1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
# Querying
## Filtering
ODMantic uses [QueryExpression][odmantic.query.QueryExpression] objects to handle filter
expressions. These expressions can be built from the comparison operators. It's then
possible to combine multiple expressions using the logical operators. To support the
wide variety of operators provided by MongoDB, it's possible as well to define the
filter 'manually'.
### Comparison operators
There are multiple ways of building [QueryExpression][odmantic.query.QueryExpression]
objects with comparisons operators:
1. Using python comparison operators between the field of the model and the desired value
: `==`, `!=`, `<=`, `<`, `>=`, `>`
2. Using the functions provided by the `odmantic.query` module
- [query.eq][odmantic.query.eq]
- [query.ne][odmantic.query.ne]
- [query.gt][odmantic.query.gt]
- [query.gte][odmantic.query.gte]
- [query.lt][odmantic.query.lt]
- [query.lte][odmantic.query.lte]
- [query.in_][odmantic.query.in_]
- [query.not_in][odmantic.query.not_in]
3. Using methods of the model's field and the desired value
- `field.eq`
- `field.ne`
- `field.gte`
- `field.gt`
- `field.lte`
- `field.lte`
- `field.in_`
- `field.not_in`
!!! note "Type checkers"
Since there is currently not any type checker plugin, the third usage might create
some errors with type checkers.
#### Equal
Filter the trees named "Spruce":
```python linenums="1" hl_lines="9 11 13"
--8<-- "querying/equal.py"
```
Equivalent raw MongoDB filter:
```json
{"name": "Spruce"}
```
!!! tip "Using equality operators with Enum fields"
Building filters using `Enum` fields is possible as well.
???+example "Example of filter built on an Enum field"
Filter the 'small' trees:
```python linenums="1" hl_lines="6-8 14 17 19 21"
--8<-- "querying/enum.py"
```
Equivalent raw MongoDB filter:
```json
{'kind': 'small'}
```
[More details](fields.md#enum-fields) about Enum fields.
#### Not Equal
Filter the trees that are **not** named "Spruce":
```python linenums="1" hl_lines="9 11 13"
--8<-- "querying/not_equal.py"
```
Equivalent raw MongoDB filter:
```json
{"name": {"$ne": "Spruce"}}
```
#### Less than (or equal to)
Filter the trees that have a size that is less than (or equal to) 2:
```python linenums="1" hl_lines="9 11 13 16 18 20"
--8<-- "querying/lt_e.py"
```
Equivalent raw MongoDB filter (less than):
```json
{"average_size": {"$lt": 2}}
```
Equivalent raw MongoDB filter (less than or equal to):
```json
{"average_size": {"$lte": 2}}
```
#### Greater than (or equal to)
Filter the trees having a size that is greater than (or equal to) 2:
```python linenums="1" hl_lines="9 11 13 16 18 20"
--8<-- "querying/gt_e.py"
```
Equivalent raw MongoDB filter (greater than):
```json
{"average_size": {"$gt": 2}}
```
Equivalent raw MongoDB filter (greater than or equal to):
```json
{"average_size": {"$gte": 2}}
```
#### Included in
Filter the trees named either "Spruce" or "Pine":
```python linenums="1" hl_lines="9 11"
--8<-- "querying/in.py"
```
Equivalent raw MongoDB filter:
```json
{"name": {"$in": ["Spruce", "Pine"]}}
```
#### Not included in
Filter the trees neither named "Spruce" nor "Pine":
```python linenums="1" hl_lines="9 11"
--8<-- "querying/not_in.py"
```
Equivalent raw MongoDB filter:
```json
{"name": {"$nin": ["Spruce", "Pine"]}}
```
### Evaluation operators
#### Match (Regex)
Filter the trees with a name starting with 'Spruce':
```python linenums="1" hl_lines="8 10"
--8<-- "querying/match.py"
```
Equivalent raw MongoDB filter:
```json
{"name": {"$regex": "^Spruce"}}
```
### Logical operators
There are two ways of combining [QueryExpression][odmantic.query.QueryExpression]
objects with logical operators:
1. Using python 'bitwise' operators between the field of the model and the desired value
: `&`, `|`
!!! warning
When using those operators make sure to correctly bracket the expressions
to avoid python operator precedence issues.
