1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
|
from typing import Set
import pytest
from opt_einsum import backends, contract, contract_expression, sharing
from opt_einsum.contract import ArrayShaped, infer_backend, parse_backend
from opt_einsum.testing import build_views
try:
# needed so tensorflow doesn't allocate all gpu mem
try:
from tensorflow import ConfigProto # type: ignore
from tensorflow import Session as TFSession
except ImportError:
from tensorflow.compat.v1 import ConfigProto # type: ignore
from tensorflow.compat.v1 import Session as TFSession
_TF_CONFIG = ConfigProto()
_TF_CONFIG.gpu_options.allow_growth = True
except ImportError:
pass
tests = [
"ab,bc->ca",
"abc,bcd,dea",
"abc,def->fedcba",
"abc,bcd,df->fa",
# test 'prefer einsum' ops
"ijk,ikj",
"i,j->ij",
"ijk,k->ij",
"AB,BC->CA",
]
@pytest.mark.parametrize("string", tests)
def test_tensorflow(string: str) -> None:
np = pytest.importorskip("numpy")
pytest.importorskip("tensorflow")
views = build_views(string)
ein = contract(string, *views, optimize=False, use_blas=False)
opt = np.empty_like(ein)
shps = [v.shape for v in views]
expr = contract_expression(string, *shps, optimize=True)
sess = TFSession(config=_TF_CONFIG)
with sess.as_default():
expr(*views, backend="tensorflow", out=opt)
sess.close()
assert np.allclose(ein, opt)
# test non-conversion mode
tensorflow_views = [backends.to_tensorflow(view) for view in views]
expr(*tensorflow_views)
@pytest.mark.parametrize("constants", [{0, 1}, {0, 2}, {1, 2}])
def test_tensorflow_with_constants(constants: Set[int]) -> None:
np = pytest.importorskip("numpy")
tf = pytest.importorskip("tensorflow")
eq = "ij,jk,kl->li"
shapes = (2, 3), (3, 4), (4, 5)
(non_const,) = {0, 1, 2} - constants
ops = [np.random.rand(*shp) if i in constants else shp for i, shp in enumerate(shapes)]
var = np.random.rand(*shapes[non_const])
res_exp = contract(eq, *(ops[i] if i in constants else var for i in range(3)))
expr = contract_expression(eq, *ops, constants=constants)
# check tensorflow
with TFSession(config=_TF_CONFIG).as_default():
res_got = expr(var, backend="tensorflow")
assert all(
array is None or infer_backend(array) == "tensorflow" for array in expr._evaluated_constants["tensorflow"]
)
assert np.allclose(res_exp, res_got)
# check can call with numpy still
res_got2 = expr(var, backend="numpy")
assert np.allclose(res_exp, res_got2)
# check tensorflow call returns tensorflow still
res_got3 = expr(backends.to_tensorflow(var))
assert isinstance(res_got3, tf.Tensor)
@pytest.mark.parametrize("string", tests)
def test_tensorflow_with_sharing(string: str) -> None:
np = pytest.importorskip("numpy")
tf = pytest.importorskip("tensorflow")
views = build_views(string)
ein = contract(string, *views, optimize=False, use_blas=False)
shps = [v.shape for v in views]
expr = contract_expression(string, *shps, optimize=True)
sess = TFSession(config=_TF_CONFIG)
with sess.as_default(), sharing.shared_intermediates() as cache:
tfl1 = expr(*views, backend="tensorflow")
assert sharing.get_sharing_cache() is cache
cache_sz = len(cache)
assert cache_sz > 0
tfl2 = expr(*views, backend="tensorflow")
assert len(cache) == cache_sz
assert all(isinstance(t, tf.Tensor) for t in cache.values())
assert np.allclose(ein, tfl1)
assert np.allclose(ein, tfl2)
@pytest.mark.parametrize("string", tests)
def test_theano(string: str) -> None:
np = pytest.importorskip("numpy")
theano = pytest.importorskip("theano")
views = build_views(string)
ein = contract(string, *views, optimize=False, use_blas=False)
shps = [v.shape for v in views]
