File: Law.cpp

package info (click to toggle)
python-ocp 7.8.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 64,724 kB
  • sloc: cpp: 362,337; pascal: 33; python: 23; makefile: 4
file content (1171 lines) | stat: -rw-r--r-- 74,672 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171

// std lib related includes
#include <tuple>

// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

namespace py = pybind11;

// Standard Handle
#include <Standard_Handle.hxx>


// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Law_BSpFunc.hxx>
#include <Law_Linear.hxx>
#include <Law_BSpline.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Law_BSpline.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Law_BSpline.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Law_BSpline.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>

// module includes
#include <Law.hxx>
#include <Law_BSpFunc.hxx>
#include <Law_BSpline.hxx>
#include <Law_BSplineKnotSplitting.hxx>
#include <Law_Composite.hxx>
#include <Law_Constant.hxx>
#include <Law_Function.hxx>
#include <Law_Interpol.hxx>
#include <Law_Interpolate.hxx>
#include <Law_Laws.hxx>
#include <Law_Linear.hxx>
#include <Law_ListIteratorOfLaws.hxx>
#include <Law_S.hxx>

// template related includes

// ./opencascade/Law_Laws.hxx
#include "NCollection_tmpl.hxx"

// ./opencascade/Law_Laws.hxx
#include "NCollection_tmpl.hxx"


// user-defined pre
#include "OCP_specific.inc"

// user-defined inclusion per module

// Module definiiton
void register_Law(py::module &main_module) {


py::module m = static_cast<py::module>(main_module.attr("Law"));
py::object klass;

//Python trampoline classes
    class Py_Law_Function : public Law_Function{
    public:
        using Law_Function::Law_Function;


        // public pure virtual
        GeomAbs_Shape Continuity() const  override { PYBIND11_OVERLOAD_PURE(GeomAbs_Shape,Law_Function,Continuity,) };
        Standard_Integer NbIntervals(const GeomAbs_Shape S) const  override { PYBIND11_OVERLOAD_PURE(Standard_Integer,Law_Function,NbIntervals,S) };
        void Intervals(NCollection_Array1<Standard_Real> & T,const GeomAbs_Shape S) const  override { PYBIND11_OVERLOAD_PURE(void,Law_Function,Intervals,T,S) };
        Standard_Real Value(const Standard_Real X) override { PYBIND11_OVERLOAD_PURE(Standard_Real,Law_Function,Value,X) };
        opencascade::handle<Law_Function> Trim(const Standard_Real PFirst,const Standard_Real PLast,const Standard_Real Tol) const  override { PYBIND11_OVERLOAD_PURE(opencascade::handle<Law_Function>,Law_Function,Trim,PFirst,PLast,Tol) };
        void D1(const Standard_Real X,Standard_Real & F,Standard_Real & D) override { PYBIND11_OVERLOAD_PURE(void,Law_Function,D1,X,F,D) };
        void D2(const Standard_Real X,Standard_Real & F,Standard_Real & D,Standard_Real & D2) override { PYBIND11_OVERLOAD_PURE(void,Law_Function,D2,X,F,D,D2) };
        void Bounds(Standard_Real & PFirst,Standard_Real & PLast) override { PYBIND11_OVERLOAD_PURE(void,Law_Function,Bounds,PFirst,PLast) };


        // protected pure virtual


        // private pure virtual

    };

// classes

    // Class Law from ./opencascade/Law.hxx
    klass = m.attr("Law");

    // default constructor
    register_default_constructor<Law , shared_ptr<Law>>(m,"Law");

    // nested enums

    static_cast<py::class_<Law , shared_ptr<Law>  >>(klass)
    // constructors
    // custom constructors
    // methods
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("MixBnd_s",
                    (opencascade::handle<Law_BSpFunc> (*)( const opencascade::handle<Law_Linear> &  ) ) static_cast<opencascade::handle<Law_BSpFunc> (*)( const opencascade::handle<Law_Linear> &  ) >(&Law::MixBnd),
                    R"#(This algorithm searches the knot values corresponding to the splitting of a given B-spline law into several arcs with the same continuity. The continuity order is given at the construction time. Builds a 1d bspline that is near from Lin with null derivatives at the extremities.)#"  , py::arg("Lin")
          )
        .def_static("MixBnd_s",
                    (opencascade::handle<TColStd_HArray1OfReal> (*)( const Standard_Integer ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  const opencascade::handle<Law_Linear> &  ) ) static_cast<opencascade::handle<TColStd_HArray1OfReal> (*)( const Standard_Integer ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  const opencascade::handle<Law_Linear> &  ) >(&Law::MixBnd),
                    R"#(Builds the poles of the 1d bspline that is near from Lin with null derivatives at the extremities.)#"  , py::arg("Degree"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("Lin")
          )
        .def_static("MixTgt_s",
                    (opencascade::handle<TColStd_HArray1OfReal> (*)( const Standard_Integer ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  const Standard_Boolean ,  const Standard_Integer  ) ) static_cast<opencascade::handle<TColStd_HArray1OfReal> (*)( const Standard_Integer ,   const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  const Standard_Boolean ,  const Standard_Integer  ) >(&Law::MixTgt),
                    R"#(Builds the poles of the 1d bspline that is null on the right side of Knots(Index) (on the left if NulOnTheRight is false) and that is like a t*(1-t)(1-t) curve on the left side of Knots(Index) (on the right if NulOnTheRight is false). The result curve is C1 with a derivative equal to 1. at first parameter (-1 at last parameter if NulOnTheRight is false). Warning: Mults(Index) must greater or equal to degree-1.)#"  , py::arg("Degree"),  py::arg("Knots"),  py::arg("Mults"),  py::arg("NulOnTheRight"),  py::arg("Index")
          )
        .def_static("Reparametrize_s",
                    (opencascade::handle<Law_BSpline> (*)( const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Boolean ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Integer  ) ) static_cast<opencascade::handle<Law_BSpline> (*)( const Adaptor3d_Curve & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Boolean ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Integer  ) >(&Law::Reparametrize),
                    R"#(Computes a 1 d curve to reparametrize a curve. Its an interpolation of NbPoints points calculated at quasi constant abscissa.)#"  , py::arg("Curve"),  py::arg("First"),  py::arg("Last"),  py::arg("HasDF"),  py::arg("HasDL"),  py::arg("DFirst"),  py::arg("DLast"),  py::arg("Rev"),  py::arg("NbPoints")
          )
        .def_static("Scale_s",
                    (opencascade::handle<Law_BSpline> (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Boolean ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<opencascade::handle<Law_BSpline> (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Boolean ,  const Standard_Real ,  const Standard_Real  ) >(&Law::Scale),
                    R"#(Computes a 1 d curve to scale a field of tangency. Value is 1. for t = (First+Last)/2 . If HasFirst value for t = First is VFirst (null derivative). If HasLast value for t = Last is VLast (null derivative).)#"  , py::arg("First"),  py::arg("Last"),  py::arg("HasF"),  py::arg("HasL"),  py::arg("VFirst"),  py::arg("VLast")
          )
        .def_static("ScaleCub_s",
                    (opencascade::handle<Law_BSpline> (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Boolean ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<opencascade::handle<Law_BSpline> (*)( const Standard_Real ,  const Standard_Real ,  const Standard_Boolean ,  const Standard_Boolean ,  const Standard_Real ,  const Standard_Real  ) >(&Law::ScaleCub),
                    R"#(None)#"  , py::arg("First"),  py::arg("Last"),  py::arg("HasF"),  py::arg("HasL"),  py::arg("VFirst"),  py::arg("VLast")
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class Law_BSpline from ./opencascade/Law_BSpline.hxx
    klass = m.attr("Law_BSpline");


