File: bson.py

package info (click to toggle)
python-odmantic 1.0.2%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,756 kB
  • sloc: python: 8,547; sh: 37; makefile: 34; xml: 13; javascript: 3
file content (437 lines) | stat: -rw-r--r-- 14,081 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
from __future__ import annotations

import decimal
import re
from dataclasses import dataclass
from datetime import datetime, timedelta
from typing import Any, Callable, Dict, Pattern, Sequence, Tuple, Type, Union

import bson
import bson.binary
import bson.decimal128
import bson.errors
import bson.int64
import bson.regex
from pydantic import GetJsonSchemaHandler
from pydantic.json_schema import JsonSchemaValue
from pydantic.main import BaseModel
from pydantic_core import core_schema

from odmantic.typing import Annotated, get_args, get_origin


@dataclass(frozen=True)
class WithBsonSerializer:
    """Adds a BSON serializer to use on a field when it will be saved to the database"""

    bson_serializer: Callable[[Any], Any]


def _get_bson_serializer(type_: Type[Any]) -> Callable[[Any], Any] | None:
    origin = get_origin(type_)
    if origin is not None and origin == Annotated:
        args = get_args(type_)
        for arg in args:
            if isinstance(arg, WithBsonSerializer):
                return arg.bson_serializer
    return None


class ObjectId(bson.ObjectId):
    @classmethod
    def __get_pydantic_core_schema__(
        cls,
        _source_type: Any,
        _handler: Callable[[Any], core_schema.CoreSchema],
    ) -> core_schema.CoreSchema:
        def validate_from_string_or_bytes(value: Union[str, bytes]) -> bson.ObjectId:
            try:
                return bson.ObjectId(value)
            except bson.errors.InvalidId:
                raise ValueError("Invalid ObjectId")

        from_string_or_bytes_schema = core_schema.chain_schema(
            [
                core_schema.union_schema(
                    [
                        core_schema.str_schema(),
                        core_schema.bytes_schema(),
                    ]
                ),
                core_schema.no_info_plain_validator_function(
                    validate_from_string_or_bytes
                ),
            ]
        )

        return core_schema.json_or_python_schema(
            json_schema=from_string_or_bytes_schema,
            python_schema=core_schema.union_schema(
                [
                    core_schema.is_instance_schema(bson.ObjectId),
                    from_string_or_bytes_schema,
                ],
            ),
            serialization=core_schema.plain_serializer_function_ser_schema(
                str, when_used="json"
            ),
        )

    @classmethod
    def __get_pydantic_json_schema__(
        cls, _schema: core_schema.CoreSchema, handler: GetJsonSchemaHandler
    ) -> JsonSchemaValue:
        json_schema = handler(core_schema.str_schema())
        json_schema.update(
            examples=["5f85f36d6dfecacc68428a46", "ffffffffffffffffffffffff"],
            example="5f85f36d6dfecacc68428a46",
        )
        return json_schema


class Int64(bson.Int64):
    @classmethod
    def __get_pydantic_core_schema__(
        cls,
        _source_type: Any,
        _handler: Callable[[Any], core_schema.CoreSchema],
    ) -> core_schema.CoreSchema:
        def validate_from_int(value: int) -> bson.int64.Int64:
            return bson.int64.Int64(value)

        from_int_schema = core_schema.chain_schema(
            [
                core_schema.int_schema(),
                core_schema.no_info_plain_validator_function(validate_from_int),
            ]
        )

        return core_schema.json_or_python_schema(
            json_schema=from_int_schema,
            python_schema=core_schema.union_schema(
                [
                    core_schema.is_instance_schema(bson.int64.Int64),
                    from_int_schema,
                ]
            ),
        )

    @classmethod
    def __get_pydantic_json_schema__(
        cls, _core_schema: core_schema.CoreSchema, handler: GetJsonSchemaHandler
    ) -> JsonSchemaValue:
        # Use the same schema that would be used for `int`
        return handler(core_schema.int_schema())


Long = Int64


class Decimal128(bson.decimal128.Decimal128):
    @classmethod
    def __get_pydantic_core_schema__(
        cls,
        _source_type: Any,
        _handler: Callable[[Any], core_schema.CoreSchema],
    ) -> core_schema.CoreSchema:
        def validate_from_decimal_repr(
            value: Union[decimal.Decimal, float, str, Tuple[int, Sequence[int], int]],
        ) -> bson.decimal128.Decimal128:
            try:
                return bson.decimal128.Decimal128(value)
            except Exception:
                raise ValueError("Invalid Decimal128 value")

        from_decimal_repr_schema = core_schema.no_info_plain_validator_function(
            validate_from_decimal_repr
        )
        return core_schema.json_or_python_schema(
            json_schema=from_decimal_repr_schema,
            python_schema=core_schema.union_schema(
                [
                    core_schema.is_instance_schema(bson.decimal128.Decimal128),
                    from_decimal_repr_schema,
                ]
            ),
            serialization=core_schema.plain_serializer_function_ser_schema(
                lambda v: v.to_decimal(), when_used="json"
            ),
        )

