1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
|
// std lib related includes
#include <tuple>
// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybind11;
// Standard Handle
#include <Standard_Handle.hxx>
// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Law_BSpFunc.hxx>
#include <Law_Linear.hxx>
#include <Law_BSpline.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Law_BSpline.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Law_BSpline.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Law_BSpline.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
// module includes
#include <Law.hxx>
#include <Law_BSpFunc.hxx>
#include <Law_BSpline.hxx>
#include <Law_BSplineKnotSplitting.hxx>
#include <Law_Composite.hxx>
#include <Law_Constant.hxx>
#include <Law_Function.hxx>
#include <Law_Interpol.hxx>
#include <Law_Interpolate.hxx>
#include <Law_Laws.hxx>
#include <Law_Linear.hxx>
#include <Law_ListIteratorOfLaws.hxx>
#include <Law_S.hxx>
// template related includes
// ./opencascade/Law_Laws.hxx
#include "NCollection_tmpl.hxx"
// ./opencascade/Law_Laws.hxx
#include "NCollection_tmpl.hxx"
// user-defined pre
#include "OCP_specific.inc"
// user-defined inclusion per module
// Module definiiton
void register_Law(py::module &main_module) {
py::module m = static_cast<py::module>(main_module.attr("Law"));
py::object klass;
//Python trampoline classes
class Py_Law_Function : public Law_Function{
public:
using Law_Function::Law_Function;
// public pure virtual
GeomAbs_Shape Continuity() const override { PYBIND11_OVERLOAD_PURE(GeomAbs_Shape,Law_Function,Continuity,) };
Standard_Integer NbIntervals(const GeomAbs_Shape S) const override { PYBIND11_OVERLOAD_PURE(Standard_Integer,Law_Function,NbIntervals,S) };
void Intervals(NCollection_Array1<Standard_Real> & T,const GeomAbs_Shape S) const override { PYBIND11_OVERLOAD_PURE(void,Law_Function,Intervals,T,S) };
Standard_Real Value(const Standard_Real X) override { PYBIND11_OVERLOAD_PURE(Standard_Real,Law_Function,Value,X) };
opencascade::handle<Law_Function> Trim(const Standard_Real PFirst,const Standard_Real PLast,const Standard_Real Tol) const override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Law_Function>,Law_Function,Trim,PFirst,PLast,Tol) };
void D1(const Standard_Real X,Standard_Real & F,Standard_Real & D) override { PYBIND11_OVERLOAD_PURE(void,Law_Function,D1,X,F,D) };
void D2(const Standard_Real X,Standard_Real & F,Standard_Real & D,Standard_Real & D2) override { PYBIND11_OVERLOAD_PURE(void,Law_Function,D2,X,F,D,D2) };
void Bounds(Standard_Real & PFirst,Standard_Real & PLast) override { PYBIND11_OVERLOAD_PURE(void,Law_Function,Bounds,PFirst,PLast) };
// protected pure virtual
// private pure virtual
};
// classes
// Class Law from ./opencascade/Law.hxx
klass = m.attr("Law");
// default constructor
register_default_constructor<Law , shared_ptr<Law>>(m,"Law");
// nested enums
static_cast<py::class_<Law , shared_ptr<Law> >>(klass)
// constructors
// custom constructors
// methods
// methods using call by reference i.s.o. return
// static methods
.def_static("MixBnd_s",
(opencascade::handle<Law_BSpFunc> (*)( const opencascade::handle<Law_Linear> & ) ) static_cast<opencascade::handle<Law_BSpFunc> (*)( const opencascade::handle<Law_Linear> & ) >(&Law::MixBnd),
R"#(This algorithm searches the knot values corresponding to the splitting of a given B-spline law into several arcs with the same continuity. The continuity order is given at the construction time. Builds a 1d bspline that is near from Lin with null derivatives at the extremities.)#" , py::arg("Lin")
)
.def_static("MixBnd_s",
(opencascade::handle<TColStd_HArray1OfReal> (*)( const Standard_Integer , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const opencascade::handle<Law_Linear> & ) ) static_cast<opencascade::handle<TColStd_HArray1OfReal> (*)( const Standard_Integer , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const opencascade::handle<Law_Linear> & ) >(&Law::MixBnd),
R"#(Builds the poles of the 1d bspline that is near from Lin with null derivatives at the extremities.)#" , py::arg("Degree"), py::arg("Knots"), py::arg("Mults"), py::arg("Lin")
)
.def_static("MixTgt_s",
(opencascade::handle<TColStd_HArray1OfReal> (*)( const Standard_Integer , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const Standard_Boolean , const Standard_Integer ) ) static_cast<opencascade::handle<TColStd_HArray1OfReal> (*)( const Standard_Integer , const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const Standard_Boolean , const Standard_Integer ) >(&Law::MixTgt),
R"#(Builds the poles of the 1d bspline that is null on the right side of Knots(Index) (on the left if NulOnTheRight is false) and that is like a t*(1-t)(1-t) curve on the left side of Knots(Index) (on the right if NulOnTheRight is false). The result curve is C1 with a derivative equal to 1. at first parameter (-1 at last parameter if NulOnTheRight is false). Warning: Mults(Index) must greater or equal to degree-1.)#" , py::arg("Degree"), py::arg("Knots"), py::arg("Mults"), py::arg("NulOnTheRight"), py::arg("Index")
)
.def_static("Reparametrize_s",
(opencascade::handle<Law_BSpline> (*)( const Adaptor3d_Curve & , const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Boolean , const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Integer ) ) static_cast<opencascade::handle<Law_BSpline> (*)( const Adaptor3d_Curve & , const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Boolean , const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Integer ) >(&Law::Reparametrize),
R"#(Computes a 1 d curve to reparametrize a curve. Its an interpolation of NbPoints points calculated at quasi constant abscissa.)#" , py::arg("Curve"), py::arg("First"), py::arg("Last"), py::arg("HasDF"), py::arg("HasDL"), py::arg("DFirst"), py::arg("DLast"), py::arg("Rev"), py::arg("NbPoints")
)
.def_static("Scale_s",
(opencascade::handle<Law_BSpline> (*)( const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Boolean , const Standard_Real , const Standard_Real ) ) static_cast<opencascade::handle<Law_BSpline> (*)( const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Boolean , const Standard_Real , const Standard_Real ) >(&Law::Scale),
R"#(Computes a 1 d curve to scale a field of tangency. Value is 1. for t = (First+Last)/2 . If HasFirst value for t = First is VFirst (null derivative). If HasLast value for t = Last is VLast (null derivative).)#" , py::arg("First"), py::arg("Last"), py::arg("HasF"), py::arg("HasL"), py::arg("VFirst"), py::arg("VLast")
)
.def_static("ScaleCub_s",
(opencascade::handle<Law_BSpline> (*)( const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Boolean , const Standard_Real , const Standard_Real ) ) static_cast<opencascade::handle<Law_BSpline> (*)( const Standard_Real , const Standard_Real , const Standard_Boolean , const Standard_Boolean , const Standard_Real , const Standard_Real ) >(&Law::ScaleCub),
R"#(None)#" , py::arg("First"), py::arg("Last"), py::arg("HasF"), py::arg("HasL"), py::arg("VFirst"), py::arg("VLast")
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class Law_BSpline from ./opencascade/Law_BSpline.hxx
klass = m.attr("Law_BSpline");
// nested enums
