File: large_expr_with_greedy.md

package info (click to toggle)
python-opt-einsum 3.4.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,772 kB
  • sloc: python: 4,124; makefile: 31; javascript: 15
file content (128 lines) | stat: -rw-r--r-- 12,005 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# Large Expressions with Greedy

Using the greedy method allows the contraction of hundreds of tensors. Here's
an example from quantum of computing the inner product between two ['Matrix
Product States'](https://en.wikipedia.org/wiki/Matrix_product_state).
Graphically, if we represent each tensor as an `O`, give it
the same number of 'legs' as it has indices, and join those legs when that
index is summed with another tensor, we get an expression for `n` particles
that looks like:

```console
O-O-O-O-O-O-     -O-O-O-O-O-O
| | | | | |  ...  | | | | | |
O-O-O-O-O-O-     -O-O-O-O-O-O

0 1 2 3 4 5 ........... n-2 n-1
```

The meaning of this is not that important other than its a large, useful
contraction. For `n=100` it involves 200 different tensors and about 300
unique indices. With this many indices it can be useful to generate them with
the function `opt_einsum.parser.get_symbol`.

### Setup the string

```python
import numpy as np
import opt_einsum as oe

n = 100
phys_dim = 3
bond_dim = 10

# start with first site
# O--
# |
# O--
einsum_str = "ab,ac,"

for i in range(1, n - 1):
    # set the upper left/right, middle and lower left/right indices
    # --O--
    #   |
    # --O--
    j = 3 * i
    ul, ur, m, ll, lr = (oe.get_symbol(i)
