1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
|
from __future__ import print_function
import pkg_resources
import xml.etree.ElementTree as ET
class Instruction:
"""Instruction is defined by its mnemonic name (in Intel-style assembly).
An instruction may have multiple forms, that mainly differ by operand types.
:ivar name: instruction name in Intel-style assembly (PeachPy, NASM and YASM assemblers).
:ivar summary: a summary description of the instruction name.
:ivar forms: a list of :class:`InstructionForm` objects representing the instruction forms.
"""
def __init__(self, name):
self.name = name
self.summary = None
self.forms = []
def __str__(self):
"""Returns string representation of the instruction and the number of instruction forms"""
return "%s (%d forms)" % (self.name, len(self.forms))
def __repr__(self):
return str(self)
class InstructionForm:
"""Instruction form is a combination of mnemonic name and operand types.
An instruction form may have multiple possible encodings.
:ivar name: instruction name in PeachPy assembler.
:ivar gas_name: instruction form name in GNU assembler (gas).
:ivar cancelling_inputs: indicates that the instruction form has not dependency on the values of input operands
when they refer to the same register. E.g. **VPXORD zmm1, zmm0, zmm0** does not depend on *zmm0*.
Instruction forms with cancelling inputs have only two input operands, which have the same register type.
:ivar operands: a list of :class:`Operand` objects representing the instruction operands.
:ivar implicit_inputs: a set of register names that are implicitly read by this instruction.
:ivar implicit_outputs: a set of register names that are implicitly written by this instruction.
:ivar encodings: a list of :class:`Encoding` objects representing the possible encodings for this instruction.
"""
def __init__(self, name):
self.name = name
self.gas_name = None
self.cancelling_inputs = None
self.operands = []
self.implicit_inputs = set()
self.implicit_outputs = set()
self.encodings = []
def __str__(self):
"""Returns string representation of the instruction form and its operands in Intel-style assembly"""
if self.operands:
return self.name + " " + ", ".join(operand.type for operand in self.operands)
else:
return self.name
def __repr__(self):
return str(self)
class Operand:
"""An explicit instruction operand.
:ivar type: the type of the instruction operand. Possible values are:
"1"
The constant value `1`.
"3"
The constant value `3`.
"al"
The al register.
"ax"
The ax register.
"eax"
The eax register.
"rax"
The rax register.
"cl"
The cl register.
"rel8"
An 8-bit signed offset relative to the address of instruction end.
"rel32"
A 32-bit signed offset relative to the address of instruction end.
"imm8"
An 8-bit immediate value.
"imm16"
A 16-bit immediate value.
"imm32"
A 32-bit immediate value.
"imm64"
A 64-bit immediate value.
"r8"
An 8-bit general-purpose register (al, bl, cl, dl, sil, dil, bpl, spl, r8b-r15b).
"r16"
A 16-bit general-purpose register (ax, bx, cx, dx, si, di, bp, sp, r8w-r15w).
"r32"
A 32-bit general-purpose register (eax, ebx, ecx, edx, esi, edi, ebp, esp, r8d-r15d).
"r64"
A 64-bit general-purpose register (rax, rbx, rcx, rdx, rsi, rdi, rbp, rsp, r8-r15).
"zmm"
A 512-bit ZMM SIMD register (zmm0-zmm31).
"zmm{k}"
A 512-bit ZMM SIMD register (zmm0-zmm31), optionally masked by a mask register (k1-k7).
"S(zmm)"
A 512-bit ZMM SIMD register (zmm0-zmm31), optionally with an elements swizzle ({cdab}, {badc}, \
{dacb}, {aaaa}, {bbbb}, {cccc}, {dddd}).
"Cf32(zmm)"
A 512-bit ZMM SIMD register (zmm0-zmm31), optionally with a single-precision store down-conversion \
({float16}, {uint8}, {sint8}, {uint16}, {sint16}).
"Ci32(zmm)"
A 512-bit ZMM SIMD register (zmm0-zmm31), optionally with a 32-bit integer store down-conversion \
({uint8}, {sint8}, {uint16}, {sint16}).
"k"
A mask register (k0-k7).