static_cast<py::class_<Law_BSpline ,opencascade::handle<Law_BSpline> , Standard_Transient >>(klass)
// constructors
.def(py::init< const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Integer> &,const Standard_Integer,const Standard_Boolean >() , py::arg("Poles"), py::arg("Knots"), py::arg("Multiplicities"), py::arg("Degree"), py::arg("Periodic")=static_cast<const Standard_Boolean>(Standard_False) )
.def(py::init< const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Integer> &,const Standard_Integer,const Standard_Boolean >() , py::arg("Poles"), py::arg("Weights"), py::arg("Knots"), py::arg("Multiplicities"), py::arg("Degree"), py::arg("Periodic")=static_cast<const Standard_Boolean>(Standard_False) )
// custom constructors
// methods
.def("IncreaseDegree",
(void (Law_BSpline::*)( const Standard_Integer ) ) static_cast<void (Law_BSpline::*)( const Standard_Integer ) >(&Law_BSpline::IncreaseDegree),
R"#(Increase the degree to <Degree>. Nothing is done if <Degree> is lower or equal to the current degree.)#" , py::arg("Degree")
)
.def("IncreaseMultiplicity",
(void (Law_BSpline::*)( const Standard_Integer , const Standard_Integer ) ) static_cast<void (Law_BSpline::*)( const Standard_Integer , const Standard_Integer ) >(&Law_BSpline::IncreaseMultiplicity),
R"#(Increases the multiplicity of the knot <Index> to <M>.)#" , py::arg("Index"), py::arg("M")
)
.def("IncreaseMultiplicity",
(void (Law_BSpline::*)( const Standard_Integer , const Standard_Integer , const Standard_Integer ) ) static_cast<void (Law_BSpline::*)( const Standard_Integer , const Standard_Integer , const Standard_Integer ) >(&Law_BSpline::IncreaseMultiplicity),
R"#(Increases the multiplicities of the knots in [I1,I2] to <M>.)#" , py::arg("I1"), py::arg("I2"), py::arg("M")
)
.def("IncrementMultiplicity",
(void (Law_BSpline::*)( const Standard_Integer , const Standard_Integer , const Standard_Integer ) ) static_cast<void (Law_BSpline::*)( const Standard_Integer , const Standard_Integer , const Standard_Integer ) >(&Law_BSpline::IncrementMultiplicity),
R"#(Increment the multiplicities of the knots in [I1,I2] by <M>.)#" , py::arg("I1"), py::arg("I2"), py::arg("M")
)
.def("InsertKnot",
(void (Law_BSpline::*)( const Standard_Real , const Standard_Integer , const Standard_Real , const Standard_Boolean ) ) static_cast<void (Law_BSpline::*)( const Standard_Real , const Standard_Integer , const Standard_Real , const Standard_Boolean ) >(&Law_BSpline::InsertKnot),
R"#(Inserts a knot value in the sequence of knots. If <U> is an existing knot the multiplicity is increased by <M>.)#" , py::arg("U"), py::arg("M")=static_cast<const Standard_Integer>(1), py::arg("ParametricTolerance")=static_cast<const Standard_Real>(0.0), py::arg("Add")=static_cast<const Standard_Boolean>(Standard_True)
)
.def("InsertKnots",
(void (Law_BSpline::*)( const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const Standard_Real , const Standard_Boolean ) ) static_cast<void (Law_BSpline::*)( const NCollection_Array1<Standard_Real> & , const NCollection_Array1<Standard_Integer> & , const Standard_Real , const Standard_Boolean ) >(&Law_BSpline::InsertKnots),
R"#(Inserts a set of knots values in the sequence of knots.)#" , py::arg("Knots"), py::arg("Mults"), py::arg("ParametricTolerance")=static_cast<const Standard_Real>(0.0), py::arg("Add")=static_cast<const Standard_Boolean>(Standard_False)
)
.def("RemoveKnot",
(Standard_Boolean (Law_BSpline::*)( const Standard_Integer , const Standard_Integer , const Standard_Real ) ) static_cast<Standard_Boolean (Law_BSpline::*)( const Standard_Integer , const Standard_Integer , const Standard_Real ) >(&Law_BSpline::RemoveKnot),
R"#(Decrement the knots multiplicity to <M>. If M is 0 the knot is removed. The Poles sequence is modified.)#" , py::arg("Index"), py::arg("M"), py::arg("Tolerance")
)
.def("Reverse",
(void (Law_BSpline::*)() ) static_cast<void (Law_BSpline::*)() >(&Law_BSpline::Reverse),
R"#(Changes the direction of parametrization of <me>. The Knot sequence is modified, the FirstParameter and the LastParameter are not modified. The StartPoint of the initial curve becomes the EndPoint of the reversed curve and the EndPoint of the initial curve becomes the StartPoint of the reversed curve.)#"
)
.def("ReversedParameter",
(Standard_Real (Law_BSpline::*)( const Standard_Real ) const) static_cast<Standard_Real (Law_BSpline::*)( const Standard_Real ) const>(&Law_BSpline::ReversedParameter),
R"#(Returns the parameter on the reversed curve for the point of parameter U on <me>.)#" , py::arg("U")
)
.def("Segment",
(void (Law_BSpline::*)( const Standard_Real , const Standard_Real ) ) static_cast<void (Law_BSpline::*)( const Standard_Real , const Standard_Real ) >(&Law_BSpline::Segment),
R"#(Segments the curve between U1 and U2. The control points are modified, the first and the last point are not the same. Warnings : Even if <me> is not closed it can become closed after the segmentation for example if U1 or U2 are out of the bounds of the curve <me> or if the curve makes loop. After the segmentation the length of a curve can be null. raises if U2 < U1.)#" , py::arg("U1"), py::arg("U2")
)
.def("SetKnot",
(void (Law_BSpline::*)( const Standard_Integer , const Standard_Real ) ) static_cast<void (Law_BSpline::*)( const Standard_Integer , const Standard_Real ) >(&Law_BSpline::SetKnot),
R"#(Changes the knot of range Index. The multiplicity of the knot is not modified. Raised if K >= Knots(Index+1) or K <= Knots(Index-1). Raised if Index < 1 || Index > NbKnots)#" , py::arg("Index"), py::arg("K")
)
.def("SetKnots",
(void (Law_BSpline::*)( const NCollection_Array1<Standard_Real> & ) ) static_cast<void (Law_BSpline::*)( const NCollection_Array1<Standard_Real> & ) >(&Law_BSpline::SetKnots),
R"#(Changes all the knots of the curve The multiplicity of the knots are not modified.)#" , py::arg("K")
)
.def("SetKnot",
(void (Law_BSpline::*)( const Standard_Integer , const Standard_Real , const Standard_Integer ) ) static_cast<void (Law_BSpline::*)( const Standard_Integer , const Standard_Real , const Standard_Integer ) >(&Law_BSpline::SetKnot),
R"#(Changes the knot of range Index with its multiplicity. You can increase the multiplicity of a knot but it is not allowed to decrease the multiplicity of an existing knot.)#" , py::arg("Index"), py::arg("K"), py::arg("M")
)
.def("SetPeriodic",
(void (Law_BSpline::*)() ) static_cast<void (Law_BSpline::*)() >(&Law_BSpline::SetPeriodic),
R"#(Makes a closed B-spline into a periodic curve. The curve is periodic if the knot sequence is periodic and if the curve is closed (The tolerance criterion is Resolution from gp). The period T is equal to Knot(LastUKnotIndex) - Knot(FirstUKnotIndex). A periodic B-spline can be uniform or not. Raised if the curve is not closed.)#"
)
.def("SetOrigin",
(void (Law_BSpline::*)( const Standard_Integer ) ) static_cast<void (Law_BSpline::*)( const Standard_Integer ) >(&Law_BSpline::SetOrigin),
R"#(Set the origin of a periodic curve at Knot(index) KnotVector and poles are modified. Raised if the curve is not periodic Raised if index not in the range [FirstUKnotIndex , LastUKnotIndex])#" , py::arg("Index")
)
.def("SetNotPeriodic",
(void (Law_BSpline::*)() ) static_cast<void (Law_BSpline::*)() >(&Law_BSpline::SetNotPeriodic),
