1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
|
# -*- coding: utf-8 -*-
"""Padulles 1 model functions."""
import math
from opem.Params import Padulles_InputParams as InputParams
from opem.Params import Padulles_Outparams as OutputParams
from opem.Params import R, F, uF, HHV, Padulles_Description, Overall_Params_Max_Description, Overall_Params_Linear_Description, Report_Message
from opem.Static.Amphlett import Power_Calc, Power_Thermal_Calc, Power_Total_Calc, Linear_Aprox_Params_Calc, Max_Params_Calc
import opem.Functions
import os
def Enernst_Calc(E0, N0, T, PH2, PO2):
"""
Calculate Enernst.
:param E0: open cell voltage [V]
:type E0: float
:param N0: number of fuel cells in the stack
:type N0: int
:param T: cell operation temperature [K]
:type T: float
:param PH2: partial pressure [atm]
:type PH2: float
:param PO2: partial pressure [atm]
:type PO2: float
:return: Enernest [V] as float
"""
try:
result = N0 * (E0 + (R * T / (2 * F)) * math.log(PH2 * ((PO2)**0.5)))
return result
except (TypeError, ZeroDivisionError, OverflowError, ValueError):
print(
"[Error] Enernst Calculation Failed (E0:%s, N0:%s, T:%s, PH2:%s, PO2:%s)" %
(str(E0), str(N0), str(T), str(PH2), str(PO2)))
def PH2_Calc(KH2, tH2, Kr, I, qH2):
"""
Calculate PH2.
:param KH2: hydrogen valve constant [kmol.s^(-1).atm^(-1)]
:type KH2: float
:param tH2: hydrogen time constant [s]
:type tH2: float
:param Kr: modeling constant [kmol.s^(-1).A^(-1)]
:type Kr: float
:param I: cell load current [A]
:type I: float
:param qH2: molar flow of hydrogen [kmol.s^(-1)]
:type qH2: float
:return: PH2 [atm] as float
"""
try:
result = ((1 / KH2) / (1 + tH2)) * (qH2 - 2 * Kr * I)
return result
except (TypeError, ZeroDivisionError):
print(
"[Error] PH2 Calculation Failed (KH2:%s, tH2:%s, Kr:%s, I:%s, qH2:%s)" %
(str(KH2), str(tH2), str(Kr), str(I), str(qH2)))
def PO2_Calc(KO2, tO2, Kr, I, qO2):
"""
Calculate PO2.
:param KO2: oxygen valve constant [kmol.s^(-1).atm^(-1)]
:type KO2: float
:param tO2: oxygen time constant [s]
:type tO2: float
:param Kr: modeling constant [kmol.s^(-1).A^(-1)]
:type Kr: float
:param I: cell load current [A]
:type I: float
:param qO2: molar flow of oxygen [kmol.s^(-1)
:type qO2: float
:return: PO2[atm] as float
"""
try:
result = ((1 / KO2) / (1 + tO2)) * (qO2 - Kr * I)
return result
except (TypeError, ZeroDivisionError):
print(
"[Error] PO2 Calculation Failed (KO2:%s, tO2:%s, Kr:%s, I:%s, qO2:%s)" %
(str(KO2), str(tO2), str(Kr), str(I), str(qO2)))
def Kr_Calc(N0):
"""
Calculate Kr.
:param N0: number of fuel cells in the stack
:type N0: int
:return: Kr[kmol.s^(-1).A^(-1)] as float
"""
try:
result = N0 / (4 * F)
return result
except (TypeError, ZeroDivisionError):
print("[Error] Kr Calculation Failed (N0:%s)" % str(N0))
def Vcell_Calc(Enernst, B, C, I, Rint):
"""
Calculate Vcell.
:param Enernst: Enernst [V]
:type Enernst: float
:param B: activation voltage constant [V]
:type B: float
:param C: constant [A^(-1)
:type C: float
:param I: cell load current [A]
:type I: float
:param Rint: fuel cell internal resistance [ohm]
:type Rint: float
:return: Vcell [V] as float
"""
try:
result = Enernst - B * math.log(C * I) - Rint * I
return result
except (TypeError, OverflowError, ValueError):
print(
"[Error] Vcell Calculation Error (Enernst:%s, B:%s, C:%s, I:%s, Rint:%s)" %
(str(Enernst), str(B), str(C), str(I), str(Rint)))
def qO2_Calc(qH2, rho):
"""
Calculate qO2.
:param qH2: molar flow of hydrogen [kmol.s^(-1)]
:type qH2: float
:param rho: hydrogen-oxygen flow rate
:type rho: float
:return: qO2[kmol.s^(-1)] as float
"""
try:
result = (qH2 / rho)
return result
except (TypeError, ZeroDivisionError):
print(
"[Error] qO2 Calculation Error (qH2:%s, rho:%s)" %
(str(qH2), str(rho)))
def Efficiency_Calc(Vcell, N):
"""
Calculate PEM cell efficiency.