"k{k}"
A mask register (k0-k7), optionally masked by another mask register (k1-k7).
"m"
A memory operand of any size.
"m8"
An 8-bit memory operand.
"m16"
A 16-bit memory operand.
"m32"
A 32-bit memory operand.
"m64"
A 64-bit memory operand.
"m80"
An 80-bit memory operand.
"m128"
A 128-bit memory operand.
"m512"
A 512-bit memory operand.
"m512{k}"
A 512-bit memory operand, optionally masked by a mask register (k1-k7).
"BCf32(m512)"
A 512-bit memory operand, optionally with a single-precision memory broadcast/conversion ({1to16}, \
{4to16}, {float16}, {uint8}, {uint16}, {sint16})
"BCi32(m512)"
A 512-bit memory operand, optionally with a 32-bit integer memory broadcast/conversion ({1to16}, {4to16}, \
{uint8}, {sint8}, {uint16}, {sint16})
"B64(m512)"
A 512-bit memory operand, optionally with a 64-bit elements broadcast ({1to8}, {4to8})
"Cf32(m512)"
A 512-bit memory operand, optionally with a single-precision memory up-conversion ({float16}, \
{uint8}, {sint8}, {uint16}, {sint16})
"Ci32(m512)"
A 512-bit memory operand, optionally with a 32-bit integer memory up-conversion ({uint8}, {sint8}, \
{uint16}, {sint16})
"vm32z"
A vector of memory addresses using VSIB with 32-bit indices in ZMM register.
"vm32z{k}"
A vector of memory addresses using VSIB with 32-bit indices in ZMM register masked by a mask register \
(k1-k7).
"Cf32(vm32z)"
A vector of memory addresses using VSIB with 32-bit indices in ZMM register, optionally with a \
single-precision memory up-conversion ({float16}, {uint8}, {sint8}, {uint16}, {sint16}).
"Ci32(vm32z)"
A vector of memory addresses using VSIB with 32-bit indices in ZMM register, optionally with a 32-bit \
integer memory up-conversion ({uint8}, {sint8}, {uint16}, {sint16}).
"Cf32(vm32z){k}"
A vector of memory addresses using VSIB with 32-bit indices in ZMM register masked by a mask register, \
optionally with a single-precision memory up-conversion ({float16}, {uint8}, {sint8}, {uint16}, {sint16}).
"{sae}"
Suppress-all-exceptions modifier. This operand is optional and can be omitted.
"{er}"
Embedded rounding control. This operand is optional and can be omitted.
:ivar allow_conversion: for a memory operand with BCf32/BCi32 primitive indicates if memory conversion primitive \
can be used for the operand. For all other types of operands this variable is meaningless, and its value is None.
:ivar allow_1to16: for a memory operand with BCf32/BCi32 primitive indicates if {1to16} primitive can be used for \
the operand. For all other types of operands this variable is meaningless, and its value is None.
:ivar is_input: indicates if the instruction reads the variable specified by this operand.
:ivar is_output: indicates if the instruction writes the variable specified by this operand.
:ivar extended_size: for immediate operands the size of the value in bytes after size-extension.
The extended size affects which operand values can be encoded. E.g. a signed imm8 operand would normally \
encode values in the [-128, 127] range. But if it is extended to 4 bytes, it can also encode values in \
[2**32 - 128, 2**32 - 1] range.
