it can be an arbitrary closed area defined by any entity capable of defining a closed area. The points of this entity must all lie in the ZT=0 plane. Second, it can be a member of a predefined set of flash shapes.defines IGESFlash, Type <125> Form <0 - 4> in package IGESGeom A flash entity is a point in the ZT=0 plane that locates a particular closed area. That closed area can be defined in one of two ways. First, it can be an arbitrary closed area defined by any entity capable of defining a closed area. The points of this entity must all lie in the ZT=0 plane. Second, it can be a member of a predefined set of flash shapes.)#");
py::class_<IGESGeom_GeneralModule ,opencascade::handle<IGESGeom_GeneralModule> , IGESData_GeneralModule >(m,"IGESGeom_GeneralModule",R"#(Definition of General Services for IGESGeom (specific part) This Services comprise : Shared & Implied Lists, Copy, CheckDefinition of General Services for IGESGeom (specific part) This Services comprise : Shared & Implied Lists, Copy, CheckDefinition of General Services for IGESGeom (specific part) This Services comprise : Shared & Implied Lists, Copy, Check)#");
py::class_<IGESGeom_Line ,opencascade::handle<IGESGeom_Line> , IGESData_IGESEntity >(m,"IGESGeom_Line",R"#(defines IGESLine, Type <110> Form <0> in package IGESGeom A line is a bounded, connected portion of a parent straight line which consists of more than one point. A line is defined by its end points.defines IGESLine, Type <110> Form <0> in package IGESGeom A line is a bounded, connected portion of a parent straight line which consists of more than one point. A line is defined by its end points.defines IGESLine, Type <110> Form <0> in package IGESGeom A line is a bounded, connected portion of a parent straight line which consists of more than one point. A line is defined by its end points.)#");
py::class_<IGESGeom_OffsetCurve ,opencascade::handle<IGESGeom_OffsetCurve> , IGESData_IGESEntity >(m,"IGESGeom_OffsetCurve",R"#(defines IGESOffsetCurve, Type <130> Form <0> in package IGESGeom An OffsetCurve entity contains the data necessary to determine the offset of a given curve C. This entity points to the base curve to be offset and contains offset distance and other pertinent information.defines IGESOffsetCurve, Type <130> Form <0> in package IGESGeom An OffsetCurve entity contains the data necessary to determine the offset of a given curve C. This entity points to the base curve to be offset and contains offset distance and other pertinent information.defines IGESOffsetCurve, Type <130> Form <0> in package IGESGeom An OffsetCurve entity contains the data necessary to determine the offset of a given curve C. This entity points to the base curve to be offset and contains offset distance and other pertinent information.)#");
py::class_<IGESGeom_OffsetSurface ,opencascade::handle<IGESGeom_OffsetSurface> , IGESData_IGESEntity >(m,"IGESGeom_OffsetSurface",R"#(defines IGESOffsetSurface, Type <140> Form <0> in package IGESGeom An offset surface is a surface defined in terms of an already existing surface.If S(u, v) is a parametrised regular surface and N(u, v) is a differential field of unit normal vectors defined on the whole surface, and "d" a fixed non zero real number, then offset surface to S is a parametrised surface S(u, v) given by O(u, v) = S(u, v) + d * N(u, v); u1 <= u <= u2; v1 <= v <= v2;defines IGESOffsetSurface, Type <140> Form <0> in package IGESGeom An offset surface is a surface defined in terms of an already existing surface.If S(u, v) is a parametrised regular surface and N(u, v) is a differential field of unit normal vectors defined on the whole surface, and "d" a fixed non zero real number, then offset surface to S is a parametrised surface S(u, v) given by O(u, v) = S(u, v) + d * N(u, v); u1 <= u <= u2; v1 <= v <= v2;defines IGESOffsetSurface, Type <140> Form <0> in package IGESGeom An offset surface is a surface defined in terms of an already existing surface.If S(u, v) is a parametrised regular surface and N(u, v) is a differential field of unit normal vectors defined on the whole surface, and "d" a fixed non zero real number, then offset surface to S is a parametrised surface S(u, v) given by O(u, v) = S(u, v) + d * N(u, v); u1 <= u <= u2; v1 <= v <= v2;)#");
