1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
|
"""Contains the path technology behind opt_einsum in addition to several path helpers."""
import bisect
import functools
import heapq
import itertools
import operator
import random
import re
from collections import Counter, defaultdict
from typing import Any, Callable, Dict, FrozenSet, Generator, List, Optional, Sequence, Set, Tuple, Union
from typing import Counter as CounterType
from opt_einsum.helpers import compute_size_by_dict, flop_count
from opt_einsum.typing import ArrayIndexType, PathSearchFunctionType, PathType, TensorShapeType
__all__ = [
"optimal",
"BranchBound",
"branch",
"greedy",
"auto",
"auto_hq",
"get_path_fn",
"DynamicProgramming",
"dynamic_programming",
]
_UNLIMITED_MEM = {-1, None, float("inf")}
class PathOptimizer:
r"""Base class for different path optimizers to inherit from.
Subclassed optimizers should define a call method with signature:
```python
def __call__(self, inputs: List[ArrayIndexType], output: ArrayIndexType, size_dict: dict[str, int], memory_limit: int | None = None) -> list[tuple[int, ...]]:
\"\"\"
Parameters:
inputs: The indices of each input array.
outputs: The output indices
size_dict: The size of each index
memory_limit: If given, the maximum allowed memory.
\"\"\"
# ... compute path here ...
return path
```
where `path` is a list of int-tuples specifying a contraction order.
"""
def _check_args_against_first_call(
self,
inputs: List[ArrayIndexType],
output: ArrayIndexType,
size_dict: Dict[str, int],
) -> None:
"""Utility that stateful optimizers can use to ensure they are not
called with different contractions across separate runs.
"""
args = (inputs, output, size_dict)
if not hasattr(self, "_first_call_args"):
# simply set the attribute as currently there is no global PathOptimizer init
self._first_call_args = args
elif args != self._first_call_args:
raise ValueError(
"The arguments specifying the contraction that this path optimizer "
"instance was called with have changed - try creating a new instance."
)
def __call__(
self,
inputs: List[ArrayIndexType],
output: ArrayIndexType,
size_dict: Dict[str, int],
memory_limit: Optional[int] = None,
) -> PathType:
raise NotImplementedError
def ssa_to_linear(ssa_path: PathType) -> PathType:
"""Convert a path with static single assignment ids to a path with recycled
linear ids.
Example:
```python
ssa_to_linear([(0, 3), (2, 4), (1, 5)])
#> [(0, 3), (1, 2), (0, 1)]
```
"""
# ids = np.arange(1 + max(map(max, ssa_path)), dtype=np.int32) # type: ignore
# path = []
# for ssa_ids in ssa_path:
# path.append(tuple(int(ids[ssa_id]) for ssa_id in ssa_ids))
# for ssa_id in ssa_ids:
# ids[ssa_id:] -= 1
# return path
n = sum(map(len, ssa_path)) - len(ssa_path) + 1
ids = list(range(n))
path = []
ssa = n
for scon in ssa_path:
con = sorted([bisect.bisect_left(ids, s) for s in scon])
for j in reversed(con):
ids.pop(j)
ids.append(ssa)
path.append(con)
ssa += 1
return [tuple(x) for x in path]
# N = sum(map(len, ssa_path)) - len(ssa_path) + 1
# ids = list(range(N))
# ids = np.arange(1 + max(map(max, ssa_path)), dtype=np.int32)
# path = []
# ssa = N
# for scon in ssa_path:
# con = sorted(map(ids.index, scon))
# for j in reversed(con):
# ids.pop(j)
# ids.append(ssa)
# path.append(con)
# ssa += 1
# return path
def linear_to_ssa(path: PathType) -> PathType:
"""Convert a path with recycled linear ids to a path with static single
assignment ids.
Exmaple:
```python
linear_to_ssa([(0, 3), (1, 2), (0, 1)])
#> [(0, 3), (2, 4), (1, 5)]
```
"""
num_inputs = sum(map(len, path)) - len(path) + 1
linear_to_ssa = list(range(num_inputs))
new_ids = itertools.count(num_inputs)
ssa_path = []
for ids in path:
ssa_path.append(tuple(linear_to_ssa[id_] for id_ in ids))
for id_ in sorted(ids, reverse=True):
del linear_to_ssa[id_]
linear_to_ssa.append(next(new_ids))
return ssa_path
def calc_k12_flops(
inputs: Tuple[FrozenSet[str]],
output: FrozenSet[str],
remaining: FrozenSet[int],
i: int,
j: int,
size_dict: Dict[str, int],
) -> Tuple[FrozenSet[str], int]:
"""Calculate the resulting indices and flops for a potential pairwise
contraction - used in the recursive (optimal/branch) algorithms.
Parameters:
inputs: The indices of each tensor in this contraction, note this includes
tensors unavailable to contract as static single assignment is used:>
contracted tensors are not removed from the list.
output: The set of output indices for the whole contraction.
remaining: *The set of indices (corresponding to ``inputs``) of tensors still available to contract.
i: Index of potential tensor to contract.
j: Index of potential tensor to contract.
size_dict: Size mapping of all the indices.
Returns:
k12: The resulting indices of the potential tensor.
cost: Estimated flop count of operation.
"""
k1, k2 = inputs[i], inputs[j]
either = k1 | k2
shared = k1 & k2
keep = frozenset.union(output, *map(inputs.__getitem__, remaining - {i, j}))
k12 = either & keep
cost = flop_count(either, bool(shared - keep), 2, size_dict)
return k12, cost
def _compute_oversize_flops(
inputs: Tuple[FrozenSet[str]],
remaining: List[ArrayIndexType],
output: ArrayIndexType,
size_dict: Dict[str, int],
) -> int:
"""Compute the flop count for a contraction of all remaining arguments. This
is used when a memory limit means that no pairwise contractions can be made.
