1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
|
# -*- coding: utf-8 -*-
"""OPEM parameters."""
Version = 1.4
Website = "http://www.ecsim.site/opem"
UpdateUrl = "http://www.ecsim.site/opem/update"
Overview = '''
Modeling and simulation of proton-exchange membrane fuel cells (PEMFC) may work as a
powerful tool in the research & development of renewable energy sources. The Open-Source
PEMFC Simulation Tool (OPEM) is a modeling tool for evaluating the performance of proton
exchange membrane fuel cells. This package is a combination of models (static/dynamic)
that predict the optimum operating parameters of PEMFC. OPEM contained generic models that
will accept as input, not only values of the operating variables such as anode and cathode
feed gas, pressure and compositions, cell temperature and current density, but also cell
parameters including the active area and membrane thickness. In addition, some of the different
models of PEMFC that have been proposed in the OPEM, just focus on one particular FC stack,
and some others take into account a part or all auxiliaries such as reformers. OPEM is
a platform for collaborative development of PEMFC models.'''
Links = '''
Website : http://www.ecsim.site/opem
Repository : https://github.com/ECSIM/opem
Document : http://www.ecsim.site/opem/doc/
Paper : https://doi.org/10.21105/joss.00676
* If you use OPEM in your research, please cite our paper
* OPEM GUI is available here : https://github.com/ECSIM/gopem
'''
Warning_Message_1 = "Warning : The value of I(>{}) leads to minus amount of V, please check your inputs"
Warning_Message_2 = "Warning : There are errors in the simulations in some of I amounts; please refer to the .opem file" \
" for review. If you are confident about this parameters, ignore this warning."
Report_Message = "Report is generating ..."
HHV = 1.482
uF = 0.95
n = 8 * (10 ** -3)
m = 3 * (10 ** -5)
xi1 = -0.948
xi3 = 7.6 * (10 ** -5)
xi4 = -1.93 * (10 ** -4)
# F=96500
# R1=8.314
R = 8314.47
F = 96484600
Eth = 1.23
HTML_Init_Template = """<!DOCTYPE html>
<html lang="en">
<head>
<title>OPEM Report ({1} Model)</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<meta name="description" content="The Open-Source PEMFC Simulation Tool (OPEM) is an open-source mathematical simulation package for polymer electrolyte fuel cells">
<meta name="og:title" content="OPEM Report ({1} Model)">
<meta name="og:description" content="The Open-Source PEMFC Simulation Tool (OPEM) is an open-source mathematical simulation package for polymer electrolyte fuel cells">
<meta name="og:url" content="http://opem.ecsim.site">
<meta property="og:image" content="http://www.ecsim.site/opem/images/opem-og.png">
<meta name="twitter:image:src" content="http://www.ecsim.site/opem/images/opem-og.png">
<meta name="twitter:card" content="summary_large_image">
<meta name="twitter:title" content="OPEM Report ({1} Model)">
<meta name="twitter:description" content="The Open-Source PEMFC Simulation Tool (OPEM) is an open-source mathematical simulation package for polymer electrolyte fuel cells">
<script>
{0}
</script>
</head>
<body>
<h1 style="border-bottom:1px solid black;text-align:center;padding:10px;"><span style="color:#ff7600;">OPEM</span> Report ({1} Model)</h1>
"""
HTML_Input_Table_Template1 = """
<h2 style="color:#ff7600;">Inputs</h2>
<table style="border:1px solid black;border-collapse: collapse;margin:15px;">
<tr style="border:1px solid black;border-collapse: collapse;text-align:center;">
<td style="border:1px solid black;padding:4px;border-collapse: collapse;">Input</td>
<td style="border:1px solid black;padding:4px;border-collapse: collapse;">Description</td>
<td style="border:1px solid black;padding:4px;border-collapse: collapse;">Value</td>
</tr>
"""
HTML_Input_Table_Template2 = """
<tr style="border:1px solid black;border-collapse: collapse;text-align:center;">
<td style="border:1px solid black;padding:4px;border-collapse: collapse;">{0}</td>
