1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
|
==================
Structured Configs
==================
.. contents::
:local:
.. _structured_configs:
.. testsetup:: *
from omegaconf import *
from enum import Enum
from dataclasses import dataclass, field
import os
import pathlib
from pytest import raises
from typing import Dict, Any
import sys
os.environ['USER'] = 'omry'
Structured configs are used to create OmegaConf configuration object with runtime type safety.
In addition, they can be used with tools like mypy or your IDE for static type checking.
Two types of structures classes are supported: dataclasses and attr classes.
- `dataclasses <https://docs.python.org/3.7/library/dataclasses.html>`_ are standard as of Python 3.7 or newer and are available in Python 3.6 via the `dataclasses` pip package.
- `attrs <https://github.com/python-attrs/attrs>`_ Offset slightly cleaner syntax in some cases but depends on the attrs pip package.
This documentation will use dataclasses, but you can use the annotation ``@attr.s(auto_attribs=True)`` from attrs instead of ``@dataclass``.
Basic usage involves passing in a structured config class or instance to ``OmegaConf.structured()``, which will return an OmegaConf config that matches
the values and types specified in the input. At runtine, OmegaConf will validate modifications to the created config object against the schema specified
in the input class.
Currently, type hints supported in OmegaConf’s structured configs include:
- primitive types (``int``, ``float``, ``bool``, ``str``, ``bytes``, ``Path``) and enum types
(user-defined subclasses of ``enum.Enum``). See the :ref:`simple_types` section below.
- unions of primitive/enum types, e.g. ``Union[float, bool, MyEnum]``.
See :ref:`union_types` below.
- structured config fields (i.e. MyConfig.x can have type hint MySubConfig).
See the :ref:`nesting_structured_configs` section below.
- dict and list types: ``typing.Dict[K, V]`` or ``typing.List[V]``, where K is
primitive or enum, and where V is any of the above (including nested dicts
or lists, e.g. ``Dict[str, List[int]]``).
See the :ref:`lists` and :ref:`dictionaries` sections below.
- optional types (any of the above can be wrapped in a ``typing.Optional[...]``
annotation). See :ref:`other_special_features` below.
.. _simple_types:
Simple types
^^^^^^^^^^^^
Simple types include
- ``int``: numeric integers
- ``float``: numeric floating point values
- ``bool``: boolean values (True, False, On, Off etc)
- ``str``: any string
- ``bytes``: an immutable sequence of numbers in [0, 255]
- ``pathlib.Path``: filesystem paths as represented by python's standard library ``pathlib``
- ``Enums``: User defined enums
The following class defines fields with all simple types:
.. doctest::
>>> class Height(Enum):
... SHORT = 0
... TALL = 1
>>> @dataclass
... class SimpleTypes:
... num: int = 10
... pi: float = 3.1415
... is_awesome: bool = True
... height: Height = Height.SHORT
... description: str = "text"
... data: bytes = b"bin_data"
... path: pathlib.Path = pathlib.Path("hello.txt")
You can create a config based on the SimpleTypes class itself or an instance of it.
Those would be equivalent by default, but the Object variant allows you to set the values of specific
fields during construction.
.. doctest::
>>> conf1 = OmegaConf.structured(SimpleTypes)
>>> conf2 = OmegaConf.structured(SimpleTypes())
>>> # The two configs are identical in this case
>>> assert conf1 == conf2
>>> # But the second form allow for easy customization of the values:
>>> conf3 = OmegaConf.structured(
... SimpleTypes(num=20,
... height=Height.TALL))
>>> print(OmegaConf.to_yaml(conf3))
num: 20
pi: 3.1415
is_awesome: true
height: TALL
description: text
data: !!binary |
YmluX2RhdGE=
path: !!python/object/apply:pathlib.PosixPath
- hello.txt
<BLANKLINE>
The resulting object is a regular OmegaConf ``DictConfig``, except that it will utilize the type information in the input class/object
and will validate the data at runtime.
