File: V3d_pre.cpp

package info (click to toggle)
python-ocp 7.8.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 64,724 kB
  • sloc: cpp: 362,337; pascal: 33; python: 23; makefile: 4
file content (246 lines) | stat: -rw-r--r-- 15,747 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

// pybind 11 related includes
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

namespace py = pybind11;


// Standard Handle
#include <Standard_Handle.hxx>

// user-defined inclusion per module before includes

// includes to resolve forward declarations
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Graphic3d_Group.hxx>
#include <V3d_View.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Graphic3d_Structure.hxx>
#include <Graphic3d_Group.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <V3d_View.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Graphic3d_Structure.hxx>
#include <Graphic3d_Group.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <V3d_View.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Aspect_Grid.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <Aspect_Grid.hxx>
#include <Graphic3d_AspectMarker3d.hxx>
#include <Graphic3d_GraphicDriver.hxx>
#include <V3d_CircularGrid.hxx>
#include <V3d_RectangularGrid.hxx>
#include <V3d_View.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_Surface.hxx>
#include <V3d_Viewer.hxx>

// module includes
#include <V3d.hxx>
#include <V3d_AmbientLight.hxx>
#include <V3d_BadValue.hxx>
#include <V3d_CircularGrid.hxx>
#include <V3d_DirectionalLight.hxx>
#include <V3d_ImageDumpOptions.hxx>
#include <V3d_Light.hxx>
#include <V3d_ListOfLight.hxx>
#include <V3d_ListOfView.hxx>
#include <V3d_Plane.hxx>
#include <V3d_PositionalLight.hxx>
#include <V3d_PositionLight.hxx>
#include <V3d_RectangularGrid.hxx>
#include <V3d_SpotLight.hxx>
#include <V3d_StereoDumpOptions.hxx>
#include <V3d_Trihedron.hxx>
#include <V3d_TypeOfAxe.hxx>
#include <V3d_TypeOfBackfacingModel.hxx>
#include <V3d_TypeOfLight.hxx>
#include <V3d_TypeOfOrientation.hxx>
#include <V3d_TypeOfShadingModel.hxx>
#include <V3d_TypeOfView.hxx>
#include <V3d_TypeOfVisualization.hxx>
#include <V3d_UnMapped.hxx>
#include <V3d_View.hxx>
#include <V3d_Viewer.hxx>
#include <V3d_ViewerPointer.hxx>

// template related includes

#include "NCollection_tmpl.hxx"

#include "NCollection_tmpl.hxx"


// user-defined pre
#include "OCP_specific.inc"

// user-defined inclusion per module
struct NSOpenGLContext {}; //OSX related

// Module definiiton
void register_V3d_enums(py::module &main_module) {


py::module m = main_module.def_submodule("V3d", R"#()#");