"""
idx_contraction = frozenset.union(*map(inputs.__getitem__, remaining)) # type: ignore
inner = idx_contraction - output
num_terms = len(remaining)
return flop_count(idx_contraction, bool(inner), num_terms, size_dict)
def optimal(
inputs: List[ArrayIndexType],
output: ArrayIndexType,
size_dict: Dict[str, int],
memory_limit: Optional[int] = None,
) -> PathType:
"""Computes all possible pair contractions in a depth-first recursive manner,
sieving results based on `memory_limit` and the best path found so far.
Parameters:
inputs: List of sets that represent the lhs side of the einsum subscript.
output: Set that represents the rhs side of the overall einsum subscript.
size_dict: Dictionary of index sizes.
memory_limit: The maximum number of elements in a temporary array.
Returns:
path: The optimal contraction order within the memory limit constraint.
Examples:
```python
isets = [set('abd'), set('ac'), set('bdc')]
oset = set('')
idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4}
optimal(isets, oset, idx_sizes, 5000)
#> [(0, 2), (0, 1)]
```
"""
inputs_set = tuple(map(frozenset, inputs))
output_set = frozenset(output)
best_flops = {"flops": float("inf")}
best_ssa_path = {"ssa_path": (tuple(range(len(inputs))),)}
size_cache: Dict[FrozenSet[str], int] = {}
result_cache: Dict[Tuple[ArrayIndexType, ArrayIndexType], Tuple[FrozenSet[str], int]] = {}
def _optimal_iterate(path, remaining, inputs, flops):
# reached end of path (only ever get here if flops is best found so far)
if len(remaining) == 1:
best_flops["flops"] = flops
best_ssa_path["ssa_path"] = path
return
# check all possible remaining paths
for i, j in itertools.combinations(remaining, 2):
if i > j:
i, j = j, i
key = (inputs[i], inputs[j])
try:
k12, flops12 = result_cache[key]
except KeyError:
k12, flops12 = result_cache[key] = calc_k12_flops(inputs, output_set, remaining, i, j, size_dict)
# sieve based on current best flops
new_flops = flops + flops12
if new_flops >= best_flops["flops"]:
continue
# sieve based on memory limit
if memory_limit not in _UNLIMITED_MEM:
try:
size12 = size_cache[k12]
except KeyError:
size12 = size_cache[k12] = compute_size_by_dict(k12, size_dict)
# possibly terminate this path with an all-terms einsum
if size12 > memory_limit:
new_flops = flops + _compute_oversize_flops(inputs, remaining, output_set, size_dict)
if new_flops < best_flops["flops"]:
best_flops["flops"] = new_flops
best_ssa_path["ssa_path"] = path + (tuple(remaining),)
continue
# add contraction and recurse into all remaining
_optimal_iterate(
path=path + ((i, j),),
inputs=inputs + (k12,),
remaining=remaining - {i, j} | {len(inputs)},
flops=new_flops,
)
_optimal_iterate(path=(), inputs=inputs_set, remaining=set(range(len(inputs))), flops=0)
return ssa_to_linear(best_ssa_path["ssa_path"])
# functions for comparing which of two paths is 'better'
def better_flops_first(flops: int, size: int, best_flops: int, best_size: int) -> bool:
return (flops, size) < (best_flops, best_size)
def better_size_first(flops: int, size: int, best_flops: int, best_size: int) -> bool:
return (size, flops) < (best_size, best_flops)
_BETTER_FNS = {
"flops": better_flops_first,
"size": better_size_first,
}
def get_better_fn(key: str) -> Callable[[int, int, int, int], bool]:
return _BETTER_FNS[key]
# functions for assigning a heuristic 'cost' to a potential contraction
def cost_memory_removed(size12: int, size1: int, size2: int, k12: int, k1: int, k2: int) -> float:
"""The default heuristic cost, corresponding to the total reduction in
memory of performing a contraction.
"""
return size12 - size1 - size2
def cost_memory_removed_jitter(size12: int, size1: int, size2: int, k12: int, k1: int, k2: int) -> float:
"""Like memory-removed, but with a slight amount of noise that breaks ties
and thus jumbles the contractions a bit.
"""
return random.gauss(1.0, 0.01) * (size12 - size1 - size2)
_COST_FNS = {
"memory-removed": cost_memory_removed,
"memory-removed-jitter": cost_memory_removed_jitter,
}
class BranchBound(PathOptimizer):
def __init__(
self,
nbranch: Optional[int] = None,
cutoff_flops_factor: int = 4,
minimize: str = "flops",
cost_fn: str = "memory-removed",
):
"""Explores possible pair contractions in a depth-first recursive manner like
the `optimal` approach, but with extra heuristic early pruning of branches
as well sieving by `memory_limit` and the best path found so far.
Parameters:
nbranch: How many branches to explore at each contraction step. If None, explore
all possible branches. If an integer, branch into this many paths at
each step. Defaults to None.
cutoff_flops_factor: If at any point, a path is doing this much worse than the best path
found so far was, terminate it. The larger this is made, the more paths
will be fully explored and the slower the algorithm. Defaults to 4.
minimize: Whether to optimize the path with regard primarily to the total
estimated flop-count, or the size of the largest intermediate. The
option not chosen will still be used as a secondary criterion.
cost_fn: A function that returns a heuristic 'cost' of a potential contraction
with which to sort candidates. Should have signature
`cost_fn(size12, size1, size2, k12, k1, k2)`.
"""
if (nbranch is not None) and nbranch < 1:
raise ValueError(f"The number of branches must be at least one, `nbranch={nbranch}`.")
self.nbranch = nbranch
self.cutoff_flops_factor = cutoff_flops_factor
self.minimize = minimize
self.cost_fn: Any = _COST_FNS.get(cost_fn, cost_fn)
self.better = get_better_fn(minimize)
self.best: Dict[str, Any] = {"flops": float("inf"), "size": float("inf")}
self.best_progress: Dict[int, float] = defaultdict(lambda: float("inf"))
@property
def path(self) -> PathType:
return ssa_to_linear(self.best["ssa_path"])
def __call__(
self,
inputs_: List[ArrayIndexType],
output_: ArrayIndexType,
size_dict: Dict[str, int],
memory_limit: Optional[int] = None,
) -> PathType:
"""Parameters:
inputs_: List of sets that represent the lhs side of the einsum subscript
output_: Set that represents the rhs side of the overall einsum subscript
size_dict: Dictionary of index sizes
memory_limit: The maximum number of elements in a temporary array.