The resulting object and will also rejects attempts to access or set fields that are not already defined
(similarly to configs with their to :ref:`struct-flag` set, but not recursive).
.. doctest::
>>> conf = OmegaConf.structured(SimpleTypes)
>>> with raises(AttributeError):
... conf.does_not_exist
Static type checker support
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Python type annotation can be used by static type checkers like Mypy/Pyre or by IDEs like PyCharm.
.. doctest::
>>> conf: SimpleTypes = OmegaConf.structured(SimpleTypes)
>>> # Passes static type checking
>>> conf.description = "text"
>>> # Fails static type checking (but will also raise a Validation error)
>>> with raises(ValidationError):
... conf.num = "foo"
This is duck-typing; the actual object type of ``conf`` is ``DictConfig``. You can access the underlying
type using ``OmegaConf.get_type()``:
.. doctest::
>>> type(conf).__name__
'DictConfig'
>>> OmegaConf.get_type(conf).__name__
'SimpleTypes'
Runtime type validation and conversion
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
OmegaConf supports merging configs together, as well as overriding from the command line.
This means some mistakes can not be identified by static type checkers, and runtime validation is required.
.. doctest::
>>> # This is okay, the string "100" can be converted to an int
>>> # Note that static type checkers will not like it and you should
>>> # avoid such explicit mistyped assignments.
>>> conf.num = "100"
>>> assert conf.num == 100
>>> with raises(ValidationError):
... # This will fail at runtime because num is an int
... # and foo cannot be converted to an int
... # Note that the static type checker can't help here.
... conf.merge_with_dotlist(["num=foo"])
Runtime validation and conversion works for all supported types, including Enums:
.. doctest::
>>> conf.height = Height.TALL
>>> assert conf.height == Height.TALL
>>> # The name of Height.TALL is TALL
>>> conf.height = "TALL"
>>> assert conf.height == Height.TALL
>>> # This works too
>>> conf.height = "Height.TALL"
>>> assert conf.height == Height.TALL
>>> # The ordinal of Height.TALL is 1
>>> conf.height = 1
>>> assert conf.height == Height.TALL
.. _nesting_structured_configs:
Nesting structured configs
^^^^^^^^^^^^^^^^^^^^^^^^^^
Structured configs can be nested.
.. doctest::
>>> @dataclass
... class User:
... # A simple user class with two missing fields
... name: str = MISSING
... height: Height = MISSING
>>>
>>> @dataclass
... class DuperUser(User):
... duper: bool = True
...
>>> # Group class contains two instances of User.
>>> @dataclass
... class Group:
... name: str = MISSING
... # data classes can be nested
... admin: User = field(default_factory=User)
...
... # You can also specify different defaults for nested classes
... manager: User = field(default_factory=lambda: User(name="manager", height=Height.TALL))
>>> conf: Group = OmegaConf.structured(Group)
>>> print(OmegaConf.to_yaml(conf))
name: ???
admin:
name: ???
height: ???
manager:
name: manager
height: TALL
<BLANKLINE>
OmegaConf will validate that assignment of nested objects is of the correct type:
.. doctest::
>>> with raises(ValidationError):
... conf.manager = 10
You can assign subclasses:
.. doctest::
>>> conf.manager = DuperUser()
>>> assert conf.manager.duper == True
.. _lists:
Lists
^^^^^
Structured Config fields annotated with ``typing.List`` or ``typing.Tuple`` can hold any type
supported by OmegaConf (``int``, ``float``. ``bool``, ``str``, ``bytes``, ``pathlib.Path``, ``Enum`` or Structured configs).
.. doctest::
>>> from dataclasses import dataclass, field
>>> from typing import List, Tuple
>>> @dataclass
... class User:
... name: str = MISSING
>>> @dataclass
... class ListsExample:
... # Typed list can hold Any, int, float, bool, str,
... # bytes, pathlib.Path and Enums as well as arbitrary Structured configs.
