1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
|
"""A functionally equivalent parser of the numpy.einsum input parser."""
import itertools
from typing import Any, Dict, Iterator, List, Sequence, Tuple
from opt_einsum.typing import ArrayType, TensorShapeType
__all__ = [
"is_valid_einsum_char",
"has_valid_einsum_chars_only",
"get_symbol",
"get_shape",
"gen_unused_symbols",
"convert_to_valid_einsum_chars",
"alpha_canonicalize",
"find_output_str",
"find_output_shape",
"possibly_convert_to_numpy",
"parse_einsum_input",
]
_einsum_symbols_base = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
def is_valid_einsum_char(x: str) -> bool:
"""Check if the character ``x`` is valid for numpy einsum.
**Examples:**
```python
is_valid_einsum_char("a")
#> True
is_valid_einsum_char("Ǵ")
#> False
```
"""
return (x in _einsum_symbols_base) or (x in ",->.")
def has_valid_einsum_chars_only(einsum_str: str) -> bool:
"""Check if ``einsum_str`` contains only valid characters for numpy einsum.
**Examples:**
```python
has_valid_einsum_chars_only("abAZ")
#> True
has_valid_einsum_chars_only("Över")
#> False
```
"""
return all(map(is_valid_einsum_char, einsum_str))
def get_symbol(i: int) -> str:
"""Get the symbol corresponding to int ``i`` - runs through the usual 52
letters before resorting to unicode characters, starting at ``chr(192)`` and skipping surrogates.
**Examples:**
```python
get_symbol(2)
#> 'c'
get_symbol(200)
#> 'Ŕ'
get_symbol(20000)
#> '京'
```
"""
if i < 52:
return _einsum_symbols_base[i]
elif i >= 55296:
# Skip chr(57343) - chr(55296) as surrogates
return chr(i + 2048)
else:
return chr(i + 140)
def gen_unused_symbols(used: str, n: int) -> Iterator[str]:
"""Generate ``n`` symbols that are not already in ``used``.
**Examples:**
```python
list(oe.parser.gen_unused_symbols("abd", 2))
#> ['c', 'e']
```
"""
i = cnt = 0
while cnt < n:
s = get_symbol(i)
i += 1
if s in used:
continue
yield s
cnt += 1
def convert_to_valid_einsum_chars(einsum_str: str) -> str:
"""Convert the str ``einsum_str`` to contain only the alphabetic characters
valid for numpy einsum. If there are too many symbols, let the backend
throw an error.
Examples:
--------
>>> oe.parser.convert_to_valid_einsum_chars("Ĥěļļö")
'cbdda'
"""
symbols = sorted(set(einsum_str) - set(",->"))
replacer = {x: get_symbol(i) for i, x in enumerate(symbols)}
return "".join(replacer.get(x, x) for x in einsum_str)
def alpha_canonicalize(equation: str) -> str:
"""Alpha convert an equation in an order-independent canonical way.
Examples:
--------
>>> oe.parser.alpha_canonicalize("dcba")
'abcd'
>>> oe.parser.alpha_canonicalize("Ĥěļļö")
'abccd'
"""
rename: Dict[str, str] = {}
for name in equation:
if name in ".,->":
continue
if name not in rename:
rename[name] = get_symbol(len(rename))
return "".join(rename.get(x, x) for x in equation)
def find_output_str(subscripts: str) -> str:
"""Find the output string for the inputs ``subscripts`` under canonical einstein summation rules.
That is, repeated indices are summed over by default.
Examples:
--------
>>> oe.parser.find_output_str("ab,bc")
'ac'
>>> oe.parser.find_output_str("a,b")
'ab'
>>> oe.parser.find_output_str("a,a,b,b")
''
"""
tmp_subscripts = subscripts.replace(",", "")
return "".join(s for s in sorted(set(tmp_subscripts)) if tmp_subscripts.count(s) == 1)
def find_output_shape(inputs: List[str], shapes: List[TensorShapeType], output: str) -> TensorShapeType:
"""Find the output shape for given inputs, shapes and output string, taking
into account broadcasting.
