File: Amphlett.py

package info (click to toggle)
python-opem 1.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,076 kB
  • sloc: python: 7,777; sh: 27; makefile: 10
file content (722 lines) | stat: -rw-r--r-- 24,271 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
# -*- coding: utf-8 -*-
"""Amphlett model functions."""
import math
from opem.Params import Amphlett_InputParams as InputParams
from opem.Params import Amphlett_OutputParams as OutputParams
from opem.Params import Amphlett_Params_Default as Defaults
from opem.Params import xi1, xi3, xi4, HHV, uF, R, F, Amphlett_Description, Overall_Params_Max_Description,\
    Overall_Params_Linear_Description, Eth, Report_Message
import opem.Functions
import os


def B_Calc(T, n=2):
    """
    Calculate B (Constant in the mass transfer term).

    :param T: cell operation temperature [K]
    :type T: float
    :param n: number of moles of electrons transferred in the balanced equation occurring in the fuel cell
    :type n: int
    :return: B as float
    """
    try:
        return (R * T) / (n * F)
    except (TypeError, ZeroDivisionError):
        return None


def Power_Thermal_Calc(VStack, N, i):
    """
    Calculate thermal power.

    :param VStack: VStack [V]
    :type VStack: float
    :param N: number of single cells
    :type N: int
    :param i: cell load current [A]
    :type i: float
    :return: thermal power [W]
    """
    try:
        return i * ((N * Eth) - VStack)
    except TypeError:
        return None


def Power_Total_Calc(VStack_List, i_step, N):
    """
    Calculate total elec power and total thermal power by calling integrate function.

    :param VStack_List: Vstack list
    :type VStack_List: list
    :param i_step: cell load current step
    :type i_step: float
    :param N: number of single cells
    :type N: int
    :return: [total elec power,total thermal power] as list
    """
    try:
        Filtered_List = list(filter(lambda x: x is not None, VStack_List))
        Filtered_List_Not = list(map(lambda x: (N * Eth) - x, Filtered_List))
        Total_Elec_Power = opem.Functions.integrate(Filtered_List, i_step)
        Total_Thermal_Power = opem.Functions.integrate(
            Filtered_List_Not, i_step)
        return [Total_Elec_Power, Total_Thermal_Power]
    except Exception:
        return [None, None]


def Linear_Aprox_Params_Calc(B0, B1):
    """
    Calculate linear approximation overall parameters.

    :param B0: intercept
    :type B0: float
    :param B1: slope
    :type B1: float
    :return: [Wmax,Vcell_Wmax] as list
    """
    Wmax = 0
    Vcell_Wmax = 0
    try:
        Wmax = (B0**2) / (4 * B1)
    except Exception:
        Wmax = None
    try:
        Vcell_Wmax = (B0 / 2)
    except Exception:
        Vcell_Wmax = None
    if Wmax is not None:
        Wmax = abs(Wmax)
    if Vcell_Wmax is not None:
        Vcell_Wmax = abs(Vcell_Wmax)
    return [Wmax, Vcell_Wmax]


def Max_Params_Calc(Power_List, EFF_List, VStack_List):
    """
    Calculate maximum overall parameters.

    :param Power_List: power list
    :type Power_List: list
    :param EFF_List: efficiency list
    :type EFF_List: list
    :param VStack_List: Vstack list
    :type VStack_List: list
    :return: [max power,max efficiency,max VStack] as list
    """
    Max_Power = max(list(filter(lambda x: x is not None, Power_List)))
    Max_EFF = EFF_List[Power_List.index(Max_Power)]
    Max_VStack = VStack_List[Power_List.index(Max_Power)]
    return {
        "Max_Power": Max_Power,
        "Max_EFF": Max_EFF,
        "Max_VStack": Max_VStack}


def R_Calc(V, i):
    """
    Calculate cell total resistance.

    :param V: cell voltage [V]
    :type V: float
    :param i: cell load current [A]
    :type i: float
    :return: resistance as float [ohm]
    """
    try:
        return V / i
    except (TypeError, ZeroDivisionError):
        print(
            "[Error] R Total Calculation Failed (V:%s ,i:%s)" %
            (str(V), str(i)))


def Enernst_Calc(T, PH2, PO2):
    """
    Calculate Enernst.