    // nested enums

    static_cast<py::class_<Law_BSpline ,opencascade::handle<Law_BSpline>  , Standard_Transient >>(klass)
    // constructors
        .def(py::init<  const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Integer> &,const Standard_Integer,const Standard_Boolean >()  , py::arg("Poles"),  py::arg("Knots"),  py::arg("Multiplicities"),  py::arg("Degree"),  py::arg("Periodic")=static_cast<const Standard_Boolean>(Standard_False) )
        .def(py::init<  const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Real> &, const NCollection_Array1<Standard_Integer> &,const Standard_Integer,const Standard_Boolean >()  , py::arg("Poles"),  py::arg("Weights"),  py::arg("Knots"),  py::arg("Multiplicities"),  py::arg("Degree"),  py::arg("Periodic")=static_cast<const Standard_Boolean>(Standard_False) )
    // custom constructors
    // methods
        .def("IncreaseDegree",
             (void (Law_BSpline::*)( const Standard_Integer  ) ) static_cast<void (Law_BSpline::*)( const Standard_Integer  ) >(&Law_BSpline::IncreaseDegree),
             R"#(Increase the degree to <Degree>. Nothing is done if <Degree> is lower or equal to the current degree.)#"  , py::arg("Degree")
          )
        .def("IncreaseMultiplicity",
             (void (Law_BSpline::*)( const Standard_Integer ,  const Standard_Integer  ) ) static_cast<void (Law_BSpline::*)( const Standard_Integer ,  const Standard_Integer  ) >(&Law_BSpline::IncreaseMultiplicity),
             R"#(Increases the multiplicity of the knot <Index> to <M>.)#"  , py::arg("Index"),  py::arg("M")
          )
        .def("IncreaseMultiplicity",
             (void (Law_BSpline::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) ) static_cast<void (Law_BSpline::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) >(&Law_BSpline::IncreaseMultiplicity),
             R"#(Increases the multiplicities of the knots in [I1,I2] to <M>.)#"  , py::arg("I1"),  py::arg("I2"),  py::arg("M")
          )
        .def("IncrementMultiplicity",
             (void (Law_BSpline::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) ) static_cast<void (Law_BSpline::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) >(&Law_BSpline::IncrementMultiplicity),
             R"#(Increment the multiplicities of the knots in [I1,I2] by <M>.)#"  , py::arg("I1"),  py::arg("I2"),  py::arg("M")
          )
        .def("InsertKnot",
             (void (Law_BSpline::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<void (Law_BSpline::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Real ,  const Standard_Boolean  ) >(&Law_BSpline::InsertKnot),
             R"#(Inserts a knot value in the sequence of knots. If <U> is an existing knot the multiplicity is increased by <M>.)#"  , py::arg("U"),  py::arg("M")=static_cast<const Standard_Integer>(1),  py::arg("ParametricTolerance")=static_cast<const Standard_Real>(0.0),  py::arg("Add")=static_cast<const Standard_Boolean>(Standard_True)
          )
        .def("InsertKnots",
             (void (Law_BSpline::*)(  const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<void (Law_BSpline::*)(  const NCollection_Array1<Standard_Real> & ,   const NCollection_Array1<Standard_Integer> & ,  const Standard_Real ,  const Standard_Boolean  ) >(&Law_BSpline::InsertKnots),
             R"#(Inserts a set of knots values in the sequence of knots.)#"  , py::arg("Knots"),  py::arg("Mults"),  py::arg("ParametricTolerance")=static_cast<const Standard_Real>(0.0),  py::arg("Add")=static_cast<const Standard_Boolean>(Standard_False)
          )
        .def("RemoveKnot",
             (Standard_Boolean (Law_BSpline::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Real  ) ) static_cast<Standard_Boolean (Law_BSpline::*)( const Standard_Integer ,  const Standard_Integer ,  const Standard_Real  ) >(&Law_BSpline::RemoveKnot),
             R"#(Decrement the knots multiplicity to <M>. If M is 0 the knot is removed. The Poles sequence is modified.)#"  , py::arg("Index"),  py::arg("M"),  py::arg("Tolerance")
          )
        .def("Reverse",
             (void (Law_BSpline::*)() ) static_cast<void (Law_BSpline::*)() >(&Law_BSpline::Reverse),
             R"#(Changes the direction of parametrization of <me>. The Knot sequence is modified, the FirstParameter and the LastParameter are not modified. The StartPoint of the initial curve becomes the EndPoint of the reversed curve and the EndPoint of the initial curve becomes the StartPoint of the reversed curve.)#" 
          )
        .def("ReversedParameter",
             (Standard_Real (Law_BSpline::*)( const Standard_Real  ) const) static_cast<Standard_Real (Law_BSpline::*)( const Standard_Real  ) const>(&Law_BSpline::ReversedParameter),
             R"#(Returns the parameter on the reversed curve for the point of parameter U on <me>.)#"  , py::arg("U")
          )
        .def("Segment",
             (void (Law_BSpline::*)( const Standard_Real ,  const Standard_Real  ) ) static_cast<void (Law_BSpline::*)( const Standard_Real ,  const Standard_Real  ) >(&Law_BSpline::Segment),
             R"#(Segments the curve between U1 and U2. The control points are modified, the first and the last point are not the same. Warnings : Even if <me> is not closed it can become closed after the segmentation for example if U1 or U2 are out of the bounds of the curve <me> or if the curve makes loop. After the segmentation the length of a curve can be null. raises if U2 < U1.)#"  , py::arg("U1"),  py::arg("U2")
          )
        .def("SetKnot",
             (void (Law_BSpline::*)( const Standard_Integer ,  const Standard_Real  ) ) static_cast<void (Law_BSpline::*)( const Standard_Integer ,  const Standard_Real  ) >(&Law_BSpline::SetKnot),
             R"#(Changes the knot of range Index. The multiplicity of the knot is not modified. Raised if K >= Knots(Index+1) or K <= Knots(Index-1). Raised if Index < 1 || Index > NbKnots)#"  , py::arg("Index"),  py::arg("K")
          )
        .def("SetKnots",
             (void (Law_BSpline::*)(  const NCollection_Array1<Standard_Real> &  ) ) static_cast<void (Law_BSpline::*)(  const NCollection_Array1<Standard_Real> &  ) >(&Law_BSpline::SetKnots),
             R"#(Changes all the knots of the curve The multiplicity of the knots are not modified.)#"  , py::arg("K")
          )
        .def("SetKnot",
             (void (Law_BSpline::*)( const Standard_Integer ,  const Standard_Real ,  const Standard_Integer  ) ) static_cast<void (Law_BSpline::*)( const Standard_Integer ,  const Standard_Real ,  const Standard_Integer  ) >(&Law_BSpline::SetKnot),
             R"#(Changes the knot of range Index with its multiplicity. You can increase the multiplicity of a knot but it is not allowed to decrease the multiplicity of an existing knot.)#"  , py::arg("Index"),  py::arg("K"),  py::arg("M")
          )
        .def("SetPeriodic",
             (void (Law_BSpline::*)() ) static_cast<void (Law_BSpline::*)() >(&Law_BSpline::SetPeriodic),
             R"#(Makes a closed B-spline into a periodic curve. The curve is periodic if the knot sequence is periodic and if the curve is closed (The tolerance criterion is Resolution from gp). The period T is equal to Knot(LastUKnotIndex) - Knot(FirstUKnotIndex). A periodic B-spline can be uniform or not. Raised if the curve is not closed.)#" 
          )
        .def("SetOrigin",
             (void (Law_BSpline::*)( const Standard_Integer  ) ) static_cast<void (Law_BSpline::*)( const Standard_Integer  ) >(&Law_BSpline::SetOrigin),
             R"#(Set the origin of a periodic curve at Knot(index) KnotVector and poles are modified. Raised if the curve is not periodic Raised if index not in the range [FirstUKnotIndex , LastUKnotIndex])#"  , py::arg("Index")
          )
        .def("SetNotPeriodic",
             (void (Law_BSpline::*)() ) static_cast<void (Law_BSpline::*)() >(&Law_BSpline::SetNotPeriodic),
             R"#(Makes a non periodic curve. If the curve was non periodic the curve is not modified.)#" 
          )
        .def("SetPole",
             (void (Law_BSpline::*)( const Standard_Integer ,  const Standard_Real  ) ) static_cast<void (Law_BSpline::*)( const Standard_Integer ,  const Standard_Real  ) >(&Law_BSpline::SetPole),
             R"#(Substitutes the Pole of range Index with P.)#"  , py::arg("Index"),  py::arg("P")
          )
        .def("SetPole",
             (void (Law_BSpline::*)( const Standard_Integer ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (Law_BSpline::*)( const Standard_Integer ,  const Standard_Real ,  const Standard_Real  ) >(&Law_BSpline::SetPole),
             R"#(Substitutes the pole and the weight of range Index. If the curve <me> is not rational it can become rational If the curve was rational it can become non rational)#"  , py::arg("Index"),  py::arg("P"),  py::arg("Weight")
          )
        .def("SetWeight",
             (void (Law_BSpline::*)( const Standard_Integer ,  const Standard_Real  ) ) static_cast<void (Law_BSpline::*)( const Standard_Integer ,  const Standard_Real  ) >(&Law_BSpline::SetWeight),
             R"#(Changes the weight for the pole of range Index. If the curve was non rational it can become rational. If the curve was rational it can become non rational.)#"  , py::arg("Index"),  py::arg("Weight")
          )
        .def("IsCN",
             (Standard_Boolean (Law_BSpline::*)( const Standard_Integer  ) const) static_cast<Standard_Boolean (Law_BSpline::*)( const Standard_Integer  ) const>(&Law_BSpline::IsCN),
             R"#(Returns the continuity of the curve, the curve is at least C0. Raised if N < 0.)#"  , py::arg("N")
          )
        .def("IsClosed",
             (Standard_Boolean (Law_BSpline::*)() const) static_cast<Standard_Boolean (Law_BSpline::*)() const>(&Law_BSpline::IsClosed),
             R"#(Returns true if the distance between the first point and the last point of the curve is lower or equal to Resolution from package gp. Warnings : The first and the last point can be different from the first pole and the last pole of the curve.)#" 
          )
        .def("IsPeriodic",
             (Standard_Boolean (Law_BSpline::*)() const) static_cast<Standard_Boolean (Law_BSpline::*)() const>(&Law_BSpline::IsPeriodic),
             R"#(Returns True if the curve is periodic.)#" 
          )
        .def("IsRational",