Returns:
path: The contraction order within the memory limit constraint.
Examples:
```python
isets = [set('abd'), set('ac'), set('bdc')]
oset = set('')
idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4}
optimal(isets, oset, idx_sizes, 5000)
#> [(0, 2), (0, 1)]
"""
self._check_args_against_first_call(inputs_, output_, size_dict)
inputs: Tuple[FrozenSet[str]] = tuple(map(frozenset, inputs_)) # type: ignore
output: FrozenSet[str] = frozenset(output_)
size_cache = {k: compute_size_by_dict(k, size_dict) for k in inputs}
result_cache: Dict[Tuple[FrozenSet[str], FrozenSet[str]], Tuple[FrozenSet[str], int]] = {}
def _branch_iterate(path, inputs, remaining, flops, size):
# reached end of path (only ever get here if flops is best found so far)
if len(remaining) == 1:
self.best["size"] = size
self.best["flops"] = flops
self.best["ssa_path"] = path
return
def _assess_candidate(k1: FrozenSet[str], k2: FrozenSet[str], i: int, j: int) -> Any:
# find resulting indices and flops
try:
k12, flops12 = result_cache[k1, k2]
except KeyError:
k12, flops12 = result_cache[k1, k2] = calc_k12_flops(inputs, output, remaining, i, j, size_dict)
try:
size12 = size_cache[k12]
except KeyError:
size12 = size_cache[k12] = compute_size_by_dict(k12, size_dict)
new_flops = flops + flops12
new_size = max(size, size12)
# sieve based on current best i.e. check flops and size still better
if not self.better(new_flops, new_size, self.best["flops"], self.best["size"]):
return None
# compare to how the best method was doing as this point
if new_flops < self.best_progress[len(inputs)]:
self.best_progress[len(inputs)] = new_flops
# sieve based on current progress relative to best
elif new_flops > self.cutoff_flops_factor * self.best_progress[len(inputs)]:
return None
# sieve based on memory limit
if (memory_limit not in _UNLIMITED_MEM) and (size12 > memory_limit): # type: ignore
# terminate path here, but check all-terms contract first
new_flops = flops + _compute_oversize_flops(inputs, remaining, output_, size_dict)
if new_flops < self.best["flops"]:
self.best["flops"] = new_flops
self.best["ssa_path"] = path + (tuple(remaining),)
return None
# set cost heuristic in order to locally sort possible contractions
size1, size2 = size_cache[inputs[i]], size_cache[inputs[j]]
cost = self.cost_fn(size12, size1, size2, k12, k1, k2)
return cost, flops12, new_flops, new_size, (i, j), k12
# check all possible remaining paths
candidates = []
for i, j in itertools.combinations(remaining, 2):
if i > j:
i, j = j, i
k1, k2 = inputs[i], inputs[j]
# initially ignore outer products
if k1.isdisjoint(k2):
continue
candidate = _assess_candidate(k1, k2, i, j)
if candidate:
heapq.heappush(candidates, candidate)
# assess outer products if nothing left
if not candidates:
for i, j in itertools.combinations(remaining, 2):
if i > j:
i, j = j, i
k1, k2 = inputs[i], inputs[j]
candidate = _assess_candidate(k1, k2, i, j)
if candidate:
heapq.heappush(candidates, candidate)
# recurse into all or some of the best candidate contractions
bi = 0
while (self.nbranch is None or bi < self.nbranch) and candidates:
_, _, new_flops, new_size, (i, j), k12 = heapq.heappop(candidates)
_branch_iterate(
path=path + ((i, j),),
inputs=inputs + (k12,),
remaining=(remaining - {i, j}) | {len(inputs)},
flops=new_flops,
size=new_size,
)
bi += 1
_branch_iterate(path=(), inputs=inputs, remaining=set(range(len(inputs))), flops=0, size=0)
return self.path
def branch(
inputs: List[ArrayIndexType],
output: ArrayIndexType,
size_dict: Dict[str, int],
memory_limit: Optional[int] = None,
nbranch: Optional[int] = None,
cutoff_flops_factor: int = 4,
minimize: str = "flops",
cost_fn: str = "memory-removed",
) -> PathType:
optimizer = BranchBound(
nbranch=nbranch, cutoff_flops_factor=cutoff_flops_factor, minimize=minimize, cost_fn=cost_fn
)
return optimizer(inputs, output, size_dict, memory_limit)
branch_all = functools.partial(branch, nbranch=None)
branch_2 = functools.partial(branch, nbranch=2)
branch_1 = functools.partial(branch, nbranch=1)
GreedyCostType = Tuple[int, int, int]
GreedyContractionType = Tuple[GreedyCostType, ArrayIndexType, ArrayIndexType, ArrayIndexType] # Cost, t1,t2->t3
def _get_candidate(
output: ArrayIndexType,
sizes: Dict[str, int],
remaining: Dict[ArrayIndexType, int],
footprints: Dict[ArrayIndexType, int],
dim_ref_counts: Dict[int, Set[str]],
k1: ArrayIndexType,
k2: ArrayIndexType,
cost_fn: Any,
) -> GreedyContractionType:
either = k1 | k2
two = k1 & k2
one = either - two
k12 = (either & output) | (two & dim_ref_counts[3]) | (one & dim_ref_counts[2])
cost = cost_fn(
compute_size_by_dict(k12, sizes),
footprints[k1],
footprints[k2],
k12,
k1,
k2,
)
id1 = remaining[k1]
id2 = remaining[k2]
if id1 > id2:
k1, id1, k2, id2 = k2, id2, k1, id1
cost = cost, id2, id1 # break ties to ensure determinism
return cost, k1, k2, k12
def _push_candidate(
output: ArrayIndexType,
sizes: Dict[str, Any],
remaining: Dict[ArrayIndexType, int],
footprints: Dict[ArrayIndexType, int],
dim_ref_counts: Dict[int, Set[str]],
k1: ArrayIndexType,
k2s: List[ArrayIndexType],
queue: List[GreedyContractionType],
push_all: bool,
cost_fn: Any,
) -> None:
candidates = (_get_candidate(output, sizes, remaining, footprints, dim_ref_counts, k1, k2, cost_fn) for k2 in k2s)
if push_all:
# want to do this if we e.g. are using a custom 'choose_fn'
for candidate in candidates:
heapq.heappush(queue, candidate)
else:
heapq.heappush(queue, min(candidates))
def _update_ref_counts(
dim_to_keys: Dict[str, Set[ArrayIndexType]],
dim_ref_counts: Dict[int, Set[str]],
dims: ArrayIndexType,
) -> None:
for dim in dims:
count = len(dim_to_keys[dim])
if count <= 1:
dim_ref_counts[2].discard(dim)
dim_ref_counts[3].discard(dim)
elif count == 2:
dim_ref_counts[2].add(dim)
dim_ref_counts[3].discard(dim)
else:
dim_ref_counts[2].add(dim)
dim_ref_counts[3].add(dim)
def _simple_chooser(queue, remaining):
"""Default contraction chooser that simply takes the minimum cost option."""