Examples:
--------
>>> oe.parser.find_output_shape(["ab", "bc"], [(2, 3), (3, 4)], "ac")
(2, 4)
# Broadcasting is accounted for
>>> oe.parser.find_output_shape(["a", "a"], [(4, ), (1, )], "a")
(4,)
"""
return tuple(max(shape[loc] for shape, loc in zip(shapes, [x.find(c) for x in inputs]) if loc >= 0) for c in output)
_BaseTypes = (bool, int, float, complex, str, bytes)
def get_shape(x: Any) -> TensorShapeType:
"""Get the shape of the array-like object `x`. If `x` is not array-like, raise an error.
Array-like objects are those that have a `shape` attribute, are sequences of BaseTypes, or are BaseTypes.
BaseTypes are defined as `bool`, `int`, `float`, `complex`, `str`, and `bytes`.
"""
if hasattr(x, "shape"):
return x.shape
elif isinstance(x, _BaseTypes):
return ()
elif isinstance(x, Sequence):
shape = []
while isinstance(x, Sequence) and not isinstance(x, _BaseTypes):
shape.append(len(x))
x = x[0]
return tuple(shape)
else:
raise ValueError(f"Cannot determine the shape of {x}, can only determine the shape of array-like objects.")
def possibly_convert_to_numpy(x: Any) -> Any:
"""Convert things without a 'shape' to ndarrays, but leave everything else.
Examples:
--------
>>> oe.parser.possibly_convert_to_numpy(5)
array(5)
>>> oe.parser.possibly_convert_to_numpy([5, 3])
array([5, 3])
>>> oe.parser.possibly_convert_to_numpy(np.array([5, 3]))
array([5, 3])
# Any class with a shape is passed through
>>> class Shape:
... def __init__(self, shape):
... self.shape = shape
...
>>> myshape = Shape((5, 5))
>>> oe.parser.possibly_convert_to_numpy(myshape)
<__main__.Shape object at 0x10f850710>
"""
if not hasattr(x, "shape"):
try:
import numpy as np # type: ignore
except ModuleNotFoundError:
raise ModuleNotFoundError(
"numpy is required to convert non-array objects to arrays. This function will be deprecated in the future."
)
return np.asanyarray(x)
else:
return x
def convert_subscripts(old_sub: List[Any], symbol_map: Dict[Any, Any]) -> str:
"""Convert user custom subscripts list to subscript string according to `symbol_map`.
Examples:
--------
>>> oe.parser.convert_subscripts(['abc', 'def'], {'abc':'a', 'def':'b'})
'ab'
>>> oe.parser.convert_subscripts([Ellipsis, object], {object:'a'})
'...a'
"""
new_sub = ""
for s in old_sub:
if s is Ellipsis:
new_sub += "..."
else:
# no need to try/except here because symbol_map has already been checked
new_sub += symbol_map[s]
return new_sub
def convert_interleaved_input(operands: Sequence[Any]) -> Tuple[str, Tuple[Any, ...]]:
"""Convert 'interleaved' input to standard einsum input."""
tmp_operands = list(operands)
operand_list = []
subscript_list = []
for _ in range(len(operands) // 2):
operand_list.append(tmp_operands.pop(0))
subscript_list.append(tmp_operands.pop(0))
output_list = tmp_operands[-1] if len(tmp_operands) else None
# build a map from user symbols to single-character symbols based on `get_symbol`
# The map retains the intrinsic order of user symbols
try:
# collect all user symbols
symbol_set = set(itertools.chain.from_iterable(subscript_list))
# remove Ellipsis because it can not be compared with other objects
symbol_set.discard(Ellipsis)
# build the map based on sorted user symbols, retaining the order we lost in the `set`
symbol_map = {symbol: get_symbol(idx) for idx, symbol in enumerate(sorted(symbol_set))}
except TypeError: # unhashable or uncomparable object
raise TypeError(
"For this input type lists must contain either Ellipsis "
"or hashable and comparable object (e.g. int, str)."
)
subscripts = ",".join(convert_subscripts(sub, symbol_map) for sub in subscript_list)
if output_list is not None:
subscripts += "->"
subscripts += convert_subscripts(output_list, symbol_map)
return subscripts, tuple(operand_list)
def parse_einsum_input(operands: Any, shapes: bool = False) -> Tuple[str, str, List[ArrayType]]:
"""A reproduction of einsum c side einsum parsing in python.