py::class_<IGESGeom_Plane ,opencascade::handle<IGESGeom_Plane> , IGESData_IGESEntity >(m,"IGESGeom_Plane",R"#(defines IGESPlane, Type <108> Form <-1,0,1> in package IGESGeom A plane entity can be used to represent unbounded plane, as well as bounded portion of a plane. In either of the above cases the plane is defined within definition space by means of coefficients A, B, C, D where at least one of A, B, C is non-zero and A * XT + B * YT + C * ZT = Ddefines IGESPlane, Type <108> Form <-1,0,1> in package IGESGeom A plane entity can be used to represent unbounded plane, as well as bounded portion of a plane. In either of the above cases the plane is defined within definition space by means of coefficients A, B, C, D where at least one of A, B, C is non-zero and A * XT + B * YT + C * ZT = Ddefines IGESPlane, Type <108> Form <-1,0,1> in package IGESGeom A plane entity can be used to represent unbounded plane, as well as bounded portion of a plane. In either of the above cases the plane is defined within definition space by means of coefficients A, B, C, D where at least one of A, B, C is non-zero and A * XT + B * YT + C * ZT = D)#");
py::class_<IGESGeom_Point ,opencascade::handle<IGESGeom_Point> , IGESData_IGESEntity >(m,"IGESGeom_Point",R"#(defines IGESPoint, Type <116> Form <0> in package IGESGeomdefines IGESPoint, Type <116> Form <0> in package IGESGeomdefines IGESPoint, Type <116> Form <0> in package IGESGeom)#");
py::class_<IGESGeom_Protocol ,opencascade::handle<IGESGeom_Protocol> , IGESData_Protocol >(m,"IGESGeom_Protocol",R"#(Description of Protocol for IGESGeomDescription of Protocol for IGESGeomDescription of Protocol for IGESGeom)#");
py::class_<IGESGeom_ReadWriteModule ,opencascade::handle<IGESGeom_ReadWriteModule> , IGESData_ReadWriteModule >(m,"IGESGeom_ReadWriteModule",R"#(Defines Geom File Access Module for IGESGeom (specific parts) Specific actions concern : Read and Write Own Parameters of an IGESEntity.Defines Geom File Access Module for IGESGeom (specific parts) Specific actions concern : Read and Write Own Parameters of an IGESEntity.Defines Geom File Access Module for IGESGeom (specific parts) Specific actions concern : Read and Write Own Parameters of an IGESEntity.)#");
py::class_<IGESGeom_RuledSurface ,opencascade::handle<IGESGeom_RuledSurface> , IGESData_IGESEntity >(m,"IGESGeom_RuledSurface",R"#(defines IGESRuledSurface, Type <118> Form <0-1> in package IGESGeom A ruled surface is formed by moving a line connecting points of equal relative arc length or equal relative parametric value on two parametric curves from a start point to a terminate point on the curves. The parametric curves may be points, lines, circles, conics, rational B-splines, parametric splines or any parametric curve defined in the IGES specification.defines IGESRuledSurface, Type <118> Form <0-1> in package IGESGeom A ruled surface is formed by moving a line connecting points of equal relative arc length or equal relative parametric value on two parametric curves from a start point to a terminate point on the curves. The parametric curves may be points, lines, circles, conics, rational B-splines, parametric splines or any parametric curve defined in the IGES specification.defines IGESRuledSurface, Type <118> Form <0-1> in package IGESGeom A ruled surface is formed by moving a line connecting points of equal relative arc length or equal relative parametric value on two parametric curves from a start point to a terminate point on the curves. The parametric curves may be points, lines, circles, conics, rational B-splines, parametric splines or any parametric curve defined in the IGES specification.)#");
py::class_<IGESGeom_SpecificModule ,opencascade::handle<IGESGeom_SpecificModule> , IGESData_SpecificModule >(m,"IGESGeom_SpecificModule",R"#(Defines Services attached to IGES Entities : Dump & OwnCorrect, for IGESGeomDefines Services attached to IGES Entities : Dump & OwnCorrect, for IGESGeomDefines Services attached to IGES Entities : Dump & OwnCorrect, for IGESGeom)#");