                         for i in (j - 1, j + 2, j, j - 2, j + 1))
    einsum_str += "{}{}{},{}{}{},".format(m, ul, ur, m, ll, lr)

# finish with last site
# --O
#   |
# --O
i = n - 1
j = 3 * i
ul, m, ll, =  (oe.get_symbol(i) for i in (j - 1, j, j - 2))
einsum_str += "{}{},{}{}".format(m, ul, m, ll)
```

### Generate the shapes

```python
def gen_shapes():
    yield (phys_dim, bond_dim)
    yield (phys_dim, bond_dim)
    for i in range(1, n - 1):
        yield(phys_dim, bond_dim, bond_dim)
        yield(phys_dim, bond_dim, bond_dim)
    yield (phys_dim, bond_dim)
    yield (phys_dim, bond_dim)

shapes = tuple(gen_shapes())
```


Let's time how long it takes to generate the expression (`'greedy'` is used by default, and we turn off the `memory_limit`):

```python
%timeit expr = oe.contract_expression(einsum_str, *shapes, memory_limit=-1)
#> 76.2 ms ± 1.05 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
```

This is pretty manageable, though we might want to think about splitting the
expression up if we go a lot bigger.
Importantly, we can then use this repeatedly with any set of matching arrays:

```python
arrays = [np.random.randn(*shp) / 4 for shp in shapes]
expr(*arrays)
#> array(23.23628116)

arrays = [np.random.randn(*shp) / 4 for shp in shapes]
expr(*arrays)
#> array(-12.21091879)
```

### Full path

And if we **really** want we can generate the full contraction path info:

```python
print(oe.contract_path(einsum_str, *arrays, memory_limit=-1)[1])
