File: README.md

package info (click to toggle)
python-openai 1.99.9-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,784 kB
  • sloc: python: 57,274; sh: 140; makefile: 7
file content (859 lines) | stat: -rw-r--r-- 27,001 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
# OpenAI Python API library

<!-- prettier-ignore -->
[![PyPI version](https://img.shields.io/pypi/v/openai.svg?label=pypi%20(stable))](https://pypi.org/project/openai/)

The OpenAI Python library provides convenient access to the OpenAI REST API from any Python 3.8+
application. The library includes type definitions for all request params and response fields,
and offers both synchronous and asynchronous clients powered by [httpx](https://github.com/encode/httpx).

It is generated from our [OpenAPI specification](https://github.com/openai/openai-openapi) with [Stainless](https://stainlessapi.com/).

## Documentation

The REST API documentation can be found on [platform.openai.com](https://platform.openai.com/docs/api-reference). The full API of this library can be found in [api.md](api.md).

## Installation

```sh
# install from PyPI
pip install openai
```

## Usage

The full API of this library can be found in [api.md](api.md).

The primary API for interacting with OpenAI models is the [Responses API](https://platform.openai.com/docs/api-reference/responses). You can generate text from the model with the code below.

```python
import os
from openai import OpenAI

client = OpenAI(
    # This is the default and can be omitted
    api_key=os.environ.get("OPENAI_API_KEY"),
)

response = client.responses.create(
    model="gpt-4o",
    instructions="You are a coding assistant that talks like a pirate.",
    input="How do I check if a Python object is an instance of a class?",
)

print(response.output_text)
```

The previous standard (supported indefinitely) for generating text is the [Chat Completions API](https://platform.openai.com/docs/api-reference/chat). You can use that API to generate text from the model with the code below.

```python
from openai import OpenAI

client = OpenAI()

completion = client.chat.completions.create(
    model="gpt-4o",
    messages=[
        {"role": "developer", "content": "Talk like a pirate."},
        {
            "role": "user",
            "content": "How do I check if a Python object is an instance of a class?",
        },
    ],
)

print(completion.choices[0].message.content)
```

While you can provide an `api_key` keyword argument,
we recommend using [python-dotenv](https://pypi.org/project/python-dotenv/)
to add `OPENAI_API_KEY="My API Key"` to your `.env` file
so that your API key is not stored in source control.
[Get an API key here](https://platform.openai.com/settings/organization/api-keys).

### Vision

With an image URL:

```python
prompt = "What is in this image?"
img_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/d5/2023_06_08_Raccoon1.jpg/1599px-2023_06_08_Raccoon1.jpg"

response = client.responses.create(
    model="gpt-4o-mini",
    input=[
        {
            "role": "user",
            "content": [
                {"type": "input_text", "text": prompt},
                {"type": "input_image", "image_url": f"{img_url}"},
            ],
        }
    ],
)
```

With the image as a base64 encoded string:

```python
import base64
from openai import OpenAI

client = OpenAI()

prompt = "What is in this image?"
with open("path/to/image.png", "rb") as image_file:
    b64_image = base64.b64encode(image_file.read()).decode("utf-8")

response = client.responses.create(
    model="gpt-4o-mini",
    input=[
        {
            "role": "user",
            "content": [
                {"type": "input_text", "text": prompt},
                {"type": "input_image", "image_url": f"data:image/png;base64,{b64_image}"},
            ],
        }
    ],
)
```

## Async usage

Simply import `AsyncOpenAI` instead of `OpenAI` and use `await` with each API call:

```python
import os
import asyncio
from openai import AsyncOpenAI

client = AsyncOpenAI(
    # This is the default and can be omitted
    api_key=os.environ.get("OPENAI_API_KEY"),
)


async def main() -> None:
    response = await client.responses.create(
        model="gpt-4o", input="Explain disestablishmentarianism to a smart five year old."
    )
    print(response.output_text)


asyncio.run(main())
```

Functionality between the synchronous and asynchronous clients is otherwise identical.

