1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
# -*- coding: utf-8 -*-
"""Padulles-Hauer model functions."""
from opem.Params import Padulles_Hauer_InputParams as InputParams
from opem.Params import Padulles_Hauer_Outparams as OutputParams
from opem.Static.Amphlett import Power_Calc, Power_Thermal_Calc, Power_Total_Calc, Linear_Aprox_Params_Calc, Max_Params_Calc
from opem.Dynamic.Padulles1 import PH2_Calc, PO2_Calc, Kr_Calc, Vcell_Calc, qO2_Calc, Efficiency_Calc
from opem.Dynamic.Padulles2 import Enernst_Calc, PH2O_Calc
import opem.Functions
from opem.Params import Padulles_Hauer_Description, Overall_Params_Max_Description, Overall_Params_Linear_Description, Report_Message
import os
def qH2_Calc(qMethanol, CV, t1, t2):
"""
Calculate qH2.
:param qMethanol: molar flow of methanol [kmol.s^(-1)]
:type qMethanol: float
:param CV: conversion factor
:type CV: float
:param t1: reformer time constant
:type t1: float
:param t2: reformer time constant
:type t2: float
:return: qH2 as float
"""
try:
result = (qMethanol * CV) / (t1 + ((t2)**2) + (t1 + t2) + 1)
return result
except (TypeError, ZeroDivisionError):
print(
"[Error] qH2 Calculation Failed (qMethanol:%s, CV:%s, t1:%s, t2:%s)" %
(str(qMethanol), str(CV), str(t1), str(t2)))
def Dynamic_Analysis(
InputMethod=opem.Functions.Get_Input,
TestMode=False,
PrintMode=True,
ReportMode=True,
Folder=os.getcwd()):
"""
Run Padulles-Hauer analysis.
:param InputMethod: input function or input test vector
:type InputMethod: dict or Get_Input function object
:param TestMode: test mode flag
:type TestMode: bool
:param PrintMode: print mode control flag (True : print outputs)
:type PrintMode: bool
:param ReportMode: report mode control flag (True : generate report)
:type ReportMode: bool
:param Folder: output folder address
:type Folder: str
:return: result as dict
"""
OutputFile = None
CSVFile = None
Warning1 = False
Warning2 = False
I_Warning = 0
Overall_Params_Max = {}
Overall_Params_Linear = {}
Simulation_Title = "Padulles-Hauer"
try:
if PrintMode:
print("###########")
print(Simulation_Title + "-Model Simulation")
print("###########")
OutputParamsKeys = sorted(OutputParams)
Output_Dict = dict(
zip(OutputParamsKeys, [None] * len(OutputParamsKeys)))
if not TestMode:
Input_Dict = InputMethod(InputParams)
else:
Input_Dict = InputMethod
if PrintMode:
print("Analyzing . . .")