R"#(Makes a non periodic curve. If the curve was non periodic the curve is not modified.)#"
)
.def("SetPole",
(void (Law_BSpline::*)( const Standard_Integer , const Standard_Real ) ) static_cast<void (Law_BSpline::*)( const Standard_Integer , const Standard_Real ) >(&Law_BSpline::SetPole),
R"#(Substitutes the Pole of range Index with P.)#" , py::arg("Index"), py::arg("P")
)
.def("SetPole",
(void (Law_BSpline::*)( const Standard_Integer , const Standard_Real , const Standard_Real ) ) static_cast<void (Law_BSpline::*)( const Standard_Integer , const Standard_Real , const Standard_Real ) >(&Law_BSpline::SetPole),
R"#(Substitutes the pole and the weight of range Index. If the curve <me> is not rational it can become rational If the curve was rational it can become non rational)#" , py::arg("Index"), py::arg("P"), py::arg("Weight")
)
.def("SetWeight",
(void (Law_BSpline::*)( const Standard_Integer , const Standard_Real ) ) static_cast<void (Law_BSpline::*)( const Standard_Integer , const Standard_Real ) >(&Law_BSpline::SetWeight),
R"#(Changes the weight for the pole of range Index. If the curve was non rational it can become rational. If the curve was rational it can become non rational.)#" , py::arg("Index"), py::arg("Weight")
)
.def("IsCN",
(Standard_Boolean (Law_BSpline::*)( const Standard_Integer ) const) static_cast<Standard_Boolean (Law_BSpline::*)( const Standard_Integer ) const>(&Law_BSpline::IsCN),
R"#(Returns the continuity of the curve, the curve is at least C0. Raised if N < 0.)#" , py::arg("N")
)
.def("IsClosed",
(Standard_Boolean (Law_BSpline::*)() const) static_cast<Standard_Boolean (Law_BSpline::*)() const>(&Law_BSpline::IsClosed),
R"#(Returns true if the distance between the first point and the last point of the curve is lower or equal to Resolution from package gp. Warnings : The first and the last point can be different from the first pole and the last pole of the curve.)#"
)
.def("IsPeriodic",
(Standard_Boolean (Law_BSpline::*)() const) static_cast<Standard_Boolean (Law_BSpline::*)() const>(&Law_BSpline::IsPeriodic),
R"#(Returns True if the curve is periodic.)#"
)
.def("IsRational",
(Standard_Boolean (Law_BSpline::*)() const) static_cast<Standard_Boolean (Law_BSpline::*)() const>(&Law_BSpline::IsRational),
R"#(Returns True if the weights are not identical. The tolerance criterion is Epsilon of the class Real.)#"
)
.def("Continuity",
(GeomAbs_Shape (Law_BSpline::*)() const) static_cast<GeomAbs_Shape (Law_BSpline::*)() const>(&Law_BSpline::Continuity),
R"#(Returns the global continuity of the curve : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, CN : the order of continuity is infinite. For a B-spline curve of degree d if a knot Ui has a multiplicity p the B-spline curve is only Cd-p continuous at Ui. So the global continuity of the curve can't be greater than Cd-p where p is the maximum multiplicity of the interior Knots. In the interior of a knot span the curve is infinitely continuously differentiable.)#"
)
.def("Degree",
(Standard_Integer (Law_BSpline::*)() const) static_cast<Standard_Integer (Law_BSpline::*)() const>(&Law_BSpline::Degree),
R"#(Computation of value and derivatives)#"
)
.def("Value",
(Standard_Real (Law_BSpline::*)( const Standard_Real ) const) static_cast<Standard_Real (Law_BSpline::*)( const Standard_Real ) const>(&Law_BSpline::Value),
R"#(None)#" , py::arg("U")
)
.def("DN",
(Standard_Real (Law_BSpline::*)( const Standard_Real , const Standard_Integer ) const) static_cast<Standard_Real (Law_BSpline::*)( const Standard_Real , const Standard_Integer ) const>(&Law_BSpline::DN),
R"#(The following functions computes the point of parameter U and the derivatives at this point on the B-spline curve arc defined between the knot FromK1 and the knot ToK2. U can be out of bounds [Knot (FromK1), Knot (ToK2)] but for the computation we only use the definition of the curve between these two knots. This method is useful to compute local derivative, if the order of continuity of the whole curve is not greater enough. Inside the parametric domain Knot (FromK1), Knot (ToK2) the evaluations are the same as if we consider the whole definition of the curve. Of course the evaluations are different outside this parametric domain.)#" , py::arg("U"), py::arg("N")
)
.def("LocalValue",
(Standard_Real (Law_BSpline::*)( const Standard_Real , const Standard_Integer , const Standard_Integer ) const) static_cast<Standard_Real (Law_BSpline::*)( const Standard_Real , const Standard_Integer , const Standard_Integer ) const>(&Law_BSpline::LocalValue),
R"#(None)#" , py::arg("U"), py::arg("FromK1"), py::arg("ToK2")
)
.def("LocalDN",
(Standard_Real (Law_BSpline::*)( const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Integer ) const) static_cast<Standard_Real (Law_BSpline::*)( const Standard_Real , const Standard_Integer , const Standard_Integer , const Standard_Integer ) const>(&Law_BSpline::LocalDN),
R"#(None)#" , py::arg("U"), py::arg("FromK1"), py::arg("ToK2"), py::arg("N")
)
.def("EndPoint",
(Standard_Real (Law_BSpline::*)() const) static_cast<Standard_Real (Law_BSpline::*)() const>(&Law_BSpline::EndPoint),
R"#(Returns the last point of the curve. Warnings : The last point of the curve is different from the last pole of the curve if the multiplicity of the last knot is lower than Degree.)#"
)
.def("FirstUKnotIndex",
(Standard_Integer (Law_BSpline::*)() const) static_cast<Standard_Integer (Law_BSpline::*)() const>(&Law_BSpline::FirstUKnotIndex),
R"#(For a B-spline curve the first parameter (which gives the start point of the curve) is a knot value but if the multiplicity of the first knot index is lower than Degree + 1 it is not the first knot of the curve. This method computes the index of the knot corresponding to the first parameter.)#"
)
.def("FirstParameter",
(Standard_Real (Law_BSpline::*)() const) static_cast<Standard_Real (Law_BSpline::*)() const>(&Law_BSpline::FirstParameter),
R"#(Computes the parametric value of the start point of the curve. It is a knot value.)#"
)
.def("Knot",
(Standard_Real (Law_BSpline::*)( const Standard_Integer ) const) static_cast<Standard_Real (Law_BSpline::*)( const Standard_Integer ) const>(&Law_BSpline::Knot),
R"#(Returns the knot of range Index. When there is a knot with a multiplicity greater than 1 the knot is not repeated. The method Multiplicity can be used to get the multiplicity of the Knot. Raised if Index < 1 or Index > NbKnots)#" , py::arg("Index")
)
.def("Knots",
(void (Law_BSpline::*)( NCollection_Array1<Standard_Real> & ) const) static_cast<void (Law_BSpline::*)( NCollection_Array1<Standard_Real> & ) const>(&Law_BSpline::Knots),
R"#(returns the knot values of the B-spline curve;)#" , py::arg("K")
)
.def("KnotSequence",
(void (Law_BSpline::*)( NCollection_Array1<Standard_Real> & ) const) static_cast<void (Law_BSpline::*)( NCollection_Array1<Standard_Real> & ) const>(&Law_BSpline::KnotSequence),
R"#(Returns the knots sequence. In this sequence the knots with a multiplicity greater than 1 are repeated. Example : K = {k1, k1, k1, k2, k3, k3, k4, k4, k4})#" , py::arg("K")
)
.def("KnotDistribution",
(GeomAbs_BSplKnotDistribution (Law_BSpline::*)() const) static_cast<GeomAbs_BSplKnotDistribution (Law_BSpline::*)() const>(&Law_BSpline::KnotDistribution),
