1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
|
# Structured Outputs Parsing Helpers
The OpenAI API supports extracting JSON from the model with the `response_format` request param, for more details on the API, see [this guide](https://platform.openai.com/docs/guides/structured-outputs).
The SDK provides a `client.chat.completions.parse()` method which is a wrapper over the `client.chat.completions.create()` that
provides richer integrations with Python specific types & returns a `ParsedChatCompletion` object, which is a subclass of the standard `ChatCompletion` class.
## Auto-parsing response content with Pydantic models
You can pass a pydantic model to the `.parse()` method and the SDK will automatically convert the model
into a JSON schema, send it to the API and parse the response content back into the given model.
```py
from typing import List
from pydantic import BaseModel
from openai import OpenAI
class Step(BaseModel):
explanation: str
output: str
class MathResponse(BaseModel):
steps: List[Step]
final_answer: str
client = OpenAI()
completion = client.chat.completions.parse(
model="gpt-4o-2024-08-06",
messages=[
{"role": "system", "content": "You are a helpful math tutor."},
{"role": "user", "content": "solve 8x + 31 = 2"},
],
response_format=MathResponse,
)
message = completion.choices[0].message
if message.parsed:
print(message.parsed.steps)
print("answer: ", message.parsed.final_answer)
else:
print(message.refusal)
```
## Auto-parsing function tool calls
The `.parse()` method will also automatically parse `function` tool calls if:
- You use the `openai.pydantic_function_tool()` helper method
- You mark your tool schema with `"strict": True`
For example:
```py
from enum import Enum
from typing import List, Union
from pydantic import BaseModel
import openai
class Table(str, Enum):
orders = "orders"
customers = "customers"
products = "products"
class Column(str, Enum):
id = "id"
status = "status"
expected_delivery_date = "expected_delivery_date"
delivered_at = "delivered_at"
shipped_at = "shipped_at"
ordered_at = "ordered_at"
canceled_at = "canceled_at"
class Operator(str, Enum):
eq = "="
gt = ">"
lt = "<"
le = "<="
ge = ">="
ne = "!="
class OrderBy(str, Enum):
asc = "asc"
desc = "desc"
class DynamicValue(BaseModel):
column_name: str
class Condition(BaseModel):
column: str
operator: Operator
value: Union[str, int, DynamicValue]
class Query(BaseModel):
table_name: Table
columns: List[Column]
conditions: List[Condition]
order_by: OrderBy
client = openai.OpenAI()
completion = client.chat.completions.parse(
model="gpt-4o-2024-08-06",
messages=[
{
"role": "system",
"content": "You are a helpful assistant. The current date is August 6, 2024. You help users query for the data they are looking for by calling the query function.",
},
{
"role": "user",
"content": "look up all my orders in may of last year that were fulfilled but not delivered on time",
},
],
tools=[
openai.pydantic_function_tool(Query),
],
)
tool_call = (completion.choices[0].message.tool_calls or [])[0]
print(tool_call.function)
assert isinstance(tool_call.function.parsed_arguments, Query)
print(tool_call.function.parsed_arguments.table_name)
```
### Differences from `.create()`
The `chat.completions.parse()` method imposes some additional restrictions on it's usage that `chat.completions.create()` does not.
- If the completion completes with `finish_reason` set to `length` or `content_filter`, the `LengthFinishReasonError` / `ContentFilterFinishReasonError` errors will be raised.
- Only strict function tools can be passed, e.g. `{'type': 'function', 'function': {..., 'strict': True}}`
# Streaming Helpers
OpenAI supports streaming responses when interacting with the [Chat Completion](#chat-completions-api) & [Assistant](#assistant-streaming-api) APIs.
## Chat Completions API
The SDK provides a `.chat.completions.stream()` method that wraps the `.chat.completions.create(stream=True)` stream providing a more granular event API & automatic accumulation of each delta.
It also supports all aforementioned [parsing helpers](#structured-outputs-parsing-helpers).
Unlike `.create(stream=True)`, the `.stream()` method requires usage within a context manager to prevent accidental leakage of the response:
```py
from openai import AsyncOpenAI
client = AsyncOpenAI()
async with client.chat.completions.stream(
model='gpt-4o-2024-08-06',
messages=[...],
) as stream:
async for event in stream:
if event.type == 'content.delta':
print(event.content, flush=True, end='')
```
When the context manager is entered, a `ChatCompletionStream` / `AsyncChatCompletionStream` instance is returned which, like `.create(stream=True)` is an iterator in the sync client and an async iterator in the async client. The full list of events that are yielded by the iterator are outlined [below](#chat-completions-events).
When the context manager exits, the response will be closed, however the `stream` instance is still available outside
the context manager.
### Chat Completions Events
These events allow you to track the progress of the chat completion generation, access partial results, and handle different aspects of the stream separately.
Below is a list of the different event types you may encounter:
#### ChunkEvent
Emitted for every chunk received from the API.
- `type`: `"chunk"`
- `chunk`: The raw `ChatCompletionChunk` object received from the API
- `snapshot`: The current accumulated state of the chat completion
#### ContentDeltaEvent
Emitted for every chunk containing new content.
