1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
|
"""Contains the primary optimization and contraction routines."""
from decimal import Decimal
from functools import lru_cache
from typing import Any, Collection, Dict, Iterable, List, Literal, Optional, Sequence, Tuple, Union, overload
from opt_einsum import backends, blas, helpers, parser, paths, sharing
from opt_einsum.typing import (
ArrayIndexType,
ArrayShaped,
ArrayType,
BackendType,
ContractionListType,
OptimizeKind,
PathType,
TensorShapeType,
)
__all__ = [
"contract_path",
"contract",
"format_const_einsum_str",
"ContractExpression",
"shape_only",
]
## Common types
_MemoryLimit = Union[None, int, Decimal, Literal["max_input"]]
class PathInfo:
"""A printable object to contain information about a contraction path."""
def __init__(
self,
contraction_list: ContractionListType,
input_subscripts: str,
output_subscript: str,
indices: ArrayIndexType,
path: PathType,
scale_list: Sequence[int],
naive_cost: int,
opt_cost: int,
size_list: Sequence[int],
size_dict: Dict[str, int],
):
self.contraction_list = contraction_list
self.input_subscripts = input_subscripts
self.output_subscript = output_subscript
self.path = path
self.indices = indices
self.scale_list = scale_list
self.naive_cost = Decimal(naive_cost)
self.opt_cost = Decimal(opt_cost)
self.speedup = self.naive_cost / max(self.opt_cost, Decimal(1))
self.size_list = size_list
self.size_dict = size_dict
self.shapes = [tuple(size_dict[k] for k in ks) for ks in input_subscripts.split(",")]
self.eq = f"{input_subscripts}->{output_subscript}"
self.largest_intermediate = Decimal(max(size_list, default=1))
def __repr__(self) -> str:
# Return the path along with a nice string representation
header = ("scaling", "BLAS", "current", "remaining")
path_print = [
f" Complete contraction: {self.eq}\n",
f" Naive scaling: {len(self.indices)}\n",
f" Optimized scaling: {max(self.scale_list, default=0)}\n",
f" Naive FLOP count: {self.naive_cost:.3e}\n",
f" Optimized FLOP count: {self.opt_cost:.3e}\n",
f" Theoretical speedup: {self.speedup:.3e}\n",
f" Largest intermediate: {self.largest_intermediate:.3e} elements\n",
"-" * 80 + "\n",
"{:>6} {:>11} {:>22} {:>37}\n".format(*header),
"-" * 80,
]
for n, contraction in enumerate(self.contraction_list):
_, _, einsum_str, remaining, do_blas = contraction
if remaining is not None:
remaining_str = ",".join(remaining) + "->" + self.output_subscript
else:
remaining_str = "..."
size_remaining = max(0, 56 - max(22, len(einsum_str)))
path_run = (
self.scale_list[n],
do_blas,
einsum_str,
remaining_str,
size_remaining,
)
path_print.append("\n{:>4} {:>14} {:>22} {:>{}}".format(*path_run))
return "".join(path_print)
def _choose_memory_arg(memory_limit: _MemoryLimit, size_list: List[int]) -> Optional[int]:
if memory_limit == "max_input":
return max(size_list)
if isinstance(memory_limit, str):
raise ValueError("memory_limit must be None, int, or the string Literal['max_input'].")
if memory_limit is None:
return None
if memory_limit < 1:
if memory_limit == -1:
return None
else:
raise ValueError("Memory limit must be larger than 0, or -1")
return int(memory_limit)
_EinsumDefaultKeys = Literal["order", "casting", "dtype", "out"]
def _filter_einsum_defaults(kwargs: Dict[_EinsumDefaultKeys, Any]) -> Dict[_EinsumDefaultKeys, Any]:
"""Filters out default contract kwargs to pass to various backends."""
kwargs = kwargs.copy()
ret: Dict[_EinsumDefaultKeys, Any] = {}
if (order := kwargs.pop("order", "K")) != "K":
ret["order"] = order
if (casting := kwargs.pop("casting", "safe")) != "safe":
ret["casting"] = casting
if (dtype := kwargs.pop("dtype", None)) is not None:
ret["dtype"] = dtype
if (out := kwargs.pop("out", None)) is not None:
ret["out"] = out
ret.update(kwargs)
return ret
# Overlaod for contract(einsum_string, *operands)
@overload
def contract_path(
subscripts: str,
*operands: ArrayType,
use_blas: bool = True,
optimize: OptimizeKind = True,
memory_limit: _MemoryLimit = None,
shapes: bool = False,
**kwargs: Any,
) -> Tuple[PathType, PathInfo]: ...