R"#(Returns NonUniform or Uniform or QuasiUniform or PiecewiseBezier. If all the knots differ by a positive constant from the preceding knot the BSpline Curve can be : - Uniform if all the knots are of multiplicity 1, - QuasiUniform if all the knots are of multiplicity 1 except for the first and last knot which are of multiplicity Degree + 1, - PiecewiseBezier if the first and last knots have multiplicity Degree + 1 and if interior knots have multiplicity Degree A piecewise Bezier with only two knots is a BezierCurve. else the curve is non uniform. The tolerance criterion is Epsilon from class Real.)#"
)
.def("LastUKnotIndex",
(Standard_Integer (Law_BSpline::*)() const) static_cast<Standard_Integer (Law_BSpline::*)() const>(&Law_BSpline::LastUKnotIndex),
R"#(For a BSpline curve the last parameter (which gives the end point of the curve) is a knot value but if the multiplicity of the last knot index is lower than Degree + 1 it is not the last knot of the curve. This method computes the index of the knot corresponding to the last parameter.)#"
)
.def("LastParameter",
(Standard_Real (Law_BSpline::*)() const) static_cast<Standard_Real (Law_BSpline::*)() const>(&Law_BSpline::LastParameter),
R"#(Computes the parametric value of the end point of the curve. It is a knot value.)#"
)
.def("Multiplicity",
(Standard_Integer (Law_BSpline::*)( const Standard_Integer ) const) static_cast<Standard_Integer (Law_BSpline::*)( const Standard_Integer ) const>(&Law_BSpline::Multiplicity),
R"#(Returns the multiplicity of the knots of range Index. Raised if Index < 1 or Index > NbKnots)#" , py::arg("Index")
)
.def("Multiplicities",
(void (Law_BSpline::*)( NCollection_Array1<Standard_Integer> & ) const) static_cast<void (Law_BSpline::*)( NCollection_Array1<Standard_Integer> & ) const>(&Law_BSpline::Multiplicities),
R"#(Returns the multiplicity of the knots of the curve.)#" , py::arg("M")
)
.def("NbKnots",
(Standard_Integer (Law_BSpline::*)() const) static_cast<Standard_Integer (Law_BSpline::*)() const>(&Law_BSpline::NbKnots),
R"#(Returns the number of knots. This method returns the number of knot without repetition of multiple knots.)#"
)
.def("NbPoles",
(Standard_Integer (Law_BSpline::*)() const) static_cast<Standard_Integer (Law_BSpline::*)() const>(&Law_BSpline::NbPoles),
R"#(Returns the number of poles)#"
)
.def("Pole",
(Standard_Real (Law_BSpline::*)( const Standard_Integer ) const) static_cast<Standard_Real (Law_BSpline::*)( const Standard_Integer ) const>(&Law_BSpline::Pole),
R"#(Returns the pole of range Index. Raised if Index < 1 or Index > NbPoles.)#" , py::arg("Index")
)
.def("Poles",
(void (Law_BSpline::*)( NCollection_Array1<Standard_Real> & ) const) static_cast<void (Law_BSpline::*)( NCollection_Array1<Standard_Real> & ) const>(&Law_BSpline::Poles),
R"#(Returns the poles of the B-spline curve;)#" , py::arg("P")
)
.def("StartPoint",
(Standard_Real (Law_BSpline::*)() const) static_cast<Standard_Real (Law_BSpline::*)() const>(&Law_BSpline::StartPoint),
R"#(Returns the start point of the curve. Warnings : This point is different from the first pole of the curve if the multiplicity of the first knot is lower than Degree.)#"
)
.def("Weight",
(Standard_Real (Law_BSpline::*)( const Standard_Integer ) const) static_cast<Standard_Real (Law_BSpline::*)( const Standard_Integer ) const>(&Law_BSpline::Weight),
R"#(Returns the weight of the pole of range Index . Raised if Index < 1 or Index > NbPoles.)#" , py::arg("Index")
)
.def("Weights",
(void (Law_BSpline::*)( NCollection_Array1<Standard_Real> & ) const) static_cast<void (Law_BSpline::*)( NCollection_Array1<Standard_Real> & ) const>(&Law_BSpline::Weights),
R"#(Returns the weights of the B-spline curve;)#" , py::arg("W")
)
.def("Copy",
(opencascade::handle<Law_BSpline> (Law_BSpline::*)() const) static_cast<opencascade::handle<Law_BSpline> (Law_BSpline::*)() const>(&Law_BSpline::Copy),
R"#(None)#"
)
// methods using call by reference i.s.o. return
.def("PeriodicNormalization",
[]( Law_BSpline &self ){
Standard_Real U;
self.PeriodicNormalization(U);
return std::make_tuple(U); },
R"#(returns the parameter normalized within the period if the curve is periodic : otherwise does not do anything)#"
)
.def("D0",
[]( Law_BSpline &self , const Standard_Real U ){
Standard_Real P;
self.D0(U,P);
return std::make_tuple(P); },
R"#(None)#" , py::arg("U")
)
.def("D1",
[]( Law_BSpline &self , const Standard_Real U ){
Standard_Real P;
Standard_Real V1;
self.D1(U,P,V1);
return std::make_tuple(P,V1); },
R"#(None)#" , py::arg("U")
)
.def("D2",
[]( Law_BSpline &self , const Standard_Real U ){
Standard_Real P;
Standard_Real V1;
Standard_Real V2;
self.D2(U,P,V1,V2);
return std::make_tuple(P,V1,V2); },
R"#(None)#" , py::arg("U")
)
.def("D3",
[]( Law_BSpline &self , const Standard_Real U ){
Standard_Real P;
Standard_Real V1;
Standard_Real V2;
Standard_Real V3;
self.D3(U,P,V1,V2,V3);
return std::make_tuple(P,V1,V2,V3); },
R"#(None)#" , py::arg("U")
)
.def("LocalD0",
[]( Law_BSpline &self , const Standard_Real U,const Standard_Integer FromK1,const Standard_Integer ToK2 ){
Standard_Real P;
self.LocalD0(U,FromK1,ToK2,P);
return std::make_tuple(P); },
R"#(None)#" , py::arg("U"), py::arg("FromK1"), py::arg("ToK2")
)
.def("LocalD1",
[]( Law_BSpline &self , const Standard_Real U,const Standard_Integer FromK1,const Standard_Integer ToK2 ){
Standard_Real P;
Standard_Real V1;
self.LocalD1(U,FromK1,ToK2,P,V1);
return std::make_tuple(P,V1); },
R"#(None)#" , py::arg("U"), py::arg("FromK1"), py::arg("ToK2")
)
.def("LocalD2",
[]( Law_BSpline &self , const Standard_Real U,const Standard_Integer FromK1,const Standard_Integer ToK2 ){
Standard_Real P;
Standard_Real V1;
Standard_Real V2;
self.LocalD2(U,FromK1,ToK2,P,V1,V2);
return std::make_tuple(P,V1,V2); },
R"#(None)#" , py::arg("U"), py::arg("FromK1"), py::arg("ToK2")
)
.def("LocalD3",
[]( Law_BSpline &self , const Standard_Real U,const Standard_Integer FromK1,const Standard_Integer ToK2 ){
Standard_Real P;
Standard_Real V1;
Standard_Real V2;
Standard_Real V3;
self.LocalD3(U,FromK1,ToK2,P,V1,V2,V3);
return std::make_tuple(P,V1,V2,V3); },
R"#(None)#" , py::arg("U"), py::arg("FromK1"), py::arg("ToK2")
)
.def("LocateU",
[]( Law_BSpline &self , const Standard_Real U,const Standard_Real ParametricTolerance,const Standard_Boolean WithKnotRepetition ){
Standard_Integer I1;
Standard_Integer I2;
self.LocateU(U,ParametricTolerance,I1,I2,WithKnotRepetition);
return std::make_tuple(I1,I2); },
R"#(Locates the parametric value U in the sequence of knots. If "WithKnotRepetition" is True we consider the knot's representation with repetition of multiple knot value, otherwise we consider the knot's representation with no repetition of multiple knot values. Knots (I1) <= U <= Knots (I2) . if I1 = I2 U is a knot value (the tolerance criterion ParametricTolerance is used). . if I1 < 1 => U < Knots (1) - Abs(ParametricTolerance) . if I2 > NbKnots => U > Knots (NbKnots) + Abs(ParametricTolerance))#" , py::arg("U"), py::arg("ParametricTolerance"), py::arg("WithKnotRepetition")=static_cast<const Standard_Boolean>(Standard_False)
)
.def("MovePointAndTangent",