- `type`: `"content.delta"`
- `delta`: The new content string received in this chunk
- `snapshot`: The accumulated content so far
- `parsed`: The partially parsed content (if applicable)
#### ContentDoneEvent
Emitted when the content generation is complete. May be fired multiple times if there are multiple choices.
- `type`: `"content.done"`
- `content`: The full generated content
- `parsed`: The fully parsed content (if applicable)
#### RefusalDeltaEvent
Emitted when a chunk contains part of a content refusal.
- `type`: `"refusal.delta"`
- `delta`: The new refusal content string received in this chunk
- `snapshot`: The accumulated refusal content string so far
#### RefusalDoneEvent
Emitted when the refusal content is complete.
- `type`: `"refusal.done"`
- `refusal`: The full refusal content
#### FunctionToolCallArgumentsDeltaEvent
Emitted when a chunk contains part of a function tool call's arguments.
- `type`: `"tool_calls.function.arguments.delta"`
- `name`: The name of the function being called
- `index`: The index of the tool call
- `arguments`: The accumulated raw JSON string of arguments
- `parsed_arguments`: The partially parsed arguments object
- `arguments_delta`: The new JSON string fragment received in this chunk
#### FunctionToolCallArgumentsDoneEvent
Emitted when a function tool call's arguments are complete.
- `type`: `"tool_calls.function.arguments.done"`
- `name`: The name of the function being called
- `index`: The index of the tool call
- `arguments`: The full raw JSON string of arguments
- `parsed_arguments`: The fully parsed arguments object. If you used `openai.pydantic_function_tool()` this will be an instance of the given model.
#### LogprobsContentDeltaEvent
Emitted when a chunk contains new content [log probabilities](https://cookbook.openai.com/examples/using_logprobs).
- `type`: `"logprobs.content.delta"`
- `content`: A list of the new log probabilities received in this chunk
- `snapshot`: A list of the accumulated log probabilities so far
#### LogprobsContentDoneEvent
Emitted when all content [log probabilities](https://cookbook.openai.com/examples/using_logprobs) have been received.
- `type`: `"logprobs.content.done"`
- `content`: The full list of token log probabilities for the content
#### LogprobsRefusalDeltaEvent
Emitted when a chunk contains new refusal [log probabilities](https://cookbook.openai.com/examples/using_logprobs).
- `type`: `"logprobs.refusal.delta"`
- `refusal`: A list of the new log probabilities received in this chunk
- `snapshot`: A list of the accumulated log probabilities so far
#### LogprobsRefusalDoneEvent
Emitted when all refusal [log probabilities](https://cookbook.openai.com/examples/using_logprobs) have been received.
- `type`: `"logprobs.refusal.done"`
- `refusal`: The full list of token log probabilities for the refusal
### Chat Completions stream methods
A handful of helper methods are provided on the stream class for additional convenience,
**`.get_final_completion()`**
Returns the accumulated `ParsedChatCompletion` object
```py
async with client.chat.completions.stream(...) as stream:
...
completion = await stream.get_final_completion()
print(completion.choices[0].message)
```
**`.until_done()`**
If you want to wait for the stream to complete, you can use the `.until_done()` method.
```py
async with client.chat.completions.stream(...) as stream:
await stream.until_done()
# stream is now finished
```
## Assistant Streaming API
OpenAI supports streaming responses from Assistants. The SDK provides convenience wrappers around the API
so you can subscribe to the types of events you are interested in as well as receive accumulated responses.
More information can be found in the documentation: [Assistant Streaming](https://platform.openai.com/docs/assistants/overview?lang=python)
#### An example of creating a run and subscribing to some events
You can subscribe to events by creating an event handler class and overloading the relevant event handlers.
```python
from typing_extensions import override
from openai import AssistantEventHandler, OpenAI
from openai.types.beta.threads import Text, TextDelta
from openai.types.beta.threads.runs import ToolCall, ToolCallDelta
client = openai.OpenAI()
# First, we create a EventHandler class to define
# how we want to handle the events in the response stream.
class EventHandler(AssistantEventHandler):
@override
def on_text_created(self, text: Text) -> None:
print(f"\nassistant > ", end="", flush=True)
@override
def on_text_delta(self, delta: TextDelta, snapshot: Text):
print(delta.value, end="", flush=True)
@override
def on_tool_call_created(self, tool_call: ToolCall):
print(f"\nassistant > {tool_call.type}\n", flush=True)
@override
def on_tool_call_delta(self, delta: ToolCallDelta, snapshot: ToolCall):
if delta.type == "code_interpreter" and delta.code_interpreter:
if delta.code_interpreter.input:
print(delta.code_interpreter.input, end="", flush=True)
if delta.code_interpreter.outputs:
print(f"\n\noutput >", flush=True)
for output in delta.code_interpreter.outputs:
if output.type == "logs":
print(f"\n{output.logs}", flush=True)
# Then, we use the `stream` SDK helper
# with the `EventHandler` class to create the Run
# and stream the response.
with client.beta.threads.runs.stream(
thread_id="thread_id",
assistant_id="assistant_id",
event_handler=EventHandler(),
) as stream:
stream.until_done()
```
#### An example of iterating over events
You can also iterate over all the streamed events.