             (Standard_Boolean (Law_BSpline::*)() const) static_cast<Standard_Boolean (Law_BSpline::*)() const>(&Law_BSpline::IsRational),
             R"#(Returns True if the weights are not identical. The tolerance criterion is Epsilon of the class Real.)#" 
          )
        .def("Continuity",
             (GeomAbs_Shape (Law_BSpline::*)() const) static_cast<GeomAbs_Shape (Law_BSpline::*)() const>(&Law_BSpline::Continuity),
             R"#(Returns the global continuity of the curve : C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, CN : the order of continuity is infinite. For a B-spline curve of degree d if a knot Ui has a multiplicity p the B-spline curve is only Cd-p continuous at Ui. So the global continuity of the curve can't be greater than Cd-p where p is the maximum multiplicity of the interior Knots. In the interior of a knot span the curve is infinitely continuously differentiable.)#" 
          )
        .def("Degree",
             (Standard_Integer (Law_BSpline::*)() const) static_cast<Standard_Integer (Law_BSpline::*)() const>(&Law_BSpline::Degree),
             R"#(Computation of value and derivatives)#" 
          )
        .def("Value",
             (Standard_Real (Law_BSpline::*)( const Standard_Real  ) const) static_cast<Standard_Real (Law_BSpline::*)( const Standard_Real  ) const>(&Law_BSpline::Value),
             R"#(None)#"  , py::arg("U")
          )
        .def("DN",
             (Standard_Real (Law_BSpline::*)( const Standard_Real ,  const Standard_Integer  ) const) static_cast<Standard_Real (Law_BSpline::*)( const Standard_Real ,  const Standard_Integer  ) const>(&Law_BSpline::DN),
             R"#(The following functions computes the point of parameter U and the derivatives at this point on the B-spline curve arc defined between the knot FromK1 and the knot ToK2. U can be out of bounds [Knot (FromK1), Knot (ToK2)] but for the computation we only use the definition of the curve between these two knots. This method is useful to compute local derivative, if the order of continuity of the whole curve is not greater enough. Inside the parametric domain Knot (FromK1), Knot (ToK2) the evaluations are the same as if we consider the whole definition of the curve. Of course the evaluations are different outside this parametric domain.)#"  , py::arg("U"),  py::arg("N")
          )
        .def("LocalValue",
             (Standard_Real (Law_BSpline::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const) static_cast<Standard_Real (Law_BSpline::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer  ) const>(&Law_BSpline::LocalValue),
             R"#(None)#"  , py::arg("U"),  py::arg("FromK1"),  py::arg("ToK2")
          )
        .def("LocalDN",
             (Standard_Real (Law_BSpline::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) const) static_cast<Standard_Real (Law_BSpline::*)( const Standard_Real ,  const Standard_Integer ,  const Standard_Integer ,  const Standard_Integer  ) const>(&Law_BSpline::LocalDN),
             R"#(None)#"  , py::arg("U"),  py::arg("FromK1"),  py::arg("ToK2"),  py::arg("N")
          )
        .def("EndPoint",
             (Standard_Real (Law_BSpline::*)() const) static_cast<Standard_Real (Law_BSpline::*)() const>(&Law_BSpline::EndPoint),
             R"#(Returns the last point of the curve. Warnings : The last point of the curve is different from the last pole of the curve if the multiplicity of the last knot is lower than Degree.)#" 
          )
        .def("FirstUKnotIndex",
             (Standard_Integer (Law_BSpline::*)() const) static_cast<Standard_Integer (Law_BSpline::*)() const>(&Law_BSpline::FirstUKnotIndex),
             R"#(For a B-spline curve the first parameter (which gives the start point of the curve) is a knot value but if the multiplicity of the first knot index is lower than Degree + 1 it is not the first knot of the curve. This method computes the index of the knot corresponding to the first parameter.)#" 
          )
        .def("FirstParameter",
             (Standard_Real (Law_BSpline::*)() const) static_cast<Standard_Real (Law_BSpline::*)() const>(&Law_BSpline::FirstParameter),
             R"#(Computes the parametric value of the start point of the curve. It is a knot value.)#" 
          )
        .def("Knot",
             (Standard_Real (Law_BSpline::*)( const Standard_Integer  ) const) static_cast<Standard_Real (Law_BSpline::*)( const Standard_Integer  ) const>(&Law_BSpline::Knot),
             R"#(Returns the knot of range Index. When there is a knot with a multiplicity greater than 1 the knot is not repeated. The method Multiplicity can be used to get the multiplicity of the Knot. Raised if Index < 1 or Index > NbKnots)#"  , py::arg("Index")
          )
        .def("Knots",
             (void (Law_BSpline::*)( NCollection_Array1<Standard_Real> &  ) const) static_cast<void (Law_BSpline::*)( NCollection_Array1<Standard_Real> &  ) const>(&Law_BSpline::Knots),
             R"#(returns the knot values of the B-spline curve;)#"  , py::arg("K")
          )
        .def("KnotSequence",
             (void (Law_BSpline::*)( NCollection_Array1<Standard_Real> &  ) const) static_cast<void (Law_BSpline::*)( NCollection_Array1<Standard_Real> &  ) const>(&Law_BSpline::KnotSequence),
             R"#(Returns the knots sequence. In this sequence the knots with a multiplicity greater than 1 are repeated. Example : K = {k1, k1, k1, k2, k3, k3, k4, k4, k4})#"  , py::arg("K")
          )
        .def("KnotDistribution",
             (GeomAbs_BSplKnotDistribution (Law_BSpline::*)() const) static_cast<GeomAbs_BSplKnotDistribution (Law_BSpline::*)() const>(&Law_BSpline::KnotDistribution),
             R"#(Returns NonUniform or Uniform or QuasiUniform or PiecewiseBezier. If all the knots differ by a positive constant from the preceding knot the BSpline Curve can be : - Uniform if all the knots are of multiplicity 1, - QuasiUniform if all the knots are of multiplicity 1 except for the first and last knot which are of multiplicity Degree + 1, - PiecewiseBezier if the first and last knots have multiplicity Degree + 1 and if interior knots have multiplicity Degree A piecewise Bezier with only two knots is a BezierCurve. else the curve is non uniform. The tolerance criterion is Epsilon from class Real.)#" 
          )
        .def("LastUKnotIndex",
             (Standard_Integer (Law_BSpline::*)() const) static_cast<Standard_Integer (Law_BSpline::*)() const>(&Law_BSpline::LastUKnotIndex),
             R"#(For a BSpline curve the last parameter (which gives the end point of the curve) is a knot value but if the multiplicity of the last knot index is lower than Degree + 1 it is not the last knot of the curve. This method computes the index of the knot corresponding to the last parameter.)#" 
          )
        .def("LastParameter",
             (Standard_Real (Law_BSpline::*)() const) static_cast<Standard_Real (Law_BSpline::*)() const>(&Law_BSpline::LastParameter),
             R"#(Computes the parametric value of the end point of the curve. It is a knot value.)#" 
          )
        .def("Multiplicity",
             (Standard_Integer (Law_BSpline::*)( const Standard_Integer  ) const) static_cast<Standard_Integer (Law_BSpline::*)( const Standard_Integer  ) const>(&Law_BSpline::Multiplicity),
             R"#(Returns the multiplicity of the knots of range Index. Raised if Index < 1 or Index > NbKnots)#"  , py::arg("Index")
          )
        .def("Multiplicities",
             (void (Law_BSpline::*)( NCollection_Array1<Standard_Integer> &  ) const) static_cast<void (Law_BSpline::*)( NCollection_Array1<Standard_Integer> &  ) const>(&Law_BSpline::Multiplicities),
             R"#(Returns the multiplicity of the knots of the curve.)#"  , py::arg("M")
          )
        .def("NbKnots",
             (Standard_Integer (Law_BSpline::*)() const) static_cast<Standard_Integer (Law_BSpline::*)() const>(&Law_BSpline::NbKnots),
             R"#(Returns the number of knots. This method returns the number of knot without repetition of multiple knots.)#" 
          )
        .def("NbPoles",
             (Standard_Integer (Law_BSpline::*)() const) static_cast<Standard_Integer (Law_BSpline::*)() const>(&Law_BSpline::NbPoles),
             R"#(Returns the number of poles)#" 
          )
        .def("Pole",
             (Standard_Real (Law_BSpline::*)( const Standard_Integer  ) const) static_cast<Standard_Real (Law_BSpline::*)( const Standard_Integer  ) const>(&Law_BSpline::Pole),
             R"#(Returns the pole of range Index. Raised if Index < 1 or Index > NbPoles.)#"  , py::arg("Index")
          )
        .def("Poles",
             (void (Law_BSpline::*)( NCollection_Array1<Standard_Real> &  ) const) static_cast<void (Law_BSpline::*)( NCollection_Array1<Standard_Real> &  ) const>(&Law_BSpline::Poles),
             R"#(Returns the poles of the B-spline curve;)#"  , py::arg("P")
          )
        .def("StartPoint",
             (Standard_Real (Law_BSpline::*)() const) static_cast<Standard_Real (Law_BSpline::*)() const>(&Law_BSpline::StartPoint),
             R"#(Returns the start point of the curve. Warnings : This point is different from the first pole of the curve if the multiplicity of the first knot is lower than Degree.)#" 
          )
        .def("Weight",
             (Standard_Real (Law_BSpline::*)( const Standard_Integer  ) const) static_cast<Standard_Real (Law_BSpline::*)( const Standard_Integer  ) const>(&Law_BSpline::Weight),
             R"#(Returns the weight of the pole of range Index . Raised if Index < 1 or Index > NbPoles.)#"  , py::arg("Index")
          )
        .def("Weights",
             (void (Law_BSpline::*)( NCollection_Array1<Standard_Real> &  ) const) static_cast<void (Law_BSpline::*)( NCollection_Array1<Standard_Real> &  ) const>(&Law_BSpline::Weights),
             R"#(Returns the weights of the B-spline curve;)#"  , py::arg("W")
          )
        .def("Copy",
             (opencascade::handle<Law_BSpline> (Law_BSpline::*)() const) static_cast<opencascade::handle<Law_BSpline> (Law_BSpline::*)() const>(&Law_BSpline::Copy),
             R"#(None)#" 
          )
    // methods using call by reference i.s.o. return
        .def("PeriodicNormalization",
             []( Law_BSpline &self   ){
                 Standard_Real  U;