    :param T: cell operation temperature [K]
    :type T: float
    :param PH2: partial pressure [atm]
    :type PH2: float
    :param PO2: partial Pressure [atm]
    :type PO2: float
    :return: Enernst [V] as float
    """
    try:
        result = 1.229 - (8.5 * (10 ** -4)) * (T - 298.15) + (4.308 *
                                                              (10 ** -5)) * T * (math.log(PH2) + 0.5 * math.log(PO2))
        return result
    except (TypeError, OverflowError, ValueError):
        print(
            "[Error] Enernst Calculation Failed (T:%s , PH2:%s, PO2:%s)" %
            (str(T), str(PH2), str(PO2)))


def CH2_Calc(PH2, T):
    """
    Calculate CH2.

    :param PH2: partial pressure [atm]
    :type PH2: float
    :param T: cell operation temperature [K]
    :type T: float
    :return: CH2 [mol/cm^3] as float
    """
    try:
        result = PH2 / (1.09 * (10 ** 6) * math.exp(77 / T))
        return result
    except (TypeError, ZeroDivisionError, OverflowError, ValueError):
        print(
            "[Error] CH2 Calculation Failed (PH2:%s, T:%s)" %
            (str(PH2), str(T)))


def CO2_Calc(PO2, T):
    """
    Calculate CO2.

    :param PO2: partial pressure [atm]
    :type PO2: float
    :param T: cell operation temperature [K]
    :type T: float
    :return: CO2 [mol/cm^3] as float
    """
    try:
        result = PO2 / (5.08 * (10 ** 6) * math.exp(-498 / T))
        return result
    except (TypeError, ZeroDivisionError, OverflowError, ValueError):
        print(
            "[Error] CO2 Calculation Failed (PO2:%s, T:%s)" %
            (str(PO2), str(T)))


def Rho_Calc(i, A, T, lambda_param):
    """
    Calculate Rho.

    :param i: cell load current [A]
    :type i: float
    :param A: active area [cm^2]
    :type A: float
    :param T: cell operation temperature [K]
    :type T: float
    :param lambda_param: is an adjustable parameter with a possible maximum value of 23
    :type lambda_param: float
    :return: Rho -- > membrane specific resistivity [ohm.cm] as float
    """
    try:
        result = (181.6 * (1 + 0.03 * (i / A) + 0.062 * ((T / 303) ** 2) * ((i / A) ** 2.5))
                  ) / ((lambda_param - 0.634 - 3 * (i / A)) * math.exp(4.18 * ((T - 303) / T)))
        return result
    except (TypeError, ZeroDivisionError, OverflowError, ValueError):
        print(
            "[Error] Rho Calculation Failed (i:%s, A:%s, T:%s, lambda:%s)" %
            (str(i), str(A), str(T), str(lambda_param)))


def Xi2_Calc(A, PH2, T):
    """
    Calculate Xi2.

    :param A: active area [cm^2]
    :type A: float
    :param PH2: partial pressure [atm]
    :type PH2: float
    :param T: cell operation temperature [K]
    :type T: float
    :return: Xi2 as float
    """
    try:
        CH2 = CH2_Calc(PH2, T)
        result = 0.00286 + 0.0002 * \
            math.log(A) + (4.3 * (10 ** -5)) * math.log(CH2)
        return result
    except (TypeError, OverflowError, ValueError):
        print(
            "[Error] Xi2 Calculation Failed (A:%s, PH2:%s, T:%s)" %
            (str(A), str(PH2), str(T)))


def Eta_Conc_Calc(i, A, B, JMax):
    """
    Calculate Eta concentration.

    :param i: cell load current [A]
    :type i: float
    :param A: active area [cm^2]
    :type A: float
    :param B: constant in the mass transfer term [V]
    :type B: float
    :param JMax: maximum current density [A/(cm^2)]
    :type JMax: float
    :return: Eta concentration [V] as float
    """
    try:
        if i != 0:
            J = (i / A)
            result = -B * math.log(1 - (J / JMax))
            return result
        return 0
    except (TypeError, ZeroDivisionError, OverflowError, ValueError):
        print(
            "[Error] Eta Concentration Calculation Failed (i:%s, A:%s, B:%s, JMax:%s)" %
            (str(i), str(A), str(B), str(JMax)))


def Eta_Ohmic_Calc(i, l, A, T, lambda_param, R_elec=None):
    """
    Calculate Eta ohmic.