Parameters:
operands: Intakes the same inputs as `contract_path`, but NOT the keyword args. The only
supported keyword argument is:
shapes: Whether ``parse_einsum_input`` should assume arrays (the default) or
array shapes have been supplied.
Returns:
input_strings: Parsed input strings
output_string: Parsed output string
operands: The operands to use in the numpy contraction
Examples:
The operand list is simplified to reduce printing:
```python
>>> a = np.random.rand(4, 4)
>>> b = np.random.rand(4, 4, 4)
>>> parse_einsum_input(('...a,...a->...', a, b))
('za,xza', 'xz', [a, b])
>>> parse_einsum_input((a, [Ellipsis, 0], b, [Ellipsis, 0]))
('za,xza', 'xz', [a, b])
```
"""
if len(operands) == 0:
raise ValueError("No input operands")
if isinstance(operands[0], str):
subscripts = operands[0].replace(" ", "")
if shapes:
if any(hasattr(o, "shape") for o in operands[1:]):
raise ValueError(
"shapes is set to True but given at least one operand looks like an array"
" (at least one operand has a shape attribute). "
)
operands = operands[1:]
else:
subscripts, operands = convert_interleaved_input(operands)
if shapes:
operand_shapes = operands
else:
operand_shapes = [get_shape(o) for o in operands]
# Check for proper "->"
if ("-" in subscripts) or (">" in subscripts):
invalid = (subscripts.count("-") > 1) or (subscripts.count(">") > 1)
if invalid or (subscripts.count("->") != 1):
raise ValueError("Subscripts can only contain one '->'.")
# Parse ellipses
if "." in subscripts:
used = subscripts.replace(".", "").replace(",", "").replace("->", "")
ellipse_inds = "".join(gen_unused_symbols(used, max(len(x) for x in operand_shapes)))
longest = 0
# Do we have an output to account for?
if "->" in subscripts:
input_tmp, output_sub = subscripts.split("->")
split_subscripts = input_tmp.split(",")
out_sub = True
else:
split_subscripts = subscripts.split(",")
out_sub = False
for num, sub in enumerate(split_subscripts):
if "." in sub:
if (sub.count(".") != 3) or (sub.count("...") != 1):
raise ValueError("Invalid Ellipses.")
# Take into account numerical values
if operand_shapes[num] == ():
ellipse_count = 0
else:
ellipse_count = max(len(operand_shapes[num]), 1) - (len(sub) - 3)
if ellipse_count > longest:
longest = ellipse_count
if ellipse_count < 0:
raise ValueError("Ellipses lengths do not match.")
elif ellipse_count == 0:
split_subscripts[num] = sub.replace("...", "")
else:
split_subscripts[num] = sub.replace("...", ellipse_inds[-ellipse_count:])
subscripts = ",".join(split_subscripts)
# Figure out output ellipses
if longest == 0:
out_ellipse = ""
else:
out_ellipse = ellipse_inds[-longest:]
if out_sub:
subscripts += "->" + output_sub.replace("...", out_ellipse)
else:
# Special care for outputless ellipses
output_subscript = find_output_str(subscripts)
normal_inds = "".join(sorted(set(output_subscript) - set(out_ellipse)))
subscripts += "->" + out_ellipse + normal_inds
# Build output string if does not exist
if "->" in subscripts:
input_subscripts, output_subscript = subscripts.split("->")
else:
input_subscripts, output_subscript = subscripts, find_output_str(subscripts)
# Make sure output subscripts are unique and in the input
for char in output_subscript:
if output_subscript.count(char) != 1:
raise ValueError(f"Output character '{char}' appeared more than once in the output.")
if char not in input_subscripts:
raise ValueError(f"Output character '{char}' did not appear in the input")
# Make sure number operands is equivalent to the number of terms
if len(input_subscripts.split(",")) != len(operands):
raise ValueError(
f"Number of einsum subscripts, {len(input_subscripts.split(','))}, must be equal to the "
f"number of operands, {len(operands)}."
)
return input_subscripts, output_subscript, operands
|