    @classmethod
    def __get_pydantic_json_schema__(
        cls, _core_schema: core_schema.CoreSchema, handler: GetJsonSchemaHandler
    ) -> JsonSchemaValue:
        return handler(core_schema.float_schema())


class Binary(bson.binary.Binary):
    @classmethod
    def __get_pydantic_core_schema__(
        cls,
        _source_type: Any,
        _handler: Callable[[Any], core_schema.CoreSchema],
    ) -> core_schema.CoreSchema:
        def validate_from_bytes(
            value: bytes,
        ) -> bson.binary.Binary:
            return bson.binary.Binary(value)

        from_bytes_schema = core_schema.chain_schema(
            [
                core_schema.bytes_schema(),
                core_schema.no_info_plain_validator_function(validate_from_bytes),
            ]
        )
        return core_schema.json_or_python_schema(
            json_schema=from_bytes_schema,
            python_schema=core_schema.union_schema(
                [
                    core_schema.is_instance_schema(bson.binary.Binary),
                    from_bytes_schema,
                ]
            ),
        )

    @classmethod
    def __get_pydantic_json_schema__(
        cls, _core_schema: core_schema.CoreSchema, handler: GetJsonSchemaHandler
    ) -> JsonSchemaValue:
        return handler(core_schema.bytes_schema())


def validate_pattern_from_str(
    value: str,
) -> Pattern:
    try:
        return re.compile(value)
    except Exception:
        raise ValueError("Invalid Pattern value")


def validate_regex_from_pattern(
    value: Pattern,
) -> bson.regex.Regex:
    try:
        return bson.regex.Regex(value.pattern, flags=value.flags)
    except Exception:
        raise ValueError("Invalid Regex value")


def validate_pattern_from_regex(
    value: bson.regex.Regex,
) -> Pattern:
    try:
        return re.compile(value.pattern, flags=value.flags)
    except Exception:
        raise ValueError("Invalid Pattern value")


class Regex(bson.regex.Regex):
    @classmethod
    def __get_pydantic_core_schema__(
        cls,
        _source_type: Any,
        _handler: Callable[[Any], core_schema.CoreSchema],
    ) -> core_schema.CoreSchema:
        from_str_schema = core_schema.chain_schema(
            [
                core_schema.str_schema(),
                core_schema.no_info_plain_validator_function(validate_pattern_from_str),
                core_schema.no_info_plain_validator_function(
                    validate_regex_from_pattern
                ),
            ]
        )
        from_pattern_schema = core_schema.chain_schema(
            [
                core_schema.is_instance_schema(Pattern),
                core_schema.no_info_plain_validator_function(
                    validate_regex_from_pattern
                ),
            ]
        )
        return core_schema.json_or_python_schema(
            json_schema=from_str_schema,
            python_schema=core_schema.union_schema(
                [
                    core_schema.is_instance_schema(bson.regex.Regex),
                    from_pattern_schema,
                    from_str_schema,
                ]
            ),
            serialization=core_schema.plain_serializer_function_ser_schema(
                lambda v: v.pattern, when_used="json"
            ),
        )

    @classmethod
    def __get_pydantic_json_schema__(
        cls, _core_schema: core_schema.CoreSchema, handler: GetJsonSchemaHandler
    ) -> JsonSchemaValue:
        schema = handler(core_schema.str_schema())
        schema.update(
            examples=[r"^Foo"], example=r"^Foo", type="string", format="binary"
        )
        return schema


class __PatternPydanticAnnotation:  # cannot subclass Pattern since it's final
    @classmethod
    def __get_pydantic_core_schema__(
        cls,
        _source_type: Any,
        _handler: Callable[[Any], core_schema.CoreSchema],
    ) -> core_schema.CoreSchema:
        from_regex_schema = core_schema.chain_schema(
            [
                core_schema.is_instance_schema(bson.regex.Regex),
                core_schema.no_info_plain_validator_function(
                    validate_pattern_from_regex
                ),
            ]
        )

        from_str_schema = core_schema.chain_schema(
            [
                core_schema.str_schema(),
                core_schema.no_info_plain_validator_function(validate_pattern_from_str),
            ]
        )

        return core_schema.json_or_python_schema(
            json_schema=from_str_schema,
            python_schema=core_schema.union_schema(
                [
                    core_schema.is_instance_schema(Pattern),
                    from_regex_schema,
                    from_str_schema,
                ]
            ),
        )