#>   Complete contraction:  ab,ac,dcf,dbe,gfi,geh,jil,jhk,mlo,mkn,por,pnq,sru,sqt,vux,vtw,yxA,ywz,BAD,BzC,EDG,ECF,HGJ,HFI,KJM,KIL,NMP,NLO,QPS,QOR,TSV,TRU,WVY,WUX,ZYÂ,ZXÁ,ÃÂÅ,ÃÁÄ,ÆÅÈ,ÆÄÇ,ÉÈË,ÉÇÊ,ÌËÎ,ÌÊÍ,ÏÎÑ,ÏÍÐ,ÒÑÔ,ÒÐÓ,ÕÔ×,ÕÓÖ,Ø×Ú,ØÖÙ,ÛÚÝ,ÛÙÜ,ÞÝà,ÞÜß,áàã,áßâ,äãæ,äâå,çæé,çåè,êéì,êèë,íìï,íëî,ðïò,ðîñ,óòõ,óñô,öõø,öô÷,ùøû,ù÷ú,üûþ,üúý,ÿþā,ÿýĀ,ĂāĄ,ĂĀă,ąĄć,ąăĆ,ĈćĊ,ĈĆĉ,ċĊč,ċĉČ,ĎčĐ,ĎČď,đĐē,đďĒ,ĔēĖ,ĔĒĕ,ėĖę,ėĕĘ,ĚęĜ,ĚĘě,ĝĜğ,ĝěĞ,ĠğĢ,ĠĞġ,ģĢĥ,ģġĤ,ĦĥĨ,ĦĤħ,ĩĨī,ĩħĪ,ĬīĮ,ĬĪĭ,įĮı,įĭİ,IJıĴ,IJİij,ĵĴķ,ĵijĶ,ĸķĺ,ĸĶĹ,ĻĺĽ,ĻĹļ,ľĽŀ,ľļĿ,ŁŀŃ,ŁĿł,ńŃņ,ńłŅ,Ňņʼn,ŇŅň,ŊʼnŌ,Ŋňŋ,ōŌŏ,ōŋŎ,ŐŏŒ,ŐŎő,œŒŕ,œőŔ,ŖŕŘ,ŖŔŗ,řŘś,řŗŚ,ŜśŞ,ŜŚŝ,şŞš,şŝŠ,ŢšŤ,ŢŠţ,ťŤŧ,ťţŦ,ŨŧŪ,ŨŦũ,ūŪŭ,ūũŬ,ŮŭŰ,ŮŬů,űŰų,űůŲ,ŴųŶ,ŴŲŵ,ŷŶŹ,ŷŵŸ,źŹż,źŸŻ,Žżſ,ŽŻž,ƀſƂ,ƀžƁ,ƃƂƅ,ƃƁƄ,Ɔƅƈ,ƆƄƇ,ƉƈƋ,ƉƇƊ,ƌƋƎ,ƌƊƍ,ƏƎƑ,ƏƍƐ,ƒƑƔ,ƒƐƓ,ƕƔƗ,ƕƓƖ,ƘƗƚ,ƘƖƙ,ƛƚƝ,ƛƙƜ,ƞƝƠ,ƞƜƟ,ơƠƣ,ơƟƢ,ƤƣƦ,ƤƢƥ,ƧƦƩ,Ƨƥƨ,ƪƩƬ,ƪƨƫ,ƭƬƯ,ƭƫƮ,ưƯƲ,ưƮƱ,ƳƲƵ,ƳƱƴ,ƶƵ,ƶƴ->
#>          Naive scaling:  298
#>      Optimized scaling:  5
#>       Naive FLOP count:  1.031e+248
#>   Optimized FLOP count:  1.168e+06
#>    Theoretical speedup:  88264689284468460017580864156865782413140936705854966013600065426858041248009637246968036807489558012989638169986640870276510490846199301907401763236976204166215471281505344088317454144870323271826022036197984172898402324699098341524952317952.000
#>   Largest intermediate:  3.000e+02 elements
#> --------------------------------------------------------------------------------
#> scaling        BLAS                current                             remaining
#> --------------------------------------------------------------------------------