"""
def __init__(self, type):
self.type = type
self.allow_1to16 = None
self.allow_conversion = None
self.is_input = False
self.is_output = False
self.extended_size = None
if self.type.startswith("S") and self.is_memory:
self.allow_1to16 = True
self.allow_conversion = True
def __str__(self):
"""Return string representation of the operand type and its read/write attributes"""
return {
(False, False): self.type,
(True, False): "[in] " + self.type,
(False, True): "[out] " + self.type,
(True, True): "[in/out] " + self.type
}[(self.is_input, self.is_output)]
def __repr__(self):
return str(self)
@property
def is_variable(self):
"""Indicates whether this operand refers to a variable (i.e. specifies either a register or a memory location)"""
return self.is_input or self.is_output
@property
def is_register(self):
"""Indicates whether this operand specifies a register"""
return self.type \
in ["al", "cl", "ax", "eax", "rax", "r8", "r16", "r32", "r64", "r8l", "r16l", "r32l",
"zmm", "zmm{k}", "S(zmm)", "Cf32(zmm)", "Ci32(zmm)", "k", "k{k}"]
@property
def is_memory(self):
"""Indicates whether this operand specifies a memory location"""
return self.type \
in ["m", "m8", "m16", "m32", "m64", "m80", "m128",
"m512", "m512{k}", "BCf32(m512)", "BCi32(m512)", "B64(m512)", "Cf32(m512)", "Ci32(m512)",
"vm32z", "vm32z{k}", "Cf32(vm32z)", "Ci32(vm32z)", "Cf32(vm32z){k}"]
@property
def is_immediate(self):
"""Indicates whether this operand is an immediate constant"""
return self.type in ["imm8", "imm16", "imm32", "imm64"]
class Encoding:
"""Instruction encoding
:ivar components: a list of :class:`Prefix`, :class:`REX`, :class:`VEX`, :class:`Opcode`, :class:`ModRM`, \
:class:`RegisterByte`, :class:`Immediate`, :class:`DataOffset`, :class:`CodeOffset` objects that \
specify the components of encoded instruction
"""
def __init__(self):
self.components = []
class Prefix:
"""0x66/0xF2/0xF3 prefix
:ivar is_mandatory: indicates that the prefix is used not for its primary purpose, but for extending instruction \
opcode. Mandatory prefixes are common in SSE instructions. Non-mandatory prefix is usually 0x66 that modifies \
the instruction to operate on 16-bit operands.
:ivar byte: numerical representation of the prefix byte.
"""
def __init__(self):
self.byte = None
self.is_mandatory = None
class REX:
"""REX prefix.
Encoding may have only one REX prefix and if present, it immediately precedes the opcode.
:ivar is_mandatory: indicates whether the REX prefix must be encoded even if no extended registers are used.
REX is mandatory for most 64-bit instructions (encoded with REX.W = 1) and instructions that operate on the \
extended set of 8-bit registers (to indicate access to dil/sil/bpl/spl as opposed to ah/bh/ch/dh which use the \
same ModR/M).
:ivar W: the REX.W bit. Possible values are 0, 1, and None.
None indicates that the bit is ignored.
:ivar R: the REX.R bit. Possible values are 0, 1, None, or a reference to one of the instruction operands.
The value None indicates that this bit is ignored. \
If R is a reference to an instruction operand, the operand is of register type and REX.R bit specifies the \
high bit (bit 3) of the register number.
:ivar B: the REX.B bit. Possible values are 0, 1, None, or a reference to one of the instruction operands.
The value None indicates that this bit is ignored. \
If R is a reference to an instruction operand, the operand can be of register or memory type. If the operand \
is of register type, the REX.R bit specifies the high bit (bit 3) of the register number, and the REX.X bit is \
ignored. If the operand is of memory type, the REX.R bit specifies the high bit (bit 3) of the base register \
number, and the X instance variable refers to the same operand.
:ivar X: the REX.X bit. Possible values are 0, 1, None, or a reference to one of the instruction operands.
The value None indicates that this bit is ignored. \
If X is a reference to an instruction operand, the operand is of memory type and the REX.X bit specifies the \
high bit (bit 3) of the index register number, and the B instance variable refers to the same operand.
"""
def __init__(self):
self.is_mandatory = None
self.W = None
self.R = None
self.X = None
self.B = None
def set_ignored(self, w=0, r=0, x=0, b=0):
"""Sets values for ignored bits
:param int w: the value (0 or 1) to be assigned to REX.W bit if it is ignored.
:param int r: the value (0 or 1) to be assigned to REX.R bit if it is ignored.
:param int x: the value (0 or 1) to be assigned to REX.X bit if it is ignored.
:param int b: the value (0 or 1) to be assigned to REX.B bit if it is ignored.
