File: parser.py

package info (click to toggle)
python-opt-einsum 3.4.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,772 kB
  • sloc: python: 4,124; makefile: 31; javascript: 15
file content (415 lines) | stat: -rw-r--r-- 13,269 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
"""A functionally equivalent parser of the numpy.einsum input parser."""

import itertools
from typing import Any, Dict, Iterator, List, Sequence, Tuple

from opt_einsum.typing import ArrayType, TensorShapeType

__all__ = [
    "is_valid_einsum_char",
    "has_valid_einsum_chars_only",
    "get_symbol",
    "get_shape",
    "gen_unused_symbols",
    "convert_to_valid_einsum_chars",
    "alpha_canonicalize",
    "find_output_str",
    "find_output_shape",
    "possibly_convert_to_numpy",
    "parse_einsum_input",
]

_einsum_symbols_base = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"


def is_valid_einsum_char(x: str) -> bool:
    """Check if the character ``x`` is valid for numpy einsum.

    **Examples:**

    ```python
    is_valid_einsum_char("a")
    #> True

    is_valid_einsum_char("Ǵ")
    #> False
    ```
    """
    return (x in _einsum_symbols_base) or (x in ",->.")


def has_valid_einsum_chars_only(einsum_str: str) -> bool:
    """Check if ``einsum_str`` contains only valid characters for numpy einsum.

    **Examples:**

    ```python
    has_valid_einsum_chars_only("abAZ")
    #> True

    has_valid_einsum_chars_only("Över")
    #> False
    ```
    """
    return all(map(is_valid_einsum_char, einsum_str))


def get_symbol(i: int) -> str:
    """Get the symbol corresponding to int ``i`` - runs through the usual 52
    letters before resorting to unicode characters, starting at ``chr(192)`` and skipping surrogates.

    **Examples:**

    ```python
    get_symbol(2)
    #> 'c'

    get_symbol(200)
    #> 'Ŕ'

    get_symbol(20000)
    #> '京'
    ```
    """
    if i < 52:
        return _einsum_symbols_base[i]
    elif i >= 55296:
        # Skip chr(57343) - chr(55296) as surrogates
        return chr(i + 2048)
    else:
        return chr(i + 140)


def gen_unused_symbols(used: str, n: int) -> Iterator[str]:
    """Generate ``n`` symbols that are not already in ``used``.

    **Examples:**
    ```python
    list(oe.parser.gen_unused_symbols("abd", 2))
    #> ['c', 'e']
    ```
    """
    i = cnt = 0
    while cnt < n:
        s = get_symbol(i)
        i += 1
        if s in used:
            continue
        yield s
        cnt += 1


def convert_to_valid_einsum_chars(einsum_str: str) -> str:
    """Convert the str ``einsum_str`` to contain only the alphabetic characters
    valid for numpy einsum. If there are too many symbols, let the backend
    throw an error.

    Examples:
    --------
    >>> oe.parser.convert_to_valid_einsum_chars("Ĥěļļö")
    'cbdda'
    """
    symbols = sorted(set(einsum_str) - set(",->"))
    replacer = {x: get_symbol(i) for i, x in enumerate(symbols)}
    return "".join(replacer.get(x, x) for x in einsum_str)


def alpha_canonicalize(equation: str) -> str:
    """Alpha convert an equation in an order-independent canonical way.

    Examples:
    --------
    >>> oe.parser.alpha_canonicalize("dcba")
    'abcd'

    >>> oe.parser.alpha_canonicalize("Ĥěļļö")
    'abccd'
    """
    rename: Dict[str, str] = {}
    for name in equation:
        if name in ".,->":
            continue
        if name not in rename:
            rename[name] = get_symbol(len(rename))
    return "".join(rename.get(x, x) for x in equation)


def find_output_str(subscripts: str) -> str:
    """Find the output string for the inputs ``subscripts`` under canonical einstein summation rules.
    That is, repeated indices are summed over by default.

    Examples:
    --------
    >>> oe.parser.find_output_str("ab,bc")
    'ac'

    >>> oe.parser.find_output_str("a,b")
    'ab'

    >>> oe.parser.find_output_str("a,a,b,b")
    ''
    """
    tmp_subscripts = subscripts.replace(",", "")
    return "".join(s for s in sorted(set(tmp_subscripts)) if tmp_subscripts.count(s) == 1)


def find_output_shape(inputs: List[str], shapes: List[TensorShapeType], output: str) -> TensorShapeType:
    """Find the output shape for given inputs, shapes and output string, taking
    into account broadcasting.