cost, k1, k2, k12 = heapq.heappop(queue)
if k1 not in remaining or k2 not in remaining:
return None # candidate is obsolete
return cost, k1, k2, k12
def ssa_greedy_optimize(
inputs: List[ArrayIndexType],
output: ArrayIndexType,
sizes: Dict[str, int],
choose_fn: Any = None,
cost_fn: Any = "memory-removed",
) -> PathType:
"""This is the core function for :func:`greedy` but produces a path with
static single assignment ids rather than recycled linear ids.
SSA ids are cheaper to work with and easier to reason about.
"""
if len(inputs) == 1:
# Perform a single contraction to match output shape.
return [(0,)]
# set the function that assigns a heuristic cost to a possible contraction
cost_fn = _COST_FNS.get(cost_fn, cost_fn)
# set the function that chooses which contraction to take
if choose_fn is None:
choose_fn = _simple_chooser
push_all = False
else:
# assume chooser wants access to all possible contractions
push_all = True
# A dim that is common to all tensors might as well be an output dim, since it
# cannot be contracted until the final step. This avoids an expensive all-pairs
# comparison to search for possible contractions at each step, leading to speedup
# in many practical problems where all tensors share a common batch dimension.
fs_inputs = [frozenset(x) for x in inputs]
output = frozenset(output) | frozenset.intersection(*fs_inputs)
# Deduplicate shapes by eagerly computing Hadamard products.
remaining: Dict[ArrayIndexType, int] = {} # key -> ssa_id
ssa_ids = itertools.count(len(fs_inputs))
ssa_path: List[TensorShapeType] = []
for ssa_id, key in enumerate(fs_inputs):
if key in remaining:
ssa_path.append((remaining[key], ssa_id))
remaining[key] = next(ssa_ids)
else:
remaining[key] = ssa_id
# Keep track of possible contraction dims.
dim_to_keys = defaultdict(set)
for key in remaining:
for dim in key - output:
dim_to_keys[dim].add(key)
# Keep track of the number of tensors using each dim; when the dim is no longer
# used it can be contracted. Since we specialize to binary ops, we only care about
# ref counts of >=2 or >=3.
dim_ref_counts = {
count: {dim for dim, keys in dim_to_keys.items() if len(keys) >= count} - output for count in [2, 3]
}
# Compute separable part of the objective function for contractions.
footprints = {key: compute_size_by_dict(key, sizes) for key in remaining}
# Find initial candidate contractions.
queue: List[GreedyContractionType] = []
for dim, dim_keys in dim_to_keys.items():
dim_keys_list = sorted(dim_keys, key=remaining.__getitem__)
for i, k1 in enumerate(dim_keys_list[:-1]):
k2s_guess = dim_keys_list[1 + i :]
_push_candidate(
output,
sizes,
remaining,
footprints,
dim_ref_counts,
k1,
k2s_guess,
queue,
push_all,
cost_fn,
)
# Greedily contract pairs of tensors.
while queue:
con = choose_fn(queue, remaining)
if con is None:
continue # allow choose_fn to flag all candidates obsolete
cost, k1, k2, k12 = con
ssa_id1 = remaining.pop(k1)
ssa_id2 = remaining.pop(k2)
for dim in k1 - output:
dim_to_keys[dim].remove(k1)
for dim in k2 - output:
dim_to_keys[dim].remove(k2)
ssa_path.append((ssa_id1, ssa_id2))
if k12 in remaining:
ssa_path.append((remaining[k12], next(ssa_ids)))
else:
for dim in k12 - output:
dim_to_keys[dim].add(k12)
remaining[k12] = next(ssa_ids)
_update_ref_counts(dim_to_keys, dim_ref_counts, k1 | k2 - output)
footprints[k12] = compute_size_by_dict(k12, sizes)
# Find new candidate contractions.
k1 = k12
k2s = {k2 for dim in k1 for k2 in dim_to_keys[dim]}
k2s.discard(k1)
if k2s:
_push_candidate(
output,
sizes,
remaining,
footprints,
dim_ref_counts,
k1,
list(k2s),
queue,
push_all,
cost_fn,
)
# Greedily compute pairwise outer products.
final_queue = [(compute_size_by_dict(key & output, sizes), ssa_id, key) for key, ssa_id in remaining.items()]
heapq.heapify(final_queue)
_, ssa_id1, k1 = heapq.heappop(final_queue)
while final_queue:
_, ssa_id2, k2 = heapq.heappop(final_queue)
ssa_path.append((min(ssa_id1, ssa_id2), max(ssa_id1, ssa_id2)))
k12 = (k1 | k2) & output
cost = compute_size_by_dict(k12, sizes)
ssa_id12 = next(ssa_ids)
_, ssa_id1, k1 = heapq.heappushpop(final_queue, (cost, ssa_id12, k12))
return ssa_path
def greedy(
inputs: List[ArrayIndexType],
output: ArrayIndexType,
size_dict: Dict[str, int],
memory_limit: Optional[int] = None,
choose_fn: Any = None,
cost_fn: str = "memory-removed",
) -> PathType:
"""Finds the path by a three stage algorithm:
1. Eagerly compute Hadamard products.
2. Greedily compute contractions to maximize `removed_size`
3. Greedily compute outer products.
This algorithm scales quadratically with respect to the
maximum number of elements sharing a common dim.
