File: test_paths.py

package info (click to toggle)
python-opt-einsum 3.4.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,772 kB
  • sloc: python: 4,124; makefile: 31; javascript: 15
file content (534 lines) | stat: -rw-r--r-- 19,461 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
"""
Tests the accuracy of the opt_einsum paths in addition to unit tests for
the various path helper functions.
"""

import itertools
from concurrent.futures import ProcessPoolExecutor
from typing import Any, Dict, List, Optional

import pytest

import opt_einsum as oe
from opt_einsum.testing import build_shapes, rand_equation
from opt_einsum.typing import ArrayIndexType, OptimizeKind, PathType, TensorShapeType

explicit_path_tests = {
    "GEMM1": (
        [set("abd"), set("ac"), set("bdc")],
        set(""),
        {"a": 1, "b": 2, "c": 3, "d": 4},
    ),
    "Inner1": (
        [set("abcd"), set("abc"), set("bc")],
        set(""),
        {"a": 5, "b": 2, "c": 3, "d": 4},
    ),
}

# note that these tests have no unique solution due to the chosen dimensions
path_edge_tests = [
    ["greedy", "eb,cb,fb->cef", ((0, 2), (0, 1))],
    ["branch-all", "eb,cb,fb->cef", ((0, 2), (0, 1))],
    ["branch-2", "eb,cb,fb->cef", ((0, 2), (0, 1))],
    ["optimal", "eb,cb,fb->cef", ((0, 2), (0, 1))],
    ["dp", "eb,cb,fb->cef", ((1, 2), (0, 1))],
    ["greedy", "dd,fb,be,cdb->cef", ((0, 3), (0, 1), (0, 1))],
    ["branch-all", "dd,fb,be,cdb->cef", ((0, 3), (0, 1), (0, 1))],
    ["branch-2", "dd,fb,be,cdb->cef", ((0, 3), (0, 1), (0, 1))],
    ["optimal", "dd,fb,be,cdb->cef", ((0, 3), (0, 1), (0, 1))],
    ["optimal", "dd,fb,be,cdb->cef", ((0, 3), (0, 1), (0, 1))],
    ["dp", "dd,fb,be,cdb->cef", ((0, 3), (0, 2), (0, 1))],
    ["greedy", "bca,cdb,dbf,afc->", ((1, 2), (0, 2), (0, 1))],
    ["branch-all", "bca,cdb,dbf,afc->", ((1, 2), (0, 2), (0, 1))],
    ["branch-2", "bca,cdb,dbf,afc->", ((1, 2), (0, 2), (0, 1))],
    ["optimal", "bca,cdb,dbf,afc->", ((1, 2), (0, 2), (0, 1))],
    ["dp", "bca,cdb,dbf,afc->", ((1, 2), (1, 2), (0, 1))],
    ["greedy", "dcc,fce,ea,dbf->ab", ((1, 2), (0, 1), (0, 1))],
    ["branch-all", "dcc,fce,ea,dbf->ab", ((1, 2), (0, 2), (0, 1))],
    ["branch-2", "dcc,fce,ea,dbf->ab", ((1, 2), (0, 2), (0, 1))],
    ["optimal", "dcc,fce,ea,dbf->ab", ((1, 2), (0, 2), (0, 1))],
    ["dp", "dcc,fce,ea,dbf->ab", ((1, 2), (0, 2), (0, 1))],
]