    Examples:
    --------
    >>> oe.parser.find_output_shape(["ab", "bc"], [(2, 3), (3, 4)], "ac")
    (2, 4)

    # Broadcasting is accounted for
    >>> oe.parser.find_output_shape(["a", "a"], [(4, ), (1, )], "a")
    (4,)
    """
    return tuple(max(shape[loc] for shape, loc in zip(shapes, [x.find(c) for x in inputs]) if loc >= 0) for c in output)


_BaseTypes = (bool, int, float, complex, str, bytes)


def get_shape(x: Any) -> TensorShapeType:
    """Get the shape of the array-like object `x`. If `x` is not array-like, raise an error.

    Array-like objects are those that have a `shape` attribute, are sequences of BaseTypes, or are BaseTypes.
    BaseTypes are defined as `bool`, `int`, `float`, `complex`, `str`, and `bytes`.
    """
    if hasattr(x, "shape"):
        return x.shape
    elif isinstance(x, _BaseTypes):
        return ()
    elif isinstance(x, Sequence):
        shape = []
        while isinstance(x, Sequence) and not isinstance(x, _BaseTypes):
            shape.append(len(x))
            x = x[0]
        return tuple(shape)
    else:
        raise ValueError(f"Cannot determine the shape of {x}, can only determine the shape of array-like objects.")


def possibly_convert_to_numpy(x: Any) -> Any:
    """Convert things without a 'shape' to ndarrays, but leave everything else.

    Examples:
    --------
    >>> oe.parser.possibly_convert_to_numpy(5)
    array(5)

    >>> oe.parser.possibly_convert_to_numpy([5, 3])
    array([5, 3])

    >>> oe.parser.possibly_convert_to_numpy(np.array([5, 3]))
    array([5, 3])

    # Any class with a shape is passed through
    >>> class Shape:
    ...     def __init__(self, shape):
    ...         self.shape = shape
    ...

    >>> myshape = Shape((5, 5))
    >>> oe.parser.possibly_convert_to_numpy(myshape)
    <__main__.Shape object at 0x10f850710>
    """
    if not hasattr(x, "shape"):
        try:
            import numpy as np  # type: ignore
        except ModuleNotFoundError:
            raise ModuleNotFoundError(
                "numpy is required to convert non-array objects to arrays. This function will be deprecated in the future."
            )

        return np.asanyarray(x)
    else:
        return x


def convert_subscripts(old_sub: List[Any], symbol_map: Dict[Any, Any]) -> str:
    """Convert user custom subscripts list to subscript string according to `symbol_map`.

    Examples:
    --------
    >>>  oe.parser.convert_subscripts(['abc', 'def'], {'abc':'a', 'def':'b'})
    'ab'
    >>> oe.parser.convert_subscripts([Ellipsis, object], {object:'a'})
    '...a'
    """
    new_sub = ""
    for s in old_sub:
        if s is Ellipsis:
            new_sub += "..."
        else:
            # no need to try/except here because symbol_map has already been checked
            new_sub += symbol_map[s]
    return new_sub


def convert_interleaved_input(operands: Sequence[Any]) -> Tuple[str, Tuple[Any, ...]]:
    """Convert 'interleaved' input to standard einsum input."""
    tmp_operands = list(operands)
    operand_list = []
    subscript_list = []
    for _ in range(len(operands) // 2):
        operand_list.append(tmp_operands.pop(0))
        subscript_list.append(tmp_operands.pop(0))

    output_list = tmp_operands[-1] if len(tmp_operands) else None

    # build a map from user symbols to single-character symbols based on `get_symbol`
    # The map retains the intrinsic order of user symbols
    try:
        # collect all user symbols
        symbol_set = set(itertools.chain.from_iterable(subscript_list))

        # remove Ellipsis because it can not be compared with other objects
        symbol_set.discard(Ellipsis)

        # build the map based on sorted user symbols, retaining the order we lost in the `set`
        symbol_map = {symbol: get_symbol(idx) for idx, symbol in enumerate(sorted(symbol_set))}

    except TypeError:  # unhashable or uncomparable object
        raise TypeError(
            "For this input type lists must contain either Ellipsis "
            "or hashable and comparable object (e.g. int, str)."
        )

    subscripts = ",".join(convert_subscripts(sub, symbol_map) for sub in subscript_list)
    if output_list is not None:
        subscripts += "->"
        subscripts += convert_subscripts(output_list, symbol_map)

    return subscripts, tuple(operand_list)


def parse_einsum_input(operands: Any, shapes: bool = False) -> Tuple[str, str, List[ArrayType]]:
    """A reproduction of einsum c side einsum parsing in python.