<td style="border:1px solid black;padding:4px;border-collapse: collapse;">{1}</td>
<td style="border:1px solid black;padding:4px;border-collapse: collapse;">{2}</td>
</tr>
"""
HTML_Overall_Params_Table_Template = """
<table style="border:1px solid black;border-collapse: collapse;margin:15px;">
<tr style="border:1px solid black;border-collapse: collapse;text-align:center;">
<td style="border:1px solid black;padding:4px;border-collapse: collapse;">Parameter</td>
<td style="border:1px solid black;padding:4px;border-collapse: collapse;">Description</td>
<td style="border:1px solid black;padding:4px;border-collapse: collapse;">Value</td>
</tr>
"""
HTML_End_Template = """
<p style="text-align:center;border-top:1px solid black;">Generated By <a style="text-decoration:none;color:#ff7600;" href="http://opem.ecsim.site">OPEM</a> Version {0}</p>
"""
Amphlett_InputParams = {
"T": "Cell operation temperature [K]",
"PH2": "Partial pressure [atm]",
"PO2": "Partial pressure [atm]",
"i-start": "Cell operating current start point [A]",
"i-step": "Cell operating current step",
"i-stop": "Cell operating current end point [A]",
"A": "Active area [cm^2]",
"l": "Membrane thickness [cm]",
"lambda": "An adjustable parameter with a min value of 14 and max value of 23",
"N": "Number of single cells",
"R": "R-Electronic [ohm] (*Optional)",
"JMax": "Maximum current density [A/(cm^2)]"}
Amphlett_OutputParams = {
"Enernst": "V",
"Eta Activation": "V",
"Eta Ohmic": "V",
"Eta Concentration": "V",
"Loss": "V",
"Vcell": "V",
"PEM Efficiency": "",
"Power": "W",
"VStack": "V",
"Power-Stack": "W",
"Power-Thermal": "W"}
Amphlett_Params_Default = {"R": 0}
Amphlett_Description = '''
Amphlett static model is a parametric model that predicting the performance of a solid polymer electrolyte,
proton exchange membrane (PEM) fuel cell. Main concepts in the Amphlett model includes Nernst voltage, PEMFC losses
(activation polarization loss, ohmic polarization loss and concentration polarization loss), power and efficiency
of fuel cell. This parametric model of PEMFC using a combination of mechanistic and empirical approach. The ideal
standard potential (Nernst potential) of an H2/O2 FC is 1.229 V with liquid water product. The actual cell potential
is decreased from its reference potential because of irreversible losses.
'''
Amphlett_Standard_Vector = {
"T": 343.15,
"PH2": 1,
"PO2": 1,
"i-start": 0,
"i-stop": 75,
"i-step": 0.1,
"A": 50.6,
"l": 0.0178,
"lambda": 23,
"N": 1,
"R": 0,
"JMax": 1.5,
"Name": "Amphlett_Test"}
Larminiee_InputParams = {
"T": "Cell operation temperature [K]",
"E0": "Fuel cell reversible no loss voltage [V]",
"i-start": "Cell operating current start point [A]",
"i-step": "Cell operating current step",
"i-stop": "Cell operating current end point [A]",
"RM": "The membrane and contact resistances [ohm]",
"i_n": "Internal current [A]",
"i_0": "Exchange current at which the overvoltage begins to move from zero [A]",
"i_L": "Limiting current [A]",
"A": "The slope of the Tafel line [V]",
"N": "Number of single cells"}
Larminiee_OutputParams = {
"Vcell": "V",
"PEM Efficiency": "",
"Power": "W",
"VStack": "V",
"Power-Stack": "W",
"Power-Thermal": "W"}
Larminiee_Description = '''
Larminie-Dicks model is obtained for large variation of the load parameters. In this model, the fuel cell is represented
by means of its voltage-current characteristic obtained in static operating mode. In fact, Larminie-Dicks static model
presents the fuel cell voltage as a function of the current magnitude. The obtained polarization curve is composed of
three main regions corresponding to the predominance of electrochemical activation phenomena (region I), a linear
part (region II) where the voltage drop is mainly due to electronic and ionic internal resistances and the last
region where the diffusion kinetics of gases through the electrodes becomes the limiting factor (region III). This
last zone is characterized by a rapid voltage fall.