2. Using the functions provided by the `odmantic.query` module
- [query.and_][odmantic.query.and_]
- [query.or_][odmantic.query.or_]
- [query.nor_][odmantic.query.nor_]
#### And
Filter the trees named Spruce (**AND**) with a size less than 2:
```python linenums="1" hl_lines="9 18"
--8<-- "querying/and.py"
```
Equivalent raw MongoDB filter:
```json
{"name": "Spruce", "size": {"$lte": 2}}}
```
!!! tip "Implicit AND"
When using [find][odmantic.engine.AIOEngine.find],
[find_one][odmantic.engine.AIOEngine.find_one] or
[count][odmantic.engine.AIOEngine.count], you can specify multiple queries as
positional arguments and those will be implicitly combined with the `AND` operator.
#### Or
Filter the trees named Spruce **OR** the trees with a size greater than 2:
```python linenums="1" hl_lines="9 18"
--8<-- "querying/or.py"
```
Equivalent raw MongoDB filter:
```json
{
"$or":[
{"name":"Spruce"},
{"size":{"$gt":2}}
]
}
```
#### Nor
Filter the trees neither named Spruce **NOR** bigger than 2 (size):
```python linenums="1" hl_lines="9"
--8<-- "querying/nor.py"
```
Equivalent raw MongoDB filter:
```json
{
"$nor":[
{"name":"Spruce"},
{"size":{"$gt":2}}
]
}
```
!!! tip "NOR Equivalence"
The following logical expressions are equivalent:
- A NOR B NOR C
- NOT(A OR B OR C)
- NOT(A) AND NOT(B) AND NOT(C)
!!! info "`query.nor_` operator naming"
[query.and_][odmantic.query.and_] and [query.or_][odmantic.query.or_] require to add
an extra underscore to avoid overlapping with the python keywords.
While it could've been possible to name the NOR operator query.nor, the extra underscore has been kept for consistency in the naming of the logical operators.
### Embedded documents filters
It's possible to build filter based on the content of embedded documents:
```python linenums="1" hl_lines="4 9 12 15 17"
--8<-- "querying/embedded.py"
```
Equivalent raw MongoDB filters:
```json
{"capital_city.name": {"$eq": "Paris"}}
```
```json
{"capital_city.population": {"$gt": 1000000}}
```
!!! warning "Filtering across References"
Currently, it is not possible to build filter based on referenced objects.
### Raw MongoDB filters
Any [QueryExpression][odmantic.query.QueryExpression] can be replaced with raw MongoDB filters.
Thus, it's completely possible to use traditional filters with the
[find][odmantic.engine.AIOEngine.find], [find_one][odmantic.engine.AIOEngine.find_one]
or [count][odmantic.engine.AIOEngine.count] methods.
You can find more details about building raw query filters using the Model in the [Raw
query usage](raw_query_usage.md#using-raw-mongodb-filters) section.
## Sorting
ODMantic uses [SortExpression][odmantic.query.SortExpression] objects to handle sort
expressions.
There are multiple ways of building [SortExpression][odmantic.query.SortExpression]
objects:
1. Using implicit `Model` fields:
!!! example "Ascending sort"
To sort `Publisher` instances by **ascending** `Publisher.founded`:
```python
await engine.find(Publisher, sort=Publisher.founded)
```
This example refers to the code showcased in the [Overview](index.md#define-your-first-model).
2. Using the functions provided by the `odmantic.query` module
- [query.asc][odmantic.query.asc]
- [query.desc][odmantic.query.desc]
3. Using methods of the model's field and the desired value
- `field.asc`
- `field.desc`
!!! note "Type checkers"
Since there is currently not any type checker plugin, the third usage might create
some errors with type checkers.
### Ascending
```python linenums="1" hl_lines="14-16"
--8<-- "querying/asc.py"
```
### Descending
```python linenums="1" hl_lines="14-15"
--8<-- "querying/desc.py"
```
### Sort on multiple fields
We can pass a `tuple` to the `sort` kwarg, this will enable us to make a more complex sort query:
```python linenums="1" hl_lines="14"
--8<-- "querying/multiple_sort.py"
```
### Embedded model field as a sort key
We can sort instances based on the content of their embedded models.
!!! example "Sorting by an embedded model field"
We can sort the countries by descending order of the population of their capital
city:
```python linenums="1" hl_lines="5 13 17"
--8<-- "querying/embedded_sort.py"
```
|