# note that these tests have no unique solution due to the chosen dimensions
path_scalar_tests = [
    [
        "a,->a",
        1,
    ],
    ["ab,->ab", 1],
    [",a,->a", 2],
    [",,a,->a", 3],
    [",,->", 2],
]


def check_path(test_output: PathType, benchmark: PathType, bypass: bool = False) -> bool:
    if not isinstance(test_output, list):
        return False

    if len(test_output) != len(benchmark):
        return False

    ret = True
    for pos in range(len(test_output)):
        ret &= isinstance(test_output[pos], tuple)
        ret &= test_output[pos] == list(benchmark)[pos]
    return ret


def assert_contract_order(func: Any, test_data: Any, max_size: int, benchmark: PathType) -> None:
    test_output = func(test_data[0], test_data[1], test_data[2], max_size)
    assert check_path(test_output, benchmark)


def test_size_by_dict() -> None:
    sizes_dict = {}
    for ind, val in zip("abcdez", [2, 5, 9, 11, 13, 0]):
        sizes_dict[ind] = val

    path_func = oe.helpers.compute_size_by_dict

    assert 1 == path_func("", sizes_dict)
    assert 2 == path_func("a", sizes_dict)
    assert 5 == path_func("b", sizes_dict)

    assert 0 == path_func("z", sizes_dict)
    assert 0 == path_func("az", sizes_dict)
    assert 0 == path_func("zbc", sizes_dict)

    assert 104 == path_func("aaae", sizes_dict)
    assert 12870 == path_func("abcde", sizes_dict)


def test_flop_cost() -> None:
    size_dict = {v: 10 for v in "abcdef"}

    # Loop over an array
    assert 10 == oe.helpers.flop_count("a", False, 1, size_dict)

    # Hadamard product (*)
    assert 10 == oe.helpers.flop_count("a", False, 2, size_dict)
    assert 100 == oe.helpers.flop_count("ab", False, 2, size_dict)

    # Inner product (+, *)
    assert 20 == oe.helpers.flop_count("a", True, 2, size_dict)
    assert 200 == oe.helpers.flop_count("ab", True, 2, size_dict)

    # Inner product x3 (+, *, *)
    assert 30 == oe.helpers.flop_count("a", True, 3, size_dict)

    # GEMM
    assert 2000 == oe.helpers.flop_count("abc", True, 2, size_dict)


def test_bad_path_option() -> None:
    with pytest.raises(KeyError):
        oe.contract("a,b,c", [1], [2], [3], optimize="optimall", shapes=True)  # type: ignore


def test_explicit_path() -> None:
    pytest.importorskip("numpy")
    x = oe.contract("a,b,c", [1], [2], [3], optimize=[(1, 2), (0, 1)])
    assert x.item() == 6


def test_path_optimal() -> None:
    test_func = oe.paths.optimal

    test_data = explicit_path_tests["GEMM1"]
    assert_contract_order(test_func, test_data, 5000, [(0, 2), (0, 1)])
    assert_contract_order(test_func, test_data, 0, [(0, 1, 2)])


def test_path_greedy() -> None:
    test_func = oe.paths.greedy

    test_data = explicit_path_tests["GEMM1"]
    assert_contract_order(test_func, test_data, 5000, [(0, 2), (0, 1)])
    assert_contract_order(test_func, test_data, 0, [(0, 1, 2)])


def test_memory_paths() -> None:
    expression = "abc,bdef,fghj,cem,mhk,ljk->adgl"

    views = build_shapes(expression)

    # Test tiny memory limit
    path_ret = oe.contract_path(expression, *views, optimize="optimal", memory_limit=5, shapes=True)
    assert check_path(path_ret[0], [(0, 1, 2, 3, 4, 5)])

    path_ret = oe.contract_path(expression, *views, optimize="greedy", memory_limit=5, shapes=True)
    assert check_path(path_ret[0], [(0, 1, 2, 3, 4, 5)])

    # Check the possibilities, greedy is capped
    path_ret = oe.contract_path(expression, *views, optimize="optimal", memory_limit=-1, shapes=True)
    assert check_path(path_ret[0], [(0, 3), (0, 4), (0, 2), (0, 2), (0, 1)])

    path_ret = oe.contract_path(expression, *views, optimize="greedy", memory_limit=-1, shapes=True)
    assert check_path(path_ret[0], [(0, 3), (0, 4), (0, 2), (0, 2), (0, 1)])