_Pattern = Annotated[Pattern, __PatternPydanticAnnotation]


class _datetime(datetime):
    @classmethod
    def __get_pydantic_core_schema__(
        cls,
        _source_type: Any,
        _handler: Callable[[Any], core_schema.CoreSchema],
    ) -> core_schema.CoreSchema:
        def validate_mongo_datetime(
            d: datetime,
        ) -> datetime:
            # MongoDB does not store timezone info
            # https://docs.python.org/3/library/datetime.html#determining-if-an-object-is-aware-or-naive
            if d.tzinfo is not None and d.tzinfo.utcoffset(d) != timedelta(0):
                raise ValueError("datetime objects must be naive (no timezone info)")
            # Truncate microseconds to milliseconds to comply with Mongo behavior
            microsecs = d.microsecond - d.microsecond % 1000
            return d.replace(microsecond=microsecs)

        mongo_datetime_schema = core_schema.chain_schema(
            [
                core_schema.datetime_schema(),
                core_schema.no_info_plain_validator_function(validate_mongo_datetime),
            ]
        )
        return core_schema.json_or_python_schema(
            json_schema=mongo_datetime_schema,
            python_schema=mongo_datetime_schema,
        )

    @classmethod
    def __get_pydantic_json_schema__(
        cls, _core_schema: core_schema.CoreSchema, handler: GetJsonSchemaHandler
    ) -> JsonSchemaValue:
        return handler(core_schema.datetime_schema())


class _decimalDecimalPydanticAnnotation:
    """This specific BSON substitution field helps to handle the support of standard
    python Decimal objects

    https://api.mongodb.com/python/current/faq.html?highlight=decimal#how-can-i-store-decimal-decimal-instances
    """

    @classmethod
    def __get_pydantic_core_schema__(
        cls,
        _source_type: Any,
        _handler: Callable[[Any], core_schema.CoreSchema],
    ) -> core_schema.CoreSchema:
        def validate_from_decimal128(
            value: bson.decimal128.Decimal128,
        ) -> decimal.Decimal:
            return value.to_decimal()

        decimal128_schema = core_schema.chain_schema(
            [
                core_schema.is_instance_schema(bson.decimal128.Decimal128),
                core_schema.no_info_plain_validator_function(validate_from_decimal128),
            ]
        )

        def validate_from_str(
            value: str,
        ) -> decimal.Decimal:
            try:
                return decimal.Decimal(value)
            except decimal.InvalidOperation:
                raise ValueError("Invalid decimal string")

        str_schema = core_schema.chain_schema(
            [
                core_schema.str_schema(),
                core_schema.no_info_plain_validator_function(validate_from_str),
            ]
        )
        return core_schema.json_or_python_schema(
            json_schema=str_schema,
            python_schema=core_schema.union_schema(
                [
                    core_schema.is_instance_schema(decimal.Decimal),
                    decimal128_schema,
                    str_schema,
                ]
            ),
        )


_decimalDecimal = Annotated[
    decimal.Decimal,
    _decimalDecimalPydanticAnnotation,
    WithBsonSerializer(lambda v: bson.decimal128.Decimal128(v)),
]


BSON_TYPES_ENCODERS: Dict[Type, Callable] = {
    bson.ObjectId: str,
    bson.decimal128.Decimal128: lambda x: x.to_decimal(),  # Convert to regular decimal
    bson.regex.Regex: lambda x: x.pattern,  # TODO: document no serialization of flags
}


class BaseBSONModel(BaseModel):
    """Equivalent of `pydantic.BaseModel` supporting BSON types serialization.

    If you want to apply other custom JSON encoders, you'll need to use
    [BSON_TYPES_ENCODERS][odmantic.bson.BSON_TYPES_ENCODERS] directly.
    """

    model_config = {"json_encoders": BSON_TYPES_ENCODERS}


_BSON_SUBSTITUTED_FIELDS = {
    bson.ObjectId: ObjectId,
    bson.int64.Int64: Int64,
    bson.decimal128.Decimal128: Decimal128,
    bson.binary.Binary: Binary,
    bson.regex.Regex: Regex,
    Pattern: _Pattern,
    decimal.Decimal: _decimalDecimal,
    datetime: _datetime,
}