'''
Larminiee_Standard_Vector = {
"A": 0.06,
"E0": 1.178,
"T": 328.15,
"RM": 0.0018,
"i_0": 0.00654,
"i_L": 100.0,
"i_n": 0.23,
"N": 23,
"i-start": 0.1,
"i-stop": 98,
"i-step": 0.1,
"Name": "Larminiee_Test"}
Chamberline_InputParams = {
"E0": "Open circuit voltage [V]",
"b": "Tafel's parameter for the oxygen reduction [V]",
"R": "Resistance [ohm.cm^2]",
"m": "Diffusion's parameters [V] (*Optional)",
"n": "Diffusion's parameters [(A^-1)(cm^2)] (*Optional)",
"i-start": "Cell operating current start point [A]",
"i-step": "Cell operating current step",
"i-stop": "Cell operating current end point [A]",
"A": "Active area [cm^2]",
"N": "Number of single cells"}
Chamberline_OutputParams = {
"Vcell": "V",
"PEM Efficiency": "",
"Power": "W",
"VStack": "V",
"Power-Stack": "W",
"Power-Thermal": "W"}
Chamberline_Params_Default = {"m": 3 * (10 ** -8), "n": 8}
Chamberline_Description = '''
Chamberlin-Kim static model is an empirical equation which was developed to fit the experimental cell potential (E) vs.
current density (J) data for proton exchange membrane fuel cells (PEMFCs), at several temperatures, pressures, and
oxygen compositions in the cathode gas mixture. The exponential term compensates for the mass-transport regions of the
V vs. i plot; i.e., the increase in slope of the pseudolinear region and the subsequent rapid fall-off of the cell
potential with increasing current density. The terms E0 and b yield the electrode kinetic parameters for oxygen
reduction in the PEMFC and R represents the resistance, predominantly ohmic and, to a small extent, the charge
transfer resistance of the electro-oxidation of hydrogen. The exponential term characterizes the mass-transport
region of the V vs. i plot. The parameter n has more pronounced effects than the parameter m in this region. In
Chamberline Kim's model, the values of the parameters(five parameters: E0, b, R, m, n) vary depending on many
variables, including the composition of the Membrane Electrode Assemblies(MEA), the fuel and oxidant used, besides
the local temperature, pressure, and humidity of the MEA. They also depend on the stack itself, so that it can not
be transposed to another fuel cell without new parameter identification.
'''
Chamberline_Standard_Vector = {
"A": 50.0,
"E0": 0.982,
"b": 0.0689,
"R": 0.328,
"m": 0.000125,
"n": 9.45,
"N": 1,
"i-start": 1,
"i-stop": 42.5,
"i-step": 0.1,
"Name": "Chamberline_Test"}
Padulles_InputParams = {
"N0": "Number of cells",
"E0": "No load voltage [V]",
"T": "Fuel cell temperature [K]",
"KH2": "Hydrogen valve constant [kmol.s^(-1).atm^(-1)]",
"KO2": "Oxygen valve constant [kmol.s^(-1).atm^(-1)]",
"tH2": "Hydrogen time constant [s]",
"tO2": "Oxygen time constant [s]",
"qH2": "Molar flow of hydrogen [kmol.s^(-1)]",
"rho": "Hydrogen-Oxygen flow rate",
"Rint": "Fuel cell internal resistance [ohm]",
"B": "Activation voltage constant [V]",
"C": "Activation constant parameter [A^(-1)]",
"i-start": "Cell operating current start point [A]",
"i-step": "Cell operating current step",
"i-stop": "Cell operating current end point [A]"}
Padulles_Outparams = {
"FC Voltage": "V",
"FC Power": "W",
"FC Efficiency": "",
"PO2": "atm",
"PH2": "atm",
"E": "V",
"Power-Thermal": "W"}
Padulles_Description = '''
In this model, Nernst and fuel cell potential were modeled as a function of oxygen and hydrogen gases partial pressure
that can be calculated from independent variables or constants. The partial pressure of gases is proportional to
the molar flow of each gas.