@pytest.mark.parametrize("alg,expression,order", path_edge_tests)
def test_path_edge_cases(alg: OptimizeKind, expression: str, order: PathType) -> None:
    views = build_shapes(expression)

    # Test tiny memory limit
    path_ret = oe.contract_path(expression, *views, optimize=alg, shapes=True)
    assert check_path(path_ret[0], order)


@pytest.mark.parametrize("expression,order", path_scalar_tests)
@pytest.mark.parametrize("alg", oe.paths._PATH_OPTIONS)
def test_path_scalar_cases(alg: OptimizeKind, expression: str, order: PathType) -> None:
    views = build_shapes(expression)

    # Test tiny memory limit
    path_ret = oe.contract_path(expression, *views, optimize=alg, shapes=True)
    # print(path_ret[0])
    assert len(path_ret[0]) == order


def test_optimal_edge_cases() -> None:
    # Edge test5
    expression = "a,ac,ab,ad,cd,bd,bc->"
    edge_test4 = build_shapes(expression, dimension_dict={"a": 20, "b": 20, "c": 20, "d": 20})
    path, _ = oe.contract_path(expression, *edge_test4, optimize="greedy", memory_limit="max_input", shapes=True)
    assert check_path(path, [(0, 1), (0, 1, 2, 3, 4, 5)])

    path, _ = oe.contract_path(expression, *edge_test4, optimize="optimal", memory_limit="max_input", shapes=True)
    assert check_path(path, [(0, 1), (0, 1, 2, 3, 4, 5)])


def test_greedy_edge_cases() -> None:
    expression = "abc,cfd,dbe,efa"
    dim_dict = {k: 20 for k in expression.replace(",", "")}
    tensors = build_shapes(expression, dimension_dict=dim_dict)

    path, _ = oe.contract_path(expression, *tensors, optimize="greedy", memory_limit="max_input", shapes=True)
    assert check_path(path, [(0, 1, 2, 3)])

    path, _ = oe.contract_path(expression, *tensors, optimize="greedy", memory_limit=-1, shapes=True)
    assert check_path(path, [(0, 1), (0, 2), (0, 1)])


def test_dp_edge_cases_dimension_1() -> None:
    eq = "nlp,nlq,pl->n"
    shapes = [(1, 1, 1), (1, 1, 1), (1, 1)]
    info = oe.contract_path(eq, *shapes, shapes=True, optimize="dp")[1]
    assert max(info.scale_list) == 3


def test_dp_edge_cases_all_singlet_indices() -> None:
    eq = "a,bcd,efg->"
    shapes = [(2,), (2, 2, 2), (2, 2, 2)]
    info = oe.contract_path(eq, *shapes, shapes=True, optimize="dp")[1]
    assert max(info.scale_list) == 3


def test_custom_dp_can_optimize_for_outer_products() -> None:
    eq = "a,b,abc->c"

    da, db, dc = 2, 2, 3
    shapes = [(da,), (db,), (da, db, dc)]

    opt1 = oe.DynamicProgramming(search_outer=False)
    opt2 = oe.DynamicProgramming(search_outer=True)

    info1 = oe.contract_path(eq, *shapes, shapes=True, optimize=opt1)[1]
    info2 = oe.contract_path(eq, *shapes, shapes=True, optimize=opt2)[1]

    assert info2.opt_cost < info1.opt_cost


def test_custom_dp_can_optimize_for_size() -> None:
    eq, shapes = rand_equation(10, 4, seed=43)

    opt1 = oe.DynamicProgramming(minimize="flops")
    opt2 = oe.DynamicProgramming(minimize="size")

    info1 = oe.contract_path(eq, *shapes, shapes=True, optimize=opt1)[1]
    info2 = oe.contract_path(eq, *shapes, shapes=True, optimize=opt2)[1]

    assert info1.opt_cost < info2.opt_cost
    assert info1.largest_intermediate > info2.largest_intermediate


def test_custom_dp_can_set_cost_cap() -> None:
    eq, shapes = rand_equation(5, 3, seed=42)
    opt1 = oe.DynamicProgramming(cost_cap=True)
    opt2 = oe.DynamicProgramming(cost_cap=False)
    opt3 = oe.DynamicProgramming(cost_cap=100)
    info1 = oe.contract_path(eq, *shapes, shapes=True, optimize=opt1)[1]
    info2 = oe.contract_path(eq, *shapes, shapes=True, optimize=opt2)[1]
    info3 = oe.contract_path(eq, *shapes, shapes=True, optimize=opt3)[1]
    assert info1.opt_cost == info2.opt_cost == info3.opt_cost


