File: Padulles1.py

package info (click to toggle)
python-opem 1.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,076 kB
  • sloc: python: 7,777; sh: 27; makefile: 10
file content (425 lines) | stat: -rw-r--r-- 15,285 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
# -*- coding: utf-8 -*-
"""Padulles 1 model functions."""
import math
from opem.Params import Padulles_InputParams as InputParams
from opem.Params import Padulles_Outparams as OutputParams
from opem.Params import R, F, uF, HHV, Padulles_Description, Overall_Params_Max_Description, Overall_Params_Linear_Description, Report_Message
from opem.Static.Amphlett import Power_Calc, Power_Thermal_Calc, Power_Total_Calc, Linear_Aprox_Params_Calc, Max_Params_Calc
import opem.Functions
import os


def Enernst_Calc(E0, N0, T, PH2, PO2):
    """
    Calculate Enernst.

    :param E0: open cell voltage [V]
    :type E0: float
    :param N0: number of fuel cells in the stack
    :type N0: int
    :param T: cell operation temperature [K]
    :type T: float
    :param PH2:  partial pressure [atm]
    :type PH2: float
    :param PO2: partial pressure [atm]
    :type PO2: float
    :return: Enernest [V] as float
    """
    try:
        result = N0 * (E0 + (R * T / (2 * F)) * math.log(PH2 * ((PO2)**0.5)))
        return result
    except (TypeError, ZeroDivisionError, OverflowError, ValueError):
        print(
            "[Error] Enernst Calculation Failed (E0:%s, N0:%s, T:%s, PH2:%s, PO2:%s)" %
            (str(E0), str(N0), str(T), str(PH2), str(PO2)))


def PH2_Calc(KH2, tH2, Kr, I, qH2):
    """
    Calculate PH2.

    :param KH2: hydrogen valve constant [kmol.s^(-1).atm^(-1)]
    :type KH2: float
    :param tH2: hydrogen time constant [s]
    :type tH2: float
    :param Kr: modeling constant [kmol.s^(-1).A^(-1)]
    :type Kr: float
    :param I: cell load current [A]
    :type I: float
    :param qH2: molar flow of hydrogen [kmol.s^(-1)]
    :type qH2: float
    :return: PH2 [atm] as float
    """
    try:
        result = ((1 / KH2) / (1 + tH2)) * (qH2 - 2 * Kr * I)
        return result
    except (TypeError, ZeroDivisionError):
        print(
            "[Error] PH2 Calculation Failed (KH2:%s, tH2:%s, Kr:%s, I:%s, qH2:%s)" %
            (str(KH2), str(tH2), str(Kr), str(I), str(qH2)))


def PO2_Calc(KO2, tO2, Kr, I, qO2):
    """
    Calculate PO2.

    :param KO2: oxygen valve constant [kmol.s^(-1).atm^(-1)]
    :type KO2: float
    :param tO2: oxygen time constant [s]
    :type tO2: float
    :param Kr: modeling constant [kmol.s^(-1).A^(-1)]
    :type Kr: float
    :param I: cell load current [A]
    :type I: float
    :param qO2: molar flow of oxygen [kmol.s^(-1)
    :type qO2: float
    :return: PO2[atm] as float
    """
    try:
        result = ((1 / KO2) / (1 + tO2)) * (qO2 - Kr * I)
        return result
    except (TypeError, ZeroDivisionError):
        print(
            "[Error] PO2 Calculation Failed (KO2:%s, tO2:%s, Kr:%s, I:%s, qO2:%s)" %
            (str(KO2), str(tO2), str(Kr), str(I), str(qO2)))


def Kr_Calc(N0):
    """
    Calculate Kr.

    :param N0: number of fuel cells in the stack
    :type N0: int
    :return: Kr[kmol.s^(-1).A^(-1)] as float
    """
    try:
        result = N0 / (4 * F)
        return result
    except (TypeError, ZeroDivisionError):
        print("[Error] Kr Calculation Failed (N0:%s)" % str(N0))


def Vcell_Calc(Enernst, B, C, I, Rint):
    """
    Calculate Vcell.