[]( Law_BSpline &self , const Standard_Real U,const Standard_Real NewValue,const Standard_Real Derivative,const Standard_Real Tolerance,const Standard_Integer StartingCondition,const Standard_Integer EndingCondition ){
Standard_Integer ErrorStatus;
self.MovePointAndTangent(U,NewValue,Derivative,Tolerance,StartingCondition,EndingCondition,ErrorStatus);
return std::make_tuple(ErrorStatus); },
R"#(Changes the value of the Law at parameter U to NewValue. and makes its derivative at U be derivative. StartingCondition = -1 means first can move EndingCondition = -1 means last point can move StartingCondition = 0 means the first point cannot move EndingCondition = 0 means the last point cannot move StartingCondition = 1 means the first point and tangent cannot move EndingCondition = 1 means the last point and tangent cannot move and so forth ErrorStatus != 0 means that there are not enough degree of freedom with the constrain to deform the curve accordingly)#" , py::arg("U"), py::arg("NewValue"), py::arg("Derivative"), py::arg("Tolerance"), py::arg("StartingCondition"), py::arg("EndingCondition")
)
.def("Resolution",
[]( Law_BSpline &self , const Standard_Real Tolerance3D ){
Standard_Real UTolerance;
self.Resolution(Tolerance3D,UTolerance);
return std::make_tuple(UTolerance); },
R"#(given Tolerance3D returns UTolerance such that if f(t) is the curve we have | t1 - t0| < Utolerance ===> |f(t1) - f(t0)| < Tolerance3D)#" , py::arg("Tolerance3D")
)
// static methods
.def_static("MaxDegree_s",
(Standard_Integer (*)() ) static_cast<Standard_Integer (*)() >(&Law_BSpline::MaxDegree),
R"#(Returns the value of the maximum degree of the normalized B-spline basis functions in this package.)#"
)
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Law_BSpline::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Law_BSpline::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Law_BSpline::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Law_BSpline::*)() const>(&Law_BSpline::DynamicType),
R"#(None)#"
)
;
// Class Law_BSplineKnotSplitting from ./opencascade/Law_BSplineKnotSplitting.hxx
klass = m.attr("Law_BSplineKnotSplitting");
// nested enums
static_cast<py::class_<Law_BSplineKnotSplitting , shared_ptr<Law_BSplineKnotSplitting> >>(klass)
// constructors
.def(py::init< const opencascade::handle<Law_BSpline> &,const Standard_Integer >() , py::arg("BasisLaw"), py::arg("ContinuityRange") )
// custom constructors
// methods
.def("NbSplits",
(Standard_Integer (Law_BSplineKnotSplitting::*)() const) static_cast<Standard_Integer (Law_BSplineKnotSplitting::*)() const>(&Law_BSplineKnotSplitting::NbSplits),
R"#(Returns the number of knots corresponding to the splitting.)#"
)
.def("Splitting",
(void (Law_BSplineKnotSplitting::*)( NCollection_Array1<Standard_Integer> & ) const) static_cast<void (Law_BSplineKnotSplitting::*)( NCollection_Array1<Standard_Integer> & ) const>(&Law_BSplineKnotSplitting::Splitting),
R"#(Returns the indexes of the BSpline curve knots corresponding to the splitting.)#" , py::arg("SplitValues")
)
.def("SplitValue",
(Standard_Integer (Law_BSplineKnotSplitting::*)( const Standard_Integer ) const) static_cast<Standard_Integer (Law_BSplineKnotSplitting::*)( const Standard_Integer ) const>(&Law_BSplineKnotSplitting::SplitValue),
R"#(Returns the index of the knot corresponding to the splitting of range Index.)#" , py::arg("Index")
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
;
// Class Law_Function from ./opencascade/Law_Function.hxx
klass = m.attr("Law_Function");
// nested enums
static_cast<py::class_<Law_Function ,opencascade::handle<Law_Function> ,Py_Law_Function , Standard_Transient >>(klass)
// constructors
// custom constructors
// methods
.def("Continuity",
(GeomAbs_Shape (Law_Function::*)() const) static_cast<GeomAbs_Shape (Law_Function::*)() const>(&Law_Function::Continuity),
R"#(None)#"
)
.def("NbIntervals",
(Standard_Integer (Law_Function::*)( const GeomAbs_Shape ) const) static_cast<Standard_Integer (Law_Function::*)( const GeomAbs_Shape ) const>(&Law_Function::NbIntervals),
R"#(Returns the number of intervals for continuity <S>. May be one if Continuity(me) >= <S>)#" , py::arg("S")
)
.def("Intervals",
(void (Law_Function::*)( NCollection_Array1<Standard_Real> & , const GeomAbs_Shape ) const) static_cast<void (Law_Function::*)( NCollection_Array1<Standard_Real> & , const GeomAbs_Shape ) const>(&Law_Function::Intervals),
R"#(Stores in <T> the parameters bounding the intervals of continuity <S>. The array must provide enough room to accommodate for the parameters, i.e. T.Length() > NbIntervals())#" , py::arg("T"), py::arg("S")
)
.def("Value",
(Standard_Real (Law_Function::*)( const Standard_Real ) ) static_cast<Standard_Real (Law_Function::*)( const Standard_Real ) >(&Law_Function::Value),
R"#(Returns the value of the function at the point of parameter X.)#" , py::arg("X")
)
.def("Trim",
(opencascade::handle<Law_Function> (Law_Function::*)( const Standard_Real , const Standard_Real , const Standard_Real ) const) static_cast<opencascade::handle<Law_Function> (Law_Function::*)( const Standard_Real , const Standard_Real , const Standard_Real ) const>(&Law_Function::Trim),
R"#(Returns a law equivalent of <me> between parameters <First> and <Last>. <Tol> is used to test for 3d points confusion. It is usfule to determines the derivatives in these values <First> and <Last> if the Law is not Cn.)#" , py::arg("PFirst"), py::arg("PLast"), py::arg("Tol")
)
// methods using call by reference i.s.o. return
.def("D1",
[]( Law_Function &self , const Standard_Real X ){
Standard_Real F;
Standard_Real D;
self.D1(X,F,D);
return std::make_tuple(F,D); },
R"#(Returns the value F and the first derivative D of the function at the point of parameter X.)#" , py::arg("X")
)
.def("D2",
[]( Law_Function &self , const Standard_Real X ){
Standard_Real F;
Standard_Real D;
Standard_Real D2;
self.D2(X,F,D,D2);
return std::make_tuple(F,D,D2); },
R"#(Returns the value, first and seconde derivatives at parameter X.)#" , py::arg("X")
)
.def("Bounds",
[]( Law_Function &self ){
Standard_Real PFirst;
Standard_Real PLast;
self.Bounds(PFirst,PLast);
return std::make_tuple(PFirst,PLast); },
R"#(Returns the parametric bounds of the function.)#"
)
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Law_Function::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Law_Function::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Law_Function::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Law_Function::*)() const>(&Law_Function::DynamicType),
R"#(None)#"
)
;
// Class Law_Interpolate from ./opencascade/Law_Interpolate.hxx
klass = m.attr("Law_Interpolate");
// nested enums
static_cast<py::class_<Law_Interpolate , shared_ptr<Law_Interpolate> >>(klass)
// constructors
.def(py::init< const opencascade::handle<TColStd_HArray1OfReal> &,const Standard_Boolean,const Standard_Real >() , py::arg("Points"), py::arg("PeriodicFlag"), py::arg("Tolerance") )
.def(py::init< const opencascade::handle<TColStd_HArray1OfReal> &,const opencascade::handle<TColStd_HArray1OfReal> &,const Standard_Boolean,const Standard_Real >() , py::arg("Points"), py::arg("Parameters"), py::arg("PeriodicFlag"), py::arg("Tolerance") )
// custom constructors
// methods
.def("Load",