                 self.PeriodicNormalization(U);
                 
                 return std::make_tuple(U); },
             R"#(returns the parameter normalized within the period if the curve is periodic : otherwise does not do anything)#" 
          )
        .def("D0",
             []( Law_BSpline &self , const Standard_Real U ){
                 Standard_Real  P;

                 self.D0(U,P);
                 
                 return std::make_tuple(P); },
             R"#(None)#"  , py::arg("U")
          )
        .def("D1",
             []( Law_BSpline &self , const Standard_Real U ){
                 Standard_Real  P;
                Standard_Real  V1;

                 self.D1(U,P,V1);
                 
                 return std::make_tuple(P,V1); },
             R"#(None)#"  , py::arg("U")
          )
        .def("D2",
             []( Law_BSpline &self , const Standard_Real U ){
                 Standard_Real  P;
                Standard_Real  V1;
                Standard_Real  V2;

                 self.D2(U,P,V1,V2);
                 
                 return std::make_tuple(P,V1,V2); },
             R"#(None)#"  , py::arg("U")
          )
        .def("D3",
             []( Law_BSpline &self , const Standard_Real U ){
                 Standard_Real  P;
                Standard_Real  V1;
                Standard_Real  V2;
                Standard_Real  V3;

                 self.D3(U,P,V1,V2,V3);
                 
                 return std::make_tuple(P,V1,V2,V3); },
             R"#(None)#"  , py::arg("U")
          )
        .def("LocalD0",
             []( Law_BSpline &self , const Standard_Real U,const Standard_Integer FromK1,const Standard_Integer ToK2 ){
                 Standard_Real  P;

                 self.LocalD0(U,FromK1,ToK2,P);
                 
                 return std::make_tuple(P); },
             R"#(None)#"  , py::arg("U"),  py::arg("FromK1"),  py::arg("ToK2")
          )
        .def("LocalD1",
             []( Law_BSpline &self , const Standard_Real U,const Standard_Integer FromK1,const Standard_Integer ToK2 ){
                 Standard_Real  P;
                Standard_Real  V1;

                 self.LocalD1(U,FromK1,ToK2,P,V1);
                 
                 return std::make_tuple(P,V1); },
             R"#(None)#"  , py::arg("U"),  py::arg("FromK1"),  py::arg("ToK2")
          )
        .def("LocalD2",
             []( Law_BSpline &self , const Standard_Real U,const Standard_Integer FromK1,const Standard_Integer ToK2 ){
                 Standard_Real  P;
                Standard_Real  V1;
                Standard_Real  V2;

                 self.LocalD2(U,FromK1,ToK2,P,V1,V2);
                 
                 return std::make_tuple(P,V1,V2); },
             R"#(None)#"  , py::arg("U"),  py::arg("FromK1"),  py::arg("ToK2")
          )
        .def("LocalD3",
             []( Law_BSpline &self , const Standard_Real U,const Standard_Integer FromK1,const Standard_Integer ToK2 ){
                 Standard_Real  P;
                Standard_Real  V1;
                Standard_Real  V2;
                Standard_Real  V3;

                 self.LocalD3(U,FromK1,ToK2,P,V1,V2,V3);
                 
                 return std::make_tuple(P,V1,V2,V3); },
             R"#(None)#"  , py::arg("U"),  py::arg("FromK1"),  py::arg("ToK2")
          )
        .def("LocateU",
             []( Law_BSpline &self , const Standard_Real U,const Standard_Real ParametricTolerance,const Standard_Boolean WithKnotRepetition ){
                 Standard_Integer  I1;
                Standard_Integer  I2;

                 self.LocateU(U,ParametricTolerance,I1,I2,WithKnotRepetition);
                 