### With aiohttp

By default, the async client uses `httpx` for HTTP requests. However, for improved concurrency performance you may also use `aiohttp` as the HTTP backend.

You can enable this by installing `aiohttp`:

```sh
# install from PyPI
pip install openai[aiohttp]
```

Then you can enable it by instantiating the client with `http_client=DefaultAioHttpClient()`:

```python
import asyncio
from openai import DefaultAioHttpClient
from openai import AsyncOpenAI


async def main() -> None:
    async with AsyncOpenAI(
        api_key="My API Key",
        http_client=DefaultAioHttpClient(),
    ) as client:
        chat_completion = await client.chat.completions.create(
            messages=[
                {
                    "role": "user",
                    "content": "Say this is a test",
                }
            ],
            model="gpt-4o",
        )


asyncio.run(main())
```

## Streaming responses

We provide support for streaming responses using Server Side Events (SSE).

```python
from openai import OpenAI

client = OpenAI()

stream = client.responses.create(
    model="gpt-4o",
    input="Write a one-sentence bedtime story about a unicorn.",
    stream=True,
)

for event in stream:
    print(event)
```

The async client uses the exact same interface.

```python
import asyncio
from openai import AsyncOpenAI

client = AsyncOpenAI()


async def main():
    stream = await client.responses.create(
        model="gpt-4o",
        input="Write a one-sentence bedtime story about a unicorn.",
        stream=True,
    )

    async for event in stream:
        print(event)


asyncio.run(main())
```

## Realtime API beta

The Realtime API enables you to build low-latency, multi-modal conversational experiences. It currently supports text and audio as both input and output, as well as [function calling](https://platform.openai.com/docs/guides/function-calling) through a WebSocket connection.

Under the hood the SDK uses the [`websockets`](https://websockets.readthedocs.io/en/stable/) library to manage connections.

The Realtime API works through a combination of client-sent events and server-sent events. Clients can send events to do things like update session configuration or send text and audio inputs. Server events confirm when audio responses have completed, or when a text response from the model has been received. A full event reference can be found [here](https://platform.openai.com/docs/api-reference/realtime-client-events) and a guide can be found [here](https://platform.openai.com/docs/guides/realtime).

Basic text based example:

```py
import asyncio
from openai import AsyncOpenAI

async def main():
    client = AsyncOpenAI()

    async with client.beta.realtime.connect(model="gpt-4o-realtime-preview") as connection:
        await connection.session.update(session={'modalities': ['text']})

        await connection.conversation.item.create(
            item={
                "type": "message",
                "role": "user",
                "content": [{"type": "input_text", "text": "Say hello!"}],
            }
        )
        await connection.response.create()

        async for event in connection:
            if event.type == 'response.text.delta':
                print(event.delta, flush=True, end="")

            elif event.type == 'response.text.done':
                print()

            elif event.type == "response.done":
                break

asyncio.run(main())
```

However the real magic of the Realtime API is handling audio inputs / outputs, see this example [TUI script](https://github.com/openai/openai-python/blob/main/examples/realtime/push_to_talk_app.py) for a fully fledged example.

### Realtime error handling

Whenever an error occurs, the Realtime API will send an [`error` event](https://platform.openai.com/docs/guides/realtime-model-capabilities#error-handling) and the connection will stay open and remain usable. This means you need to handle it yourself, as _no errors are raised directly_ by the SDK when an `error` event comes in.

```py
client = AsyncOpenAI()

async with client.beta.realtime.connect(model="gpt-4o-realtime-preview") as connection:
    ...
    async for event in connection:
        if event.type == 'error':
            print(event.error.type)
            print(event.error.code)
            print(event.error.event_id)
            print(event.error.message)
```

## Using types

Nested request parameters are [TypedDicts](https://docs.python.org/3/library/typing.html#typing.TypedDict). Responses are [Pydantic models](https://docs.pydantic.dev) which also provide helper methods for things like:

- Serializing back into JSON, `model.to_json()`
- Converting to a dictionary, `model.to_dict()`

Typed requests and responses provide autocomplete and documentation within your editor. If you would like to see type errors in VS Code to help catch bugs earlier, set `python.analysis.typeCheckingMode` to `basic`.