"""
assert w in [0, 1], "REX.W can be only 0 or 1"
assert r in [0, 1], "REX.R can be only 0 or 1"
assert x in [0, 1], "REX.X can be only 0 or 1"
assert b in [0, 1], "REX.B can be only 0 or 1"
if self.W is None:
self.W = w
if self.R is None:
self.R = r
if self.X is None:
self.X = x
if self.B is None:
self.B = b
class VEX:
"""VEX prefix.
Encoding may have only one VEX prefix and if present, it immediately precedes the opcode, and no other prefix is \
allowed.
:ivar mmmmm: the VEX m-mmmm (implied leading opcode bytes) field. Possible values are:
0b00001
Implies 0x0F leading opcode byte.
0b00011
Implies 0x0F 0x3A leading opcode bytes.
Only VEX prefix with m-mmmm equal to 0b00001 could be encoded in two bytes.
:ivar pp: the VEX pp (implied legacy prefix) field. Possible values are:
0b00
No implied prefix.
0b01
Implied 0x66 prefix.
0b10
Implied 0xF3 prefix.
0b11
Implied 0xF2 prefix.
:ivar W: the VEX.W bit. Possible values are 0, 1, and None.
None indicates that the bit is ignored.
:ivar L: the VEX.L bit. Possible values are 0 or 1.
:ivar R: the VEX.R bit. Possible values are 0, 1, None, or a reference to one of the instruction operands.
The value None indicates that this bit is ignored. \
If R is a reference to an instruction operand, the operand is of register type and VEX.R bit specifies the \
high bit (bit 3) of the register number.
:ivar B: the VEX.B bit. Possible values are 0, 1, None, or a reference to one of the instruction operands.
The value None indicates that this bit is ignored. \
If R is a reference to an instruction operand, the operand can be of register or memory type. If the operand is \
of register type, the VEX.R bit specifies the high bit (bit 3) of the register number, and the VEX.X bit is \
ignored. If the operand is of memory type, the VEX.R bit specifies the high bit (bit 3) of the base register \
number, and the X instance variable refers to the same operand.
:ivar X: the VEX.X bit. Possible values are 0, 1, None, or a reference to one of the instruction operands.
The value None indicates that this bit is ignored. \
If X is a reference to an instruction operand, the operand is of memory type and the VEX.X bit specifies the \
high bit (bit 3) of the index register number, and the B instance variable refers to the same operand.
:ivar vvvv: the VEX vvvv field. Possible values are 0b0000 or a reference to one of the instruction operands.
The value 0b0000 indicates that this field is not used. \
If vvvv is a reference to an instruction operand, the operand is of register type and VEX.vvvv field specifies \
its number.
"""
def __init__(self):
self.type = None
self.mmmmm = None
self.pp = None
self.W = None
self.L = None
self.R = None
self.X = None
self.B = None
self.vvvv = None
def set_ignored(self, w=0, r=0, x=0, b=0):
"""Sets values for ignored bits
:param int w: the value (0 or 1) to be assigned to VEX.W bit if it is ignored.
:param int r: the value (0 or 1) to be assigned to VEX.R bit if it is ignored.
:param int x: the value (0 or 1) to be assigned to VEX.X bit if it is ignored.
:param int b: the value (0 or 1) to be assigned to VEX.B bit if it is ignored.
"""
assert w in [0, 1], "VEX.W can be only 0 or 1"
assert r in [0, 1], "VEX.R can be only 0 or 1"
assert x in [0, 1], "VEX.X can be only 0 or 1"
assert b in [0, 1], "VEX.B can be only 0 or 1"
if self.W is None:
self.W = w
if self.R is None:
self.R = r
if self.X is None:
self.X = x
if self.B is None:
self.B = b
class MVEX:
"""MVEX prefix.
Encoding may have only one MVEX prefix and if present, it immediately precedes the opcode, and no other prefix is \
allowed.
:ivar mmmm: the MVEX mmmm (compressed legacy escape) field. Identical to two low bits of VEX.m-mmmm field. \
Possible values are:
0b0001
Implies 0x0F leading opcode byte.
0b0010
Implies 0x0F 0x38 leading opcode bytes.
0b0011
Implies 0x0F 0x3A leading opcode bytes.
:ivar pp: the MVEX pp (compressed legacy prefix) field. Possible values are:
0b00
No implied prefix.