                 return std::make_tuple(I1,I2); },
             R"#(Locates the parametric value U in the sequence of knots. If "WithKnotRepetition" is True we consider the knot's representation with repetition of multiple knot value, otherwise we consider the knot's representation with no repetition of multiple knot values. Knots (I1) <= U <= Knots (I2) . if I1 = I2 U is a knot value (the tolerance criterion ParametricTolerance is used). . if I1 < 1 => U < Knots (1) - Abs(ParametricTolerance) . if I2 > NbKnots => U > Knots (NbKnots) + Abs(ParametricTolerance))#"  , py::arg("U"),  py::arg("ParametricTolerance"),  py::arg("WithKnotRepetition")=static_cast<const Standard_Boolean>(Standard_False)
          )
        .def("MovePointAndTangent",
             []( Law_BSpline &self , const Standard_Real U,const Standard_Real NewValue,const Standard_Real Derivative,const Standard_Real Tolerance,const Standard_Integer StartingCondition,const Standard_Integer EndingCondition ){
                 Standard_Integer  ErrorStatus;

                 self.MovePointAndTangent(U,NewValue,Derivative,Tolerance,StartingCondition,EndingCondition,ErrorStatus);
                 
                 return std::make_tuple(ErrorStatus); },
             R"#(Changes the value of the Law at parameter U to NewValue. and makes its derivative at U be derivative. StartingCondition = -1 means first can move EndingCondition = -1 means last point can move StartingCondition = 0 means the first point cannot move EndingCondition = 0 means the last point cannot move StartingCondition = 1 means the first point and tangent cannot move EndingCondition = 1 means the last point and tangent cannot move and so forth ErrorStatus != 0 means that there are not enough degree of freedom with the constrain to deform the curve accordingly)#"  , py::arg("U"),  py::arg("NewValue"),  py::arg("Derivative"),  py::arg("Tolerance"),  py::arg("StartingCondition"),  py::arg("EndingCondition")
          )
        .def("Resolution",
             []( Law_BSpline &self , const Standard_Real Tolerance3D ){
                 Standard_Real  UTolerance;

                 self.Resolution(Tolerance3D,UTolerance);
                 
                 return std::make_tuple(UTolerance); },
             R"#(given Tolerance3D returns UTolerance such that if f(t) is the curve we have | t1 - t0| < Utolerance ===> |f(t1) - f(t0)| < Tolerance3D)#"  , py::arg("Tolerance3D")
          )
    // static methods
        .def_static("MaxDegree_s",
                    (Standard_Integer (*)() ) static_cast<Standard_Integer (*)() >(&Law_BSpline::MaxDegree),
                    R"#(Returns the value of the maximum degree of the normalized B-spline basis functions in this package.)#" 
          )
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Law_BSpline::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Law_BSpline::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Law_BSpline::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Law_BSpline::*)() const>(&Law_BSpline::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Law_BSplineKnotSplitting from ./opencascade/Law_BSplineKnotSplitting.hxx
    klass = m.attr("Law_BSplineKnotSplitting");


    // nested enums

    static_cast<py::class_<Law_BSplineKnotSplitting , shared_ptr<Law_BSplineKnotSplitting>  >>(klass)
    // constructors
        .def(py::init< const opencascade::handle<Law_BSpline> &,const Standard_Integer >()  , py::arg("BasisLaw"),  py::arg("ContinuityRange") )
    // custom constructors
    // methods
        .def("NbSplits",
             (Standard_Integer (Law_BSplineKnotSplitting::*)() const) static_cast<Standard_Integer (Law_BSplineKnotSplitting::*)() const>(&Law_BSplineKnotSplitting::NbSplits),
             R"#(Returns the number of knots corresponding to the splitting.)#" 
          )
        .def("Splitting",
             (void (Law_BSplineKnotSplitting::*)( NCollection_Array1<Standard_Integer> &  ) const) static_cast<void (Law_BSplineKnotSplitting::*)( NCollection_Array1<Standard_Integer> &  ) const>(&Law_BSplineKnotSplitting::Splitting),
             R"#(Returns the indexes of the BSpline curve knots corresponding to the splitting.)#"  , py::arg("SplitValues")
          )
        .def("SplitValue",
             (Standard_Integer (Law_BSplineKnotSplitting::*)( const Standard_Integer  ) const) static_cast<Standard_Integer (Law_BSplineKnotSplitting::*)( const Standard_Integer  ) const>(&Law_BSplineKnotSplitting::SplitValue),
             R"#(Returns the index of the knot corresponding to the splitting of range Index.)#"  , py::arg("Index")
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
;

    // Class Law_Function from ./opencascade/Law_Function.hxx
    klass = m.attr("Law_Function");


    // nested enums

    static_cast<py::class_<Law_Function ,opencascade::handle<Law_Function> ,Py_Law_Function , Standard_Transient >>(klass)
    // constructors
    // custom constructors
    // methods
        .def("Continuity",
             (GeomAbs_Shape (Law_Function::*)() const) static_cast<GeomAbs_Shape (Law_Function::*)() const>(&Law_Function::Continuity),
             R"#(None)#" 
          )
        .def("NbIntervals",
             (Standard_Integer (Law_Function::*)( const GeomAbs_Shape  ) const) static_cast<Standard_Integer (Law_Function::*)( const GeomAbs_Shape  ) const>(&Law_Function::NbIntervals),
             R"#(Returns the number of intervals for continuity <S>. May be one if Continuity(me) >= <S>)#"  , py::arg("S")
          )
        .def("Intervals",
             (void (Law_Function::*)( NCollection_Array1<Standard_Real> & ,  const GeomAbs_Shape  ) const) static_cast<void (Law_Function::*)( NCollection_Array1<Standard_Real> & ,  const GeomAbs_Shape  ) const>(&Law_Function::Intervals),
             R"#(Stores in <T> the parameters bounding the intervals of continuity <S>. The array must provide enough room to accommodate for the parameters, i.e. T.Length() > NbIntervals())#"  , py::arg("T"),  py::arg("S")
          )
        .def("Value",
             (Standard_Real (Law_Function::*)( const Standard_Real  ) ) static_cast<Standard_Real (Law_Function::*)( const Standard_Real  ) >(&Law_Function::Value),
             R"#(Returns the value of the function at the point of parameter X.)#"  , py::arg("X")
          )
        .def("Trim",
             (opencascade::handle<Law_Function> (Law_Function::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) const) static_cast<opencascade::handle<Law_Function> (Law_Function::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) const>(&Law_Function::Trim),
             R"#(Returns a law equivalent of <me> between parameters <First> and <Last>. <Tol> is used to test for 3d points confusion. It is usfule to determines the derivatives in these values <First> and <Last> if the Law is not Cn.)#"  , py::arg("PFirst"),  py::arg("PLast"),  py::arg("Tol")
          )
    // methods using call by reference i.s.o. return
        .def("D1",
             []( Law_Function &self , const Standard_Real X ){
                 Standard_Real  F;
                Standard_Real  D;

                 self.D1(X,F,D);
                 
                 return std::make_tuple(F,D); },
             R"#(Returns the value F and the first derivative D of the function at the point of parameter X.)#"  , py::arg("X")
          )
        .def("D2",
             []( Law_Function &self , const Standard_Real X ){
                 Standard_Real  F;
                Standard_Real  D;
                Standard_Real  D2;

                 self.D2(X,F,D,D2);
                 
                 return std::make_tuple(F,D,D2); },
             R"#(Returns the value, first and seconde derivatives at parameter X.)#"  , py::arg("X")
          )
        .def("Bounds",
             []( Law_Function &self   ){
                 Standard_Real  PFirst;
                Standard_Real  PLast;

                 self.Bounds(PFirst,PLast);
                 
                 return std::make_tuple(PFirst,PLast); },
             R"#(Returns the parametric bounds of the function.)#" 
          )
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Law_Function::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Law_Function::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Law_Function::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Law_Function::*)() const>(&Law_Function::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Law_Interpolate from ./opencascade/Law_Interpolate.hxx
    klass = m.attr("Law_Interpolate");