// user-defined inclusion per module in the body

// enums
    py::enum_<V3d_TypeOfAxe>(m, "V3d_TypeOfAxe",R"#(Determines the axis type through the coordinates X, Y, Z.)#")
        .value("V3d_X",V3d_TypeOfAxe::V3d_X)
        .value("V3d_Y",V3d_TypeOfAxe::V3d_Y)
        .value("V3d_Z",V3d_TypeOfAxe::V3d_Z).export_values();
    py::enum_<V3d_TypeOfView>(m, "V3d_TypeOfView",R"#(Defines the type of projection of the view.)#")
        .value("V3d_ORTHOGRAPHIC",V3d_TypeOfView::V3d_ORTHOGRAPHIC)
        .value("V3d_PERSPECTIVE",V3d_TypeOfView::V3d_PERSPECTIVE).export_values();
    py::enum_<V3d_StereoDumpOptions>(m, "V3d_StereoDumpOptions",R"#(Options to be used with image dumping. Notice that the value will have no effect with disabled stereo output.)#")
        .value("V3d_SDO_MONO",V3d_StereoDumpOptions::V3d_SDO_MONO)
        .value("V3d_SDO_LEFT_EYE",V3d_StereoDumpOptions::V3d_SDO_LEFT_EYE)
        .value("V3d_SDO_RIGHT_EYE",V3d_StereoDumpOptions::V3d_SDO_RIGHT_EYE)
        .value("V3d_SDO_BLENDED",V3d_StereoDumpOptions::V3d_SDO_BLENDED).export_values();
    py::enum_<V3d_TypeOfVisualization>(m, "V3d_TypeOfVisualization",R"#(Determines the type of visualization in the view, either WIREFRAME or ZBUFFER (shading).)#")
        .value("V3d_WIREFRAME",V3d_TypeOfVisualization::V3d_WIREFRAME)
        .value("V3d_ZBUFFER",V3d_TypeOfVisualization::V3d_ZBUFFER).export_values();
    py::enum_<V3d_TypeOfOrientation>(m, "V3d_TypeOfOrientation",R"#(Determines the type of orientation as a combination of standard DX/DY/DZ directions. This enumeration defines a model orientation looking towards the user's eye, which is an opposition to Camera main direction. For example, V3d_Xneg defines +X Camera main direction.)#")
        .value("V3d_Xpos",V3d_TypeOfOrientation::V3d_Xpos)
        .value("V3d_Ypos",V3d_TypeOfOrientation::V3d_Ypos)
        .value("V3d_Zpos",V3d_TypeOfOrientation::V3d_Zpos)
        .value("V3d_Xneg",V3d_TypeOfOrientation::V3d_Xneg)
        .value("V3d_Yneg",V3d_TypeOfOrientation::V3d_Yneg)
        .value("V3d_Zneg",V3d_TypeOfOrientation::V3d_Zneg)
        .value("V3d_XposYpos",V3d_TypeOfOrientation::V3d_XposYpos)
        .value("V3d_XposZpos",V3d_TypeOfOrientation::V3d_XposZpos)
        .value("V3d_YposZpos",V3d_TypeOfOrientation::V3d_YposZpos)
        .value("V3d_XnegYneg",V3d_TypeOfOrientation::V3d_XnegYneg)
        .value("V3d_XnegYpos",V3d_TypeOfOrientation::V3d_XnegYpos)
        .value("V3d_XnegZneg",V3d_TypeOfOrientation::V3d_XnegZneg)
        .value("V3d_XnegZpos",V3d_TypeOfOrientation::V3d_XnegZpos)
        .value("V3d_YnegZneg",V3d_TypeOfOrientation::V3d_YnegZneg)