0b01
Implied 0x66 prefix.
0b10
Implied 0xF3 prefix.
0b11
Implied 0xF2 prefix.
:ivar W: the MVEX.W bit. Possible values are 0, 1, and None.
None indicates that the bit is ignored.
:ivar RR: the MVEX.R'R bits. Possible values are None, or a reference to an register-type instruction operand.
None indicates that the field is ignored. \
The R' bit specifies bit 4 of the register number and the R bit specifies bit 3 of the register number.
:ivar B: the MVEX.B bit. Possible values are None, or a reference to one of the instruction operands.
None indicates that this bit is ignored. \
If R is a reference to an instruction operand, the operand can be of register or memory type. If the operand is\
of register type, the MVEX.R bit specifies the high bit (bit 3) of the register number, and the MVEX.X bit is \
ignored. If the operand is of memory type, the MVEX.R bit specifies the high bit (bit 3) of the base register \
number, and the X instance variable refers to the same operand.
:ivar X: the MVEX.X bit. Possible values are None, or a reference to one of the instruction operands.
The value None indicates that this bit is ignored. \
If X is a reference to an instruction operand, the operand is of memory type and the MVEX.X bit specifies the \
high bit (bit 3) of the index register number, and the B instance variable refers to the same operand.
:ivar vvvv: the MVEX vvvv field. Possible values are 0b0000 or a reference to one of the instruction operands.
The value 0b0000 indicates that this field is not used. \
If vvvv is a reference to an instruction operand, the operand is of register type and MVEX.vvvv field \
specifies the register number.
:ivar V: the MVEX V field. Possible values are 0, or a reference to one of the instruction operands.
The value 0 indicates that this field is not used (MVEX.vvvv is not used or encodes a general-purpose register).
:ivar SSS: the MVEX SSS (swizzle/broadcast/up-convert/down-convert) field. Possible values are 0, or a reference \
to one of the instruction operands.
The value 0 indicates that this field is not used. \
If SSS is a reference to an instruction operand, the operand type either includes a swizzle, broadcast, or \
conversion primitive, or the operand type is {er} (static rounding control), or the operand type is {sae}. \
If SSS is a reference to a memory/register operand, it encodes the primitive applied to the operand. \
If SSS is a reference to a static rounding control operand, it the high bit of MVEX.SSS encodes \
suppress-all-exceptions mode (1 = enabled, 0 = disabled) and the two low bits encode rounding mode (round \
to nearest even = 0b00, round down = 0b01, round up = 0b10, round toward zero = 0b11) \
If SSS is a reference to a suppress-all-exceptions operand, the high bit of MVEX.SSS encodes the \
suppress-all-exceptions mode (1 = enabled, 0 = disabled) and the two low bits are ignored.
:ivar aaa: the MVEX aaa (embedded opmask register specifier) field. Possible values are 0 or a reference to one of \
the instruction operands.
The value 0 indicates that this field is not used. \
If aaa is a reference to an instruction operand, the operand supports register mask, and MVEX.aaa encodes the \
mask register.
:ivar E: the MVEX E (eviction hint/MVEX.SSS override) bit. Possible values are 0, 1, or a reference to an \
instruction operand.
The value 0 indicates that MVEX.SSS field specifies swizzle primitive for a register operand. \
The value 1 indicates that MVEX.SSS field specifies static rounding mode and/or suppress-all-exceptions mode \
for the instruction. \
If E is a reference to an instruction operand, the operand is of memory type, and MVEX.E encodes whether \
eviction hint applies to the operand (1 = eviction hint set, 0 = eviction hint not set).
:ivar disp8xN: the N value used for encoding compressed 8-bit displacement of memory operands when no broadcast or \
conversion is specified. Possible values are powers of 2 in [4, 64] range or None.
None indicates that this instruction form does not use displacement (the form has no memory operands).
