1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
"""Testing routines for opt_einsum."""
import random
from typing import Any, Dict, List, Literal, Optional, Tuple, Union, overload
import pytest
from opt_einsum.parser import get_symbol
from opt_einsum.typing import ArrayType, PathType, TensorShapeType
_valid_chars = "abcdefghijklmopqABC"
_sizes = [2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3, 2, 5, 7, 4, 3, 2, 3, 4]
_default_dim_dict = dict(zip(_valid_chars, _sizes))
def build_shapes(string: str, dimension_dict: Optional[Dict[str, int]] = None) -> Tuple[TensorShapeType, ...]:
"""Builds random tensor shapes for testing.
Parameters:
string: List of tensor strings to build
dimension_dict: Dictionary of index sizes, defaults to indices size of 2-7
Returns:
The resulting shapes.
Examples:
```python
>>> shapes = build_shapes('abbc', {'a': 2, 'b':3, 'c':5})
>>> shapes
[(2, 3), (3, 3, 5), (5,)]
```
"""
if dimension_dict is None:
dimension_dict = _default_dim_dict
shapes = []
terms = string.split("->")[0].split(",")
for term in terms:
dims = [dimension_dict[x] for x in term]
shapes.append(tuple(dims))
return tuple(shapes)
def build_views(
string: str, dimension_dict: Optional[Dict[str, int]] = None, array_function: Optional[Any] = None
) -> Tuple[ArrayType]:
"""Builds random numpy arrays for testing.
Parameters:
string: List of tensor strings to build
dimension_dict: Dictionary of index _sizes
array_function: Function to build the arrays, defaults to np.random.rand
Returns:
The resulting views.
Examples:
```python
>>> view = build_views('abbc', {'a': 2, 'b':3, 'c':5})
>>> view[0].shape
(2, 3, 3, 5)
```
"""
if array_function is None:
np = pytest.importorskip("numpy")
array_function = np.random.rand
views = []
for shape in build_shapes(string, dimension_dict=dimension_dict):
if shape:
views.append(array_function(*shape))
else:
views.append(random.random())
return tuple(views)
@overload
def rand_equation(
n: int,
regularity: int,
n_out: int = ...,
d_min: int = ...,
d_max: int = ...,
seed: Optional[int] = ...,
global_dim: bool = ...,
*,
return_size_dict: Literal[True],
) -> Tuple[str, PathType, Dict[str, int]]: ...
@overload
def rand_equation(
n: int,
regularity: int,
n_out: int = ...,
d_min: int = ...,
d_max: int = ...,
seed: Optional[int] = ...,
global_dim: bool = ...,
return_size_dict: Literal[False] = ...,
) -> Tuple[str, PathType]: ...
def rand_equation(
n: int,
regularity: int,
n_out: int = 0,
d_min: int = 2,
d_max: int = 9,
seed: Optional[int] = None,
global_dim: bool = False,
return_size_dict: bool = False,
) -> Union[Tuple[str, PathType, Dict[str, int]], Tuple[str, PathType]]:
"""Generate a random contraction and shapes.
Parameters:
n: Number of array arguments.
regularity: 'Regularity' of the contraction graph. This essentially determines how
many indices each tensor shares with others on average.
n_out: Number of output indices (i.e. the number of non-contracted indices).
Defaults to 0, i.e., a contraction resulting in a scalar.
d_min: Minimum dimension size.
d_max: Maximum dimension size.
seed: If not None, seed numpy's random generator with this.
global_dim: Add a global, 'broadcast', dimension to every operand.
return_size_dict: Return the mapping of indices to sizes.
Returns:
eq: The equation string.
shapes: The array shapes.
size_dict: The dict of index sizes, only returned if ``return_size_dict=True``.
Examples:
```python
>>> eq, shapes = rand_equation(n=10, regularity=4, n_out=5, seed=42)
>>> eq
'oyeqn,tmaq,skpo,vg,hxui,n,fwxmr,hitplcj,kudlgfv,rywjsb->cebda'
>>> shapes
[(9, 5, 4, 5, 4),
(4, 4, 8, 5),
(9, 4, 6, 9),
(6, 6),
(6, 9, 7, 8),
(4,),
(9, 3, 9, 4, 9),
(6, 8, 4, 6, 8, 6, 3),
(4, 7, 8, 8, 6, 9, 6),
(9, 5, 3, 3, 9, 5)]
```
"""
np = pytest.importorskip("numpy")
if seed is not None:
np.random.seed(seed)
# total number of indices
num_inds = n * regularity // 2 + n_out
inputs = ["" for _ in range(n)]
output = []
size_dict = {get_symbol(i): np.random.randint(d_min, d_max + 1) for i in range(num_inds)}
# generate a list of indices to place either once or twice
def gen():
for i, ix in enumerate(size_dict):
# generate an outer index
if i < n_out:
output.append(ix)
yield ix
# generate a bond
else:
yield ix
yield ix
# add the indices randomly to the inputs
for i, ix in enumerate(np.random.permutation(list(gen()))):
# make sure all inputs have at least one index
if i < n:
inputs[i] += ix
else:
# don't add any traces on same op
where = np.random.randint(0, n)
while ix in inputs[where]:
where = np.random.randint(0, n)
inputs[where] += ix
# possibly add the same global dim to every arg
if global_dim:
gdim = get_symbol(num_inds)
size_dict[gdim] = np.random.randint(d_min, d_max + 1)
for i in range(n):
inputs[i] += gdim
output += gdim
# randomly transpose the output indices and form equation
output = "".join(np.random.permutation(output)) # type: ignore
eq = "{}->{}".format(",".join(inputs), output)
# make the shapes
shapes = [tuple(size_dict[ix] for ix in op) for op in inputs]
ret = (eq, shapes)
if return_size_dict:
return ret + (size_dict,)
else:
return ret
def build_arrays_from_tuples(path: PathType) -> List[Any]:
"""Build random numpy arrays from a path.
Parameters:
path: The path to build arrays from.
Returns:
The resulting arrays.
"""
np = pytest.importorskip("numpy")
return [np.random.rand(*x) for x in path]
|