```python
with client.beta.threads.runs.stream(
thread_id=thread.id,
assistant_id=assistant.id
) as stream:
for event in stream:
# Print the text from text delta events
if event.event == "thread.message.delta" and event.data.delta.content:
print(event.data.delta.content[0].text)
```
#### An example of iterating over text
You can also iterate over just the text deltas received
```python
with client.beta.threads.runs.stream(
thread_id=thread.id,
assistant_id=assistant.id
) as stream:
for text in stream.text_deltas:
print(text)
```
### Creating Streams
There are three helper methods for creating streams:
```python
client.beta.threads.runs.stream()
```
This method can be used to start and stream the response to an existing run with an associated thread
that is already populated with messages.
```python
client.beta.threads.create_and_run_stream()
```
This method can be used to add a message to a thread, start a run and then stream the response.
```python
client.beta.threads.runs.submit_tool_outputs_stream()
```
This method can be used to submit a tool output to a run waiting on the output and start a stream.
### Assistant Events
The assistant API provides events you can subscribe to for the following events.
```python
def on_event(self, event: AssistantStreamEvent)
```
This allows you to subscribe to all the possible raw events sent by the OpenAI streaming API.
In many cases it will be more convenient to subscribe to a more specific set of events for your use case.
More information on the types of events can be found here: [Events](https://platform.openai.com/docs/api-reference/assistants-streaming/events)
```python
def on_run_step_created(self, run_step: RunStep)
def on_run_step_delta(self, delta: RunStepDelta, snapshot: RunStep)
def on_run_step_done(self, run_step: RunStep)
```
These events allow you to subscribe to the creation, delta and completion of a RunStep.
For more information on how Runs and RunSteps work see the documentation [Runs and RunSteps](https://platform.openai.com/docs/assistants/how-it-works/runs-and-run-steps)
```python
def on_message_created(self, message: Message)
def on_message_delta(self, delta: MessageDelta, snapshot: Message)
def on_message_done(self, message: Message)
```
This allows you to subscribe to Message creation, delta and completion events. Messages can contain
different types of content that can be sent from a model (and events are available for specific content types).
For convenience, the delta event includes both the incremental update and an accumulated snapshot of the content.
More information on messages can be found
on in the documentation page [Message](https://platform.openai.com/docs/api-reference/messages/object).
```python
def on_text_created(self, text: Text)
def on_text_delta(self, delta: TextDelta, snapshot: Text)
def on_text_done(self, text: Text)
```
These events allow you to subscribe to the creation, delta and completion of a Text content (a specific type of message).
For convenience, the delta event includes both the incremental update and an accumulated snapshot of the content.
```python
def on_image_file_done(self, image_file: ImageFile)
```
Image files are not sent incrementally so an event is provided for when a image file is available.
```python
def on_tool_call_created(self, tool_call: ToolCall)
def on_tool_call_delta(self, delta: ToolCallDelta, snapshot: ToolCall)
def on_tool_call_done(self, tool_call: ToolCall)
```
These events allow you to subscribe to events for the creation, delta and completion of a ToolCall.
More information on tools can be found here [Tools](https://platform.openai.com/docs/assistants/tools)
```python
def on_end(self)
```
The last event send when a stream ends.
```python
def on_timeout(self)
```
This event is triggered if the request times out.
```python
def on_exception(self, exception: Exception)
```
This event is triggered if an exception occurs during streaming.
### Assistant Methods
The assistant streaming object also provides a few methods for convenience:
```python
def current_event() -> AssistantStreamEvent | None
def current_run() -> Run | None
def current_message_snapshot() -> Message | None
def current_run_step_snapshot() -> RunStep | None
```
These methods are provided to allow you to access additional context from within event handlers. In many cases
the handlers should include all the information you need for processing, but if additional context is required it
can be accessed.
Note: There is not always a relevant context in certain situations (these will be `None` in those cases).
```python
def get_final_run(self) -> Run
def get_final_run_steps(self) -> List[RunStep]
def get_final_messages(self) -> List[Message]
```
These methods are provided for convenience to collect information at the end of a stream. Calling these events
will trigger consumption of the stream until completion and then return the relevant accumulated objects.
# Polling Helpers
When interacting with the API some actions such as starting a Run and adding files to vector stores are asynchronous and take time to complete.
The SDK includes helper functions which will poll the status until it reaches a terminal state and then return the resulting object.
If an API method results in an action which could benefit from polling there will be a corresponding version of the
method ending in `_and_poll`.
All methods also allow you to set the polling frequency, how often the API is checked for an update, via a function argument (`poll_interval_ms`).
The polling methods are:
```python
client.beta.threads.create_and_run_poll(...)
client.beta.threads.runs.create_and_poll(...)
client.beta.threads.runs.submit_tool_outputs_and_poll(...)
client.beta.vector_stores.files.upload_and_poll(...)
client.beta.vector_stores.files.create_and_poll(...)
client.beta.vector_stores.file_batches.create_and_poll(...)
client.beta.vector_stores.file_batches.upload_and_poll(...)
```
|