Name = Input_Dict["Name"]
if ReportMode:
OutputFile = opem.Functions.Output_Init(
Input_Dict, Simulation_Title, Name, Folder)
CSVFile = opem.Functions.CSV_Init(
OutputParamsKeys,
OutputParams,
Simulation_Title,
Name,
Folder)
HTMLFile = opem.Functions.HTML_Init(Simulation_Title, Name, Folder)
IEnd = Input_Dict["i-stop"]
IStep = Input_Dict["i-step"]
Precision = opem.Functions.get_precision(IStep)
[i, IEnd, IStep] = opem.Functions.filter_range(
Input_Dict["i-start"], IEnd, IStep)
I_List = []
Power_List = []
Vstack_List = []
Efficiency_List = []
PH2_List = []
PO2_List = []
PH2O_List = []
Power_Thermal_List = []
Kr = Kr_Calc(Input_Dict["N0"])
qH2 = qH2_Calc(
Input_Dict["qMethanol"],
Input_Dict["CV"],
Input_Dict["t1"],
Input_Dict["t2"])
qO2 = qO2_Calc(qH2, Input_Dict["rho"])
while i < IEnd:
try:
I_List.append(i)
Output_Dict["PO2"] = PO2_Calc(
Input_Dict["KO2"], Input_Dict["tO2"], Kr, i, qO2)
Output_Dict["PH2"] = PH2_Calc(
Input_Dict["KH2"], Input_Dict["tH2"], Kr, i, qH2)
Output_Dict["PH2O"] = PH2O_Calc(
Input_Dict["KH2O"], Input_Dict["tH2O"], Kr, i, qH2)
PH2_List.append(Output_Dict["PH2"])
PO2_List.append(Output_Dict["PO2"])
PH2O_List.append(Output_Dict["PH2O"])
Output_Dict["E"] = Enernst_Calc(
Input_Dict["E0"],
Input_Dict["N0"],
Input_Dict["T"],
Output_Dict["PH2"],
Output_Dict["PO2"],
Output_Dict["PH2O"])
Output_Dict["FC Voltage"] = Vcell_Calc(
Output_Dict["E"], Input_Dict["B"], Input_Dict["C"], i, Input_Dict["Rint"])
[Warning1, I_Warning] = opem.Functions.warning_check_1(
Output_Dict["FC Voltage"], I_Warning, i, Warning1)
Warning2 = opem.Functions.warning_check_2(
Vcell=Output_Dict["FC Voltage"],
warning_flag=Warning2)
Vstack_List.append(Output_Dict["FC Voltage"])
Output_Dict["FC Efficiency"] = Efficiency_Calc(
Output_Dict["FC Voltage"], Input_Dict["N0"])
Efficiency_List.append(Output_Dict["FC Efficiency"])
Output_Dict["FC Power"] = Power_Calc(
Output_Dict["FC Voltage"], i)
Output_Dict["Power-Thermal"] = Power_Thermal_Calc(
VStack=Output_Dict["FC Voltage"], N=Input_Dict["N0"], i=i)
Power_List.append(Output_Dict["FC Power"])
Power_Thermal_List.append(Output_Dict["Power-Thermal"])
if ReportMode:
opem.Functions.Output_Save(
OutputParamsKeys,
Output_Dict,
OutputParams,
i,
OutputFile,
PrintMode)
opem.Functions.CSV_Save(
OutputParamsKeys, Output_Dict, i, CSVFile)
i = opem.Functions.rounder(i + IStep, Precision)
except Exception as e:
print(str(e))
i = opem.Functions.rounder(i + IStep, Precision)
if ReportMode:
opem.Functions.Output_Save(
OutputParamsKeys,
Output_Dict,
OutputParams,
i,
OutputFile,
PrintMode)
opem.Functions.CSV_Save(
OutputParamsKeys, Output_Dict, i, CSVFile)
[Estimated_V, B0, B1] = opem.Functions.linear_plot(
x=I_List, y=Vstack_List)
Linear_Approx_Params = Linear_Aprox_Params_Calc(B0, B1)
Max_Params = Max_Params_Calc(Power_List, Efficiency_List, Vstack_List)
Power_Total = Power_Total_Calc(Vstack_List, IStep, Input_Dict["N0"])
Overall_Params_Linear["Pmax(L-Approx)"] = Linear_Approx_Params[0]
Overall_Params_Linear["V0"] = B0
Overall_Params_Linear["K"] = B1
Overall_Params_Linear["VFC|Pmax(L-Approx)"] = Linear_Approx_Params[1]