    // nested enums

    static_cast<py::class_<Law_Interpolate , shared_ptr<Law_Interpolate>  >>(klass)
    // constructors
        .def(py::init< const opencascade::handle<TColStd_HArray1OfReal> &,const Standard_Boolean,const Standard_Real >()  , py::arg("Points"),  py::arg("PeriodicFlag"),  py::arg("Tolerance") )
        .def(py::init< const opencascade::handle<TColStd_HArray1OfReal> &,const opencascade::handle<TColStd_HArray1OfReal> &,const Standard_Boolean,const Standard_Real >()  , py::arg("Points"),  py::arg("Parameters"),  py::arg("PeriodicFlag"),  py::arg("Tolerance") )
    // custom constructors
    // methods
        .def("Load",
             (void (Law_Interpolate::*)( const Standard_Real ,  const Standard_Real  ) ) static_cast<void (Law_Interpolate::*)( const Standard_Real ,  const Standard_Real  ) >(&Law_Interpolate::Load),
             R"#(loads initial and final tangents if any.)#"  , py::arg("InitialTangent"),  py::arg("FinalTangent")
          )
        .def("Load",
             (void (Law_Interpolate::*)(  const NCollection_Array1<Standard_Real> & ,  const opencascade::handle<TColStd_HArray1OfBoolean> &  ) ) static_cast<void (Law_Interpolate::*)(  const NCollection_Array1<Standard_Real> & ,  const opencascade::handle<TColStd_HArray1OfBoolean> &  ) >(&Law_Interpolate::Load),
             R"#(loads the tangents. We should have as many tangents as they are points in the array if TangentFlags.Value(i) is Standard_True use the tangent Tangents.Value(i) otherwise the tangent is not constrained.)#"  , py::arg("Tangents"),  py::arg("TangentFlags")
          )
        .def("Perform",
             (void (Law_Interpolate::*)() ) static_cast<void (Law_Interpolate::*)() >(&Law_Interpolate::Perform),
             R"#(Makes the interpolation)#" 
          )
        .def("IsDone",
             (Standard_Boolean (Law_Interpolate::*)() const) static_cast<Standard_Boolean (Law_Interpolate::*)() const>(&Law_Interpolate::IsDone),
             R"#(None)#" 
          )
    // methods using call by reference i.s.o. return
    // static methods
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("Curve",
             (const opencascade::handle<Law_BSpline> & (Law_Interpolate::*)() const) static_cast<const opencascade::handle<Law_BSpline> & (Law_Interpolate::*)() const>(&Law_Interpolate::Curve),
             R"#(None)#"
             
         )
;

    // Class Law_BSpFunc from ./opencascade/Law_BSpFunc.hxx
    klass = m.attr("Law_BSpFunc");


    // nested enums

    static_cast<py::class_<Law_BSpFunc ,opencascade::handle<Law_BSpFunc>  , Law_Function >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const opencascade::handle<Law_BSpline> &,const Standard_Real,const Standard_Real >()  , py::arg("C"),  py::arg("First"),  py::arg("Last") )
    // custom constructors
    // methods
        .def("Continuity",
             (GeomAbs_Shape (Law_BSpFunc::*)() const) static_cast<GeomAbs_Shape (Law_BSpFunc::*)() const>(&Law_BSpFunc::Continuity),
             R"#(None)#" 
          )
        .def("NbIntervals",
             (Standard_Integer (Law_BSpFunc::*)( const GeomAbs_Shape  ) const) static_cast<Standard_Integer (Law_BSpFunc::*)( const GeomAbs_Shape  ) const>(&Law_BSpFunc::NbIntervals),
             R"#(Returns the number of intervals for continuity <S>. May be one if Continuity(me) >= <S>)#"  , py::arg("S")
          )
        .def("Intervals",
             (void (Law_BSpFunc::*)( NCollection_Array1<Standard_Real> & ,  const GeomAbs_Shape  ) const) static_cast<void (Law_BSpFunc::*)( NCollection_Array1<Standard_Real> & ,  const GeomAbs_Shape  ) const>(&Law_BSpFunc::Intervals),
             R"#(Stores in <T> the parameters bounding the intervals of continuity <S>. The array must provide enough room to accommodate for the parameters, i.e. T.Length() > NbIntervals())#"  , py::arg("T"),  py::arg("S")
          )
        .def("Value",
             (Standard_Real (Law_BSpFunc::*)( const Standard_Real  ) ) static_cast<Standard_Real (Law_BSpFunc::*)( const Standard_Real  ) >(&Law_BSpFunc::Value),
             R"#(None)#"  , py::arg("X")
          )
        .def("Trim",
             (opencascade::handle<Law_Function> (Law_BSpFunc::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) const) static_cast<opencascade::handle<Law_Function> (Law_BSpFunc::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) const>(&Law_BSpFunc::Trim),
             R"#(Returns a law equivalent of <me> between parameters <First> and <Last>. <Tol> is used to test for 3d points confusion. It is usfule to determines the derivatives in these values <First> and <Last> if the Law is not Cn.)#"  , py::arg("PFirst"),  py::arg("PLast"),  py::arg("Tol")
          )
        .def("Curve",
             (opencascade::handle<Law_BSpline> (Law_BSpFunc::*)() const) static_cast<opencascade::handle<Law_BSpline> (Law_BSpFunc::*)() const>(&Law_BSpFunc::Curve),
             R"#(None)#" 
          )
        .def("SetCurve",
             (void (Law_BSpFunc::*)( const opencascade::handle<Law_BSpline> &  ) ) static_cast<void (Law_BSpFunc::*)( const opencascade::handle<Law_BSpline> &  ) >(&Law_BSpFunc::SetCurve),
             R"#(None)#"  , py::arg("C")
          )
    // methods using call by reference i.s.o. return
        .def("D1",
             []( Law_BSpFunc &self , const Standard_Real X ){
                 Standard_Real  F;
                Standard_Real  D;

                 self.D1(X,F,D);
                 
                 return std::make_tuple(F,D); },
             R"#(None)#"  , py::arg("X")
          )
        .def("D2",
             []( Law_BSpFunc &self , const Standard_Real X ){
                 Standard_Real  F;
                Standard_Real  D;
                Standard_Real  D2;

                 self.D2(X,F,D,D2);
                 
                 return std::make_tuple(F,D,D2); },
             R"#(None)#"  , py::arg("X")
          )
        .def("Bounds",
             []( Law_BSpFunc &self   ){
                 Standard_Real  PFirst;
                Standard_Real  PLast;

                 self.Bounds(PFirst,PLast);
                 
                 return std::make_tuple(PFirst,PLast); },
             R"#(None)#" 
          )
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Law_BSpFunc::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Law_BSpFunc::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Law_BSpFunc::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Law_BSpFunc::*)() const>(&Law_BSpFunc::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Law_Composite from ./opencascade/Law_Composite.hxx
    klass = m.attr("Law_Composite");


    // nested enums

    static_cast<py::class_<Law_Composite ,opencascade::handle<Law_Composite>  , Law_Function >>(klass)
    // constructors
        .def(py::init<  >()  )
        .def(py::init< const Standard_Real,const Standard_Real,const Standard_Real >()  , py::arg("First"),  py::arg("Last"),  py::arg("Tol") )
    // custom constructors
    // methods
        .def("Continuity",
             (GeomAbs_Shape (Law_Composite::*)() const) static_cast<GeomAbs_Shape (Law_Composite::*)() const>(&Law_Composite::Continuity),
             R"#(None)#" 
          )
        .def("NbIntervals",
             (Standard_Integer (Law_Composite::*)( const GeomAbs_Shape  ) const) static_cast<Standard_Integer (Law_Composite::*)( const GeomAbs_Shape  ) const>(&Law_Composite::NbIntervals),
             R"#(Returns the number of intervals for continuity <S>. May be one if Continuity(me) >= <S>)#"  , py::arg("S")
          )
        .def("Intervals",
             (void (Law_Composite::*)( NCollection_Array1<Standard_Real> & ,  const GeomAbs_Shape  ) const) static_cast<void (Law_Composite::*)( NCollection_Array1<Standard_Real> & ,  const GeomAbs_Shape  ) const>(&Law_Composite::Intervals),
             R"#(Stores in <T> the parameters bounding the intervals of continuity <S>. The array must provide enough room to accommodate for the parameters, i.e. T.Length() > NbIntervals())#"  , py::arg("T"),  py::arg("S")
          )
        .def("Value",
             (Standard_Real (Law_Composite::*)( const Standard_Real  ) ) static_cast<Standard_Real (Law_Composite::*)( const Standard_Real  ) >(&Law_Composite::Value),
             R"#(Returns the value at parameter X.)#"  , py::arg("X")
          )
        .def("Trim",
             (opencascade::handle<Law_Function> (Law_Composite::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) const) static_cast<opencascade::handle<Law_Function> (Law_Composite::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) const>(&Law_Composite::Trim),
             R"#(Returns a law equivalent of <me> between parameters <First> and <Last>. <Tol> is used to test for 3d points confusion. It is usfule to determines the derivatives in these values <First> and <Last> if the Law is not Cn.)#"  , py::arg("PFirst"),  py::arg("PLast"),  py::arg("Tol")
          )
        .def("ChangeElementaryLaw",
             (opencascade::handle<Law_Function> & (Law_Composite::*)( const Standard_Real  ) ) static_cast<opencascade::handle<Law_Function> & (Law_Composite::*)( const Standard_Real  ) >(&Law_Composite::ChangeElementaryLaw),
             R"#(Returns the elementary function of the composite used to compute at parameter W.)#"  , py::arg("W")
          )
        .def("IsPeriodic",
             (Standard_Boolean (Law_Composite::*)() const) static_cast<Standard_Boolean (Law_Composite::*)() const>(&Law_Composite::IsPeriodic),
             R"#(None)#" 
          )
        .def("SetPeriodic",
             (void (Law_Composite::*)() ) static_cast<void (Law_Composite::*)() >(&Law_Composite::SetPeriodic),
             R"#(None)#" 
          )
    // methods using call by reference i.s.o. return
        .def("D1",
             []( Law_Composite &self , const Standard_Real X ){
                 Standard_Real  F;
                Standard_Real  D;