Parameters:
inputs: List of sets that represent the lhs side of the einsum subscript
output: Set that represents the rhs side of the overall einsum subscript
size_dict: Dictionary of index sizes
memory_limit: The maximum number of elements in a temporary array
choose_fn: A function that chooses which contraction to perform from the queue
cost_fn: A function that assigns a potential contraction a cost.
Returns:
path: The contraction order (a list of tuples of ints).
Examples:
```python
isets = [set('abd'), set('ac'), set('bdc')]
oset = set('')
idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4}
greedy(isets, oset, idx_sizes)
#> [(0, 2), (0, 1)]
```
"""
if memory_limit not in _UNLIMITED_MEM:
return branch(inputs, output, size_dict, memory_limit, nbranch=1, cost_fn=cost_fn) # type: ignore
ssa_path = ssa_greedy_optimize(inputs, output, size_dict, cost_fn=cost_fn, choose_fn=choose_fn)
return ssa_to_linear(ssa_path)
def _tree_to_sequence(tree: Tuple[Any, ...]) -> PathType:
"""Converts a contraction tree to a contraction path as it has to be
returned by path optimizers. A contraction tree can either be an int
(=no contraction) or a tuple containing the terms to be contracted. An
arbitrary number (>= 1) of terms can be contracted at once. Note that
contractions are commutative, e.g. (j, k, l) = (k, l, j). Note that in
general, solutions are not unique.
Parameters:
c: Contraction tree
Returns:
path: Contraction path
Examples:
```python
_tree_to_sequence(((1,2),(0,(4,5,3))))
#> [(1, 2), (1, 2, 3), (0, 2), (0, 1)]
```
"""
# ((1,2),(0,(4,5,3))) --> [(1, 2), (1, 2, 3), (0, 2), (0, 1)]
#
# 0 0 0 (1,2) --> ((1,2),(0,(3,4,5)))
# 1 3 (1,2) --> (0,(3,4,5))
# 2 --> 4 --> (3,4,5)
# 3 5
# 4 (1,2)
# 5
#
# this function iterates through the table shown above from right to left;
if type(tree) == int: # noqa: E721
return []
c: List[Tuple[Any, ...]] = [tree] # list of remaining contractions (lower part of columns shown above)
t: List[int] = [] # list of elementary tensors (upper part of columns)
s: List[Tuple[int, ...]] = [] # resulting contraction sequence
while len(c) > 0:
j = c.pop(-1)
s.insert(0, ())
for i in sorted([i for i in j if type(i) == int]): # noqa: E721
s[0] += (sum(1 for q in t if q < i),)
t.insert(s[0][-1], i)
for i_tup in [i_tup for i_tup in j if type(i_tup) != int]: # noqa: E721
s[0] += (len(t) + len(c),)
c.append(i_tup)
return s
def _find_disconnected_subgraphs(inputs: List[FrozenSet[int]], output: FrozenSet[int]) -> List[FrozenSet[int]]:
"""Finds disconnected subgraphs in the given list of inputs. Inputs are
connected if they share summation indices. Note: Disconnected subgraphs
can be contracted independently before forming outer products.
Parameters:
inputs: List of sets that represent the lhs side of the einsum subscript
output: Set that represents the rhs side of the overall einsum subscript
Returns:
subgraphs: List containing sets of indices for each subgraph
Examples:
```python
_find_disconnected_subgraphs([set("ab"), set("c"), set("ad")], set("bd"))
#> [{0, 2}, {1}]
_find_disconnected_subgraphs([set("ab"), set("c"), set("ad")], set("abd"))
#> [{0}, {1}, {2}]
```
"""
subgraphs = []
unused_inputs = set(range(len(inputs)))
i_sum = frozenset.union(*inputs) - output # all summation indices
while len(unused_inputs) > 0:
g = set()
q = [unused_inputs.pop()]
while len(q) > 0:
j = q.pop()
g.add(j)
i_tmp = i_sum & inputs[j]
n = {k for k in unused_inputs if len(i_tmp & inputs[k]) > 0}
q.extend(n)
unused_inputs.difference_update(n)
subgraphs.append(g)
return [frozenset(x) for x in subgraphs]
def _bitmap_select(s: int, seq: List[FrozenSet[int]]) -> Generator[FrozenSet[int], None, None]:
"""Select elements of ``seq`` which are marked by the bitmap set ``s``.
E.g.:
>>> list(_bitmap_select(0b11010, ['A', 'B', 'C', 'D', 'E']))
['B', 'D', 'E']
"""
return (x for x, b in zip(seq, bin(s)[:1:-1]) if b == "1")
def _dp_calc_legs(g, all_tensors, s, inputs, i1_cut_i2_wo_output, i1_union_i2):
"""Calculates the effective outer indices of the intermediate tensor
corresponding to the subgraph ``s``.