    :param i: cell load current [A]
    :type i: float
    :param l: membrane thickness [cm]
    :type l: float
    :param A: active area [cm^2]
    :type A: float
    :param T: cell operation temperature [K]
    :type T: float
    :param lambda_param: is an adjustable parameter with a possible maximum value of 23
    :type lambda_param: float
    :param R_elec: R electronic [ohm]
    :type R_elec: float
    :return: Eta ohmic [V] as float
    """
    try:
        if i != 0:
            Rho = Rho_Calc(i, A, T, lambda_param)
            R_prot = (Rho * l) / A
            R_total = R_prot
            if opem.Functions.isfloat(R_elec):
                R_total += R_elec
            result = i * R_total
            return result
        return 0
    except (TypeError, ZeroDivisionError):
        print(
            "[Error] Eta Ohmic Calculation Failed (i:%s, l:%s, A:%s, T:%s, lambda:%s, R_elec:%s)" %
            (str(i), str(l), str(A), str(T), str(lambda_param), str(R_elec)))


def Eta_Act_Calc(T, PO2, PH2, i, A):
    """
    Calculate Eta activation.

    :param T: cell operation temperature [K]
    :type T: float
    :param PO2: partial pressure [atm]
    :type PO2: float
    :param PH2: partial pressure [atm]
    :type PH2: float
    :param i: cell load current [A]
    :type i: float
    :param A: active area [cm^2]
    :type A: float
    :return: Eta activation [V] as float
    """
    try:
        if i != 0:
            CO2 = CO2_Calc(PO2, T)
            xi2 = Xi2_Calc(A, PH2, T)
            result = -(xi1 + xi2 * T + xi3 * T *
                       math.log(CO2) + xi4 * T * math.log(i))
            return result
        return 0
    except (TypeError, OverflowError, ValueError):
        print(
            "[Error] Eta Activation Calculation Failed (T:%s, PO2:%s, PH2:%s, i:%s, A:%s)" %
            (str(T), str(PO2), str(PH2), str(i), str(A)))


def Efficiency_Calc(Vcell):
    """
    Calculate PEM cell efficiency.

    :param Vcell: cell voltage [V]
    :type Vcell:float
    :return: efficiency as float
    """
    try:
        result = (uF * Vcell) / HHV
        return result
    except (TypeError, ZeroDivisionError):
        print(
            "[Error] PEM Efficiency Calculation Failed (Vcell:%s)" %
            str(Vcell))


def VStack_Calc(N, Vcell):
    """
    Calculate VStack.

    :param N: number of single cells
    :type N: int
    :param Vcell: cell voltage [V}
    :type Vcell: float
    :return: VStack [V] as float
    """
    try:
        result = N * (Vcell)
        return result
    except TypeError:
        print(
            "[Error] VStack Calculation Error (N:%s, Vcell:%s)" %
            (str(N), str(Vcell)))


def Loss_Calc(Eta_Act, Eta_Ohmic, Eta_Conc):
    """
    Calculate loss.

    :param Eta_Act: Eta activation [V]
    :type Eta_Act: float
    :param Eta_Ohmic: Eta ohmic [V]
    :type Eta_Ohmic: float
    :param Eta_Conc: Eta concentration [V]
    :type Eta_Conc: float
    :return: loss [V] as float
    """
    try:
        result = Eta_Act + Eta_Ohmic + Eta_Conc
        return result
    except TypeError:
        print(
            "[Error] Loss Calculation Error (Eta_Act:%s, Eta_Ohmic:%s, Eta_Conc:%s)" %
            (str(Eta_Act), str(Eta_Ohmic), str(Eta_Conc)))


def Vcell_Calc(Enernst, Loss):
    """
    Calculate cell voltage.

    :param Enernst: Enernst [V}
    :type Enernst: float
    :param Loss: loss [V]
    :type Loss: float
    :return: cell voltage [V] as float
    """
    try:
        result = Enernst - Loss
        return result
    except TypeError:
        print(
            "[Error] Vcell Calculation Error (Enernst:%s, Loss:%s)" %
            (str(Enernst), str(Loss)))


def Power_Calc(Vcell, i):
    """
    Calculate power.