                 self.D1(X,F,D);
                 
                 return std::make_tuple(F,D); },
             R"#(Returns the value and the first derivative at parameter X.)#"  , py::arg("X")
          )
        .def("D2",
             []( Law_Composite &self , const Standard_Real X ){
                 Standard_Real  F;
                Standard_Real  D;
                Standard_Real  D2;

                 self.D2(X,F,D,D2);
                 
                 return std::make_tuple(F,D,D2); },
             R"#(Returns the value, first and second derivatives at parameter X.)#"  , py::arg("X")
          )
        .def("Bounds",
             []( Law_Composite &self   ){
                 Standard_Real  PFirst;
                Standard_Real  PLast;

                 self.Bounds(PFirst,PLast);
                 
                 return std::make_tuple(PFirst,PLast); },
             R"#(Returns the parametric bounds of the function.)#" 
          )
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Law_Composite::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Law_Composite::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("ChangeLaws",
             (Law_Laws & (Law_Composite::*)() ) static_cast<Law_Laws & (Law_Composite::*)() >(&Law_Composite::ChangeLaws),
             R"#(None)#"
             
             , py::return_value_policy::reference_internal
         )
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Law_Composite::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Law_Composite::*)() const>(&Law_Composite::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Law_Constant from ./opencascade/Law_Constant.hxx
    klass = m.attr("Law_Constant");


    // nested enums

    static_cast<py::class_<Law_Constant ,opencascade::handle<Law_Constant>  , Law_Function >>(klass)
    // constructors
        .def(py::init<  >()  )
    // custom constructors
    // methods
        .def("Set",
             (void (Law_Constant::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (Law_Constant::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&Law_Constant::Set),
             R"#(Set the radius and the range of the constant Law.)#"  , py::arg("Radius"),  py::arg("PFirst"),  py::arg("PLast")
          )
        .def("Continuity",
             (GeomAbs_Shape (Law_Constant::*)() const) static_cast<GeomAbs_Shape (Law_Constant::*)() const>(&Law_Constant::Continuity),
             R"#(Returns GeomAbs_CN)#" 
          )
        .def("NbIntervals",
             (Standard_Integer (Law_Constant::*)( const GeomAbs_Shape  ) const) static_cast<Standard_Integer (Law_Constant::*)( const GeomAbs_Shape  ) const>(&Law_Constant::NbIntervals),
             R"#(Returns 1)#"  , py::arg("S")
          )
        .def("Intervals",
             (void (Law_Constant::*)( NCollection_Array1<Standard_Real> & ,  const GeomAbs_Shape  ) const) static_cast<void (Law_Constant::*)( NCollection_Array1<Standard_Real> & ,  const GeomAbs_Shape  ) const>(&Law_Constant::Intervals),
             R"#(None)#"  , py::arg("T"),  py::arg("S")
          )
        .def("Value",
             (Standard_Real (Law_Constant::*)( const Standard_Real  ) ) static_cast<Standard_Real (Law_Constant::*)( const Standard_Real  ) >(&Law_Constant::Value),
             R"#(Returns the value at parameter X.)#"  , py::arg("X")
          )
        .def("Trim",
             (opencascade::handle<Law_Function> (Law_Constant::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) const) static_cast<opencascade::handle<Law_Function> (Law_Constant::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) const>(&Law_Constant::Trim),
             R"#(None)#"  , py::arg("PFirst"),  py::arg("PLast"),  py::arg("Tol")
          )
    // methods using call by reference i.s.o. return
        .def("D1",
             []( Law_Constant &self , const Standard_Real X ){
                 Standard_Real  F;
                Standard_Real  D;

                 self.D1(X,F,D);
                 
                 return std::make_tuple(F,D); },
             R"#(Returns the value and the first derivative at parameter X.)#"  , py::arg("X")
          )
        .def("D2",
             []( Law_Constant &self , const Standard_Real X ){
                 Standard_Real  F;
                Standard_Real  D;
                Standard_Real  D2;

                 self.D2(X,F,D,D2);
                 
                 return std::make_tuple(F,D,D2); },
             R"#(Returns the value, first and second derivatives at parameter X.)#"  , py::arg("X")
          )
        .def("Bounds",
             []( Law_Constant &self   ){
                 Standard_Real  PFirst;
                Standard_Real  PLast;

                 self.Bounds(PFirst,PLast);
                 
                 return std::make_tuple(PFirst,PLast); },
             R"#(Returns the parametric bounds of the function.)#" 
          )
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Law_Constant::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Law_Constant::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Law_Constant::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Law_Constant::*)() const>(&Law_Constant::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Law_Linear from ./opencascade/Law_Linear.hxx
    klass = m.attr("Law_Linear");


    // nested enums

    static_cast<py::class_<Law_Linear ,opencascade::handle<Law_Linear>  , Law_Function >>(klass)
    // constructors
        .def(py::init<  >()  )
    // custom constructors
    // methods
        .def("Set",
             (void (Law_Linear::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (Law_Linear::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&Law_Linear::Set),
             R"#(Defines this linear evolution law by assigning both: - the bounds Pdeb and Pfin of the parameter, and - the values Valdeb and Valfin of the function at these two parametric bounds.)#"  , py::arg("Pdeb"),  py::arg("Valdeb"),  py::arg("Pfin"),  py::arg("Valfin")
          )
        .def("Continuity",
             (GeomAbs_Shape (Law_Linear::*)() const) static_cast<GeomAbs_Shape (Law_Linear::*)() const>(&Law_Linear::Continuity),
             R"#(Returns GeomAbs_CN)#" 
          )
        .def("NbIntervals",
             (Standard_Integer (Law_Linear::*)( const GeomAbs_Shape  ) const) static_cast<Standard_Integer (Law_Linear::*)( const GeomAbs_Shape  ) const>(&Law_Linear::NbIntervals),
             R"#(Returns 1)#"  , py::arg("S")
          )
        .def("Intervals",
             (void (Law_Linear::*)( NCollection_Array1<Standard_Real> & ,  const GeomAbs_Shape  ) const) static_cast<void (Law_Linear::*)( NCollection_Array1<Standard_Real> & ,  const GeomAbs_Shape  ) const>(&Law_Linear::Intervals),
             R"#(None)#"  , py::arg("T"),  py::arg("S")
          )
        .def("Value",
             (Standard_Real (Law_Linear::*)( const Standard_Real  ) ) static_cast<Standard_Real (Law_Linear::*)( const Standard_Real  ) >(&Law_Linear::Value),
             R"#(Returns the value of this function at the point of parameter X.)#"  , py::arg("X")
          )
        .def("Trim",
             (opencascade::handle<Law_Function> (Law_Linear::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) const) static_cast<opencascade::handle<Law_Function> (Law_Linear::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) const>(&Law_Linear::Trim),
             R"#(Returns a law equivalent of <me> between parameters <First> and <Last>. <Tol> is used to test for 3d points confusion. It is usfule to determines the derivatives in these values <First> and <Last> if the Law is not Cn.)#"  , py::arg("PFirst"),  py::arg("PLast"),  py::arg("Tol")
          )
    // methods using call by reference i.s.o. return
        .def("D1",
             []( Law_Linear &self , const Standard_Real X ){
                 Standard_Real  F;
                Standard_Real  D;