"""
# set of remaining tensors (=g-s)
r = g & (all_tensors ^ s)
# indices of remaining indices:
if r:
i_r = frozenset.union(*_bitmap_select(r, inputs))
else:
i_r = frozenset()
# contraction indices:
i_contract = i1_cut_i2_wo_output - i_r
return i1_union_i2 - i_contract
def _dp_compare_flops(
cost1: int,
cost2: int,
i1_union_i2: Set[int],
size_dict: List[int],
cost_cap: int,
s1: int,
s2: int,
xn: Dict[int, Any],
g: int,
all_tensors: int,
inputs: List[FrozenSet[int]],
i1_cut_i2_wo_output: Set[int],
memory_limit: Optional[int],
contract1: Union[int, Tuple[int]],
contract2: Union[int, Tuple[int]],
) -> None:
"""Performs the inner comparison of whether the two subgraphs (the bitmaps
`s1` and `s2`) should be merged and added to the dynamic programming
search. Will skip for a number of reasons:
1. If the number of operations to form `s = s1 | s2` including previous
contractions is above the cost-cap.
2. If we've already found a better way of making `s`.
3. If the intermediate tensor corresponding to `s` is going to break the
memory limit.
"""
# TODO: Odd usage with an Iterable[int] to map a dict of type List[int]
cost = cost1 + cost2 + compute_size_by_dict(i1_union_i2, size_dict)
if cost <= cost_cap:
s = s1 | s2
if s not in xn or cost < xn[s][1]:
i = _dp_calc_legs(g, all_tensors, s, inputs, i1_cut_i2_wo_output, i1_union_i2)
mem = compute_size_by_dict(i, size_dict)
if memory_limit is None or mem <= memory_limit:
xn[s] = (i, cost, (contract1, contract2))
def _dp_compare_size(
cost1: int,
cost2: int,
i1_union_i2: Set[int],
size_dict: List[int],
cost_cap: int,
s1: int,
s2: int,
xn: Dict[int, Any],
g: int,
all_tensors: int,
inputs: List[FrozenSet[int]],
i1_cut_i2_wo_output: Set[int],
memory_limit: Optional[int],
contract1: Union[int, Tuple[int]],
contract2: Union[int, Tuple[int]],
) -> None:
"""Like `_dp_compare_flops` but sieves the potential contraction based
on the size of the intermediate tensor created, rather than the number of
operations, and so calculates that first.
"""
s = s1 | s2
i = _dp_calc_legs(g, all_tensors, s, inputs, i1_cut_i2_wo_output, i1_union_i2)
mem = compute_size_by_dict(i, size_dict)
cost = max(cost1, cost2, mem)
if cost <= cost_cap:
if s not in xn or cost < xn[s][1]:
if memory_limit is None or mem <= memory_limit:
xn[s] = (i, cost, (contract1, contract2))
def _dp_compare_write(
cost1: int,
cost2: int,
i1_union_i2: Set[int],
size_dict: List[int],
cost_cap: int,
s1: int,
s2: int,
xn: Dict[int, Any],
g: int,
all_tensors: int,
inputs: List[FrozenSet[int]],
i1_cut_i2_wo_output: Set[int],
memory_limit: Optional[int],
contract1: Union[int, Tuple[int]],
contract2: Union[int, Tuple[int]],
) -> None:
"""Like ``_dp_compare_flops`` but sieves the potential contraction based
on the total size of memory created, rather than the number of
operations, and so calculates that first.
"""
s = s1 | s2
i = _dp_calc_legs(g, all_tensors, s, inputs, i1_cut_i2_wo_output, i1_union_i2)
mem = compute_size_by_dict(i, size_dict)
cost = cost1 + cost2 + mem
if cost <= cost_cap:
if s not in xn or cost < xn[s][1]:
if memory_limit is None or mem <= memory_limit:
xn[s] = (i, cost, (contract1, contract2))
DEFAULT_COMBO_FACTOR = 64
def _dp_compare_combo(
cost1: int,
cost2: int,
i1_union_i2: Set[int],
size_dict: List[int],
cost_cap: int,
s1: int,
s2: int,
xn: Dict[int, Any],
g: int,
all_tensors: int,
inputs: List[FrozenSet[int]],
i1_cut_i2_wo_output: Set[int],
memory_limit: Optional[int],
contract1: Union[int, Tuple[int]],
contract2: Union[int, Tuple[int]],
factor: Union[int, float] = DEFAULT_COMBO_FACTOR,
combine: Callable = sum,
) -> None:
"""Like ``_dp_compare_flops`` but sieves the potential contraction based
on some combination of both the flops and size,.
"""
s = s1 | s2
i = _dp_calc_legs(g, all_tensors, s, inputs, i1_cut_i2_wo_output, i1_union_i2)
mem = compute_size_by_dict(i, size_dict)
f = compute_size_by_dict(i1_union_i2, size_dict)
cost = cost1 + cost2 + combine((f, factor * mem))
if cost <= cost_cap:
if s not in xn or cost < xn[s][1]:
if memory_limit is None or mem <= memory_limit:
xn[s] = (i, cost, (contract1, contract2))
minimize_finder = re.compile(r"(flops|size|write|combo|limit)-*(\d*)")
@functools.lru_cache(128)
def _parse_minimize(minimize: Union[str, Callable]) -> Tuple[Callable, Union[int, float]]:
"""This works out what local scoring function to use for the dp algorithm
as well as a `naive_scale` to account for the memory_limit checks.
"""
if minimize == "flops":
return _dp_compare_flops, 1
elif minimize == "size":
return _dp_compare_size, 1
elif minimize == "write":
return _dp_compare_write, 1
elif callable(minimize):
# default to naive_scale=inf for this and remaining options
# as otherwise memory_limit check can cause problems
return minimize, float("inf")
# parse out a customized value for the combination factor
match = minimize_finder.fullmatch(minimize)
if match is None:
raise ValueError(f"Couldn't parse `minimize` value: {minimize}.")
minimize, custom_factor = match.groups()
factor = float(custom_factor) if custom_factor else DEFAULT_COMBO_FACTOR
if minimize == "combo":
return functools.partial(_dp_compare_combo, factor=factor, combine=sum), float("inf")
elif minimize == "limit":
return functools.partial(_dp_compare_combo, factor=factor, combine=max), float("inf")
else:
raise ValueError(f"Couldn't parse `minimize` value: {minimize}.")
def simple_tree_tuple(seq: Sequence[Tuple[int, ...]]) -> Tuple[Any, ...]:
"""Make a simple left to right binary tree out of iterable `seq`.