# Overlaod for contract(operand, indices, operand, indices, ....)
@overload
def contract_path(
subscripts: ArrayType,
*operands: Union[ArrayType, Collection[int]],
use_blas: bool = True,
optimize: OptimizeKind = True,
memory_limit: _MemoryLimit = None,
shapes: bool = False,
**kwargs: Any,
) -> Tuple[PathType, PathInfo]: ...
def contract_path(
subscripts: Any,
*operands: Any,
use_blas: bool = True,
optimize: OptimizeKind = True,
memory_limit: _MemoryLimit = None,
shapes: bool = False,
**kwargs: Any,
) -> Tuple[PathType, PathInfo]:
"""Find a contraction order `path`, without performing the contraction.
Parameters:
subscripts: Specifies the subscripts for summation.
*operands: These are the arrays for the operation.
use_blas: Do you use BLAS for valid operations, may use extra memory for more intermediates.
optimize: Choose the type of path the contraction will be optimized with.
- if a list is given uses this as the path.
- `'optimal'` An algorithm that explores all possible ways of
contracting the listed tensors. Scales factorially with the number of
terms in the contraction.
- `'dp'` A faster (but essentially optimal) algorithm that uses
dynamic programming to exhaustively search all contraction paths
without outer-products.
- `'greedy'` An cheap algorithm that heuristically chooses the best
pairwise contraction at each step. Scales linearly in the number of
terms in the contraction.
- `'random-greedy'` Run a randomized version of the greedy algorithm
32 times and pick the best path.
- `'random-greedy-128'` Run a randomized version of the greedy
algorithm 128 times and pick the best path.
- `'branch-all'` An algorithm like optimal but that restricts itself
to searching 'likely' paths. Still scales factorially.
- `'branch-2'` An even more restricted version of 'branch-all' that
only searches the best two options at each step. Scales exponentially
with the number of terms in the contraction.
- `'auto'` Choose the best of the above algorithms whilst aiming to
keep the path finding time below 1ms.
- `'auto-hq'` Aim for a high quality contraction, choosing the best
of the above algorithms whilst aiming to keep the path finding time
below 1sec.
memory_limit: Give the upper bound of the largest intermediate tensor contract will build.
- None or -1 means there is no limit
- `max_input` means the limit is set as largest input tensor
- a positive integer is taken as an explicit limit on the number of elements
The default is None. Note that imposing a limit can make contractions
exponentially slower to perform.
shapes: Whether ``contract_path`` should assume arrays (the default) or array shapes have been supplied.
Returns:
path: The optimized einsum contraciton path
PathInfo: A printable object containing various information about the path found.
Notes:
The resulting path indicates which terms of the input contraction should be
contracted first, the result of this contraction is then appended to the end of
the contraction list.
Examples:
We can begin with a chain dot example. In this case, it is optimal to
contract the b and c tensors represented by the first element of the path (1,
2). The resulting tensor is added to the end of the contraction and the
remaining contraction, `(0, 1)`, is then executed.
```python
a = np.random.rand(2, 2)
b = np.random.rand(2, 5)
c = np.random.rand(5, 2)
path_info = opt_einsum.contract_path('ij,jk,kl->il', a, b, c)
print(path_info[0])
#> [(1, 2), (0, 1)]
print(path_info[1])
#> Complete contraction: ij,jk,kl->il
#> Naive scaling: 4
#> Optimized scaling: 3
#> Naive FLOP count: 1.600e+02
#> Optimized FLOP count: 5.600e+01
#> Theoretical speedup: 2.857
#> Largest intermediate: 4.000e+00 elements
#> -------------------------------------------------------------------------
#> scaling current remaining
#> -------------------------------------------------------------------------
#> 3 kl,jk->jl ij,jl->il
#> 3 jl,ij->il il->il
```
A more complex index transformation example.