'''
Padulles_Standard_Vector = {
"T": 343,
"E0": 0.6,
"N0": 88,
"KO2": 0.0000211,
"KH2": 0.0000422,
"tH2": 3.37,
"tO2": 6.74,
"B": 0.04777,
"C": 0.0136,
"Rint": 0.00303,
"rho": 1.168,
"qH2": 0.0004,
"i-start": 0,
"i-stop": 100,
"i-step": 0.1,
"Name": "PadullesI_Test"}
Padulles2_InputParams = {
"N0": "Number of cells",
"E0": "No load voltage [V]",
"T": "Fuel cell temperature [K]",
"KH2": "Hydrogen valve constant [kmol.s^(-1).atm^(-1)]",
"KO2": "Oxygen valve constant [kmol.s^(-1).atm^(-1)]",
"tH2": "Hydrogen time constant [s]",
"tO2": "Oxygen time constant [s]",
"qH2": "Molar flow of hydrogen [kmol.s^(-1)]",
"rho": "Hydrogen-Oxygen flow rate",
"Rint": "Fuel cell internal resistance [ohm]",
"B": "Activation voltage constant [V]",
"C": "Activation constant parameter [A^(-1)]",
"i-start": "Cell operating current start point [A]",
"i-step": "Cell operating current step",
"i-stop": "Cell operating current end point [A]",
"KH2O": "Water Valve Constant [kmol.s^(-1).atm^(-1)]",
"tH2O": "Water time constant [s]"}
Padulles2_Outparams = {
"FC Voltage": "V",
"FC Power": "W",
"FC Efficiency": "",
"PO2": "atm",
"PH2": "atm",
"PH2O": "atm",
"E": "V",
"Power-Thermal": "W"}
Padulles2_Description = '''
In this model, Nernst and fuel cell potential were modeled as a function of water, oxygen and hydrogen gases partial
pressure that can be calculated from independent variables or constants. The partial pressure of gases is proportional
to the molar flow of each gas.
'''
Padulles2_Standard_Vector = {
"T": 343,
"E0": 0.6,
"N0": 5,
"KO2": 0.0000211,
"KH2": 0.0000422,
"KH2O": 0.000007716,
"tH2": 3.37,
"tO2": 6.74,
"tH2O": 18.418,
"B": 0.04777,
"C": 0.0136,
"Rint": 0.00303,
"rho": 1.168,
"qH2": 0.0004,
"i-start": 0.1,
"i-stop": 100,
"i-step": 0.1,
"Name": "Padulles2_Test"}
Padulles_Hauer_InputParams = {
"N0": "Number of cells",
"E0": "No load voltage [V]",
"T": "Fuel cell temperature [K]",
"KH2": "Hydrogen valve constant [kmol.s^(-1).atm^(-1)]",
"KO2": "Oxygen valve constant [kmol.s^(-1).atm^(-1)]",
"tH2": "Hydrogen time constant [s]",
"tO2": "Oxygen time constant [s]",
"t1": "Reformer time constant [s]",
"t2": "Reformer time constant [s]",
"rho": "Hydrogen-Oxygen flow rate",
"Rint": "Fuel cell internal resistance [ohm]",
"B": "Activation voltage constant [V]",
"C": "Activation constant parameter [A^(-1)]",
"i-start": "Cell operating current start point [A]",
"i-step": "Cell operating current step",
"i-stop": "Cell operating current end point [A]",
"KH2O": "Water valve constant [kmol.s^(-1).atm^(-1)]",
"tH2O": "Water time constant [s]",
"qMethanol": "Molar flow of methanol [kmol.s^(-1)]",
"CV": "Conversion factor"}
Padulles_Hauer_Outparams = {
"FC Voltage": "V",
"FC Power": "W",
"FC Efficiency": "",
"PO2": "atm",
"PH2": "atm",
"PH2O": "atm",
"E": "V",
"Power-Thermal": "W"}
Padulles_Hauer_Description = '''
Padulles-Hauer Dynamic Model is a dynamic electrochemical simulation model of a grid independent proton exchange
membrane (PEM) fuel cell. This model includes a methanol reformer to generate hydrogen from methanol and the PEM stack.
The model is used to predict the output voltage and power of a PEMFC. It has to be noted that the reformer model is a
second order transfer function.