```python
tuple_nest([1, 2, 3, 4])
#> (((1, 2), 3), 4)
```
"""
return functools.reduce(lambda x, y: (x, y), seq)
def _dp_parse_out_single_term_ops(
inputs: List[FrozenSet[int]], all_inds: Tuple[str, ...], ind_counts: CounterType[str]
) -> Tuple[List[FrozenSet[int]], List[Tuple[int]], List[Union[int, Tuple[int]]]]:
"""Take `inputs` and parse for single term index operations, i.e. where
an index appears on one tensor and nowhere else.
If a term is completely reduced to a scalar in this way it can be removed
to `inputs_done`. If only some indices can be summed then add a 'single
term contraction' that will perform this summation.
"""
i_single = frozenset(i for i, c in enumerate(all_inds) if ind_counts[c] == 1)
inputs_parsed: List[FrozenSet[int]] = []
inputs_done: List[Tuple[int]] = []
inputs_contractions: List[Union[int, Tuple[int]]] = []
for j, i in enumerate(inputs):
i_reduced = i - i_single
if (not i_reduced) and (len(i) > 0):
# input reduced to scalar already - remove
inputs_done.append((j,))
else:
# if the input has any index reductions, add single contraction
inputs_parsed.append(i_reduced)
inputs_contractions.append((j,) if i_reduced != i else j)
return inputs_parsed, inputs_done, inputs_contractions
class DynamicProgramming(PathOptimizer):
"""Finds the optimal path of pairwise contractions without intermediate outer
products based a dynamic programming approach presented in
Phys. Rev. E 90, 033315 (2014) (the corresponding preprint is publicly
available at https://arxiv.org/abs/1304.6112). This method is especially
well-suited in the area of tensor network states, where it usually
outperforms all the other optimization strategies.
This algorithm shows exponential scaling with the number of inputs
in the worst case scenario (see example below). If the graph to be
contracted consists of disconnected subgraphs, the algorithm scales
linearly in the number of disconnected subgraphs and only exponentially
with the number of inputs per subgraph.
Parameters:
minimize: What to minimize:
- 'flops' - minimize the number of flops
- 'size' - minimize the size of the largest intermediate
- 'write' - minimize the size of all intermediate tensors
- 'combo' - minimize `flops + alpha * write` summed over intermediates, a default ratio of alpha=64
is used, or it can be customized with `f'combo-{alpha}'`
- 'limit' - minimize `max(flops, alpha * write)` summed over intermediates, a default ratio of alpha=64
is used, or it can be customized with `f'limit-{alpha}'`
- callable - a custom local cost function
cost_cap: How to implement cost-capping:
- True - iteratively increase the cost-cap
- False - implement no cost-cap at all
- int - use explicit cost cap
search_outer: In rare circumstances the optimal contraction may involve an outer
product, this option allows searching such contractions but may well
slow down the path finding considerably on all but very small graphs.
"""
def __init__(self, minimize: str = "flops", cost_cap: Union[bool, int] = True, search_outer: bool = False) -> None:
self.minimize = minimize
self.search_outer = search_outer
self.cost_cap = cost_cap
def __call__(
self,
inputs_: List[ArrayIndexType],
output_: ArrayIndexType,
size_dict_: Dict[str, int],
memory_limit_: Optional[int] = None,
) -> PathType:
"""Parameters:
inputs_: List of sets that represent the lhs side of the einsum subscript
output_: Set that represents the rhs side of the overall einsum subscript
size_dict_: Dictionary of index sizes
memory_limit_: The maximum number of elements in a temporary array.
Returns:
path: The contraction order (a list of tuples of ints).
Examples:
```python
n_in = 3 # exponential scaling
n_out = 2 # linear scaling
s = dict()
i_all = []
for _ in range(n_out):
i = [set() for _ in range(n_in)]
for j in range(n_in):
for k in range(j+1, n_in):
c = oe.get_symbol(len(s))
i[j].add(c)
i[k].add(c)
s[c] = 2
i_all.extend(i)
o = DynamicProgramming()
o(i_all, set(), s)
#> [(1, 2), (0, 4), (1, 2), (0, 2), (0, 1)]
```
"""
_check_contraction, naive_scale = _parse_minimize(self.minimize)
_check_outer = (lambda x: True) if self.search_outer else (lambda x: x)
ind_counts = Counter(itertools.chain(*inputs_, output_))
all_inds = tuple(ind_counts)
# convert all indices to integers (makes set operations ~10 % faster)
symbol2int = {c: j for j, c in enumerate(all_inds)}
inputs = [frozenset(symbol2int[c] for c in i) for i in inputs_]
output = frozenset(symbol2int[c] for c in output_)
size_dict_canonical = {symbol2int[c]: v for c, v in size_dict_.items() if c in symbol2int}
size_dict = [size_dict_canonical[j] for j in range(len(size_dict_canonical))]
naive_cost = naive_scale * len(inputs) * functools.reduce(operator.mul, size_dict, 1)
inputs, inputs_done, inputs_contractions = _dp_parse_out_single_term_ops(inputs, all_inds, ind_counts)
if not inputs:
# nothing left to do after single axis reductions!
return _tree_to_sequence(simple_tree_tuple(inputs_done))
# a list of all necessary contraction expressions for each of the
# disconnected subgraphs and their size
subgraph_contractions = inputs_done
subgraph_contractions_size = [1] * len(inputs_done)
if self.search_outer:
# optimize everything together if we are considering outer products
subgraphs = [frozenset(range(len(inputs)))]
else:
subgraphs = _find_disconnected_subgraphs(inputs, output)
# the bitmap set of all tensors is computed as it is needed to
# compute set differences: s1 - s2 transforms into
# s1 & (all_tensors ^ s2)
all_tensors = (1 << len(inputs)) - 1
for g in subgraphs:
# dynamic programming approach to compute x[n] for subgraph g;
# x[n][set of n tensors] = (indices, cost, contraction)
# the set of n tensors is represented by a bitmap: if bit j is 1,
# tensor j is in the set, e.g. 0b100101 = {0,2,5}; set unions
# (intersections) can then be computed by bitwise or (and);
x: List[Any] = [None] * 2 + [{} for j in range(len(g) - 1)]
x[1] = {1 << j: (inputs[j], 0, inputs_contractions[j]) for j in g}
# convert set of tensors g to a bitmap set:
bitmap_g = functools.reduce(lambda x, y: x | y, (1 << j for j in g))
# try to find contraction with cost <= cost_cap and increase
# cost_cap successively if no such contraction is found;
# this is a major performance improvement; start with product of
# output index dimensions as initial cost_cap
subgraph_inds = frozenset.union(*_bitmap_select(bitmap_g, inputs))
if self.cost_cap is True:
cost_cap = compute_size_by_dict(subgraph_inds & output, size_dict)
elif self.cost_cap is False:
cost_cap = float("inf") # type: ignore
else:
cost_cap = self.cost_cap
# set the factor to increase the cost by each iteration (ensure > 1)
if len(subgraph_inds) == 0:
cost_increment = 2
else:
cost_increment = max(min(map(size_dict.__getitem__, subgraph_inds)), 2)
while len(x[-1]) == 0:
for n in range(2, len(x[1]) + 1):
xn = x[n]
# try to combine solutions from x[m] and x[n-m]
for m in range(1, n // 2 + 1):
for s1, (i1, cost1, contract1) in x[m].items():
for s2, (i2, cost2, contract2) in x[n - m].items():
# can only merge if s1 and s2 are disjoint
# and avoid e.g. s1={0}, s2={1} and s1={1}, s2={0}
if (not s1 & s2) and (m != n - m or s1 < s2):
i1_cut_i2_wo_output = (i1 & i2) - output
# maybe ignore outer products:
if _check_outer(i1_cut_i2_wo_output):
i1_union_i2 = i1 | i2
_check_contraction(
cost1,
cost2,
i1_union_i2,
size_dict,
cost_cap,
s1,
s2,
xn,
bitmap_g,
all_tensors,
inputs,
i1_cut_i2_wo_output,
memory_limit_,
contract1,
contract2,
)
if (cost_cap > naive_cost) and (len(x[-1]) == 0):
raise RuntimeError("No contraction found for given `memory_limit`.")
# increase cost cap for next iteration:
cost_cap = cost_increment * cost_cap
i, cost, contraction = list(x[-1].values())[0]
subgraph_contractions.append(contraction)
subgraph_contractions_size.append(compute_size_by_dict(i, size_dict))
# sort the subgraph contractions by the size of the subgraphs in
# ascending order (will give the cheapest contractions); note that
# outer products should be performed pairwise (to use BLAS functions)
subgraph_contractions = [
subgraph_contractions[j]
for j in sorted(
range(len(subgraph_contractions_size)),
key=subgraph_contractions_size.__getitem__,
)
]
# build the final contraction tree
tree = simple_tree_tuple(subgraph_contractions)
return _tree_to_sequence(tree)
def dynamic_programming(
inputs: List[ArrayIndexType],
output: ArrayIndexType,
size_dict: Dict[str, int],
memory_limit: Optional[int] = None,
**kwargs: Any,
) -> PathType:
optimizer = DynamicProgramming(**kwargs)
return optimizer(inputs, output, size_dict, memory_limit)
_AUTO_CHOICES = {}
for i in range(1, 5):
_AUTO_CHOICES[i] = optimal
for i in range(5, 7):
_AUTO_CHOICES[i] = branch_all
for i in range(7, 9):
_AUTO_CHOICES[i] = branch_2
for i in range(9, 15):
_AUTO_CHOICES[i] = branch_1
def auto(
inputs: List[ArrayIndexType],
output: ArrayIndexType,
size_dict: Dict[str, int],
memory_limit: Optional[int] = None,
) -> PathType:
"""Finds the contraction path by automatically choosing the method based on
how many input arguments there are.
"""
return _AUTO_CHOICES.get(len(inputs), greedy)(inputs, output, size_dict, memory_limit)
_AUTO_HQ_CHOICES = {}
for i in range(1, 6):
_AUTO_HQ_CHOICES[i] = optimal
for i in range(6, 17):
_AUTO_HQ_CHOICES[i] = dynamic_programming
def auto_hq(
inputs: List[ArrayIndexType],
output: ArrayIndexType,
size_dict: Dict[str, int],
memory_limit: Optional[int] = None,
) -> PathType:
"""Finds the contraction path by automatically choosing the method based on
how many input arguments there are, but targeting a more generous
amount of search time than ``'auto'``.
"""
from opt_einsum.path_random import random_greedy_128
return _AUTO_HQ_CHOICES.get(len(inputs), random_greedy_128)(inputs, output, size_dict, memory_limit)
_PATH_OPTIONS: Dict[str, PathSearchFunctionType] = {
"auto": auto,
"auto-hq": auto_hq,
"optimal": optimal,
"branch-all": branch_all,
"branch-2": branch_2,
"branch-1": branch_1,
"greedy": greedy,
"eager": greedy,
"opportunistic": greedy,
"dp": dynamic_programming,
"dynamic-programming": dynamic_programming,
}
def register_path_fn(name: str, fn: PathSearchFunctionType) -> None:
"""Add path finding function ``fn`` as an option with ``name``."""
if name in _PATH_OPTIONS:
raise KeyError(f"Path optimizer '{name}' already exists.")
_PATH_OPTIONS[name.lower()] = fn
def get_path_fn(path_type: str) -> PathSearchFunctionType:
"""Get the correct path finding function from str ``path_type``."""
path_type = path_type.lower()
if path_type not in _PATH_OPTIONS:
raise KeyError(f"Path optimizer '{path_type}' not found, valid options are {set(_PATH_OPTIONS.keys())}.")
return _PATH_OPTIONS[path_type]
|