```python
I = np.random.rand(10, 10, 10, 10)
C = np.random.rand(10, 10)
path_info = oe.contract_path('ea,fb,abcd,gc,hd->efgh', C, C, I, C, C)
print(path_info[0])
#> [(0, 2), (0, 3), (0, 2), (0, 1)]
print(path_info[1])
#> Complete contraction: ea,fb,abcd,gc,hd->efgh
#> Naive scaling: 8
#> Optimized scaling: 5
#> Naive FLOP count: 8.000e+08
#> Optimized FLOP count: 8.000e+05
#> Theoretical speedup: 1000.000
#> Largest intermediate: 1.000e+04 elements
#> --------------------------------------------------------------------------
#> scaling current remaining
#> --------------------------------------------------------------------------
#> 5 abcd,ea->bcde fb,gc,hd,bcde->efgh
#> 5 bcde,fb->cdef gc,hd,cdef->efgh
#> 5 cdef,gc->defg hd,defg->efgh
#> 5 defg,hd->efgh efgh->efgh
```
"""
if (optimize is True) or (optimize is None):
optimize = "auto"
# Hidden option, only einsum should call this
einsum_call_arg = kwargs.pop("einsum_call", False)
if len(kwargs):
raise TypeError(f"Did not understand the following kwargs: {kwargs.keys()}")
# Python side parsing
operands_ = [subscripts] + list(operands)
input_subscripts, output_subscript, operands_prepped = parser.parse_einsum_input(operands_, shapes=shapes)
# Build a few useful list and sets
input_list = input_subscripts.split(",")
input_sets = [frozenset(x) for x in input_list]
if shapes:
input_shapes = operands_prepped
else:
input_shapes = [parser.get_shape(x) for x in operands_prepped]
output_set = frozenset(output_subscript)
indices = frozenset(input_subscripts.replace(",", ""))
# Get length of each unique dimension and ensure all dimensions are correct
size_dict: Dict[str, int] = {}
for tnum, term in enumerate(input_list):
sh = input_shapes[tnum]
if len(sh) != len(term):
raise ValueError(
f"Einstein sum subscript '{input_list[tnum]}' does not contain the "
f"correct number of indices for operand {tnum}."
)
for cnum, char in enumerate(term):
dim = int(sh[cnum])
if char in size_dict:
# For broadcasting cases we always want the largest dim size
if size_dict[char] == 1:
size_dict[char] = dim
elif dim not in (1, size_dict[char]):
raise ValueError(
f"Size of label '{char}' for operand {tnum} ({size_dict[char]}) does not match previous "
f"terms ({dim})."
)
else:
size_dict[char] = dim
# Compute size of each input array plus the output array
size_list = [helpers.compute_size_by_dict(term, size_dict) for term in input_list + [output_subscript]]
memory_arg = _choose_memory_arg(memory_limit, size_list)
num_ops = len(input_list)
# Compute naive cost
# This is not quite right, need to look into exactly how einsum does this
# indices_in_input = input_subscripts.replace(',', '')
inner_product = (sum(len(x) for x in input_sets) - len(indices)) > 0
naive_cost = helpers.flop_count(indices, inner_product, num_ops, size_dict)
# Compute the path
if optimize is False:
path_tuple: PathType = [tuple(range(num_ops))]
elif not isinstance(optimize, (str, paths.PathOptimizer)):
# Custom path supplied
path_tuple = optimize # type: ignore
elif num_ops <= 2:
# Nothing to be optimized
path_tuple = [tuple(range(num_ops))]
elif isinstance(optimize, paths.PathOptimizer):
# Custom path optimizer supplied
path_tuple = optimize(input_sets, output_set, size_dict, memory_arg)
else:
path_optimizer = paths.get_path_fn(optimize)
path_tuple = path_optimizer(input_sets, output_set, size_dict, memory_arg)
cost_list = []
scale_list = []
size_list = []
contraction_list = []
# Build contraction tuple (positions, gemm, einsum_str, remaining)
for cnum, contract_inds in enumerate(path_tuple):
# Make sure we remove inds from right to left
contract_inds = tuple(sorted(contract_inds, reverse=True))
contract_tuple = helpers.find_contraction(contract_inds, input_sets, output_set)
out_inds, input_sets, idx_removed, idx_contract = contract_tuple
# Compute cost, scale, and size
cost = helpers.flop_count(idx_contract, bool(idx_removed), len(contract_inds), size_dict)