                 self.D1(X,F,D);
                 
                 return std::make_tuple(F,D); },
             R"#(Returns the value F and the first derivative D of this function at the point of parameter X.)#"  , py::arg("X")
          )
        .def("D2",
             []( Law_Linear &self , const Standard_Real X ){
                 Standard_Real  F;
                Standard_Real  D;
                Standard_Real  D2;

                 self.D2(X,F,D,D2);
                 
                 return std::make_tuple(F,D,D2); },
             R"#(Returns the value, first and second derivatives at parameter X.)#"  , py::arg("X")
          )
        .def("Bounds",
             []( Law_Linear &self   ){
                 Standard_Real  PFirst;
                Standard_Real  PLast;

                 self.Bounds(PFirst,PLast);
                 
                 return std::make_tuple(PFirst,PLast); },
             R"#(Returns the parametric bounds of the function.)#" 
          )
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Law_Linear::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Law_Linear::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Law_Linear::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Law_Linear::*)() const>(&Law_Linear::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Law_Interpol from ./opencascade/Law_Interpol.hxx
    klass = m.attr("Law_Interpol");


    // nested enums

    static_cast<py::class_<Law_Interpol ,opencascade::handle<Law_Interpol>  , Law_BSpFunc >>(klass)
    // constructors
        .def(py::init<  >()  )
    // custom constructors
    // methods
        .def("Set",
             (void (Law_Interpol::*)(  const NCollection_Array1<gp_Pnt2d> & ,  const Standard_Boolean  ) ) static_cast<void (Law_Interpol::*)(  const NCollection_Array1<gp_Pnt2d> & ,  const Standard_Boolean  ) >(&Law_Interpol::Set),
             R"#(Defines this evolution law by interpolating the set of 2D points ParAndRad. The Y coordinate of a point of ParAndRad is the value of the function at the parameter point given by its X coordinate. If Periodic is true, this function is assumed to be periodic. Warning - The X coordinates of points in the table ParAndRad must be given in ascendant order. - If Periodic is true, the first and last Y coordinates of points in the table ParAndRad are assumed to be equal. In addition, with the second syntax, Dd and Df are also assumed to be equal. If this is not the case, Set uses the first value(s) as last value(s).)#"  , py::arg("ParAndRad"),  py::arg("Periodic")=static_cast<const Standard_Boolean>(Standard_False)
          )
        .def("SetInRelative",
             (void (Law_Interpol::*)(  const NCollection_Array1<gp_Pnt2d> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<void (Law_Interpol::*)(  const NCollection_Array1<gp_Pnt2d> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean  ) >(&Law_Interpol::SetInRelative),
             R"#(None)#"  , py::arg("ParAndRad"),  py::arg("Ud"),  py::arg("Uf"),  py::arg("Periodic")=static_cast<const Standard_Boolean>(Standard_False)
          )
        .def("Set",
             (void (Law_Interpol::*)(  const NCollection_Array1<gp_Pnt2d> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<void (Law_Interpol::*)(  const NCollection_Array1<gp_Pnt2d> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean  ) >(&Law_Interpol::Set),
             R"#(Defines this evolution law by interpolating the set of 2D points ParAndRad. The Y coordinate of a point of ParAndRad is the value of the function at the parameter point given by its X coordinate. If Periodic is true, this function is assumed to be periodic. In the second syntax, Dd and Df define the values of the first derivative of the function at its first and last points. Warning - The X coordinates of points in the table ParAndRad must be given in ascendant order. - If Periodic is true, the first and last Y coordinates of points in the table ParAndRad are assumed to be equal. In addition, with the second syntax, Dd and Df are also assumed to be equal. If this is not the case, Set uses the first value(s) as last value(s).)#"  , py::arg("ParAndRad"),  py::arg("Dd"),  py::arg("Df"),  py::arg("Periodic")=static_cast<const Standard_Boolean>(Standard_False)
          )
        .def("SetInRelative",
             (void (Law_Interpol::*)(  const NCollection_Array1<gp_Pnt2d> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean  ) ) static_cast<void (Law_Interpol::*)(  const NCollection_Array1<gp_Pnt2d> & ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Boolean  ) >(&Law_Interpol::SetInRelative),
             R"#(None)#"  , py::arg("ParAndRad"),  py::arg("Ud"),  py::arg("Uf"),  py::arg("Dd"),  py::arg("Df"),  py::arg("Periodic")=static_cast<const Standard_Boolean>(Standard_False)
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Law_Interpol::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Law_Interpol::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Law_Interpol::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Law_Interpol::*)() const>(&Law_Interpol::DynamicType),
             R"#(None)#"
             
         )
;

    // Class Law_S from ./opencascade/Law_S.hxx
    klass = m.attr("Law_S");


    // nested enums

    static_cast<py::class_<Law_S ,opencascade::handle<Law_S>  , Law_BSpFunc >>(klass)
    // constructors
        .def(py::init<  >()  )
    // custom constructors
    // methods
        .def("Set",
             (void (Law_S::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (Law_S::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&Law_S::Set),
             R"#(Defines this S evolution law by assigning both: - the bounds Pdeb and Pfin of the parameter, and - the values Valdeb and Valfin of the function at these two parametric bounds. The function is assumed to have the first derivatives equal to 0 at the two parameter points Pdeb and Pfin.)#"  , py::arg("Pdeb"),  py::arg("Valdeb"),  py::arg("Pfin"),  py::arg("Valfin")
          )
        .def("Set",
             (void (Law_S::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) ) static_cast<void (Law_S::*)( const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real ,  const Standard_Real  ) >(&Law_S::Set),
             R"#(Defines this S evolution law by assigning - the bounds Pdeb and Pfin of the parameter, - the values Valdeb and Valfin of the function at these two parametric bounds, and - the values Ddeb and Dfin of the first derivative of the function at these two parametric bounds.)#"  , py::arg("Pdeb"),  py::arg("Valdeb"),  py::arg("Ddeb"),  py::arg("Pfin"),  py::arg("Valfin"),  py::arg("Dfin")
          )
    // methods using call by reference i.s.o. return
    // static methods
        .def_static("get_type_name_s",
                    (const char * (*)() ) static_cast<const char * (*)() >(&Law_S::get_type_name),
                    R"#(None)#" 
          )
        .def_static("get_type_descriptor_s",
                    (const opencascade::handle<Standard_Type> & (*)() ) static_cast<const opencascade::handle<Standard_Type> & (*)() >(&Law_S::get_type_descriptor),
                    R"#(None)#" 
          )
    // static methods using call by reference i.s.o. return
    // operators
    // additional methods and static methods
    // properties
    // methods returning by ref wrapped as properties
       .def("DynamicType",
             (const opencascade::handle<Standard_Type> & (Law_S::*)() const) static_cast<const opencascade::handle<Standard_Type> & (Law_S::*)() const>(&Law_S::DynamicType),
             R"#(None)#"
             
         )
;

// functions
// ./opencascade/Law.hxx
// ./opencascade/Law_BSpFunc.hxx
// ./opencascade/Law_BSpline.hxx
// ./opencascade/Law_BSplineKnotSplitting.hxx
// ./opencascade/Law_Composite.hxx
// ./opencascade/Law_Constant.hxx
// ./opencascade/Law_Function.hxx
// ./opencascade/Law_Interpol.hxx
// ./opencascade/Law_Interpolate.hxx
// ./opencascade/Law_Laws.hxx
// ./opencascade/Law_Linear.hxx
// ./opencascade/Law_ListIteratorOfLaws.hxx
// ./opencascade/Law_S.hxx

// Additional functions

// operators

// register typdefs
    register_template_NCollection_List<opencascade::handle<Law_Function>>(m,"Law_Laws");


// exceptions

// user-defined post-inclusion per module in the body

};

// user-defined post-inclusion per module

// user-defined post