    :param Vcell: Vcell Voltage [V]
    :type Vcell: float
    :param i: cell load current [A]
    :type i: float
    :return: cell power [W] as float
    """
    try:
        result = Vcell * i
        return result
    except TypeError:
        print(
            "[Error] Power Calculation Error (Vcell:%s, i:%s)" %
            (str(Vcell), str(i)))


def PowerStack_Calc(Power, N):
    """
    Calculate power_stack.

    :param Power: single cell power [W]
    :type Power: float
    :param N: number of single cells
    :type N: int
    :return: power stack [W] as float
    """
    try:
        result = N * Power
        return result
    except TypeError:
        print(
            "[Error] Power Stack Calculation Error (Power:%s, N:%s)" %
            (str(Power), str(N)))


def Static_Analysis(
        InputMethod=opem.Functions.Get_Input,
        TestMode=False,
        PrintMode=True,
        ReportMode=True,
        Folder=os.getcwd()):
    """
    Run Amphlett static analysis.

    :param InputMethod: input function or input test vector
    :type InputMethod: dict or Get_Input function object
    :param TestMode: test mode flag
    :type TestMode: bool
    :param PrintMode: print mode control flag (True : print outputs)
    :type PrintMode: bool
    :param ReportMode: report mode control flag (True : generate report)
    :type ReportMode: bool
    :param Folder: output folder address
    :type Folder: str
    :return: result as dict
    """
    OutputFile = None
    CSVFile = None
    Warning1 = False
    Warning2 = False
    I_Warning = 0
    Overall_Params_Max = {}
    Overall_Params_Linear = {}
    Simulation_Title = "Amphlett"
    try:
        if PrintMode:
            print("###########")
            print(Simulation_Title + "-Model Simulation")
            print("###########")
        OutputParamsKeys = sorted(OutputParams)
        Output_Dict = dict(
            zip(OutputParamsKeys, [None] * len(OutputParamsKeys)))
        if not TestMode:
            Input_Dict = InputMethod(InputParams, params_default=Defaults)
        else:
            Input_Dict = InputMethod
            Input_Dict = opem.Functions.filter_default(
                input_dict=Input_Dict, params_default=Defaults)
        Input_Dict = opem.Functions.filter_lambda(Input_Dict)
        if PrintMode:
            print("Analyzing . . .")
        Name = Input_Dict["Name"]
        if ReportMode:
            OutputFile = opem.Functions.Output_Init(
                Input_Dict, Simulation_Title, Name, Folder)
            CSVFile = opem.Functions.CSV_Init(
                OutputParamsKeys,
                OutputParams,
                Simulation_Title,
                Name,
                Folder)
            HTMLFile = opem.Functions.HTML_Init(Simulation_Title, Name, Folder)
        IEndMax = Input_Dict["JMax"] * Input_Dict["A"]
        IEnd = min(IEndMax, Input_Dict["i-stop"])
        IStep = Input_Dict["i-step"]
        Precision = opem.Functions.get_precision(IStep)
        Output_Dict["Enernst"] = Enernst_Calc(
            Input_Dict["T"], Input_Dict["PH2"], Input_Dict["PO2"])
        [i, IEnd, IStep] = opem.Functions.filter_range(
            Input_Dict["i-start"], IEnd, IStep)
        I_List = []
        Efficiency_List = []
        Power_List = []
        Vstack_List = []
        Eta_Ohmic_List = []
        Eta_Conc_List = []
        Eta_Active_List = []
        Power_Thermal_List = []
        B = B_Calc(Input_Dict["T"])
        # R_List=[]
        while i < IEnd:
            try:
                I_List.append(i)
                Output_Dict["Eta Activation"] = Eta_Act_Calc(
                    Input_Dict["T"], Input_Dict["PO2"], Input_Dict["PH2"], i, Input_Dict["A"])