py::class_<IGESGeom_SplineCurve ,opencascade::handle<IGESGeom_SplineCurve> , IGESData_IGESEntity >(m,"IGESGeom_SplineCurve",R"#(Defines IGESSplineCurve, Type <112> Form <0> in package IGESGeom The parametric spline is a sequence of parametric polynomial segments. The curve could be of the type Linear, Quadratic, Cubic, Wilson-Fowler, Modified Wilson-Fowler, B-Spline. The N polynomial segments are delimited by the break points T(1), T(2), T(3), ..., T(N+1).Defines IGESSplineCurve, Type <112> Form <0> in package IGESGeom The parametric spline is a sequence of parametric polynomial segments. The curve could be of the type Linear, Quadratic, Cubic, Wilson-Fowler, Modified Wilson-Fowler, B-Spline. The N polynomial segments are delimited by the break points T(1), T(2), T(3), ..., T(N+1).Defines IGESSplineCurve, Type <112> Form <0> in package IGESGeom The parametric spline is a sequence of parametric polynomial segments. The curve could be of the type Linear, Quadratic, Cubic, Wilson-Fowler, Modified Wilson-Fowler, B-Spline. The N polynomial segments are delimited by the break points T(1), T(2), T(3), ..., T(N+1).)#");
py::class_<IGESGeom_SplineSurface ,opencascade::handle<IGESGeom_SplineSurface> , IGESData_IGESEntity >(m,"IGESGeom_SplineSurface",R"#(defines IGESSplineSurface, Type <114> Form <0> in package IGESGeom A parametric spline surface is a grid of polynomial patches. Patch could be of the type Linear, Quadratic, Cubic, Wilson-Fowler, Modified Wilson-Fowler, B-Spline The M * N grid of patches is defined by the 'u' break points TU(1), TU(2), ..., TU(M+1) and the 'v' break points TV(1), TV(2), TV(3) ..., TV(N+1).defines IGESSplineSurface, Type <114> Form <0> in package IGESGeom A parametric spline surface is a grid of polynomial patches. Patch could be of the type Linear, Quadratic, Cubic, Wilson-Fowler, Modified Wilson-Fowler, B-Spline The M * N grid of patches is defined by the 'u' break points TU(1), TU(2), ..., TU(M+1) and the 'v' break points TV(1), TV(2), TV(3) ..., TV(N+1).defines IGESSplineSurface, Type <114> Form <0> in package IGESGeom A parametric spline surface is a grid of polynomial patches. Patch could be of the type Linear, Quadratic, Cubic, Wilson-Fowler, Modified Wilson-Fowler, B-Spline The M * N grid of patches is defined by the 'u' break points TU(1), TU(2), ..., TU(M+1) and the 'v' break points TV(1), TV(2), TV(3) ..., TV(N+1).)#");
py::class_<IGESGeom_SurfaceOfRevolution ,opencascade::handle<IGESGeom_SurfaceOfRevolution> , IGESData_IGESEntity >(m,"IGESGeom_SurfaceOfRevolution",R"#(defines IGESSurfaceOfRevolution, Type <120> Form <0> in package IGESGeom A surface of revolution is defined by an axis of rotation a generatrix, and start and terminate rotation angles. The surface is created by rotating the generatrix about the axis of rotation through the start and terminate rotation angles.defines IGESSurfaceOfRevolution, Type <120> Form <0> in package IGESGeom A surface of revolution is defined by an axis of rotation a generatrix, and start and terminate rotation angles. The surface is created by rotating the generatrix about the axis of rotation through the start and terminate rotation angles.defines IGESSurfaceOfRevolution, Type <120> Form <0> in package IGESGeom A surface of revolution is defined by an axis of rotation a generatrix, and start and terminate rotation angles. The surface is created by rotating the generatrix about the axis of rotation through the start and terminate rotation angles.)#");