'''
Padulles_Hauer_Standard_Vector = {
"T": 343,
"E0": 0.6,
"N0": 5,
"KO2": 0.0000211,
"KH2": 0.0000422,
"KH2O": 0.000007716,
"tH2": 3.37,
"tO2": 6.74,
"t1": 2,
"t2": 2,
"tH2O": 18.418,
"B": 0.04777,
"C": 0.0136,
"Rint": 0.00303,
"rho": 1.168,
"qMethanol": 0.0002,
"CV": 2,
"i-start": 0.1,
"i-stop": 100,
"i-step": 0.1,
"Name": "Padulles_Hauer_Test"}
Padulles_Amphlett_Params_Default = {"R": 0, "E0": 1.229}
Padulles_Amphlett_InputParams = {
"N0": "Number of cells",
"E0": "No load voltage [V], Default Value:" + str(
Padulles_Amphlett_Params_Default["E0"]),
"T": "Fuel cell temperature [K]",
"KH2": "Hydrogen valve constant [kmol.s^(-1).atm^(-1)]",
"KO2": "Oxygen valve constant [kmol.s^(-1).atm^(-1)]",
"tH2": "Hydrogen time constant [s]",
"tO2": "Oxygen time constant [s]",
"t1": "Reformer time constant [s]",
"t2": "Reformer time constant [s]",
"rho": "Hydrogen-Oxygen flow rate",
"R": "R-Electronic [ohm] (*Optional)",
"i-start": "Cell operating current start point [A]",
"i-step": "Cell operating current step",
"i-stop": "Cell operating current end point [A]",
"KH2O": "Water valve constant [kmol.s^(-1).atm^(-1)]",
"tH2O": "Water time constant [s]",
"qMethanol": "Molar flow of methanol [kmol.s^(-1)]",
"CV": "Conversion factor",
"A": "Active area [cm^2]",
"l": "Membrane thickness [cm]",
"lambda": "An adjustable parameter with a min value of 14 and max value of 23",
"JMax": "Maximum current density [A/(cm^2)]"}
Padulles_Amphlett_Outparams = {
"FC Voltage": "V",
"FC Power": "W",
"FC Efficiency": "",
"PO2": "atm",
"PH2": "atm",
"PH2O": "atm",
"E": "V",
"Eta Activation": "V",
"Eta Ohmic": "V",
"Eta Concentration": "V",
"Loss": "V",
"Power-Thermal": "W"}
Padulles_Amphlett_Description = '''
This model is an integration of Padulles-Hauer dynamic model with Amphlett static model. The advantage of this dynamic
model is using Amphlett equation for simulating the polarization values. Amphlett model as the most complicated and
preferable static model, but the most precise. Based on this model, the obtained polarization voltage is identical to
the experimental results.
'''
Padulles_Amphlett_Standard_Vector = {
"A": 50.6,
"l": 0.0178,
"lambda": 23,
"JMax": 1.5,
"T": 343,
"N0": 5,
"KO2": 0.0000211,
"KH2": 0.0000422,
"KH2O": 0.000007716,
"tH2": 3.37,
"tO2": 6.74,
"t1": 2,
"t2": 2,
"tH2O": 18.418,
"rho": 1.168,
"qMethanol": 0.0002,
"CV": 2,
"i-start": 0.1,
"i-stop": 75,
"i-step": 0.1,
"Name": "Padulles_Amphlett_Test"}
Chakraborty_Params_Default = {"R": 0, "E0": 0.6}
Chakraborty_InputParams = {
"N0": "Number of cells",
"u": "Fuel utilization ratio",
"E0": "No load voltage [V], Default Value:" + str(
Chakraborty_Params_Default["E0"]),
"T": "Fuel cell temperature [K]",
"KH2": "Hydrogen valve constant [kmol.s^(-1).atm^(-1)]",
"KO2": "Oxygen valve constant [kmol.s^(-1).atm^(-1)]",
"rho": "Hydrogen-Oxygen flow rate",
"R": "Internal ohmic resistance [ohm] (*Optional)",
"i-start": "Cell operating current start point [A]",
"i-step": "Cell operating current step",
"i-stop": "Cell operating current end point [A]",
"KH2O": "Water valve constant [kmol.s^(-1).atm^(-1)]"}
Chakraborty_Outparams = {
"FC Voltage": "V",
"FC Power": "W",
"FC Efficiency": "",
"PO2": "atm",
"PH2": "atm",
"PH2O": "atm",
"E": "V",
"Power-Thermal": "W",
"Nernst Gain": "V",
"Ohmic Loss": "V"}
Chakraborty_Description = '''
The new dynamic model is presented based on constant fuel utilization control (constant stoichiometry condition).
The model solves the long-standing problem of mixing reversible and irreversible potentials (equilibrium and non-equilibrium states)
in the Nernst voltage expression. Specifically, a Nernstian gain term is introduced for the constant fuel utilization condition, and
it is shown that the Nernstian gain is an irreversibility in the computation of the output voltage of the fuel cell.