#>    4           TDOT            dbe,ab->ade ac,dcf,gfi,geh,jil,jhk,mlo,mkn,por,pnq,sru,sqt,vux,vtw,yxA,ywz,BAD,BzC,EDG,ECF,HGJ,HFI,KJM,KIL,NMP,NLO,QPS,QOR,TSV,TRU,WVY,WUX,ZYÂ,ZXÁ,ÃÂÅ,ÃÁÄ,ÆÅÈ,ÆÄÇ,ÉÈË,ÉÇÊ,ÌËÎ,ÌÊÍ,ÏÎÑ,ÏÍÐ,ÒÑÔ,ÒÐÓ,ÕÔ×,ÕÓÖ,Ø×Ú,ØÖÙ,ÛÚÝ,ÛÙÜ,ÞÝà,ÞÜß,áàã,áßâ,äãæ,äâå,çæé,çåè,êéì,êèë,íìï,íëî,ðïò,ðîñ,óòõ,óñô,öõø,öô÷,ùøû,ù÷ú,üûþ,üúý,ÿþā,ÿýĀ,ĂāĄ,ĂĀă,ąĄć,ąăĆ,ĈćĊ,ĈĆĉ,ċĊč,ċĉČ,ĎčĐ,ĎČď,đĐē,đďĒ,ĔēĖ,ĔĒĕ,ėĖę,ėĕĘ,ĚęĜ,ĚĘě,ĝĜğ,ĝěĞ,ĠğĢ,ĠĞġ,ģĢĥ,ģġĤ,ĦĥĨ,ĦĤħ,ĩĨī,ĩħĪ,ĬīĮ,ĬĪĭ,įĮı,įĭİ,IJıĴ,IJİij,ĵĴķ,ĵijĶ,ĸķĺ,ĸĶĹ,ĻĺĽ,ĻĹļ,ľĽŀ,ľļĿ,ŁŀŃ,ŁĿł,ńŃņ,ńłŅ,Ňņʼn,ŇŅň,ŊʼnŌ,Ŋňŋ,ōŌŏ,ōŋŎ,ŐŏŒ,ŐŎő,œŒŕ,œőŔ,ŖŕŘ,ŖŔŗ,řŘś,řŗŚ,ŜśŞ,ŜŚŝ,şŞš,şŝŠ,ŢšŤ,ŢŠţ,ťŤŧ,ťţŦ,ŨŧŪ,ŨŦũ,ūŪŭ,ūũŬ,ŮŭŰ,ŮŬů,űŰų,űůŲ,ŴųŶ,ŴŲŵ,ŷŶŹ,ŷŵŸ,źŹż,źŸŻ,Žżſ,ŽŻž,ƀſƂ,ƀžƁ,ƃƂƅ,ƃƁƄ,Ɔƅƈ,ƆƄƇ,ƉƈƋ,ƉƇƊ,ƌƋƎ,ƌƊƍ,ƏƎƑ,ƏƍƐ,ƒƑƔ,ƒƐƓ,ƕƔƗ,ƕƓƖ,ƘƗƚ,ƘƖƙ,ƛƚƝ,ƛƙƜ,ƞƝƠ,ƞƜƟ,ơƠƣ,ơƟƢ,ƤƣƦ,ƤƢƥ,ƧƦƩ,Ƨƥƨ,ƪƩƬ,ƪƨƫ,ƭƬƯ,ƭƫƮ,ưƯƲ,ưƮƱ,ƳƲƵ,ƳƱƴ,ƶƵ,ƶƴ,ade->
#>    4           TDOT            dcf,ac->adf gfi,geh,jil,jhk,mlo,mkn,por,pnq,sru,sqt,vux,vtw,yxA,ywz,BAD,BzC,EDG,ECF,HGJ,HFI,KJM,KIL,NMP,NLO,QPS,QOR,TSV,TRU,WVY,WUX,ZYÂ,ZXÁ,ÃÂÅ,ÃÁÄ,ÆÅÈ,ÆÄÇ,ÉÈË,ÉÇÊ,ÌËÎ,ÌÊÍ,ÏÎÑ,ÏÍÐ,ÒÑÔ,ÒÐÓ,ÕÔ×,ÕÓÖ,Ø×Ú,ØÖÙ,ÛÚÝ,ÛÙÜ,ÞÝà,ÞÜß,áàã,áßâ,äãæ,äâå,çæé,çåè,êéì,êèë,íìï,íëî,ðïò,ðîñ,óòõ,óñô,öõø,öô÷,ùøû,ù÷ú,üûþ,üúý,ÿþā,ÿýĀ,ĂāĄ,ĂĀă,ąĄć,ąăĆ,ĈćĊ,ĈĆĉ,ċĊč,ċĉČ,ĎčĐ,ĎČď,đĐē,đďĒ,ĔēĖ,ĔĒĕ,ėĖę,ėĕĘ,ĚęĜ,ĚĘě,ĝĜğ,ĝěĞ,ĠğĢ,ĠĞġ,ģĢĥ,ģġĤ,ĦĥĨ,ĦĤħ,ĩĨī,ĩħĪ,ĬīĮ,ĬĪĭ,įĮı,įĭİ,IJıĴ,IJİij,ĵĴķ,ĵijĶ,ĸķĺ,ĸĶĹ,ĻĺĽ,ĻĹļ,ľĽŀ,ľļĿ,ŁŀŃ,ŁĿł,ńŃņ,ńłŅ,Ňņʼn,ŇŅň,ŊʼnŌ,Ŋňŋ,ōŌŏ,ōŋŎ,ŐŏŒ,ŐŎő,œŒŕ,œőŔ,ŖŕŘ,ŖŔŗ,řŘś,řŗŚ,ŜśŞ,ŜŚŝ,şŞš,şŝŠ,ŢšŤ,ŢŠţ,ťŤŧ,ťţŦ,ŨŧŪ,ŨŦũ,ūŪŭ,ūũŬ,ŮŭŰ,ŮŬů,űŰų,űůŲ,ŴųŶ,ŴŲŵ,ŷŶŹ,ŷŵŸ,źŹż,źŸŻ,Žżſ,ŽŻž,ƀſƂ,ƀžƁ,ƃƂƅ,ƃƁƄ,Ɔƅƈ,ƆƄƇ,ƉƈƋ,ƉƇƊ,ƌƋƎ,ƌƊƍ,ƏƎƑ,ƏƍƐ,ƒƑƔ,ƒƐƓ,ƕƔƗ,ƕƓƖ,ƘƗƚ,ƘƖƙ,ƛƚƝ,ƛƙƜ,ƞƝƠ,ƞƜƟ,ơƠƣ,ơƟƢ,ƤƣƦ,ƤƢƥ,ƧƦƩ,Ƨƥƨ,ƪƩƬ,ƪƨƫ,ƭƬƯ,ƭƫƮ,ưƯƲ,ưƮƱ,ƳƲƵ,ƳƱƴ,ƶƵ,ƶƴ,ade,adf->