@pytest.mark.parametrize(
    "minimize,cost,width,path",
    [
        ("flops", 663054, 18900, [(4, 5), (2, 5), (2, 7), (5, 6), (1, 5), (1, 4), (0, 3), (0, 2), (0, 1)]),
        ("size", 1114440, 2016, [(2, 7), (3, 8), (3, 7), (2, 6), (1, 5), (1, 4), (1, 3), (1, 2), (0, 1)]),
        ("write", 983790, 2016, [(0, 8), (3, 4), (1, 4), (5, 6), (1, 5), (0, 4), (0, 3), (1, 2), (0, 1)]),
        ("combo", 973518, 2016, [(4, 5), (2, 5), (6, 7), (2, 6), (1, 5), (1, 4), (0, 3), (0, 2), (0, 1)]),
        ("limit", 983832, 2016, [(2, 7), (3, 4), (0, 4), (3, 6), (2, 5), (0, 4), (0, 3), (1, 2), (0, 1)]),
        ("combo-256", 983790, 2016, [(0, 8), (3, 4), (1, 4), (5, 6), (1, 5), (0, 4), (0, 3), (1, 2), (0, 1)]),
        ("limit-256", 983832, 2016, [(2, 7), (3, 4), (0, 4), (3, 6), (2, 5), (0, 4), (0, 3), (1, 2), (0, 1)]),
    ],
)
def test_custom_dp_can_set_minimize(minimize: str, cost: int, width: int, path: PathType) -> None:
    eq, shapes = rand_equation(10, 4, seed=43)
    opt = oe.DynamicProgramming(minimize=minimize)
    info = oe.contract_path(eq, *shapes, shapes=True, optimize=opt)[1]
    assert info.path == path
    assert info.opt_cost == cost
    assert info.largest_intermediate == width


def test_dp_errors_when_no_contractions_found() -> None:
    eq, shapes = rand_equation(10, 3, seed=42)

    # first get the actual minimum cost
    opt = oe.DynamicProgramming(minimize="size")
    _, info = oe.contract_path(eq, *shapes, shapes=True, optimize=opt)
    mincost = info.largest_intermediate

    # check we can still find it without minimizing size explicitly
    oe.contract_path(eq, *shapes, shapes=True, memory_limit=mincost, optimize="dp")

    # but check just below this threshold raises
    with pytest.raises(RuntimeError):
        oe.contract_path(eq, *shapes, shapes=True, memory_limit=mincost - 1, optimize="dp")


@pytest.mark.parametrize("optimize", ["greedy", "branch-2", "branch-all", "optimal", "dp"])
def test_can_optimize_outer_products(optimize: OptimizeKind) -> None:
    a, b, c = ((10, 10) for _ in range(3))
    d = (10, 2)

    assert oe.contract_path("ab,cd,ef,fg", a, b, c, d, optimize=optimize, shapes=True)[0] == [
        (2, 3),
        (0, 2),
        (0, 1),
    ]


@pytest.mark.parametrize("num_symbols", [2, 3, 26, 26 + 26, 256 - 140, 300])
def test_large_path(num_symbols: int) -> None:
    symbols = "".join(oe.get_symbol(i) for i in range(num_symbols))
    dimension_dict = dict(zip(symbols, itertools.cycle([2, 3, 4])))
    expression = ",".join(symbols[t : t + 2] for t in range(num_symbols - 1))
    tensors = build_shapes(expression, dimension_dict=dimension_dict)