'''
Chakraborty_Standard_Vector = {
"T": 1273,
"E0": 0.6,
"u": 0.8,
"N0": 1,
"R": 3.28125 * 10**(-3),
"KH2O": 0.000281,
"KH2": 0.000843,
"KO2": 0.00252,
"rho": 1.145,
"i-start": 0.1,
"i-stop": 300,
"i-step": 0.1,
"Name": "Chakraborty_Test"}
General_Padulles_Description = '''
The Padulles dynamic model can predict the transient response of cell voltage, temperature of the cell, hydrogen/oxygen
out flow rates and cathode and anode channel temperatures/pressures under sudden change in load current. Hence, a
dynamic fuel cell simulation is developed in this model, which incorporates the dynamics of flow and pressure in the
anode and cathode channels and mass/ heat transfer transient features in the fuel cell body. This model based on some
assumption such; the gases are ideal, the stack is fed with hydrogen and air, temperature is stable at all times, the
ratio of pressures between the interior and exterior of the channel is large, The channels that transport gases along
the electrodes have a fixed volume, only source of losses is ohmic and Nernst equation can be applied too.
'''
Description_Menu = {
"Amphlett_Analysis (Static)": Amphlett_Description,
"Larminiee_Analysis (Static)": Larminiee_Description,
"Chamberline_Kim_Analysis (Static)": Chamberline_Description,
"Padulles_Analysis I (Dynamic)": Padulles_Description,
"Padulles_Analysis II (Dynamic)": Padulles2_Description,
"Padulles_Hauer Analysis (Dynamic)": Padulles_Hauer_Description,
"Padulles_Amphlett Analysis (Dynamic)": Padulles_Amphlett_Description,
"Chakraborty_Analysis (Dynamic)": Chakraborty_Description,
"General Padulles": General_Padulles_Description,
"Overview": Overview,
"Links": Links}
Mode_Menu = "\n\n[M]: More information\n\n[T]: Run standard test vector\n\n[P]: Enter your parameters (*default)\n\nPlease select a mode : "
Description_Links = {
"Amphlett_Analysis (Static)": "http://www.ecsim.site/opem/doc/Static/Amphlett.html",
"Larminiee_Analysis (Static)": "http://www.ecsim.site/opem/doc/Static/Larminie_Dicks.html",
"Chamberline_Kim_Analysis (Static)": "http://www.ecsim.site/opem/doc/Static/Chamberline_Kim.html",
"Padulles_Analysis I (Dynamic)": "http://www.ecsim.site/opem/doc/Dynamic/Padulles1.html",
"Padulles_Analysis II (Dynamic)": "http://www.ecsim.site/opem/doc/Dynamic/Padulles2.html",
"Padulles_Hauer Analysis (Dynamic)": "http://www.ecsim.site/opem/doc/Dynamic/Padulles_Hauer.html",
"Padulles_Amphlett Analysis (Dynamic)": "http://www.ecsim.site/opem/doc/Dynamic/Padulles_Amphlett.html",
"Chakraborty_Analysis (Dynamic)": "http://www.ecsim.site/opem/doc/Dynamic/Chakraborty.html"}
Vectors = {
"Amphlett_Analysis (Static)": Amphlett_Standard_Vector,
"Larminiee_Analysis (Static)": Larminiee_Standard_Vector,
"Chamberline_Kim_Analysis (Static)": Chamberline_Standard_Vector,
"Padulles_Analysis I (Dynamic)": Padulles_Standard_Vector,
"Padulles_Analysis II (Dynamic)": Padulles2_Standard_Vector,
"Padulles_Hauer Analysis (Dynamic)": Padulles_Hauer_Standard_Vector,
"Padulles_Amphlett Analysis (Dynamic)": Padulles_Amphlett_Standard_Vector,
"Chakraborty_Analysis (Dynamic)": Chakraborty_Standard_Vector}
Overall_Params_Max_Description = {
"Pmax": "Maximum power [W]",
"VFC|Pmax": "Cell voltage at maximum power [V]",
"Efficiency|Pmax": "Cell efficiency at maximum power",
"Ptotal(Elec)": "Total electrical power [W]",
"Ptotal(Thermal)": "Total thermal power [W]"}
Overall_Params_Linear_Description = {
"V0": "Intercept of the curve obtained by linear approximation [V]",
"K": "Slope of the curve obtained by linear approximation [A^(-1)]",
"Pmax(L-Approx)": "Maximum power obtained by linear approximation [W]",
"VFC|Pmax(L-Approx)": "Cell voltage at maximum power obtained by linear approximation [V]",
}
Test_List = [
'test_Amphlett.py',
'test_Chamberline_Kim.py',
'test_Functions.py',
'test_Larminie_Dicks.py',
'test_Padulles1.py',
'test_Padulles2.py',
'test_Padulles_Amphlett.py',
'test_Padulles_Hauer.py']
|