## Pagination

List methods in the OpenAI API are paginated.

This library provides auto-paginating iterators with each list response, so you do not have to request successive pages manually:

```python
from openai import OpenAI

client = OpenAI()

all_jobs = []
# Automatically fetches more pages as needed.
for job in client.fine_tuning.jobs.list(
    limit=20,
):
    # Do something with job here
    all_jobs.append(job)
print(all_jobs)
```

Or, asynchronously:

```python
import asyncio
from openai import AsyncOpenAI

client = AsyncOpenAI()


async def main() -> None:
    all_jobs = []
    # Iterate through items across all pages, issuing requests as needed.
    async for job in client.fine_tuning.jobs.list(
        limit=20,
    ):
        all_jobs.append(job)
    print(all_jobs)


asyncio.run(main())
```

Alternatively, you can use the `.has_next_page()`, `.next_page_info()`, or `.get_next_page()` methods for more granular control working with pages:

```python
first_page = await client.fine_tuning.jobs.list(
    limit=20,
)
if first_page.has_next_page():
    print(f"will fetch next page using these details: {first_page.next_page_info()}")
    next_page = await first_page.get_next_page()
    print(f"number of items we just fetched: {len(next_page.data)}")

# Remove `await` for non-async usage.
```

Or just work directly with the returned data:

```python
first_page = await client.fine_tuning.jobs.list(
    limit=20,
)

print(f"next page cursor: {first_page.after}")  # => "next page cursor: ..."
for job in first_page.data:
    print(job.id)

# Remove `await` for non-async usage.
```

## Nested params

Nested parameters are dictionaries, typed using `TypedDict`, for example:

```python
from openai import OpenAI

client = OpenAI()

response = client.chat.responses.create(
    input=[
        {
            "role": "user",
            "content": "How much ?",
        }
    ],
    model="gpt-4o",
    response_format={"type": "json_object"},
)
```

## File uploads

Request parameters that correspond to file uploads can be passed as `bytes`, or a [`PathLike`](https://docs.python.org/3/library/os.html#os.PathLike) instance or a tuple of `(filename, contents, media type)`.

```python
from pathlib import Path
from openai import OpenAI

client = OpenAI()

client.files.create(
    file=Path("input.jsonl"),
    purpose="fine-tune",
)
```

The async client uses the exact same interface. If you pass a [`PathLike`](https://docs.python.org/3/library/os.html#os.PathLike) instance, the file contents will be read asynchronously automatically.

## Webhook Verification

Verifying webhook signatures is _optional but encouraged_.

For more information about webhooks, see [the API docs](https://platform.openai.com/docs/guides/webhooks).

### Parsing webhook payloads

For most use cases, you will likely want to verify the webhook and parse the payload at the same time. To achieve this, we provide the method `client.webhooks.unwrap()`, which parses a webhook request and verifies that it was sent by OpenAI. This method will raise an error if the signature is invalid.

Note that the `body` parameter must be the raw JSON string sent from the server (do not parse it first). The `.unwrap()` method will parse this JSON for you into an event object after verifying the webhook was sent from OpenAI.

```python
from openai import OpenAI
from flask import Flask, request

app = Flask(__name__)
client = OpenAI()  # OPENAI_WEBHOOK_SECRET environment variable is used by default


@app.route("/webhook", methods=["POST"])
def webhook():
    request_body = request.get_data(as_text=True)

    try:
        event = client.webhooks.unwrap(request_body, request.headers)

        if event.type == "response.completed":
            print("Response completed:", event.data)
        elif event.type == "response.failed":
            print("Response failed:", event.data)
        else:
            print("Unhandled event type:", event.type)

        return "ok"
    except Exception as e:
        print("Invalid signature:", e)
        return "Invalid signature", 400


if __name__ == "__main__":
    app.run(port=8000)
```

### Verifying webhook payloads directly

In some cases, you may want to verify the webhook separately from parsing the payload. If you prefer to handle these steps separately, we provide the method `client.webhooks.verify_signature()` to _only verify_ the signature of a webhook request. Like `.unwrap()`, this method will raise an error if the signature is invalid.