cost_list.append(cost)
scale_list.append(len(idx_contract))
size_list.append(helpers.compute_size_by_dict(out_inds, size_dict))
tmp_inputs = [input_list.pop(x) for x in contract_inds]
tmp_shapes = [input_shapes.pop(x) for x in contract_inds]
if use_blas:
do_blas = blas.can_blas(tmp_inputs, "".join(out_inds), idx_removed, tmp_shapes)
else:
do_blas = False
# Last contraction
if (cnum - len(path_tuple)) == -1:
idx_result = output_subscript
else:
# use tensordot order to minimize transpositions
all_input_inds = "".join(tmp_inputs)
idx_result = "".join(sorted(out_inds, key=all_input_inds.find))
shp_result = parser.find_output_shape(tmp_inputs, tmp_shapes, idx_result)
input_list.append(idx_result)
input_shapes.append(shp_result)
einsum_str = ",".join(tmp_inputs) + "->" + idx_result
# for large expressions saving the remaining terms at each step can
# incur a large memory footprint - and also be messy to print
if len(input_list) <= 20:
remaining: Optional[Tuple[str, ...]] = tuple(input_list)
else:
remaining = None
contraction = (contract_inds, idx_removed, einsum_str, remaining, do_blas)
contraction_list.append(contraction)
opt_cost = sum(cost_list)
if einsum_call_arg:
return operands_prepped, contraction_list # type: ignore
path_print = PathInfo(
contraction_list,
input_subscripts,
output_subscript,
indices,
path_tuple,
scale_list,
naive_cost,
opt_cost,
size_list,
size_dict,
)
return path_tuple, path_print
@sharing.einsum_cache_wrap
def _einsum(*operands: Any, **kwargs: Any) -> ArrayType:
"""Base einsum, but with pre-parse for valid characters if a string is given."""
fn = backends.get_func("einsum", kwargs.pop("backend", "numpy"))
if not isinstance(operands[0], str):
return fn(*operands, **kwargs)
einsum_str, operands = operands[0], operands[1:]
# Do we need to temporarily map indices into [a-z,A-Z] range?
if not parser.has_valid_einsum_chars_only(einsum_str):
# Explicitly find output str first so as to maintain order
if "->" not in einsum_str:
einsum_str += "->" + parser.find_output_str(einsum_str)
einsum_str = parser.convert_to_valid_einsum_chars(einsum_str)
kwargs = _filter_einsum_defaults(kwargs) # type: ignore
return fn(einsum_str, *operands, **kwargs)
def _default_transpose(x: ArrayType, axes: Tuple[int, ...]) -> ArrayType:
# most libraries implement a method version
return x.transpose(axes)
@sharing.transpose_cache_wrap
def _transpose(x: ArrayType, axes: Tuple[int, ...], backend: str = "numpy") -> ArrayType:
"""Base transpose."""
fn = backends.get_func("transpose", backend, _default_transpose)
return fn(x, axes)
@sharing.tensordot_cache_wrap
def _tensordot(x: ArrayType, y: ArrayType, axes: Tuple[int, ...], backend: str = "numpy") -> ArrayType:
"""Base tensordot."""
fn = backends.get_func("tensordot", backend)
return fn(x, y, axes=axes)
# Rewrite einsum to handle different cases
@overload
def contract(
subscripts: str,
*operands: ArrayType,
out: ArrayType = ...,
use_blas: bool = ...,
optimize: OptimizeKind = ...,
memory_limit: _MemoryLimit = ...,
backend: BackendType = ...,
**kwargs: Any,
) -> ArrayType: ...
@overload
def contract(
subscripts: ArrayType,
*operands: Union[ArrayType, Collection[int]],
out: ArrayType = ...,
use_blas: bool = ...,
optimize: OptimizeKind = ...,
memory_limit: _MemoryLimit = ...,
backend: BackendType = ...,
**kwargs: Any,
) -> ArrayType: ...
def contract(
subscripts: Union[str, ArrayType],
*operands: Union[ArrayType, Collection[int]],
out: Optional[ArrayType] = None,
use_blas: bool = True,
optimize: OptimizeKind = True,
memory_limit: _MemoryLimit = None,
backend: BackendType = "auto",
**kwargs: Any,
) -> ArrayType:
"""Evaluates the Einstein summation convention on the operands. A drop in
replacement for NumPy's einsum function that optimizes the order of contraction
to reduce overall scaling at the cost of several intermediate arrays.
Parameters:
subscripts: Specifies the subscripts for summation.