Overall_Params_Max["Pmax"] = Max_Params["Max_Power"]
Overall_Params_Max["VFC|Pmax"] = Max_Params["Max_VStack"]
Overall_Params_Max["Efficiency|Pmax"] = Max_Params["Max_EFF"]
Overall_Params_Max["Ptotal(Elec)"] = Power_Total[0]
Overall_Params_Max["Ptotal(Thermal)"] = Power_Total[1]
if ReportMode:
OutputFile.close()
CSVFile.close()
if PrintMode:
print(Report_Message)
opem.Functions.HTML_Desc(
Simulation_Title,
Padulles_Hauer_Description,
HTMLFile)
opem.Functions.HTML_Input_Table(
Input_Dict=Input_Dict,
Input_Params=InputParams,
file=HTMLFile)
opem.Functions.HTML_Overall_Params_Table(
Overall_Params_Max,
Overall_Params_Max_Description,
file=HTMLFile,
header=True)
opem.Functions.HTML_Chart(
x=str(I_List),
y=str(Power_List),
color='rgba(255,99,132,1)',
x_label="I(A)",
y_label="P(W)",
chart_name="FC-Power",
size="600px",
file=HTMLFile)
opem.Functions.HTML_Chart(
x=str(I_List), y=[
str(Vstack_List), str(Estimated_V)], color=[
'rgba(99,100,255,1)', 'rgb(238, 210, 141)'], x_label="I(A)", y_label="V(V)", chart_name=[
"FC-Voltage", "Linear-Apx"], size="600px", file=HTMLFile)
opem.Functions.HTML_Overall_Params_Table(
Overall_Params_Linear,
Overall_Params_Linear_Description,
file=HTMLFile,
header=False)
opem.Functions.HTML_Chart(
x=str(I_List),
y=str(Efficiency_List),
color='rgb(255, 0, 255)',
x_label="I(A)",
y_label="EFF",
chart_name="Efficiency",
size="600px",
file=HTMLFile)
opem.Functions.HTML_Chart(
x=str(I_List),
y=str(PO2_List),
color=' rgb(0, 255, 128)',
x_label="I(A)",
y_label="PO2(atm)",
chart_name="PO2",
size="600px",
file=HTMLFile)
opem.Functions.HTML_Chart(
x=str(I_List),
y=str(PH2_List),
color=' rgb(128, 0, 255)',
x_label="I(A)",
y_label="PH2(atm)",
chart_name="PH2",
size="600px",
file=HTMLFile)
opem.Functions.HTML_Chart(
x=str(I_List),
y=str(PH2O_List),
color=' rgb(165, 185, 112)',
x_label="I(A)",
y_label="PH2O(atm)",
chart_name="PH2O",
size="600px",
file=HTMLFile)
opem.Functions.HTML_Chart(x=str(list(map(opem.Functions.rounder,
Power_List))),
y=str(Efficiency_List),
color='rgb(238, 210, 141)',
x_label="P(W)",
y_label="EFF",
chart_name="Efficiency vs Power",
size="600px",
file=HTMLFile)
opem.Functions.HTML_Chart(
x=str(I_List),
y=str(Power_Thermal_List),
color='rgb(255, 0, 255)',
x_label="I(A)",
y_label="P(W)",
chart_name="Power(Thermal)",
size="600px",
file=HTMLFile)
opem.Functions.warning_print(
warning_flag_1=Warning1,
warning_flag_2=Warning2,
I_Warning=I_Warning,
file=HTMLFile,
PrintMode=PrintMode)
opem.Functions.HTML_End(HTMLFile)
HTMLFile.close()
if PrintMode:
print("Done!")
if not TestMode:
if PrintMode:
print(
"Result In -->" +
os.path.join(
os.getcwd(),
Simulation_Title))
else:
return {
"Status": True,
"P": Power_List,
"I": I_List,
"V": Vstack_List,
"EFF": Efficiency_List,
"PO2": PO2_List,
"PH2": PH2_List,
"PH2O": PH2O_List,
"Ph": Power_Thermal_List,
"V0": B0,
"K": B1,
"VE": Estimated_V}
except Exception:
if TestMode:
return {
"Status": False,
"Message": "[Error] " +
Simulation_Title +
" Simulation Failed!(Check Your Inputs)"}
print(
"[Error] " +
Simulation_Title +
" Simulation Failed!(Check Your Inputs)")
|