Note that the `body` parameter must be the raw JSON string sent from the server (do not parse it first). You will then need to parse the body after verifying the signature.

```python
import json
from openai import OpenAI
from flask import Flask, request

app = Flask(__name__)
client = OpenAI()  # OPENAI_WEBHOOK_SECRET environment variable is used by default


@app.route("/webhook", methods=["POST"])
def webhook():
    request_body = request.get_data(as_text=True)

    try:
        client.webhooks.verify_signature(request_body, request.headers)

        # Parse the body after verification
        event = json.loads(request_body)
        print("Verified event:", event)

        return "ok"
    except Exception as e:
        print("Invalid signature:", e)
        return "Invalid signature", 400


if __name__ == "__main__":
    app.run(port=8000)
```

## Handling errors

When the library is unable to connect to the API (for example, due to network connection problems or a timeout), a subclass of `openai.APIConnectionError` is raised.

When the API returns a non-success status code (that is, 4xx or 5xx
response), a subclass of `openai.APIStatusError` is raised, containing `status_code` and `response` properties.

All errors inherit from `openai.APIError`.

```python
import openai
from openai import OpenAI

client = OpenAI()

try:
    client.fine_tuning.jobs.create(
        model="gpt-4o",
        training_file="file-abc123",
    )
except openai.APIConnectionError as e:
    print("The server could not be reached")
    print(e.__cause__)  # an underlying Exception, likely raised within httpx.
except openai.RateLimitError as e:
    print("A 429 status code was received; we should back off a bit.")
except openai.APIStatusError as e:
    print("Another non-200-range status code was received")
    print(e.status_code)
    print(e.response)
```

Error codes are as follows:

| Status Code | Error Type                 |
| ----------- | -------------------------- |
| 400         | `BadRequestError`          |
| 401         | `AuthenticationError`      |
| 403         | `PermissionDeniedError`    |
| 404         | `NotFoundError`            |
| 422         | `UnprocessableEntityError` |
| 429         | `RateLimitError`           |
| >=500       | `InternalServerError`      |
| N/A         | `APIConnectionError`       |

## Request IDs

> For more information on debugging requests, see [these docs](https://platform.openai.com/docs/api-reference/debugging-requests)

All object responses in the SDK provide a `_request_id` property which is added from the `x-request-id` response header so that you can quickly log failing requests and report them back to OpenAI.

```python
response = await client.responses.create(
    model="gpt-4o-mini",
    input="Say 'this is a test'.",
)
print(response._request_id)  # req_123
```

Note that unlike other properties that use an `_` prefix, the `_request_id` property
_is_ public. Unless documented otherwise, _all_ other `_` prefix properties,
methods and modules are _private_.

> [!IMPORTANT]  
> If you need to access request IDs for failed requests you must catch the `APIStatusError` exception

```python
import openai

try:
    completion = await client.chat.completions.create(
        messages=[{"role": "user", "content": "Say this is a test"}], model="gpt-4"
    )
except openai.APIStatusError as exc:
    print(exc.request_id)  # req_123
    raise exc
```

## Retries

Certain errors are automatically retried 2 times by default, with a short exponential backoff.
Connection errors (for example, due to a network connectivity problem), 408 Request Timeout, 409 Conflict,
429 Rate Limit, and >=500 Internal errors are all retried by default.