expr = contract_expression(string, *shps, optimize=True)
opt = expr(*views, backend="theano")
assert np.allclose(ein, opt)
# test non-conversion mode
theano_views = [backends.to_theano(view) for view in views]
theano_opt = expr(*theano_views)
assert isinstance(theano_opt, theano.tensor.TensorVariable)
@pytest.mark.parametrize("constants", [{0, 1}, {0, 2}, {1, 2}])
def test_theano_with_constants(constants: Set[int]) -> None:
np = pytest.importorskip("numpy")
theano = pytest.importorskip("theano")
eq = "ij,jk,kl->li"
shapes = (2, 3), (3, 4), (4, 5)
(non_const,) = {0, 1, 2} - constants
ops = [np.random.rand(*shp) if i in constants else shp for i, shp in enumerate(shapes)]
var = np.random.rand(*shapes[non_const])
res_exp = contract(eq, *(ops[i] if i in constants else var for i in range(3)))
expr = contract_expression(eq, *ops, constants=constants)
# check theano
res_got = expr(var, backend="theano")
assert all(array is None or infer_backend(array) == "theano" for array in expr._evaluated_constants["theano"])
assert np.allclose(res_exp, res_got)
# check can call with numpy still
res_got2 = expr(var, backend="numpy")
assert np.allclose(res_exp, res_got2)
# check theano call returns theano still
res_got3 = expr(backends.to_theano(var))
assert isinstance(res_got3, theano.tensor.TensorVariable)
@pytest.mark.parametrize("string", tests)
def test_theano_with_sharing(string: str) -> None:
np = pytest.importorskip("numpy")
theano = pytest.importorskip("theano")
views = build_views(string)
ein = contract(string, *views, optimize=False, use_blas=False)
shps = [v.shape for v in views]
expr = contract_expression(string, *shps, optimize=True)
with sharing.shared_intermediates() as cache:
thn1 = expr(*views, backend="theano")
assert sharing.get_sharing_cache() is cache
cache_sz = len(cache)
assert cache_sz > 0
thn2 = expr(*views, backend="theano")
assert len(cache) == cache_sz
assert all(isinstance(t, theano.tensor.TensorVariable) for t in cache.values())
assert np.allclose(ein, thn1)
assert np.allclose(ein, thn2)
@pytest.mark.parametrize("string", tests)
def test_cupy(string: str) -> None:
np = pytest.importorskip("numpy") # pragma: no cover
cupy = pytest.importorskip("cupy")
views = build_views(string)
ein = contract(string, *views, optimize=False, use_blas=False)
shps = [v.shape for v in views]
expr = contract_expression(string, *shps, optimize=True)
opt = expr(*views, backend="cupy")
assert np.allclose(ein, opt)
# test non-conversion mode
cupy_views = [backends.to_cupy(view) for view in views]
cupy_opt = expr(*cupy_views)
assert isinstance(cupy_opt, cupy.ndarray)
assert np.allclose(ein, cupy.asnumpy(cupy_opt))
@pytest.mark.parametrize("constants", [{0, 1}, {0, 2}, {1, 2}])
def test_cupy_with_constants(constants: Set[int]) -> None:
np = pytest.importorskip("numpy") # pragma: no cover
cupy = pytest.importorskip("cupy")
eq = "ij,jk,kl->li"
shapes = (2, 3), (3, 4), (4, 5)
(non_const,) = {0, 1, 2} - constants
ops = [np.random.rand(*shp) if i in constants else shp for i, shp in enumerate(shapes)]
var = np.random.rand(*shapes[non_const])
res_exp = contract(eq, *(ops[i] if i in constants else var for i in range(3)))
expr = contract_expression(eq, *ops, constants=constants)
# check cupy
res_got = expr(var, backend="cupy")
# check cupy versions of constants exist
assert all(array is None or infer_backend(array) == "cupy" for array in expr._evaluated_constants["cupy"])
assert np.allclose(res_exp, res_got)
# check can call with numpy still
res_got2 = expr(var, backend="numpy")
assert np.allclose(res_exp, res_got2)