... ints: List[int] = field(default_factory=lambda: [10, 20, 30])
... bools: Tuple[bool, bool] = field(default_factory=lambda: (True, False))
... users: List[User] = field(default_factory=lambda: [User(name="omry")])
OmegaConf verifies at runtime that your Lists contains only values of the correct type.
In the example below, the OmegaConf object ``conf`` (which is actually an instance of ``DictConfig``) is duck-typed as ``ListExample``.
.. doctest::
>>> conf: ListsExample = OmegaConf.structured(ListsExample)
>>> # Okay, 10 is an int
>>> conf.ints.append(10)
>>> # Okay, "20" can be converted to an int
>>> conf.ints.append("20")
>>> conf.bools.append(True)
>>> conf.users.append(User(name="Joe"))
>>> # Not okay, 10 cannot be converted to a User
>>> with raises(ValidationError):
... conf.users.append(10)
.. _dictionaries:
Dictionaries
^^^^^^^^^^^^
Dictionaries are supported via annotation of structured config fields with ``typing.Dict``.
Keys must be typed as one of ``str``, ``int``, ``Enum``, ``float``, ``bytes``, or ``bool``. Values can
be any of the types supported by OmegaConf (``Any``, ``int``, ``float``, ``bool``, ``bytes``,
``pathlib.Path``, ``str`` and ``Enum`` as well as arbitrary Structured configs)
.. doctest::
>>> from dataclasses import dataclass, field
>>> from typing import Dict
>>> @dataclass
... class DictExample:
... ints: Dict[str, int] = field(default_factory=lambda: {"a": 10, "b": 20, "c": 30})
... bools: Dict[str, bool] = field(default_factory=lambda: {"Uno": True, "Zoro": False})
... users: Dict[str, User] = field(default_factory=lambda: {"omry": User(name="omry")})
Like with Lists, the types of values contained in Dicts are verified at runtime.
.. doctest::
>>> conf: DictExample = OmegaConf.structured(DictExample)
>>> # Okay, correct type is assigned
>>> conf.ints["d"] = 10
>>> conf.bools["Dos"] = True
>>> conf.users["James"] = User(name="Bond")
>>> # Not okay, 10 cannot be assigned to a User
>>> with raises(ValidationError):
... conf.users["Joe"] = 10
.. _nested_dict_and_list_annotations:
Nested dict and list annotations
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Dict and List annotations can be nested flexibly:
.. doctest::
>>> @dataclass
... class NestedContainers:
... dict_of_dict: Dict[str, Dict[str, int]]
... list_of_list: List[List[int]] = field(default_factory=lambda: [[123]])
... dict_of_list: Dict[str, List[int]] = MISSING
... list_of_dict: List[Dict[str, int]] = MISSING
...
...
>>> cfg = OmegaConf.structured(NestedContainers(dict_of_dict={"foo": {"bar": 123}}))
>>> print(OmegaConf.to_yaml(cfg))
dict_of_dict:
foo:
bar: 123
list_of_list:
- - 123
dict_of_list: ???
list_of_dict: ???
<BLANKLINE>
>>> with raises(ValidationError):
... cfg.list_of_dict = [["whoops"]] # not a list of dicts
.. _union_types:
Unions
^^^^^^
You can use `typing.Union <https://docs.python.org/3/library/typing.html#typing.Union>`_
to annotate unions of :ref:`simple_types`.
.. doctest::
>>> from typing import Union
>>>
>>> @dataclass
... class HasUnion:
... u: Union[float, bool] = 10.1
...