    # Check that path construction does not crash
    oe.contract_path(expression, *tensors, optimize="greedy", shapes=True)


def test_custom_random_greedy() -> None:
    np = pytest.importorskip("numpy")

    eq, shapes = rand_equation(10, 4, seed=42)
    views = list(map(np.ones, shapes))

    with pytest.raises(ValueError):
        oe.RandomGreedy(minimize="something")

    optimizer = oe.RandomGreedy(max_repeats=10, minimize="flops")
    path, path_info = oe.contract_path(eq, *views, optimize=optimizer)

    assert len(optimizer.costs) == 10
    assert len(optimizer.sizes) == 10

    assert path == optimizer.path
    assert optimizer.best["flops"] == min(optimizer.costs)
    assert path_info.largest_intermediate == optimizer.best["size"]
    assert path_info.opt_cost == optimizer.best["flops"]

    # check can change settings and run again
    optimizer.temperature = 0.0
    optimizer.max_repeats = 6
    path, path_info = oe.contract_path(eq, *views, optimize=optimizer)

    assert len(optimizer.costs) == 16
    assert len(optimizer.sizes) == 16

    assert path == optimizer.path
    assert optimizer.best["size"] == min(optimizer.sizes)
    assert path_info.largest_intermediate == optimizer.best["size"]
    assert path_info.opt_cost == optimizer.best["flops"]

    # check error if we try and reuse the optimizer on a different expression
    eq, shapes = rand_equation(10, 4, seed=41)
    views = list(map(np.ones, shapes))
    with pytest.raises(ValueError):
        path, path_info = oe.contract_path(eq, *views, optimize=optimizer)


def test_custom_branchbound() -> None:
    np = pytest.importorskip("numpy")

    eq, shapes = rand_equation(8, 4, seed=42)
    views = list(map(np.ones, shapes))
    optimizer = oe.BranchBound(nbranch=2, cutoff_flops_factor=10, minimize="size")

    path, path_info = oe.contract_path(eq, *views, optimize=optimizer)

    assert path == optimizer.path
    assert path_info.largest_intermediate == optimizer.best["size"]
    assert path_info.opt_cost == optimizer.best["flops"]

    # tweak settings and run again
    optimizer.nbranch = 3
    optimizer.cutoff_flops_factor = 4
    path, path_info = oe.contract_path(eq, *views, optimize=optimizer)

    assert path == optimizer.path
    assert path_info.largest_intermediate == optimizer.best["size"]
    assert path_info.opt_cost == optimizer.best["flops"]

    # check error if we try and reuse the optimizer on a different expression
    eq, shapes = rand_equation(8, 4, seed=41)
    views = list(map(np.ones, shapes))
    with pytest.raises(ValueError):
        path, path_info = oe.contract_path(eq, *views, optimize=optimizer)


def test_branchbound_validation() -> None:
    with pytest.raises(ValueError):
        oe.BranchBound(nbranch=0)


def test_parallel_random_greedy() -> None:
    np = pytest.importorskip("numpy")

    pool = ProcessPoolExecutor(2)

    eq, shapes = rand_equation(10, 4, seed=42)
    views = list(map(np.ones, shapes))

    optimizer = oe.RandomGreedy(max_repeats=10, parallel=pool)
    path, path_info = oe.contract_path(eq, *views, optimize=optimizer)

    assert len(optimizer.costs) == 10
    assert len(optimizer.sizes) == 10

    assert path == optimizer.path
    assert optimizer.parallel is pool
    assert optimizer._executor is pool
    assert optimizer.best["flops"] == min(optimizer.costs)
    assert path_info.largest_intermediate == optimizer.best["size"]
    assert path_info.opt_cost == optimizer.best["flops"]