#>    4           GEMM            ƶƵ,ƳƲƵ->ƳƶƲ gfi,geh,jil,jhk,mlo,mkn,por,pnq,sru,sqt,vux,vtw,yxA,ywz,BAD,BzC,EDG,ECF,HGJ,HFI,KJM,KIL,NMP,NLO,QPS,QOR,TSV,TRU,WVY,WUX,ZYÂ,ZXÁ,ÃÂÅ,ÃÁÄ,ÆÅÈ,ÆÄÇ,ÉÈË,ÉÇÊ,ÌËÎ,ÌÊÍ,ÏÎÑ,ÏÍÐ,ÒÑÔ,ÒÐÓ,ÕÔ×,ÕÓÖ,Ø×Ú,ØÖÙ,ÛÚÝ,ÛÙÜ,ÞÝà,ÞÜß,áàã,áßâ,äãæ,äâå,çæé,çåè,êéì,êèë,íìï,íëî,ðïò,ðîñ,óòõ,óñô,öõø,öô÷,ùøû,ù÷ú,üûþ,üúý,ÿþā,ÿýĀ,ĂāĄ,ĂĀă,ąĄć,ąăĆ,ĈćĊ,ĈĆĉ,ċĊč,ċĉČ,ĎčĐ,ĎČď,đĐē,đďĒ,ĔēĖ,ĔĒĕ,ėĖę,ėĕĘ,ĚęĜ,ĚĘě,ĝĜğ,ĝěĞ,ĠğĢ,ĠĞġ,ģĢĥ,ģġĤ,ĦĥĨ,ĦĤħ,ĩĨī,ĩħĪ,ĬīĮ,ĬĪĭ,įĮı,įĭİ,IJıĴ,IJİij,ĵĴķ,ĵijĶ,ĸķĺ,ĸĶĹ,ĻĺĽ,ĻĹļ,ľĽŀ,ľļĿ,ŁŀŃ,ŁĿł,ńŃņ,ńłŅ,Ňņʼn,ŇŅň,ŊʼnŌ,Ŋňŋ,ōŌŏ,ōŋŎ,ŐŏŒ,ŐŎő,œŒŕ,œőŔ,ŖŕŘ,ŖŔŗ,řŘś,řŗŚ,ŜśŞ,ŜŚŝ,şŞš,şŝŠ,ŢšŤ,ŢŠţ,ťŤŧ,ťţŦ,ŨŧŪ,ŨŦũ,ūŪŭ,ūũŬ,ŮŭŰ,ŮŬů,űŰų,űůŲ,ŴųŶ,ŴŲŵ,ŷŶŹ,ŷŵŸ,źŹż,źŸŻ,Žżſ,ŽŻž,ƀſƂ,ƀžƁ,ƃƂƅ,ƃƁƄ,Ɔƅƈ,ƆƄƇ,ƉƈƋ,ƉƇƊ,ƌƋƎ,ƌƊƍ,ƏƎƑ,ƏƍƐ,ƒƑƔ,ƒƐƓ,ƕƔƗ,ƕƓƖ,ƘƗƚ,ƘƖƙ,ƛƚƝ,ƛƙƜ,ƞƝƠ,ƞƜƟ,ơƠƣ,ơƟƢ,ƤƣƦ,ƤƢƥ,ƧƦƩ,Ƨƥƨ,ƪƩƬ,ƪƨƫ,ƭƬƯ,ƭƫƮ,ưƯƲ,ưƮƱ,ƳƱƴ,ƶƴ,ade,adf,ƳƶƲ->
#>    4           GEMM            ƶƴ,ƳƱƴ->ƳƶƱ gfi,geh,jil,jhk,mlo,mkn,por,pnq,sru,sqt,vux,vtw,yxA,ywz,BAD,BzC,EDG,ECF,HGJ,HFI,KJM,KIL,NMP,NLO,QPS,QOR,TSV,TRU,WVY,WUX,ZYÂ,ZXÁ,ÃÂÅ,ÃÁÄ,ÆÅÈ,ÆÄÇ,ÉÈË,ÉÇÊ,ÌËÎ,ÌÊÍ,ÏÎÑ,ÏÍÐ,ÒÑÔ,ÒÐÓ,ÕÔ×,ÕÓÖ,Ø×Ú,ØÖÙ,ÛÚÝ,ÛÙÜ,ÞÝà,ÞÜß,áàã,áßâ,äãæ,äâå,çæé,çåè,êéì,êèë,íìï,íëî,ðïò,ðîñ,óòõ,óñô,öõø,öô÷,ùøû,ù÷ú,üûþ,üúý,ÿþā,ÿýĀ,ĂāĄ,ĂĀă,ąĄć,ąăĆ,ĈćĊ,ĈĆĉ,ċĊč,ċĉČ,ĎčĐ,ĎČď,đĐē,đďĒ,ĔēĖ,ĔĒĕ,ėĖę,ėĕĘ,ĚęĜ,ĚĘě,ĝĜğ,ĝěĞ,ĠğĢ,ĠĞġ,ģĢĥ,ģġĤ,ĦĥĨ,ĦĤħ,ĩĨī,ĩħĪ,ĬīĮ,ĬĪĭ,įĮı,įĭİ,IJıĴ,IJİij,ĵĴķ,ĵijĶ,ĸķĺ,ĸĶĹ,ĻĺĽ,ĻĹļ,ľĽŀ,ľļĿ,ŁŀŃ,ŁĿł,ńŃņ,ńłŅ,Ňņʼn,ŇŅň,ŊʼnŌ,Ŋňŋ,ōŌŏ,ōŋŎ,ŐŏŒ,ŐŎő,œŒŕ,œőŔ,ŖŕŘ,ŖŔŗ,řŘś,řŗŚ,ŜśŞ,ŜŚŝ,şŞš,şŝŠ,ŢšŤ,ŢŠţ,ťŤŧ,ťţŦ,ŨŧŪ,ŨŦũ,ūŪŭ,ūũŬ,ŮŭŰ,ŮŬů,űŰų,űůŲ,ŴųŶ,ŴŲŵ,ŷŶŹ,ŷŵŸ,źŹż,źŸŻ,Žżſ,ŽŻž,ƀſƂ,ƀžƁ,ƃƂƅ,ƃƁƄ,Ɔƅƈ,ƆƄƇ,ƉƈƋ,ƉƇƊ,ƌƋƎ,ƌƊƍ,ƏƎƑ,ƏƍƐ,ƒƑƔ,ƒƐƓ,ƕƔƗ,ƕƓƖ,ƘƗƚ,ƘƖƙ,ƛƚƝ,ƛƙƜ,ƞƝƠ,ƞƜƟ,ơƠƣ,ơƟƢ,ƤƣƦ,ƤƢƥ,ƧƦƩ,Ƨƥƨ,ƪƩƬ,ƪƨƫ,ƭƬƯ,ƭƫƮ,ưƯƲ,ưƮƱ,ade,adf,ƳƶƲ,ƳƶƱ->