(void (Law_Interpolate::*)( const Standard_Real , const Standard_Real ) ) static_cast<void (Law_Interpolate::*)( const Standard_Real , const Standard_Real ) >(&Law_Interpolate::Load),
R"#(loads initial and final tangents if any.)#" , py::arg("InitialTangent"), py::arg("FinalTangent")
)
.def("Load",
(void (Law_Interpolate::*)( const NCollection_Array1<Standard_Real> & , const opencascade::handle<TColStd_HArray1OfBoolean> & ) ) static_cast<void (Law_Interpolate::*)( const NCollection_Array1<Standard_Real> & , const opencascade::handle<TColStd_HArray1OfBoolean> & ) >(&Law_Interpolate::Load),
R"#(loads the tangents. We should have as many tangents as they are points in the array if TangentFlags.Value(i) is Standard_True use the tangent Tangents.Value(i) otherwise the tangent is not constrained.)#" , py::arg("Tangents"), py::arg("TangentFlags")
)
.def("Perform",
(void (Law_Interpolate::*)() ) static_cast<void (Law_Interpolate::*)() >(&Law_Interpolate::Perform),
R"#(Makes the interpolation)#"
)
.def("IsDone",
(Standard_Boolean (Law_Interpolate::*)() const) static_cast<Standard_Boolean (Law_Interpolate::*)() const>(&Law_Interpolate::IsDone),
R"#(None)#"
)
// methods using call by reference i.s.o. return
// static methods
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("Curve",
(const opencascade::handle<Law_BSpline> & (Law_Interpolate::*)() const) static_cast<const opencascade::handle<Law_BSpline> & (Law_Interpolate::*)() const>(&Law_Interpolate::Curve),
R"#(None)#"
)
;
// Class Law_BSpFunc from ./opencascade/Law_BSpFunc.hxx
klass = m.attr("Law_BSpFunc");
// nested enums
static_cast<py::class_<Law_BSpFunc ,opencascade::handle<Law_BSpFunc> , Law_Function >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const opencascade::handle<Law_BSpline> &,const Standard_Real,const Standard_Real >() , py::arg("C"), py::arg("First"), py::arg("Last") )
// custom constructors
// methods
.def("Continuity",
(GeomAbs_Shape (Law_BSpFunc::*)() const) static_cast<GeomAbs_Shape (Law_BSpFunc::*)() const>(&Law_BSpFunc::Continuity),
R"#(None)#"
)
.def("NbIntervals",
(Standard_Integer (Law_BSpFunc::*)( const GeomAbs_Shape ) const) static_cast<Standard_Integer (Law_BSpFunc::*)( const GeomAbs_Shape ) const>(&Law_BSpFunc::NbIntervals),
R"#(Returns the number of intervals for continuity <S>. May be one if Continuity(me) >= <S>)#" , py::arg("S")
)
.def("Intervals",
(void (Law_BSpFunc::*)( NCollection_Array1<Standard_Real> & , const GeomAbs_Shape ) const) static_cast<void (Law_BSpFunc::*)( NCollection_Array1<Standard_Real> & , const GeomAbs_Shape ) const>(&Law_BSpFunc::Intervals),
R"#(Stores in <T> the parameters bounding the intervals of continuity <S>. The array must provide enough room to accommodate for the parameters, i.e. T.Length() > NbIntervals())#" , py::arg("T"), py::arg("S")
)
.def("Value",
(Standard_Real (Law_BSpFunc::*)( const Standard_Real ) ) static_cast<Standard_Real (Law_BSpFunc::*)( const Standard_Real ) >(&Law_BSpFunc::Value),
R"#(None)#" , py::arg("X")
)
.def("Trim",
(opencascade::handle<Law_Function> (Law_BSpFunc::*)( const Standard_Real , const Standard_Real , const Standard_Real ) const) static_cast<opencascade::handle<Law_Function> (Law_BSpFunc::*)( const Standard_Real , const Standard_Real , const Standard_Real ) const>(&Law_BSpFunc::Trim),
R"#(Returns a law equivalent of <me> between parameters <First> and <Last>. <Tol> is used to test for 3d points confusion. It is usfule to determines the derivatives in these values <First> and <Last> if the Law is not Cn.)#" , py::arg("PFirst"), py::arg("PLast"), py::arg("Tol")
)
.def("Curve",
(opencascade::handle<Law_BSpline> (Law_BSpFunc::*)() const) static_cast<opencascade::handle<Law_BSpline> (Law_BSpFunc::*)() const>(&Law_BSpFunc::Curve),
R"#(None)#"
)
.def("SetCurve",
(void (Law_BSpFunc::*)( const opencascade::handle<Law_BSpline> & ) ) static_cast<void (Law_BSpFunc::*)( const opencascade::handle<Law_BSpline> & ) >(&Law_BSpFunc::SetCurve),
R"#(None)#" , py::arg("C")
)
// methods using call by reference i.s.o. return
.def("D1",
[]( Law_BSpFunc &self , const Standard_Real X ){
Standard_Real F;
Standard_Real D;
self.D1(X,F,D);
return std::make_tuple(F,D); },
R"#(None)#" , py::arg("X")
)
.def("D2",
[]( Law_BSpFunc &self , const Standard_Real X ){
Standard_Real F;
Standard_Real D;
Standard_Real D2;
self.D2(X,F,D,D2);
return std::make_tuple(F,D,D2); },
R"#(None)#" , py::arg("X")
)
.def("Bounds",
[]( Law_BSpFunc &self ){
Standard_Real PFirst;
Standard_Real PLast;
self.Bounds(PFirst,PLast);
return std::make_tuple(PFirst,PLast); },
R"#(None)#"
)
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Law_BSpFunc::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Law_BSpFunc::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Law_BSpFunc::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Law_BSpFunc::*)() const>(&Law_BSpFunc::DynamicType),
R"#(None)#"
)
;
// Class Law_Composite from ./opencascade/Law_Composite.hxx
klass = m.attr("Law_Composite");
// nested enums
static_cast<py::class_<Law_Composite ,opencascade::handle<Law_Composite> , Law_Function >>(klass)
// constructors
.def(py::init< >() )
.def(py::init< const Standard_Real,const Standard_Real,const Standard_Real >() , py::arg("First"), py::arg("Last"), py::arg("Tol") )
// custom constructors
// methods
.def("Continuity",
(GeomAbs_Shape (Law_Composite::*)() const) static_cast<GeomAbs_Shape (Law_Composite::*)() const>(&Law_Composite::Continuity),
R"#(None)#"
)
.def("NbIntervals",
(Standard_Integer (Law_Composite::*)( const GeomAbs_Shape ) const) static_cast<Standard_Integer (Law_Composite::*)( const GeomAbs_Shape ) const>(&Law_Composite::NbIntervals),
R"#(Returns the number of intervals for continuity <S>. May be one if Continuity(me) >= <S>)#" , py::arg("S")
)
.def("Intervals",
(void (Law_Composite::*)( NCollection_Array1<Standard_Real> & , const GeomAbs_Shape ) const) static_cast<void (Law_Composite::*)( NCollection_Array1<Standard_Real> & , const GeomAbs_Shape ) const>(&Law_Composite::Intervals),
R"#(Stores in <T> the parameters bounding the intervals of continuity <S>. The array must provide enough room to accommodate for the parameters, i.e. T.Length() > NbIntervals())#" , py::arg("T"), py::arg("S")
)
.def("Value",
(Standard_Real (Law_Composite::*)( const Standard_Real ) ) static_cast<Standard_Real (Law_Composite::*)( const Standard_Real ) >(&Law_Composite::Value),
R"#(Returns the value at parameter X.)#" , py::arg("X")
)
.def("Trim",
(opencascade::handle<Law_Function> (Law_Composite::*)( const Standard_Real , const Standard_Real , const Standard_Real ) const) static_cast<opencascade::handle<Law_Function> (Law_Composite::*)( const Standard_Real , const Standard_Real , const Standard_Real ) const>(&Law_Composite::Trim),
R"#(Returns a law equivalent of <me> between parameters <First> and <Last>. <Tol> is used to test for 3d points confusion. It is usfule to determines the derivatives in these values <First> and <Last> if the Law is not Cn.)#" , py::arg("PFirst"), py::arg("PLast"), py::arg("Tol")
)
.def("ChangeElementaryLaw",
(opencascade::handle<Law_Function> & (Law_Composite::*)( const Standard_Real ) ) static_cast<opencascade::handle<Law_Function> & (Law_Composite::*)( const Standard_Real ) >(&Law_Composite::ChangeElementaryLaw),