                Eta_Active_List.append(Output_Dict["Eta Activation"])
                Output_Dict["Eta Ohmic"] = Eta_Ohmic_Calc(
                    i,
                    Input_Dict["l"],
                    Input_Dict["A"],
                    Input_Dict["T"],
                    Input_Dict["lambda"],
                    R_elec=Input_Dict["R"])
                Eta_Ohmic_List.append(Output_Dict["Eta Ohmic"])
                Output_Dict["Eta Concentration"] = Eta_Conc_Calc(
                    i, Input_Dict["A"], B, Input_Dict["JMax"])
                Eta_Conc_List.append(Output_Dict["Eta Concentration"])
                Output_Dict["Loss"] = Loss_Calc(
                    Output_Dict["Eta Activation"],
                    Output_Dict["Eta Ohmic"],
                    Output_Dict["Eta Concentration"])
                Output_Dict["Vcell"] = Vcell_Calc(
                    Output_Dict["Enernst"], Output_Dict["Loss"])
                [Warning1, I_Warning] = opem.Functions.warning_check_1(
                    Output_Dict["Vcell"], I_Warning, i, Warning1)
                Warning2 = opem.Functions.warning_check_2(
                    Vcell=Output_Dict["Vcell"], warning_flag=Warning2)
                Output_Dict["PEM Efficiency"] = Efficiency_Calc(
                    Output_Dict["Vcell"])
                Output_Dict["Power"] = Power_Calc(Output_Dict["Vcell"], i)
                Output_Dict["VStack"] = VStack_Calc(
                    Input_Dict["N"], Output_Dict["Vcell"])
                #Output_Dict["R Total"] = R_Calc(Output_Dict["VStack"],i)
                #R_List.append(Output_Dict["R Total"])
                Vstack_List.append(Output_Dict["VStack"])
                Efficiency_List.append(Output_Dict["PEM Efficiency"])
                Output_Dict["Power-Thermal"] = Power_Thermal_Calc(
                    VStack=Output_Dict["VStack"], N=Input_Dict["N"], i=i)
                Output_Dict["Power-Stack"] = PowerStack_Calc(
                    Output_Dict["Power"], Input_Dict["N"])
                Power_List.append(Output_Dict["Power-Stack"])
                Power_Thermal_List.append(Output_Dict["Power-Thermal"])
                if ReportMode:
                    opem.Functions.Output_Save(
                        OutputParamsKeys,
                        Output_Dict,
                        OutputParams,
                        i,
                        OutputFile,
                        PrintMode)
                    opem.Functions.CSV_Save(
                        OutputParamsKeys, Output_Dict, i, CSVFile)
                i = opem.Functions.rounder(i + IStep, Precision)
            except Exception as e:
                print(str(e))
                i = opem.Functions.rounder(i + IStep, Precision)
                if opem.Functions.ReporttMode:
                    opem.Functions.Output_Save(
                        OutputParamsKeys,
                        Output_Dict,
                        OutputParams,
                        i,
                        OutputFile,
                        PrintMode)
                    opem.Functions.CSV_Save(
                        OutputParamsKeys, Output_Dict, i, CSVFile)
        [Estimated_V, B0, B1] = opem.Functions.linear_plot(
            x=I_List, y=Vstack_List)
        Linear_Approx_Params = Linear_Aprox_Params_Calc(B0, B1)
        Max_Params = Max_Params_Calc(Power_List, Efficiency_List, Vstack_List)
        Power_Total = Power_Total_Calc(Vstack_List, IStep, Input_Dict["N"])
        Overall_Params_Linear["Pmax(L-Approx)"] = Linear_Approx_Params[0]
        Overall_Params_Linear["V0"] = B0
        Overall_Params_Linear["K"] = B1
        Overall_Params_Linear["VFC|Pmax(L-Approx)"] = Linear_Approx_Params[1]