    :param Enernst: Enernst [V]
    :type Enernst: float
    :param B: activation voltage constant [V]
    :type B: float
    :param C: constant [A^(-1)
    :type C: float
    :param I: cell load current [A]
    :type I: float
    :param Rint: fuel cell internal resistance [ohm]
    :type Rint: float
    :return: Vcell [V] as float
    """
    try:
        result = Enernst - B * math.log(C * I) - Rint * I
        return result
    except (TypeError, OverflowError, ValueError):
        print(
            "[Error] Vcell Calculation Error (Enernst:%s, B:%s, C:%s, I:%s, Rint:%s)" %
            (str(Enernst), str(B), str(C), str(I), str(Rint)))


def qO2_Calc(qH2, rho):
    """
    Calculate qO2.

    :param qH2: molar flow of hydrogen [kmol.s^(-1)]
    :type qH2: float
    :param rho: hydrogen-oxygen flow rate
    :type rho: float
    :return: qO2[kmol.s^(-1)] as float
    """
    try:
        result = (qH2 / rho)
        return result
    except (TypeError, ZeroDivisionError):
        print(
            "[Error] qO2 Calculation Error (qH2:%s, rho:%s)" %
            (str(qH2), str(rho)))


def Efficiency_Calc(Vcell, N):
    """
    Calculate PEM cell efficiency.

    :param Vcell: cell voltage [V]
    :type Vcell: float
    :param N: number of fuel cells in the stack
    :type N: int
    :return: efficiency as float
    """
    try:
        result = (uF * Vcell) / (N * HHV)
        return result
    except (TypeError, ZeroDivisionError):
        print(
            "[Error] PEM Efficiency Calculation Failed (Vcell:%s, N:%s)" %
            (str(Vcell), str(N)))


def Dynamic_Analysis(
        InputMethod=opem.Functions.Get_Input,
        TestMode=False,
        PrintMode=True,
        ReportMode=True,
        Folder=os.getcwd()):
    """
    Run Padulles-I analysis.

    :param InputMethod: input function or input test vector
    :type InputMethod: dict or Get_Input function object
    :param TestMode: test mode flag
    :type TestMode: bool
    :param PrintMode: print mode control flag (True : print outputs)
    :type PrintMode: bool
    :param ReportMode: report mode control flag (True : generate report)
    :type ReportMode: bool
    :param Folder: output folder address
    :type Folder: str
    :return: result as dict
    """
    OutputFile = None
    CSVFile = None
    Warning1 = False
    Warning2 = False
    I_Warning = 0
    Overall_Params_Max = {}
    Overall_Params_Linear = {}
    Simulation_Title = "Padulles-I"
    try:

        if PrintMode:
            print("###########")
            print(Simulation_Title + "-Model Simulation")
            print("###########")
        OutputParamsKeys = sorted(OutputParams)
        Output_Dict = dict(
            zip(OutputParamsKeys, [None] * len(OutputParamsKeys)))
        if not TestMode:
            Input_Dict = InputMethod(InputParams)
        else:
            Input_Dict = InputMethod
        if PrintMode:
            print("Analyzing . . .")
        Name = Input_Dict["Name"]
        if ReportMode:
            OutputFile = opem.Functions.Output_Init(
                Input_Dict, Simulation_Title, Name, Folder)
            CSVFile = opem.Functions.CSV_Init(
                OutputParamsKeys,
                OutputParams,
                Simulation_Title,
                Name,
                Folder)
            HTMLFile = opem.Functions.HTML_Init(Simulation_Title, Name, Folder)
        IEnd = Input_Dict["i-stop"]
        IStep = Input_Dict["i-step"]
        Precision = opem.Functions.get_precision(IStep)
        [i, IEnd, IStep] = opem.Functions.filter_range(
            Input_Dict["i-start"], IEnd, IStep)
        I_List = []
        Power_List = []
        Vstack_List = []
        Efficiency_List = []
        PH2_List = []
        PO2_List = []
        Power_Thermal_List = []
        Kr = Kr_Calc(Input_Dict["N0"])
        qO2 = qO2_Calc(Input_Dict["qH2"], Input_Dict["rho"])
        while i < IEnd:
            try:
                I_List.append(i)
                Output_Dict["PO2"] = PO2_Calc(
                    Input_Dict["KO2"], Input_Dict["tO2"], Kr, i, qO2)
                Output_Dict["PH2"] = PH2_Calc(
                    Input_Dict["KH2"], Input_Dict["tH2"], Kr, i, Input_Dict["qH2"])
                PH2_List.append(Output_Dict["PH2"])
                PO2_List.append(Output_Dict["PO2"])
                Output_Dict["E"] = Enernst_Calc(
                    Input_Dict["E0"],
                    Input_Dict["N0"],
                    Input_Dict["T"],
                    Output_Dict["PH2"],
                    Output_Dict["PO2"])
                Output_Dict["FC Voltage"] = Vcell_Calc(
                    Output_Dict["E"], Input_Dict["B"], Input_Dict["C"], i, Input_Dict["Rint"])
                [Warning1, I_Warning] = opem.Functions.warning_check_1(
                    Output_Dict["FC Voltage"], I_Warning, i, Warning1)
                Warning2 = opem.Functions.warning_check_2(
                    Vcell=Output_Dict["FC Voltage"],
                    warning_flag=Warning2)
                Vstack_List.append(Output_Dict["FC Voltage"])
                Output_Dict["FC Efficiency"] = Efficiency_Calc(
                    Output_Dict["FC Voltage"], Input_Dict["N0"])
                Efficiency_List.append(Output_Dict["FC Efficiency"])
                Output_Dict["FC Power"] = Power_Calc(
                    Output_Dict["FC Voltage"], i)
                Output_Dict["Power-Thermal"] = Power_Thermal_Calc(
                    VStack=Output_Dict["FC Voltage"], N=Input_Dict["N0"], i=i)
                Power_List.append(Output_Dict["FC Power"])
                Power_Thermal_List.append(Output_Dict["Power-Thermal"])
                if ReportMode:
                    opem.Functions.Output_Save(
                        OutputParamsKeys,
                        Output_Dict,
                        OutputParams,
                        i,
                        OutputFile,
                        PrintMode)
                    opem.Functions.CSV_Save(
                        OutputParamsKeys, Output_Dict, i, CSVFile)
                i = opem.Functions.rounder(i + IStep, Precision)
            except Exception as e:
                print(str(e))
                i = opem.Functions.rounder(i + IStep, Precision)
                if ReportMode:
                    opem.Functions.Output_Save(
                        OutputParamsKeys,
                        Output_Dict,
                        OutputParams,
                        i,
                        OutputFile,
                        PrintMode)
                    opem.Functions.CSV_Save(
                        OutputParamsKeys, Output_Dict, i, CSVFile)
        [Estimated_V, B0, B1] = opem.Functions.linear_plot(
            x=I_List, y=Vstack_List)
        Linear_Approx_Params = Linear_Aprox_Params_Calc(B0, B1)
        Max_Params = Max_Params_Calc(Power_List, Efficiency_List, Vstack_List)
        Power_Total = Power_Total_Calc(Vstack_List, IStep, Input_Dict["N0"])
        Overall_Params_Linear["Pmax(L-Approx)"] = Linear_Approx_Params[0]
        Overall_Params_Linear["V0"] = B0
        Overall_Params_Linear["K"] = B1
        Overall_Params_Linear["VFC|Pmax(L-Approx)"] = Linear_Approx_Params[1]