:param Vcell: cell voltage [V]
:type Vcell: float
:param N: number of fuel cells in the stack
:type N: int
:return: efficiency as float
"""
try:
result = (uF * Vcell) / (N * HHV)
return result
except (TypeError, ZeroDivisionError):
print(
"[Error] PEM Efficiency Calculation Failed (Vcell:%s, N:%s)" %
(str(Vcell), str(N)))
def Dynamic_Analysis(
InputMethod=opem.Functions.Get_Input,
TestMode=False,
PrintMode=True,
ReportMode=True,
Folder=os.getcwd()):
"""
Run Padulles-I analysis.
:param InputMethod: input function or input test vector
:type InputMethod: dict or Get_Input function object
:param TestMode: test mode flag
:type TestMode: bool
:param PrintMode: print mode control flag (True : print outputs)
:type PrintMode: bool
:param ReportMode: report mode control flag (True : generate report)
:type ReportMode: bool
:param Folder: output folder address
:type Folder: str
:return: result as dict
"""
OutputFile = None
CSVFile = None
Warning1 = False
Warning2 = False
I_Warning = 0
Overall_Params_Max = {}
Overall_Params_Linear = {}
Simulation_Title = "Padulles-I"
try:
if PrintMode:
print("###########")
print(Simulation_Title + "-Model Simulation")
print("###########")
OutputParamsKeys = sorted(OutputParams)
Output_Dict = dict(
zip(OutputParamsKeys, [None] * len(OutputParamsKeys)))
if not TestMode:
Input_Dict = InputMethod(InputParams)
else:
Input_Dict = InputMethod
if PrintMode:
print("Analyzing . . .")
Name = Input_Dict["Name"]
if ReportMode:
OutputFile = opem.Functions.Output_Init(
Input_Dict, Simulation_Title, Name, Folder)
CSVFile = opem.Functions.CSV_Init(
OutputParamsKeys,
OutputParams,
Simulation_Title,
Name,
Folder)
HTMLFile = opem.Functions.HTML_Init(Simulation_Title, Name, Folder)
IEnd = Input_Dict["i-stop"]
IStep = Input_Dict["i-step"]
Precision = opem.Functions.get_precision(IStep)
[i, IEnd, IStep] = opem.Functions.filter_range(
Input_Dict["i-start"], IEnd, IStep)
I_List = []
Power_List = []
Vstack_List = []
Efficiency_List = []
PH2_List = []
PO2_List = []
Power_Thermal_List = []
Kr = Kr_Calc(Input_Dict["N0"])
qO2 = qO2_Calc(Input_Dict["qH2"], Input_Dict["rho"])
while i < IEnd:
try:
I_List.append(i)
Output_Dict["PO2"] = PO2_Calc(
Input_Dict["KO2"], Input_Dict["tO2"], Kr, i, qO2)
Output_Dict["PH2"] = PH2_Calc(
Input_Dict["KH2"], Input_Dict["tH2"], Kr, i, Input_Dict["qH2"])
PH2_List.append(Output_Dict["PH2"])
PO2_List.append(Output_Dict["PO2"])
Output_Dict["E"] = Enernst_Calc(
Input_Dict["E0"],
Input_Dict["N0"],
Input_Dict["T"],
Output_Dict["PH2"],
Output_Dict["PO2"])
Output_Dict["FC Voltage"] = Vcell_Calc(
Output_Dict["E"], Input_Dict["B"], Input_Dict["C"], i, Input_Dict["Rint"])
[Warning1, I_Warning] = opem.Functions.warning_check_1(
Output_Dict["FC Voltage"], I_Warning, i, Warning1)
Warning2 = opem.Functions.warning_check_2(
Vcell=Output_Dict["FC Voltage"],
warning_flag=Warning2)
Vstack_List.append(Output_Dict["FC Voltage"])
Output_Dict["FC Efficiency"] = Efficiency_Calc(
Output_Dict["FC Voltage"], Input_Dict["N0"])
Efficiency_List.append(Output_Dict["FC Efficiency"])
Output_Dict["FC Power"] = Power_Calc(
Output_Dict["FC Voltage"], i)
Output_Dict["Power-Thermal"] = Power_Thermal_Calc(
VStack=Output_Dict["FC Voltage"], N=Input_Dict["N0"], i=i)
Power_List.append(Output_Dict["FC Power"])
Power_Thermal_List.append(Output_Dict["Power-Thermal"])
if ReportMode:
opem.Functions.Output_Save(
OutputParamsKeys,
Output_Dict,
OutputParams,
i,
OutputFile,
PrintMode)
opem.Functions.CSV_Save(
OutputParamsKeys, Output_Dict, i, CSVFile)
i = opem.Functions.rounder(i + IStep, Precision)
except Exception as e:
print(str(e))