*operands: These are the arrays for the operation.
out: A output array in which set the resulting output.
use_blas: Do you use BLAS for valid operations, may use extra memory for more intermediates.
optimize:- Choose the type of path the contraction will be optimized with
- if a list is given uses this as the path.
- `'optimal'` An algorithm that explores all possible ways of
contracting the listed tensors. Scales factorially with the number of
terms in the contraction.
- `'dp'` A faster (but essentially optimal) algorithm that uses
dynamic programming to exhaustively search all contraction paths
without outer-products.
- `'greedy'` An cheap algorithm that heuristically chooses the best
pairwise contraction at each step. Scales linearly in the number of
terms in the contraction.
- `'random-greedy'` Run a randomized version of the greedy algorithm
32 times and pick the best path.
- `'random-greedy-128'` Run a randomized version of the greedy
algorithm 128 times and pick the best path.
- `'branch-all'` An algorithm like optimal but that restricts itself
to searching 'likely' paths. Still scales factorially.
- `'branch-2'` An even more restricted version of 'branch-all' that
only searches the best two options at each step. Scales exponentially
with the number of terms in the contraction.
- `'auto', None, True` Choose the best of the above algorithms whilst aiming to
keep the path finding time below 1ms.
- `'auto-hq'` Aim for a high quality contraction, choosing the best
of the above algorithms whilst aiming to keep the path finding time
below 1sec.
- `False` will not optimize the contraction.
memory_limit:- Give the upper bound of the largest intermediate tensor contract will build.
- None or -1 means there is no limit.
- `max_input` means the limit is set as largest input tensor.
- A positive integer is taken as an explicit limit on the number of elements.
The default is None. Note that imposing a limit can make contractions
exponentially slower to perform.
backend: Which library to use to perform the required ``tensordot``, ``transpose``
and ``einsum`` calls. Should match the types of arrays supplied, See
`contract_expression` for generating expressions which convert
numpy arrays to and from the backend library automatically.
Returns:
The result of the einsum expression.
Notes:
This function should produce a result identical to that of NumPy's einsum
function. The primary difference is ``contract`` will attempt to form
intermediates which reduce the overall scaling of the given einsum contraction.
By default the worst intermediate formed will be equal to that of the largest
input array. For large einsum expressions with many input arrays this can
provide arbitrarily large (1000 fold+) speed improvements.
For contractions with just two tensors this function will attempt to use
NumPy's built-in BLAS functionality to ensure that the given operation is
performed optimally. When NumPy is linked to a threaded BLAS, potential
speedups are on the order of 20-100 for a six core machine.
"""
if (optimize is True) or (optimize is None):
optimize = "auto"
operands_list = [subscripts] + list(operands)
# If no optimization, run pure einsum
if optimize is False:
return _einsum(*operands_list, out=out, **kwargs)
# Grab non-einsum kwargs
gen_expression = kwargs.pop("_gen_expression", False)
constants_dict = kwargs.pop("_constants_dict", {})
if gen_expression:
full_str = operands_list[0]
# Build the contraction list and operand
contraction_list: ContractionListType
operands, contraction_list = contract_path( # type: ignore
*operands_list, optimize=optimize, memory_limit=memory_limit, einsum_call=True, use_blas=use_blas
)
# check if performing contraction or just building expression
if gen_expression:
return ContractExpression(full_str, contraction_list, constants_dict, **kwargs)
return _core_contract(operands, contraction_list, backend=backend, out=out, **kwargs)
@lru_cache(None)
def _infer_backend_class_cached(cls: type) -> str:
return cls.__module__.split(".")[0]
def infer_backend(x: Any) -> str:
return _infer_backend_class_cached(x.__class__)
def parse_backend(arrays: Sequence[ArrayType], backend: Optional[str]) -> str:
"""Find out what backend we should use, dipatching based on the first
array if ``backend='auto'`` is specified.
"""
if (backend != "auto") and (backend is not None):
return backend
backend = infer_backend(arrays[0])
# some arrays will be defined in modules that don't implement tensordot
# etc. so instead default to numpy
if not backends.has_tensordot(backend):
return "numpy"
return backend
def _core_contract(
operands_: Sequence[ArrayType],
contraction_list: ContractionListType,
backend: Optional[str] = "auto",
evaluate_constants: bool = False,
out: Optional[ArrayType] = None,
**kwargs: Any,
) -> ArrayType:
"""Inner loop used to perform an actual contraction given the output
from a ``contract_path(..., einsum_call=True)`` call.