R"#(Returns the elementary function of the composite used to compute at parameter W.)#" , py::arg("W")
)
.def("IsPeriodic",
(Standard_Boolean (Law_Composite::*)() const) static_cast<Standard_Boolean (Law_Composite::*)() const>(&Law_Composite::IsPeriodic),
R"#(None)#"
)
.def("SetPeriodic",
(void (Law_Composite::*)() ) static_cast<void (Law_Composite::*)() >(&Law_Composite::SetPeriodic),
R"#(None)#"
)
// methods using call by reference i.s.o. return
.def("D1",
[]( Law_Composite &self , const Standard_Real X ){
Standard_Real F;
Standard_Real D;
self.D1(X,F,D);
return std::make_tuple(F,D); },
R"#(Returns the value and the first derivative at parameter X.)#" , py::arg("X")
)
.def("D2",
[]( Law_Composite &self , const Standard_Real X ){
Standard_Real F;
Standard_Real D;
Standard_Real D2;
self.D2(X,F,D,D2);
return std::make_tuple(F,D,D2); },
R"#(Returns the value, first and second derivatives at parameter X.)#" , py::arg("X")
)
.def("Bounds",
[]( Law_Composite &self ){
Standard_Real PFirst;
Standard_Real PLast;
self.Bounds(PFirst,PLast);
return std::make_tuple(PFirst,PLast); },
R"#(Returns the parametric bounds of the function.)#"
)
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Law_Composite::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Law_Composite::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("ChangeLaws",
(Law_Laws & (Law_Composite::*)() ) static_cast<Law_Laws & (Law_Composite::*)() >(&Law_Composite::ChangeLaws),
R"#(None)#"
, py::return_value_policy::reference_internal
)
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Law_Composite::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Law_Composite::*)() const>(&Law_Composite::DynamicType),
R"#(None)#"
)
;
// Class Law_Constant from ./opencascade/Law_Constant.hxx
klass = m.attr("Law_Constant");
// nested enums
static_cast<py::class_<Law_Constant ,opencascade::handle<Law_Constant> , Law_Function >>(klass)
// constructors
.def(py::init< >() )
// custom constructors
// methods
.def("Set",
(void (Law_Constant::*)( const Standard_Real , const Standard_Real , const Standard_Real ) ) static_cast<void (Law_Constant::*)( const Standard_Real , const Standard_Real , const Standard_Real ) >(&Law_Constant::Set),
R"#(Set the radius and the range of the constant Law.)#" , py::arg("Radius"), py::arg("PFirst"), py::arg("PLast")
)
.def("Continuity",
(GeomAbs_Shape (Law_Constant::*)() const) static_cast<GeomAbs_Shape (Law_Constant::*)() const>(&Law_Constant::Continuity),
R"#(Returns GeomAbs_CN)#"
)
.def("NbIntervals",
(Standard_Integer (Law_Constant::*)( const GeomAbs_Shape ) const) static_cast<Standard_Integer (Law_Constant::*)( const GeomAbs_Shape ) const>(&Law_Constant::NbIntervals),
R"#(Returns 1)#" , py::arg("S")
)
.def("Intervals",
(void (Law_Constant::*)( NCollection_Array1<Standard_Real> & , const GeomAbs_Shape ) const) static_cast<void (Law_Constant::*)( NCollection_Array1<Standard_Real> & , const GeomAbs_Shape ) const>(&Law_Constant::Intervals),
R"#(None)#" , py::arg("T"), py::arg("S")
)
.def("Value",
(Standard_Real (Law_Constant::*)( const Standard_Real ) ) static_cast<Standard_Real (Law_Constant::*)( const Standard_Real ) >(&Law_Constant::Value),
R"#(Returns the value at parameter X.)#" , py::arg("X")
)
.def("Trim",
(opencascade::handle<Law_Function> (Law_Constant::*)( const Standard_Real , const Standard_Real , const Standard_Real ) const) static_cast<opencascade::handle<Law_Function> (Law_Constant::*)( const Standard_Real , const Standard_Real , const Standard_Real ) const>(&Law_Constant::Trim),
R"#(None)#" , py::arg("PFirst"), py::arg("PLast"), py::arg("Tol")
)
// methods using call by reference i.s.o. return
.def("D1",
[]( Law_Constant &self , const Standard_Real X ){
Standard_Real F;
Standard_Real D;
self.D1(X,F,D);
return std::make_tuple(F,D); },
R"#(Returns the value and the first derivative at parameter X.)#" , py::arg("X")
)
.def("D2",
[]( Law_Constant &self , const Standard_Real X ){
Standard_Real F;
Standard_Real D;
Standard_Real D2;
self.D2(X,F,D,D2);
return std::make_tuple(F,D,D2); },
R"#(Returns the value, first and second derivatives at parameter X.)#" , py::arg("X")
)
.def("Bounds",
[]( Law_Constant &self ){
Standard_Real PFirst;
Standard_Real PLast;
self.Bounds(PFirst,PLast);
return std::make_tuple(PFirst,PLast); },
R"#(Returns the parametric bounds of the function.)#"
)
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Law_Constant::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Law_Constant::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Law_Constant::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Law_Constant::*)() const>(&Law_Constant::DynamicType),
R"#(None)#"
)
;
// Class Law_Linear from ./opencascade/Law_Linear.hxx
klass = m.attr("Law_Linear");
// nested enums
static_cast<py::class_<Law_Linear ,opencascade::handle<Law_Linear> , Law_Function >>(klass)
// constructors
.def(py::init< >() )
// custom constructors
// methods
.def("Set",
(void (Law_Linear::*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real ) ) static_cast<void (Law_Linear::*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real ) >(&Law_Linear::Set),
R"#(Defines this linear evolution law by assigning both: - the bounds Pdeb and Pfin of the parameter, and - the values Valdeb and Valfin of the function at these two parametric bounds.)#" , py::arg("Pdeb"), py::arg("Valdeb"), py::arg("Pfin"), py::arg("Valfin")
)
.def("Continuity",
(GeomAbs_Shape (Law_Linear::*)() const) static_cast<GeomAbs_Shape (Law_Linear::*)() const>(&Law_Linear::Continuity),
R"#(Returns GeomAbs_CN)#"
)
.def("NbIntervals",
(Standard_Integer (Law_Linear::*)( const GeomAbs_Shape ) const) static_cast<Standard_Integer (Law_Linear::*)( const GeomAbs_Shape ) const>(&Law_Linear::NbIntervals),
R"#(Returns 1)#" , py::arg("S")
)
.def("Intervals",
(void (Law_Linear::*)( NCollection_Array1<Standard_Real> & , const GeomAbs_Shape ) const) static_cast<void (Law_Linear::*)( NCollection_Array1<Standard_Real> & , const GeomAbs_Shape ) const>(&Law_Linear::Intervals),
R"#(None)#" , py::arg("T"), py::arg("S")
)
.def("Value",
(Standard_Real (Law_Linear::*)( const Standard_Real ) ) static_cast<Standard_Real (Law_Linear::*)( const Standard_Real ) >(&Law_Linear::Value),
R"#(Returns the value of this function at the point of parameter X.)#" , py::arg("X")
)
.def("Trim",
(opencascade::handle<Law_Function> (Law_Linear::*)( const Standard_Real , const Standard_Real , const Standard_Real ) const) static_cast<opencascade::handle<Law_Function> (Law_Linear::*)( const Standard_Real , const Standard_Real , const Standard_Real ) const>(&Law_Linear::Trim),
R"#(Returns a law equivalent of <me> between parameters <First> and <Last>. <Tol> is used to test for 3d points confusion. It is usfule to determines the derivatives in these values <First> and <Last> if the Law is not Cn.)#" , py::arg("PFirst"), py::arg("PLast"), py::arg("Tol")
)
// methods using call by reference i.s.o. return
.def("D1",
[]( Law_Linear &self , const Standard_Real X ){
Standard_Real F;
Standard_Real D;
self.D1(X,F,D);
return std::make_tuple(F,D); },
R"#(Returns the value F and the first derivative D of this function at the point of parameter X.)#" , py::arg("X")
)
.def("D2",
[]( Law_Linear &self , const Standard_Real X ){