# check cupy call returns cupy still
res_got3 = expr(cupy.asarray(var))
assert isinstance(res_got3, cupy.ndarray)
assert np.allclose(res_exp, res_got3.get())
@pytest.mark.parametrize("string", tests)
def test_jax(string: str) -> None:
np = pytest.importorskip("numpy") # pragma: no cover
pytest.importorskip("jax")
views = build_views(string)
ein = contract(string, *views, optimize=False, use_blas=False)
shps = [v.shape for v in views]
expr = contract_expression(string, *shps, optimize=True)
opt = expr(*views, backend="jax")
assert np.allclose(ein, opt)
assert isinstance(opt, np.ndarray)
@pytest.mark.parametrize("constants", [{0, 1}, {0, 2}, {1, 2}])
def test_jax_with_constants(constants: Set[int]) -> None:
jax = pytest.importorskip("jax")
key = jax.random.PRNGKey(42)
eq = "ij,jk,kl->li"
shapes = (2, 3), (3, 4), (4, 5)
(non_const,) = {0, 1, 2} - constants
ops = [jax.random.uniform(key, shp) if i in constants else shp for i, shp in enumerate(shapes)]
var = jax.random.uniform(key, shapes[non_const])
res_exp = contract(eq, *(ops[i] if i in constants else var for i in range(3)))
expr = contract_expression(eq, *ops, constants=constants)
# check jax
res_got = expr(var, backend="jax")
# check jax versions of constants exist
assert all(array is None or infer_backend(array).startswith("jax") for array in expr._evaluated_constants["jax"])
assert jax.numpy.sum(jax.numpy.abs(res_exp - res_got)) < 1e-8
def test_jax_jit_gradient() -> None:
jax = pytest.importorskip("jax")
key = jax.random.PRNGKey(42)
eq = "ij,jk,kl->"
shapes = (2, 3), (3, 4), (4, 2)
views = [jax.random.uniform(key, s) for s in shapes]
expr = contract_expression(eq, *shapes)
x0 = expr(*views)
jit_expr = jax.jit(expr)
x1 = jit_expr(*views).item()
assert x1 == pytest.approx(x0, rel=1e-5)
# jax only takes gradient w.r.t first argument
grad_expr = jax.jit(jax.grad(lambda views: expr(*views)))
view_grads = grad_expr(views)
assert all(v1.shape == v2.shape for v1, v2 in zip(views, view_grads))
# taking a step along the gradient should reduce our 'loss'
new_views = [v - 0.001 * dv for v, dv in zip(views, view_grads)]
x2 = jit_expr(*new_views).item()
assert x2 < x1
def test_autograd_gradient() -> None:
np = pytest.importorskip("numpy")
autograd = pytest.importorskip("autograd")
eq = "ij,jk,kl->"
shapes = (2, 3), (3, 4), (4, 2)
views = [np.random.randn(*s) for s in shapes]
expr = contract_expression(eq, *shapes)
x0 = expr(*views)
# autograd only takes gradient w.r.t first argument
grad_expr = autograd.grad(lambda views: expr(*views))
view_grads = grad_expr(views)
assert all(v1.shape == v2.shape for v1, v2 in zip(views, view_grads))
# taking a step along the gradient should reduce our 'loss'
new_views = [v - 0.001 * dv for v, dv in zip(views, view_grads)]
x1 = expr(*new_views)
assert x1 < x0
@pytest.mark.parametrize("string", tests)
def test_dask(string: str) -> None:
np = pytest.importorskip("numpy")
da = pytest.importorskip("dask.array")
views = build_views(string)
ein = contract(string, *views, optimize=False, use_blas=False)
shps = [v.shape for v in views]
expr = contract_expression(string, *shps, optimize=True)
# test non-conversion mode
da_views = [da.from_array(x, chunks=(2)) for x in views]
da_opt = expr(*da_views)
# check type is maintained when not using numpy arrays
assert isinstance(da_opt, da.Array)
assert np.allclose(ein, np.array(da_opt))
# try raw contract
da_opt = contract(string, *da_views)
assert isinstance(da_opt, da.Array)
assert np.allclose(ein, np.array(da_opt))
@pytest.mark.parametrize("string", tests)