When broadcast or conversion is specified, N is decreased by the following factors:
{1to16}
N is decreased by 16
{4to16}
N is decreased by 4
{1to8}
N is decreased by 8
{4to8}
N is decreased by 2
{float16}
N is decreased by 2
{uint16}
N is decreased by 2
{sint16}
N is decreased by 2
{uint8}
N is decreased by 4
{sint8}
N is decreased by 4
"""
def __init__(self):
self.mmmm = None
self.pp = None
self.W = None
self.LL = None
self.RR = None
self.B = None
self.X = None
self.vvvv = None
self.V = None
self.SSS = None
self.aaa = None
def set_ignored(self, w=0, rr=0, x=0, z=0):
"""Sets values for ignored bits
:param int w: the value (0 or 1) to be assigned to MVEX.W bit if it is ignored.
:param int rr: the value (0b00, 0b01, 0b10, or 0b11) to be assigned to MVEX.R'R field if it is ignored.
:param int x: the value (0 or 1) to be assigned to MVEX.X bit if it is ignored.
:param int z: the value (0 or 1) to be assigned to MVEX.z bit if it is ignored.
"""
assert w in [0, 1], "MVEX.W can be only 0 or 1"
assert rr in [0b00, 0b01, 0b10, 0b11], "MVEX.R'R must be a 2-bit integer value"
assert x in [0, 1], "MVEX.X can be only 0 or 1"
assert z in [0, 1], "MVEX.z can be only 0 or 1"
if self.W is None:
self.W = w
if self.RR is None:
self.RR = rr
if self.X is None:
self.X = x
if self.z is None:
self.z = z
class Opcode:
"""Operation code
Encoding may include more than one opcode. Opcodes do not necessarily go in sequence.
:ivar byte: operation code as a byte integer (0 <= `byte` <= 255)
:ivar addend: None or a reference to an instruction operand.
If addend is a reference to an instruction operand, the operand is of register type and the three lowest bits \
of its number must be ORed with `byte` to produce the final opcode value.
"""
def __init__(self, byte):
self.byte = byte
self.addend = None
def __str__(self):
return "0x%02X".format(self.byte)
def __repr__(self):
return str(self)
class ModRM:
"""Mod R/M byte that can encode a register operand, a memory operand, or provide an opcode extension.
If memory operand requires SIB byte, the SIB byte immediately follows the Mod R/M byte in instruction encoding.
:ivar mode: addressing mode. Possible values are 0b11 or a reference to an instruction operand.
If mode value is 0b11, the Mod R/M encodes two register operands or a register operand and an opcode extension.
If mode is a reference to an instruction operand, the operand has memory type and its addressing mode must be \
coded instruction the Mod R/M mode field.
:ivar rm: a register or memory operand. Must be a reference to an instruction operand.
If rm is a reference to a operand, rm specifies bits 0-2 of the register number. If the operand is of memory \
type, rm specifies bits 0-2 of the base register number unless a SIB byte is used.
:ivar reg: a register or an opcode extension. Possible values are an int value, or a reference to an instruction \
operand.
If reg is an int value, this value extends the opcode and must be directly coded in the reg field.
If reg is a reference to an instruction operand, the operand is of register type, and the reg field specifies \
bits 0-2 of the register number.
"""
def __init__(self):
self.mode = None
self.rm = None
self.reg = None
def set_ignored(self, mode=0b11, rm=0):
"""Sets values for ignored fields
:param int mode: the value (0b00, 0b01, 0b10, or 0b11) to be assigned to Mod R/M mode field if it is ignored.
:param int rm: the value (an integer, 0 <= rm <= 7) to be assigned to Mod R/M rm field if it is ignored.
"""
assert mode in [0b00, 0b01, 0b10, 0b11], "Mod R/M mode must be 0b00, 0b01, 0b10 or 0b11"
assert rm in [0, 1, 2, 3, 4, 5, 6, 7], "Mod R/M rm must be an integer in 0-7 range"
if self.mode is None:
self.mode = mode
if self.rm is None:
self.rm = rm
class Immediate:
"""Immediate constant embedded into instruction encoding.
:ivar size: size of the constant in bytes. Possible values are 1, 2, 4, or 8.
:ivar value: value of the constant. Can be an int value or a reference to an instruction operand.
If value is a reference to an instruction operand, the operand has "imm" type of the matching size.
"""
def __init__(self):
self.size = None
self.value = None
class RegisterByte:
def __init__(self):
self.register = None
self.payload = None
class CodeOffset:
"""Relative code offset embedded into instruction encoding.