    # now switch to max time algorithm
    optimizer.max_repeats = int(1e6)
    optimizer.max_time = 0.2
    optimizer.parallel = 2

    path, path_info = oe.contract_path(eq, *views, optimize=optimizer)

    assert len(optimizer.costs) > 10
    assert len(optimizer.sizes) > 10

    assert path == optimizer.path
    assert optimizer.best["flops"] == min(optimizer.costs)
    assert path_info.largest_intermediate == optimizer.best["size"]
    assert path_info.opt_cost == optimizer.best["flops"]

    optimizer.parallel = True
    assert optimizer._executor is not None
    assert optimizer._executor is not pool

    are_done = [f.running() or f.done() for f in optimizer._futures]
    assert all(are_done)


def test_custom_path_optimizer() -> None:
    np = pytest.importorskip("numpy")

    class NaiveOptimizer(oe.paths.PathOptimizer):
        def __call__(
            self,
            inputs: List[ArrayIndexType],
            output: ArrayIndexType,
            size_dict: Dict[str, int],
            memory_limit: Optional[int] = None,
        ) -> PathType:
            self.was_used = True
            return [(0, 1)] * (len(inputs) - 1)

    eq, shapes = rand_equation(5, 3, seed=42, d_max=3)
    views = list(map(np.ones, shapes))

    exp = oe.contract(eq, *views, optimize=False)

    optimizer = NaiveOptimizer()
    out = oe.contract(eq, *views, optimize=optimizer)
    assert exp == out
    assert optimizer.was_used


def test_custom_random_optimizer() -> None:
    np = pytest.importorskip("numpy")

    class NaiveRandomOptimizer(oe.path_random.RandomOptimizer):
        @staticmethod
        def random_path(
            r: int, n: int, inputs: List[ArrayIndexType], output: ArrayIndexType, size_dict: Dict[str, int]
        ) -> Any:
            """Picks a completely random contraction order."""
            np.random.seed(r)
            ssa_path: List[TensorShapeType] = []
            remaining = set(range(n))
            while len(remaining) > 1:
                i, j = np.random.choice(list(remaining), size=2, replace=False)
                remaining.add(n + len(ssa_path))
                remaining.remove(i)
                remaining.remove(j)
                ssa_path.append((i, j))
            cost, size = oe.path_random.ssa_path_compute_cost(ssa_path, inputs, output, size_dict)
            return ssa_path, cost, size

        def setup(self, inputs: Any, output: Any, size_dict: Any) -> Any:
            self.was_used = True
            n = len(inputs)
            trial_fn = self.random_path
            trial_args = (n, inputs, output, size_dict)
            return trial_fn, trial_args

    eq, shapes = rand_equation(5, 3, seed=42, d_max=3)
    views = list(map(np.ones, shapes))

    exp = oe.contract(eq, *views, optimize=False)

    optimizer = NaiveRandomOptimizer(max_repeats=16)
    out = oe.contract(eq, *views, optimize=optimizer)
    assert exp == out
    assert optimizer.was_used

    assert len(optimizer.costs) == 16


def test_optimizer_registration() -> None:
    def custom_optimizer(
        inputs: List[ArrayIndexType], output: ArrayIndexType, size_dict: Dict[str, int], memory_limit: Optional[int]
    ) -> PathType:
        return [(0, 1)] * (len(inputs) - 1)

    with pytest.raises(KeyError):
        oe.paths.register_path_fn("optimal", custom_optimizer)

    oe.paths.register_path_fn("custom", custom_optimizer)
    assert "custom" in oe.paths._PATH_OPTIONS

    eq = "ab,bc,cd"
    shapes = [(2, 3), (3, 4), (4, 5)]
    path, _ = oe.contract_path(eq, *shapes, shapes=True, optimize="custom")  # type: ignore
    assert path == [(0, 1), (0, 1)]
    del oe.paths._PATH_OPTIONS["custom"]


def test_path_with_assumed_shapes() -> None:
    path, _ = oe.contract_path("ab,bc,cd", [[5, 3]], [[2], [4]], [[3, 2]])
    assert path == [(0, 1), (0, 1)]