def test_sparse(string: str) -> None:
np = pytest.importorskip("numpy")
sparse = pytest.importorskip("sparse")
views = build_views(string)
# sparsify views so they don't become dense during contraction
for view in views:
np.random.seed(42)
mask = np.random.choice([False, True], view.shape, True, [0.05, 0.95])
view[mask] = 0
ein = contract(string, *views, optimize=False, use_blas=False)
shps = [v.shape for v in views]
expr = contract_expression(string, *shps, optimize=True)
# test non-conversion mode
sparse_views = [sparse.COO.from_numpy(x) for x in views]
sparse_opt = expr(*sparse_views)
# If the expression returns a float, stop here
if not ein.shape:
assert pytest.approx(ein) == 0.0
return
# check type is maintained when not using numpy arrays
assert isinstance(sparse_opt, sparse.COO)
assert np.allclose(ein, sparse_opt.todense())
# try raw contract
sparse_opt = contract(string, *sparse_views)
assert isinstance(sparse_opt, sparse.COO)
assert np.allclose(ein, sparse_opt.todense())
@pytest.mark.parametrize("string", tests)
def test_torch(string: str) -> None:
torch = pytest.importorskip("torch")
views = build_views(string, array_function=torch.rand)
ein = torch.einsum(string, *views)
shps = [v.shape for v in views]
expr = contract_expression(string, *shps, optimize=True)
opt = expr(*views, backend="torch")
torch.testing.assert_close(ein, opt)
# test non-conversion mode
torch_views = [backends.to_torch(view) for view in views]
torch_opt = expr(*torch_views)
assert isinstance(torch_opt, torch.Tensor)
torch.testing.assert_close(ein, torch_opt)
@pytest.mark.parametrize("constants", [{0, 1}, {0, 2}, {1, 2}])
def test_torch_with_constants(constants: Set[int]) -> None:
torch = pytest.importorskip("torch")
eq = "ij,jk,kl->li"
shapes = (2, 3), (3, 4), (4, 5)
(non_const,) = {0, 1, 2} - constants
ops = [torch.rand(*shp) if i in constants else shp for i, shp in enumerate(shapes)]
var = torch.rand(*shapes[non_const])
res_exp = contract(eq, *(ops[i] if i in constants else var for i in range(3)), backend="torch")
expr = contract_expression(eq, *ops, constants=constants)
# check torch
res_got = expr(var, backend="torch")
assert all(array is None or infer_backend(array) == "torch" for array in expr._evaluated_constants["torch"])
torch.testing.assert_close(res_exp, res_got)
# check can call with numpy still
res_got2 = expr(var, backend="torch")
torch.testing.assert_close(res_exp, res_got2)
# check torch call returns torch still
res_got3 = expr(backends.to_torch(var))
assert isinstance(res_got3, torch.Tensor)
torch.testing.assert_close(res_exp, res_got3)
def test_auto_backend_custom_array_no_tensordot() -> None:
x = ArrayShaped((1, 2, 3))
# Shaped is an array-like object defined by opt_einsum - which has no TDOT
assert infer_backend(x) == "opt_einsum"
assert parse_backend([x], "auto") == "numpy"
assert parse_backend([x], None) == "numpy"
@pytest.mark.parametrize("string", tests)
def test_object_arrays_backend(string: str) -> None:
np = pytest.importorskip("numpy")
views = build_views(string)
ein = contract(string, *views, optimize=False, use_blas=False)
assert ein.dtype != object
shps = [v.shape for v in views]
expr = contract_expression(string, *shps, optimize=True)
obj_views = [view.astype(object) for view in views]
# try raw contract
obj_opt = contract(string, *obj_views, backend="object")
assert obj_opt.dtype == object
assert np.allclose(ein, obj_opt.astype(float))
# test expression
obj_opt = expr(*obj_views, backend="object")
assert obj_opt.dtype == object
assert np.allclose(ein, obj_opt.astype(float))
|