        .value("V3d_YnegZpos",V3d_TypeOfOrientation::V3d_YnegZpos)
        .value("V3d_XposYneg",V3d_TypeOfOrientation::V3d_XposYneg)
        .value("V3d_XposZneg",V3d_TypeOfOrientation::V3d_XposZneg)
        .value("V3d_YposZneg",V3d_TypeOfOrientation::V3d_YposZneg)
        .value("V3d_XposYposZpos",V3d_TypeOfOrientation::V3d_XposYposZpos)
        .value("V3d_XposYnegZpos",V3d_TypeOfOrientation::V3d_XposYnegZpos)
        .value("V3d_XposYposZneg",V3d_TypeOfOrientation::V3d_XposYposZneg)
        .value("V3d_XnegYposZpos",V3d_TypeOfOrientation::V3d_XnegYposZpos)
        .value("V3d_XposYnegZneg",V3d_TypeOfOrientation::V3d_XposYnegZneg)
        .value("V3d_XnegYposZneg",V3d_TypeOfOrientation::V3d_XnegYposZneg)
        .value("V3d_XnegYnegZpos",V3d_TypeOfOrientation::V3d_XnegYnegZpos)
        .value("V3d_XnegYnegZneg",V3d_TypeOfOrientation::V3d_XnegYnegZneg)
        .value("V3d_TypeOfOrientation_Zup_AxoLeft",V3d_TypeOfOrientation::V3d_TypeOfOrientation_Zup_AxoLeft)
        .value("V3d_TypeOfOrientation_Zup_AxoRight",V3d_TypeOfOrientation::V3d_TypeOfOrientation_Zup_AxoRight)
        .value("V3d_TypeOfOrientation_Zup_Front",V3d_TypeOfOrientation::V3d_TypeOfOrientation_Zup_Front)
        .value("V3d_TypeOfOrientation_Zup_Back",V3d_TypeOfOrientation::V3d_TypeOfOrientation_Zup_Back)
        .value("V3d_TypeOfOrientation_Zup_Top",V3d_TypeOfOrientation::V3d_TypeOfOrientation_Zup_Top)
        .value("V3d_TypeOfOrientation_Zup_Bottom",V3d_TypeOfOrientation::V3d_TypeOfOrientation_Zup_Bottom)
        .value("V3d_TypeOfOrientation_Zup_Left",V3d_TypeOfOrientation::V3d_TypeOfOrientation_Zup_Left)
        .value("V3d_TypeOfOrientation_Zup_Right",V3d_TypeOfOrientation::V3d_TypeOfOrientation_Zup_Right)
        .value("V3d_TypeOfOrientation_Yup_AxoLeft",V3d_TypeOfOrientation::V3d_TypeOfOrientation_Yup_AxoLeft)
        .value("V3d_TypeOfOrientation_Yup_AxoRight",V3d_TypeOfOrientation::V3d_TypeOfOrientation_Yup_AxoRight)
        .value("V3d_TypeOfOrientation_Yup_Front",V3d_TypeOfOrientation::V3d_TypeOfOrientation_Yup_Front)
        .value("V3d_TypeOfOrientation_Yup_Back",V3d_TypeOfOrientation::V3d_TypeOfOrientation_Yup_Back)
        .value("V3d_TypeOfOrientation_Yup_Top",V3d_TypeOfOrientation::V3d_TypeOfOrientation_Yup_Top)
        .value("V3d_TypeOfOrientation_Yup_Bottom",V3d_TypeOfOrientation::V3d_TypeOfOrientation_Yup_Bottom)
        .value("V3d_TypeOfOrientation_Yup_Left",V3d_TypeOfOrientation::V3d_TypeOfOrientation_Yup_Left)
        .value("V3d_TypeOfOrientation_Yup_Right",V3d_TypeOfOrientation::V3d_TypeOfOrientation_Yup_Right).export_values();