    Parameters:
        operands: Intakes the same inputs as `contract_path`, but NOT the keyword args. The only
            supported keyword argument is:
        shapes: Whether ``parse_einsum_input`` should assume arrays (the default) or
            array shapes have been supplied.

    Returns:
        input_strings: Parsed input strings
        output_string: Parsed output string
        operands: The operands to use in the numpy contraction

    Examples:
        The operand list is simplified to reduce printing:

        ```python
        >>> a = np.random.rand(4, 4)
        >>> b = np.random.rand(4, 4, 4)
        >>> parse_einsum_input(('...a,...a->...', a, b))
        ('za,xza', 'xz', [a, b])

        >>> parse_einsum_input((a, [Ellipsis, 0], b, [Ellipsis, 0]))
        ('za,xza', 'xz', [a, b])
        ```
    """
    if len(operands) == 0:
        raise ValueError("No input operands")

    if isinstance(operands[0], str):
        subscripts = operands[0].replace(" ", "")
        if shapes:
            if any(hasattr(o, "shape") for o in operands[1:]):
                raise ValueError(
                    "shapes is set to True but given at least one operand looks like an array"
                    " (at least one operand has a shape attribute). "
                )
        operands = operands[1:]
    else:
        subscripts, operands = convert_interleaved_input(operands)

    if shapes:
        operand_shapes = operands
    else:
        operand_shapes = [get_shape(o) for o in operands]

    # Check for proper "->"
    if ("-" in subscripts) or (">" in subscripts):
        invalid = (subscripts.count("-") > 1) or (subscripts.count(">") > 1)
        if invalid or (subscripts.count("->") != 1):
            raise ValueError("Subscripts can only contain one '->'.")

    # Parse ellipses
    if "." in subscripts:
        used = subscripts.replace(".", "").replace(",", "").replace("->", "")
        ellipse_inds = "".join(gen_unused_symbols(used, max(len(x) for x in operand_shapes)))
        longest = 0

        # Do we have an output to account for?
        if "->" in subscripts:
            input_tmp, output_sub = subscripts.split("->")
            split_subscripts = input_tmp.split(",")
            out_sub = True
        else:
            split_subscripts = subscripts.split(",")
            out_sub = False

        for num, sub in enumerate(split_subscripts):
            if "." in sub:
                if (sub.count(".") != 3) or (sub.count("...") != 1):
                    raise ValueError("Invalid Ellipses.")

                # Take into account numerical values
                if operand_shapes[num] == ():
                    ellipse_count = 0
                else:
                    ellipse_count = max(len(operand_shapes[num]), 1) - (len(sub) - 3)

                if ellipse_count > longest:
                    longest = ellipse_count

                if ellipse_count < 0:
                    raise ValueError("Ellipses lengths do not match.")
                elif ellipse_count == 0:
                    split_subscripts[num] = sub.replace("...", "")
                else:
                    split_subscripts[num] = sub.replace("...", ellipse_inds[-ellipse_count:])

        subscripts = ",".join(split_subscripts)

        # Figure out output ellipses
        if longest == 0:
            out_ellipse = ""
        else:
            out_ellipse = ellipse_inds[-longest:]

        if out_sub:
            subscripts += "->" + output_sub.replace("...", out_ellipse)
        else:
            # Special care for outputless ellipses
            output_subscript = find_output_str(subscripts)
            normal_inds = "".join(sorted(set(output_subscript) - set(out_ellipse)))

            subscripts += "->" + out_ellipse + normal_inds

    # Build output string if does not exist
    if "->" in subscripts:
        input_subscripts, output_subscript = subscripts.split("->")
    else:
        input_subscripts, output_subscript = subscripts, find_output_str(subscripts)

    # Make sure output subscripts are unique and in the input
    for char in output_subscript:
        if output_subscript.count(char) != 1:
            raise ValueError(f"Output character '{char}' appeared more than once in the output.")
        if char not in input_subscripts:
            raise ValueError(f"Output character '{char}' did not appear in the input")

    # Make sure number operands is equivalent to the number of terms
    if len(input_subscripts.split(",")) != len(operands):
        raise ValueError(
            f"Number of einsum subscripts, {len(input_subscripts.split(','))}, must be equal to the "
            f"number of operands, {len(operands)}."
        )

    return input_subscripts, output_subscript, operands