"""
# Special handling if out is specified
specified_out = out is not None
operands = list(operands_)
backend = parse_backend(operands, backend)
# try and do as much as possible without einsum if not available
no_einsum = not backends.has_einsum(backend)
# Start contraction loop
for num, contraction in enumerate(contraction_list):
inds, idx_rm, einsum_str, _, blas_flag = contraction
# check if we are performing the pre-pass of an expression with constants,
# if so, break out upon finding first non-constant (None) operand
if evaluate_constants and any(operands[x] is None for x in inds):
return operands, contraction_list[num:]
tmp_operands = [operands.pop(x) for x in inds]
# Do we need to deal with the output?
handle_out = specified_out and ((num + 1) == len(contraction_list))
# Call tensordot (check if should prefer einsum, but only if available)
if blas_flag and ("EINSUM" not in blas_flag or no_einsum): # type: ignore
# Checks have already been handled
input_str, results_index = einsum_str.split("->")
input_left, input_right = input_str.split(",")
tensor_result = "".join(s for s in input_left + input_right if s not in idx_rm)
if idx_rm:
# Find indices to contract over
left_pos, right_pos = [], []
for s in idx_rm:
left_pos.append(input_left.find(s))
right_pos.append(input_right.find(s))
# Construct the axes tuples in a canonical order
axes = tuple(zip(*sorted(zip(left_pos, right_pos))))
else:
# Ensure axes is always pair of tuples
axes = ((), ())
# Contract!
new_view = _tensordot(*tmp_operands, axes=axes, backend=backend, **kwargs)
# Build a new view if needed
if (tensor_result != results_index) or handle_out:
transpose = tuple(map(tensor_result.index, results_index))
new_view = _transpose(new_view, axes=transpose, backend=backend)
if handle_out:
out[:] = new_view # type: ignore
else:
# Call einsum
out_kwarg: Union[None, ArrayType] = None
if handle_out:
out_kwarg = out
new_view = _einsum(einsum_str, *tmp_operands, backend=backend, out=out_kwarg, **kwargs)
# Append new items and dereference what we can
operands.append(new_view)
del tmp_operands, new_view
if specified_out:
return out
else:
return operands[0]
def format_const_einsum_str(einsum_str: str, constants: Iterable[int]) -> str:
"""Add brackets to the constant terms in ``einsum_str``. For example:
>>> format_const_einsum_str('ab,bc,cd->ad', [0, 2])
'bc,[ab,cd]->ad'
No-op if there are no constants.
"""
if not constants:
return einsum_str
if "->" in einsum_str:
lhs, rhs = einsum_str.split("->")
arrow = "->"
else:
lhs, rhs, arrow = einsum_str, "", ""
wrapped_terms = [f"[{t}]" if i in constants else t for i, t in enumerate(lhs.split(","))]
formatted_einsum_str = "{}{}{}".format(",".join(wrapped_terms), arrow, rhs)
# merge adjacent constants
formatted_einsum_str = formatted_einsum_str.replace("],[", ",")
return formatted_einsum_str
class ContractExpression:
"""Helper class for storing an explicit ``contraction_list`` which can
then be repeatedly called solely with the array arguments.
"""
def __init__(
self,
contraction: str,
contraction_list: ContractionListType,
constants_dict: Dict[int, ArrayType],
**kwargs: Any,
):
self.contraction = format_const_einsum_str(contraction, constants_dict.keys())
self.contraction_list = contraction_list
self.kwargs = kwargs
# need to know _full_num_args to parse constants with, and num_args to call with
self._full_num_args = contraction.count(",") + 1
self.num_args = self._full_num_args - len(constants_dict)
# likewise need to know full contraction list
self._full_contraction_list = contraction_list
self._constants_dict = constants_dict
self._evaluated_constants: Dict[str, Any] = {}
self._backend_expressions: Dict[str, Any] = {}
def evaluate_constants(self, backend: Optional[str] = "auto") -> None:
"""Convert any constant operands to the correct backend form, and
perform as many contractions as possible to create a new list of
operands, stored in ``self._evaluated_constants[backend]``. This also
makes sure ``self.contraction_list`` only contains the remaining,
non-const operations.