Offset is relative to the end of the instruction.
:ivar size: size of the offset in bytes. Possible values are 1 or 4.
:ivar value: value of the offset. Must be a reference to an instruction operand.
The instruction operand has "rel" type of the matching size.
"""
def __init__(self):
self.size = None
self.value = None
class DataOffset:
"""Absolute data offset embedded into instruction encoding.
Only MOV instruction has forms that use direct data offset.
:ivar size: size of the offset in bytes. Possible values are 4 or 8.
:ivar value: value of the offset. Must be a reference to an instruction operand.
The instruction operand has "moffs" type of the matching size.
"""
def __init__(self):
self.size = None
self.value = None
def _parse_boolean(xml_boolean):
"""Converts strings "true" and "false" from XML files to Python bool"""
if xml_boolean is not None:
assert xml_boolean in ["true", "false"], \
"The boolean string must be \"true\" or \"false\""
return {"true": True, "false": False}[xml_boolean]
def _parse_value(value, operands, base=None):
"""Parses string, which can be a number, a reference to an operand, or None
:param value: the string to parse.
:param operands: the list of operands. If value starts with "#", it is interpreted as a reference to an operand.
:param base: the base of the integer representation of value.
"""
if value is not None:
if value.startswith("#"):
return operands[int(value[1:])]
else:
assert base is not None
return int(value, base)
def read_instruction_set(filename=None):
"""Reads instruction set data from an XML file and returns a list of :class:`Instruction` objects
:param filename: path to an XML file with instruction set data
"""
if filename is None:
data = pkg_resources.resource_stream("opcodes", "k1om.xml")
xml_tree = ET.parse(data)
else:
xml_tree = ET.parse(filename)
xml_instruction_set = xml_tree.getroot()
assert xml_instruction_set.tag == "InstructionSet"
assert xml_instruction_set.attrib["name"] == "k1om"
instruction_set = []
for xml_instruction in xml_instruction_set:
assert xml_instruction.tag == "Instruction"
instruction = Instruction(xml_instruction.attrib["name"])
instruction.summary = xml_instruction.attrib["summary"]
for xml_instruction_form in xml_instruction:
instruction_form = InstructionForm(instruction.name)
instruction_form.gas_name = xml_instruction_form.attrib["gas-name"]
instruction_form.cancelling_inputs = \
_parse_boolean(xml_instruction_form.attrib.get("cancelling-inputs", "false"))
for xml_operand in xml_instruction_form.findall("Operand"):
operand = Operand(xml_operand.attrib["type"])
allow_conversion = _parse_boolean(xml_operand.attrib.get("allow-conversion"))
if allow_conversion is not None:
operand.allow_conversion = allow_conversion
allow_1to16 = _parse_boolean(xml_operand.attrib.get("allow-1to16"))
if allow_1to16 is not None:
operand.allow_1to16 = allow_1to16
operand.is_input = _parse_boolean(xml_operand.attrib.get("input", "false"))
operand.is_output = _parse_boolean(xml_operand.attrib.get("output", "false"))
operand.extended_size = _parse_value(xml_operand.attrib.get("extended-size"), [], 10)
instruction_form.operands.append(operand)
for xml_implicit_operand in xml_instruction_form.findall("ImplicitOperand"):
if _parse_boolean(xml_implicit_operand.attrib["input"]):
instruction_form.implicit_inputs.add(xml_implicit_operand.attrib["id"])
if _parse_boolean(xml_implicit_operand.attrib["output"]):
instruction_form.implicit_outputs.add(xml_implicit_operand.attrib["id"])
for xml_encoding in xml_instruction_form.findall("Encoding"):
encoding = Encoding()
for xml_component in xml_encoding:
if xml_component.tag == "Prefix":
prefix = Prefix()
prefix.byte = _parse_value(xml_component.attrib.get("byte"), [], 16)