>>> cfg = OmegaConf.structured(HasUnion)
>>> assert cfg.u == 10.1
>>> cfg.u = True # ok
>>> cfg.u = b"binary" # bytes not compatible with union
Traceback (most recent call last):
...
omegaconf.errors.ValidationError: Cannot assign 'b'binary'' of type 'bytes' to Union[float, bool]
full_key: u
object_type=HasUnion
>>> OmegaConf.structured(HasUnion("abc")) # str not compatible
Traceback (most recent call last):
...
omegaconf.errors.ValidationError: Cannot assign 'abc' of type 'str' to Union[float, bool]
full_key: u
object_type=None
If any argument of a ``Union`` type hint is ``Optional``, the *whole*
union is considered optional. For example, OmegaConf treats all four of the
following type hints as equivalent:
- ``Optional[Union[int, str]]``
- ``Union[Optional[int], str]``
- ``Union[int, str, None]``
- ``Union[int, str, type(None)]``
Ordinarily, assignment to a structured config field results in coercion of the
assigned value to the field's type. For example, assigning an integer to a
field typed as ``str`` results in the integer being coverted to a string:
.. doctest::
>>> @dataclass
... class HasStr:
... s: str
...
>>> cfg = OmegaConf.structured(HasStr)
>>> cfg.s = 10.1
>>> assert cfg.s == "10.1" # The assigned value has been converted to a string
When dealing with ``Union`` types, however, conversion is disabled so as to
avoid ambiguity. Values assigned to a union-typed field of a structured config
must precisely match one of the types in the ``Union`` annotation:
.. doctest::
>>> @dataclass
... class StrOrInt:
... u: Union[str, float]
...
>>> cfg = OmegaConf.structured(StrOrInt)
>>> cfg.u = 10.1
>>> assert cfg.u == 10.1 # The assigned value remains a `float`.
>>> cfg.u = "10.1"
>>> assert cfg.u == "10.1" # The assigned value remains a `str`.
>>> cfg.u = 123 # Conversion from `int` to `float` does not occur.
Traceback (most recent call last):
...
omegaconf.errors.ValidationError: Value '123' of type 'int' is incompatible with type hint 'Union[str, float]'
full_key: u
object_type=StrOrInt
.. _other_special_features:
Other special features
^^^^^^^^^^^^^^^^^^^^^^
OmegaConf supports field modifiers such as ``MISSING`` and ``Optional``.
.. doctest::
>>> from typing import Optional
>>> from omegaconf import MISSING
>>> @dataclass
... class Modifiers:
... num: int = 10
... optional_num: Optional[int] = 10
... another_num: int = MISSING
... optional_dict: Optional[Dict[str, int]] = None
... list_optional: List[Optional[int]] = field(default_factory=lambda: [10, MISSING, None])
>>> conf: Modifiers = OmegaConf.structured(Modifiers)
Note for Python3.6 users: :ref:`pickling <save_and_load_pickle_file>`
structured configs with complex type annotations, such as dict-of-list or
list-of-optional, is not supported.
Mandatory missing values
++++++++++++++++++++++++
Fields assigned the constant ``MISSING`` do not have a value and the value must be set prior to accessing the field.
Otherwise a ``MissingMandatoryValue`` exception is raised.
.. doctest::
>>> with raises(MissingMandatoryValue):
... x = conf.another_num
>>> conf.another_num = 20
>>> assert conf.another_num == 20
Optional fields
+++++++++++++++
.. doctest::
>>> with raises(ValidationError):
... # regular fields cannot be assigned None
... conf.num = None
>>> conf.optional_num = None
>>> assert conf.optional_num is None
>>> assert conf.list_optional[2] is None
Interpolations
++++++++++++++
:ref:`interpolation` works normally with Structured configs, but static type checkers may object to you assigning a string to another type.
To work around this, use the special functions ``omegaconf.SI`` and ``omegaconf.II`` described below.
.. doctest::
>>> from omegaconf import SI, II
>>> @dataclass
... class Interpolation:
... val: int = 100
... # This will work, but static type checkers will complain
... a: int = "${val}"
... # This is equivalent to the above, but static type checkers
... # will not complain
... b: int = SI("${val}")
... # This is syntactic sugar; the input string is
... # wrapped with ${} automatically.