"""
# prepare a list of operands, with `None` for non-consts
tmp_const_ops = [self._constants_dict.get(i, None) for i in range(self._full_num_args)]
backend = parse_backend(tmp_const_ops, backend)
# get the new list of operands with constant operations performed, and remaining contractions
try:
new_ops, new_contraction_list = backends.evaluate_constants(backend, tmp_const_ops, self)
except KeyError:
new_ops, new_contraction_list = self(*tmp_const_ops, backend=backend, evaluate_constants=True)
self._evaluated_constants[backend] = new_ops
self.contraction_list = new_contraction_list
def _get_evaluated_constants(self, backend: str) -> List[Optional[ArrayType]]:
"""Retrieve or generate the cached list of constant operators (mixed
in with None representing non-consts) and the remaining contraction
list.
"""
try:
return self._evaluated_constants[backend]
except KeyError:
self.evaluate_constants(backend)
return self._evaluated_constants[backend]
def _get_backend_expression(self, arrays: Sequence[ArrayType], backend: str) -> Any:
try:
return self._backend_expressions[backend]
except KeyError:
fn = backends.build_expression(backend, arrays, self)
self._backend_expressions[backend] = fn
return fn
def _contract(
self,
arrays: Sequence[ArrayType],
out: Optional[ArrayType] = None,
backend: Optional[str] = "auto",
evaluate_constants: bool = False,
) -> ArrayType:
"""The normal, core contraction."""
contraction_list = self._full_contraction_list if evaluate_constants else self.contraction_list
return _core_contract(
list(arrays),
contraction_list,
out=out,
backend=backend,
evaluate_constants=evaluate_constants,
**self.kwargs,
)
def _contract_with_conversion(
self,
arrays: Sequence[ArrayType],
out: Optional[ArrayType],
backend: str,
evaluate_constants: bool = False,
) -> ArrayType:
"""Special contraction, i.e., contraction with a different backend
but converting to and from that backend. Retrieves or generates a
cached expression using ``arrays`` as templates, then calls it
with ``arrays``.
If ``evaluate_constants=True``, perform a partial contraction that
prepares the constant tensors and operations with the right backend.
"""
# convert consts to correct type & find reduced contraction list
if evaluate_constants:
return backends.evaluate_constants(backend, arrays, self)
result = self._get_backend_expression(arrays, backend)(*arrays)
if out is not None:
out[()] = result
return out
return result
def __call__(
self,
*arrays: ArrayType,
out: Union[None, ArrayType] = None,
backend: str = "auto",
evaluate_constants: bool = False,
) -> ArrayType:
"""Evaluate this expression with a set of arrays.
Parameters:
arrays: The arrays to supply as input to the expression.
out: If specified, output the result into this array.
backend: Perform the contraction with this backend library. If numpy arrays
are supplied then try to convert them to and from the correct
backend array type.
evaluate_constants: Pre-evaluates constants with the appropriate backend.
Returns:
The contracted result.
"""
backend = parse_backend(arrays, backend)
correct_num_args = self._full_num_args if evaluate_constants else self.num_args
if len(arrays) != correct_num_args:
raise ValueError(
f"This `ContractExpression` takes exactly {self.num_args} array arguments "
f"but received {len(arrays)}."
)
if self._constants_dict and not evaluate_constants:
# fill in the missing non-constant terms with newly supplied arrays
ops_var, ops_const = iter(arrays), self._get_evaluated_constants(backend)
ops: Sequence[ArrayType] = [next(ops_var) if op is None else op for op in ops_const]
else:
ops = arrays
try:
# Check if the backend requires special preparation / calling
# but also ignore non-numpy arrays -> assume user wants same type back
if backends.has_backend(backend) and all(infer_backend(x) == "numpy" for x in arrays):
return self._contract_with_conversion(ops, out, backend, evaluate_constants=evaluate_constants)
return self._contract(ops, out=out, backend=backend, evaluate_constants=evaluate_constants)
except ValueError as err:
original_msg = str(err.args) if err.args else ""
msg = (
"Internal error while evaluating `ContractExpression`. Note that few checks are performed"
" - the number and rank of the array arguments must match the original expression. "
f"The internal error was: '{original_msg}'",
)
err.args = msg
raise
def __repr__(self) -> str:
if self._constants_dict:
constants_repr = f", constants={sorted(self._constants_dict)}"
else:
constants_repr = ""
return f"<ContractExpression('{self.contraction}'{constants_repr})>"
def __str__(self) -> str:
s = [self.__repr__()]
for i, c in enumerate(self.contraction_list):
s.append(f"\n {i + 1}. ")
s.append(f"'{c[2]}'" + (f" [{c[-1]}]" if c[-1] else ""))
s.append(f"\neinsum_kwargs={self.kwargs}")
return "".join(s)
def shape_only(shape: TensorShapeType) -> ArrayShaped:
"""Dummy ``numpy.ndarray`` which has a shape only - for generating
contract expressions.