assert prefix.byte in [0x66, 0xF2, 0xF3]
prefix.is_mandatory = _parse_boolean(xml_component.attrib.get("mandatory"))
encoding.components.append(prefix)
elif xml_component.tag == "REX":
rex = REX()
rex.is_mandatory = _parse_boolean(xml_component.attrib["mandatory"])
rex.W = _parse_value(xml_component.attrib.get("W"), [], 2)
rex.R = _parse_value(xml_component.attrib.get("R"), instruction_form.operands, 2)
rex.B = _parse_value(xml_component.attrib.get("B"), instruction_form.operands, 2)
rex.X = _parse_value(xml_component.attrib.get("X"), instruction_form.operands, 2)
encoding.components.append(rex)
elif xml_component.tag == "VEX":
vex = VEX()
vex.pp = int(xml_component.attrib["pp"], 2)
vex.mmmmm = int(xml_component.attrib["m-mmmm"], 2)
vex.W = _parse_value(xml_component.attrib.get("W"), [], 2)
vex.L = int(xml_component.attrib["L"], 2)
vex.R = _parse_value(xml_component.attrib.get("R"), instruction_form.operands, 2)
vex.B = _parse_value(xml_component.attrib.get("B"), instruction_form.operands, 2)
vex.X = _parse_value(xml_component.attrib.get("X"), instruction_form.operands)
vex.vvvv = _parse_value(xml_component.attrib.get("vvvv"), instruction_form.operands, 2)
encoding.components.append(vex)
elif xml_component.tag == "MVEX":
mvex = MVEX()
mvex.pp = int(xml_component.attrib["pp"], 2)
mvex.mmmm = int(xml_component.attrib["mmmm"], 2)
mvex.W = _parse_value(xml_component.attrib.get("W"), [], 2)
mvex.vvvv = _parse_value(xml_component.attrib["vvvv"], instruction_form.operands, 2)
mvex.V = _parse_value(xml_component.attrib["V"], instruction_form.operands, 2)
mvex.SSS = _parse_value(xml_component.attrib["SSS"], instruction_form.operands, 2)
mvex.aaa = _parse_value(xml_component.attrib["aaa"], instruction_form.operands, 2)
mvex.X = _parse_value(xml_component.attrib.get("X"), instruction_form.operands)
mvex.B = _parse_value(xml_component.attrib["B"], instruction_form.operands)
mvex.RR = _parse_value(xml_component.attrib.get("RR"), instruction_form.operands)
encoding.components.append(mvex)
elif xml_component.tag == "Opcode":
opcode = Opcode(int(xml_component.attrib["byte"], 16))
opcode.addend = _parse_value(xml_component.get("addend"), instruction_form.operands)
encoding.components.append(opcode)
elif xml_component.tag == "ModRM":
modrm = ModRM()
modrm.mode = _parse_value(xml_component.attrib.get("mode"), instruction_form.operands, 2)
modrm.reg = _parse_value(xml_component.attrib.get("reg"), instruction_form.operands, 10)
modrm.rm = _parse_value(xml_component.attrib.get("rm"), instruction_form.operands)
encoding.components.append(modrm)
elif xml_component.tag == "Immediate":
assert "size" in xml_component.attrib
immediate = Immediate()
immediate.size = int(xml_component.attrib["size"])
assert immediate.size in [1, 2, 4, 8]
immediate.value = _parse_value(xml_component.attrib.get("value"), instruction_form.operands)
encoding.components.append(immediate)
elif xml_component.tag == "CodeOffset":
assert "size" in xml_component.attrib
code_offset = CodeOffset()
code_offset.size = int(xml_component.attrib["size"])
assert code_offset.size in [1, 4]
code_offset.value = _parse_value(xml_component.attrib.get("value"), instruction_form.operands)
encoding.components.append(code_offset)
elif xml_component.tag == "DataOffset":
assert "size" in xml_component.attrib
data_offset = DataOffset()
data_offset.size = int(xml_component.attrib["size"])
assert data_offset.size in [4, 8]
data_offset.value = _parse_value(xml_component.attrib.get("value"), instruction_form.operands)
encoding.components.append(data_offset)
else:
print("Unknown encoding tag: " + xml_component.tag)
instruction_form.encodings.append(encoding)
instruction.forms.append(instruction_form)
instruction_set.append(instruction)
return instruction_set
|