You can use the `max_retries` option to configure or disable retry settings:

```python
from openai import OpenAI

# Configure the default for all requests:
client = OpenAI(
    # default is 2
    max_retries=0,
)

# Or, configure per-request:
client.with_options(max_retries=5).chat.completions.create(
    messages=[
        {
            "role": "user",
            "content": "How can I get the name of the current day in JavaScript?",
        }
    ],
    model="gpt-4o",
)
```

## Timeouts

By default requests time out after 10 minutes. You can configure this with a `timeout` option,
which accepts a float or an [`httpx.Timeout`](https://www.python-httpx.org/advanced/timeouts/#fine-tuning-the-configuration) object:

```python
from openai import OpenAI

# Configure the default for all requests:
client = OpenAI(
    # 20 seconds (default is 10 minutes)
    timeout=20.0,
)

# More granular control:
client = OpenAI(
    timeout=httpx.Timeout(60.0, read=5.0, write=10.0, connect=2.0),
)

# Override per-request:
client.with_options(timeout=5.0).chat.completions.create(
    messages=[
        {
            "role": "user",
            "content": "How can I list all files in a directory using Python?",
        }
    ],
    model="gpt-4o",
)
```

On timeout, an `APITimeoutError` is thrown.

Note that requests that time out are [retried twice by default](#retries).

## Advanced

### Logging

We use the standard library [`logging`](https://docs.python.org/3/library/logging.html) module.

You can enable logging by setting the environment variable `OPENAI_LOG` to `info`.

```shell
$ export OPENAI_LOG=info
```

Or to `debug` for more verbose logging.

### How to tell whether `None` means `null` or missing

In an API response, a field may be explicitly `null`, or missing entirely; in either case, its value is `None` in this library. You can differentiate the two cases with `.model_fields_set`:

```py
if response.my_field is None:
  if 'my_field' not in response.model_fields_set:
    print('Got json like {}, without a "my_field" key present at all.')
  else:
    print('Got json like {"my_field": null}.')
```

### Accessing raw response data (e.g. headers)

The "raw" Response object can be accessed by prefixing `.with_raw_response.` to any HTTP method call, e.g.,

```py
from openai import OpenAI

client = OpenAI()
response = client.chat.completions.with_raw_response.create(
    messages=[{
        "role": "user",
        "content": "Say this is a test",
    }],
    model="gpt-4o",
)
print(response.headers.get('X-My-Header'))

completion = response.parse()  # get the object that `chat.completions.create()` would have returned
print(completion)
```

These methods return a [`LegacyAPIResponse`](https://github.com/openai/openai-python/tree/main/src/openai/_legacy_response.py) object. This is a legacy class as we're changing it slightly in the next major version.

For the sync client this will mostly be the same with the exception
of `content` & `text` will be methods instead of properties. In the
async client, all methods will be async.

A migration script will be provided & the migration in general should
be smooth.

#### `.with_streaming_response`

The above interface eagerly reads the full response body when you make the request, which may not always be what you want.

To stream the response body, use `.with_streaming_response` instead, which requires a context manager and only reads the response body once you call `.read()`, `.text()`, `.json()`, `.iter_bytes()`, `.iter_text()`, `.iter_lines()` or `.parse()`. In the async client, these are async methods.

As such, `.with_streaming_response` methods return a different [`APIResponse`](https://github.com/openai/openai-python/tree/main/src/openai/_response.py) object, and the async client returns an [`AsyncAPIResponse`](https://github.com/openai/openai-python/tree/main/src/openai/_response.py) object.

```python
with client.chat.completions.with_streaming_response.create(
    messages=[
        {
            "role": "user",
            "content": "Say this is a test",
        }
    ],
    model="gpt-4o",
) as response:
    print(response.headers.get("X-My-Header"))

    for line in response.iter_lines():
        print(line)
```

The context manager is required so that the response will reliably be closed.

### Making custom/undocumented requests

This library is typed for convenient access to the documented API.

If you need to access undocumented endpoints, params, or response properties, the library can still be used.

#### Undocumented endpoints

To make requests to undocumented endpoints, you can make requests using `client.get`, `client.post`, and other
http verbs. Options on the client will be respected (such as retries) when making this request.

```py
import httpx

response = client.post(
    "/foo",
    cast_to=httpx.Response,
    body={"my_param": True},
)

print(response.headers.get("x-foo"))
```

#### Undocumented request params

If you want to explicitly send an extra param, you can do so with the `extra_query`, `extra_body`, and `extra_headers` request
options.