        Overall_Params_Max["Pmax"] = Max_Params["Max_Power"]
        Overall_Params_Max["VFC|Pmax"] = Max_Params["Max_VStack"]
        Overall_Params_Max["Efficiency|Pmax"] = Max_Params["Max_EFF"]
        Overall_Params_Max["Ptotal(Elec)"] = Power_Total[0]
        Overall_Params_Max["Ptotal(Thermal)"] = Power_Total[1]
        if ReportMode:
            OutputFile.close()
            CSVFile.close()
            if PrintMode:
                print(Report_Message)
            opem.Functions.HTML_Desc(
                Simulation_Title, Amphlett_Description, HTMLFile)
            opem.Functions.HTML_Input_Table(
                Input_Dict=Input_Dict,
                Input_Params=InputParams,
                file=HTMLFile)
            opem.Functions.HTML_Overall_Params_Table(
                Overall_Params_Max,
                Overall_Params_Max_Description,
                file=HTMLFile,
                header=True)
            opem.Functions.HTML_Chart(
                x=str(I_List),
                y=str(Power_List),
                color='rgba(255,99,132,1)',
                x_label="I(A)",
                y_label="P(W)",
                chart_name="Power-Stack",
                size="600px",
                file=HTMLFile)
            # HTML_Chart(x=str(I_List), y=str(R_List), color='rgb(159, 82, 71)', x_label="I(A)", y_label="R(ohm)",
            # chart_name="R Total", size="600px", file=HTMLFile)
            opem.Functions.HTML_Chart(
                x=str(I_List), y=[
                    str(Vstack_List), str(Estimated_V)], color=[
                    'rgba(99,100,255,1)', 'rgb(238, 210, 141)'], x_label="I(A)", y_label="V(V)", chart_name=[
                    "Voltage-Stack", "Linear-Apx"], size="600px", file=HTMLFile)
            opem.Functions.HTML_Overall_Params_Table(
                Overall_Params_Linear,
                Overall_Params_Linear_Description,
                file=HTMLFile,
                header=False)
            opem.Functions.HTML_Chart(x=str(I_List),
                                      y=[str(Eta_Active_List),
                                         str(Eta_Conc_List),
                                         str(Eta_Ohmic_List)],
                                      color=['rgba(255,99,132,1)',
                                             'rgba(99,100,255,1)',
                                             'rgb(238, 210, 141)'],
                                      x_label="I(A)",
                                      y_label="V(V)",
                                      chart_name=["Eta Active",
                                                  "Eta Conc",
                                                  "Eta Ohmic"],
                                      size="600px",
                                      file=HTMLFile)
            opem.Functions.HTML_Chart(
                x=str(I_List),
                y=str(Efficiency_List),
                color='rgb(255, 0, 255)',
                x_label="I(A)",
                y_label="EFF",
                chart_name="Efficiency",
                size="600px",
                file=HTMLFile)
            opem.Functions.HTML_Chart(x=str(list(map(opem.Functions.rounder,
                                                     Power_List))),
                                      y=str(Efficiency_List),
                                      color='rgb(238, 210, 141)',
                                      x_label="P(W)",
                                      y_label="EFF",
                                      chart_name="Efficiency vs Power",
                                      size="600px",
                                      file=HTMLFile)
            opem.Functions.HTML_Chart(
                x=str(I_List),
                y=str(Power_Thermal_List),
                color='rgb(255, 0, 255)',
                x_label="I(A)",
                y_label="P(W)",
                chart_name="Power(Thermal)",
                size="600px",
                file=HTMLFile)
            opem.Functions.warning_print(
                warning_flag_1=Warning1,
                warning_flag_2=Warning2,
                I_Warning=I_Warning,
                file=HTMLFile,
                PrintMode=PrintMode)
            opem.Functions.HTML_End(HTMLFile)
            HTMLFile.close()
        if PrintMode:
            print("Done!")
        if not TestMode:
            if PrintMode:
                print(
                    "Result In -->" +
                    os.path.join(
                        os.getcwd(),
                        Simulation_Title))
        else:
            return {
                "Status": True,
                "P": Power_List,
                "I": I_List,
                "V": Vstack_List,
                "EFF": Efficiency_List,
                "Ph": Power_Thermal_List,
                "V0": B0,
                "K": B1,
                "Eta_Active": Eta_Active_List,
                "Eta_Conc": Eta_Conc_List,
                "Eta_Ohmic": Eta_Ohmic_List,
                "VE": Estimated_V}
    except Exception:
        if TestMode:
            return {
                "Status": False,
                "Message": "[Error] " +
                Simulation_Title +
                " Simulation Failed!(Check Your Inputs)"}
        print(
            "[Error] " +
            Simulation_Title +
            " Simulation Failed!(Check Your Inputs)")