py::class_<IGESGeom_TabulatedCylinder ,opencascade::handle<IGESGeom_TabulatedCylinder> , IGESData_IGESEntity >(m,"IGESGeom_TabulatedCylinder",R"#(defines IGESTabulatedCylinder, Type <122> Form <0> in package IGESGeom A tabulated cylinder is a surface formed by moving a line segment called generatrix parallel to itself along a curve called directrix. The curve may be a line, circular arc, conic arc, parametric spline curve, rational B-spline curve or composite curve.defines IGESTabulatedCylinder, Type <122> Form <0> in package IGESGeom A tabulated cylinder is a surface formed by moving a line segment called generatrix parallel to itself along a curve called directrix. The curve may be a line, circular arc, conic arc, parametric spline curve, rational B-spline curve or composite curve.defines IGESTabulatedCylinder, Type <122> Form <0> in package IGESGeom A tabulated cylinder is a surface formed by moving a line segment called generatrix parallel to itself along a curve called directrix. The curve may be a line, circular arc, conic arc, parametric spline curve, rational B-spline curve or composite curve.)#");
py::class_<IGESGeom_TransformationMatrix ,opencascade::handle<IGESGeom_TransformationMatrix> , IGESData_TransfEntity >(m,"IGESGeom_TransformationMatrix",R"#(defines IGESTransformationMatrix, Type <124> Form <0> in package IGESGeom The transformation matrix entity transforms three-row column vectors by means of matrix multiplication and then a vector addition. This entity can be considered as an "operator" entity in that it starts with the input vector, operates on it as described above, and produces the output vector.defines IGESTransformationMatrix, Type <124> Form <0> in package IGESGeom The transformation matrix entity transforms three-row column vectors by means of matrix multiplication and then a vector addition. This entity can be considered as an "operator" entity in that it starts with the input vector, operates on it as described above, and produces the output vector.defines IGESTransformationMatrix, Type <124> Form <0> in package IGESGeom The transformation matrix entity transforms three-row column vectors by means of matrix multiplication and then a vector addition. This entity can be considered as an "operator" entity in that it starts with the input vector, operates on it as described above, and produces the output vector.)#");
py::class_<IGESGeom_TrimmedSurface ,opencascade::handle<IGESGeom_TrimmedSurface> , IGESData_IGESEntity >(m,"IGESGeom_TrimmedSurface",R"#(defines IGESTrimmedSurface, Type <144> Form <0> in package IGESGeom A simple closed curve in Euclidean plane divides the plane in to two disjoint, open connected components; one bounded, one unbounded. The bounded one is called the interior region to the curve. Unbounded component is called exterior region to the curve. The domain of the trimmed surface is defined as the interior of the outer boundaries and exterior of the inner boundaries and includes the boundary curves.defines IGESTrimmedSurface, Type <144> Form <0> in package IGESGeom A simple closed curve in Euclidean plane divides the plane in to two disjoint, open connected components; one bounded, one unbounded. The bounded one is called the interior region to the curve. Unbounded component is called exterior region to the curve. The domain of the trimmed surface is defined as the interior of the outer boundaries and exterior of the inner boundaries and includes the boundary curves.defines IGESTrimmedSurface, Type <144> Form <0> in package IGESGeom A simple closed curve in Euclidean plane divides the plane in to two disjoint, open connected components; one bounded, one unbounded. The bounded one is called the interior region to the curve. Unbounded component is called exterior region to the curve. The domain of the trimmed surface is defined as the interior of the outer boundaries and exterior of the inner boundaries and includes the boundary curves.)#");
py::class_<IGESGeom_HArray1OfBoundary ,opencascade::handle<IGESGeom_HArray1OfBoundary> , IGESGeom_Array1OfBoundary , Standard_Transient >(m,"IGESGeom_HArray1OfBoundary",R"#()#");
py::class_<IGESGeom_HArray1OfCurveOnSurface ,opencascade::handle<IGESGeom_HArray1OfCurveOnSurface> , IGESGeom_Array1OfCurveOnSurface , Standard_Transient >(m,"IGESGeom_HArray1OfCurveOnSurface",R"#()#");
py::class_<IGESGeom_HArray1OfTransformationMatrix ,opencascade::handle<IGESGeom_HArray1OfTransformationMatrix> , IGESGeom_Array1OfTransformationMatrix , Standard_Transient >(m,"IGESGeom_HArray1OfTransformationMatrix",R"#()#");
};
// user-defined post-inclusion per module
// user-defined post
|