        Overall_Params_Max["Pmax"] = Max_Params["Max_Power"]
        Overall_Params_Max["VFC|Pmax"] = Max_Params["Max_VStack"]
        Overall_Params_Max["Efficiency|Pmax"] = Max_Params["Max_EFF"]
        Overall_Params_Max["Ptotal(Elec)"] = Power_Total[0]
        Overall_Params_Max["Ptotal(Thermal)"] = Power_Total[1]
        if ReportMode:
            OutputFile.close()
            CSVFile.close()
            if PrintMode:
                print(Report_Message)
            opem.Functions.HTML_Desc(
                Simulation_Title, Padulles_Description, HTMLFile)
            opem.Functions.HTML_Input_Table(
                Input_Dict=Input_Dict,
                Input_Params=InputParams,
                file=HTMLFile)
            opem.Functions.HTML_Overall_Params_Table(
                Overall_Params_Max,
                Overall_Params_Max_Description,
                file=HTMLFile,
                header=True)
            opem.Functions.HTML_Chart(
                x=str(I_List),
                y=str(Power_List),
                color='rgba(255,99,132,1)',
                x_label="I(A)",
                y_label="P(W)",
                chart_name="FC-Power",
                size="600px",
                file=HTMLFile)
            opem.Functions.HTML_Chart(
                x=str(I_List), y=[
                    str(Vstack_List), str(Estimated_V)], color=[
                    'rgba(99,100,255,1)', 'rgb(238, 210, 141)'], x_label="I(A)", y_label="V(V)", chart_name=[
                    "FC-Voltage", "Linear-Apx"], size="600px", file=HTMLFile)
            opem.Functions.HTML_Overall_Params_Table(
                Overall_Params_Linear,
                Overall_Params_Linear_Description,
                file=HTMLFile,
                header=False)
            opem.Functions.HTML_Chart(
                x=str(I_List),
                y=str(Efficiency_List),
                color='rgb(255, 0, 255)',
                x_label="I(A)",
                y_label="EFF",
                chart_name="Efficiency",
                size="600px",
                file=HTMLFile)
            opem.Functions.HTML_Chart(
                x=str(I_List),
                y=str(PO2_List),
                color='	rgb(0, 255, 128)',
                x_label="I(A)",
                y_label="PO2(atm)",
                chart_name="PO2",
                size="600px",
                file=HTMLFile)
            opem.Functions.HTML_Chart(
                x=str(I_List),
                y=str(PH2_List),
                color='	rgb(128, 0, 255)',
                x_label="I(A)",
                y_label="PH2(atm)",
                chart_name="PH2",
                size="600px",
                file=HTMLFile)
            opem.Functions.HTML_Chart(x=str(list(map(opem.Functions.rounder,
                                                     Power_List))),
                                      y=str(Efficiency_List),
                                      color='rgb(238, 210, 141)',
                                      x_label="P(W)",
                                      y_label="EFF",
                                      chart_name="Efficiency vs Power",
                                      size="600px",
                                      file=HTMLFile)
            opem.Functions.HTML_Chart(
                x=str(I_List),
                y=str(Power_Thermal_List),
                color='rgb(255, 0, 255)',
                x_label="I(A)",
                y_label="P(W)",
                chart_name="Power(Thermal)",
                size="600px",
                file=HTMLFile)
            opem.Functions.warning_print(
                warning_flag_1=Warning1,
                warning_flag_2=Warning2,
                I_Warning=I_Warning,
                file=HTMLFile,
                PrintMode=PrintMode)
            opem.Functions.HTML_End(HTMLFile)
            HTMLFile.close()
        if PrintMode:
            print("Done!")
        if not TestMode:
            if PrintMode:
                print(
                    "Result In -->" +
                    os.path.join(
                        os.getcwd(),
                        Simulation_Title))
        else:
            return {
                "Status": True,
                "P": Power_List,
                "I": I_List,
                "V": Vstack_List,
                "EFF": Efficiency_List,
                "PO2": PO2_List,
                "PH2": PH2_List,
                "Ph": Power_Thermal_List,
                "V0": B0,
                "K": B1,
                "VE": Estimated_V}
    except Exception:
        if TestMode:
            return {
                "Status": False,
                "Message": "[Error] " +
                Simulation_Title +
                " Simulation Failed!(Check Your Inputs)"}
        print(
            "[Error] " +
            Simulation_Title +
            " Simulation Failed!(Check Your Inputs)")