#### Undocumented response properties

To access undocumented response properties, you can access the extra fields like `response.unknown_prop`. You
can also get all the extra fields on the Pydantic model as a dict with
[`response.model_extra`](https://docs.pydantic.dev/latest/api/base_model/#pydantic.BaseModel.model_extra).

### Configuring the HTTP client

You can directly override the [httpx client](https://www.python-httpx.org/api/#client) to customize it for your use case, including:

- Support for [proxies](https://www.python-httpx.org/advanced/proxies/)
- Custom [transports](https://www.python-httpx.org/advanced/transports/)
- Additional [advanced](https://www.python-httpx.org/advanced/clients/) functionality

```python
import httpx
from openai import OpenAI, DefaultHttpxClient

client = OpenAI(
    # Or use the `OPENAI_BASE_URL` env var
    base_url="http://my.test.server.example.com:8083/v1",
    http_client=DefaultHttpxClient(
        proxy="http://my.test.proxy.example.com",
        transport=httpx.HTTPTransport(local_address="0.0.0.0"),
    ),
)
```

You can also customize the client on a per-request basis by using `with_options()`:

```python
client.with_options(http_client=DefaultHttpxClient(...))
```

### Managing HTTP resources

By default the library closes underlying HTTP connections whenever the client is [garbage collected](https://docs.python.org/3/reference/datamodel.html#object.__del__). You can manually close the client using the `.close()` method if desired, or with a context manager that closes when exiting.

```py
from openai import OpenAI

with OpenAI() as client:
  # make requests here
  ...

# HTTP client is now closed
```

## Microsoft Azure OpenAI

To use this library with [Azure OpenAI](https://learn.microsoft.com/azure/ai-services/openai/overview), use the `AzureOpenAI`
class instead of the `OpenAI` class.

> [!IMPORTANT]
> The Azure API shape differs from the core API shape which means that the static types for responses / params
> won't always be correct.

```py
from openai import AzureOpenAI

# gets the API Key from environment variable AZURE_OPENAI_API_KEY
client = AzureOpenAI(
    # https://learn.microsoft.com/azure/ai-services/openai/reference#rest-api-versioning
    api_version="2023-07-01-preview",
    # https://learn.microsoft.com/azure/cognitive-services/openai/how-to/create-resource?pivots=web-portal#create-a-resource
    azure_endpoint="https://example-endpoint.openai.azure.com",
)

completion = client.chat.completions.create(
    model="deployment-name",  # e.g. gpt-35-instant
    messages=[
        {
            "role": "user",
            "content": "How do I output all files in a directory using Python?",
        },
    ],
)
print(completion.to_json())
```

In addition to the options provided in the base `OpenAI` client, the following options are provided:

- `azure_endpoint` (or the `AZURE_OPENAI_ENDPOINT` environment variable)
- `azure_deployment`
- `api_version` (or the `OPENAI_API_VERSION` environment variable)
- `azure_ad_token` (or the `AZURE_OPENAI_AD_TOKEN` environment variable)
- `azure_ad_token_provider`

An example of using the client with Microsoft Entra ID (formerly known as Azure Active Directory) can be found [here](https://github.com/openai/openai-python/blob/main/examples/azure_ad.py).

## Versioning

This package generally follows [SemVer](https://semver.org/spec/v2.0.0.html) conventions, though certain backwards-incompatible changes may be released as minor versions:

1. Changes that only affect static types, without breaking runtime behavior.
2. Changes to library internals which are technically public but not intended or documented for external use. _(Please open a GitHub issue to let us know if you are relying on such internals.)_
3. Changes that we do not expect to impact the vast majority of users in practice.

We take backwards-compatibility seriously and work hard to ensure you can rely on a smooth upgrade experience.

We are keen for your feedback; please open an [issue](https://www.github.com/openai/openai-python/issues) with questions, bugs, or suggestions.

### Determining the installed version

If you've upgraded to the latest version but aren't seeing any new features you were expecting then your python environment is likely still using an older version.

You can determine the version that is being used at runtime with:

```py
import openai
print(openai.__version__)
```

## Requirements

Python 3.8 or higher.

## Contributing

See [the contributing documentation](./CONTRIBUTING.md).