i = opem.Functions.rounder(i + IStep, Precision)
if ReportMode:
opem.Functions.Output_Save(
OutputParamsKeys,
Output_Dict,
OutputParams,
i,
OutputFile,
PrintMode)
opem.Functions.CSV_Save(
OutputParamsKeys, Output_Dict, i, CSVFile)
[Estimated_V, B0, B1] = opem.Functions.linear_plot(
x=I_List, y=Vstack_List)
Linear_Approx_Params = Linear_Aprox_Params_Calc(B0, B1)
Max_Params = Max_Params_Calc(Power_List, Efficiency_List, Vstack_List)
Power_Total = Power_Total_Calc(Vstack_List, IStep, Input_Dict["N0"])
Overall_Params_Linear["Pmax(L-Approx)"] = Linear_Approx_Params[0]
Overall_Params_Linear["V0"] = B0
Overall_Params_Linear["K"] = B1
Overall_Params_Linear["VFC|Pmax(L-Approx)"] = Linear_Approx_Params[1]
Overall_Params_Max["Pmax"] = Max_Params["Max_Power"]
Overall_Params_Max["VFC|Pmax"] = Max_Params["Max_VStack"]
Overall_Params_Max["Efficiency|Pmax"] = Max_Params["Max_EFF"]
Overall_Params_Max["Ptotal(Elec)"] = Power_Total[0]
Overall_Params_Max["Ptotal(Thermal)"] = Power_Total[1]
if ReportMode:
OutputFile.close()
CSVFile.close()
if PrintMode:
print(Report_Message)
opem.Functions.HTML_Desc(
Simulation_Title, Padulles_Description, HTMLFile)
opem.Functions.HTML_Input_Table(
Input_Dict=Input_Dict,
Input_Params=InputParams,
file=HTMLFile)
opem.Functions.HTML_Overall_Params_Table(
Overall_Params_Max,
Overall_Params_Max_Description,
file=HTMLFile,
header=True)
opem.Functions.HTML_Chart(
x=str(I_List),
y=str(Power_List),
color='rgba(255,99,132,1)',
x_label="I(A)",
y_label="P(W)",
chart_name="FC-Power",
size="600px",
file=HTMLFile)
opem.Functions.HTML_Chart(
x=str(I_List), y=[
str(Vstack_List), str(Estimated_V)], color=[
'rgba(99,100,255,1)', 'rgb(238, 210, 141)'], x_label="I(A)", y_label="V(V)", chart_name=[
"FC-Voltage", "Linear-Apx"], size="600px", file=HTMLFile)
opem.Functions.HTML_Overall_Params_Table(
Overall_Params_Linear,
Overall_Params_Linear_Description,
file=HTMLFile,
header=False)
opem.Functions.HTML_Chart(
x=str(I_List),
y=str(Efficiency_List),
color='rgb(255, 0, 255)',
x_label="I(A)",
y_label="EFF",
chart_name="Efficiency",
size="600px",
file=HTMLFile)
opem.Functions.HTML_Chart(
x=str(I_List),
y=str(PO2_List),
color=' rgb(0, 255, 128)',
x_label="I(A)",
y_label="PO2(atm)",
chart_name="PO2",
size="600px",
file=HTMLFile)
opem.Functions.HTML_Chart(
x=str(I_List),
y=str(PH2_List),
color=' rgb(128, 0, 255)',
x_label="I(A)",
y_label="PH2(atm)",
chart_name="PH2",
size="600px",
file=HTMLFile)
opem.Functions.HTML_Chart(x=str(list(map(opem.Functions.rounder,
Power_List))),
y=str(Efficiency_List),
color='rgb(238, 210, 141)',
x_label="P(W)",
y_label="EFF",
chart_name="Efficiency vs Power",
size="600px",
file=HTMLFile)
opem.Functions.HTML_Chart(
x=str(I_List),
y=str(Power_Thermal_List),
color='rgb(255, 0, 255)',
x_label="I(A)",
y_label="P(W)",
chart_name="Power(Thermal)",
size="600px",
file=HTMLFile)
opem.Functions.warning_print(
warning_flag_1=Warning1,
warning_flag_2=Warning2,
I_Warning=I_Warning,
file=HTMLFile,
PrintMode=PrintMode)
opem.Functions.HTML_End(HTMLFile)
HTMLFile.close()
if PrintMode:
print("Done!")
if not TestMode:
if PrintMode:
print(
"Result In -->" +
os.path.join(
os.getcwd(),
Simulation_Title))
else:
return {
"Status": True,
"P": Power_List,
"I": I_List,
"V": Vstack_List,
"EFF": Efficiency_List,
"PO2": PO2_List,
"PH2": PH2_List,
"Ph": Power_Thermal_List,
"V0": B0,
"K": B1,
"VE": Estimated_V}
except Exception:
if TestMode:
return {
"Status": False,
"Message": "[Error] " +
Simulation_Title +
" Simulation Failed!(Check Your Inputs)"}
print(
"[Error] " +
Simulation_Title +
" Simulation Failed!(Check Your Inputs)")
|