Standard_Real F;
Standard_Real D;
Standard_Real D2;
self.D2(X,F,D,D2);
return std::make_tuple(F,D,D2); },
R"#(Returns the value, first and second derivatives at parameter X.)#" , py::arg("X")
)
.def("Bounds",
[]( Law_Linear &self ){
Standard_Real PFirst;
Standard_Real PLast;
self.Bounds(PFirst,PLast);
return std::make_tuple(PFirst,PLast); },
R"#(Returns the parametric bounds of the function.)#"
)
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Law_Linear::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Law_Linear::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Law_Linear::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Law_Linear::*)() const>(&Law_Linear::DynamicType),
R"#(None)#"
)
;
// Class Law_Interpol from ./opencascade/Law_Interpol.hxx
klass = m.attr("Law_Interpol");
// nested enums
static_cast<py::class_<Law_Interpol ,opencascade::handle<Law_Interpol> , Law_BSpFunc >>(klass)
// constructors
.def(py::init< >() )
// custom constructors
// methods
.def("Set",
(void (Law_Interpol::*)( const NCollection_Array1<gp_Pnt2d> & , const Standard_Boolean ) ) static_cast<void (Law_Interpol::*)( const NCollection_Array1<gp_Pnt2d> & , const Standard_Boolean ) >(&Law_Interpol::Set),
R"#(Defines this evolution law by interpolating the set of 2D points ParAndRad. The Y coordinate of a point of ParAndRad is the value of the function at the parameter point given by its X coordinate. If Periodic is true, this function is assumed to be periodic. Warning - The X coordinates of points in the table ParAndRad must be given in ascendant order. - If Periodic is true, the first and last Y coordinates of points in the table ParAndRad are assumed to be equal. In addition, with the second syntax, Dd and Df are also assumed to be equal. If this is not the case, Set uses the first value(s) as last value(s).)#" , py::arg("ParAndRad"), py::arg("Periodic")=static_cast<const Standard_Boolean>(Standard_False)
)
.def("SetInRelative",
(void (Law_Interpol::*)( const NCollection_Array1<gp_Pnt2d> & , const Standard_Real , const Standard_Real , const Standard_Boolean ) ) static_cast<void (Law_Interpol::*)( const NCollection_Array1<gp_Pnt2d> & , const Standard_Real , const Standard_Real , const Standard_Boolean ) >(&Law_Interpol::SetInRelative),
R"#(None)#" , py::arg("ParAndRad"), py::arg("Ud"), py::arg("Uf"), py::arg("Periodic")=static_cast<const Standard_Boolean>(Standard_False)
)
.def("Set",
(void (Law_Interpol::*)( const NCollection_Array1<gp_Pnt2d> & , const Standard_Real , const Standard_Real , const Standard_Boolean ) ) static_cast<void (Law_Interpol::*)( const NCollection_Array1<gp_Pnt2d> & , const Standard_Real , const Standard_Real , const Standard_Boolean ) >(&Law_Interpol::Set),
R"#(Defines this evolution law by interpolating the set of 2D points ParAndRad. The Y coordinate of a point of ParAndRad is the value of the function at the parameter point given by its X coordinate. If Periodic is true, this function is assumed to be periodic. In the second syntax, Dd and Df define the values of the first derivative of the function at its first and last points. Warning - The X coordinates of points in the table ParAndRad must be given in ascendant order. - If Periodic is true, the first and last Y coordinates of points in the table ParAndRad are assumed to be equal. In addition, with the second syntax, Dd and Df are also assumed to be equal. If this is not the case, Set uses the first value(s) as last value(s).)#" , py::arg("ParAndRad"), py::arg("Dd"), py::arg("Df"), py::arg("Periodic")=static_cast<const Standard_Boolean>(Standard_False)
)
.def("SetInRelative",
(void (Law_Interpol::*)( const NCollection_Array1<gp_Pnt2d> & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Boolean ) ) static_cast<void (Law_Interpol::*)( const NCollection_Array1<gp_Pnt2d> & , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Boolean ) >(&Law_Interpol::SetInRelative),
R"#(None)#" , py::arg("ParAndRad"), py::arg("Ud"), py::arg("Uf"), py::arg("Dd"), py::arg("Df"), py::arg("Periodic")=static_cast<const Standard_Boolean>(Standard_False)
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Law_Interpol::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Law_Interpol::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Law_Interpol::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Law_Interpol::*)() const>(&Law_Interpol::DynamicType),
R"#(None)#"
)
;
// Class Law_S from ./opencascade/Law_S.hxx
klass = m.attr("Law_S");
// nested enums
static_cast<py::class_<Law_S ,opencascade::handle<Law_S> , Law_BSpFunc >>(klass)
// constructors
.def(py::init< >() )
// custom constructors
// methods
.def("Set",
(void (Law_S::*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real ) ) static_cast<void (Law_S::*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real ) >(&Law_S::Set),
R"#(Defines this S evolution law by assigning both: - the bounds Pdeb and Pfin of the parameter, and - the values Valdeb and Valfin of the function at these two parametric bounds. The function is assumed to have the first derivatives equal to 0 at the two parameter points Pdeb and Pfin.)#" , py::arg("Pdeb"), py::arg("Valdeb"), py::arg("Pfin"), py::arg("Valfin")
)
.def("Set",
(void (Law_S::*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real ) ) static_cast<void (Law_S::*)( const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real , const Standard_Real ) >(&Law_S::Set),
R"#(Defines this S evolution law by assigning - the bounds Pdeb and Pfin of the parameter, - the values Valdeb and Valfin of the function at these two parametric bounds, and - the values Ddeb and Dfin of the first derivative of the function at these two parametric bounds.)#" , py::arg("Pdeb"), py::arg("Valdeb"), py::arg("Ddeb"), py::arg("Pfin"), py::arg("Valfin"), py::arg("Dfin")
)
// methods using call by reference i.s.o. return
// static methods
.def_static("get_type_name_s",
(const char * (*)() ) static_cast<const char * (*)() >(&Law_S::get_type_name),
R"#(None)#"
)
.def_static("get_type_descriptor_s",
(const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Law_S::get_type_descriptor),
R"#(None)#"
)
// static methods using call by reference i.s.o. return
// operators
// additional methods and static methods
// properties
// methods returning by ref wrapped as properties
.def("DynamicType",
(const opencascade::handle<Standard_Type> & (Law_S::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Law_S::*)() const>(&Law_S::DynamicType),
R"#(None)#"
)
;
// functions
// ./opencascade/Law.hxx
// ./opencascade/Law_BSpFunc.hxx
// ./opencascade/Law_BSpline.hxx
// ./opencascade/Law_BSplineKnotSplitting.hxx
// ./opencascade/Law_Composite.hxx
// ./opencascade/Law_Constant.hxx
// ./opencascade/Law_Function.hxx
// ./opencascade/Law_Interpol.hxx
// ./opencascade/Law_Interpolate.hxx
// ./opencascade/Law_Laws.hxx
// ./opencascade/Law_Linear.hxx
// ./opencascade/Law_ListIteratorOfLaws.hxx
// ./opencascade/Law_S.hxx
// Additional functions
// operators
// register typdefs
register_template_NCollection_List<opencascade::handle<Law_Function>>(m,"Law_Laws");
// exceptions
// user-defined post-inclusion per module in the body
};
// user-defined post-inclusion per module
// user-defined post
|