"""
return ArrayShaped(shape)
# Overlaod for contract(einsum_string, *operands)
@overload
def contract_expression(
subscripts: str,
*operands: Union[ArrayType, TensorShapeType],
constants: Union[Collection[int], None] = ...,
use_blas: bool = ...,
optimize: OptimizeKind = ...,
memory_limit: _MemoryLimit = ...,
**kwargs: Any,
) -> ContractExpression: ...
# Overlaod for contract(operand, indices, operand, indices, ....)
@overload
def contract_expression(
subscripts: Union[ArrayType, TensorShapeType],
*operands: Union[ArrayType, TensorShapeType, Collection[int]],
constants: Union[Collection[int], None] = ...,
use_blas: bool = ...,
optimize: OptimizeKind = ...,
memory_limit: _MemoryLimit = ...,
**kwargs: Any,
) -> ContractExpression: ...
def contract_expression(
subscripts: Union[str, ArrayType, TensorShapeType],
*shapes: Union[ArrayType, TensorShapeType, Collection[int]],
constants: Union[Collection[int], None] = None,
use_blas: bool = True,
optimize: OptimizeKind = True,
memory_limit: _MemoryLimit = None,
**kwargs: Any,
) -> ContractExpression:
"""Generate a reusable expression for a given contraction with
specific shapes, which can, for example, be cached.
Parameters:
subscripts: Specifies the subscripts for summation.
shapes: Shapes of the arrays to optimize the contraction for.
constants: The indices of any constant arguments in `shapes`, in which case the
actual array should be supplied at that position rather than just a
shape. If these are specified, then constant parts of the contraction
between calls will be reused. Additionally, if a GPU-enabled backend is
used for example, then the constant tensors will be kept on the GPU,
minimizing transfers.
kwargs: Passed on to `contract_path` or `einsum`. See `contract`.
Returns:
Callable with signature `expr(*arrays, out=None, backend='numpy')` where the array's shapes should match `shapes`.
Notes:
The `out` keyword argument should be supplied to the generated expression
rather than this function.
The `backend` keyword argument should also be supplied to the generated
expression. If numpy arrays are supplied, if possible they will be
converted to and back from the correct backend array type.
The generated expression will work with any arrays which have
the same rank (number of dimensions) as the original shapes, however, if
the actual sizes are different, the expression may no longer be optimal.
Constant operations will be computed upon the first call with a particular
backend, then subsequently reused.
Examples:
Basic usage:
```python
expr = contract_expression("ab,bc->ac", (3, 4), (4, 5))
a, b = np.random.rand(3, 4), np.random.rand(4, 5)
c = expr(a, b)
np.allclose(c, a @ b)
#> True
```
Supply `a` as a constant:
```python
expr = contract_expression("ab,bc->ac", a, (4, 5), constants=[0])
expr
#> <ContractExpression('[ab],bc->ac', constants=[0])>
c = expr(b)
np.allclose(c, a @ b)
#> True
```
"""
if not optimize:
raise ValueError("Can only generate expressions for optimized contractions.")
for arg in ("out", "backend"):
if kwargs.get(arg, None) is not None:
raise ValueError(
f"'{arg}' should only be specified when calling a " "`ContractExpression`, not when building it."
)
if not isinstance(subscripts, str):
subscripts, shapes = parser.convert_interleaved_input((subscripts,) + shapes)
kwargs["_gen_expression"] = True
# build dict of constant indices mapped to arrays
constants = constants or ()
constants_dict = {i: shapes[i] for i in constants}
kwargs["_constants_dict"] = constants_dict
# apart from constant arguments, make dummy arrays
dummy_arrays = [s if i in constants else shape_only(s) for i, s in enumerate(shapes)] # type: ignore
return contract(
subscripts, *dummy_arrays, use_blas=use_blas, optimize=optimize, memory_limit=memory_limit, **kwargs
)
|