//Python trampoline classes

// pre-register typdefs+classes (topologically sorted)
    py::class_<V3d , shared_ptr<V3d>  >(m,"V3d",R"#(This package contains the set of commands and services of the 3D Viewer. It provides a set of high level commands to control the views and viewing modes.)#");
    py::class_<V3d_ImageDumpOptions , shared_ptr<V3d_ImageDumpOptions>  >(m,"V3d_ImageDumpOptions",R"#(The structure defines options for image dump functionality.)#");
    py::class_<V3d_AmbientLight ,opencascade::handle<V3d_AmbientLight>  , Graphic3d_CLight >(m,"V3d_AmbientLight",R"#(Creation of an ambient light source in a viewer.Creation of an ambient light source in a viewer.)#");
    py::class_<V3d_CircularGrid ,opencascade::handle<V3d_CircularGrid>  , Aspect_CircularGrid >(m,"V3d_CircularGrid",R"#()#");
    preregister_template_NCollection_List<opencascade::handle<Graphic3d_CLight>>(m,"V3d_ListOfLight");
    preregister_template_NCollection_List<opencascade::handle<V3d_View>>(m,"V3d_ListOfView");
    py::class_<V3d_Plane ,opencascade::handle<V3d_Plane>  , Standard_Transient >(m,"V3d_Plane",R"#(Obsolete clip plane presentation class. Ported on new core of Graphic3d_ClipPlane approach. Please access Graphic3d_ClipPlane via ClipPlane() method to use it for standard clipping workflow. Example of use:Obsolete clip plane presentation class. Ported on new core of Graphic3d_ClipPlane approach. Please access Graphic3d_ClipPlane via ClipPlane() method to use it for standard clipping workflow. Example of use:Obsolete clip plane presentation class. Ported on new core of Graphic3d_ClipPlane approach. Please access Graphic3d_ClipPlane via ClipPlane() method to use it for standard clipping workflow. Example of use:)#");
    py::class_<V3d_PositionLight ,opencascade::handle<V3d_PositionLight>  , Graphic3d_CLight >(m,"V3d_PositionLight",R"#(Base class for Positional, Spot and Directional Light classes.Base class for Positional, Spot and Directional Light classes.)#");
    py::class_<V3d_RectangularGrid ,opencascade::handle<V3d_RectangularGrid>  , Aspect_RectangularGrid >(m,"V3d_RectangularGrid",R"#()#");
    py::class_<V3d_Trihedron ,opencascade::handle<V3d_Trihedron>  , Standard_Transient >(m,"V3d_Trihedron",R"#(Class for presentation of trihedron object.Class for presentation of trihedron object.)#");
    py::class_<V3d_View ,opencascade::handle<V3d_View>  , Standard_Transient >(m,"V3d_View",R"#(Defines the application object VIEW for the VIEWER application. The methods of this class allow the editing and inquiring the parameters linked to the view. Provides a set of services common to all types of view. Warning: The default parameters are defined by the class Viewer (Example : SetDefaultViewSize()). Certain methods are mouse oriented, and it is necessary to know the difference between the start and the continuation of this gesture in putting the method into operation. Example : Shifting the eye-view along the screen axes.Defines the application object VIEW for the VIEWER application. The methods of this class allow the editing and inquiring the parameters linked to the view. Provides a set of services common to all types of view. Warning: The default parameters are defined by the class Viewer (Example : SetDefaultViewSize()). Certain methods are mouse oriented, and it is necessary to know the difference between the start and the continuation of this gesture in putting the method into operation. Example : Shifting the eye-view along the screen axes.)#");
    py::class_<V3d_Viewer ,opencascade::handle<V3d_Viewer>  , Standard_Transient >(m,"V3d_Viewer",R"#(Defines services on Viewer type objects. The methods of this class allow editing and interrogation of the parameters linked to the viewer its friend classes (View,light,plane).Defines services on Viewer type objects. The methods of this class allow editing and interrogation of the parameters linked to the viewer its friend classes (View,light,plane).)#");
    py::class_<V3d_DirectionalLight ,opencascade::handle<V3d_DirectionalLight>  , V3d_PositionLight >(m,"V3d_DirectionalLight",R"#(Directional light source for a viewer.Directional light source for a viewer.)#");
    py::class_<V3d_PositionalLight ,opencascade::handle<V3d_PositionalLight>  , V3d_PositionLight >(m,"V3d_PositionalLight",R"#(Creation and modification of an isolated (positional) light source. It is also defined by the color and two attenuation factors ConstAttentuation() and LinearAttentuation(). The resulting attenuation factor determining the illumination of a surface depends on the following formula: Where Distance is the distance of the isolated source from the surface.Creation and modification of an isolated (positional) light source. It is also defined by the color and two attenuation factors ConstAttentuation() and LinearAttentuation(). The resulting attenuation factor determining the illumination of a surface depends on the following formula: Where Distance is the distance of the isolated source from the surface.)#");
    py::class_<V3d_SpotLight ,opencascade::handle<V3d_SpotLight>  , V3d_PositionLight >(m,"V3d_SpotLight",R"#(Creation and modification of a spot. The attenuation factor F determines the illumination of a surface: Where Distance is the distance from the source to the surface. The default values (1.0, 0.0) correspond to a minimum of attenuation. The concentration factor determines the dispersion of the light on the surface, the default value (1.0) corresponds to a minimum of dispersion.Creation and modification of a spot. The attenuation factor F determines the illumination of a surface: Where Distance is the distance from the source to the surface. The default values (1.0, 0.0) correspond to a minimum of attenuation. The concentration factor determines the dispersion of the light on the surface, the default value (1.0) corresponds to a minimum of dispersion.)#");

};

// user-defined post-inclusion per module

// user-defined post