... c: int = II("val")
>>> conf: Interpolation = OmegaConf.structured(Interpolation)
>>> assert conf.a == 100
>>> assert conf.b == 100
>>> assert conf.c == 100
Interpolated values are validated, and converted when possible, to the annotated type when the interpolation is accessed, e.g:
.. doctest::
>>> from omegaconf import II
>>> @dataclass
... class Interpolation:
... str_key: str = "string"
... int_key: int = II("str_key")
>>> cfg = OmegaConf.structured(Interpolation)
>>> cfg.int_key # fails due to type mismatch
Traceback (most recent call last):
...
omegaconf.errors.InterpolationValidationError: Value 'string' could not be converted to Integer
full_key: int_key
object_type=Interpolation
>>> cfg.str_key = "1234" # string value
>>> assert cfg.int_key == 1234 # automatically convert str to int
Note however that this validation step is currently skipped for container node interpolations:
.. doctest::
>>> @dataclass
... class NotValidated:
... some_int: int = 0
... some_dict: Dict[str, str] = II("some_int")
>>> cfg = OmegaConf.structured(NotValidated)
>>> assert cfg.some_dict == 0 # type mismatch, but no error
Frozen classes
++++++++++++++
Frozen dataclasses and attr classes are supported via OmegaConf :ref:`read-only-flag`, which makes the entire config node and all if it's child nodes read-only.
.. doctest::
>>> from dataclasses import dataclass, field
>>> from typing import List
>>> @dataclass(frozen=True)
... class FrozenClass:
... x: int = 10
... list: List = field(default_factory=lambda: [1, 2, 3])
>>> conf = OmegaConf.structured(FrozenClass)
>>> with raises(ReadonlyConfigError):
... conf.x = 20
The read-only flag is recursive:
.. doctest::
>>> with raises(ReadonlyConfigError):
... conf.list[0] = 20
Merging with other configs
^^^^^^^^^^^^^^^^^^^^^^^^^^
Once an OmegaConf object is created, it can be merged with others regardless of its source.
OmegaConf configs created from Structured configs contains type information that is enforced at runtime.
This can be used to validate config files based on a schema specified in a structured config class
**example.yaml** file:
.. include:: example.yaml
:code: yaml
A Schema for the above config can be defined like this.
.. doctest::
>>> @dataclass
... class Server:
... port: int = MISSING
>>> @dataclass
... class Log:
... file: str = MISSING
... rotation: int = MISSING
>>> @dataclass
... class MyConfig:
... server: Server = field(default_factory=Server)
... log: Log = field(default_factory=Log)
... users: List[int] = field(default_factory=list)
I intentionally made an error in the type of the users list (``List[int]`` should be ``List[str]``).
This will cause a validation error when merging the config from the file with that from the scheme.
.. doctest::
>>> schema = OmegaConf.structured(MyConfig)
>>> conf = OmegaConf.load("source/example.yaml")
>>> with raises(ValidationError):
... OmegaConf.merge(schema, conf)
Using Metadata to Ignore Fields
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
OmegaConf inspects the metadata of dataclasss / attr class fields,
ignoring any fields where ``metadata["omegaconf_ignore"]`` is ``True``.
When defining a dataclass or attr class, fields can be given metadata by passing the
``metadata`` keyword argument to the ``dataclasses.field`` function or the ``attrs.field`` function:
.. doctest::
>>> @dataclass
... class HasIgnoreMetadata:
... normal_field: int = 1
... field_ignored: int = field(default=2, metadata={"omegaconf_ignore": True})
... field_not_ignored: int = field(default=3, metadata={"omegaconf_ignore": False})
...
>>> cfg = OmegaConf.create(HasIgnoreMetadata)
>>> cfg
{'normal_field': 1, 'field_not_ignored': 3}
In the above example, ``field_ignored`` is ignored by OmegaConf.
|