#>    5           TDOT          ade,geh->adgh gfi,jil,jhk,mlo,mkn,por,pnq,sru,sqt,vux,vtw,yxA,ywz,BAD,BzC,EDG,ECF,HGJ,HFI,KJM,KIL,NMP,NLO,QPS,QOR,TSV,TRU,WVY,WUX,ZYÂ,ZXÁ,ÃÂÅ,ÃÁÄ,ÆÅÈ,ÆÄÇ,ÉÈË,ÉÇÊ,ÌËÎ,ÌÊÍ,ÏÎÑ,ÏÍÐ,ÒÑÔ,ÒÐÓ,ÕÔ×,ÕÓÖ,Ø×Ú,ØÖÙ,ÛÚÝ,ÛÙÜ,ÞÝà,ÞÜß,áàã,áßâ,äãæ,äâå,çæé,çåè,êéì,êèë,íìï,íëî,ðïò,ðîñ,óòõ,óñô,öõø,öô÷,ùøû,ù÷ú,üûþ,üúý,ÿþā,ÿýĀ,ĂāĄ,ĂĀă,ąĄć,ąăĆ,ĈćĊ,ĈĆĉ,ċĊč,ċĉČ,ĎčĐ,ĎČď,đĐē,đďĒ,ĔēĖ,ĔĒĕ,ėĖę,ėĕĘ,ĚęĜ,ĚĘě,ĝĜğ,ĝěĞ,ĠğĢ,ĠĞġ,ģĢĥ,ģġĤ,ĦĥĨ,ĦĤħ,ĩĨī,ĩħĪ,ĬīĮ,ĬĪĭ,įĮı,įĭİ,IJıĴ,IJİij,ĵĴķ,ĵijĶ,ĸķĺ,ĸĶĹ,ĻĺĽ,ĻĹļ,ľĽŀ,ľļĿ,ŁŀŃ,ŁĿł,ńŃņ,ńłŅ,Ňņʼn,ŇŅň,ŊʼnŌ,Ŋňŋ,ōŌŏ,ōŋŎ,ŐŏŒ,ŐŎő,œŒŕ,œőŔ,ŖŕŘ,ŖŔŗ,řŘś,řŗŚ,ŜśŞ,ŜŚŝ,şŞš,şŝŠ,ŢšŤ,ŢŠţ,ťŤŧ,ťţŦ,ŨŧŪ,ŨŦũ,ūŪŭ,ūũŬ,ŮŭŰ,ŮŬů,űŰų,űůŲ,ŴųŶ,ŴŲŵ,ŷŶŹ,ŷŵŸ,źŹż,źŸŻ,Žżſ,ŽŻž,ƀſƂ,ƀžƁ,ƃƂƅ,ƃƁƄ,Ɔƅƈ,ƆƄƇ,ƉƈƋ,ƉƇƊ,ƌƋƎ,ƌƊƍ,ƏƎƑ,ƏƍƐ,ƒƑƔ,ƒƐƓ,ƕƔƗ,ƕƓƖ,ƘƗƚ,ƘƖƙ,ƛƚƝ,ƛƙƜ,ƞƝƠ,ƞƜƟ,ơƠƣ,ơƟƢ,ƤƣƦ,ƤƢƥ,ƧƦƩ,Ƨƥƨ,ƪƩƬ,ƪƨƫ,ƭƬƯ,ƭƫƮ,ưƯƲ,ưƮƱ,adf,ƳƶƲ,ƳƶƱ,adgh->
#> 
#>    ...
#> 
#>    4           TDOT            Ğğ,ĠğĢ->ĠĞĢ                  ĠĞġ,ģĢĥ,ģġĤ,Ĥĥ,ĠĞĢ->
#>    4           GEMM            ĠĞĢ,ĠĞġ->ġĢ                       ģĢĥ,ģġĤ,Ĥĥ,ġĢ->
#>    4           GEMM            Ĥĥ,ģĢĥ->ģĢĤ                          ģġĤ,ġĢ,ģĢĤ->
#>    4           TDOT            ģĢĤ,ģġĤ->ġĢ                               ġĢ,ġĢ->
#>    2            DOT                ġĢ,ġĢ->                                    ->
```

Where we can see the speedup over a naive einsum is about `10^241`, not bad!